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ABSTRACT 

 

 

This thesis presents an implementation of an office delivery robot.  First, it provides 

motivation for this type of project and discusses the abilities a successful delivery robot 

must possess.  Next, the robot used for this project is presented, and its relevant hardware 

is broken down and explained.  Special emphasis is placed on the sensing system, which 

consists of infrared proximity sensors and incremental optical encoders.  The 

investigation of the hardware is followed by a look into the software side of a delivery 

robot.  This includes the user interface, wireless communication scheme, robot controller, 

and movement methodology.  The core of the thesis follows with a discussion of feature 

point representation, path planning, and obstacle avoidance.  Finally, experimental results 

are provided, and potential areas for future work are proposed. 
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CHAPTER 1:  INTRODUCTION 

 

Robots have become increasingly common in today’s society.  They build cars, clean 

homes, and even perform surgery.  As the years go by, they grow ever more complex, 

doing jobs that humans either cannot or do not want to perform.  Most robots, though, are 

used for basic tasks that require little to no human attention.  One such task is delivery in 

an office environment. 

In an office, delivery can encompass a great many things.  Large companies might 

need someone to carry interdepartmental mail throughout the building.  Perhaps a 

package needs to be shipped to maintenance, or an employee needs to turn in some 

paperwork.  Regardless of the task, carrying something from one place to another 

requires little thought, but often a fair amount of time.  Automating these deliveries might 

be a great way to save money in the long term.   

If the goal of a delivery robot is to cut costs, it should be designed to be as 

inexpensive as possible.  Systems such as GPS, while effective at tracking position, are 

expensive.  Cheaper ways to aid navigation include following strips of tape along the 

floor, orienting to colored markers, and following infrared lights.  However, all of these 

require a change to the environment, which company management may not allow.  

Therefore, this thesis will focus on the issue of low-cost, noninvasive office navigation. 
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1.1 Project Requirements 

An office hallway is a very dynamic environment.  People will be walking around, 

perhaps going to the restroom or stretching their legs.  Others might be standing around 

in groups talking, unaware of their surroundings.  There may be a large trash container 

sitting unattended, or someone standing on a narrow-legged ladder while replacing a light 

bulb.  Whether big or small, moving or stationary, aware of their surroundings or 

ignorant, all of these are obstacles to a delivery robot. 

A delivery robot must deal with not only a variety of obstacles but also a 

changing environment.  For instance, a normally closed door may be open one day, or a 

surface may have been recently waxed.  In cases such as these, the robot may find itself 

confused.  If it cannot deal with a little uncertainty, it could be left wandering around 

until its battery dies while angry employees prowl the halls in search of their mail. 

To perform a task in such an environment, there are several requirements.  The 

most basic of these is a method of communicating with the robot.  Dragging hundreds of 

feet of Ethernet cable behind it would probably be a bad idea, so the robot’s link must be 

wireless.  This wireless user interface must allow the user access to important 

information, such as the robot’s position.  It also must perform essential functions such as 

choosing a delivery destination, setting variables, and even turning the robot on. 

Another critical requirement is a way to sense the environment.  The robot must 

sense all of those obstacles mentioned earlier in order to avoid them.  An inexpensive 

way to do this is with infrared proximity sensors.  Several of these must face forward and 

be packed tightly enough together to sense narrow objects.  In addition, some should face 

sideways to sense doorways and other openings. 
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Finally, the robot needs to track its own movement.  This can be done by using 

incremental optical encoders attached to each of the two motor shafts.  These encoders 

keep track of how far the wheels have turned.  Combined with other information, the 

robot is able to estimate its relative position, velocity, and angle. 

 

1.2 Overview of Chapters 

The robot used for this thesis will be introduced in Chapter 2.  After this brief 

introduction, a discussion of the I2C communication protocol used for the infrared 

proximity sensors will follow.  The chapter will conclude with a discussion of those 

sensors, as well as the incremental optical encoders used for position tracking.  Chapter 3 

will look at the software needed to run the robot, from the user interface to motion 

control.  The focus here is on robot operation.  The navigation component is addressed in 

Chapter 4.  The chapter begins with choosing feature points as a navigation aid.  It 

discusses the entire decision process for setting the movement speed and direction that 

will help the robot reach its eventual goal.  This includes path planning, setting the 

velocity and turn rates, reaching checkpoints, avoiding obstacles, and updating position.  

Next, Chapter 5 discusses the performance of this implementation.  It demonstrates 

successful object avoidance, recovery from missed checkpoints, and tolerance to minor 

positional errors.  Finally, Chapter 6 wraps things up and proposes areas for future 

improvement.  The code written for this project can be found in the attached appendices. 

 3



CHAPTER 2:  ROBOT COMPONENTS 

 

Most of the hardware used for this project was already built.  As a result, this section will 

be decidedly brief.  The focus will be on the sensing platform and infrared sensors, which 

were the primary hardware modifications made during this project. 

 

2.1 Robot Body 

The robot used for this thesis is known as a Segbot, with both name and design inspired 

by the Segway.  It was built in the College of Engineering Control Systems Lab (CSL) at 

the University of Illinois at Urbana-Champaign by a group of students in 2004 under the 

direction of Dan Block [1].  The initial design had only two wheels – one fixed to each 

side.  Unlike the Segway, however, the Segbot has no counterbalance underneath.  To 

keep from falling over, it rocks back and forth about its equilibrium point, similar to an 

inverted pendulum. 

For this thesis, the Segbot was modified by adding a front platform with a caster 

wheel underneath.  The addition of the platform shifted the center of mass forward and 

the extra wheel allowed it to stay balanced while stationary.  The platform rests about one 

inch above the ground and is used to mount the infrared sensors.  The modified Segbot 

will be referred to as the Deliverybot. 

Other relevant components from the original Segbot include: 

 Wireless card model AC4490 from Aerocomm, communicating at 57 600 

baud 
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 LCD screen with two rows capable of displaying 20 characters each 

 DSP model TMS320C6713 from Texas Instruments 

o Processor speed of 225 MHz delivering 1800 MIPS and 1350 

MFLOPS 

o 512K words of Flash and 16 MB SDRAM 

o Embedded JTAG support via USB 

 

2.2 Sensors and Communication 

This section will discuss the two types of sensors that were used:  incremental optical 

encoders and infrared (IR) proximity sensors. 

The original Segbot came equipped with an encoder on each wheel.  Proximity 

sensors, though, still needed to be added.  To be most effective at avoiding narrow 

obstacles, four sensors were chosen to face forward.  Two sensors were chosen to face 

right to detect openings and aid in navigation.  The only way to add that many sensors to 

the Segbot was to use the Inter-Integrated Circuit (I2C) bus. 

To understand how the sensors were added, the following subsections will first 

introduce the I2C protocol.  Once the basic terms and functionality are introduced, the 

way messages are sent is described.  A discussion of the IR sensors and incremental 

optical encoders will follow. 
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2.2.1 Overview of the I2C bus 

In order to explain I2C functionality, it will be beneficial to define some terms.  The I2C 

bus uses two bidirectional lines, which are shared among all devices that are connected 

[2].  These two lines are the clock line (SCL) and data line (SDA).  The transmitter is the 

device currently controlling the data line.  The receiver is the device waiting to receive 

that data.  The master device is the one that initiates the message and controls the clock 

line.  Finally, a slave is any device being addressed by a master. 

However, some of these distinctions are mutable.  For instance, suppose the DSP 

wants to change a setting on an attached IR sensor.  Then the DSP will be both the master 

and the transmitter, and the sensor will be the slave and receiver.  If the DSP later wants 

to know what the IR sensor is reading, the DSP becomes the receiver while the sensor is 

transmitting its data, but because it is initiating the request, the DSP is still the master. 

When no communication is occurring over the I2C bus, pull-up resistors tie both 

the clock and the data lines to 5 V.  To put a zero on the bus, a connection to ground is 

made using transistors.  When not being pulled low, the transistors are in a high-

impedance state.  This is critical to prevent devices not being addressed from interfering 

with communication.  Since the bus is pulled high naturally, and since only one device is 

allowed to communicate at a time, a transmitter being in high impedance is the same as 

sending a one. 
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2.2.2 Sending a message over the I2C bus 

When a device wishes to communicate with an attached device, it must first gain control 

of the bus.  This is done by sending a start bit, which is a high-to-low transition of the 

data line while the clock line is high.  Once the start bit is sent over the data bus, the 

device begins controlling the clock bus, which runs at the default speed of 100 Kbits/sec. 

The device must then get the attention of the correct slave.  The I2C protocol 

requires every device to have its own 7-bit address.  To talk to a device, the master sends 

the desired address over the data bus.  Since all communication over the I2C bus is in 8-

bit increments, an additional bit is sent to indicate whether a read or write is desired. 

Next, the slave must send an acknowledge bit to say it recognized the message.  

The master relinquishes control of the data bus by allowing it to be pulled high.  If 

everything went well, the slave will pull the bus low to acknowledge the message. 

If the master requested to write information to the slave, it will again take control 

of the bus and send out the data in 8-bit increments.  Each byte must be followed by an 

acknowledge signal by the slave.  This pattern will repeat until a stop condition is met. 

On the other hand, if the master sent a request to read, then the slave will maintain 

control of the bus after the acknowledge signal.  In this case, the transmitter/receiver roles 

are reversed, and the slave transmits one byte at a time while the master acknowledges 

them.  Despite being the receiver, the master still maintains control over the clock line. 

Finally, a stop condition must be met.  Like to a start bit, the stop bit is a change 

in the data line while the clock line is high.  The difference is that a stop bit is a low-to-

high transition.  Once the stop bit is sent, the master relinquishes control of the bus. 
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If the master still had other messages to send, though, it could have sent another 

start bit instead of a stop bit.  After that bit, the entire process would start over with the 

master able to address a new device.  I2C functionality is summarized in Figure 2.1.  Now 

that the reader has a basic understanding of the I2C communication protocol, the 

following section will introduce the sensors that use it. 

 

 

Figure 2.1:  Summary of an I2C message. 

 

2.2.3 Infrared proximity sensors 

The proximity sensors used on the Deliverybot can be seen in Figure 2.2 and Figure 2.3.  

By emitting an infrared beam of light and measuring the strength of the reflection, an IR 

sensor is able to estimate how far away a target is.  These particular sensors are accurate 

at sensing objects 1 foot away or less.  Objects 1 to 2 feet away can have a few inches in 

error, and anything over 2 feet away is probably unreliable. 
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Figure 2.2:  Front of the IR sensor used on the Deliverybot. 

 

Figure 2.3:  Rear of the IR sensor used on the Deliverybot. 

 

A closer look at Figure 2.3 reveals four inputs near the top of the sensor.  As 

mentioned earlier, these IR sensors communicate over the I2C bus using the data and 

clock lines.  These are the middle two holes.  The two on the outside are the power and 

ground lines for the sensor.  The pinout for the sensor can be seen in Table 2.1. 
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Table 2.1:  Infrared sensor pinout 

Pin # Function 
1 GND (signal ground) 
2 SCL (I2C clock) 
3 SDA (I2C data) 
4 Vcc (+4.5 to +5.5 V) 

 
 

Theoretically, any number of sensors can be strung together and plugged into to a 

single connector on the robot.  In practice, capacitance limits the number of devices that 

can be attached to a single bus.  A longer bus length can also introduce extra noise to the 

circuit.  To deal with this problem, the sensors were divided into two groups and 

connected to two separate I2C ports. 

Another practical limitation is the number of available addresses.  A seven-bit 

addressing scheme means there are 27 different choices.  However, the IR sensor’s 

construction only allows eight different addresses to be used.  The address is chosen by 

soldering connections across three separate jumpers, which can be seen in the lower 

middle of Figure 2.3.  The bottom half of each jumper is connected to ground, while the 

top half is connected to Vcc via a pull-up resistor.  Placing a ball of solder across a jumper 

will bring the voltage on the top half down to zero, and doing so sets one bit of the 

address.  The eight available addresses are listed in Table 2.2, along with the jumper 

combinations to set them. 
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Table 2.2:  The eight possible addresses for each IR sensor   
 

Device Address JP1 JP2 JP3 
0x20 0 0 0 
0x22 0 0 1 
0x24 0 1 0 
0x26 0 1 1 
0x28 1 0 0 
0x2A 1 0 1 
0x2C 1 1 0 
0x2E 1 1 1 

 
1 in the JP1, JP2, or JP3 column indicates a solder jumper. [3] 

 

Initially, all eight available sensors were going to be used.  However, several 

problems arose in adding them to the Deliverybot.  First, the pull-up resistors on each 

jumper number 3 were not functioning properly.  Even without a solder ball, they still 

read low occasionally, which resulted in conflicting addresses.  To fix this, the top halves 

of the empty jumpers were connected to Vcc with a small resistor on the offending 

sensors.   

A second problem was that one of the addresses was already being used.  Despite 

the 27 different possibilities, the address 0x28 happened to be used by the LCD screen.  

While this could have been changed, settling for seven working sensors was deemed 

preferable to modifying the existing Segbot hardware. 

Finally, two of the sensors were exceptionally prone to noise.  At irregular 

intervals, they gave readings in the low inches regardless of what they were looking at, 

most likely due to an internal grounding problem.  Because the remaining six sensors 

were proving sufficient for the task, this issue was left unresolved. 

Figure 2.4 shows the final sensor setup from a view looking down from in front of 

the robot.  The rear-facing sensor on the left side of the robot (at the right in the figure) is 
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the one with stability issues.  Because the wires were already cut and connected, it was 

left on the robot and ignored rather than removed. 

 

 

Figure 2.4:  Final IR sensor layout. 

 

2.2.4 Incremental optical encoders 

To track its position in the world, the Deliverybot uses incremental optical encoders 

attached to the wheels.  This encoder consists of a circular disk with two rows of slits at 

the far edge.  On one side of the disk is a pair of light sources, and on the other side is a 

pair of photodetectors.  A high pulse is produced when the slits line up with the 

photoemitter-detector pair.  By measuring the frequency of the resulting pulse trains, the 

rate of rotation can be determined.  An example of this type of encoder can be seen in 

Figure 2.5. 
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Figure 2.5:  Example of an incremental optical encoder [4]. 
 

Because slits A and B are offset by one-half the slit width and therefore able to 

produce pulse trains 90 degrees out of phase from each other, the direction of rotation can 

be determined as well as the speed.  For the moment, assume that clockwise rotation 

results in a low-to-high transition of A while B is low.  Then direction can be determined 

with a simple method requiring only one D flip-flop.  If A is connected to the input line 

of the flip-flop, and B is connected to the clock line, then anytime the encoder is turning 
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clockwise, the flip-flop will output a one.  Similarly, counterclockwise rotation results in 

a zero. 

In some encoders, an additional track, called an index, is included.  This track has 

only a single slit cut in it, which allows the user to define a hard “home” position.  It can 

also be an easy way to count the number of rotations.  However, the encoders that came 

with the Segbot do not utilize an index, so all calculations made with the encoder values 

are relative. 

The encoders are the primary means in which the robot tracks its position.  An 

internal estimate is kept by the robot, and a change in the encoder readings results in the 

position estimate being updated.  Keeping track of the current position in this manner is 

called dead reckoning and is somewhat prone to errors.  Later chapters will propose ways 

of fixing these errors using the infrared sensors and knowledge of the environment. 
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CHAPTER 3:  SOFTWARE AND OPERATION 

 

Before complicated issues such as path planning and obstacle avoidance can be 

discussed, some basic functionality must be introduced.  This chapter will introduce the 

user interface.  The wireless communication scheme will also be covered, which is 

required to perform basic tasks such as providing the Deliverybot a destination.  After 

that, the controller will be presented.  The Deliverybot uses a type of proportional-

integral (PI) controller.  Additional checks and compensations are also introduced that are 

required by the dynamics of Deliverybot.  This chapter will conclude by covering the two 

methods of traveling utilized by the Deliverybot:  goto-xy mode and wall following. 

 

3.1 User Interface 

The most basic function the user interface might have is giving the robot a destination 

and sending it on its way.  Although the destination could be set using onboard switches, 

remote activation might be a useful feature. 

