
Round-based Synchrony Weakened by Message

Adversaries vs Asynchrony Enriched with Failure

Detectors

Michel Raynal, Julien Stainer

To cite this version:

Michel Raynal, Julien Stainer. Round-based Synchrony Weakened by Message Adversaries
vs Asynchrony Enriched with Failure Detectors. [Research Report] PI-2002, 2013. <hal-
00787978v2>

HAL Id: hal-00787978

https://hal.inria.fr/hal-00787978v2

Submitted on 22 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Round-based Synchrony Weakened by Message Adversaries

vs

Asynchrony Enriched with Failure Detectors

Michel Raynal* ** Julien Stainer**

Abstract: A message adversary is a daemon that suppresses messages in round-based message-passing synchronous systems in

which no process crashes. A property imposed on a message adversary defines a subset of messages that cannot be eliminated by the

adversary. It has recently been shown that when a message adversary is constrained by a property denoted TOUR (for tournament),

the corresponding synchronous system and the asynchronous crash-prone read/write system have the same computability power for

task solvability.

This paper introduces new message adversary properties (denoted SOURCE and QUORUM), and shows that the synchronous

round-based systems whose adversaries are constrained by these properties are characterizations of classical asynchronous crash-

prone systems (1) whose communication is through atomic read/write registers or point-to-point message-passing, and (2) enriched

with failure detectors such as Ω and Σ. Hence these properties characterize maximal adversaries, in the sense that they define

strongest message adversaries equating classical asynchronous crash-prone systems. They consequently provide strong relations

linking round-based synchrony weakened by message adversaries with asynchrony enriched with failure detectors. This not only

enriches our understanding of the synchrony/asynchrony duality, but also allows for the establishment of a meaningful hierarchy of

property-constrained message adversaries.

Key-words: Asynchronous system, Distributed computability, Failure detector, Fair link, Message adversary, Message-passing

model, Model equivalence, Ω, Process crash, Quorum, Read/write model, Round, Σ, Simulation, Source, Synchronous system, Task,

Tournament, Wait-freedom

Systèmes synchrones affaiblis par des suppresseurs de messages

vs

systèmes asynchrones renforcés par des détecteurs de fautes

Résumé : Un suppresseur de messages est une entité qui retire des messages dans un système synchrone à passage de messages

dans lequel aucune défaillance ne survient. Les propriétés contraignant les suppresseurs de messages définissent les sous-ensembles

de messages pouvant être retirés. Il a été récemment prouvé qu’un système synchrone dans lequel le suppresseur de messages est

contraint par une propriété notée TOUR (pour tournoi) a la même puissance de calcul vis-à-vis des tâches qu’un système asynchrone

sujet à des défaillances dans lequel les processus partagent de la mémoire.

Ce rapport introduit de nouvelles propriétés pour contraindre les suppresseurs de messages (notées SOURCE et QUORUM), et

montre que les systèmes asynchrones dans lesquels les suppresseurs de messages suivent ces propriétés sont des caractérisations des

systèmes asynchrones (1) communicant par mémoire partagée ou par passage de message, (2) enrichis avec des detecteurs de fautes

tels que Σ ou Ω. Ces propriétés enrichissent notre compréhension de la dualité synchrone/asynchrone mais permettent également

l’établissement d’une hiérarchie au sein des propriétés caractérisant les suppresseurs de messages.

Mots clés : systèmes asynchrones, calculabilité distribuée, détecteur de fautes, lien équitable, suppresseur de messages, modèle

à passage de messages, équivalence de modèles, Ω, défaillances, quorum, mémoire partagée, ronde, Σ, simulation, source, système

synchrone, tâche, tournoi, sans attente
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2 M. Raynal & J. Stainer

1 Introduction

Message adversaries for synchronous message-passing systems In a round-based message-passing synchronous system, pro-

cesses communicate by exchanging messages at every round, and the synchrony assumption provided by the model guarantees that

the messages sent at the beginning a round are received by their destination processes by the end of the corresponding round. Assum-

ing that no process is faulty, the notion of a message adversary has been introduced in [21] (where it is called mobile transmission

failures) to model messages losses and study their impact on the computability power of synchronous systems [21, 22].

Interestingly, the notion of constraining message deliveries has also been investigated in asynchronous systems, under distinct

names, and in different contexts. As an example, asynchronous message patterns which allow failure detectors to be implemented

despite asynchrony have been investigated in [9, 15]. The view of failure detectors as being schedulers which encapsulate fairness

assumptions can also be related to this approach [6, 16]. Recently, assumptions on message deliveries and message exchange patterns

have been used to define new asynchronous computation models and study their computability power [5, 12, 17, 23]. The general

idea, which underlies these works, consists in capturing the “weakest pattern of information exchange” that allows a family of

problems to be solved despite failures.

Notation The notation SMPn[adv : AD] is used to denote a round-based synchronous system made up of n reliable sequential

processes whose communications are under the control of the adversary AD. While, in every round, each process sends a message

to each other process, the power of the adversary AD consists in suppressing some of these messages (which are consequently never

received).

According to their power, several classes of adversaries can be defined. SMPn[adv : ∅] denotes a synchronous system in

which the adversary has no power (it can suppress no message), while SMPn[adv : ∞] denotes the synchronous system in

which the adversary can suppress all messages. It is easy to see that, from a message adversary and computability point of view,

SMPn[adv : ∅] is the most powerful crash-free synchronous system, while SMPn[adv : ∞] is the weakest. More generally, the

weaker the message adversary AD, the more powerful the system.

Asynchrony from synchrony Informally, a task is a one-shot distributed computing problem where each process has a private

input, and each process has to compute a local output such that each output may depend on the whole vector of input values (this

vector – initially unknown to each process – contains the input values of all the processes). The most famous and studied task is the

consensus task.

Afek and Gafni addressed recently task solvability in synchronous message-passing systems weakened by message adver-

saries [1]. Let ARWn,n−1[fd : ∅] denote the asynchronous read/write model where up to (n − 1) processes may crash (“fd : ∅”

stands for “no failure detector”, see below; this is the classical read/write wait-free model [10]). Afek and Gafni’s main results are

the following ones.

• Their first result concerns the adversary TOUR (for tournament) whose behavior is the following one. For each pair of

processes pi and pj , and in each synchronous round, TOUR is allowed to suppress either the message sent by pi to pj
or the message sent by pj to pi, but not both. The important result attached to TOUR is that SMPn[adv : TOUR] and

ARWn,n−1[fd : ∅] have the same computability power for read/write wait-free solvable tasks.

• In addition to TOUR, two more adversaries, denoted TP and PAIRS, are described and it is shown that the three adversary-

based synchronous models SMPn[adv : TOUR], SMPn[adv : TP], and SMPn[adv : PAIRS] are equivalent for task solv-

ability. Moreover, SMPn[adv : PAIRS] is used to show that, from a topology point of view, the protocol complex of PAIRS

is a subdivided complex. This means that the message adversary PAIRS (and consequently also TOUR and TP) captures, in a

very simple way, Herlihy and Shavit’s condition equating the read/write wait-free model with a complex subdivision [11].

Failure detectors for asynchronous crash-prone systems Informally, a failure detector is a device that provides each process

pi with information on failures [3]. According to the quality and the type of information they provide, several classes of failure

detectors can be defined (see [19] for an introductory survey).

The failure detectors denoted Ω and Σ are among the most important failure detectors. This is due to the following reasons: (1) Ω
is the weakest failure detector that allows consensus to be solved in ARWn,n−1[fd : ∅] [4, 14]; (2) Σ is the weakest failure detector

that allows an atomic register to be implemented on top of AMPn,n−1[fd : ∅] [7], where AMPn,n−1[fd : ∅] denotes the classical

asynchronous message-passing system where up to (n−1) processes may crash and every message is eventually received. “Weakest”

means that any failure detector that allows to solve consensus (resp., implement a register) provides at least as much information on

failures as the one provided by Ω (resp., Σ). Finally, the pair (Σ,Ω) is the weakest failure detector that allows consensus to be solved

in AMPn,n−1[fd : ∅] [4, 7].

Let FD denote a failure detector. ARWn,n−1[fd : FD] denotes the asynchronous read/write model where up to (n−1) processes

may crash, enriched with FD. Similarly, AMPn,n−1[fd : FD] denotes AMPn,n−1[fd : ∅] enriched with FD.

