
Automatic Hierarchical Discovery of Quasi-Static

Schedules of RVC-CAL Dataflow Programs

Jani Boutellier, Mickaël Raulet, Olli Silvén

To cite this version:

Jani Boutellier, Mickaël Raulet, Olli Silvén. Automatic Hierarchical Discovery of Quasi-Static
Schedules of RVC-CAL Dataflow Programs. Journal of Signal Processing Systems, Springer,
2013, 71 (1), pp.35-40. <10.1007/s11265-012-0676-4>. <hal-00717218>

HAL Id: hal-00717218

https://hal.archives-ouvertes.fr/hal-00717218

Submitted on 12 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Rennes 1

https://core.ac.uk/display/48220135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00717218

Automatic Hierarchical Discovery of Quasi-Static Schedules of RVC-
CAL Dataflow Programs

Jani Boutellier � Mickaël Raulet � Olli Silvén

Abstract RVC-CAL is an actor-based dataflow language that
enables concurrent, modular and portable description of signal
processing algorithms. RVC-CAL programs can be compiled to
implementation languages such as C/C++ and VHDL for
producing software or hardware implementations.

This paper presents a methodology for automatic discovery of
piecewise-deterministic (quasi-static) execution schedules for
RVC-CAL program software implementations. Quasi-static
scheduling moves computational burden from the implementable
run-time system to design-time compilation and thus enables
making signal processing systems more efficient.

The presented methodology divides the RVC-CAL program
into segments and hierarchically detects quasi-static behavior
from each segment: first at the level of actors and later at the
level of the whole segment. Finally, a code generator creates a
quasi-statically scheduled version of the program.

The impact of segment based quasi-static scheduling is
demonstrated by applying the methodology to several RVC-CAL
programs that execute up to 58% faster after applying the
presented methodology.

Keywords Scheduling � Signal processing � Data flow analysis

1 Introduction

Since decades, data flow models of computation have been
widely used for describing signal processing applications. One of
the recently popularized data flow languages is called RVC-CAL
[3], which is a restricted version of the CAL [6] language.

J. Boutellier (contact) � O. Silvén
Department of Computer Science and Engineering,
90014 University of Oulu, Finland
e-mail: jani.boutellier@ee.oulu.fi

O. Silvén
e-mail: olli.silven@ee.oulu.fi

M. Raulet
IETR/INSA Rennes, 35043, Rennes, France
e-mail: mickael.raulet@insa-rennes.fr

The model of computation under the RVC-CAL language is
dynamic by nature, which makes it suitable for describing signal
processing algorithms that have data-dependent behavior [1].
However, this expressiveness of the language also greatly
disables traditional data flow analysis approaches.

One of the key features that make traditional Synchronous
Data Flow [7] models attractive is that they allow static compile-
time scheduling, which removes the need for costly run-time
schedulers. For programs written in the dynamic RVC-CAL
language it is generally not possible to find completely static
execution schedules. Instead, piecewise-static (quasi-static)
schedules can be discovered. The problem is challenging [5], and
to this date there has been no general, automated solution.
 This paper presents an automatic, hierarchical methodology
for discovering quasi-static schedules for RVC-CAL programs.
We present results where programs have been re-compiled with
quasi-static schedules and thus speeded up even 58%.

Fig. 1 Left: the actor “IAP” from the “RVC” program. Right: the
same actor simplified by the proposed methodology.

2 The Computation Model under RVC-CAL

RVC-CAL is an actor-based data flow language. Actors are
entities that perform computations and exchange data with each
other explicitly over FIFO channels [7]. An RVC-CAL program
contains at least one actor, or a network of interconnected actors.
In RVC-CAL there are no global variables; data between actors
is exchanged over FIFOs as entities called tokens.
 Fig. 1 shows an RVC-CAL actor. The actor has five input
ports and one output port, each connected to a FIFO. The actor is
controlled by a Finite State Machine (FSM) with two states: start
and ac_pred. Computations are performed in state transitions
called actions. Data-dependent execution can be seen in actions
skip and pred: depending on the token value of input port D,
either skip or pred is executed. If the execution of an action
depends on the token value of a port, the action is called a data-
dependent action and the port is a data dependent port.

An action can execute when it has enough input tokens (a
number called token rate [5]), there is sufficient space in the
output FIFOs and the guard condition is met. Guard conditions
can be related to variable or token values [2]. The actor in Fig. 1
has eight variables, of which one is an array.

