
DSK: k-mer counting with very low memory usage

Guillaume Rizk, Dominique Lavenier, Rayan Chikhi

To cite this version:

Guillaume Rizk, Dominique Lavenier, Rayan Chikhi. DSK: k-mer counting with very low
memory usage. Bioinformatics, Oxford University Press (OUP), 2013, 29 (5), pp.652-653.
<10.1093/bioinformatics/btt020>. <hal-00778473>

HAL Id: hal-00778473

https://hal.archives-ouvertes.fr/hal-00778473

Submitted on 20 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Rennes 1

https://core.ac.uk/display/48213189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00778473

BIOINFORMATICS APPLICATIONS NOTE
Vol. 00 no. 00 2012

Pages 1–3

DSK: k-mer counting with very low memory usage

Guillaume Rizk 1,∗, Dominique Lavenier 2 and Rayan Chikhi 2

1Algorizk, 75013 Paris, France
2ENS Cachan Brittany / IRISA, Campus de Beaulieu, 35700 Rennes, France

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT

Summary: Counting all the k-mers (substrings of length k) in

DNA/RNA sequencing reads is the preliminary step of many

bioinformatics applications. However, state of the art k-mer counting

methods require that a large data structure resides in memory. Such

structure typically grows with the number of distinct k-mers to count.

We present a new streaming algorithm for k-mer counting, called

DSK (disk streaming of k-mers), which only requires a fixed, user-

defined amount of memory and disk space. This approach realizes a

memory, time and disk trade-off. The multi-set of all k-mers present in

the reads is partitioned and partitions are saved to disk. Then, each

partition is separately loaded in memory in a temporary hash table.

The k-mer counts are returned by traversing each hash table. Low-

abundance k-mers are optionally filtered.

DSK is the first approach that is able to count all the 27-mers of a

human genome dataset using only 4.0 GB of memory and moderate

disk space (160 GB), in 17.9 hours.

Availability: http://minia.genouest.org/dsk

Contact: rayan.chikhi@ens-cachan.org

1 INTRODUCTION

Determining the abundance of each distinct k-mer in a set of

sequencing reads is a conceptually simple yet fundamental task. It

is used in many bioinformatics applications related to sequencing,

e.g. genome and transcriptome assembly, variants detection and read

error correction. For de novo assembly, one is often interested in

counting k-mers to discard those with low abundance, which likely

stem from sequencing errors.

State of the art methods for k-mer counting rely on hash tables [1]

and/or Bloom filters [2]. These structures need to reside in memory

for random access. Sequencing errors induce erroneous k-mers, in a

volume typically greater or comparable to that of correct k-mers.

Hence, counting k-mers for a human dataset with either a hash

table or a Bloom filter is a task that requires tens of gigabytes of

memory [1, 2].

In the Methods section, we describe a fixed-memory and fixed-

disk space streaming algorithm, DSK, and its worst-case complexity

is analyzed in function of the desired memory and disk usage. In the

Results section, DSK is used to count all the 27-mers of a whole-

genome human dataset (Illumina reads). Furthermore, the trade-off

between memory and disk space is analyzed on two smaller datasets.

Finally, we discuss some advantages of DSK over related methods,

and show a situation where a parallel implementation significantly

improved the running time.

2 METHODS

Algorithms 1 describes the DSK k-mer counting algorithm. The hash

Algorithm 1 The DSK algorithm

1: Input: The set S of sequences, k-mer length k, target memory

usage M (bits), target disk space D (bits), hash function h(·)
2: v ←

P

s∈S
|s| − k + 1 {Number of k-mers}

3: ni ← ⌈v · 2
⌈log

2
(2k)⌉/D⌉ {Number of iterations}

4: np ← ⌈
v(2⌈log

2
(2k)⌉ + 32)