Collection des Publications Internes de l’Irisa c©IRISA



Message Adversaries vs Failure Detectors 3

Content of the paper Following Afek and Gafni’s seminal approach, the aim of this paper is to better understand and extend the

message adversary approach, and capture its relations with asynchrony restricted by failure detectors. Considering the round-based

synchronous message-passing model with reliable processes (SMPn[adv : ∅]) as core model, it has the following contributions,

which concern (1) the crash-prone asynchronous read/write model, and (2) the crash-prone message-passing model, both enriched

with failure detectors. Its contributions are described in the hierarchy depicted in Figure 1. A ≃M B means that the computing

model A can be simulated in the model B and vice-versa. A ≃T B means that any task that can be solved in the model A, can

be solved in the model B and vice-versa. An arrow from A to B means that the model A is stronger than the model B, but not

vice-versa. These arrows follow from known results (e.g., ARWn,n−1[fd : Ω] is stronger than both ARWn,n−1[fd : ∅] and

AMPn,n−1[fd : Ω]). Let us observe that, as they are failure-free, the system models SMPn[adv : ∅], ARWn,0[fd : ∅], and

AMPn,0[fd : ∅], are computationally equivalent (first line of the figure).

[1]

Section 5

SMPn[adv : ∅] ≃M AMPn,0[fd : ∅] ≃M ARWn,0[fd : ∅]

SMPn[adv : ∞] ≃T AMPn,n−1[fd : ∅]

Section 6

Section 3

Section 2

Section 4

SMPn[adv : SOURCE] ≃T AMPn,n−1[fd : Ω]

SMPn[adv : QUORUM] ≃T AMPn,n−1[fd : Σ]

SMPn[adv : SOURCE, QUORUM] ≃T AMPn,n−1[fd : Σ, Ω]

SMPn[adv : SOURCE, TOUR] ≃T ARWn,n−1[fd : Ω]

SMPn[adv : TOUR] ≃T ARWn,n−1[fd : ∅]

Figure 1: A message adversary hierarchy based on task equivalence and failure detectors

• Starting from the fact that the property TOUR (for tournament) captures the constraint on message delivery such that SMPn[adv :
TOUR]≃TARWn,n−1[fd : ∅], Section 3 focuses on the properties of a message adversary which allow to enrichSMPn[adv :
TOUR] to obtain ARWn,n−1[fd : Ω]. To that end (1) it presents a new message delivery property, denoted SOURCE,

and (2) shows that SMPn[adv : SOURCE, TOUR] and ARWn,n−1[fd : Ω] are equivalent for task solvability. It fol-

lows that SOURCE is a minimal requirement that has to be added to SMPn[adv : TOUR] in order to proceed from

SMPn[adv : TOUR] to ARWn,n−1[fd : Ω].

• Then Section 4 shows that, by weakening SMPn[adv : SOURCE, TOUR] into SMPn[adv : SOURCE], the result-

ing synchronous message-passing system is such that SMPn[adv : SOURCE] ≃T AMPn,n−1[fd : Ω]. It follows that

SOURCE captures the weakest property on message delivery that an adversary AD has to satisfy so that any task solvable in

AMPn,n−1[fd : Ω] can be solved in SMPn[adv : AD].1 Said differently, when considering tasks solvability in crash-prone

asynchronous systems enriched with Ω, what allows going from “message-passing” communication to “read/write” commu-

nication is characterized by the property TOUR from a message adversary point of view in a synchronous system (vertical

arrow on the right of Figure 1).

• Then Section 5 focuses on a new message delivery property denoted QUORUM, and shows that a message adversary con-

strained by this property captures in SMPn[adv : ∅] the same computability power (from a task point of view) as the

one added by the failure detector Σ to AMPn,n−1[fd : ∅]. To that end, it shows that SMPn[adv : QUORUM] ≃T

AMPn,n−1[fd : Σ].

• Finally, as a consequence of the previous results, Section 6 shows that the properties SOURCE + QUORUM characterize the

pair of failure detectors Σ + Ω, i.e., SMPn[adv : SOURCE, QUORUM] ≃T AMPn,n−1[fd : Σ, Ω].

As just indicated, the paper provides message adversary-based characterizations of failure detectors for both read/write and

message-passing crash-prone asynchronous systems. The aim of these results is to enrich our understanding of both message ad-

versaries used to weaken communication in synchronous systems and failure detectors used to enrich asynchronous crash-prone

1As shown in [1] with the properties TOUR, TP, and PAIRS, several properties can be equivalent (i.e., each one can be implemented in SMPn[adv : ∅] under

the control of an adversary constrained by any other one). Hence, if a property P is the “weakest”, so are the properties equivalent to P .
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4 M. Raynal & J. Stainer

systems. They complement the results of [1] and exhibit strong intimate relations linking synchrony, message losses, and round-

based model, on the one side, with asynchrony, process crashes, and failure detectors, on the other side. Interestingly, this seems to

show that SMPn[adv : ∅] (the base reliable synchronous round-based model) and the notion of a message adversary are central in

the quest for a Grand Unified model of distributed computing.

Roadmap The paper is composed of 7 sections. Section 2 presents base models, message adversaries, and failure detectors.

Section 3 introduces the property SOURCE on message deliveries, and show that it characterizes the failure detector Ω in read/write

systems. Section 4 shows that, taken alone, the property SOURCE characterizes the failure detector Ω in asynchronous message-

passing systems. Section 5 and Section 6 introduce the property QUORUM and show that it characterizes the failure detector Σ.

Finally, Section 7 concludes the paper.

2 Models, Adversaries, Failure Detectors, Tasks

2.1 Base computation models

The base computation models relevant to this paper have been presented in the introduction. They are (1) the reliable round-based

synchronous modelSMPn[adv : ∅] possibly weakened with a message adversary AD, and (b) the crash-prone asynchronous models

ARWn,n−1[fd : ∅] (read/write wait-free model [10]) and AMPn,n−1[fd : ∅], both possibly enriched with a failure detector FD.

2.2 Message Adversary, Message Graphs, and Dynamic Graphs in Synchronous Systems

Message adversary Given a run of a synchronous system, a message adversary suppresses messages sent by processes. A property

associated with a message adversary restricts its power by specifying messages which cannot be suppressed. A message adversary

is consequently defined by a set of properties which constrain its behavior.

Message graphs associated with each round of a synchronous system Given a message adversary AD, and a round r of a run of

a synchronous system, let Gr be the directed graph (as defined in [1]), whose vertices are the process identities, and such that there

is an edge from i to j iff the adversary AD does not suppress the message sent by pi to pj at round r. We consider the following

definition associated with each graph Gr.

• i
r

−→ j means that the directed edge (i, j) belongs to Gr (at round r, the message from pi to pj is not removed by the

adversary).

The property TOUR As indicated in the introduction, the property TOUR [1] restricts the behavior of a message adversary as

follows. For any r, and any pair of processes (pi, pj), Gr contains the directed edge (i, j) or the directed edge (j, i) or both. This

means that, at every round, the adversary cannot suppress both the messages sent to each other by two processes. Hence, the graphs

Gr associated with the rounds r of a run in SMPn[adv : TOUR] are such that:

∀r ≥ 1 : ∀ (i, j) : (i
r

−→ j) ∨ (j
r

−→ i).

Strongly/weakly correct processes in a synchronous run The aim of this section is to introduce the notion of a strongly cor-

rect process which captures the processes whose an infinite number of messages are received (directly or indirectly) by any other

process [20]. Such a notion is defined as follows.

• i
≥r
 j means that there is a directed path starting from pi and leading to pj in a dynamically defined sequence of message

graphs starting at a round ≥ r. More formally,

∃k ≥ 0, ∃r1 < · · · < rk, ∃λ0, λ1, . . . , λk ∈ {1, . . . , n} :

(r1 ≥ r) ∧ (λ0 = i ∧ λk = j) ∧ (∀m ∈ {1, . . . , k} : λm−1

rm−→ λm).

• i
∞
 j

def
=

(

∀r > 0 : i
≥r
 j

)

. Hence, i
∞
 j means that, whatever r, there is eventually a directed path starting at pi at a round

≥ r and finishing at pj in the dynamically defined sequence of message graphs.

• (i
∞
! j) ⇔ (i

∞
 j ∧ j

∞
 i). Assuming each process always receive its own messages, this relation is reflexive, symmetric,

and transitive. Hence, it is an equivalence relation.
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Message Adversaries vs Failure Detectors 5

• Let G be the graph whose vertices are {1, ..., n} and directed edges are defined by the relation
∞
 ; let SC(G) be the graph of

its strongly connected components. If SC(G) has a single vertex X with no input edge, the processes in X are called strongly

correct processes, while the processes in {1, ..., n} \X are called weakly correct. If X is not unique, all processes are weakly

correct.

