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Abstract: Automatic melody harmonisation aims to create a matching chordal accompaniment
to a given monophonic melody. Several methods have been proposed to this aim, which are
generally based on musicological expertise or on unsupervised probabilistic modelling.

Among the latter category of methods, most systems use the generative hidden Markov model
(HMM), in which the chords are the hidden states and the melody is the observed output. Relations
to other variables, such as the tonality and scale or the metric structure, are handled by training
multiple HMMSs or are often simply ignored. In this paper, we propose a means of combining
multiple probabilistic models of various musical variables into a versatile harmonisation system by
means of model interpolation. The result is a joint model belonging to the class of discriminative
models, which in recent years have proven to be capable of outperforming generative models in
many tasks.

We first evaluate our models in terms of their normalized negative log-likelihood, or cross-entropy.
We observe that log-linear interpolation offers lower cross-entropy than linear interpolation and that
combining several models by means of log-linear interpolation lowers the cross-entropy compared
to the best of the component models. We then perform a series of harmonisation experiments and
show that the proposed log-linearly interpolated model offers higher chord root accuracy than a
reference musicological rule-based harmoniser by up to 5% absolute.
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Harmonisation de mélodies par interpolation de
modeles probabilistes

Résumé : L’harmonisation automatique de mélodies vise a créer une suite
d’accords accompagnant une mélodie donnée. Plusieurs méthodes ont été pro-
posées dans ce but, généralement basées sur des regles musicologiques expertes
ou sur une modélisation probabiliste non supervisée.

Parmi cette derniere catégorie de méthodes, la plupart utilisent un modele
de Markov caché (MMC) génératif, dont les états cachés sont les accords et
I’observation la mélodie. Les dépendances aux autres variables telles que la
tonalité ou la structure métrique sont modélisées par des MMCs multiples ou
simplement ignorées. Dans ce papier, nous proposons un moyen de combiner
plusieurs modeles probabilistes de différentes variables musicales par le biais
d’une interpolation de modeles. Cela aboutit & un modeéle combiné appartenant
a la catégorie des modeles discriminants, dont il a été démontré ces dernieres
années qu’ils dépassent la performance des modeles génératifs pour de nom-
breuses taches.

Nous évaluons d’abord nos modeles en terme de 'opposé de leur log-vraisem-
blance normalisée, ou entropie croisée. Nous observons que l'interpolation
log-linéaire diminue ’entropie croisée par rapport a 'interpolation linéaire et
que la combinaison de plusieurs modeles par interpolation log-linéaire diminue
I’entropie croisée par rapport au meilleur modele individuel. Nous effectuons en-
suite un ensemble d’expériences d’harmonisation et montrons que le modele par
interpolation log-linéaire proposé améliore la précision d’estimation de la fon-
damentale des accords de 5% dans 1’absolu par rapport un algorithme d’harmo-
nisation de référence basé sur des regles musicologiques expertes.

Mots-clés : Réseaux bayésiens dynamiques, harmonisation de mélodies, in-
terpolation de modeles probabilistes
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Figure 1: Example harmonisation of the lead melody from Radiohead’s Karma
Police.

