-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by HAL-Rennes 1

archives-ouvertes

Automatic Hierarchical Discovery of Quasi-Static

Schedules of RVC-CAL Dataflow Programs
Jani Boutellier, Mickaél Raulet, Olli Silvén

» To cite this version:

Jani Boutellier, Mickaél Raulet, Olli Silvén. Automatic Hierarchical Discovery of Quasi-Static
Schedules of RVC-CAL Dataflow Programs. Journal of Signal Processing Systems, Springer,
2013, 71 (1), pp.35-40. <10.1007/s11265-012-0676-4>. <hal-00717218>

HAL Id: hal-00717218
https://hal.archives-ouvertes.fr/hal-00717218
Submitted on 12 Jul 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francgais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/48220135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00717218

Automatic Hierarchical Discovery of Quasi-Static Shedules of RVC-

CAL Dataflow Programs

Jani Boutellier - Mickaél Raulet - Olli Silvén

Abstract RVC-CAL is an actor-based dataflow language thafhe model of computation under the RVC-CAL language

enables concurrent, modular and portable descnipggfosignal
processing algorithms. RVC-CAL programs can be dadpo

dynamic by nature, which makes it suitable for déstg signal
processing algorithms that have data-dependentvimehfl].

implementation languages such as C/C++ and VHDL foHowever, this expressiveness of the language alsatly

producing software or hardware implementations.

This paper presents a methodology for automatiwogisy of
piecewise-deterministic (quasi-static) executiormesiles for
RVC-CAL program software implementations. Quastista
scheduling moves computational burden from the émgntable
run-time system to design-time compilation and tlemsables
making signal processing systems more efficient.

The presented methodology divides the RVC-CAL paogr
into segments and hierarchically detects quasiestathavior
from each segment: first at the level of actors katdr at the
level of the whole segment. Finally, a code gemerateates a
quasi-statically scheduled version of the program.

The impact of segment based quasi-static schedubng
demonstrated by applying the methodology to se\RY4l-CAL
programs that execute up to 58% faster after applythe
presented methodology.

Keywords Scheduling Signal processingData flow analysis

1 Introduction

Since decades, data flow models of computation Haeen
widely used for describing signal processing apiins. One of
the recently popularized data flow languages ikedaRVC-CAL

[3], which is a restricted version of the CAL [@hguage.

J. Boutellier (contact) O. Silvén

Department of Computer Science and Engineering,
90014 University of Oulu, Finland

e-mail: jani.boutellier@ee.oulu.fi

O. Silvén
e-mail: olli.silven@ee.oulu.fi

M. Raulet
IETR/INSA Rennes, 35043, Rennes, France
e-mail: mickael.raulet@insa-rennes.fr

disables traditional data flow analysis approaches.

One of the key features that make traditional Syowbus
Data Flow [7] models attractive is that they allstatic compile-
time scheduling, which removes the need for costly-time
schedulers. For programs written in the dynamic RVAL
language it is generally not possible to find costgly static
execution schedules. Instead, piecewise-static s{eptatic)
schedules can be discovered. The problem is clyatigii5], and
to this date there has been no general, automaketios.

This paper presents an automatic, hierarchicahodetogy
for discovering quasi-static schedules for RVC-Cgiograms.
We present results where programs have been retaohvaith
guasi-static schedules and thus speeded up even 58%

S prev g’
tacp_flag
'pred_ptr 1
1S_q i
rcount i
'buf[] !

moaOw >

| top
' ptr

pred-skip-copy-63-
advance

Fig. 1 Left: the actor “IAP” from the “RVC” program. Righthe
same actor simplified by the proposed methodology.

2 The Computation Model under RVC-CAL

RVC-CAL is an actor-based data flow language. Actors are
entities that perform computations and exchanga dith each
other explicitly over FIFO channels [7]. An RVC-CAdrogram
contains at least one actor, onetwork of interconnected actors.
In RVC-CAL there are no global variables; data lesw actors
is exchanged over FIFOs as entities catitdens.

Fig. 1 shows an RVC-CAL actor. The actor has finput
ports and one output port, each connected to a.FTR® actor is
controlled by a Finite State Machine (FSM) with tetatesstart
and ac_pred. Computations are performed in state transitions
calledactions. Data-dependent execution can be seen in actions
skip and pred: depending on the token value of input port D,
either skip or pred is executed. If the execution of an action
depends on the token value of a port, the actiaalied adata-
dependent action and the port is data dependent port.

An action can execute when it has enough inputneka
number calledtoken rate [5]), there is sufficient space in the
output FIFOs and thguard condition is met. Guard conditions
can be related to variable or token values [2]. dtt®r in Fig. 1
has eight variables, of which one is an array.