Let SC denote the (possibly empty) set of strongly correct processes in a synchronous round-based system under the control of a

message adversary.

2.3 Failure Detectors in Asynchronous Systems

While a message adversary weakens a synchronous round-based system (made up of reliable processes) by suppressing messages, a

failure detector enriches an asynchronous system where no message is lost but where processes may suffer crash failures. Informally,

a failure detector is a device that provides each process pi with a read-only local variable xxi containing (possibly unreliable)

information on process crashes [3]. This paper considers two failure detectors. Let τ denote any time instant; xxτ
i denotes the value

of xxi at time τ . This time notion, which is used in the definition of a failure detector, is not accessible to the processes. The identity

of a process pi is i. Given a run, a process that crashes is said to be faulty in that run, otherwise it is correct. Let C denote the sets of

identities of the correct processes.

• Ω is called an eventual leader failure detector [4]. In the system models ARWn,n−1[fd : Ω] or AMPn,n−1[fd : Ω],
each process pi is endowed with a local variable xxi = leaderi that always contains a (possibly changing) process identity.

Moreover, there is an unknown but finite time τ and a process identity ℓ ∈ C such that ∀τ ′ ≥ τ : (i ∈ C) ⇒ (leaderτ
′

i = ℓ).

• Σ is called a quorum failure detector [7]. In the system model AMPn,n−1[fd : Σ], each process pi is endowed with a local

variable xxi = qri that always contains a non-empty set of process identities and is such that (1) ∀τ, τ ′, ∀i, j: qrτi ∩ qrτ
′

j 6= ∅

(intersection property), and (2) ∀i ∈ C : ∃τ : ∀τ ′ ≥ τ : qrτ
′

i ⊆ C (liveness property).

2.4 Tasks

A task is a one-shot computation problem specified in terms of an input/output relation ∆. Each process starts with a private input

value and must eventually computes a private output value. From an external observer point of view, an input vector I[1..n] specifies

the input value I[i] = vi of each process pi. Similarly, an output vector O[1..n] specifies a result value O[j] for each process pj .

A task is defined by a set of input vectors and a relation ∆ which describes which output vectors are correct for each input vector

I . More precisely, for each valid input vector I , the values computed by the processes must be such that there is an output vector

O ∈ ∆(I) such that, for each j, O[j] is the value computed by pj; moreover, if no value is computed by pj , it is because pj has

crashed during the computation. (A formal introduction to tasks can be found in [11].)

Theorem 1 A task T can be solved in SMPn[adv : ∞] iff it can be solved in AMPn,n−1[fd : ∅].

Proof Let us observe that if T can be solved in SMPn[adv : ∞], it is a purely local task (each process can compute its result from

its own input only [8]2). It is possible to simulate on AMPn,n−1[fd : ∅] an algorithm A solving a task T in SMPn[adv : ∞], by

sending no message. It follows that each process in AMPn,n−1[fd : ∅] which computes a result behaves as in SMPn[adv : ∞]
when the adversary removes all messages. As at least the correct processes of AMPn,n−1[fd : ∅] computes a result, it follows that

the task T is solved in AMPn,n−1[fd : ∅].
If T can be solved in AMPn,n−1[fd : ∅], it can be solved if all except one process crashed initially. From a process point of

view, this cannot be distinguished from the case where messages are arbitrarily delayed. It follows from this observation and the

fact that a process has to eventually computes a result that T can be solved without communication. Hence, it can be solved in

SMPn[adv : ∞]. ✷Theorem 1

3 SOURCE + TOUR is a Characterization of Ω in ARWn,n−1[fd : ∅]

This section shows that the computing models SMPn[adv : SOURCE, TOUR] and ARWn,n−1[fd : Ω] have the same computa-

tional power for tasks.

2This corresponds to a weakening of the system modelARWn,n−1[fd : ∅] such that, from an operational point of view, a process computes its own result from

its input and what it read from the memory before writing its input in the shared memory.
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6 M. Raynal & J. Stainer

initialization:

(1) ri ← 0;

(2) ls_statei ← initial state of the local simulated algorithm;

(3) msgs_to_sendi[1..n]← initial messages to send to each process;

(4) ∀r > 0 : MEM [i][r][1..n] init to [⊥, ...,⊥].

repeat forever

(5) ri ← ri + 1;

(6) repeat leader_vali ← MEM [leaderi][ri][i]
(7) until (leader_vali 6= ⊥) ∨ (leaderi = i)
(8) end repeat;

(9) MEM [i][ri]← msgs_to_sendi;

(10) rec_msgsi[1..n]← MEM [1..n][ri][i];
(11) (msgs_to_sendi, ls_statei)← simulate(ls_statei, rec_msgsi)
end repeat.

Figure 2: From ARWn,n−1[fd : Ω] to SMPn[adv : SOURCE, TOUR]

3.1 The Property SOURCE

This property is defined as follows:

∃s ∈ {1, . . . , n} : ∃r0 ≥ 1 : ∀r ≥ r0 : ∀ i ∈ {1, . . . , n} : (s
r

−→ i).

This statement means that, in each run of SMPn[adv : SOURCE], there are a process ps and a round r0, such that, at every round

r ≥ r0, the adversary does not suppress the message sent by ps to the other processes.

3.2 From ARWn,n−1[fd : Ω] to SMPn[adv : SOURCE, TOUR]

This section presents a simulation of SMPn[adv : SOURCE, TOUR] on top of ARWn,n−1[fd : Ω] such that, any task that can be

solved in ARWn,n−1[fd : Ω] can be solved in SMPn[adv : SOURCE, TOUR].

Global and local variables of the simulation The simulation uses a shared variable MEM [1..n][1..][1..n] where MEM [i][r][j]
is an atomic read/write register written by pi and read by pj . This register contains the message sent by pi to pj in round r of the

simulation of SMPn[adv : SOURCE, TOUR]; ⊥ is a default value used to indicate that no message has yet been written or the

corresponding message has been suppressed by the adversary.

The local variable ri simulates the current round number of SMPn[adv : SOURCE, TOUR], while ls_statei represents the

local simulation state. The local variable msgs_to_sendi[1..n] contains the messages that pi will send to each other process during

the next simulated round (msgs_to_sendi[j] contains the message for pj). leaderi is the read-only local variable containing the

current local output of Ω.

The simulation is locally defined by the function simulate() which takes as input parameters the current local state of the

simulation and the messages received from the other processes at the current round. It modifies accordingly the local simulation

state and computes the messages that will be sent to the other processes during the next round.

The simulation algorithm The local simulation algorithm is described in Figure 2. The local simulator of process pi first proceeds

to the next round (line 5) and waits until its current leader has sent it a message (MEM [leaderi][ri][i] 6= ⊥) or it is its own leader

(lines 6-8). When this occurs, the simulator writes in MEM [i][ri] the messages sent by pi at the current round (line 9). Then, pi
consumes messages (line 10), and uses them to modify its local simulation state and compute the message it will send during the

next round (line 11).

Lemma 1 If a task can be solved in SMPn[adv : SOURCE, TOUR], it can be solved in ARWn,n−1[fd : Ω].

Proof Let us consider a simulated process pi (i.e., pi executes in SMPn[adv : SOURCE, TOUR]). When there is no ambiguity,

we use the same identifier pi, for a simulated process and its simulator.

Let us first observe that no correct simulator pi can block forever in the loop of lines 6-8. This is an immediate consequence of

the eventual leadership property of Ω (the eventually elected process pℓ cannot block forever), and the fact that it writes its messages

in MEM [ℓ][r][1..n].
Let us show that the tournament property TOUR is satisfied at every round. Let us consider two processes that terminates a round

r ≥ 0. It follows from lines 9-10 that (1) pi has written a message into MEM [i][r][j] and then read MEM [j][r][i], while (2) pj has
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Message Adversaries vs Failure Detectors 7

written a message in MEM [j][r][i] and then read MEM [i][r][j]. As registers are atomic, it follows that either pi has written into

MEM [i][r][j] before pj has written into MEM [j][r][i], or the opposite. Whatever the case, as each process writes before reading,

at least one of them reads the message from the other, and consequently Gr contains (i, j) or (j, i). Let us now consider a process

pj whose simulator crashes during the execution. From the point of view of any process pi whose simulator is correct, everything

appears as if, after the simulator of pj has crashed, the simulated adversary removes all the messages sent by pj to pi and keeps the

messages sent by pi to pj . Hence, if pj crashes after round r, we have (i, j) ∈ Gr′ at any round r′ > r.