1 Introduction

Automatic melody harmonisation is the process of determining the most musi-
cally suitable chordal accompaniment to a given monophonic melody. It is an
important part of musical composition and so it is a common exercise in all
music composition classes, where it typically involves determining a four-part
harmony, i.e., the movement of four voices, namely: soprano, alto, tenor and
bass. The task can be either to find the harmonization for a given melody per-
formed by the soprano voice, or to find the three other voices for a given bass
line (unfigured bass), often with some chordal information given (figured bass).
In this work, however, we focus on harmonisation in the more narrow senseof
generating a sequence of background chords matching a given melody, which
can be played on supporting instruments, e.g., on a guitar or a piano. It is
simpler than four-part harmonisation because one does not need to determine
the exact movements of the voices—it does not include inversions, added and
removed tones, etc., but only the root pitch (C, Cf, etc.) and the chord type
(major, minor, etc.). The melody together with the chord labels are typically
referred to as lead sheets, an example of which is shown in Fig. 1.
Harmonisation is a necessary step in most algorithmic composition methods,
which typically involve generating a melodic line first, and afterwards supple-
menting it with an accompaniment. For example, in their Orpheus automatic
composition system, Fukayama et al. compose a melody based on constraints
resulting from the tonal accent in the lyrics and from basic musicological rules,
and then compose the chordal accompaniment using a collection of accompa-
niment patterns [12]. Harmonisation has also been explored as an easy way
to create polyphonic ring-tones from simple melodies in the i-Ring ring-tone
harmonisation system from [20]. Furthermore, automatic harmonisation has re-
cently received significant commercial interest as an easy way for non-musicians
to create well-sounding music based on simple melodies. The most well-known
implementations are the MySong software developed in cooperation with Mi-
crosoft [31] and the commercial software package Band-in-a-Boz (BIAB) [14].
Both are designed as tools for non-professional musicians, or even non-musicians,
to create songs with instrumental accompaniment by singing a melody into a
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microphone. All of the above methods perform a lead sheet-like harmonisation.

The history of automatic harmonisation is much older, however. Some of the
earliest attempts at harmonisation were made by Steels, who proposed a heuris-
tic search approach in [32], and by Ebcioglu, who proposed a rule-based system
targeting Bach’s chorales [9, 10]. Another rule-based harmoniser based on mu-
sicological expertise—called Harmonic Analyzer—was more recently developed
by Temperley and Sleator in [33, 34]. Other harmonisation methods have also
been explored. Phon-Amnuaisuk and Wiggins developed a prototype system
based on genetic algorithms with knowledge-rich structures in [25]. Constraint
satisfaction systems were investigated by Pachet and Roy in [22] and sequen-
tial neural networks by Gang et al. in [13]. Neural networks were also used
by Cunha and Ramalho in their hybrid neural-musicological real-time chord
prediction system in [7]. Another hybrid harmonisation system that combines
Hidden Markov Models (HMMs) with a set of heuristic rules for rapid training
was proposed by Chuan and Chew in [5]. Among these, only [34], [13], [7] and
[5] are lead sheet-like harmonisation systems.

Among the most flexible systems are those based on unsupervised probabilis-
tic modelling, which typically utilise HMMs. Single-HMM approaches include
the MySong software and an implementation based on MySong from [4], as
well as the i-Ring ring-tone harmonisation system from [20]. A slightly more
complicated four-part harmonisation approach using a dual HMM (one for har-
monisation and another one for ornamentation) was proposed by Allan and
Williams in [2]. Later, in [23] Paiment et al. proposed a very sophisticated,
multi-level graphical model for modelling chord movement with respect to the
melody, which is capable of modelling long-term relationships between chords,
as opposed to HMMs that are only capable of modelling short-term dependen-
cies. However, being a non-dynamic graphical network, their model is limited
to fixed-length songs (of exactly 16 measures). By contrast with musicological
rule-based methods, which require careful formulation and application of har-
monisation rules for particular genres (e.g., classical or jazz), these probabilistic
methods aim to automatically infer those rules from a corpus of example data
and are therefore applicable to all genres, even when musicological expertise is
not available.

All of the above probabilistic harmonisation systems are however limited to
modelling the relation between a single hidden layer (chord sequence) and a sin-
gle observed layer (melody), without any explicit mechanism to include models
of other relevant musical quantities, such as the key and the current tonal cen-
tre, the rhythm and the musical accent, or the genre, period and the composer.
One can use multiple HMMSs corresponding to, e.g., different genres or keys as in
[31], but with many variables this approach quickly suffers from over-fitting. In
this paper we propose to build versatile chord models by interpolating between
a collection of simpler sub-models using linear or log-linear interpolation.