2.1 Terminology

Having an RVC-CAL programm that consists ofN actors,
segment s is a subset ofl that contains 1 t®l actors. Each actor
of n must belong to exactly one segmentThe set of all
segments is called segmentation, S, and it contains 1 tdN
different segments. A segment has a set of outps g, and a
set of input ports, that belong to the actors withén

An actora belonging to segmeistis called aback-edge actor
if at least one of its output ports belongssjoRespectively, an
actora of segmensis called dront-edge actor if at least one of
its input ports belongs .

compare their approach to the one presented ip#psr.
Boutellier et al. [4] present an approach to aralRx/C-CAL
networks and derive quasi-static execution schedllealike the
presented work, the approach in [4] considers thelevRVC-
CAL program and attempts to parameterize its bemawith one
dynamic signal (FIFO connection). For programs wvétlsingle
dynamic signal the approach works well, but forwweks for
which this assumption does not hold, the gaintiseramodest.
The work presented here allows an arbitrary numdier
dynamic signals in the program and enables deriginasi-static
schedules for an arbitrary number of non-overlaggiegments.

4 The Proposed Approach

The aim of our methodology is to automatically detguasi-
statically schedulable segments from RVC-CAL progga
When such a segment has been detected, the adtbins that
segment can be replaced with a set of determirastion chains

A buffering actor is an actor that does not immediatelythat can be executed instead of actor state mazhine

produce tokens to its output ports after consuntakgns from
its input ports; instead, data is stored insideati®r and output
during a later invocation [2].

If the behavior of a segment can be fully desatitéth a set
of action chains, it is possible to generate a Bmpn-time
scheduler for that segment, which based on a femditions

An action chain, ¢, is a sequence of actions. The aim of ou€xecutes the appropriate action chain insteadpefatedly trying

methodology is to express segments as a set ofoomaore
deterministic action chains.

RVC'CAL—)[Orcc }—)[
program

FIFO
traces

Generation of N
FIFO traces

Actor-level
analysis

A

Simplified actors

Segment
detection

Accelerated
program

Final code
generation

Segment
selection

Fig. 2 The steps of discovering quasi-static segments.
3 Related Work

Gu et al. [1] present a framework for detectingtistdly
schedulable regions from CAL programs, which isilsinto this
work: the statically schedulable regions of [1] arelogous to
action chains. The difference to the work presefeet is that
in the work of Gu et al. there is no concept ofrsegts; each
actor may belong to several different static region

Ersfolk et al. [2] present a model-checking bagggr@ach to
discover execution schedules for parts of RVC-CAdtworks.
The approach of Ersfolk et al. is similar to therkvpresented in
this paper: both assume that there is a set of R¥C-actors (a
segment) for which a set of alternative executi@guences
(action chains) are determined. However,
experiments presented in [2] it is not possiblentonerically

to execute individual actions from separate actors.

Practically our methodology has been implementeth wi
dynamic code analysis [4]: the program is equippeith
instrumentation code that allows observing its tiome behavior.
Code generation for all steps is done by Orcc (ttec.sf.net).

Below, the individual steps of the quasi-static rsegt
discovery process are described in detail (overviekig. 2).

4.1 Generation of FIFO Traces

In the first step of our methodology, the RVC-CAtogram is
executed with training data and the tokens flowivithin each
FIFO buffer of the RVC-CAL actor network are receddas
FIFO traces. The training data must be sufficiently diverse
exhibit all behaviors that the actors are capabfgedorming.

4.2 Actor-Level Analysis

In the second step the FIFO traces are used toutxemd
analyze each RVC-CAL actor individually, in isotati The aim
of Step 2 is to discover any possible repetitivd daterministic
behavior that an actor may have. With knowledge
deterministic behavior it is possible to write mplified version
of each actor for easier analysis at segment |évelexample
result of this is shown in Fig. 1: the simplifiectar has one state
and three action chains of lengths 2, 1 and 6®@&tiBelow, the
actor-level analysis is explained in three substeps

of

4.2.1 Substep 1 - Detecting Action Chains

Each actor is executed in isolation with the FIF&xés acquired

based ba tin Step 1; as a result an actxecution trace is acquired. The

execution trace holds the sequence of actionsatbet executed

as a result of the FIFO traces used, along withafttior state at
the moment of executing each action.

Deterministic actor behavior is discovered by anialy the
execution trace and detecting action chains (sempserof
actions) that always follow each other. The detecis based on
a) execution of data dependent actions, b) vidi8¥ states or
¢) momentary variable values. A few examples follow

For actors that have data dependent actions, a aution
chain is determined to start whenever a data degmgnatction
execution is detected in the execution trace.