0.7niM
⌉ {Number of partitions}

5: for each iteration i = 0..ni do

6: Initialize a set of empty lists {d0, ..., dnp
} stored on disk

7: for each sequence s in S do

8: for each k-mer m in s do

9: if (h(m) mod ni) = i then

10: j ← h(m)/ni mod np

11: Write m to disk in dj

12: for each index j = 0..np do

13: Initialize a hash table T with M bits of memory

14: for each k-mer m in dj do

15: T [m]←

(

T [m] + 1, if m is present in T

1, otherwise

16: output (m, T [m]) for each m in T
17: Delete T
18: Delete {d0, ..., dnp

}

function h(·) maps a k-mer to a numeric value in [0; H], where H is a large

integer (typically 264). In the following analysis, we make a simplifying

assumption. Let d be the total number of distinct k-mers in the input,

we assume that the number of distinct k-mers having a given hash value

x ∈ [0; H] is at most ⌈d/H⌉. In other words, the set of distinct k-mer values

can be uniformly partitioned by this hash function. Each k-mer is encoded

using the classical 2 bits representation in the smallest available integer type,

i.e. using 2⌈log2
(2k)⌉ bits. The abundance of each k-mer is stored as a 32

bits integer. For convenience, let b = 2⌈log2
(2k)⌉.

Each k-mer m present in S is examined ni = ⌈vb/D⌉ times (once

per iteration), and written to disk only once, at the (h(m) mod ni)-th

iteration. Using the uniform repartition hypothesis, a multi-set of v/ni ≤
⌈D/b⌉ k-mers are written to disk at each iteration. Since each k-mer is

encoded using b bits, the maximal disk usage of the algorithm is D bits.

The maximal memory usage of the algorithm is M bits, since Steps 7-

11 require no memory, and Steps 12-17 load a single partition in T which

requires exactly M bits. With an open-addressing mechanism, each distinct

k-mer occupies exactly (b + 32) bits in T . To prove that the algorithm

terminates, it suffices to show that T never overflows, i.e. that strictly

c© Oxford University Press 2012. 1

G. Rizk et al

Table 1. Wall-clock time and memory usage for counting 27-

mers in whole-genome human data

Program Time (hours) Memory (GB) Disk (GB)

DSK 17.9 4 160

DSK- SSD ∗ 3.5 4 240

BFCounter 41.2 56 0

Jellyfish 3.5 70 211

The dataset used is the NA18507 human genome (SRX016231),

unfiltered, consisting of 1.4 billion of reads of average length 100 bp

(160 GB file size). Jellyfish used 8 threads, DSK-SSD used 4 threads,

DSK and BFCounter are single-threaded. The disk column indicates the

temporary amount of disk space used by each method. ∗ Executed on a

desktop computer equipped with two hard drives including a SSD.

less than M/(b + 32) distinct k-mers are inserted in T . At each iteration,

(v/ni) k-mers are split into np partitions. Each partition contains at most

v/(ninp) ≤ ⌈0.7M/(b + 32)⌉ k-mers. In the worst case, all these k-

mers are distinct, thus the load factor is upper-bounded by 0.7 (a classical

threshold above which hash table performance degrades).

The time complexity of Steps 7-11 (including the iteration loop) is

O(v2b/D). The algorithm creates (ninp) ≤ ⌈v(b + 32)/(0.7M)⌉
temporary hash tables, inserting at most ⌈(0.7M/(b + 32))⌉ elements in

each. Hash tables accesses and insertions (Step 15) are done in constant

expected time with open-addressing, as long as the load factor is strictly

below 1 (which was proved above). Hence, the expected time complexity of

Steps 12-17 (including the iteration loop) is O(v). Thus, Algorithm 1 runs in

expected time O(v2b/D). The algorithm runs in expected linear time with

respect to v when D = ω(v), e.g. setting D equal to the reads file size. In

practice, the simplifying assumption on the uniform repartition of the hash

function h does not hold exactly. Some partitions contain a slightly larger

number of distinct k-mers than ⌈v/H⌉. Hence, the actual disk usage of the

algorithm is slightly above D, and the load factor of T could, in theory, be

above 0.7 (due to high k-mer redundancy, this is not the case in practice).