2.1 Terminology

Having an RVC-CAL program n that consists of N actors,
segment s is a subset of n that contains 1 to N actors. Each actor
of n must belong to exactly one segment s. The set of all
segments is called a segmentation, S, and it contains 1 to N
different segments. A segment has a set of output ports so and a
set of input ports si that belong to the actors within s.
 An actor a belonging to segment s is called a back-edge actor
if at least one of its output ports belongs to so. Respectively, an
actor a of segment s is called a front-edge actor if at least one of
its input ports belongs to si.
 A buffering actor is an actor that does not immediately
produce tokens to its output ports after consuming tokens from
its input ports; instead, data is stored inside the actor and output
during a later invocation [2].
 An action chain, c, is a sequence of actions. The aim of our
methodology is to express segments as a set of one or more
deterministic action chains.

Fig. 2 The steps of discovering quasi-static segments.

3 Related Work

Gu et al. [1] present a framework for detecting statically
schedulable regions from CAL programs, which is similar to this
work: the statically schedulable regions of [1] are analogous to
action chains. The difference to the work presented here is that
in the work of Gu et al. there is no concept of segments; each
actor may belong to several different static regions.

Ersfolk et al. [2] present a model-checking based approach to
discover execution schedules for parts of RVC-CAL networks.
The approach of Ersfolk et al. is similar to the work presented in
this paper: both assume that there is a set of RVC-CAL actors (a
segment) for which a set of alternative execution sequences
(action chains) are determined. However, based on the
experiments presented in [2] it is not possible to numerically

compare their approach to the one presented in this paper.
Boutellier et al. [4] present an approach to analyze RVC-CAL

networks and derive quasi-static execution schedules. Unlike the
presented work, the approach in [4] considers the whole RVC-
CAL program and attempts to parameterize its behavior with one
dynamic signal (FIFO connection). For programs with a single
dynamic signal the approach works well, but for networks for
which this assumption does not hold, the gain is rather modest.

The work presented here allows an arbitrary number of
dynamic signals in the program and enables deriving quasi-static
schedules for an arbitrary number of non-overlapping segments.

4 The Proposed Approach

The aim of our methodology is to automatically detect quasi-
statically schedulable segments from RVC-CAL programs.
When such a segment has been detected, the actors within that
segment can be replaced with a set of deterministic action chains
that can be executed instead of actor state machines.
 If the behavior of a segment can be fully described with a set
of action chains, it is possible to generate a simple run-time
scheduler for that segment, which based on a few conditions
executes the appropriate action chain instead of repeatedly trying
to execute individual actions from separate actors.

Practically our methodology has been implemented with
dynamic code analysis [4]: the program is equipped with
instrumentation code that allows observing its run-time behavior.
Code generation for all steps is done by Orcc (http://orcc.sf.net).

Below, the individual steps of the quasi-static segment
discovery process are described in detail (overview in Fig. 2).

4.1 Generation of FIFO Traces

In the first step of our methodology, the RVC-CAL program is
executed with training data and the tokens flowing within each
FIFO buffer of the RVC-CAL actor network are recorded as
FIFO traces. The training data must be sufficiently diverse to
exhibit all behaviors that the actors are capable of performing.

4.2 Actor-Level Analysis

In the second step the FIFO traces are used to execute and
analyze each RVC-CAL actor individually, in isolation. The aim
of Step 2 is to discover any possible repetitive and deterministic
behavior that an actor may have. With knowledge of
deterministic behavior it is possible to write a simplified version
of each actor for easier analysis at segment level. An example
result of this is shown in Fig. 1: the simplified actor has one state
and three action chains of lengths 2, 1 and 66 actions. Below, the
actor-level analysis is explained in three substeps.

4.2.1 Substep 1 - Detecting Action Chains

Each actor is executed in isolation with the FIFO traces acquired
in Step 1; as a result an actor execution trace is acquired. The
execution trace holds the sequence of actions that were executed

as a result of the FIFO traces used, along with full actor state at
the moment of executing each action.

Deterministic actor behavior is discovered by analyzing the
execution trace and detecting action chains (sequences of
actions) that always follow each other. The detection is based on
a) execution of data dependent actions, b) visited FSM states or
c) momentary variable values. A few examples follow.

For actors that have data dependent actions, a new action
chain is determined to start whenever a data dependent action
execution is detected in the execution trace.