Finally, let us consider a time after which all the correct simulators have forever the same correct leader pℓ and no more simulator

crashes. It follows from lines 6-8, that there is a round r such that, at any round r′ ≥ r, any correct process pi receives the message

sent by pℓ. Moreover, crashed processes receive implicitly all messages sent by pℓ. It follows that we have (ℓ, i) ∈ Gr′ which

establishes the SOURCE property of the adversary.

It follows from the previous arguments that, if the task can be solved in SMPn[adv : SOURCE, TOUR], it can be solved in

ARWn,n−1[fd : Ω]. A process with a correct simulator behaves the same way in both models, and a process with a faulty simulator

either computes a correct output value or crashes before it has computed an output value (in this case, its entry in the output vector

contains ⊥). ✷Lemma 1

3.3 From SMPn[adv : SOURCE, TOUR] to ARWn,n−1[fd : Ω]

This section presents a simulation of ARWn,n−1[fd : Ω] on top of SMPn[adv : SOURCE, TOUR] such that, any task that can

be solved in SMPn[adv : SOURCE, TOUR] can be solved in ARWn,n−1[fd : Ω]. This simulation has the same structure as the

simulation of ARWn,n−1[fd : ∅] on top of SMPn[adv : ∅] described in [1]. Basically, it adds to it the management of the local

variables missedi (defined below) from which Ω is extracted.

Global and local variables of the simulation The shared memory of ARWn,n−1[fd : Ω] is made up of an array of single-

writer/multi-reader atomic registers MEM [1..n] such that only pi can write MEM [i]. The simulation associates a sequence number

with each read or write operation of a simulated process pi. To simplify notations, a read of MEM [ℓ] by pi is denoted readi(ℓ) and

a write of v into MEM [i] is denoted writei(v).
As in the previous simulation, the procedure simulate() is used to locally simulate the behavior of pi from its current step until

its next invocation of a communication operation (i.e., a read or a write of the simulated shared memory). The simulation stops just

before this invocation. It takes as input parameters the current local state of pi (ls_statei) and the last value read from the shared

memory by pi. This value, saved in read_valuei (and initialized to ⊥), is meaningless if the operation is a write. The local variable

next_opi contains pi’s next read or write operation to be simulated.

The local variable viewi contains all the read/write operations issued by the processes and known by pi. Such an operation

is represented by a triple (j, seq_nb, next_op). The simulation algorithm is a full information algorithm and consequently the set

viewi increases forever.

The local variable informedi contains the set of processes which, to pi knowledge, know the last read/write operation it is

currently simulating. Finally, the set missedi (from which Ω is built) contains pairs (k, r) whose meaning is the following: ((k, r) ∈
missedi) ⇒ there is at least one process that, during round r of the simulation, has not received and delivered the message sent by

(the simulator of) pk during that round.

The simulation algorithm The simulation algorithm is described in Figure 3. When it starts a new round, the simulator of pi
sends its control local state, i.e., the triple (i, viewi,missedi) to each other process (line 5). Then (lines 6-10), it considers all the

messages it has received during the current round r, and updates accordingly rec_msgi and missedi.
Lines 11-12 locally implement Ω (see below). The variable informedi is then updated to take into account what has been learned

from the messages just received. Let us notice (line 13) that it follows from TOUR that (j /∈ rec_fromi) ⇒ pj has received pi’s
round r message.

Then (the simulator of) pi executes rounds in SMPn[adv : SOURCE, TOUR] until it learns that (the simulators of) all the

processes know its last read/write operation (line 15). Then, (line 16) it invokes simulate(ls_statei, read_valuei). If its (simulated)

shared memory operation is a read, the value read_valuei is the value obtained by this read operation. Otherwise (the simulated op-

eration is a write of pi), read_valuei is useless. As already indicated, the invocation of simulate(ls_statei, read_valuei) simulates

then the behavior of pi until its next read/write operation.

If the operation at which the local simulation stopped is a read of MEM [ℓ] (line 17), the local simulator computes, and deposits

in read_valuei, the value that will be associated with this read (line 18-22). If pℓ has not issued a write, read_valuei is set to

the default value ⊥ (line 19). Otherwise, read_valuei is set to the last value written by pℓ (line 18-21). Then, whatever the next

operation (read or write) of pi, the local simulator associates a sequence number with it and adds the triple (i, seq_nbi, next_opi) to
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8 M. Raynal & J. Stainer

initialization:

(1) ls_statei ← initial state of the local simulated algorithm; read_valuei ← ⊥;

(2) (next_opi, ls_statei)← simulate(local_sim_statei, read_valuei);
(3) seq_nbi ← 1; informedi ← {i}; missedi ← ∅;
(4) viewi ← {(i, seq_nbi, next_opi)}.

round r = 1, 2, · · · do:

(5) send(i, viewi,missedi) to each other process;

(6) rec_msgsi ← set of triples (j, viewj , missedj) received during this round;

(7) viewi ← viewi ∪
(

⋃

(j,viewj ,missedj )∈rec_msgsi
viewj

)

;

(8) missedi ← missedi ∪
(

⋃

(j,viewj ,missedj )∈rec_msgsi
missedj

)

;

(9) rec_fromi ←
{

j ∈ {1, . . . , n} : ∃(j, viewj ,missedj) ∈ rec_msgsi
}

∪ {i};
(10) missedi ← missedi ∪

{

(k, r) : k ∈ {1, . . . , n} \ rec_fromi

}

;

(11) min_missedi ← min
{

|{r : (j, r) ∈ missedi}|, j ∈ {1, . . . , n}
}

;

(12) ℓdi ← min
{

j : |{r : (j, r) ∈ missedi}| = min_missedi
}

;

(13) informedi ← informedi ∪ ({1, . . . , n} \ rec_fromi )
(14) ∪

{

j ∈ rec_fromi : (i, seq_nqi, next_opi) ∈ viewj

}

;

(15) if (informedi = {1, . . . , n}) then

(16) (next_opi, ls_statei)← simulate(ls_statei, read_valuei);
(17) if (next_opi = readi(ℓ)) then

(18) if (∄(ℓ,−,writeℓ(−)) ∈ viewi)

(19) then read_valuei ← ⊥
(20) else max_snℓi ← max{snℓ, (ℓ, snℓ,writeℓ(−)) ∈ viewi};
(21) read_valuei ← vℓ : (ℓ,max_snℓi,writeℓ(vℓ)) ∈ viewi

(22) end if

(23) end if;

(24) seq_nbi ← seq_nbi + 1; informedi ← {i};
(25) viewi ← viewi ∪ {(i, seq_nbi, next_opi)}
(26) end if.

when leaderi is read: return (ℓdi).

Figure 3: Simulation of ARWn,n−1[fd : Ω] in SMPn[adv : SOURCE, TOUR]

viewi (line 24-25). Moreover, as its scope is the simulation of next_opi, the set informedi is reset to {i}.

As previously indicated, the current value (kept in ℓdi) of the read-only variable leaderi, which locally implements Ω, is com-

puted from the set missedi at lines 11-12. The simulator of pi (1) computes, for each pj , the set of rounds at which at least one

simulator has not received the round r message sent by pj’s simulator (these are messages suppressed by the adversary); then (2)

it associates with each pj the cardinality of the previous set; and finally, (3) it considers the process pℓ for which the adversary has

suppressed the less messages (if there are several such processes, ties are solved by using the total order on process identities).

Lemma 2 If a task can be solved in ARWn,n−1[fd : Ω], it can be solved in SMPn[adv : SOURCE, TOUR].

Proof The proof consists of four parts: (1) the simulation is non-blocking; (2) the definition of which are the correct/faulty processes

in ARWn,n−1[fd : Ω]; (3) the definition of the linearization of the read and write operations; and (4) the fact that local variables

leaderi implement Ω.

Part 1: the simulation is non-blocking.

Given that the simulation algorithm is a full information algorithm, the “king in two tournaments” Theorem [2]3 states that at least

one read/write operation issued by a simulated process pi is known by all simulators in two simulation rounds (i.e., there is a

simulator pi such that, for any j, we have next_opi ∈ viewj in at most two rounds).