This paper is organised as follows. Section 2 explains the proposed modelling
and training approach and Section 3 gives details about the particular sub-
models used in our experiments. The experimental set-up and the results are
described in Section 4. Finally, the conclusion is given in Section 5.

RR n° 8110
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Figure 2: A typical HMM for melody harmonisation (top) compared to the
proposed model (bottom).

2 General approach

When figuring out the accompaniment, one needs to keep in mind the basic
rules of tonal music: the tonality (everything in tonal music happens with re-
spect to the tonic), the chord progressions (certain chord progressions are more
natural and pleasant, e.g., progressions corresponding to the circle of fifths, pro-
gressions descending by thirds and common cadences), and of course harmonic
compatibility with the melody. In the generative, HMM-based systems, the cur-
rent chord is the underlying state C}, while the observation is the melody M;.
Chord progression is modelled with a Markov chain P(Cy|C;—1) and the ob-
served melody by a multinomial distribution conditioned on the system’s state
P(M;|C}) (see the top of Fig. 2).

2.1 Model structure

We propose a more flexible way of developing probabilistic harmonisation mod-
els, in which the time-varying tonality 7}, as well as other musical variables
can be explicitly taken into account. We propose a discriminative model, in
which the chords are modelled conditionally to all other variables (see bottom

RR n° 8110
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of Fig. 2):
P(C¢|Crip—1,X1), (1)

where 1 : t denotes a range of time indices from the first to the current time
frame and X is a set of other musical variables, such as the melody, the tonal
centre, the metrical accent, the style or genre, etc. Discriminative models have
been found to outperform generative models in many fields [16], such as speech
recognition [28, 35], machine translation [21], text classification [29] or genomics
[15].

This conditional multinomial distribution has too many parameters to be
used in practice, hence we approximate it by interpolating between multiple
sub-models P; involving a different subset of conditioning variables A;; C
{C4.t—1,X1.t}. The interpolation can be linear,

I
P(Cy|Crp—1,X1) = Y aiPi(Cil Ay ), (2)
i=1
with
I
Zai = ]., (3)
i=0
or log-linear,
I
P(Ci|Cry1,X1x) = Z7 [ PilCil A )", (4)
i=1
where [ is the number of sub-models, a; > 0 and b; > 0 for i = 1,..., [ are the

interpolation coefficients and

I
Z = Z H Pi(CiA; 1) (5)

C, i=1

is a normalizing factor depending on A; ;. For example, we will consider in the
following: A1, ={Ci_1}, Aoy ={T;} and A3, = {M,}.

Linear [17] and log-linear [19] interpolation have been previously used in
the context of natural (spoken) language modelling to combine models with
different temporal spans (n-grams with different values of n). Here we have
generalized this approach to interpolate between sub-models conditioned on
different musical variables.

2.2 Smoothing

Although the sub-models P; now have fewer parameters, over-fitting issues may
still arise due to data sparsity, so the above equations are not directly usable. In
order to address these issues, each of the sub-models must be smoothed [36]. In
this study we perform smoothing by combining each sub-model with the prior
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chord distribution and a uniform distribution. In the case of linear interpolation,
the smoothing is applied to the interpolated model:

I
P(C{Cr4—1,X1) = ZaiPi(Ct|Ai,t) +aP(Cy) + 5, (6)
i=1
with s
a+ﬁ+zai=1- (7)
i=1

In the case of the log-linear interpolation, each model is smoothed separately
before combining them:

I
P(C|Cruy—1, X1xt) = Z [ (iPi(CilAiy) + 6,P(C) + )™, (8)
=1
with
Vit 0i+€ =1 (9)
for all 7 and ,
7 =3 T (iPi(CilAsy) + 6:P(C) + )" (10)

C, i=1

2.3 Training

The proposed models are trained on two disjoint sets of example data called
training set and wvalidation set. The sub-models P; and the prior distribution
P(C}) are first trained in the maximum likelihood (ML) sense on the training
set by counting occurrences [36]. The interpolation coefficients a; or b; and the
smoothing coeflicients « and 8 or ~;, §; and ¢; are then jointly trained on the
validation set according to one of two possible training objectives.