Other information might also be useful for the robot to have.  The weight of the 

package, for instance, has an effect on the vehicle’s turning performance.  Tests have 

shown that adding extra weight results in a smaller angular change than expected.  One 

solution is to precompute turning coefficients for a wide range of loads.  Then whoever 

loads the robot can first weigh the load and transmit that value to the robot.  However, 

this too could be done onboard with the addition of a weight sensor. 
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In addition to instructing the robot, the user might also want to receive 

information from the robot.  A user interface could track the robot’s position throughout 

the building.  A floor map displaying the robot’s coordinates could be made available so 

that a person expecting a package could track its progress.  The display could also throw 

up flags when it encounters obstacles and other unexpected situations. 

 

3.2 Wireless Communication 

In order for information to be passed between the robot and computer, each needs to have 

access to a wireless card.  The Segbot came equipped with an Aerocomm Wireless card, 

and it was a simple matter to attach a second one to the PC and connect them together.  

The following subsections discuss how each device transmits and receives information. 

 

3.2.1 Deliverybot transmit 

The first step in sending a message is to compile it and convert it to a string.  To reduce 

the effect of errors, only five variables were sent at a time.  They were preceded by a 

packet number (to identify the variables being sent) and separated from each other by the 

space character.  A new packet is sent every 100 msec, which is slow enough to allow the 

previous message to be received, and fast enough to allow smooth updating. 

When the string is finally chosen, it is passed to a function that adds a start 

character to the beginning of the string and a stop character to the end.   These two 

characters, 253 and 255 (decimal) respectively, are used throughout the communication 

process to identify the beginning and end of messages.  The message is passed to a 
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function that transmits one character at a time via the wireless card.  This function is part 

of the original Segbot code; no modifications were made for the Deliverybot. 

 

3.2.2 Deliverybot receive 

Receiving a message is slightly more complicated.  To start, a function waits indefinitely 

until the wireless card receives a new character.  Initially, it ignores any character other 

than the start character 253.  Once that character has been found, each subsequent 

character is stored in an array.  When the stop character 255 is received, the array is null-

terminated and a semaphore is posted, letting another function know a message is ready.  

The array is cleared and the message aborted if 400 characters are received before a stop 

character is found, so several smaller messages are preferred over one large one. 

Once the message has been received and the semaphore posted, another function 

wakes up and uses the message.  The message is broken into segments separated by the 

space character.  By comparing this first segment to various variable names, the function 

is able to gather information from the PC and store it into variables.   

For instance, the message “XY 5 7” can be tokenized twice by the space 

character.  The first string, “XY”, is searched for in a list.  When found, the second string 

token, “5”, is converted into a float and stored as the current x position variable.  

Likewise, “7” is converted and stored as the y position.  Many things can be done this 

way, from turning the car on or off to manually driving it using the keyboard. 

 

 17



3.2.3 User interface transmit 

The user interface was created using Microsoft Visual Basic.  Both sending and receiving 

data require Visual Basic’s Microsoft Comm Control 6.0 object.  Adding this object 

allows serial communication between the user interface and the wireless card. 

Once this object is connected to the wireless card, sending a message is as simple 

as one line of code.  If the MSComm object is named SerialCom1, then the line 

“SerialCom1.Output = Chr(253) & "XY 5 7" & Chr(255)” will send a 

start character, followed by the message “XY 5 7” and a stop character.  This will result 

in the robot’s position variables being changed, as mentioned in Section 3.2.2.   

 

3.2.4 User interface receive 

When receiving a message, Visual Basic again uses the MSComm object, this time 

waiting for a receive event to occur.  When it does, several things occur.  First, the 

message received is stored in an array.  Next, the front characters are removed one at a 

time until a start character (253) is found.  When it is found, the rest of the received 

characters are stored in an array, which is terminated when a stop character is found 

(255).  If either the start or stop character is never found, then the entire message is 

discarded. 

If everything happens as it is supposed to, then a message sent from the 

Deliverybot is sitting in an array.  Similar to the way the Deliverybot receives messages, 

the user interface splits the messages into components using the space character.  Then by 
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using the packet number, the remaining five numbers are stored in the appropriate 

variables. 

 

3.3 Robot Motor Control 

The most basic controller imaginable is an on-off switch.  If the robot is moving too fast, 

turn the motors off.  If it is moving too slow, turn the motors on.  When implemented as a 

control system, this method is called pulse-width modulation.  However, a robot driven 

this way would always be slightly ahead or behind the desired position, which makes this 

a poor control system. 

Instead of being simply on or off, the motors could always be on proportionally to 

the error:  if the robot is lagging slightly, give it a little extra speed; if it is lagging a lot, 

then give it a lot of extra speed.  Because the speed varies proportional to the error, the 

robot will have less overshoot and will not oscillate around the target as before.  If e is 

the tracking error and kp the control gain, the control law for such a proportional 

controller is: 

 
 pu k e=  (3.1) 

 
Unfortunately, a system with a proportional controller will end up with a steady-

state offset when presented with a constant reference input.  [5] Turning up the 

proportional gain will improve this error, but at the expense of damping and eventually 

even stability.  While slight overshoot might be tolerable, instability is unacceptable, so 

another term must be added to the controller. 
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One way to remove the steady-state error is to integrate over all past error values.  

This is called integral control, and when combined with the proportional term, the 

resulting controller is referred to as a proportional-integral (PI) controller.  The PI control 

equation is: 

 

  ( ) ( )
0

t

p i t
u t k e k e dτ τ= + ∫  (3.2) 

 
The following subsections will detail how the delivery robot implements motor 

control using the function “PIVelControl (float vref, float turn).” 

 

3.3.1 Finding velocity, angle, and position 

To use Equation (3.2), four things are needed:  the proportional gain (kp), the integral gain 

(ki), the error, and the integral of the error.  The gains kp and ki are constants.  For the 

Deliverybot, they were found by initializing them to zero and increasing them until 

satisfactory performance was achieved.  Finding the error and its integral are more 

complicated and require knowledge of the current velocity and angle. 

The error value is the difference between the actual and desired velocities.  To 

find the actual velocity, the function uses the change in position of the encoders (see 

Section 2.2.3).  Rather than outputting the pulse trains directly, the encoders count the 

absolute number of pulses that have passed since powering on.  This value is then read by 

the Deliverybot as a 24-bit number and converted to a unit that will be referred to as an 

encoder tick. 
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Once the controller knows the number of encoder ticks, the value is converted 

into a more useful unit.  Because the floor in the CSL building uses one-foot-square tiles, 

the units used to track position are feet.  Table 3.1 lists the conversion factors for each 

motor on the Deliverybot.  The slight discrepancy between the two values comes about 

because the wheels are not identical.  They likely have a very slight difference in radius, 

and this correction, while seemingly minor, is quite useful in reducing dead-reckoned 

positional error. 

 

Table 3.1:  Constants used to convert the values from the encoders to feet 

 Approx. Encoder Ticks per Foot 
Motor 1 -58.97346 
Motor 2 -59.0000 

 
 

Next, the controller must calculate the robot’s velocity.  At the end of every 

function call, the old encoder values are saved.  By subtracting the current encoder values 

from the previous values and then dividing by the time elapsed, the velocity of each 

wheel can be calculated.  This function is called every millisecond, so a constant 1/1000 

can be used for the time elapsed.  Finally, the center-of-mass velocity is calculated as the 

average of the two wheels’ velocities. 
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However, this value is not always accurate.  Because the numbers of pulses from 

the encoders are read in as 24-bit values, there will be problems when the number rolls 

over.  A very tiny motion can result in a calculated velocity of many hundreds of tiles per 

second, and this can cause instability in the controller.  To deal with rollover problems, 

the old velocities are used whenever a new velocity over 100 tiles per second is found.   

After the velocity has been found, the next step is calculating the angle.  Equation 

(3.4) shows how this was done.  A constant of 0.07 was found by manually turning the 

robot 90 degrees and measuring the encoder values.  Additional code sets the angle 

between –180 and 180 degrees.  The angle is also stored in radians for future use. 

  

 ( )deg deg 2 1v vθ θ= + 0.07 −  (3.4) 

 
The next step is tracking the robot in the xy-plane.  While the position is not 

needed for the controller, this is the most logical place to calculate it.  By using the angle, 

the velocity can be separated into its x and y components. 
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Multiplying the velocity by the time elapsed gives the change in position.  Adding 

this to the old position yields the robot’s current location.   
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The position, velocity, and angle variables are saved for the next iteration. 

 

3.3.2 Checking for legal inputs 

The controller function has two inputs:  the desired reference velocity and the desired 

turn rate.  However, these inputs are not guaranteed to be realizable.  Trying to move at 

100 tiles per second will most certainly not work.  Likewise, an extremely high turn rate 

will probably tip the robot over.  For both safety and stability, the magnitude of the 

velocity is limited to 4 feet per second and the turn magnitude is limited to 2. 

Another consideration that comes from the Segbot’s unique construction is 

acceleration.  Accelerating fast enough can cause the robot to tip over backwards.  This is 

dealt with indirectly by limiting the reference velocity to no more than 1 foot per second 

plus the current speed. 

 

  (3.7) if(vref > velocity + 1.0) vref = velocity + 1.0;

 

3.3.3 Calculating PI coupled control effort 

Once the robot velocity, reference velocity, and turn values are known and stable, the 

error value in Equation (3.2) can be calculated.  There will be two error terms, one for 

each motor.  The reference velocity in each term is adjusted proportionally to the error in 

the turn rate (esteer) before the error in each wheel velocity is calculated (e1, e2).  

Because the controller is run every millisecond, the integral control can be handled by a 
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running sum of the error (e1s, e2s).  Finally, each of these terms is adjusted by a constant 

and combined to produce the control effort.  The code is listed below, and a block 

diagram of the controller can be found in Figure 3.1.   

 

  (3.8) 

esteer = v2 - v1 + turn;

e1  =  vref - v1 + Kp_turn*esteer;

e2  =  vref - v2 - Kp_turn*esteer;

e1s =  e1s + e1;

e2s =  e2s + e2;

u1  =  Kp*e1 + Ki*0.001*e1s;

u2  =  Kp*e2 + Ki*0.001*e2s;

 
 

Figure 3.1:  The PI controller implemented in the Deliverybot. 
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3.3.4 Final control effort adjustments 

Once the control effort has been calculated, a few final adjustments must be made.  First, 

steps must be taken to control integral windup, which occurs when the robot cannot move 

fast enough to catch up to its desired position.  The integral term gets larger and larger 

from consistently being behind, and, if left unchecked, results in instability.  This can be 

prevented by reducing the integral term when it gets too large, as in Equation (3.9). 

 

  (3.9) 
if (fabs(u1)>10.0) e1s = e1s * 0.99;

if (fabs(u2)>10.0) e2s = e2s * 0.99;

 
 

Next, steps can be taken to reduce the effects of friction.  Four coefficients were 

calculated to deal with both static and kinetic friction, while driving both forward and 

backward.  These coefficients were calculated by pushing the robot around with the 

control effort set to zero.  When they are set correctly, the slightest push should send the 

robot moving in the proper direction at constant speed.  To prevent friction compensation 

from blowing up when the control effort was added, the forward values were reduced to 

10% and the backward values to 30%.  The code used is included below, with the 

coefficients listed in Table 3.2. 

 

  (3.10) 

if (v1>= 0.0) {u1 = u1 + Vpos*v1 + Cpos;}

else         {u1 = u1 + Vneg*v1 + Cneg;}

if (v2>= 0.0) {u2 = u2 + Vpos*v2 + Cpos;}

else         {u2 = u2 + Vneg*v2 + Cneg;}
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Table 3.2:  Friction compensation coefficients 

 Forward (-pos) Backward (-neg) 

Kinetic 
(V-) 0.64 * 0.10 0.72 * 0.30 

Static 
(C-) 2.7 * 0.10 -2.6 * 0.30 

 

Finally, the control effort sent to the pulse-width modulators is reduced to lie 

within the legal limits of ±10, as shown below. 

 

  (3.11) 

if (u1> 10) u1 =  10.0;

if (u1<-10) u1 = -10.0;

if (u2> 10) u2 =  10.0;

if (u2<-10) u2 = -10.0;

 
 

3.4 Driving Methods 

One common method of locomotion is to ignore the surroundings and drive straight 

toward the destination.  The Deliverybot calls this goto-xy mode.  It was written by a 

teaching assistant in the University of Illinois Control Systems Lab.  The code is a 

variation of a gradient descent algorithm adapted for path planning use [6].  

Unfortunately, this method is made complicated by uncertainty.  If the robot is not sure 

precisely where it is when it starts, then it cannot be any more certain of ending in the 

correct location. 

As an illustration of the danger of uncertainty, assume that the robot has in fact 

started at the proper coordinates.  However, instead of heading due east as expected, it is 
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angled 10 degrees to the north.  If the target is only one foot away, this will result in the 

robot ending 0.175 feet away from where it thinks it is.  As this is only a fraction of the 

robot’s width, this slight error could likely be ignored.  If, however, the robot were to 

travel 10 feet in this direction, it would end up 1.75 feet off target.  This second scenario, 

illustrated in Figure 3.2, is no longer trivial and could be the difference between passing 

through a doorway and crashing into the wall. 

 
Figure 3.2:  The danger of small uncertainties in goto-xy mode. 

 

With this in mind, it seems a poor idea to drive long distances without taking 

advantage of the surroundings.  When people find themselves in a long hallway with low 

visibility, the first thing they might do is find a wall to use as a reference point.  If they 

follow the wall long enough, they would eventually come to the end of the hallway.  This 

is the idea behind wall following. 

By using sensors facing perpendicular to the direction of travel, wall following 

allows the robot to traverse the hallway a set distance away from the wall.  Moving in this 

method is much more error tolerant, since even if the robot’s internal angle is slightly off, 

the wall will always lead in the correct direction. 

When wall following, the velocity is set at a constant 1.5 tiles per second.  The 

turn value is proportional to the difference between the ideal wall distance and the actual 

wall distance.  This distance is measured using the rearmost of the two right-facing 
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sensors.  Additionally, both sensors can be used in tandem to provide information that 

would not be available from one alone (such as when the robot’s heading is not parallel to 

the wall).  Without this information, the robot will spend unnecessary time oscillating 

between too far and too close to the wall before eventually running parallel to it.  The 

final equation is given below, with the ideal wall-following distance set to 11 inches. 

 

 ( ) ( )Turn 0.10 11 IR 0.05 IR IRRR RR RF= − + −  (3.12) 

 
The main problem with wall following is that there is not always a wall to follow.  

Hallways are filled with doorways, and the robot should not enter every room it comes 

upon.  A successful navigation scheme intelligently combines wall following with goto-

xy mode. 
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CHAPTER 4:  NAVIGATION AND DECISION MAKING 

 

This chapter will present a navigation scheme for an office delivery robot.  It will begin 

with a more detailed discussion of the plan of the building.  Feature points that can be 

used for navigation are extracted and used to plot a course from the home position to 

various destinations. 

Once a path is chosen, the next step is taking it.  By using the two methods 

discussed in Section 3.4, the robot will either follow the wall to the next checkpoint or 

drive directly toward it.  However, additional uncertainties must be taken into 

consideration, so several modifications must be made to these methods before using 

them. 

Next, it must be determined whether the robot has reached the target checkpoint.  

Depending on the state of the robot, this may entail finding a wall in front of it, detecting 

an opening on the right, or simply being close to the target coordinate. 

Once the foregoing determinations have been made, the robot must check for 

obstacles.  If nothing is in its way, then the robot should continue on to the next 

checkpoint as planned.  However, collisions cannot be tolerated.   If an obstacle is 

detected, new commands must be issued to maneuver the robot around it. 

Finally, position tracking through dead reckoning can quickly become unreliable.  

This chapter will conclude by presenting several methods of updating the robot’s position 

and angle.  If done often enough, this updating should prevent large positional and 

angular errors from building up and causing the robot to become lost. 
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4.1 Feature Points and Path Selection 

For performing tests in the CSL building, five different doorways were chosen as 

possible destinations (Figure 4.1a).  The home location was chosen to be a small opening 

off the main hallway (point A in Figure 4.1b).  To enable the robot to travel from the 

home position to a destination, checkpoints were created along the way at feature points. 

Feature points are locations in the hallway that are discernible by the IR sensors.  

If the robot knows it is near a specific feature point, then it can sense when it arrives at it.  

A map of these points, which consist mainly of corners and doorways, can be seen in 

Figure 4.1b.  Additional points were added (Figure 4.1c) to aid in crossing the hallway 

and approaching destinations head-on. 