If the actor does not have any data dependentragtiut has
multiple FSM states, the execution trace is spitbiaction
chains based on visited FSM states. The executiace tis
analyzed separately for each FSM stateX (whereX is the set
of all FSM states of the actor). When the analisisinning for
statex, a new action chain is determined to start whené#ve
execution trace visits FSM state

Finally, if the actor has no data dependent actamd only
one FSM state, the execution trace is split intboacchains
based on variable values: a new action chain israhed to
start whenever the variables of the actor havearevaluev. v is
a vector that contains all guard-related variabfehat actor.

If the execution trace cannot be split into actibvains based
on any of these conditions, we call the attbial.

4.3 Discovering Segments

At the beginning of the third step of our methodplothe RVC-
CAL program is rebuilt such that actors are repllabg their
simplified versions whenever possible.

Next, our methodology starts detecting segmerdas aliow
quasi-static schedules to be generated. The fallpwiles are
used to detect suitable segments: a) A segmentistiogs of
more than one actor may not contain nondeterminéttors. b)
A segment may not have data dependent input pdows t
originate from more than one source port. c) Aidtiactor may
not be a front-edge actor of the segment. d) Adyirf§ actor
may only be a back-edge actor of a segment. e)yEaora in
segmens must be the predecessor or the successor (iretises
of directed graphs) of every other actor in segneenf) No
segments may have both input port and output ports, that
connect to another segment

The discovery of segments is currently implementsd
random search: segments are generated randomgdy, veffiich
conditions a) to f) are checked. If a segment meditsthe
conditions the segment is eligible for detectintjcarcchains at
segment level. Detection of action chains at segnevrel is
performed by executing the segment in isolatiomgisFIFO
traces, similar to what was described in Secti@nl4.

Nondeterministic actors express behavior that cannot be To avoid the segment level action chains from beogm

modeled quasi-statically due to, for example, a-dpendent
number of loop iterations.

4.2.2 Substep 2 - Verifying and Pruning Action Glsai

Substep 1 also produces action chains that intyeafie not
deterministic. These unfit action chains are elat@d by

overtly long, the isolated execution is restrictedlimiting the
number of tokens the segment may consume on OreitExe.
For eachs of segmens, the maximum allowed consumption is
equal to the token rate of the actor port.

Each time before the segment is allowed to exetieinitial
state of the segmengignature [4], is recorded. The signature
consists of 1) value of the first token in eaghthat is data

verifying each action chaio back against the actor's execution dependent, 2) the FSM state of each actor in thmenst, 3) the

tracet. At each execution trace positignthat exhibits the first
action of an action chaie, a comparison is done: all actiogs
(i=0,1,2,...L; where L is the length of must match.;.

If ¢ # ty.i, Cis split at position, into two new chainsl ande

values of variables within each actor of the segméh the
number of tokens on each FIFOsvhich does not belong ®
or . In the code generation step, the signature id teséuild a
selection mechanism to arbitrate between diffeaetibn chains.

such thatc = d|fe. The new chains are added to the end of the

action chain list and are verified similarly latar.

After verification, unnecessary action chains aseatded by
rebuilding the execution trace of the actor frongibeing to end
by using only the action chains. Chains not neddeckebuilding
the trace are discarded.

4.2.3 Substep 3 - Constructing Simplified Actors

If the procedure of reconstructing the executi@eédrsucceeds, a
new, simplified actor (see Fig. 1) can be builtdzhen the action
chains. The new actor may have fewer states ifr8M and can
perform more computations with one invocation. uxaity,
there are actors for which a simplified version raanbe
constructed. In these cases, the original actasésl in the later
steps of the presented methodology. This is the @astrivial
actors andnondeterministic actors. Nondeterministic actors
exhibit such complex behavior that they cannot loeleted with
the approaches described in Section 4.2.1.

4.4 Final Code Generation

In general, the segment discovery process prodaeesal non-
unique segmentations, out of which one must beeshéar the
final implementation of the RVC-CAL program. Curtign this
selection is done manually.

After the designer has selected the segmentatian,fihal
executable code is automatically generated. Fomsats that
can be expressed as a limited number of deterngingstion
chains, the code generator automatically genemiesi-static
execution schedules and a suitable arbitration am@sm to
decide at run-time which action chain to executbBe Ttode
generator is similar to the one used in [4].

An example that shows the efficiency of the propose
approach: for the “mc” segment (Fig. 3), the codmegator
instantiates seven different action chains thasisbrof up to 380
actions each. These seven action chains fully capthe
behavior of the four actors in the segment. Theraatically

Fig. 3 The “RVC” actor networkS andV

are source and sink actoBsis a
hierarchical actor existing as three ;
instances. The actor network inside D is !
on the right. The “mc”-oval is the motion |
compensation loop selected for code \
generation; the rest of the ovals show
some other detected segments. ’

generated run-time scheduler is then able to atbitretween the
different action chains based on a single variahlae.