Classical generative training is achieved by estimating the interpolation and
smoothing coefficients in the ML sense on the validation set. Because the log-
likelihood is convex [19], any optimization algorithm can be used. In the fol-
lowing, we have used a non-negatively constrained limited-memory Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method (a quasi-Newton optimisation), built
into the GNU R environment as the optim() function [26].

Even though the likelihood is a common evaluation measure for statistical
models, higher likelihood does not always translate into better performance for
the considered application. For example, it is well known in the field of auto-
matic speech recognition that the likelihood of language models can sometimes
be improved without effect on the word error rate [3]. For that reason, we
alternatively propose to perform discriminative training by estimating the in-
terpolation and smoothing coefficients so as to maximize the chord root note
accuracy on the validation set, which is the main evaluation metric used in
the harmonisation experiments in Subsection 4.2. Because this metric is not

RR n° 8110



Melody harmonisation with interpolated probabilistic models 8

differentiable, gradient-based methods cannot be used so we have used the fol-
lowing multi-step brute-force search. First, all smoothing coefficients are fixed
to a; = 0.1 and ; = 0.5 (values chosen experimentally) and the interpolation
coefficients are optimised by testing all combinations of values between 0 and 1
in 0.1 steps (11 distinct values). Then, the smoothing coefficient pairs are opti-
mised separately and sequentially in the same range. Finally, the interpolation
coefficients are fine-tuned around the original optimum (+20%, 11 values) using
the newly trained smoothing coefficients.

3 Sub-models

As a proof of concept, we have developed three sub-models that model the three
most important aspects of chords: chord progressions, relation to the tonality
and relation to the melody:

Py = P(Cy|Ci—1), (11)
Py = P(C4|Ty), (12)
Py = P(C/[M,). (13)

To train these three sub-models, we have used a collection of around 2000
lead sheets encoded in the MusicXML format that are freely available on the
Wikifonia web page [11]. We converted each lead sheet into three sequences of
symbols representing tonality, melody and chords. In order to do so, we first
partitioned the input into regular time frames of length 1/3, 1/2, 1, 2, 4, 8 or 16
beats. For every frame, we defined the melody variable M; as the unordered list
of pitch classes of the 12-tone chromatic scale appearing in the melody, which
can take 22 = 4096 distinct values. This is similar to the melody encoding in [4]
and [27]. The tonality T; was encoded as one of 24 different key labels resulting
from the combination of 12 tonics (C, C, D, D, E, F, Ff, G, G4, A, At, B) and
2 modes (major or minor). The chord C; was labelled by one of 13 root pitch
classes (C, Cf, D, D, E, F, Ft, G, G, A, At, B or “none” for non-chords) and one
of 27 chord types (major, minor, dominant, diminished, half-diminished, aug-
mented, power, suspended-second, suspended-fourth, major-sixth, minor-sixth,
major-seventh, minor-seventh, dominant-seventh, diminished-seventh, augmen-
ted-seventh, major-ninth, minor-ninth, dominant-ninth, augmented-ninth, mi-
nor-eleventh, dominant-eleventh, major-minor, minor-major, major-thirteenth,
dominant-thirteenth or “none” for non-chords), resulting in N = 351 distinct
chord labels in total. The chord Cj before the beginning of the song was as-
sumed by convention to be “none”. In the case of a time frame containing more
than one key or chord, the longest lasting key and chord labels within that frame
were selected.

The distribution of tonalities in the training set is shown in Fig. 3. The
C-major key appears to be dominant, which will have an impact on the design
of the models in order not to bias them toward that particular tonality, as
explained in Subsection 3.2.