As just mentioned, these checkpoints exist as a navigation aid.  When moving 

from the home location to a destination, the robot will pass through every feature point 

along the way.  As each of these points is reached, the robot’s position is updated and the 

next point is targeted.  A map of all checkpoints is displayed in Figure 4.1d, and the next 

point is chosen based on the state diagram in Figure 4.2.   
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 (a) (b) (c) (d) 
 

Figure 4.1:  CSL basement maps of (a) destinations, (b) feature points, and additional 
navigation aids (c).  A combined map of all checkpoints can be seen in (d). 
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Figure 4.2:  State machine for choosing the next checkpoint along the path from home to 
destination.  It also chooses the driving method and termination type 
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4.2 Set Ideal Reference Velocity and Turn Rate 

Once a checkpoint has been chosen, the next step is moving to it.  First, the robot must be 

oriented to face the correct direction.  This prevents problems when the robot starts 

facing a wall, but plans on turning 90 degrees and following it.  Turning first and then 

moving prevents the obstacle detection from triggering on the wall in front of it. 

Once it is facing the correct direction, the robot has two movement options:  drive 

directly toward the goal using goto-xy mode, or use the right-facing sensors to implement 

wall following.  In the wall-following case, though, a few changes must be made to what 

was introduced in Section 3.4. 

As the next section will discuss, openings on the right are detected using the 

difference between the two right-facing sensors.  However, if the doorway is not a perfect 

right angle, the current navigation scheme will partially compensate for the opening 

before the maximum gap can be detected.  The sensors never see the large discrepancy 

needed to recognize a gradual or shallow opening, and so the checkpoint is missed.  To 

fix this, Equation (3.12) becomes Equation (4.1) when the robot is near a feature point.  

The robot also reduces its reference velocity as it gets near the destination, which 

prevents it from overshooting and updating at the wrong location. 

 

 ( )Turn 0.10 11 IR RR= −  (4.1) 

 
Finally, the wall-following algorithm must be prevented from driving the robot in 

circles.  If it tries to wall-follow when not adjacent to a wall, the robot will constantly 

turn right until a wall is found.  To prevent this from leading to circles, if the robot 
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attempts to drive in the cardinal direction opposite of the current checkpoint, the turn 

value should be set to zero.  This results in the robot driving toward the wall until it is 

encountered, at which point the wall will direct the robot in the correct direction.  

The choice of which driving method to choose depends on whether or not a wall 

exists along the entire path from the previous to next checkpoint.  This is decided using 

the state machine previously displayed in Figure 4.2 (Section 4.1). 

 

4.3 Arriving at Checkpoints 

Now that the Deliverybot is driving in the right direction, the next step is deciding when 

it reaches the checkpoint.  There are three different ways, called termination methods, in 

which a checkpoint can be reached.  The method used depends upon why the target was 

chosen as a checkpoint in the first place, and is set using the state machine in Figure 4.2. 

 

4.3.1 Front Wall termination 

The first termination occurs when the robot meets a wall in front of it.  This will occur 

whenever the hallway makes a left-hand turn or when the destination is reached.  In 

testing, the latter meant stopping at a closed doorway that might normally be a cubicle 

entrance, but in practice, this could be a delivery bin at the entrance to a cubicle. 

One of the dangers with this type of termination is that almost anything can look 

like it.  If someone puts a box down in the robot’s way while it is looking for a front wall, 

then the robot may mistake the obstacle for its goal.  It would update its position to the 

wrong coordinates and possibly become lost. 
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To fix this, at least partially, the robot should begin looking for a front wall 

termination only when it is close to it.  The robot probably has a small amount of error in 

its dead reckoning, but it is unlikely to be wrong by more than a foot or so.  Therefore, 

any object sensed to the front can be assumed an obstacle until the robot gets close 

enough to its destination.  For the Deliverybot, “close enough” was about 2 feet.  At that 

point, the robot slows down and declares the next object it encounters to be the wall. 

Because feature points were set to be about 1 foot away from the walls, a front 

termination point should be found when one of the front sensors reads less than 8 inches.  

Once this happens, the robot should update its position and head to the next checkpoint.  

Figure 4.3 shows two examples of Front Wall termination. 

 

4.3.2 Opening Right termination 

The second type of termination comes about when the robot senses an opening to its 

right.  As illustrated in Figure 4.4, this occurs when it is following a wall and comes upon 

a doorway, or when the hallway turns right.  The front right-facing sensor reads a large 

value at the same time that the back right-facing sensor still sees the wall.  This abrupt 

change between the two sensors is the termination state being looked for. 

In the CSL basement, there were not many openings because most of the doors 

remained closed at all times.  However, even closed doors are noticeable if they are not 

flush to the wall.  In CSL, the closed doors were still almost half a foot farther away than 

the doorframe.  Therefore, the Deliverybot declared the checkpoint reached when the 

front right sensor read a distance 6 inches or greater than the back right sensor.  As with 

front wall termination, the robot will look for an opening only when within about 2 feet. 
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Figure 4.3:  Summary of Front Wall termination. 
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Figure 4.4:  Summary of Opening Right termination. 
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4.3.3 Proximity termination 

The third and final termination state is based upon proximity.  If the robot thinks it is near 

the checkpoint, then it assumes it is and moves on.  The reason for this termination is that 

feature points do not exist at every desired location.  Sometimes the robot must stop in 

the middle of a hallway and cross over to the other side, as illustrated in Figure 4.5.  

These navigation points were introduced in Section 4.1 and shown in Figure 4.1c.  They 

have nothing distinguishable about them that can be sensed, so the robot must estimate 

when they are reached. 

Another instance of proximity termination can be seen in Figure 4.6.  In this 

example, the robot must cross a gap without the aid of a wall to follow.  Because of the 

high occurrence of angular error when leaving from the previous checkpoint, it was 

decided not to attempt terminating at the adjacent corner.  The distances were found to 

vary widely, especially if an obstacle was encountered along the way.  Instead, the robot 

terminates using the proximity estimate and then slightly updates its position and angle 

based upon the right sensors’ values.  For instance, if the sensors read higher than 

expected, then the angle variable should be decreased slightly and the position set to be 

slightly farther from the wall. 
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Figure 4.5:  Summary of the Proximity termination state used for making 90-degree 
turns. 
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Figure 4.6:  Summary of the Proximity termination state used for crossing openings. 
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4.3.4 Bypassing checkpoints 

Unexpected obstacles can appear anywhere.  Unfortunately, that includes on top of 

checkpoints, and dealing with this special case is crucial to successful navigation.  For the 

Deliverybot, this was dealt with by bypassing the unreachable checkpoint. 

The purpose of checkpoints is to help reach the destination.  Missing one becomes 

irrelevant once the next one is successfully reached.  Therefore, a checkpoint should be 

skipped as soon as reaching it becomes more trouble than help.  For the delivery robot, it 

was decided that once the robot has driven 5 feet farther than it expects the checkpoint to 

be, it has probably missed it altogether.  Once that happens, the point is skipped and the 

next checkpoint is set as the destination. 

 

4.4 Avoiding Obstacles 

The final thing to be done is verify that moving will not result in a collision with an 

unexpected object.  If it will, then a method of getting around the obstacle will be needed.  

Two common avoidance algorithms are known as Bug1 and Bug2 [7]. 

The first approach, shown in Figure 4.7a, repeats two steps until the destination is 

reached.  First, drive toward the destination until an obstacle is encountered.  Second, 

circumnavigate the obstacle and return to the point closest to the goal.  While this might 

be useful for a mapping robot, unnecessary turning can cause significant error in the 

Deliverybot. 
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The Bug2 algorithm says to circumvent the obstacle until the original path is 

intersected, at which point the normal path should be followed.  This is much better for 

the Deliverybot, as it requires less turning than Bug1.  It is pictured in Figure 4.7b. 

 

 
 (a) (b) 
 

Figure 4.7:  Two common avoidance algorithms: (a) Bug1, (b) Bug2. 
 

 

However, a still simpler algorithm exists that requires even less turning:  

circumvent an obstacle until the robot has an unhindered path to the target, at which point 

normal operation resumes.  Because there are two navigation methods, this avoidance 

method has two different patterns.  They are shown in Figure 4.8. 
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To implement this algorithm, a state machine was created.  It has six states:  

None, Approaching, Verify 1, Clear Obstacle, Go Around, and Verify 2.  A summary of 

the states, transitions, and effects can be found in Figure 4.9. 

 

 

 

 
 
Figure 4.8:  The avoidance algorithm used by the Deliverybot when using (a) goto-xy and 
(b) wall following.  Once a clear path exists to the destination, normal operation resumes.  

Note that while wall following, the robot is not allowed a velocity component in the 
cardinal direction opposite the destination.  
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Figure 4.9:  Summary of the state machine used for obstacle avoidance. 
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4.4.1 Obstacle state:  None 

As its name might imply, being in this state means that there are no obstacles detected.  

Therefore, it allows the ideal velocity and turn values to be used.  This is the desired state 

for the robot, as it means that everything is working as expected. 

This is also the watchdog state.  It monitors the front four IR sensors, waiting for 

one of them to sense something one foot away or less.  When this happens, the state 

changes to Approaching.  Because obstacles can be of many shapes and sizes, this 

happens if any of the front IR sensors sees something.  However, there are two 

exceptions. 

The first occurs when the robot is looking for a front wall to change states.  This 

requires the termination state be Front Wall (Section 4.3.1) and that the robot be “close 

enough” (within 2 feet) to the estimated position.  In this case, detecting something in 

front of the robot is desired, so obstacle avoidance should not kick in. 

The second exception occurs when the robot has no forward velocity.  This case 

was added to prevent an obstacle from being detected as the state machine exits a state 

with front wall termination.  This was partially fixed in Section 4.2, where the robot 

orients itself in the correct direction before moving to the next checkpoint.  This addition 

completely fixes the issue.  By the time the robot is moving forward again, the wall 

should no longer lie in front of it, and obstacle avoidance should never have been 

triggered. 
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4.4.2 Obstacle state:  Approaching 

This state is entered once any of the front sensors detects an object, yet a collision is not 

yet imminent.  It is the equivalent of being on alert.  The practical response to this is 

moving more cautiously, and this was done by reducing the forward velocity to half a tile 

per second. 

One way to leave this state is if the object is no longer detected.  It may have 

moved out of the way, or even been a false positive.  When this occurs, all four of the IR 

sensors should read more than 12 inches again, and the state changes back to None. 

The other option is that the obstacle comes closer.  If there really is an object, and 

it is stationary, this should be the result of driving toward it.  Once any of the sensors 

reads less than 6 inches, a collision is imminent and the state machine should move on to 

the next state, Verify 1. 

 

4.4.3 Obstacle state:  Verify 1 

The robot keeps track of its position primarily through dead reckoning, and the easiest 

way to confound this estimation is to turn a lot.  Turning can result in wheels slipping and 

even small angular errors can quickly lead to a large positional error.  To mitigate this 

problem, the robot should try to go around an object only if it must.  The Verify 1 state 

exists to make sure the obstacle will not be moving out of the way on its own. 

To do this, the velocity and turn values are both set to zero while the robot waits 

for 2 seconds.  At that point, if an object is still detected within 6 inches, then it will 

probably not be moving, and the state machine changes to Clear Obstacle.  However, if at 
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any time all of the sensors read more than 6 inches, then it would appear that the object is 

moving away.  In this case, the state regresses back to Approaching or, if they all read 

more than 12 inches, to None. 

 

4.4.4 Obstacle state:  Clear Obstacle 

If this state is reached, there is definitely an obstacle and it will not be moving out of the 

way.  The only solution is to go around it.  The first step is turning until the obstacle no 

longer blocks the way.  This is done by setting the velocity to zero and the turn value to 

0.5.  The robot will slowly turn in place until the state is changed. 

The state change occurs when two conditions are met.  First, all of the front 

sensors must read more than 12 inches.  This makes sure that the robot has cleared the 

obstacle and can safely drive forward again.  The second condition requires that one of 

the right-facing sensors reads less than 15 inches.  This makes sure that the robot has 

something to circle around when it moves to the next state.  When these two conditions 

are met, the state machine progresses to the state Go Around. 

However, a problem occurs if the object moves after this state is reached.  The 

robot can find itself circling indefinitely looking for an object that is no longer there.  To 

deal with this condition, the state uses a counter.  If the robot spins for 13 seconds (about 

one revolution) without meeting the above conditions, it can be assumed that the obstacle 

is no longer in the way.  The state is returned to None, and normal operation resumes. 
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4.4.5 Obstacle state:  Go Around 

Once the robot has cleared the obstacle, the situation becomes very similar to right wall 

following.  There is something to the right and the robot wants to follow its contour.  

However, because the shape is unknown, a lower velocity (half a tile per second) should 

be observed to let the sensors respond to anything unexpected. 

In addition, following at a set distance is no longer very important.  All that 

matters is roughly following the contour of the object until it has been circumvented.  To 

that end, the turn value should be the difference between the two right-facing sensors.  If 

the front sensor reads higher than the rear sensor, the robot should turn right, and vice 

versa.   

However, this can lead to the robot getting too close to the obstacle and even 

crashing into it.  To fix this, a reading from either of the sensors of 6 inches or less will 

cause the robot to turn slightly to the left, away from the obstacle.  Getting too far away 

from it is not desirable either, so if both sensors read more than 15 inches, the robot 

should turn slightly to the right. 

This state is left once the robot has a clear path to the destination.  This is the case 

when the front sensors do not detect anything and a call to the goto-xy code attempts to 

turn the robot left.  Once this happens, normal navigation may resume and the state is 

changed to None.  This was shown previously in Figure 4.8. 

A second way to leave the state is to encounter another obstacle.  Once the robot 

has cleared the first obstacle and begun driving around it, a second obstacle might be 

found.  If any front IR sensor reads 6 inches or less while the first obstacle is being 

circled, the state should change to Verify 2. 
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4.4.6 Obstacle state:  Verify 2 

The Verify 2 state is nearly identical to Verify 1.  The only difference is what happens if 

the object moves out of the way.  In Verify 1, no obstacle had yet been certianly found.  

If whatever triggered the sensors suddenly disappeared, then the robot could resume 

normal operation.  In Verify 2, though, the robot has been interrupted from moving 

around an obstacle.  Therefore, if all front IR sensors read more than 6 inches, the state 

should revert to Go Around instead of Approaching or None.  Everything else about this 

state is the same as for Verify 1. 

 

4.5 Updating Position 

The Deliverybot tracks its position by using the encoders.  Unfortunately, dead reckoning 

is often inaccurate.  Poor variable calibration, wheel slippage, and friction can all result in 

a false position estimate.  Fortunately, the Deliverybot knows some information about its 

environment, and it can use its IR sensors to update its position at key feature points. 

 

4.5.1 Updating along walls 

An office building is often filled with long hallways.  They are nearly always straight and 

are usually parallel or perpendicular to every other hallway in the building.  If the robot’s 

axes are chosen properly, following a hallway should result in only one axis changing at a 
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time.  If the robot finds this not to be true, then its angle is likely incorrect and can be 

updated. 

For example, say that the positive y-axis faces directly north (0 degrees) and that 

the robot is wall-following in a north-south hallway heading north.  If the robot drives in 

a straight line for several seconds (while wall-following), then it can safely be assumed 

that the robot has a heading of 0 degrees, and the angle can be updated to reflect this.  

Encountering obstacles will force the robot to slow down and turn, so updating should 

only occur when driving straight, without swerving, and moving at full speed. 

In addition to updating the angle, the robot’s position can also be corrected.  Any 

hallway that runs solely along one axis means that the robot’s position along the opposite 

axis should remain constant when wall-following.  While the robot is driving in the y-

direction, the x-position can be set to one foot from the wall, and vice versa. 

Finally, if the angle is known, and one of the axes is known, then the other axis 

can be calculated as well.  Provided no obstacles have been encountered, then the 

distance driven since the last checkpoint (call this d) will have been in a straight line.  

Therefore, driving north means that the y-position can be updated to be the former 

checkpoint’s y-position plus d. 

 

4.5.2 Updating at feature points 

In addition to updating along walls, the robot’s position can also be corrected at feature 

points.  In Section 4.3, different methods of path termination were discussed.  While 

proximity termination is based solely on the estimated position, the other methods require 

input from the IR sensors. 
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In the Opening Right case, the robot does not move to the next checkpoint until an 

opening on the right side is found.  This termination type occurs when the robot is 

adjacent to the opening while wall-following.  This means the position along both axes is 

known, and the estimated position can be accurately set to the actual position. 