For segments that do not exhibit such determintsticavior,
calls to the default actor scheduler are used.

5 Experiments

Experiments were performed on three RVC-CAL program
evaluate the proposed methodology. Each of therpnog was
an MPEG-4 Simple Profile video decoder described ain
different fashion. A video sequence named “I.m4f/fasolution
720x480 and length of 5 frames was used as traidatg for
applying the methodology to each of the programs.

Table 1 shows the performance of the “RVC” program
frames/sec (fps) before and after applying our odlogy. For
the segmented version, three automatically detestgpnents
(see Fig. 3) were selected for generating the ingmgrogram.
These results show that even with a small amourttadfiing
data, the behavior of the program can be analyrddraproved
correctly and the speedup is considerable evergththe quasi-
static code generation is very basic at the moment.

On the workstation platform that was used for expents,
the use of simplified actors (Section 4.2.3) algmeduced no
speedup, but helped in the discovery of quasiestathedules at
segment level. On an embedded platform with sméfieb sizes
the results might be different, but this was ngiezimented.

Table 1 Performance of program “RVC” in frames per second,
as well as the percentage of macroblocks havingitexiata and
those that are interpolated.

Videoseq. Int. MBs Tex. MBs Ordinary Segmented
m1l.m4v 91.6% 21.4% 135 215
m2.m4v 76.3% 47.9% 121 17.8
sl.m4v 94.0% 25.1% 12.9 20.2
s2.m4v 84.2% 39.3% 12.7 19.1

Table 2 Number of detected segments with two or more actor

Program Actors Segments Fps/O Fps/S

MPEG-4 “MVG” 21 45 20.9 25.1

MPEG-4 “RVC” 45 39 131 20.7

MPEG-4 “Serial” 25 28 17.6 22.8
Acknowledgements

This research has been partially funded by the DDB4oroject
of the Academy of Finland.

References

[1] Gu, R., Janneck, J. W., Raulet, M., and Bhaidagya, S. S.
(2011). Exploiting Statically Schedulable RegionsDataflow
ProgramsJournal of Sgnal Processing Systems, 63(1):129-142.
[2] Ersfolk, J., Roquier, G., Jokhio, F., Lilius, and Mattavelli,

Table 2 shows the number of actors and a perfatenan); (2011). Scheduling of Dynamic Dataflow Programith

summary for all three programs. The number of aatarally
detected segmentgith two or more actors is shown as well. The
performance numbers show the average performancdl &
video sequences (l.m4v, m1.m4v m2.m4yv, ...) overfs@des.

The experimentation platform was Ubuntu Linux D1.1
running on Windows 7 over VMWare player. The praogsvas
Intel Core 2 Duo E8500 and the compiler GCC 4.6.1.

6 Conclusions

In this paper we have presented a methodology ditonsatic
discovery of quasi-static segments for RVC-CAL peogs. The
methodology is based on hierarchical process thatih this
work been implemented via dynamic code analysissuRe
show the considerable performance gain that caachéved.
Studying the implementation of the presented meitogy by
static analysis [2] and creating a more sophigitajuasi-static
code generator remain as future goals.

Model Checking. Proceedings of the 2011 IEEE Waoksbn
Signal Processing Systems (SiPS), 37-42.

[3] Janneck, J. W., Mattavelli, M., Raulet, M., awdpliez, M.
(2010) Reconfigurable Video Coding: a Stream Pnogning
Approach to the Specification of New Video Codingrglards.
Proceedings of ACM Multimedia Systems 2010, 223:234

[4] Boutellier, J., Silvén, O. and Raulet, M. (201$cheduling
of CAL actor networks based on dynamic code anslysi
Proceedings of the 2011 IEEE International Confezeon
Acoustics, Speech and Signal Processing (ICASSI®R-1612.
[5] Boutellier, J., Lucarz, C., Lafond, S., Mart®omez V. and
Mattavelli M. (2011) Quasi-Static Scheduling of CAActor
Networks for Reconfigurable Video Codingpurnal of Sgnal
Processing Systems, 63(2):191-202.

[6] Eker, J. and Janneck, J. (2003) CAL LanguageoRe
Technical Report UCB/ERL M03/48, UC Berkeley.

[7] Lee, E. A., and Messerschmitt, D. G. (1987) &yonous

Data Flow.Proceedings of the |IEEE, 75(9), 1235-1245.