RR n° 8110
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Figure 3: Histogram of the key labels in the training dataset.

3.1 Chord prior

The chord prior P(C}) is used for smoothing and as a reference model in the
evaluation. The prior chord distribution trained on the training dataset is pre-
sented in Fig. 4. Note that the major, dominant, minor, minor- and major-
seventh chords make up for the vast majority of the chords in the dataset. Also,
due to the dominance of the C-major key in the training set, the pitch classes
C, F and G have visibly higher probabilities than the other root pitch classes.

3.2 Chord bigram model

The chord progression model is built under the Markov assumption, resulting
in a bigram model P;(C;|C;—1). Although longer chordal dependencies can
perform better, this has already been studied by others [23, 30] and is not the
focus of this paper. In order to avoid problems with data sparsity, the model was
trained with state tying: probabilities of all relative chord transitions were tied
together, so for example the probability of transition from C-major to G-minor
(7 semitones) is identical to that of transition from G-major to D-minor (also 7
semitones). This is motivated by the observation that in tonal music songs can
be freely transposed between all keys without any loss of musical correctness
[24], and by the dominance of the C-major key in the training set (see Fig. 3),
which would otherwise result in a biased chord distribution towards the common
chords of that key.

The resulting conditional chord distribution can be observed in Fig. 5. The
distribution for a 1-beat analysis frame (top of Fig. 5) is very concentrated
towards the previous chord (G-major to G-major transition), because chords
typically last for at least few beats. On the other hand, using a 16-beat analysis
frame makes the bigram probabilities being more evenly distributed, though
still dominated by the transition to the same chord.

RR n° 8110
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Figure 6: Conditional distribution of chords Py (Ct|T) for 1-beat frames, plotted
for the tonality of T; = C-maj. The plot is accompanied with linear-scale bar
plots of chord root and chord type distributions on the sides.

3.3 Tonality model

In the tonality model Po(Ct|T}), for the same reasons as explained in Subsec-
tion 3.2, the chords corresponding to the same scale degree in different keys
were tied together. In other words, observing, e.g., a dominant major chord in
one key increases the probability of dominant major chords in all keys. The
resulting tonality model distribution is depicted in Fig. 6. Notice that knowing
the current tonality to be, in this case, T; = C-major increases the dominance
of the most common degrees: the dominant (V), subdominant (IV), supertonic
(ii), but mostly the tonic (I).

3.4 Melody model

Finally, for the same reasons again, state tying was used for the melody model
P3(Cy|M;) as well. Note patterns with the same content relative to the chord
root were given identical probabilities, e.g., the unordered note combination
(C,G) in the chord of C-major is equally probable as the note combination
(Dg,Af) in the chord of Df-major. The resulting melody model distribution is
shown in Fig. 7. Note that having more melodic information, i.e., more notes
in a frame (here C, E and G in one frame in the bottom part of the plot),
makes the chord distribution significantly sparser. This means that a system
with longer frames will have a more informative melody model, because a single
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frame will contain more melody notes.

3.5 Interpolation coefficients

The values of the generatively trained interpolation coefficients a; and b; are
presented in Fig. 8. The coefficients for linear and log-linear interpolation follow
a similar trend: the bigram model is given a progressively lower weight as the
frame length increases, while the melody model behaves in an opposite manner.
Indeed, for large frames the bigram model becomes less informative due to the
lack of need of modelling the chord duration, while the melody model becomes
more informative due to the larger melodic context.

4 Evaluation

Due to a large range of goals in the existing literature, we can observe a variety
of ways of evaluating harmonisation algorithms: through theoretic evaluation of
the modelling power by means of cross-entropies [2, 23], through comparison of
generated chord sequences with ground-truth chord annotations [4, 5], through
comparison of single predicted chords with ground-truth [7], or through subjec-
tive listening tests [31, 20]. Because of the novelty of the proposed solutions, as
well as that of the field of automatic harmonisation itself, many papers did not
offer any evaluation [25, 9, 22, 13]. In this paper, we have chosen to perform
two complementary evaluations: we first use the theoretic cross-entropy-based
evaluation as in [2, 23] as a convenient way to validate our interpolation-based
approach and we then perform an objective evaluation of the generated chord
sequences in the same manner as in [4]. The code of our algorithm is available
online at http://versamus.inria.fr/software-and-data/harmonization.
tbz2.