For Front Wall termination, the position can be known only in the direction 

perpendicular to the wall.  Therefore, only one variable is updated when this termination 

state is reached. 
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CHAPTER 5:  EXPERIMENTAL RESULTS 

 

Early on in the project, the Deliverybot attempted to navigate solely by dead reckoning.  

One look at Figure 5.1a shows clearly that some form of updating would be necessary.  

The first step was updating along straight walls, and this improved the overall 

performance immensely (Figure 5.1b).  However, this early version had several 

problems. 

First, it failed to account for normally closed doors being opened, such as those 

for storage and maintenance.  Instead, it continued to wall-follow when it reached points 

such as S and T.  One day a door was opened, and the map needed to be redone. 

Related to this was a lack of feature points at which to update.  The robot looked 

only for obvious corners such as I and L.  This meant that no more updating could be 

done north of point E.  Placing several obstacles along the wall threw off the position so 

much that the robot could no longer find its target. 

When the feature map was redone, several changes were made.  First, any 

potential opening was marked, and goto-xy code was used to cross it.  This prevented the 

robot from entering doorways that it expected to be closed.  Second, every depression of 

more than 6 inches was used to update the position.  Third, additional points were added 

so that the robot made only 90-degree turns, if for no other reason than consistency.  A 

successful run on this new map can be seen in Figure 5.1c. 
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 (a) (b) (c) 
 

Figure 5.1:  (a) This screenshot illustrates drift in the dead reckoning.  (b) Updating the 
position and angle along the walls improved performance dramatically.  (c)  The final 

version added additional feature points, and was setup to only use 90-degree turns.  This 
figure shows a successful obstacle-free run using the final version. 
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To demonstrate the robustness of the Deliverybot, it was presented with obstacles 

of varying shapes and sizes.  It was even picked up and moved slightly to show that small 

angle and positional error was recoverable.  In nearly all of these situations, the robot 

succeeded in finding the next checkpoint.  Below are some specific examples of this. 

In the run shown in Figure 5.2a, the Deliverybot was interrupted after reaching 

the corner checkpoint.  With its wheels off the ground, it was rotated 45 degrees to the 

left before being set down and turned back on.  After some initial oscillation, the robot 

found itself following a straight wall for at least 2 seconds.  This led to the angle, x-

position, and y-position to be updated very close to the correct values.  It is known to be a 

successful update because the robot was shut off when it detected the next checkpoint.  

As can be seen, the northernmost circle was just barely past the checkpoint, which is 

marked by the red plus sign. 

Similar to the previous case, Figure 5.2b demonstrates the Deliverybot’s tolerance 

of positional error.  About midway down the wall, where the circle appears darkest, the 

motors were shut off.  The Deliverybot was then picked up and moved forward nearly 2 

feet.  This caused the robot to reach the corner about 2 feet sooner than anticipated, but as 

the jump in position indicates, it updated successfully. 

A third run, shown in Figure 5.2c, demonstrates what happens when a checkpoint 

cannot be reached.  Twice a checkpoint was surrounded by obstacles, and in both 

instances, the Deliverybot succeeded in bypassing them.  The large amount of driving in 

the second instance resulted in a minor angular error, but this was corrected as soon as a 

long, straight section of wall was found. 
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 (a) (b) (c) 
 

Figure 5.2:  (a) This run demonstrates excellent angular error tolerance when wall-
following.  (b) Similarly, this run shows tolerance to positional error.  (c) In this case, the 
robot succeeded in bypassing two different checkpoints that were deemed unreachable, 

and it ended the run in the correct location. 
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Figure 5.3 illustrates the different ways in which the Deliverybot circumvents 

obstacles.  When in goto-xy mode, the robot drives straight toward the next checkpoint 

after clearing the object, which is shown in Figure 5.3a.  When wall-following, as in 

Figure 5.3b, the robot returns to the wall before continuing on to the next checkpoint. 

Figure 5.3b also shows what happens when the Deliverybot finds itself behind a 

slow-moving obstacle.  North of the doorway halfway down the hall, a person began 

walking very slowly in the robot’s path.  The detected obstacle (the person’s shoe) did 

not maintain a set distance for more than two seconds, so the robot never tried to go 

around it.  Instead, the robot followed the person very slowly at a distance of about half a 

foot.  This is apparent because the circles are darker in this region, indicating the robot 

spent more time there.  Because it was not moving at full speed, the robot was also 

prevented from updating its position and angle.  This can be seen at the next checkpoint, 

where updating the position moved the estimated position about a foot to the left.  At this 

point, the person moved out of the way and the robot successfully found the target. 
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 (a) (b) 

 
Figure 5.3:  (a) Behavior in goto-xy mode after an object is cleared.  (b) Wall following 

causes the robot to return to the wall before continuing.  This run also shows the result of 
following behind a slow-moving object. 
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CHAPTER 6:  CONCLUSIONS AND FUTURE WORK 

 

This thesis has analyzed an implementation of an office delivery robot.  It briefly 

discussed the hardware that could be used, such as IR sensors and encoders.  It also 

investigated the need for a user interface, explained a wireless communication scheme, 

proposed a robot controller, and described two methods of locomotion.  Last, it 

considered feature point representation, path planning, and obstacle avoidance.  As 

demonstrated in the results section, the proposed Deliverybot proved robust to a variety 

of difficulties that might arise, from angular and positional error to obstacles in 

inconvenient locations. 

However, the current Deliverybot is not perfect.  Forcing it to move around and 

turn excessively without reaching a checkpoint can still cause the robot to become lost 

(Figure 6.1).  Generating this error, though, required active participation by a person, 

rather than a stationary obstacle.  In an office, if people went through this much trouble to 

confuse the robot, they could just as easily pick it up and move it somewhere else.  

Despite the unlikelihood of the problem, though, it demonstrates that the robot can 

become lost.  Additional work needs to be done to solve this problem. 

One proposed method is to declare the robot lost whenever it finds itself in an 

unreachable position (such as inside a wall).  In this lost state, the robot can drive around 

looking for a feature point, such as a corner.  Once a point is found, the robot can place 

an image of itself at every potential point that matches the one found, and drive around 

until all but one of these images becomes illegal.  The remaining image is assumed to be 

at the correct location, and the robot resumes normal operation. 
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Figure 6.1:  This failed run demonstrates that trying hard enough can confuse the robot 
enough to render it lost.  Additional work must be done to deal with this. 

 

Unfortunately, this approach is not as simple as it sounds.  It was attempted as 

part of this thesis, but several problems prevented it from ever succeeding.  First, for the 

robot to get confused enough to become lost, there must be an unusual obstacle present.  

In practice, this same obstacle could trigger false positives on corner detection.  This 

meant that all of the images being placed were in the wrong locations, and it became lost 

again immediately after “fixing” itself.  Secondly, while driving around eliminating 
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images, the robot is unable to update its position.  By the time only one image remained, 

even if it was initially the correct one, enough drift had been introduced to render it 

useless. 

Despite this inability to recover from extreme errors, the Deliverybot has proven 

to be a reliable navigator in typical hallway environments.  With the addition of recovery 

code, a load-carrying platform, and better batteries, this robot is ready to deliver.  

Autonomous vehicles driving around a populated environment are no longer restricted to 

movies.  They are doable today and could be a cost-effective alternative to delivery by 

hand. 
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APPENDIX A:  DELIVERYBOT CODE 

 

 

Included in this appendix is the code written for the Deliverybot.  It uses the core code 

from the University of Illinois Mechatronics class (GE 423).  All relevant additions and 

modifications to this core code can be found below. 

 

File #1:  user_Main.c 

// STANDARD ANSI INCLUDES 
#include <std.h> // DSP/BIOS standard include file 
#include <hwi.h> 
#include <swi.h> 
#include <log.h> // LOG_printf calls 
#include <mem.h> // MEM_alloc calls 
#include <que.h> // QUE functions 
#include <sem.h> // Semaphore functions 
#include <sys.h> 
#include <tsk.h> // TASK functions 
#include <rtdx.h> // RTDX functions 
#include <math.h> // sinf,cosf,fabsf, etc. 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
// DSP INCLUDES 
#include <c6x.h>         // register defines, in c:\ti\c6000\cgtools\include 
#include <c6x11dsk.h>    // TI header in the directory c:\ti\c6000\dsk6x11\include 
#include <fastrts67x.h>  // TI's real-time math library, in c:\ti\c6700\mthlib\include 
 
// COECSL INCLUDES       // all COECSL functions are usually in the directory f:\C6713DSK\include 
#include <c6xdskdigio.h> // COECSL functions for daughter card, encs, PWM 
#include <max3100uart.h> // COECSL functions for communication to max serial chip 
#include <dac7724.h>     // COECSL functions for the DAC7724 chip 
#include <ad7864.h>     // COECSL functions for the AD7864 chip 
#include <RCservo.h>     // COECSL functions to set up PWM ch3 and ch4 to drive RC servos 
#include <switch_led.h>  // COECSL functions for turning off LEDs, monitoring switches 
#include <dspvisioncolor50Hz_cLCD.h> 
#include <i2c.h> 
#include <edma.h> 
#include <sharpir.h> 
#include <dsk6713.h> 
#include <user_ColorVisionFuncs.h> 
#include <user_UARTFuncs.h> 
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#include <user_PIFuncs.h> 
#include <user_IR_UltraFuncs.h> 
#include <atmel_pwrboard2.h> 
#include <color_LCD.h> 
#include <xy.h> 
#include <statemachine.h> 
 
 
// INITIALIZING and EXTERNING VARIABLES              
int timeint = 0;       // Timer, counts up every millisecond 
int ledstate= 0;       // Reads the 4 switches in as binary 
 
// IRs controlled by DSP's GPIO 
extern int ir1,ir2,ir3,ir4,ir5,ir6,ir7,ir8; // Read by the functions in "user_IR_UltraFuncs.c" 
char IR1_s[2] = "00";      //   IR values  
char IR2_s[2] = "00";      //  converted  
char IR3_s[2] = "00";      //   into strings 
char IR4_s[2] = "00";      //  so that the 
//char IR5_s[2] = "00";      //  displayed 
char IR6_s[2] = "00";      //  values have 
char IR7_s[2] = "00";      //  a constant 
char IR8_s[2] = "00";      //  two digits 
int IR_L =0, IR_F1 =0, IR_F2 =0, IR_F3 =0; // Sensors arranged based on position instead of 
int IR_F4=0, IR_RF =0, IR_RR =0;   // address, which makes using them easier 
 
extern volatile int new_irdata;    // Flags for the TSK 
float Rmotor = 0,Lmotor = 0;    // These are the motor encoders (Enc1 and Enc2) 
float Enc3 = 0, Enc4 = 0;     // These track the mouse position on LCD screen 
int Enc3int=0,Enc4int=0;     // Convert to integers because correspond to pixels 
 
// Wireless Communication Variables 
int packet = 1;        // Rotate through groups of variables to transmit 
char sendbuff[100];       // Buffer to store a string before sending it 
extern far SEM_Obj SEM_UART1MessageReady;   // Semaphore indicating a new message has been fully 
received 
extern char UART1MessageArray[400];   // Buffer holding newly received messages 
 
// Controller Variables 
extern float Kp,Ki,Kp_turn,Vpos,Vneg,Cpos,Cneg; // Constants 
int car_on = 0;        // Highest level motor control 
int manual = 0;        // Manual mode allows control from VB 
float vref=0,turn=0;      // Control Variables for PI Control 
float vref_manual=0,turn_manual=0;   // Control Variables for Manual PI Control 
extern float destX, destY;     // X and Y target from State Machine 
float destX_manual=0, destY_manual = 0;  // Manual values set from VB 
extern int cstate;       // Current target state 
extern int obstacle_state;     // State used to get around obstacles 
extern float target_radius,turn_thres;  // Constants used with 
extern float target_radius_near;   //  GOTO_XY function 
int target_user = -1;      // Robot gets the target user from VB 
int go_home = 0;       // Varible set from VB, starts the return trip 
 
// Absolute Positioning Variables 
extern float Angle, Angle_rad, vx, vy;  // Angle in degrees, then radians, x and y velocities 
extern float velocity, Xcurrent, Ycurrent; // Self-explanatory 
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// Temporary and/or Testing Variables 
float temp1  = 0.0;       // NOT IN USE 
float temp2  = 0.0;       // NOT IN USE 
float temp3  = 0.0;       // NOT IN USE 
float temp4  = 0.0;       // NOT IN USE 
float temp5  = 0.0;       // NOT IN USE 
 
int test_LOST = 0;       // mislabeled, set to 1 if out of bounds 
 
extern int goto_method, termination, obstacle_state, almost_there; 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// The Main() function is used primarily for performing initializations. 
void main(void) { 
 
    int tmp_row,tmp_col,tmp_ratio,tmp_laser_start; 
    Init_C6713DSK();        // set up DSP to talk to external 8 Meg of SDRAM. 
    Init_UART1and2(2);      // configure multi-buffered McBSP for SPI,  
          // tell max3100 what baudrate to use. 
    Init_Wireless(); 
    Init_pwm(1);          // zero chip 1's two PWM channels. 
    Init_encoders(1);       // initialize encoders to starting zero position. 
    Init_RCservo();       // setup second PWM chip to command RC Servos. 
    Init_encoders(2);       // initialize encoders to starting zero position. 
  Init_i2c(); 
 Init_LCD(120); 
  Init_SharpIRs();  
         
 Init_DAC7724(); 
 ICR = 0x0080;       // clear pending ints  
 IER |= 0x0080;      // enable int 7 
 
#ifdef USEVISION      // VISION CODE NOT BEING USED 
    tmp_row = 0; 
    tmp_col = 0; 
    tmp_ratio = 4;       // Start the camera out initially in X4 compression mode. 
             // In this mode row and col do not matter. 
    set_image_start(&tmp_row,&tmp_col,&tmp_ratio); 
    tmp_laser_start = 41; 
 set_laser_start(&tmp_laser_start); 
 Init_Memory_for_Vision_Func(); 
    Init_colorvision();     // uncomment if your app uses the camera. 
 LCDcolor_Init_OnlyCanCallinMain(); 
#endif 
     
    enable_edma();       // needs to be called to enable interrupt for both the camera 
             // and the i2c bus 
    set_LEDstate(get_switchstate()); // Set LEDs to Switch State 
 
 SmallSprintf(sendbuff,"0 X X X X X"); // check if it should be on, and what the target is 
 WirelessSend(sendbuff,strlen(sendbuff)); 
}// END main 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// This function is called every millisecond to prepare the ADC to be read 
void prdStartADC(void) { 
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 ADC7864_Start(); 
}// END prdStartADC 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// This function does all the real work 
void ADC_INT7_Func(void) { 
  
 timeint++; 
  
 // ************ Get data from encoders and ADC (mostly unnecessary) ***************** 
 read_encoders(1,&Rmotor,&Lmotor,g_standard_GearMotor); // *UNNEEDED* if change names 
 read_encoders(2,&Enc3,&Enc4,g_standard_GearMotor);  // Read cursor from attached mouse 
 Enc3int = (int) (Enc3*(1000/PI));      // Converts to pixels 
 Enc4int = (int) (Enc4*(1000/PI));      // Converts to pixels 
    ledstate = get_switchstate();       // Gets the switch state 
 
 // ********************* Get data from IR sensors and Camera ************************ 
 // If new IR data is ready, save it into our variables 
 if (new_irdata == 1) { 
  if(ir1 >= 30) { SmallSprintf(IR1_s,"--"); } else if(ir1 > 9) { SmallSprintf(IR1_s,"%d",ir1);
 } else { SmallSprintf(IR1_s,"0%d",ir1); } 
  if(ir2 >= 30) { SmallSprintf(IR2_s,"--"); } else if(ir2 > 9) { SmallSprintf(IR2_s,"%d",ir2);
 } else { SmallSprintf(IR2_s,"0%d",ir2); } 
  if(ir3 >= 30) { SmallSprintf(IR3_s,"--"); } else if(ir3 > 9) { SmallSprintf(IR3_s,"%d",ir3);
 } else { SmallSprintf(IR3_s,"0%d",ir3); } 
  if(ir4 >= 30) { SmallSprintf(IR4_s,"--"); } else if(ir4 > 9) { SmallSprintf(IR4_s,"%d",ir4);
 } else { SmallSprintf(IR4_s,"0%d",ir4); } 
  // No ir5 
  if(ir6 >= 30) { SmallSprintf(IR6_s,"--"); } else if(ir6 > 9) { SmallSprintf(IR6_s,"%d",ir6);
 } else { SmallSprintf(IR6_s,"0%d",ir6); } 
  if(ir7 >= 30) { SmallSprintf(IR7_s,"--"); } else if(ir7 > 9) { SmallSprintf(IR7_s,"%d",ir7);
 } else { SmallSprintf(IR7_s,"0%d",ir7); } 
  if(ir8 >= 30) { SmallSprintf(IR8_s,"--"); } else if(ir8 > 9) { SmallSprintf(IR8_s,"%d",ir8);
 } else { SmallSprintf(IR8_s,"0%d",ir8); } 
 