Let us consider three consecutive simulation rounds r, r+1 and r+2, and pi a simulator whose message (i, viewi,missedi) sent

at line 5 has reached (directly or indirectly) all the process simulators by the end of round r+1. As (due to TOUR), Gr+2 contains a

tournament, we have one of the following for each j 6= i: (a) j
r+2
−→ i and in that case, pi receives its own triple (i, seq_nbi, next_opi)

from pj and consequently it knows that pj knows its triple (i, seq_nqi, next_opi) (line 14); or (b) ¬(j
r+2
−→ i) and in that case, we

necessarily have i
r+2
−→ j and consequently pi knows that pj knows its triple. It follows that, at the end of the simulation round r+2,

pi terminates the simulation of its read or write operation next_opi (line 15-line 23). As there is a bounded number of processes,

3This theorem extends a theorem on graph tournament by Landau [13] to the case where consecutive tournaments can be different.
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there is at least one process that eventually executes until it computes its local result. It follows that the simulation is non-blocking.

Part 2: correct and faulty processes in ARWn,n−1[fd : Ω].

As each message graph Gr contains a tournament, it follows that the relation
∞
 (introduced in Section 2.2) defines a total order on

the equivalence classes of the relation
∞
!. Hence, there is a single set X of strongly correct process simulators (i.e., X has no input

edge in SC(G)). This set X contains exactly all the process simulators whose messages sent at line 5 are always eventually received

(at some round, directly or indirectly) by all other process simulators.

It follows from the previous reasoning (Part 1) on the fact that the simulation is non-blocking, and the condition infomedi =
{1, ...n} (line 15), that each process inX simulates any number of its operations. Hence, those processes are correct in ARWn,n−1[fd :
Ω]. Differently, for each process pj such that j ∈ {1, ..., n} \X , there is a round from which the predicate informedj = {1, ...n} is

never satisfied, and consequently the simulation of the process pj stops progressing. Hence, each weakly correct simulator pj such

that j ∈ {1, ..., n} \X simulates a faulty process in ARWn,n−1[fd : Ω].

Part 3: definition of the linearization of the read and write operations.

A write operation is linearized at the first of the two following time instants: (1) τ1 the end of the simulation of this write operation

(i.e., when the condition line 15 is satisfied by the associated simulator), and (2) τ2 the time instant just before the linearization point

of the simulation of the first read operation returning the written value. If none of these two instants ever happen, then the write is

never linearized and the corresponding simulated process appears as crashed.

The linearization of a read operation is close to but different from the one of a write operation. A read operation is linearized

at the first of these two time instants: (1) τ1 the end of this read operation simulation (when the condition line 15 is satisfied by

the associated simulator), and (2) τ2 the time instant just before the linearization point of the simulation of the first write operation

which overwrites the read value. However, if the instant τ1 never happen, then the read is never linearized (even if τ2 exists) and the

simulated process appears as crashed. (Remark that, thanks to the fact that a simulator selects the freshest value it knows to prepare

the value returned by a simulated read operation, and to the fact that, at the instant of the linearization of a write (or read) operation,

all processes have the corresponding written (or read) value in their views, the read value cannot have been effectively overwritten

before the beginning of the read operation returning it.)

As the reading (resp. overwriting) of a written (read) value cannot occur neither before the start of the corresponding write (read)

operation, the linearization point of this operation occurs after its the start of the operation. Moreover, the selection of the first among

τ1 and τ2 for both types of operation implies that the linearization point occurs at the latest at end of its simulation, and that (a) a

read is always linearized after the writing of the value it returns, (b) the overwriting of a value is always linearized after all read

operations that return it.

Part 4: the local variables leaderi implement Ω.

It follows from the property SOURCE that there is a process ps and a round r0 such that, from r0, no message from ps is removed by

the adversary. In particular, after some round rs ≥ r0, all the messages sent by (the simulator of) ps are received by all the strongly

correct processes. Let S ⊆ X be the set of processes ps satisfying this property ( eventually all their messages are –directly– received

by all the strongly correct processes). Let rS = max{rs : s ∈ S}. (Let us notice that an arbitrary number of messages from the

processes in S to processes which are not strongly correct can be suppressed by the adversary.)

As, at any round r ≥ rS , no message from (the simulator of) a process in S to (the simulator of) a strongly correct process is

suppressed, no simulator of a strongly correct process pi adds a pair (s, r), s ∈ S, to its set missedi (line 10).

Let us observe that: (a) the simulator of any process pi adds all the set missed it receives to its own set missedi (line 8); (b)

due to the definition of “strongly correct” simulator, messages are eventually propagated (directly or indirectly) in each direction

between each pair of strongly correct simulators; and (c) after some finite time, no strongly correct simulator receive message from

a weakly correct simulator.

It follows from the previous observations that, for each s ∈ S, the values |{r : (r, s) ∈ missedi}| eventually stabilize at

the same finite value at each strongly correct simulator pi, while, for each j ∈ {1, ..., n} \ S, the value |r : (r, j) ∈ missedi}|
never stops increasing. Hence, the same eventual leader is elected at all strongly correct processes by the code of lines 11-12, and

consequently the correct simulated processes inherits the same eventual leader. Moreover, as the process simulators in S are strongly

correct, the elected leader is a process which is correct in ARWn,n−1[fd : Ω]. ✷Lemma 2

3.4 SOURCE + TOUR is a Characterization of Ω in ARWn,n−1[fd : ∅]

Theorem 2 A task can be solved in SMPn[adv : SOURCE, TOUR] iff it can be solved in ARWn,n−1[fd : Ω].

Proof The proof follows immediately from Lemma 1 and Lemma 2. ✷Theorem 2
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10 M. Raynal & J. Stainer

Remark Let us remark that it is not possible to conclude from the previous theorem and the fact that Ω is the weakest failure

detector to solve consensus in ARWn,n−1[fd : ∅], that the property SOURCE + TOUR defines a weakest message adversary AD

allowing consensus to be solved in SMPn[adv : AD]. It remains possible that a property AD weaker than SOURCE + TOUR allows

consensus to be solved in SMPn[adv : AD]. Said differently nothing allows us to claim that the “granularity on the properties

which can be defined to constrain message adversaries” is the same as the “granularity on the information on failures” provided by

failure detectors.

Let CONS be the minimal message adversary property that allows consensus to be solved in SMPn[adv : CONS]. As con-

sensus is solvable in SMPn[adv : SOURCE, TOUR], it follows that SMPn[adv : SOURCE, TOUR] is at least as powerful as

SMPn[adv : CONS]. On another side, as (1) a read/write register can be implemented from consensus, and (2) consensus cannot

be solved in SMPn[adv : TOUR], it follows that SMPn[adv : CONS] is strictly more powerful than SMPn[adv : TOUR].

4 SOURCE is a Characterization of Ω in AMPn,n−1[fd : ∅]

4.1 From AMPn,n−1[fd : Ω] to SMPn[adv : SOURCE]

The algorithm described in Figure 4 presents a simulation (for tasks) of SMPn[adv : SOURCE] on top of AMPn,n−1[fd : Ω]. Its

principles are close to the ones of the simulation of Figure 2. The algorithm ensures that the eventual leader pℓ satisfies the property

SOURCE. Hence, there are strongly correct processes and the eventual leader is one of them. The aim of the simulation algorithm

is then to eventually withdraw all the messages except the ones from the leader.

Local variables of the simulation As in the previous simulations, ri is the locally simulated round number; msgs_to_sendi[j]
(initialized to ⊥) contains the next simulated message to be sent to pj; rec_msgi[r] contains the simulated messages received at

round r; sim_rec_msgsi[x] contains the message received from the process px currently considered as the leader by pi; leaderi is

the read-only variable provided by Ω.

(1) ri ← 0; sim_rec_msgsi[1, . . . , n]← [⊥, . . . ,⊥];
(2) (msgs_to_sendi[1, . . . , n], ls_statei)← simulate(sim_rec_msgsi);
(3) for each r > 0 do rec_msgsi[r][1, . . . , n]← [⊥, . . . ,⊥] end for;

(4) repeat forever

(5) r←ri + 1;

(6) for each j ∈ {1, . . . , n} do send(ri, msgs_to_sendi[j]) to pj end for;

(7) repeat cur_ℓdi ← leaderi
(8) until (cur_ℓdi = i ∨ rec_msgsi[ri][cur_ℓdi] 6= ⊥)
(9) end repeat;

(10) sim_rec_msgsi[cur_ℓdi]← rec_msgsi[ri][cur_ℓdi];
(11) (msgs_to_sendi[1, . . . , n], ls_statei)← simulate(sim_rec_msgsi);
(12) sim_rec_msgsi[1, . . . , n]← [⊥, . . . ,⊥]
(13) end repeat.

when (r,m) received from pj : rec_msgsi[r][j]← m.