If the actor does not have any data dependent actions, but has
multiple FSM states, the execution trace is split into action
chains based on visited FSM states. The execution trace is
analyzed separately for each FSM state x ϵ X (where X is the set
of all FSM states of the actor). When the analysis is running for
state x, a new action chain is determined to start whenever the
execution trace visits FSM state x.

Finally, if the actor has no data dependent actions and only
one FSM state, the execution trace is split into action chains
based on variable values: a new action chain is determined to
start whenever the variables of the actor have certain value v. v is
a vector that contains all guard-related variables of that actor.

If the execution trace cannot be split into action chains based
on any of these conditions, we call the actor trivial.

Nondeterministic actors express behavior that cannot be
modeled quasi-statically due to, for example, a data-dependent
number of loop iterations.

4.2.2 Substep 2 - Verifying and Pruning Action Chains

Substep 1 also produces action chains that in reality are not
deterministic. These unfit action chains are eliminated by
verifying each action chain c back against the actor’s execution
trace t. At each execution trace position tp that exhibits the first
action of an action chain c0, a comparison is done: all actions ci
(i = 0, 1, 2, … L; where L is the length of c) must match tp+i.

If ci ≠ tp+i, c is split at position i, into two new chains d and e
such that c = d||e. The new chains are added to the end of the
action chain list and are verified similarly later on.

After verification, unnecessary action chains are discarded by
rebuilding the execution trace of the actor from beginning to end
by using only the action chains. Chains not needed for rebuilding
the trace are discarded.

4.2.3 Substep 3 - Constructing Simplified Actors

If the procedure of reconstructing the execution trace succeeds, a
new, simplified actor (see Fig. 1) can be built based on the action
chains. The new actor may have fewer states in the FSM and can
perform more computations with one invocation. Naturally,
there are actors for which a simplified version cannot be
constructed. In these cases, the original actor is used in the later
steps of the presented methodology. This is the case for trivial
actors and nondeterministic actors. Nondeterministic actors
exhibit such complex behavior that they cannot be modeled with
the approaches described in Section 4.2.1.

4.3 Discovering Segments

At the beginning of the third step of our methodology, the RVC-
CAL program is rebuilt such that actors are replaced by their
simplified versions whenever possible.
 Next, our methodology starts detecting segments that allow
quasi-static schedules to be generated. The following rules are
used to detect suitable segments: a) A segment consisting of
more than one actor may not contain nondeterministic actors. b)
A segment may not have data dependent input ports that
originate from more than one source port. c) A trivial actor may
not be a front-edge actor of the segment. d) A buffering actor
may only be a back-edge actor of a segment. e) Every actor a in
segment s must be the predecessor or the successor (in the sense
of directed graphs) of every other actor in segment s. f) No
segment s may have both input ports si and output ports so that
connect to another segment r.

The discovery of segments is currently implemented by
random search: segments are generated randomly, after which
conditions a) to f) are checked. If a segment meets all the
conditions the segment is eligible for detecting action chains at
segment level. Detection of action chains at segment level is
performed by executing the segment in isolation using FIFO
traces, similar to what was described in Section 4.2.1.

To avoid the segment level action chains from becoming
overtly long, the isolated execution is restricted by limiting the
number of tokens the segment may consume on one execution.
For each si of segment s, the maximum allowed consumption is
equal to the token rate of the actor port.

Each time before the segment is allowed to execute, the initial
state of the segment, signature [4], is recorded. The signature
consists of 1) value of the first token in each si that is data
dependent, 2) the FSM state of each actor in the segment, 3) the
values of variables within each actor of the segment, 4) the
number of tokens on each FIFO of s which does not belong to si
or so. In the code generation step, the signature is used to build a
selection mechanism to arbitrate between different action chains.

4.4 Final Code Generation

In general, the segment discovery process produces several non-
unique segmentations, out of which one must be chosen for the
final implementation of the RVC-CAL program. Currently, this
selection is done manually.

After the designer has selected the segmentation, the final
executable code is automatically generated. For segments that
can be expressed as a limited number of deterministic action
chains, the code generator automatically generates quasi-static
execution schedules and a suitable arbitration mechanism to
decide at run-time which action chain to execute. The code
generator is similar to the one used in [4].

An example that shows the efficiency of the proposed
approach: for the “mc” segment (Fig. 3), the code generator
instantiates seven different action chains that consist of up to 380
actions each. These seven action chains fully capture the
behavior of the four actors in the segment. The automatically

Fig. 3 The “RVC” actor network. S and V
are source and sink actors. D is a
hierarchical actor existing as three
instances. The actor network inside D is
on the right. The “mc”-oval is the motion
compensation loop selected for code
generation; the rest of the ovals show
some other detected segments.

generated run-time scheduler is then able to arbitrate between the
different action chains based on a single variable value.