  // IR_L     IR_F1        IR_F2        IR_F3        IR_F4        IR_RF        IR_RR 
  // IR6      IR7          IR8          IR4          IR3          IR2          IR1 
  IR_L = ir6; IR_F1 = ir7; IR_F2 = ir8; IR_F3 = ir4; IR_F4 = ir3; IR_RF = ir2; IR_RR = ir1; 
 
  new_irdata = 0; 
 } 
 
 // ************** Call statemachine code / Make navigation decisions **************** 
 if((go_home == 0) && (target_user != -1)) { 
  goto_target(); 
 } 
 else if(go_home == 1) { 
  target_user = 0; 
  goto_target(); 
 } 
 else { 
  vref = 0; 
  turn = 0; 
 } // At this point, 'vref' and 'turn' are known 
 
 // **************** Set manual values when driving via the mouse ******************** 

 65



 if(manual == 2) { 
  destX = destX_manual; 
  destY = destY_manual; 
  xy_control(&vref,&turn,turn_thres, Xcurrent, Ycurrent, destX, destY, Angle_rad, target_radius, 
target_radius_near); 
  avoid_obstacles(); 
 } 
 
 // ******************* Send the proper commands to the motors *********************** 
 if(car_on == 1) { 
  if(manual == 1) {       // This is the keyboard driving mode 
   PIVelControl(vref_manual,turn_manual); 
  } 
  else {          // For normal and mouse driving modes 
   PIVelControl(vref,turn); 
  } 
 } 
 else {           // If the car is off, don't move 
  PIVelControl(0,0); 
  out_PWM(1,1,0); 
  out_PWM(1,2,0); 
 } 
 
 // ************ Output to the LCD depending on the value on the switches ************** 
 if(0 == (timeint%200)){ 
  switch(ledstate){  
   case 0:  
    LCDPrintfLine1("cstate:%d, close: %d",cstate, almost_there); 
    LCDPrintfLine2("IR:%s %s %s %s %s %s",IR7_s,IR8_s,IR4_s,IR3_s,IR2_s,IR1_s); 
   break; 
   case 1: 
    LCDPrintfLine1("L  F1 F2 F3 F4 RF RR"); 
    LCDPrintfLine2("%s %s %s %s %s %s 
%s",IR6_s,IR7_s,IR8_s,IR4_s,IR3_s,IR2_s,IR1_s); 
   break; 
   case 4: 
    LCDPrintfLine1("EncL:%0.1f Enc3:%0.1f",Lmotor, Enc3 ); 
    LCDPrintfLine2("EncR:%0.1f Enc4:%0.1f",Rmotor, Enc4 ); 
   break; 
   case 9: 
    LCDPrintfLine1("Outputing Vision Data"); 
    LCDPrintfLine2("on Comm 2"); 
   break; 
   case 10: 
    LCDPrintfLine1("Echoing ADC to DAC"); 
    LCDPrintfLine2(""); 
   break; 
   case 12: 
    LCDPrintfLine1("V=%.1f,X=%.1f,Y=%.1f",velocity, Xcurrent, Ycurrent); 
    LCDPrintfLine2("A=%.3f,x=%.1f,y=%.1f", Angle_rad, vx, vy); 
   break; 
   case 13: 
    LCDPrintfLine1("V=%.1f,X=%.1f,Y=%.1f",velocity, Xcurrent, Ycurrent); 
    LCDPrintfLine2("A=%.1f", Angle); 
   break;  
   case 14: 
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    LCDPrintfLine1("%.3f, %.3f %d",Vpos, Vneg, target_user); 
    LCDPrintfLine2("%.2f, %.2f %d",Cpos, Cneg, cstate); 
   break;  
   case 15: 
    LCDPrintfLine1("t1= t2= t3= t4= t5="); 
    LCDPrintfLine2("%.1f,%.1f,%.1f,%.1f,%.1f", temp1, temp2, temp3, temp4, temp5); 
   break;  
   default: 
    LCDPrintfLine1("Change Switches State"); 
    LCDPrintfLine2("Undefined State"); 
   break; 
  }// end switch(ledstate) 
 }// endif print to display 
      
 // *********************** Send Information to the VB Interface ************************ 
 if (0 ==(timeint%100)) { 
  if(packet == 1) { 
   SmallSprintf(sendbuff,"%d %.1f %.1f %.1f %.1f %.1f", packet, vref, turn, Angle, Xcurrent, 
Ycurrent); 
   packet = 2; 
  } 
  else if(packet == 2) { 
   SmallSprintf(sendbuff,"%d %.1f %.1f %.1f %.1f %d", packet, vx, vy, destX, destY, 
target_user); 
   packet = 3; 
  } 
  else if(packet == 3) { 
   SmallSprintf(sendbuff,"%d %s %s %s %s %s", packet, IR6_s,IR7_s,IR8_s,IR4_s,IR3_s); 
   packet = 4; 
  } 
  else { 
   SmallSprintf(sendbuff,"%d %s %s %d %d %d", packet, IR2_s,IR1_s, goto_method, 
termination, obstacle_state); 
   packet = 1; 
  } 
  WirelessSend(sendbuff,strlen(sendbuff)); 
 }// endif send wireless 
}// end ADC_INT7_Func 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// This function acts upon information received from VB 
void NetReceiveMessageTask(void){ 
 
 char *temp; 
 
 while(1){ 
  SEM_pend(&SEM_UART1MessageReady,SYS_FOREVER); 
  temp = strtok(UART1MessageArray, " "); 
 
  if(strcmp(temp,"vref")==0) { 
   temp = strtok('\0', " "); 
   vref_manual = atof(temp); 
  } 
  else if(strcmp(temp,"turn")==0) { 
   temp = strtok('\0', " "); 
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   turn_manual = atof(temp); 
  } 
  else if(strcmp(temp,"t1")==0) { 
   temp = strtok('\0', " "); 
   temp1 = atof(temp); 
  } 
  else if(strcmp(temp,"t2")==0) { 
   temp = strtok('\0', " "); 
   temp2 = atof(temp); 
  } 
  else if(strcmp(temp,"t3")==0) { 
   temp = strtok('\0', " "); 
   temp3 = atof(temp); 
  } 
  else if(strcmp(temp,"t4")==0) { 
   temp = strtok('\0', " "); 
   temp4 = atof(temp); 
  } 
  else if(strcmp(temp,"t5")==0) { 
   temp = strtok('\0', " "); 
   temp5 = atof(temp); 
  } 
  else if(strcmp(temp,"Kp")==0) { 
   temp = strtok('\0', " "); 
   Kp = atof(temp); 
  } 
  else if(strcmp(temp,"Ki")==0) { 
   temp = strtok('\0', " "); 
   Ki = atof(temp); 
  } 
  else if(strcmp(temp,"Kpt")==0) { 
   temp = strtok('\0', " "); 
   Kp_turn = atof(temp); 
  } 
  else if(strcmp(temp,"On")==0) { 
   car_on = 1; 
  } 
  else if(strcmp(temp,"Off")==0) { 
   car_on = 0; 
  } 
  else if(strcmp(temp,"Man0")==0) { 
   manual = 0; 
  } 
  else if(strcmp(temp,"Man1")==0) { 
   manual = 1; 
  } 
  else if(strcmp(temp,"Man2")==0) { 
   manual = 2; 
  } 
  else if(strcmp(temp,"XY")==0) { 
   temp = strtok('\0', " "); 
   Xcurrent = atof(temp); 
   temp = strtok('\0', " "); 
   Ycurrent = atof(temp); 
  } 
  else if(strcmp(temp,"Angle")==0) { 
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   temp = strtok('\0', " "); 
   Angle = atof(temp); 
  } 
  else if(strcmp(temp,"destXY")==0) { 
   temp = strtok('\0', " "); 
   destX_manual = atof(temp); 
   temp = strtok('\0', " "); 
   destY_manual = atof(temp); 
  } 
  else if(strcmp(temp,"target")==0) { 
   temp = strtok('\0', " "); 
   target_user = atoi(temp); 
   go_home = 0; 
  } 
  else if(strcmp(temp,"MAIN")==0) { 
   temp = strtok('\0', " "); 
   car_on = atoi(temp); 
   temp = strtok('\0', " "); 
   target_user = atoi(temp); 
  } 
  else if(strcmp(temp,"return")==0) { 
   go_home = 1; 
  } 
 } 
} 
 
 
File #2:  user_IR_UltraFuncs.c 
 
// STANDARD ANSI INCLUDES 
#include <std.h> // DSP/BIOS standard include file 
#include <hwi.h> 
#include <swi.h> 
#include <log.h> // LOG_printf calls 
#include <mem.h> // MEM_alloc calls 
#include <que.h> // QUE functions 
#include <sem.h> // Semaphore functions 
#include <sys.h> 
#include <tsk.h> // TASK functions 
#include <rtdx.h> // RTDX functions 
#include <math.h> // sinf,cosf,fabsf, etc. 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
// DSP INCLUDES 
#include <c6x.h>         // register defines, in c:\ti\c6000\cgtools\include 
#include <c6x11dsk.h>    // TI header in the directory c:\ti\c6000\dsk6x11\include 
#include <fastrts67x.h>  // TI's real-time math library, in c:\ti\c6700\mthlib\include 
 
// COECSL INCLUDES       // all COECSL functions are usually in the directory f:\C6713DSK\include 
#include <c6xdskdigio.h> // COECSL functions for daughter card, encs, PWM 
#include <max3100uart.h> // COECSL functions for communication to max serial chip 
#include <dac7724.h>     // COECSL functions for the DAC7724 chip 
#include <ad7864.h>     // COECSL functions for the AD7864 chip 
#include <RCservo.h>     // COECSL functions to set up PWM ch3 and ch4 to drive RC servos 
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#include <switch_led.h>  // COECSL functions for turning off LEDs, monitoring switches 
#include <dspvisioncolor50Hz_cLCD.h> 
#include <i2c.h> 
#include <edma.h> 
#include <sharpir.h> 
#include <dsk6713.h> 
#include <user_ColorVisionFuncs.h> 
#include <user_UARTFuncs.h> 
#include <user_PIFuncs.h> 
#include <user_IR_UltraFuncs.h> 
#include <atmel_pwrboard2.h> 
 
volatile int new_irdata = 0; 
unsigned char ir_buff[1]; 
int ir1=0, ir2=0, ir3=0, ir4=0, ir5=0, ir6=0, ir7=0, ir8=0; 
int RD_IR_ADDR = 0x20; 
 
void getIRs(void) { 
 
 while(1) { 
  if (new_irdata == 0) { 
            if ( i2c_stdrecv(RD_IR_ADDR,1,ir_buff,1) == 0 ) { 
    switch(RD_IR_ADDR) { 
     case 0x20: RD_IR_ADDR = 0x22; ir1 = ir_buff[0]; break; 
     case 0x22: RD_IR_ADDR = 0x24; ir2 = ir_buff[0]; break; 
     case 0x24: RD_IR_ADDR = 0x26; ir3 = ir_buff[0]; break; 
     case 0x26: RD_IR_ADDR = 0x2A; ir4 = ir_buff[0]; break; 
     // case 0x28: conflicts with LCD screen 
     case 0x2A: RD_IR_ADDR = 0x2C; ir6 = ir_buff[0]; break; 
     case 0x2C: RD_IR_ADDR = 0x2E; ir7 = ir_buff[0]; break; 
     case 0x2E: RD_IR_ADDR = 0x20; ir8 = ir_buff[0]; new_irdata = 1; break; 
     default: RD_IR_ADDR = 0x20; break; 
    } 
            } else { 
                TSK_sleep(5); 
            } 
        } else { 
            TSK_sleep(10); 
        } 
 } // end while   
} 
  
void getI2CSensors(void) { 
 // Not used   
} 
 
void atmel_IRs_task(void) { 
 // Not used 
} 
 
void atmel_RCservo_task(void) {  
 // Not used 
} 
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File # 3:  user_PIFuncs.c 
 
 
// STANDARD ANSI INCLUDES 
#include <std.h> // DSP/BIOS standard include file 
#include <hwi.h> 
#include <swi.h> 
#include <log.h> // LOG_printf calls 
#include <mem.h> // MEM_alloc calls 
#include <que.h> // QUE functions 
#include <sem.h> // Semaphore functions 
#include <sys.h> 
#include <tsk.h> // TASK functions 
#include <rtdx.h> // RTDX functions 
#include <math.h> // sinf,cosf,fabsf, etc. 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
// DSP INCLUDES 
#include <c6x.h>         // register defines, in c:\ti\c6000\cgtools\include 
#include <c6x11dsk.h>    // TI header in the directory c:\ti\c6000\dsk6x11\include 
#include <fastrts67x.h>  // TI's real-time math library, in c:\ti\c6700\mthlib\include 
 
// COECSL INCLUDES       // all COECSL functions are usually in the directory f:\C6713DSK\include 
#include <c6xdskdigio.h> // COECSL functions for daughter card, encs, PWM 
#include <max3100uart.h> // COECSL functions for communication to max serial chip 
#include <dac7724.h>     // COECSL functions for the DAC7724 chip 
#include <ad7864.h>     // COECSL functions for the AD7864 chip 
#include <RCservo.h>     // COECSL functions to set up PWM ch3 and ch4 to drive RC servos 
#include <switch_led.h>  // COECSL functions for turning off LEDs, monitoring switches 
#include <dspvisioncolor50Hz_cLCD.h> 
#include <i2c.h> 
#include <edma.h> 
#include <sharpir.h> 
#include <dsk6713.h> 
#include <user_ColorVisionFuncs.h> 
#include <user_UARTFuncs.h> 
#include <user_PIFuncs.h> 
 
// globals only used by PIVelCopntrol 
float encoder1 = 0.0F; 
float encoder2 = 0.0F; 
float p1_old   = 0.0F; 
float p2_old   = 0.0F; 
float v1       = 0.0F; 
float v2       = 0.0F; 
float v1_old   = 0.0F; 
float v2_old   = 0.0F; 
float u1       = 0.0F; 
float u2       = 0.0F; 
float e1       = 0.0F; 
float e2       = 0.0F; 
float e1s      = 0.0F; 
float e2s      = 0.0F; 
float esteer   = 0.0F; 
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// Tunable gains 
// Closed-loop coupled velocity control 
float Kp       = 3; 
float Ki       = 25; 
float Kp_turn  = 2; 
 
// Friction Compensation 
float Vpos =  0.64*0.1; 
float Vneg =  0.72*0.3; 
float Cpos =  2.7*0.1; 
float Cneg = -2.6*0.3; 
 
// Absolute Positioning Variables 
float velocity  = 0.0F; 
float vx   = 0.0F; 
float vy   = 0.0F; 
float Xcurrent  = 0.0F; 
float Ycurrent  = 0.0F; 
float Angle  = 0.0F; 
float Angle_rad = 0.0F; 
 
// Temporary Variables 
extern float temp1, temp2, temp3, temp4, temp5; 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// This function is told how fast to turn and move forward, then commands the motors to do so. 
void PIVelControl(float vref, float turn) { 
 
    float x1,x2; 
    read_encoders(1, &encoder1, &encoder2, g_standard_GearMotor); 
 
 ///////////////////////////////////////////////////////////////// 
 // Find Position, Angle, and Velocity 
 
    // Calculate position (tiles) from encoder readings 
    x1 = -(encoder1/59.0)*1.00045; 
    x2 = -(encoder2/59.0)*1.00000; 
  
    // Calculate velocity (tiles/sec) from position 
    v1 = (x1 - p1_old)/0.001; 
    v2 = (x2 - p2_old)/0.001; 
     