Figure 4: From AMPn,n−1[fd : Ω] to SMPn[adv : SOURCE]

The simulation algorithm The procedure simulate() takes as input parameter the simulated messages received by pi at the current

round, and simulates the local algorithm until the next sending of messages by pi. This procedure returns the simulated messages to

be sent at the beginning of the next round.

After the initialization stage (lines 1-3), the local simulator of pi enters a loop whose each body execution simulates a round of

the synchronous system. It first sends the messages that pi has to send at the current round (line 6). Then it waits until it has received

a message from its current leader or it is its own leader (lines 7-9). When this occurs, it retrieves the message sent by its current

leader (line 10) and invokes the procedure simulate() with this message as input parameter, before proceeding to the simulation of

the next synchronous round.

Lemma 3 If a task can be solved in SMPn[adv : SOURCE], it can be solved in AMPn,n−1[fd : Ω].

Proof Let us first show that no correct process remains blocked forever in the loop lines of 7-9. Indeed, there is a finite time τ after

which an eventual leader (say pℓ) is elected by Ω at each process. It then follows from the first part of the predicate of line 8 that

pℓ cannot remain blocked at line 8, and consequently executes rounds forever. Moreover, as its messages are eventually received at
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each round by all correct processes, it follows that there is a time after which the second part of the predicate of line 8 is always

satisfied by these processes. Consequently, none of them can remain blocked forever at line 8.

The previous reasoning shows also that the eventual leader elected by Ω behaves as a source, and consequently the property

SOURCE is satisfied in the simulated synchronous system. ✷Lemma 3

4.2 From SMPn[adv : SOURCE] to AMPn,n−1[fd : Ω]

The simulation algorithm is described in Figure 5. It is similar to the algorithm of Figure 3 (which simulates ARWn,n−1[fd : Ω] on

top of SMPn[adv : SOURCE, TOUR]).

Local variables of the simulation The local variables ls_statei, viewi, rec_fromi, and missedi have the same meaning as

in Figure 3. The local variable msgs_to_reci contains messages to be consumed by the simulated process (it corresponds to

read_valuei in Figure 3). The variablemsgs_to_sendi contains the messages to be sent in the next simulation round (it corresponds

to next_opi in Figure 3). The variable msgs_receivedi is a new variable containing the messages already received by the simulated

process pi. Finally, ℓdi is the local variable containing the current local value of Ω built by the algorithm.

The simulation algorithm As in the simulation of Figure 3, lines 1-4 are an initialization stage. Similarly to previous simulations,

the procedure simulate() locally simulates the process pi. It takes messages to be consumed by pi as input parameter and returns the

next set of messages to be sent.

The simulation algorithm is a full information algorithm. During each simulation round r, the simulator of pi first sends its

control local state to each other process, and waits for the same information from them (lines 5-6). Then, according to the messages

it has received during the current round, it updates viewi, missedi, and rec_fromi (lines 7-10). As in Figure 3, it also computes

the identity ℓdi of its current candidate to be the eventual leader (lines 11-12).

If a simulation message has been received from the process pℓdi
, the simulator of pi strives to make pi progress. It considers the

last message sent by pℓdi
to pi (triple (ℓdi, i,m)), and adds it to the set msgs_to_reci (lines 14-15). Then, if the messages pi has to

send are known by its current leader pℓdi
(line 16), the procedure simulate() is invoked to make pi progress (line 17), and the local

control variables msgs_receivedi and viewi are updated accordingly (line 18).

initialization:

(1) ls_statei ← initial state of the local simulated algorithm;

(2) msgs_to_reci ← ∅; msgs_receivedi ← ∅;
(3) (msgs_to_sendi, ls_statei)← simulate(ls_statei,msgs_to_reci);
(4) viewi ← msgs_to_sendi; missedi ← ∅; ℓdi ← i.

round r = 1, 2, · · · do:

(5) send(i, viewi,missedi) to each other process;

(6) rec_msgsi ← set of triples (j, viewj , missedj) received during this round;

(7) viewi ← viewi ∪
(

⋃

(j,viewj ,missedj )∈rec_msgsi
viewj

)

;

(8) missedi ← missedi ∪
(

⋃

(j,viewj ,missedj )∈rec_msgsi
missedj

)

;

(9) rec_fromi ←
{

j ∈ {1, . . . , n} : ∃(j, viewj ,missedj) ∈ rec_msgsi
}

∪ {i};
(10) missedi ← missedi ∪

{

(k, r) : k ∈ {1, . . . , n} \ rec_fromi

}

;

(11) min_missedi ← min
{

|{r : (j, r) ∈ missedi}|, j ∈ {1, . . . , n}
}

;

(12) ℓdi ← min
{

j : |{r : (j, r) ∈ missedi}| = min_missedi
}

;

(13) if (ℓdi ∈ rec_fromi) then

(14) let viewℓdi
be such that (ℓdi, viewℓdi

,missedℓdi) ∈ rec_msgsi;

(15) msgs_to_reci ← msgs_to_reci ∪ {(ℓdi, i,m) : (ℓdi, i,m) ∈ viewℓdi
};

(16) if (msgs_to_sendi ⊆ viewℓdi
) then

(17) (msgs_to_sendi, ls_statei)← simulate(ls_statei,msgs_to_reci \msgs_receivedi);
(18) msgs_receivedi ← msgs_to_reci; viewi ← viewi ∪msgs_to_sendi
(19) end if

(20) end if.

when leaderi is read: return (ℓdi).

Figure 5: Simulation of AMPn,n−1[fd : Ω] in SMPn[adv : SOURCE]

Lemma 4 If a task can be solved in AMPn,n−1[fd : Ω], it can be solved in SMPn[adv : SOURCE].
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Proof Preliminary definition on simulators in SMPn[adv : SOURCE].
Let S be the set of processes which satisfy the property SOURCE. As, by assumption there at least one source, we have S 6= ∅.

Moreover, due the definition of the set SC of strongly correct simulators we have S ⊆ SC. Let S′ be the set of processes which,

albeit they are not necessarily source, appear as sources to all processes of SC. Hence we have S ⊆ S′ ⊆ SC, and S′ 6= ∅.

The variables leaderi implement Ω.

According to the definition of SC, there is a round r0 after which no more message from a weakly correct simulator is received

(directly or indirectly) by a strongly correct simulator. Let r1 = max{rs, s ∈ S′} where rs is the first round after which no message

sent by ps to a strongly correct simulator is eliminated. As, after r1, each strongly correct simulator receives at every round a

message from each simulator in S′, it follows that none of them adds a pair (s, r), r ≥ r1, s ∈ S′ in its variable missedi at line 10.

After r2 = max{r0, r1}, the only pairs (s, r), s ∈ S′ (r < r1) that are added by a strongly correct simulator in its variable missedi
are those that have been added by other strongly correct simulators at line 8 or line 11 before r2. Since strongly correct simulators

are infinitely often able to transmit (directly or not) messages to each other, there is a round r3 ≥ r2 such that any strongly correct

simulator pi has received (directly or not) during a round rj ≥ r2 the information contained in the variable missedj from each other

strongly correct simulator pj . After r3, for any s ∈ S′, the number of pairs (s, r) in the variables missedi of all strongly correct

simulators pi is the same and does not increase anymore.

For each simulator pi, i /∈ S′, there is an infinite number of rounds r such that pi’s message is not received during round r by at

least one of the strongly correct simulator pj , and accordingly, this simulator adds a pair (i, r) to its variable missedj during round

r at line 10. As the strongly correct simulators communicate (directly or not) infinitely often with each other, all of them eventually

add this pair to their variable missed during r (at line 10) or later (at line 8). Consequently, for each such simulator pi, i /∈ S′, the

number of pairs (i, r) in the variable missedj of every strongly simulator pj increases forever.

It follows from the previous discussion that the minimal number of rounds missed by a simulator (as calculated at line 12, and

using simulator identity to do tie-breaking) eventually becomes and remains the same at each strongly correct simulator. Let ℓd
denote this simulator identity. As it is the identity that is eventually always returned when leaderi is read by any simulated process

pi whose simulator is strongly correct, the unicity eventual property of Ω is ensured for these processes. The next paragraph shows

that the set of strongly correct simulators corresponds exactly to the set of correct simulated processes. As pℓd is strongly correct,

the elected process is a correct process, which concludes the proof of Ω.

