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Automatic Hierarchical Discovery of Quasi-Static Schedules of RVC-
CAL Dataflow Programs 
 

Jani Boutellier � Mickaël Raulet � Olli Silvén 
 
 
 
Abstract RVC-CAL is an actor-based dataflow language that 
enables concurrent, modular and portable description of signal 
processing algorithms. RVC-CAL programs can be compiled to 
implementation languages such as C/C++ and VHDL for 
producing software or hardware implementations. 

This paper presents a methodology for automatic discovery of 
piecewise-deterministic (quasi-static) execution schedules for 
RVC-CAL program software implementations. Quasi-static 
scheduling moves computational burden from the implementable 
run-time system to design-time compilation and thus enables 
making signal processing systems more efficient. 

The presented methodology divides the RVC-CAL program 
into segments and hierarchically detects quasi-static behavior 
from each segment: first at the level of actors and later at the 
level of the whole segment. Finally, a code generator creates a 
quasi-statically scheduled version of the program. 

The impact of segment based quasi-static scheduling is 
demonstrated by applying the methodology to several RVC-CAL 
programs that execute up to 58% faster after applying the 
presented methodology. 
 
Keywords Scheduling � Signal processing � Data flow analysis 
 
 
1 Introduction  
 
Since decades, data flow models of computation have been 
widely used for describing signal processing applications. One of 
the recently popularized data flow languages is called RVC-CAL 
[3], which is a restricted version of the CAL [6] language. 
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The model of computation under the RVC-CAL language is 
dynamic by nature, which makes it suitable for describing signal 
processing algorithms that have data-dependent behavior [1]. 
However, this expressiveness of the language also greatly 
disables traditional data flow analysis approaches. 

One of the key features that make traditional Synchronous 
Data Flow [7] models attractive is that they allow static compile-
time scheduling, which removes the need for costly run-time 
schedulers. For programs written in the dynamic RVC-CAL 
language it is generally not possible to find completely static 
execution schedules. Instead, piecewise-static (quasi-static) 
schedules can be discovered. The problem is challenging [5], and 
to this date there has been no general, automated solution. 
 This paper presents an automatic, hierarchical methodology 
for discovering quasi-static schedules for RVC-CAL programs. 
We present results where programs have been re-compiled with 
quasi-static schedules and thus speeded up even 58%. 
 

 
 
Fig. 1 Left: the actor “IAP” from the “RVC” program. Right: the 
same actor simplified by the proposed methodology. 
 
2 The Computation Model under RVC-CAL 
 
RVC-CAL is an actor-based data flow language. Actors are 
entities that perform computations and exchange data with each 
other explicitly over FIFO channels [7]. An RVC-CAL program 
contains at least one actor, or a network of interconnected actors. 
In RVC-CAL there are no global variables; data between actors 
is exchanged over FIFOs as entities called tokens. 
 Fig. 1 shows an RVC-CAL actor. The actor has five input 
ports and one output port, each connected to a FIFO. The actor is 
controlled by a Finite State Machine (FSM) with two states: start 
and ac_pred. Computations are performed in state transitions 
called actions. Data-dependent execution can be seen in actions 
skip and pred: depending on the token value of input port D, 
either skip or pred is executed. If the execution of an action 
depends on the token value of a port, the action is called a data-
dependent action and the port is a data dependent port. 



An action can execute when it has enough input tokens (a 
number called token rate [5]), there is sufficient space in the 
output FIFOs and the guard condition is met. Guard conditions 
can be related to variable or token values [2]. The actor in Fig. 1 
has eight variables, of which one is an array. 
 
2.1 Terminology 
 

Having an RVC-CAL program n that consists of N actors, 
segment s is a subset of n that contains 1 to N actors. Each actor 
of n must belong to exactly one segment s. The set of all 
segments is called a segmentation, S, and it contains 1 to N 
different segments. A segment has a set of output ports so and a 
set of input ports si that belong to the actors within s. 
 An actor a belonging to segment s is called a back-edge actor 
if at least one of its output ports belongs to so. Respectively, an 
actor a of segment s is called a front-edge actor if at least one of 
its input ports belongs to si. 
 A buffering actor is an actor that does not immediately 
produce tokens to its output ports after consuming tokens from 
its input ports; instead, data is stored inside the actor and output 
during a later invocation [2]. 
 An action chain, c, is a sequence of actions. The aim of our 
methodology is to express segments as a set of one or more 
deterministic action chains. 
 