For segments that do not exhibit such deterministic behavior,
calls to the default actor scheduler are used.

5 Experiments

Experiments were performed on three RVC-CAL programs to
evaluate the proposed methodology. Each of the programs was
an MPEG-4 Simple Profile video decoder described in a
different fashion. A video sequence named “l.m4v” of resolution
720x480 and length of 5 frames was used as training data for
applying the methodology to each of the programs.
 Table 1 shows the performance of the “RVC” program in
frames/sec (fps) before and after applying our methodology. For
the segmented version, three automatically detected segments
(see Fig. 3) were selected for generating the improved program.
These results show that even with a small amount of training
data, the behavior of the program can be analyzed and improved
correctly and the speedup is considerable even though the quasi-
static code generation is very basic at the moment.
 On the workstation platform that was used for experiments,
the use of simplified actors (Section 4.2.3) alone produced no
speedup, but helped in the discovery of quasi-static schedules at
segment level. On an embedded platform with small buffer sizes
the results might be different, but this was not experimented.
 Table 2 shows the number of actors and a performance
summary for all three programs. The number of automatically
detected segments with two or more actors is shown as well. The
performance numbers show the average performance of all 5
video sequences (l.m4v, m1.m4v m2.m4v, …) over 500 frames.
 The experimentation platform was Ubuntu Linux 11.10
running on Windows 7 over VMWare player. The processor was
Intel Core 2 Duo E8500 and the compiler GCC 4.6.1.

6 Conclusions

In this paper we have presented a methodology for automatic
discovery of quasi-static segments for RVC-CAL programs. The
methodology is based on hierarchical process that has in this
work been implemented via dynamic code analysis. Results
show the considerable performance gain that can be achieved.
Studying the implementation of the presented methodology by
static analysis [2] and creating a more sophisticated quasi-static
code generator remain as future goals.

Table 1 Performance of program “RVC” in frames per second,
as well as the percentage of macroblocks having texture data and
those that are interpolated.
Video seq. Int. MBs Tex. MBs Ordinary Segmented
m1.m4v 91.6% 21.4% 13.5 21.5
m2.m4v 76.3% 47.9% 12.1 17.8
s1.m4v 94.0% 25.1% 12.9 20.2
s2.m4v 84.2% 39.3% 12.7 19.1

Table 2 Number of detected segments with two or more actors.
Program Actors Segments Fps/O Fps/S
MPEG-4 “MVG” 21 45 20.9 25.1
MPEG-4 “RVC” 45 39 13.1 20.7
MPEG-4 “Serial” 25 28 17.6 22.8

Acknowledgements

This research has been partially funded by the DORADO project
of the Academy of Finland.

References

[1] Gu, R., Janneck, J. W., Raulet, M., and Bhattacharyya, S. S.
(2011). Exploiting Statically Schedulable Regions in Dataflow
Programs. Journal of Signal Processing Systems, 63(1):129-142.
[2] Ersfolk, J., Roquier, G., Jokhio, F., Lilius, J. and Mattavelli,
M. (2011). Scheduling of Dynamic Dataflow Programs with
Model Checking. Proceedings of the 2011 IEEE Workshop on
Signal Processing Systems (SiPS), 37-42.
[3] Janneck, J. W., Mattavelli, M., Raulet, M., and Wipliez, M.
(2010) Reconfigurable Video Coding: a Stream Programming
Approach to the Specification of New Video Coding Standards.
Proceedings of ACM Multimedia Systems 2010, 223-234.
[4] Boutellier, J., Silvén, O. and Raulet, M. (2011). Scheduling
of CAL actor networks based on dynamic code analysis.
Proceedings of the 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 1609-1612.
[5] Boutellier, J., Lucarz, C., Lafond, S., Martin Gomez V. and
Mattavelli M. (2011) Quasi-Static Scheduling of CAL Actor
Networks for Reconfigurable Video Coding. Journal of Signal
Processing Systems, 63(2):191-202.
[6] Eker, J. and Janneck, J. (2003) CAL Language Report.
Technical Report UCB/ERL M03/48, UC Berkeley.
[7] Lee, E. A., and Messerschmitt, D. G. (1987) Synchronous
Data Flow. Proceedings of the IEEE, 75(9), 1235-1245.