Correct and faulty (simulated) processes in AMPn,n−1[fd : Ω].
It follows from the previous paragraphs that each strongly correct simulator pi is always eventually able to transmit (directly or not)

a new message m to pℓd, and then eventually receive (directly) a message from pℓd containing m. Hence the conditions of line 13

and line 16 are fulfilled an infinite number of times and, consequently, the corresponding simulator can always issue enough steps

(line 17) to progress in the simulated code.

Hence, the correct simulated processes and the faulty simulated processes are the ones simulated by the strongly correct and

weakly correct simulators, respectively. It follows that

Linearization of communication operations.

Let us consider a simulated process pi that sends a message m to a simulated process pj . This operation is disseminated to each

simulator by pi’s simulator at line 5. Then a simulator considers this simulated message m only at line 17 when the second input

parameter of its invocation of simulate() contains the message m. (Let us observe, that this message m arrives at a simulator pk
from its current leader ℓdk, lines 13 and 16).

Let τ1 be the time of the first invocation of simulate() by a simulator such that m belongs to the second input parameter of this

invocation, where τ1 = ∞ if there is no such invocation. Let τ2 be the time at which the simulator of pi starts the execution of

simulate() (line 17) after it has disseminated m, where τ2 = ∞ if there is no such invocation.

The send of m is linearized at time min(τ1, τ2) (let us notice that the simulation of pi does not progress between the sending of

m by pi and its linearization point). If min(τ1, τ2) = ∞, the send of m is linearized after the receiver pj has computed its result.

The reception of m is linearized at the time of the invocation by pj of simulate() whose second input parameter contains the

message m, or after pj has computed its result if there is no such invocation. ✷Lemma 4

4.3 SOURCE is a characterization of Ω in AMPn,n−1[fd : ∅]

Theorem 3 A task can be solved in AMPn,n−1[fd : Ω] iff it can be solved in SMPn[adv : SOURCE, FAIR].

Proof The proof follows directly from Lemma 3 and Lemma 4. ✷Theorem 3
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5 QUORUM is a Characterization of Σ in AMPn,n−1[fd : ∅]

This section shows that the computing models SMPn[adv : QUORUM] and AMPn,n−1[fd : Σ] have the same computational

power for tasks.

5.1 The Property QUORUM

Let us remember that SC is the set of strongly correct processes in the considered synchronous message-passing system (processes

whose an infinite number of messages are received by each other process). The property QUORUM is defined as follows:
[

∀ i, j : ∀ ri, rj : ({k : k
ri−→ i} ∩ {k : k

rj
−→ j} 6= ∅)

]

∧ (SC 6= ∅).

This property is a statement of Σ suited to the context of round-based synchronous message-passing systems prone to message

adversaries. Given any pair of processes pi and pj , its first part states that, whatever the synchronous rounds ri and rj executed

by pi and pj , respectively, there is a process pk whose messages to pi at round ri and to pj at round rj are not eliminated by

the adversary (intersection property). The second part states that there is at least one process whose messages are infinitely often

received by each other process (liveness property). Theorem 4 will show that this formulation of Σ is correct for the equivalence of

AMPn,n−1[fd : Σ] and SMPn[adv : QUORUM] for task solvability.

5.2 From AMPn,n−1[fd : Σ] to SMPn[adv : QUORUM]

The simulation algorithm described in Figure 6. It has the same local variables as, and is very close to, the one of Figure 4. In

addition to the local output of the failure detector Σ, which is denoted qri, the only modifications are the lines 7-10 which differ in

both algorithms.

The simulator of pi waits until it has received a message from each process that appears in its current quorum qri (lines 7-9). It

then invokes the procedure simulate() with these messages as input (line 10).

The principle of this simulation is the following: after some time, the simulated message adversary suppresses all the messages

sent by processes that do not belong to a quorum, but is prevented from suppressing the messages sent by processes belonging to

quorums.

(1) ri ← 0; sim_rec_msgsi[1, . . . , n]← [⊥, . . . ,⊥];
(2) (msgs_to_sendi[1, . . . , n], ls_statei)← simulate(sim_rec_msgsi);
(3) for each r > 0 do rec_msgsi[r][1, . . . , n]← [⊥, . . . ,⊥] end for;

(4) repeat forever

(5) r←ri + 1;

(6) for each j ∈ {1, . . . , n} do send(ri,msgs_to_sendi[j]) to pj end for;

(7) repeat cur_qri ← qri
(8) until (∀j ∈ cur_qri \ {i} : rec_msgsi[ri][j] 6= ⊥)
(9) end repeat;

(10) for each j ∈ cur_qri do sim_rec_msgsi[j]← rec_msgsi[ri][j] end for;

(11) (msgs_to_sendi[1, . . . , n], ls_statei)← simulate(sim_rec_msgsi);
(12) sim_rec_msgsi[1, . . . , n]← [⊥, . . . ,⊥]
(13) end repeat.

when (r,m) received from pj : rec_msgsi[r][j]← m.

Figure 6: From AMPn,n−1[fd : Σ] to SMPn[adv : QUORUM]

Lemma 5 If a task can be solved in SMPn[adv : QUORUM], it can be solved in AMPn,n−1[fd : Σ].

Proof The proof that no simulator of a process pi remains forever blocked in a round ri follows directly from the fact that (1)

each process simulator send a message to each other process simulator at every round (line 6), and (2) each quorum qri eventually

contains only correct simulators (liveness of Σ).

Let qrri be the value of qri that allows pi to exit the repeat loop during the simulation of round r (lines 7-9). It follows

from line 8 and line 10 that qrri = {k : k
ri−→ i}. Moreover, it follows from the intersection property provided by Σ that

∀ i, j, ri, rj : qr
ri
i ∩ qr

rj
j 6= ∅. The first part of the property QUORUM, namely, ∀ i, j, ri, rj : ({k : k

ri−→ i} ∩ {k : k
rj
−→ j} 6= ∅),

is consequently satisfied.
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Let us now show that SC 6= ∅. To that end, let us first observe that it follows from the intersection property of Σ that ∀ i, j, ∀ r,

∃k(i, j, r) such that k(i, j, r)
r

−→ i ∧ k(i, j, r)
r

−→ j. As {k(i, j, r)}r>0 ⊆ {1, ..., n}, it follows that there is some k′(i, j) which

appears infinitely often in the sequence k(i, j, 1), k(i, j, 2), ... Hence, we have k′(i, j)
∞
 i∧k′(i, j)

∞
 j. As this is true for any pair

(i, j), it follows that the graph G, whose set of vertices is {1, ..., n} and edges are defined by the relation
∞
 , has a single strongly

connected component without input edges. As this strongly connected component defines the set of strongly correct processes, this

set is not empty, which concludes the proof of the lemma. ✷Lemma 5

5.3 From SMPn[adv : QUORUM] to AMPn,n−1[fd : Σ]

The simulation algorithm is described in Figure 7. It is very close to the simulation of AMPn,n−1[fd : Ω] on top of SMPn[adv :
SOURCE] presented in Figure 5. It has the same local variables, except the variable missedi which is now useless. The value

returned when qri is read by a simulated process pi is now the current value of the set rec_fromi.

The only other difference appears at lines 9-10. The simulation of the simulated process pi (invocation of the procedure

simulate() at lines 11) is now constrained by the predicate of line 9 which states that the messages that pi wants to send (the

messages saved in msg_to_sendi) must be known by at all the simulators defining the current quorum of pi (set rec_fromi). When

this is satisfied, the set of messages to be received by pi in the next invocation of simulate() is redefined (line 11) to include the last

simulated messages sent to pi by processes pj such that j ∈ rec_fromi.

initialization:

(1) ls_statei ← initial state of the local simulated algorithm;

(2) msgs_to_reci ← ∅; msgs_receivedi ← ∅;
(3) (msgs_to_sendi, ls_statei)← simulate(ls_statei,msgs_to_reci);
(4) viewi ← msgs_to_sendi; rec_fromi ← {1, . . . , n}.

round r = 1, 2, · · · do:

(5) send(i, viewi) to each other process;

(6) rec_msgsi ← set of pairs (j, viewj) received during this round;

(7) viewi ← viewi ∪
(

⋃

(j,viewj )∈rec_msgsi
viewj

)

;

(8) rec_fromi ←
{

j ∈ {1, . . . , n} : ∃(j, viewj) ∈ rec_msgsi
}

∪ {i};
(9) if (msgs_to_sendi ∈

⋂

(j,viewj )∈rec_msgsi
viewj) then

(10) msgs_to_reci ← msgs_to_reci ∪ {(j, i,m) : (j, viewj) ∈ rec_msgsi ∧ (j, i,m) ∈ viewj};
(11) (msgs_to_sendi, ls_statei)← simulate(ls_statei, msgs_to_reci \msgs_receivedi);
(12) msgs_receivedi ← msgs_to_reci; viewi ← viewi ∪msgs_to_sendi
(13) end if.

when qri is read: return(rec_fromi ).