Out of the 2000 Wikifonia lead sheets, 100 lead sheets were used as a test
set, 100 as a validation set, and the rest were used as a training set.

4.1 Cross-entropy

An efficient way of determining the modelling power of a model is to compute the
normalized negative log-likelihood, or cross-entropy [18]. For base-2 logarithms,
it can be interpreted as the average number of bits (b) required to encode a single
chord symbol (Shannon’s optimal code length). So, naturally, the smaller the
value, the higher the prediction power. The cross-entropy is calculated from the
test chord, melody and tonality sequences C, M and T as

T
1 1

H(C) = fflogz P(CIM,T,A) = —7 E logy P(Cy|Crip—1,X1.1) (14)

t=1

where A denotes the model parameters and T is the number of frames in the
test set. The cross-entropy is upper bounded by the cross-entropy of the non-
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Figure 8: Values of the generatively trained interpolation coefficients for linear
(top) and log-linear (bottom) interpolation.
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informative uniform chord prior, which in our case is equal to
H 1 ! 8.46 b (15)
= — 10 —_— = .
U 22 N )

where N = 351 is the number of distinct chord labels. The cross-entropies
obtained for different frame lengths (from 1/3 to 16 beats) and different gen-
eratively trained log-linear combinations of the bigram (B), tonality (T) and
melody (M) models are plotted in the upper part of Fig. 9. We can observe that
the predicting power of the melody (M) and tonality (T) models, although bet-
ter than the prior alone, is poor for small frame lengths (about 5 bits/frame),
but improves by about 0.5 bits/frame as the frame length increases. This is
logical, as both the tonality and the chord are musical quantities that depend
on a much wider context than a single melody note. However, using large frame
lengths limits the temporal precision of the chord estimation, since chords can
typically change on any beat (though typically on the down beat). We also
observe the benefit of model interpolation: the combined melody and tonality
(M+T) model is better than either of the two models alone, and the combined
melody and tonality and bigram (M+T+B) model is better the each of these
three models alone and than the M+T combination. For 2-beat frames, the
latter improvement is equal to 0.37 bit/frame (11%).

Still in the upper part of Fig. 9, we can see that the cross-entropy decreases
monotonically with decreasing frame length for those models that include the
bigram chord progression model, namely B and M+T+B. In fact, it would de-
crease asymptotically to zero for infinitesimal frame lengths, because predicting
the next chord given the current one would be getting easier: one would sim-
ply have to predict the same chord and that prediction would be increasingly
correct. Therefore we found it useful to complement this plot with a plot of
cross-entropies normalised per beat instead of per frame in the bottom part of
Fig. 9. Per-beat cross-entropies are proportional to the total amount of infor-
mation in the entire dataset, given the model (because the number of beats in
the dataset is fixed, as opposed to the number of frames). From that plot we
can see that we actually get more informative bigram models for larger frame
lengths. On the other hand, this evaluation measure is biased towards larger
frame lengths since it is bounded by the per-beat cross-entropy of the uniform
chord distribution Hy /B = (logy N)/B, where B is the number of beats per
frame, which decreases asymptotically towards zero as B increases.

In the light of the above discussion we conclude that the best frame length for
harmonisation is in the range of few beats, where the cross-entropy is between
2 bits/frame for 1-beat frames and 4 bits/frame for 8-beat frames.