 
 

Fig. 2 The steps of discovering quasi-static segments. 
 
3 Related Work 
 
Gu et al. [1] present a framework for detecting statically 
schedulable regions from CAL programs, which is similar to this 
work: the statically schedulable regions of [1] are analogous to 
action chains. The difference to the work presented here is that 
in the work of Gu et al. there is no concept of segments; each 
actor may belong to several different static regions. 

Ersfolk et al. [2] present a model-checking based approach to 
discover execution schedules for parts of RVC-CAL networks. 
The approach of Ersfolk et al. is similar to the work presented in 
this paper: both assume that there is a set of RVC-CAL actors (a 
segment) for which a set of alternative execution sequences 
(action chains) are determined. However, based on the 
experiments presented in [2] it is not possible to numerically 

compare their approach to the one presented in this paper. 
Boutellier et al. [4] present an approach to analyze RVC-CAL 

networks and derive quasi-static execution schedules. Unlike the 
presented work, the approach in [4] considers the whole RVC-
CAL program and attempts to parameterize its behavior with one 
dynamic signal (FIFO connection). For programs with a single 
dynamic signal the approach works well, but for networks for 
which this assumption does not hold, the gain is rather modest. 

The work presented here allows an arbitrary number of 
dynamic signals in the program and enables deriving quasi-static 
schedules for an arbitrary number of non-overlapping segments. 
 
4 The Proposed Approach 
 
The aim of our methodology is to automatically detect quasi-
statically schedulable segments from RVC-CAL programs. 
When such a segment has been detected, the actors within that 
segment can be replaced with a set of deterministic action chains 
that can be executed instead of actor state machines. 
 If the behavior of a segment can be fully described with a set 
of action chains, it is possible to generate a simple run-time 
scheduler for that segment, which based on a few conditions 
executes the appropriate action chain instead of repeatedly trying 
to execute individual actions from separate actors. 

Practically our methodology has been implemented with 
dynamic code analysis [4]: the program is equipped with 
instrumentation code that allows observing its run-time behavior. 
Code generation for all steps is done by Orcc (http://orcc.sf.net). 

Below, the individual steps of the quasi-static segment 
discovery process are described in detail (overview in Fig. 2). 
 
4.1 Generation of FIFO Traces 
 
In the first step of our methodology, the RVC-CAL program is 
executed with training data and the tokens flowing within each 
FIFO buffer of the RVC-CAL actor network are recorded as 
FIFO traces. The training data must be sufficiently diverse to 
exhibit all behaviors that the actors are capable of performing. 
 
4.2 Actor-Level Analysis 
 
In the second step the FIFO traces are used to execute and 
analyze each RVC-CAL actor individually, in isolation. The aim 
of Step 2 is to discover any possible repetitive and deterministic 
behavior that an actor may have. With knowledge of 
deterministic behavior it is possible to write a simplified version 
of each actor for easier analysis at segment level. An example 
result of this is shown in Fig. 1: the simplified actor has one state 
and three action chains of lengths 2, 1 and 66 actions. Below, the 
actor-level analysis is explained in three substeps. 
 
4.2.1 Substep 1 - Detecting Action Chains 
 
Each actor is executed in isolation with the FIFO traces acquired 
in Step 1; as a result an actor execution trace is acquired. The 
execution trace holds the sequence of actions that were executed 



as a result of the FIFO traces used, along with full actor state at 
the moment of executing each action. 

Deterministic actor behavior is discovered by analyzing the 
execution trace and detecting action chains (sequences of 
actions) that always follow each other. The detection is based on 
a) execution of data dependent actions, b) visited FSM states or 
c) momentary variable values. A few examples follow. 