3 RESULTS

In Table 1, we compared the execution time and memory usage of

DSK with Jellyfish (version 1.1.5) and BFCounter (version 0.2) on a

human genome Illumina dataset. The target disk usage of DSK was

set to 160 GB, equal to the size of the reads file. Since the algorithm

relies heavily on I/O to the disk, we also tested DSK with a solid-

state drive (DSK-SSD). The reads file was placed on a standard hard

disk drive, and partitions of redundant kmers were written on a 256

GB SSD. In this configuration, we noticed the algorithm is no longer

limited by disk I/O and could benefit from multi-threading. The two

for loops lines 7 and 12 were parallelized using openMP (4 threads).

DSK-SSD ran in 3.5 hours using 4 × 1 GB of memory. Although

this experiment required specific hardware, it is worth noting that

the running time of DSK can be greatly reduced with a SSD and

multi-core parallelism.

To further assess the trade-off between time, memory and disk

usage, we executed DSK (using a standard hard drive) on two

smaller E. coli and D. ananassae datasets, with various target

memory and disk usage parameters. For the executions with 100

MB and 1 GB memory usage, the running time of DSK on both

datasets decreases as the target disk space increases. This is a

consequence of the decreasing number of iterations ni. The running

times reaches a plateau at roughly the reads file size (where ni = 1).

The execution time generally appears to be unaffected by the target

0
20

0
40

0

E. coli DNA

Disk space (MB)

T
im

e
(s

)

115 1150 4600

0
50

0
10

00

Drosophila RNA

Disk space (MB)

T
im

e
(s

)

148 743 2975

Memory (MB)

10 100 1000

Fig. 1. Execution time of DSK (k = 21) in function of memory and disk

usage, on the E. coli (Illumina DNA SRR001665, 20.8·106 reads of average

length 36 bp) and D. ananassae datasets (Illumina RNA-Seq SRR332538

9.1 · 106 reads of average length 150 bp).

memory usage. However, at the smallest tested memory usage (10

MB), the execution time on both datasets is slightly higher, possibly

due to consecutive disk writes to a large number of partitions. Note

that in practice, the memory usage of DSK cannot be arbitrarily

low: it is limited by the number of files that can be simultaneously

opened on the system (the partitions {d0, ..., dnp
} are all opened

simultaneously). In the Drosophilia dataset, DSK failed to run with

10 MB of memory and 6 GB disk space for this reason.

4 DISCUSSION

Compared to other methods, DSK has three strong points:

• Low memory usage: Only an arbitrarily small subset of k-

mers is loaded in memory at any time. In contrast, BFCounter

stores all the k-mers with count ≥ 2 in a hash table.

In principle, Jellyfish can use arbitrarily small hash tables,

however storing the intermediate results requires a prohibitive

amount of disk (≥ 1 TB for human genome reads using a hash

table of size 5 GB).

• Parameters are automatically inferred: the only mandatory

argument is the k-mer length. Optionally, target memory and

disk usages can be specified. Jellyfish and BFCounter require

the user to specify respectively a hash table size and an upper-

bound on the number of distinct k-mers.

• Supports arbitrarily large values of k: as opposed to up to

32 for Jellyfish (unbounded for BFCounter).

ACKNOWLEDGMENT

Funding: ANR MAPPI, ANR-10-COSI-0004

REFERENCES

[1]Guillaume Marçais and Carl Kingsford. A fast, lock-free approach for efficient

parallel counting of occurrences of k-mers. Bioinformatics, 27(6):764–770, 2011.

[2]Pall Melsted and Jonathan Pritchard. Efficient counting of k-mers in dna sequences

using a bloom filter. BMC Bioinformatics, 12(1):333, 2011.

2