Fig. 10 shows the reduction of cross-entropy achieved by log-linear interpo-
lation with respect to linear interpolation (Hiy, — Higgiin). Although log-linear
interpolation is more time consuming (due to the need for re-normalisation by
Z), it offers significantly higher modelling power when several models are com-
bined: up to 0.32 bit/frame (10%) for the M+T model and up to 0.26 bit/frame
(6.5%) for the M+T+B model.
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Figure 9: Cross-entropies calculated for the test dataset, normalised per time
frame (top) and per beat (bottom). M stands for the melody model, T for the
tonality model and B for the bigram chord progression model. Models were
combined using log-linear interpolation.
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4.2 Harmonisation

In a second experiment we compare the chord sequence generated by the full
discriminatively trained model M+T+B with the ground truth chord labels in
the test lead sheet files. In this experiment, the timing of the ground truth chord
sequence is preserved and does not depend on the chosen frame length. Chords
were estimated via a Viterbi-like algorithm, which finds the most likely sequence
of chords given the melody and tonality. The tonality was assumed to be known,
because often several tonal interpretations are possible [1] and we want the
resulting chord sequences to be comparable to the ground truth. Similarly
to the MIREX competition [8, 6], the estimated chord types were subsequently
clustered into a smaller number of triads (major, minor, augmented, diminished,
suspended second or suspended fourth). We compare the chords either in terms
of their root note only or in terms of their root note and their triad chord type
using two alternative root accuracy measures: a binary one and a weighted one.
The latter uses the following weights: 1 for correct root pitch class estimation,
0.5 for 5 or 7 semitone errors (perfect fourth or fifth), 0.3 for 3, 4, 8 or 9 semitone
errors (minor or major third and minor or major sixth), 0.1 for 2 or 10 semitone
errors (major second or minor seventh) and 0 for other errors.

For comparison, we have used the results of the state-of-the-art rule-based
lead sheet-like harmonisation system of Temperley and Sleator, which is freely
available on-line at [34]. The lead sheets were converted to the input format of
that algorithm with a time precision (“BaseUnit”) of a dotted sixty-fourth note
and the metrical structure was generated based on the time signatures and the
upbeat durations extracted from the MusicXML files. Note that this algorithm
estimates only the chord roots, not the chord types.

The results for different frame lengths are plotted in Figs 11, 12 and 13. For
all evaluation metrics, the log-linearly interpolated models offer better accuracy
than the linear ones and the best results are most often achieved for a frame
length of 2 beats. For shorter frame lengths the melody provides less informa-
tion, while for longer frame lengths the temporal resolution of the generated
chord sequence becomes too coarse. For that frame length, the proposed algo-
rithm with log-linear interpolation outperforms the reference algorithm by 5.5%
absolute (17% relative) in terms of root note accuracy and by 4.1% absolute in
terms of weighted root note accuracy.

5 Conclusion

In this paper we have presented a novel method of building versatile statistical
models of chords for harmonisation by joining multiple simpler sub-models by
means of linear or log-linear interpolation. To test this idea, we have trained
and combined in this way three sub-models: the tonality, the melody and the
chord bigram model. We have evaluated the resulting interpolated models in
terms of their cross-entropy and observed that log-linear interpolation yields
a model whose cross-entropy is lower than the best of the component models
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Figure 13: Triad accuracies obtained for different model frame lengths: triad
chord type alone (T), chord type and root note (T+R), and chord type and
weighted root note (T+WR).

and also better than tha achieved by linear interpolation. We have then per-
formed a series of harmonisation experiments, where we have observed that the
proposed log-linearly interpolated model offers higher root chord accuracy than
the reference rule-based harmoniser from [33] by up to 5% absolute.

In future work, a larger number of more complex sub-models could be inves-
tigated for further improvement in terms of chord accuracy. Subjective listening
tests could also be used to analyse the quality of the harmonisations in more
details. Finally, the model interpolation methodology could be applied to other
music information retrieval tasks that would potentially benefit from modelling
several musical aspects simultaneously.
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