For actors that have data dependent actions, a new action 
chain is determined to start whenever a data dependent action 
execution is detected in the execution trace. 

If the actor does not have any data dependent actions, but has 
multiple FSM states, the execution trace is split into action 
chains based on visited FSM states. The execution trace is 
analyzed separately for each FSM state x ϵ X (where X is the set 
of all FSM states of the actor). When the analysis is running for 
state x, a new action chain is determined to start whenever the 
execution trace visits FSM state x. 

Finally, if the actor has no data dependent actions and only 
one FSM state, the execution trace is split into action chains 
based on variable values: a new action chain is determined to 
start whenever the variables of the actor have certain value v. v is 
a vector that contains all guard-related variables of that actor. 

If the execution trace cannot be split into action chains based 
on any of these conditions, we call the actor trivial. 

Nondeterministic actors express behavior that cannot be 
modeled quasi-statically due to, for example, a data-dependent 
number of loop iterations. 

 
4.2.2 Substep 2 - Verifying and Pruning Action Chains 
 
Substep 1 also produces action chains that in reality are not 
deterministic. These unfit action chains are eliminated by 
verifying each action chain c back against the actor’s execution 
trace t. At each execution trace position tp that exhibits the first 
action of an action chain c0, a comparison is done: all actions ci 
(i = 0, 1, 2, … L; where L is the length of c) must match tp+i.  

If ci ≠ tp+i, c is split at position i, into two new chains d and e 
such that c = d||e. The new chains are added to the end of the 
action chain list and are verified similarly later on. 

After verification, unnecessary action chains are discarded by 
rebuilding the execution trace of the actor from beginning to end 
by using only the action chains. Chains not needed for rebuilding 
the trace are discarded. 

 
4.2.3 Substep 3 - Constructing Simplified Actors 
 
If the procedure of reconstructing the execution trace succeeds, a 
new, simplified actor (see Fig. 1) can be built based on the action 
chains. The new actor may have fewer states in the FSM and can 
perform more computations with one invocation.  Naturally, 
there are actors for which a simplified version cannot be 
constructed. In these cases, the original actor is used in the later 
steps of the presented methodology. This is the case for trivial 
actors and nondeterministic actors. Nondeterministic actors 
exhibit such complex behavior that they cannot be modeled with 
the approaches described in Section 4.2.1. 

4.3 Discovering Segments 
 
At the beginning of the third step of our methodology, the RVC-
CAL program is rebuilt such that actors are replaced by their 
simplified versions whenever possible. 
 Next, our methodology starts detecting segments that allow 
quasi-static schedules to be generated. The following rules are 
used to detect suitable segments: a) A segment consisting of 
more than one actor may not contain nondeterministic actors. b) 
A segment may not have data dependent input ports that 
originate from more than one source port. c) A trivial actor may 
not be a front-edge actor of the segment. d) A buffering actor 
may only be a back-edge actor of a segment. e) Every actor a in 
segment s must be the predecessor or the successor (in the sense 
of directed graphs) of every other actor in segment s. f) No 
segment s may have both input ports si and output ports so that 
connect to another segment r. 

The discovery of segments is currently implemented by 
random search: segments are generated randomly, after which 
conditions a) to f) are checked. If a segment meets all the 
conditions the segment is eligible for detecting action chains at 
segment level. Detection of action chains at segment level is 
performed by executing the segment in isolation using FIFO 
traces, similar to what was described in Section 4.2.1. 

To avoid the segment level action chains from becoming 
overtly long, the isolated execution is restricted by limiting the 
number of tokens the segment may consume on one execution. 
For each si of segment s, the maximum allowed consumption is 
equal to the token rate of the actor port. 

Each time before the segment is allowed to execute, the initial 
state of the segment, signature [4], is recorded. The signature 
consists of 1) value of the first token in each si that is data 
dependent, 2) the FSM state of each actor in the segment, 3) the 
values of variables within each actor of the segment, 4) the 
number of tokens on each FIFO of s which does not belong to si 
or so. In the code generation step, the signature is used to build a 
selection mechanism to arbitrate between different action chains. 