    // Fix the flip-over problem with the encoders... 
    if ((-100.0F>v1)||(100.0F<v1))  v1 = v1_old; 
    if ((-100.0F>v2)||(100.0F<v2))  v2 = v2_old; 
 
 // Center of mass velocity 
 velocity = (v1+v2)/2; 
 
 // Track the angle relative to the starting configuration, wrap -180 to 180 
 Angle = Angle + (v2-v1)*0.07; 
 while(Angle > 180) { 
  Angle = Angle - 360; 
 } 
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 while(Angle < -180) { 
  Angle = Angle + 360; 
 } 
 Angle_rad = Angle * PI / 180; 
 
 // Track velocity in X and Y directions 
 vx = velocity*sin(Angle_rad); 
 vy = velocity*cos(Angle_rad); 
 
 // Calculate absolute posistion from past data 
 Xcurrent = Xcurrent + vx*0.001; 
 Ycurrent = Ycurrent + vy*0.001; 
 
 ///////////////////////////////////////////////////////////////// 
    // Save old positions and velocities 
    p1_old = x1; 
    p2_old = x2; 
         
    v1_old = v1; 
    v2_old = v2; 
 
 ///////////////////////////////////////////////////////////////// 
 // Set limits so robot does not tip over or break 
 
 // Don't accelerate too fast, limit based on momentum 
 if(vref > velocity + 1.0) { 
  vref = velocity + 1.0; 
 } 
 
 // Assert maximum velocity and turn rate 
 if ( vref > 4 )  
  vref = 4; 
 if ( vref < -4 ) 
  vref = -4; 
 
 if ( turn > 2 )  
  turn = 2; 
 if ( turn < -2 ) 
  turn = -2; 
 
 ///////////////////////////////////////////////////////////////// 
    // Calculate PI Coupled Control Effort 
    esteer = v2 - v1 + turn; 
    e1   = vref - v1 + Kp_turn*esteer; 
    e2   = vref - v2 - Kp_turn*esteer; 
    e1s  = e1s + e1; 
    e2s  = e2s + e2; 
    u1   = Kp*e1 + Ki*0.001*e1s; 
    u2   = Kp*e2 + Ki*0.001*e2s; 
     
 ///////////////////////////////////////////////////////////////// 
 // Perform Final Checks and Adjustments 
 
    // Check for integral windup 
    if (fabs(u1)>10.0) e1s = e1s * 0.99; 
    if (fabs(u2)>10.0) e2s = e2s * 0.99; 
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    // Friction compensation 
    if (v1>= 0.0) { 
        u1 = u1 + Vpos*v1 + Cpos; 
    } 
    else { 
        u1 = u1 + Vneg*v1 + Cneg; 
    } 
 
    if (v2>= 0.0) { 
        u2 = u2 + Vpos*v2 + Cpos; 
    } 
    else { 
        u2 = u2 + Vneg*v2 + Cneg; 
    } 
     
    // Final check to make sure within range 
    if (u1> 10)  u1 =  10.0; 
    if (u1<-10)  u1 = -10.0; 
    if (u2> 10)  u2 =  10.0; 
    if (u2<-10)  u2 = -10.0; 
 
 ///////////////////////////////////////////////////////////////// 
    // Send PWM command to motors 
    out_PWM(1,1,u1); 
    out_PWM(1,2,-u2); 
} 
 
 
File #4:  user_statemachine.c 
 
 
// STANDARD ANSI INCLUDES 
#include <std.h> // DSP/BIOS standard include file 
#include <hwi.h> 
#include <swi.h> 
#include <log.h> // LOG_printf calls 
#include <mem.h> // MEM_alloc calls 
#include <que.h> // QUE functions 
#include <sem.h> // Semaphore functions 
#include <sys.h> 
#include <tsk.h> // TASK functions 
#include <rtdx.h> // RTDX functions 
#include <math.h> // sinf,cosf,fabsf, etc. 
#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
 
// DSP INCLUDES 
#include <c6x.h>         // register defines, in c:\ti\c6000\cgtools\include 
#include <c6x11dsk.h>    // TI header in the directory c:\ti\c6000\dsk6x11\include 
#include <fastrts67x.h>  // TI's real-time math library, in c:\ti\c6700\mthlib\include 
 
// COECSL INCLUDES       // all COECSL functions are usually in the directory f:\C6713DSK\include 
#include <c6xdskdigio.h> // COECSL functions for daughter card, encs, PWM 
#include <max3100uart.h> // COECSL functions for communication to max serial chip 
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#include <dac7724.h>     // COECSL functions for the DAC7724 chip 
#include <ad7864.h>     // COECSL functions for the AD7864 chip 
#include <RCservo.h>     // COECSL functions to set up PWM ch3 and ch4 to drive RC servos 
#include <switch_led.h>  // COECSL functions for turning off LEDs, monitoring switches 
#include <dspvisioncolor50Hz_cLCD.h> 
#include <i2c.h> 
#include <edma.h> 
#include <sharpir.h> 
#include <dsk6713.h> 
#include <user_ColorVisionFuncs.h> 
#include <user_UARTFuncs.h> 
#include <user_PIFuncs.h> 
#include <user_IR_UltraFuncs.h> 
#include <atmel_pwrboard2.h> 
#include <color_LCD.h> 
#include <xy.h> 
#include <statemachine.h> 
 
// State Variables 
int cstate     = ptA; 
int next_pt    = ptA; 
int pstate     = ptA; 
int obstacle_state   = NONE; 
int obstacle_counter  = 0; 
int go_direction   = 0; 
int goto_method   = STRAIGHT; 
int almost_there   = 0; 
int termination   = PROXIMITY; 
int opening_counter  = 0; 
float close_enough   = 2; 
float target_radius  = 0.25; 
float target_radius_near= 0.25; 
float turn_thres  = 1; 
float destX    = 0; 
float destY    = 0; 
float destX_old   = 0; 
float destY_old   = 0; 
int going_straight   = 0; 
float dist_from   = 0; 
 
extern float vref, turn, Xcurrent, Ycurrent, velocity, Angle_rad, Angle; 
extern int car_on; 
extern int target_user; 
extern int go_home; 
extern int IR_R, IR_F1, IR_F2, IR_F3, IR_F4, IR_RF, IR_RR; 
 
float test_point= 0; 
float my_temp1 = 0; 
float my_temp2  = 0; 
float my_temp3  = 0; 
 
// FEATURE POINTS 
//'alphabet = Array("A", "B", "C", "D", "E", "F", "G","H", "I", "J", "K", "L", "M",  "N",  "O", "P", "Q", 
"R", "AA", "AB", "AC", "AD", "AE", "AF", "AG", "zA", "zB", "zC", "zD", "zE") 
float featureX[30] = {0,  7,   7,   7,   7,   7,    7,  7,   7,   7,   7,   3,   3,    3,    3,   3,   3,   3,    7,    7,    7,    3,    
3,    3,    3,   10,    0,    0,    0,    0}; 
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float featureY[30] = {0,  0,  18,  24,  30,33.5, 40.5, 44,  56,59.5,  81,  81,  70, 62.5, 57.5,  29,  20, 2.5, 21.5, 
26.5,   66,   66, 59.5, 26.5, 21.5, 26.5,   66, 59.5, 26.5, 21.5}; 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// Helper function to update the destination, as well as set the method for getting there. 
// Once the robot is 'close enough', always drive straight towards destination. 
void set_dest(int dest, int method, int end_type) { 
 destX_old  = featureX[cstate]; 
 destY_old  = featureY[cstate]; 
 destX   = featureX[dest]; 
 destY   = featureY[dest]; 
 next_pt  = dest; 
 termination = end_type; 
 goto_method = method; 
} 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// Function that returns the distance the passed coordinate is from the current location. 
float current_dist_from(float myX, float myY) { 
 my_temp1 = Xcurrent - myX; 
 my_temp2 = Ycurrent - myY; 
 my_temp1 = my_temp1 * my_temp1; 
 my_temp2 = my_temp2 * my_temp2; 
 my_temp3 = sqrtsp(my_temp1 + my_temp2); 
 return my_temp3; 
} 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// This function returns a 1 if the robot is facing the correct cardinal direction (only N or S) 
int correct_direction(void) { 
 if(go_direction == NORTH) { 
  if((Angle < 90) && (Angle > -90)) { 
   return 1; 
  } 
  else { 
   return 0; 
  } 
 } 
 else {  // if(go_direction == SOUTH) { 
  if((Angle < 90) && (Angle > -90)) { 
   return 0; 
  } 
  else { 
   return 1; 
  } 
 } 
} 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// Highest level navigation controller that calls all necessary functions. 
void goto_target(void) { 
 
 // First, figure out which cardinal direction the target is in. 
 // This will be more complicated in a bigger building. 
 if(featureY[target_user] > Ycurrent - 5) { 
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  go_direction = NORTH; 
 } 
 else { 
  go_direction = SOUTH; 
 } 
 
 // Second, decide which checkpoint the robot is heading towards, and how it will get there. 
 choose_path(); 
 
 // Third, set ideal velocity and turn rate. 
 set_ideal(); 
 
 //test_point = current_dist_from(destX, destY); 
 if(current_dist_from(destX, destY) < close_enough) { 
  almost_there = 1; 
 } 
 
 // Fourth, determine if the robot has arrived at the checkpoint. 
 check_next_state(); 
 
 // Fifth, naviagate around any obstacles in the robot's path. 
 if((almost_there == 1) && (termination == FRONT_WALL)) { 
  // Do nothing, because any obstacle seen should be the front wall. 
 } 
 else { 
  avoid_obstacles(); 
 } 
} 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// This function chooses the path from the current location to a target location 
// Now this assumes that the target must be zA, zB, zC, zD, or zE 
void choose_path(void) { 
 
 switch(cstate) { 
  case ptA: set_dest(ptB, STRAIGHT, FRONT_WALL); break; 
  case ptB: set_dest(ptC, WALL, OPENING_RIGHT);  break; 
  case ptC: 
   if(target_user == ptzE) { 
    set_dest(ptAA, STRAIGHT, PROXIMITY); 
   } 
   else { 
    set_dest(ptD, STRAIGHT, PROXIMITY); 
   } 
   break; 
  case ptD: 
   if((target_user == ptzA) || (target_user == ptzD)) { 
    set_dest(ptAB, STRAIGHT, PROXIMITY); 
   } 
   else { 
    set_dest(ptE, STRAIGHT, PROXIMITY); 
   } 
   break; 
  case ptE: set_dest(ptF, STRAIGHT, PROXIMITY);  break; 
  case ptF: set_dest(ptG, WALL, OPENING_RIGHT);  break; 
  case ptG: set_dest(ptH, STRAIGHT, PROXIMITY);  break; 
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  case ptH: set_dest(ptI, WALL, OPENING_RIGHT);  break; 
  case ptI: set_dest(ptJ, STRAIGHT, PROXIMITY);  break; 
  case ptJ: 
   if(target_user == ptzC) { 
    set_dest(ptAE, STRAIGHT, PROXIMITY); 
   } 
   else if(target_user == ptzB) { 
    set_dest(ptAC, WALL, PROXIMITY); 
   } 
   else { 
    set_dest(ptK, WALL, PROXIMITY); 
   } 
   break; 
  case ptK: set_dest(ptL, STRAIGHT, FRONT_WALL); break; 
  case ptL: set_dest(ptM, WALL, OPENING_RIGHT);  break; 
  case ptM: 
   if(target_user == ptzB) { 
    set_dest(ptAD, STRAIGHT, PROXIMITY); 
   } 
   else { 
    set_dest(ptN, STRAIGHT, PROXIMITY); 
   } 
   break; 
  case ptN: 
   if(target_user == ptzC) { 
    set_dest(ptAE, STRAIGHT, PROXIMITY); 
   } 
   else { 
    set_dest(ptO, STRAIGHT, PROXIMITY); 
   } 
   break; 
  case ptO: set_dest(ptP, WALL, OPENING_RIGHT);  break; 
  case ptP: 
   if(target_user == ptzD) { 
    set_dest(ptAF, STRAIGHT, PROXIMITY); 
   } 
   else if(target_user == ptzE) { 
    set_dest(ptAG, STRAIGHT, PROXIMITY); 
   } 
   else { 
    set_dest(ptQ, STRAIGHT, PROXIMITY); 
   } 
   break; 
  case ptQ: set_dest(ptR, WALL, OPENING_RIGHT);  break; 
  case ptR: set_dest(ptA, STRAIGHT, PROXIMITY);  break; 
 
  case ptAA: set_dest(ptAG, STRAIGHT, PROXIMITY); break; 
  case ptAB: set_dest(ptzA, STRAIGHT, FRONT_WALL); break; 
  case ptAC: set_dest(ptAD, STRAIGHT, PROXIMITY); break; 
  case ptAD: set_dest(ptzB, STRAIGHT, FRONT_WALL); break; 
  case ptAE: set_dest(ptzC, STRAIGHT, FRONT_WALL); break; 
  case ptAF: set_dest(ptzD, STRAIGHT, FRONT_WALL); break; 
  case ptAG: set_dest(ptzE, STRAIGHT, FRONT_WALL); break; 
 
  case ptzA: car_on = 1; break; 
  case ptzB: car_on = 1; break; 
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  case ptzC: car_on = 1; break; 
  case ptzD: car_on = 1; break; 
  case ptzE: car_on = 1; break; 
 
  case LOST: robot_lost();       break; 
 
  default: car_on = 0; break; // Should not be here 
 } // case statement 
} // end choose_path() 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// This function sets the 'vref' and 'turn' values in an ideal situation. 
// Once close enough, change states and head towards next checkpoint 
void set_ideal(void) { 
 
 if(current_dist_from(destX_old, destY_old) < 0.5) { 
  xy_control(&vref,&turn,turn_thres, Xcurrent, Ycurrent, destX, destY, Angle_rad, target_radius, 
target_radius_near); 
  if(( turn < 0.1 ) && ( turn > -0.1)) { 
   // get going in the right direction 
  } 
  else { 
   vref = 0; 
  } 
 } 
 else { 
  switch(goto_method) { 
   case STRAIGHT: 
    // Simply drive straight towards destination. 
    xy_control(&vref,&turn,turn_thres, Xcurrent, Ycurrent, destX, destY, Angle_rad, 
target_radius, target_radius_near); 
    break;  
  
   case WALL: 
    // Follow the right wall, which will presumably lead to the next checkpoint. 
  
    if(almost_there == 0) { 
     turn = (11-IR_RR)*0.1 + (IR_RR - IR_RF)*0.05; 
    } 
    else { 
     turn = (11-IR_RR)*0.1; 
    } 
     
    // Prevent Robot from driving in circles in the middle of the hallway 
    if((correct_direction() == 0) && (turn < 0)) { 
     turn = 0; 
    }     
  
    // Constant forward velocity, slow down when near target (but don't stop) 
    vref = current_dist_from(destX, destY) + 0.5; 
    if(vref > 1.5) { 
     vref = 1.5; 
    } 
  
    // If going straight for 2 seconds, and have not hit any obstacles, update position + angle 
    if((IR_RR <= 12) && (IR_RR >= 10) && (velocity > 1.25)) { 
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     going_straight++; 
     if((turn == 0) && (going_straight > 2000)) { 
      dist_from = current_dist_from(destX_old, destY_old); 
      if(go_direction == NORTH) { 
       Angle = 0;       // Heading North 
       Xcurrent = destX_old;    // X coordinate of previous 
checkpoint 
       Ycurrent = destY_old + dist_from; // All distance travelled was straight 
north 
      } 
      else { 
       Angle = 180;      // Heading South 
       Xcurrent = destX_old;    // X coordinate of previous 
checkpoint 
       Ycurrent = destY_old - dist_from; // All distance travelled was straight 
south 
      } 
     } 
    } 
    else { 
     going_straight = 0; 
    } 
    break; 
     
   default: car_on = 0; break; // Should not be here 
  } // end case 
 } // end if 
} // end set_ideal() 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// This function checks if the robot should advance to the next checkpoint. 
void check_next_state(void) { 
 float vref_temp = 0; 
 float turn_temp = 0; 
 
 if(almost_there == 1) { 
  switch(termination) { 
   case FRONT_WALL: 
    if((IR_F1 <= 8) || (IR_F2 <= 8) || (IR_F3 <= 8) || (IR_F4 <= 8)) { 
     set_next_state(); 
     vref = 0; 
     turn = 0; 
    } 
    else { 
     vref = 1.0; 
     turn = 0; 
    } 
    break; 
   case OPENING_RIGHT: 
    if((IR_RF - IR_RR >= 6) || (opening_counter > 0)) { 
     opening_counter++; 
     vref = 0; 
     turn = 0; 
     if(opening_counter > 2000) { 
      Xcurrent = destX; 
      Ycurrent = destY; 
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      set_next_state(); 
      opening_counter = 0; 
     } 
    } 
    break; 
   case PROXIMITY: 
    if(xy_control(&vref_temp,&turn_temp,turn_thres, Xcurrent, Ycurrent, destX, destY, 
Angle_rad, target_radius, target_radius_near)) { 
     // Do not do this at every proximity termination, just D through J 
     if(( IR_RR > 12 ) && (next_pt < ptD) && (next_pt > ptJ)) { 
      dist_from = (IR_RR - 12)/12; 
      // Only setup for driving north 
      Xcurrent = destX - dist_from; 
      Ycurrent = destY - dist_from/10; 
     } 
     set_next_state(); 
    } 
    break; 
   default: car_on = 0; break; // Should not be here 
  } // end switch(termination) 
 