 
4.4 Final Code Generation 
 
In general, the segment discovery process produces several non-
unique segmentations, out of which one must be chosen for the 
final implementation of the RVC-CAL program. Currently, this 
selection is done manually. 

After the designer has selected the segmentation, the final 
executable code is automatically generated. For segments that 
can be expressed as a limited number of deterministic action 
chains, the code generator automatically generates quasi-static 
execution schedules and a suitable arbitration mechanism to 
decide at run-time which action chain to execute. The code 
generator is similar to the one used in [4].  

An example that shows the efficiency of the proposed 
approach: for the “mc” segment (Fig. 3), the code generator 
instantiates seven different action chains that consist of up to 380 
actions each. These seven action chains fully capture the 
behavior of the four actors in the segment. The automatically 



  
Fig. 3 The “RVC” actor network. S and V 
are source and sink actors. D is a 
hierarchical actor existing as three 
instances. The actor network inside D is 
on the right. The “mc”-oval is the motion 
compensation loop selected for code 
generation; the rest of the ovals show 
some other detected segments. 
 
generated run-time scheduler is then able to arbitrate between the 
different action chains based on a single variable value. 

For segments that do not exhibit such deterministic behavior, 
calls to the default actor scheduler are used. 
 
5 Experiments 

 
Experiments were performed on three RVC-CAL programs to 
evaluate the proposed methodology. Each of the programs was 
an MPEG-4 Simple Profile video decoder described in a 
different fashion. A video sequence named “l.m4v” of resolution 
720x480 and length of 5 frames was used as training data for 
applying the methodology to each of the programs. 
 Table 1 shows the performance of the “RVC” program in 
frames/sec (fps) before and after applying our methodology. For 
the segmented version, three automatically detected segments 
(see Fig. 3) were selected for generating the improved program. 
These results show that even with a small amount of training 
data, the behavior of the program can be analyzed and improved 
correctly and the speedup is considerable even though the quasi-
static code generation is very basic at the moment. 
 On the workstation platform that was used for experiments, 
the use of simplified actors (Section 4.2.3) alone produced no 
speedup, but helped in the discovery of quasi-static schedules at 
segment level. On an embedded platform with small buffer sizes 
the results might be different, but this was not experimented. 
 Table 2 shows the number of actors and a performance 
summary for all three programs. The number of automatically 
detected segments with two or more actors is shown as well. The 
performance numbers show the average performance of all 5 
video sequences (l.m4v, m1.m4v m2.m4v, …) over 500 frames. 
 The experimentation platform was Ubuntu Linux 11.10 
running on Windows 7 over VMWare player. The processor was 
Intel Core 2 Duo E8500 and the compiler GCC 4.6.1. 
 
6 Conclusions 
 
In this paper we have presented a methodology for automatic 
discovery of quasi-static segments for RVC-CAL programs. The 
methodology is based on hierarchical process that has in this 
work been implemented via dynamic code analysis. Results 
show the considerable performance gain that can be achieved. 
Studying the implementation of the presented methodology by 
static analysis [2] and creating a more sophisticated quasi-static 
code generator remain as future goals.  
 

Table 1 Performance of program “RVC” in frames per second, 
as well as the percentage of macroblocks having texture data and 
those that are interpolated.  
Video seq. Int. MBs Tex. MBs Ordinary Segmented 
m1.m4v 91.6% 21.4% 13.5 21.5 
m2.m4v 76.3% 47.9% 12.1 17.8 
s1.m4v 94.0% 25.1% 12.9 20.2 
s2.m4v 84.2% 39.3% 12.7 19.1 

 
Table 2 Number of detected segments with two or more actors. 
Program Actors Segments Fps/O Fps/S 
MPEG-4 “MVG” 21 45 20.9 25.1 
MPEG-4 “RVC” 45 39 13.1 20.7 
MPEG-4 “Serial” 25 28 17.6 22.8 
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