  // If we drove past the checkpoint, move on. 
  if(destX > 5) {       // Check if going north or south 
   if(Ycurrent > destY + 1.5) { 
    set_next_state(); 
   } 
  } 
  else { 
   if(Ycurrent < destY - 1.5) { 
    set_next_state(); 
   } 
  } 
 } // end if(almost_there) 
 
 // If very far ahead, move on. 
 if(destX > 5) { 
  if(Ycurrent > destY + 5) { 
   set_next_state(); 
  } 
 } 
 else { 
  if(Ycurrent < destY - 5) { 
   set_next_state(); 
  } 
 } 
} // end check_next_state() 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// This function makes all needed changes to advance to the next state. 
void set_next_state(void) { 
 pstate = cstate; 
 cstate = next_pt; 
 almost_there = 0; 
} // end set_next_state() 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
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// This function will use IR sensor information to navigate around obstacles. 
void avoid_obstacles(void) { 
 float vref_temp = 0; 
 float turn_temp = 0; 
 
 switch(obstacle_state) { 
  case NONE: 
   // What happens: 
   //  nothing 
 
   // When to change states: 
   if((vref == 0) || ((termination == FRONT_WALL) && (almost_there == 1))) { 
    // We're expecting a wall, or not moving forwards, so do nothing here. 
   } 
   else { 
    if((IR_F1 <= 12) || (IR_F2 <= 12) || (IR_F3 <= 12) || (IR_F4 <= 12)) { 
     obstacle_state = APPROACHING; 
    } 
   } 
   break; 
 
  case APPROACHING: 
   // What happens: 
   if(vref > 0.5) { 
    vref = 0.5; 
   } 
 
   // When to change states: 
   if((IR_F1 > 12) && (IR_F2 > 12) && (IR_F3 > 12) && (IR_F4 > 12)) { 
    obstacle_state = NONE; 
   } 
   if((IR_F1 <= 6) || (IR_F2 <= 6) || (IR_F3 <= 6) || (IR_F4 <= 6)) { 
    obstacle_state = VERIFY1; 
    obstacle_counter = 0; 
   } 
   break; 
 
  case VERIFY1: 
   // What happens: 
   vref = 0; 
   turn = 0; 
   obstacle_counter++; 
 
   // When to change states: 
   if((IR_F1 > 6) && (IR_F2 > 6) && (IR_F3 > 6) && (IR_F4 > 6)) { 
    obstacle_state = APPROACHING; 
   } 
   else if((IR_F1 > 12) && (IR_F2 > 12) && (IR_F3 > 12) && (IR_F4 > 12)) { 
    obstacle_state = NONE; 
   } 
   else if(obstacle_counter > 2000) { 
    obstacle_state = CLEAR_OBSTACLE; 
    obstacle_counter = 0; 
   } 
   break; 
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  case CLEAR_OBSTACLE: 
   // What happens: 
   vref = 0; 
   turn = 0.5; 
 
   // When to change states: 
   if((IR_F1 > 12) && (IR_F2 > 12) && (IR_F3 > 12) && (IR_F4 > 12) && ((IR_RF <= 15) || 
(IR_RR <= 15))) { 
    obstacle_state = GO_AROUND; 
   } 
   if(obstacle_counter > 13000) { 
    obstacle_state = NONE; 
   } 
   break; 
    
 
  case GO_AROUND: 
   // What happens: 
   vref = 0.5; 
   turn = (IR_RR - IR_RF)*0.1; 
 
   if((IR_RR > 15) && (IR_RF > 15)) { 
    turn = -0.5; 
   } 
   if((IR_RR <= 6) || (IR_RF <= 6)) { 
    turn = 0.5; 
   } 
 
   // When to change states: 
   xy_control(&vref_temp,&turn_temp,0, Xcurrent, Ycurrent, destX, destY, Angle_rad, 0, 0); 
   if(turn_temp > 0.0) {   // was -0.25 
    obstacle_state = NONE; 
   } 
   if((IR_F1 <= 6) || (IR_F2 <= 6) || (IR_F3 <= 6) || (IR_F4 <= 6)) { 
    obstacle_state = VERIFY2; 
    obstacle_counter = 0; 
   } 
   break; 
 
  case VERIFY2: 
   // What happens: 
   vref = 0; 
   turn = 0; 
   obstacle_counter++; 
 
   // When to change states: 
   if((IR_F1 > 6) && (IR_F2 > 6) && (IR_F3 > 6) && (IR_F4 > 6)) { 
    obstacle_state = GO_AROUND; 
   } 
   else if(obstacle_counter > 2000) { 
    obstacle_state = CLEAR_OBSTACLE; 
    obstacle_counter = 0; 
   } 
   break; 
 
  default: obstacle_state = NONE; break; 
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 } // end obstacle state machine 
} // end avoid_obstacles() 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// FIXME: Could not get this concept to work 
// ONCE WE HAVE DECIDED WE ARE LOST, WE MUST FIND A LANDMARK 
void robot_lost(void) { 
 // Code was not worth saving 
} // end robot_lost() 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// Compares a given point with what is known of the map. Returns a 1 if inside walls, else a 0. 
float check_if_legal(float x, float y) { 
 int legal = 1; 
 
 if( x > 11 || x < -3.5 ) { 
  legal = 0; 
 } 
 if( y > 92.5 || y < -4.5 ) { 
  legal = 0; 
 } 
 if( x > 2 && y < -2 ) { 
  legal = 0; 
 } 
 if( x > 8 && ( y < 24 || (y > 29 && y < 84.4))) { 
  legal = 0; 
 } 
 if( x < -1 && y > 2.5 ) { 
  legal = 0; 
 } 
 if( x < 0 && y > 70 ) { 
  legal = 0; 
 } 
 if( x < 2 && ((y > 2.5 && y < 20) || (y > 29 && y < 57.5) || (y > 62.5 && y < 64.5) || (y > 70 && y < 
85.5) || (y > 90.5))) { 
  legal = 0; 
 } 
 return legal; 
} 
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APPENDIX B:  VB INTERFACE CODE 

 

 

The code used for the user interface is included below.  Figure B.1 on page 97 shows the 

final version of the user interface. 

 

Filename:  VB Interface 

Option Explicit  'Force you to declare all your variables 
Dim WorkingOnAMessage As Boolean 
Dim ByteNumber As Integer 
Dim vref As Single 
Dim turn As Single 
Dim Angle As Single 
Dim Xcurrent As Single 
Dim Ycurrent As Single 
Dim vx As Single 
Dim vy As Single 
Dim destX As Single 
Dim destY As Single 
Dim target_user As Single 
Dim Chars_received As String 
Dim temp1_flag As Single 
Dim temp2_flag As Single 
Dim temp3_flag As Single 
Dim temp4_flag As Single 
Dim temp5_flag As Single 
'Dim global_button As Single 
Dim global_x As Single 
Dim global_y As Single 
Dim Begin As Single 
Dim num_features As Single 
Dim num_features_primary As Single 
Dim num_features_secondary As Single 
Dim LR As Single 
Dim LM As Single 
Dim LF As Single 
Dim MF As Single 
Dim RF As Single 
Dim RM As Single 
Dim RR As Single 
Dim Serial_time As Single 
Dim Serial_start As Single 
Dim Lost As Single 
Dim goto_method As Single 
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Dim termination As Single 
Dim obstacle_state As Single 
 
Private Sub Map_options_Click(Index As Integer) 
    Dim i As Single 
     
    If (Map_options(3).Value = 0) Then 
        For i = 0 To num_features_primary Step 1 
            pt_lbl(i).Visible = False 
        Next 
    End If 
     
    If (Map_options(4).Value = 0) Then 
        For i = num_features_primary To num_features_secondary Step 1 
            pt_lbl(i).Visible = False 
        Next 
    End If 
     
    If (Map_options(5).Value = 0) Then 
        For i = num_features_secondary To num_features Step 1 
            pt_lbl(i).Visible = False 
        Next 
    End If 
 
     
    If (Map_options(0).Value = 1) Then 
        Map_options(3).Enabled = True 
        Map_options(4).Enabled = True 
        Map_options(5).Enabled = True 
        For i = num_features + 1 To pt_lbl.Count - 1 Step 1 
            pt_lbl(i).Visible = False 
        Next 
    End If 
     
    If (Map_options(3).Value = 1) Then 
        For i = 0 To num_features_primary - 1 Step 1 
            pt_lbl(i).Visible = True 
        Next 
    End If 
    If (Map_options(4).Value = 1) Then 
        For i = num_features_primary To num_features_secondary - 1 Step 1 
            pt_lbl(i).Visible = True 
        Next 
    End If 
    If (Map_options(5).Value = 1) Then 
        For i = num_features_secondary To num_features Step 1 
            pt_lbl(i).Visible = True 
        Next 
    End If 
     
    If (Map_options(0).Value = 0) Then 
        Map_options(3).Enabled = False 
        Map_options(4).Enabled = False 
        Map_options(5).Enabled = False 
        For i = 0 To num_features Step 1 
            pt_lbl(i).Visible = False 
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        Next 
    End If 
     
    If (Map_options(2).Value = 0) Then 
        Map.MousePointer = 12 
    End If 
     
    If (Map_options(2).Value = 1) Then 
        Map.MousePointer = 2 
    End If 
     
End Sub 
 
Private Sub RETURN_Click() 
    SerialCom1.Output = Chr(253) & "return " & Chr(255) 
End Sub 
 
Private Sub CountdownTimer_Timer() 
    If Begin = 1 Then 
        If Val(Countdown) <= 1 Then 
            On_button.Value = True 
            Countdown.Text = 0 
        Else 
            Countdown.Text = Val(Countdown) - 1 
        End If 
    End If 
End Sub 
 
Private Sub Driver_Click() 
    SerialCom1.Output = Chr(253) & "Man1" & Chr(255) 
    Label12.Enabled = True 
    Vscrollval.Enabled = True 
    Label11.Enabled = True 
    HScrollVal.Enabled = True 
    VScroll1.Enabled = True 
    HScroll1.Enabled = True 
    Label24.Enabled = False 
    GotoX_lbl.Enabled = False 
    Label20.Enabled = False 
    GotoY_lbl.Enabled = False 
    GotoX_lbl.Caption = "X" 
    GotoY_lbl.Caption = "X" 
    VScroll1.Value = 0 
    HScroll1.Value = 0 
End Sub 
 
Private Sub GotoXY_Click() 
    SerialCom1.Output = Chr(253) & "Man2" & Chr(255) 
    Label12.Enabled = False 
    Vscrollval.Enabled = False 
    Label11.Enabled = False 
    HScrollVal.Enabled = False 
    VScroll1.Enabled = False 
    HScroll1.Enabled = False 
    Label24.Enabled = True 
    GotoX_lbl.Enabled = True 
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    Label20.Enabled = True 
    GotoY_lbl.Enabled = True 
    VScroll1.Value = 0 
    HScroll1.Value = 0 
End Sub 
 
Private Sub HScroll1_Change() 
    HScrollVal.Caption = -HScroll1.Value / 100 
    SerialCom1.Output = Chr(253) & "turn " & HScrollVal.Caption & Chr(255) 
End Sub 
 
Private Sub Driver_KeyDown(keycode As Integer, shift As Integer) 
    If keycode = vbKeyA Then 
        HScroll1.Value = -VScroll1.LargeChange * 1.5 
    ElseIf keycode = vbKeyD Then 
        HScroll1.Value = VScroll1.LargeChange * 1.5 
    ElseIf keycode = vbKeyS Then 
        VScroll1.Value = VScroll1.LargeChange * 1.5 
    ElseIf keycode = vbKeyW Then 
        VScroll1.Value = -VScroll1.LargeChange * 1.5 
    End If 
End Sub 
 
Private Sub Driver_KeyUp(keycode As Integer, shift As Integer) 
    If keycode = vbKeyA Then 
        HScroll1.Value = 0 
    ElseIf keycode = vbKeyD Then 
        HScroll1.Value = 0 
    ElseIf keycode = vbKeyS Then 
        VScroll1.Value = 0 
    ElseIf keycode = vbKeyW Then 
        VScroll1.Value = 0 
    End If 
End Sub 
 
Private Sub Map_MouseDown(button As Integer, shift As Integer, X As Single, Y As Single) 
    If (Map_options(2).Value = 1) Then 
        X = Round(X, 1) 
        Y = Round(Y, 1) 
        If button = vbRightButton Then 
            X_lbl.Caption = CStr(X) 
            Y_lbl.Caption = CStr(Y) 
            'SerialCom1.Output = Chr(253) & "X " & X & Chr(255) 
            'SerialCom1.Output = Chr(253) & "Y " & Y & Chr(255) 
            SerialCom1.Output = Chr(253) & "XY " & X & " " & Y & Chr(255) 
            global_x = X 
            global_y = Y 
        ElseIf button = vbLeftButton Then 
            If GotoXY.Value = True Then 
                GotoX_lbl.Caption = CStr(X) 
                GotoY_lbl.Caption = CStr(Y) 
                'SerialCom1.Output = Chr(253) & "destX " & X & Chr(255) 
                'SerialCom1.Output = Chr(253) & "destY " & Y & Chr(255) 
                SerialCom1.Output = Chr(253) & "destXY " & X & " " & Y & Chr(255) 
            End If 
        End If 
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    End If 
End Sub 
 
Private Sub Map_MouseUp(button As Integer, shift As Integer, X As Single, Y As Single) 
    Dim temp1 As Variant 
    Dim temp2 As Variant 
    Dim temp3 As Variant 
    If (Map_options(2).Value = 1) Then 
        If button = vbRightButton Then 
            X = Round(X, 1) 
            Y = Round(Y, 1) 
            temp1 = (X - global_x) 
            temp2 = (Y - global_y) 
            If temp1 > 0 Then 
                If temp2 > temp1 Then 
                    temp3 = 0 
                ElseIf temp2 < -temp1 Then 
                    temp3 = 180 
                Else 
                    temp3 = 90 
                End If 
            Else 
                If temp2 > -temp1 Then 
                    temp3 = 0 
                ElseIf temp2 < temp1 Then 
                    temp3 = 180 
                Else 
                    temp3 = -90 
                End If 
            End If 
 
            'Angle = temp3 
            Angle_lbl.Caption = CStr(temp3) 
            SerialCom1.Output = Chr(253) & "Angle " & temp3 & Chr(255) 
        End If 
    End If 
End Sub 
 
Private Sub Off_button_Click() 
    SerialCom1.Output = Chr(253) & "Off" & Chr(255) 
    VScroll1.Value = 0 
    HScroll1.Value = 0 
    Begin = 0 
End Sub 
 
Private Sub On_button_Click() 
    SerialCom1.Output = Chr(253) & "On" & Chr(255) 
    Begin = 0 
End Sub 
 
Private Sub ManEnable_Click() 
    ManControlFrame.Enabled = True 
    Wait.Enabled = True 
    Driver.Enabled = True 
    GotoXY.Enabled = True 
    SerialCom1.Output = Chr(253) & "Man1" & Chr(255) 
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End Sub 
 
Private Sub ManDisable_Click() 
    ManControlFrame.Enabled = False 
    Wait.Enabled = False 
    Driver.Enabled = False 
    GotoXY.Enabled = False 
    SerialCom1.Output = Chr(253) & "Man0" & Chr(255) 
    Wait.Value = True 
    Off_button.Value = True 
End Sub 
 
Private Sub RedrawTimer_Timer() 
    If Map_options(1).Value = 1 Then 
        Map.Cls 
    End If 
    Map.Circle (Val(X_lbl.Caption), Val(Y_lbl.Caption)), 0.5 
    Map.Line (Xcurrent, Ycurrent)-(Xcurrent + vx, Ycurrent + vy) 
    If destX_lbl.Caption = "X" Then 
        'Do nothing 
    Else 
        Map.DrawStyle = vbDot 
        Map.Line (Val(destX_lbl.Caption), Val(destY_lbl.Caption))-(Val(X_lbl.Caption), 
Val(Y_lbl.Caption)), RGB(255, 0, 0) 
        Map.DrawStyle = vbSolid 
        Map.Line (Val(destX_lbl.Caption) - 1, Val(destY_lbl.Caption))-(Val(destX_lbl.Caption) + 1, 
Val(destY_lbl.Caption)), RGB(255, 0, 0) 
        Map.Line (Val(destX_lbl.Caption), Val(destY_lbl.Caption) - 1)-(Val(destX_lbl.Caption), 
Val(destY_lbl.Caption) + 1), RGB(255, 0, 0) 
    End If 
End Sub 
 
Private Sub START_Click() 
    If Val(Countdown) = 0 Then 
        On_button.Value = True 
    Else 
        Begin = 1 
    End If 
     
    'Select_User.Enabled = False 
    SerialCom1.Output = Chr(253) & "target " & Select_User.ItemData(Select_User.ListIndex) & Chr(255) 
    'temp1.Text = Select_User.ItemData(Select_User.ListIndex) 
    'temp1.Text = Select_User.ListIndex 
     
End Sub 
 
Private Sub STOP_Click() 
    Off_button.Value = True 
    Begin = 0 
End Sub 
 
Private Sub Form_Load() 
    Dim featureX As Variant 
    Dim featureY As Variant 
    Dim alphabet As Variant 
    Dim i As Single 
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    SerialCom1.PortOpen = True 'Enable the serial port when form is loaded 
    Map.AutoRedraw = True 
         
    Map.Line (-3.5, -4.5)-(2, -4.5) 
    Map.Line (2, -4.5)-(2, -2) 
    Map.Line (2, -2)-(8, -2) 
    Map.Line (8, -2)-(8, 18)            '(8,20) 
    'Map.Line (8,18 )-(8,23 ) 
    Map.Line (8, 23)-(8, 24) 
    Map.Line (8, 24)-(11, 24) 
    Map.Line (11, 24)-(11, 26)       '(11,24.05) 
    'Map.Line (11,24.05 )-(11,28.95 ) 
    Map.Line (11, 28.95)-(11, 29) 
    Map.Line (11, 29)-(8, 29) 
    Map.Line (8, 29)-(8, 30) 
    'Map.Line (8,30 )-(8,33 ) 
    Map.Line (8, 33)-(8, 40.5) 
    'Map.Line (8,40.5 )-(8,43.5 ) 
    Map.Line (8, 43.5)-(8, 56) 
    'Map.Line (8,56 )-(8,59 ) 
    Map.Line (8, 59)-(8, 81) 
    Map.Line (8, 81)-(8, 84) 
    Map.Line (8, 84)-(8, 84.5) 
    Map.Line (8, 84.5)-(10, 84.5) 
    Map.Line (10, 84.5)-(10, 85.5) 
     
    Map.Line (-3.5, -4.5)-(-3.5, 2.5) 
    Map.Line (-3.5, 2.5)-(2, 2.5) 
    Map.Line (2, 2.5)-(2, 20) 
    Map.Line (2, 20)-(-1, 20) 
    Map.Line (-1, 20)-(-1, 20.05) 
    'Map.Line (-1,20.05 )-(-1,23 ) 
    Map.Line (-1, 23)-(-1, 26)          '(-1,24) 
    'Map.Line (-1,24 )-(-1,28.95 ) 
    Map.Line (-1, 28.95)-(-1, 29) 
    Map.Line (-1, 29)-(2, 29) 
    Map.Line (2, 29)-(2, 57.5) 
    Map.Line (2, 57.5)-(-1, 57.5) 
    Map.Line (-1, 57.5)-(-1, 57.55) 
    'Map.Line (-1,57.55 )-(-1,60.5 ) 
    Map.Line (-1, 60.5)-(-1, 62.5) 
    Map.Line (-1, 62.5)-(2, 62.5) 
    Map.Line (2, 62.5)-(2, 64.5) 
    Map.Line (2, 64.5)-(-1, 64.5) 
    Map.Line (-1, 64.5)-(-1, 64.55) 
    'Map.Line (-1,64.55 )-(-1,67.5 ) 
    Map.Line (-1, 67.5)-(-1, 70) 
    Map.Line (-1, 70)-(2, 70) 
    Map.Line (2, 70)-(2, 78) 
    Map.Line (2, 78)-(2, 81) 
    Map.Line (2, 81)-(2, 85.5) 
    Map.Line (2, 85.5)-(0, 85.5) 
    Map.Line (0, 85.5)-(0, 90.5) 
    Map.Line (0, 90.5)-(2, 90.5) 
    Map.Line (2, 90.5)-(2, 92.5) 
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    Map.Line (2, 92.5)-(10, 92.5) 
     
    alphabet = Array("A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", 
"R", "AA", "AB", "AC", "AD", "AE", "AF", "AG", "zA", "zB", "zC", "zD", "zE") 
    featureX = Array(0, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3, 3, 3, 3, 3, 7, 7, 7, 3, 3, 3, 3, 10, 0, 0, 0, 0) 
    featureY = Array(0, 0, 18, 24, 30, 33.5, 40.5, 44, 56, 59.5, 81, 81, 70, 62.5, 57.5, 29, 20, 2.5, 21.5, 26.5, 
66, 66, 59.5, 26.5, 21.5, 26.5, 66, 59.5, 26.5, 21.5) 
    num_features = UBound(featureX) 
    num_features_primary = 18 
    num_features_secondary = 25 
     
    For i = 0 To num_features Step 1 
        pt_lbl(i).Left = featureX(i) - 0.5 
        pt_lbl(i).Top = featureY(i) + 1 
        pt_lbl(i).Visible = True 
        'Select_User.AddItem (alphabet(i)) 
        'Select_User.ItemData(i) = i 
    Next 
    For i = num_features + 1 To pt_lbl.Count - 1 Step 1 
        pt_lbl(i).Visible = False 
    Next 
     
    Select_User.AddItem ("zA") 
    Select_User.ItemData(0) = 25 
    Select_User.AddItem ("zB") 
    Select_User.ItemData(1) = 26 
    Select_User.AddItem ("zC") 
    Select_User.ItemData(2) = 27 
    Select_User.AddItem ("zD") 
    Select_User.ItemData(3) = 28 
    Select_User.AddItem ("zE") 
    Select_User.ItemData(4) = 29 
     
         
    temp1_flag = 0 
    temp2_flag = 0 
    temp3_flag = 0 
    temp4_flag = 0 
    temp5_flag = 0 
    Off_button.Value = True 
    ManDisable.Value = True 
    Wait.Value = True 
    Begin = 0 
     
    Map.AutoRedraw = False 
End Sub 
 
 
 
Private Sub SerialCom1_OnComm() 
    Dim charBuff As String 
    Dim Reading As Integer 
    Dim FoundStartFlag As Boolean 
    Dim splitstrings As Variant 
    Dim i As Single 
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    Select Case SerialCom1.CommEvent 
        Case 2  ' Event messages... only care about event 2 (receive) 
            charBuff = SerialCom1.Input 
            Do While (Len(charBuff) > 0) 
                If WorkingOnAMessage = False Then  ' Waiting for start signal... 253 in a byte 
                    FoundStartFlag = False 
                    Do While ((Len(charBuff) > 0) And (FoundStartFlag = False)) 
                        If (Asc(Mid(charBuff, 1, 1)) = 253) Then 
                            WorkingOnAMessage = True 
                            FoundStartFlag = True 
                            Chars_received = "" 
                        End If 
                        ByteNumber = 0 
                        charBuff = Mid(charBuff, 2, Len(charBuff) - 1) ' Truncate buffer by one 
                    Loop 
                End If 
             
                Do While (Len(charBuff) > 0) ' Only enter here if have good data left 
                    ByteNumber = ByteNumber + 1  'Increment our byte number 
                    Reading = Asc(Mid(charBuff, 1, 1))  'Get integer value of current character 
                    charBuff = Mid(charBuff, 2, Len(charBuff) - 1) ' Truncate buffer by one 
                    If Reading = 255 Then 'The stop byte 
                        'DoAnother = charBuff    Commented out but left as a reminder Note above 
                        WorkingOnAMessage = False 
                        ByteNumber = 0 
                        charBuff = "" 
                         
                        ''''''''''''''''''''' DO STUFF WITH NEW DATA ''''''''''''''''''' 
                         
                        splitstrings = Split(Chars_received, " ", -1, 1) 
                        If UBound(splitstrings) = 5 Then 
                         
                            If CStr(Val(splitstrings(0))) = "0" Then 
                                If (On_button.Value) Then 
                                    SerialCom1.Output = Chr(253) & "MAIN 1 " & 
Select_User.ItemData(Select_User.ListIndex) & Chr(255) 
                                Else 
                                    SerialCom1.Output = Chr(253) & "MAIN 0 " & 
Select_User.ItemData(Select_User.ListIndex) & Chr(255) 
                                End If 
                                                                 
                            End If 
                                                         
                            If CStr(Val(splitstrings(0))) = "1" Then 
                                vref = Val(splitstrings(1)) 
                                turn = Val(splitstrings(2)) 
                                Angle = Val(splitstrings(3)) 
                                Xcurrent = Val(splitstrings(4)) 
                                Ycurrent = Val(splitstrings(5)) 
                                vref_lbl.Caption = CStr(vref) 
                                turn_lbl.Caption = CStr(turn) 
                                Angle_lbl.Caption = CStr(Angle) 
                                X_lbl.Caption = CStr(Xcurrent) 
                                Y_lbl.Caption = CStr(Ycurrent) 
                                 
                            End If 
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                            If CStr(Val(splitstrings(0))) = "2" Then 
                                vx = Val(splitstrings(1)) 
                                vy = Val(splitstrings(2)) 
                                destX = Val(splitstrings(3)) 
                                destY = Val(splitstrings(4)) 
                                target_user = Val(splitstrings(5)) 
                                vx_lbl.Caption = CStr(vx) 
                                vy_lbl.Caption = CStr(vy) 
                                destX_lbl.Caption = CStr(destX) 
                                destY_lbl.Caption = CStr(destY) 
                                target_user_lbl.Caption = CStr(target_user) 
                                                                                                      
                            End If 
                             
                            If CStr(Val(splitstrings(0))) = "3" Then 
                                LR = Val(splitstrings(1)) 
                                LM = Val(splitstrings(2)) 
                                LF = Val(splitstrings(3)) 
                                MF = Val(splitstrings(4)) 
                                RF = Val(splitstrings(5)) 
                                LR_lbl.Caption = CStr(LR) 
                                LM_lbl.Caption = CStr(LM) 
                                LF_lbl.Caption = CStr(LF) 
                                MF_lbl.Caption = CStr(MF) 
                                RF_lbl.Caption = CStr(RF) 
                                 
                            End If 
                         
                             
                            If CStr(Val(splitstrings(0))) = "4" Then 
                                RM = Val(splitstrings(1)) 
                                RR = Val(splitstrings(2)) 
                                goto_method = Val(splitstrings(3)) 
                                termination = Val(splitstrings(4)) 
                                obstacle_state = Val(splitstrings(5)) 
                                RM_lbl.Caption = CStr(RM) 
                                RR_lbl.Caption = CStr(RR) 
                                'g_m_lbl.Caption = CStr(goto_method) 
                                'term_lbl.Caption = CStr(termination) 
                                'obstacle_lbl.Caption = CStr(obstacle_state) 
                                 
                                For i = 0 To 1 Step 1 
                                   method_opt(i).BackColor = &H8080FF 
                                   method_opt(i).FontBold = False 
                                Next 
                                For i = 0 To 3 Step 1 
                                   terminate_opt(i).BackColor = &H8080FF 
                                   terminate_opt(i).FontBold = False 
                                Next 
                                For i = 0 To 5 Step 1 
                                   obstacle_opt(i).BackColor = &H8080FF 
                                   obstacle_opt(i).FontBold = False 
                                Next 
                                 
                                method_opt(goto_method).BackColor = &H80FF80 
                                terminate_opt(termination).BackColor = &H80FF80 
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                                obstacle_opt(obstacle_state).BackColor = &H80FF80 
                                 
                                method_opt(goto_method).FontBold = True 
                                terminate_opt(termination).FontBold = True 
                                obstacle_opt(obstacle_state).FontBold = True 
                                 
                                 
                            End If 
                         
                            'Map.Cls     'UNCOMMENT THIS LINE TO CLEAR SCREEN 
                            'Map.Circle (Xcurrent, Ycurrent), 0.5 
                            'Map.Line (Xcurrent, Ycurrent)-(Xcurrent + 4 * vx, Ycurrent + 4 * vy) 
                             
                        '''''''''''''''''' END OF DO STUFF WITH NEW DATA ''''''''''''''' 
                        End If 
                         
                    Else 
                        Chars_received = Chars_received & Chr(Reading) 
                    End If 'Ends Check for stop byte 
                Loop  'Ends looping through good data in charBuffer... 
                 
            Loop 
    End Select 
 
End Sub 
 
Private Sub temp1_Change() 
    temp1_flag = 1 
    temp1.BackColor = &HC0FFFF 
End Sub 
 
Private Sub temp2_Change() 
    temp2_flag = 1 
    temp2.BackColor = &HC0FFFF 
End Sub 
 
Private Sub temp3_Change() 
    temp3_flag = 1 
    temp3.BackColor = &HC0FFFF 
End Sub 
 
Private Sub temp4_Change() 
    temp4_flag = 1 
    temp4.BackColor = &HC0FFFF 
End Sub 
 
Private Sub temp5_Change() 
    temp5_flag = 1 
    temp5.BackColor = &HC0FFFF 
End Sub 
 
 
Private Sub Update_Button_Click() 
    If temp1_flag = 1 Then 
        SerialCom1.Output = Chr(253) & "t1 " & temp1.Text & Chr(255) 
        temp1.BackColor = &H80000005 
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        temp1_flag = 0 
    End If 
    If temp2_flag = 1 Then 
        SerialCom1.Output = Chr(253) & "t2 " & temp2.Text & Chr(255) 
        temp2.BackColor = &H80000005 
        temp2_flag = 0 
    End If 
    If temp3_flag = 1 Then 
        SerialCom1.Output = Chr(253) & "t3 " & temp3.Text & Chr(255) 
        temp3.BackColor = &H80000005 
        temp3_flag = 0 
    End If 
    If temp4_flag = 1 Then 
        SerialCom1.Output = Chr(253) & "t4 " & temp4.Text & Chr(255) 
        temp4.BackColor = &H80000005 
        temp4_flag = 0 
    End If 
    If temp5_flag = 1 Then 
        SerialCom1.Output = Chr(253) & "t5 " & temp5.Text & Chr(255) 
        temp5.BackColor = &H80000005 
        temp5_flag = 0 
    End If 
     
     
End Sub 
 
Private Sub VScroll1_Change() 
    Vscrollval.Caption = -VScroll1.Value / 100 
    SerialCom1.Output = Chr(253) & "vref " & Vscrollval.Caption & Chr(255) 
End Sub 
 
Private Sub Wait_Click() 
    Label12.Enabled = False 
    Vscrollval.Enabled = False 
    Label11.Enabled = False 
    HScrollVal.Enabled = False 
    VScroll1.Enabled = False 
    HScroll1.Enabled = False 
    Label24.Enabled = False 
    GotoX_lbl.Enabled = False 
    Label20.Enabled = False 
    GotoY_lbl.Enabled = False 
    GotoX_lbl.Caption = "X" 
    GotoY_lbl.Caption = "X" 
    VScroll1.Value = 0 
    HScroll1.Value = 0 
End Sub 
 

 96



 

Figure B.1:  Final version of the user interface. 
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