Figure 7: Simulation of AMPn,n−1[fd : Σ] in SMPn[adv : QUORUM]

Lemma 6 If a task can be solved in AMPn,n−1[fd : Σ], it can be solved in SMPn[adv : FAIR, QUORUM].

Proof Part 1: Correct and faulty simulated processes.

According to the definition of SC and to the second part of QUORUM property, we have SC 6= ∅ and ∀i ∈ SC, ∀j ∈ {1, . . . , n} : i
∞
 

j. Let pi be a simulated process pi whose simulator is strongly correct. As its messages are always received by every process, they

are received by the processes in its local set rec_fromi. Moreover, as the simulation algorithm is a full information algorithm,

it eventually receives from each process in rec_fromi the messages whose it is simulating the sending. The condition of line 9

becomes then satisfied, and the simulator of pi is allowed to progress in the simulation of pi (line 11). Hence, no strongly correct

simulator can block forever in the simulation of its simulated process pi.
According to (1) the intersection property of QUORUM, and (2) the fact that SC 6= ∅ implies that ∃r : ∀r′ ≥ r, ∀i ∈

SC : {k : k
r′

 i} ⊆ SC, it follows that ∀r > 0, ∀i ∈ {1, . . . , n} : {k : k
r
 i} ∩ SC 6= ∅ (A). Moreover, there is a round after

which no message from a weakly correct process reaches a strongly correct process (B). Finally, (predicate at line 9) to progress in

the simulation, a simulator has to receive from each simulator in its current set rec_fromi a copy of the messages msgs_to_sendi
whose it is simulating the sending (C). It follows from A, B, and C that, eventually, the predicate at line 9 of any weakly correct

process remains false forever (because its set msgs_to_sendi is never received by a strongly correct process). Consequently, there

is a finite time after which, all weakly correct simulators stop progressing in the simulation (while they forever execute rounds, they

never execute lines 10-12).
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According to the previous discussion, a correct (resp., faulty) process in AMPn,n−1[fd : Σ] is a process whose simulator is

strongly (resp., weakly) correct.

Part 2: the local variables rec_fromi implement Σ.

The intersection property of Σ comes directly from the first predicate defining the property QUORUM. The liveness property of Σ
is a consequence of Item (2) noticed above, and the fact that the correct processes in the simulated system AMPn,n−1[fd : Σ] are

exactly those whose simulators are strongly correct in SMPn[adv : QUORUM].

Part 3: The linearization points of the communication operations are defined the same way as in the proof of Lemma 4. ✷Lemma 6

5.4 QUORUM is a Characterization of Σ in AMPn,n−1[fd : ∅]

Theorem 4 A task can be solved in SMPn[adv : QUORUM] iff it can be solved in AMPn,n−1[fd : Σ].

Proof The proof follows immediately from Lemma 5 and Lemma 6. ✷Theorem 4

6 SOURCE + QUORUM Characterizes Σ + Ω in AMPn,n−1[fd : ∅]

Let us notice that the properties SOURCE and QUORUM are independent of one another in the sense that none of them can be

obtained from the other. It follows that the power provided by SOURCE and the power provided by QUORUM can be added. More

specifically, we have the following:

• A merge of the simulation of SMPn[adv : SOURCE] in AMPn,n−1[fd : Ω] (Figure 4) with the simulation of SMPn[adv :
QUORUM] in AMPn,n−1[fd : Σ] (Figure 6) provides a simulation SMPn[adv : SOURCE, QUORUM] in AMPn,n−1[fd :
Σ, Ω]. The difference between this simulation and the one of Figure 4 (or Figure 6) is at lines 7-10 which becomes

(7) repeat cur_ℓdi ← leaderi; cur_qri ← qri
(8) until [(∀j ∈ cur_qri \ {i} : rec_msgsi[ri][j] 6= ⊥) ∧ (cur_ℓdi = i ∨ rec_msgsi[ri][cur_ℓdi] 6= ⊥)]
(9) end repeat;

(10) for each j ∈ cur_qri ∪ cur_ldi do sim_rec_msgsi[j]← rec_msgsi[ri][j] end for.

The proof is the same as in Lemma 5 augmented by the fact that the eventual leader elected by Ω verifies the property SOURCE

as shown in Lemma 3.

• Similarly, adding the management of missedi and the procedure to query Ω (as done at lines 8-11 of Figure 5) to the sim-

ulation of AMPn,n−1[fd : Σ] in SMPn[adv : QUORUM] (Figure 7) provides a simulation of AMPn,n−1[fd : Σ, Ω] in

SMPn[adv : SOURCE, QUORUM].

The linearization points and the proof of the properties of Σ are the same as in Lemma 6, while the proof of the properties of

Ω follows the one of Lemma 4. Let us finally notice that it follows directly from the properties SOURCE and QUORUM that

a process verifying the SOURCE property appears eventually in all the simulated quorums.

Theorem 5 then follows:

Theorem 5 A task can be solved in SMPn[adv : SOURCE, QUORUM] iff it can be solved in AMPn,n−1[fd : Σ, Ω].

7 Conclusion

Considering crash-free synchronous round-based systems, message adversaries have been designed as daemons that suppress mes-

sages. Failure detectors have been introduced to enrich crash-prone asynchronous (read/write or message-passing) systems. A

previous work [1] has shown that, from a task solvability point of view, the message adversaries constrained by a property denoted

TOUR (for tournament) characterizes the well-known wait-free read/write model.

Considering task solvability, this paper has introduced relations linking failures detectors and message adversaries. More pre-

cisely, it has introduced two new properties, denoted SOURCE and QUORUM, which are restrictions on message adversaries, and

has shown that

• SOURCE + TOUR characterizes the wait-free read/write model enriched with Ω,
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16 M. Raynal & J. Stainer

• SOURCE characterizes the crash-prone asynchronous message-passing model enriched with Ω,

• QUORUM characterizes the crash-prone asynchronous message-passing model enriched with Σ,

• SOURCE + QUORUM characterizes the crash-prone asynchronous message-passing model enriched with Σ+ Ω.

Hence, when considering task solvability, these characterizations state “minimal properties” defining the strongest message ad-

versaries for synchronous round-based message-passing systems equating classical asynchronous crash-prone systems. Interest-

ingly, this allows for the establishment of a hierarchy on message adversaries (e.g., SMPn[adv : QUORUM] is stronger than

SMPn[adv : TOUR] as shown on the left of Figure 1; this follows from the fact that the computability power of Σ is strictly

stronger than read/write registers).

In our understanding of the foundations of distributed computing, a lot of issues remain still open. As examples, here are two

interesting message adversary-related problems. Which is the weakest message adversary AD such that consensus can be solved

in SMPn[adv : AD]? (The only thing we know is that SMPn[adv : CONS] is weaker than or equivalent to SMPn[adv :
SOURCE, TOUR] and strictly stronger than SMPn[adv : TOUR]). Is the addition of the constraint |SC| ≥ n− t to an adversary

sufficient to characterize t-resilient asynchronous crash-prone read/write or message-passing systems?
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A The Properties TP and PAIRS and their Source Extensions

A.1 Definition

In addition to TOUR, Afek and Gafni have defined two more properties, denoted TP (for traversal path) and PAIRS [1], defined as

follows from the graphs Gr introduced in Section 2.2.

• The property TP is similar to TOUR. It differs in the replacement of the directed edge constraint i
r

−→ j by the directed path

constraint i
r
99K j meaning that there is a directed path from pi to pj in Gr (i.e., at round r there is a path from pi to pj on

which no message is removed by the adversary). Formally, the graphs Gr defined by TP are such that:

∀r ≥ 1 : ∀ (i, j) : (i
r
99K j) ∨ (j

r
99K i).

• Let Cn2 be the number of combinations of 2 elements in a set of n elements (binomial coefficient), and σ() be a bijection

from {0, . . . , Cn2 − 1} into {(i, j) ∈ {1, . . . , n}2 : i < j)}. PAIRS is similar to TOUR except that a round of TOUR is

decomposed into C(n, 2) rounds of PAIRS4. During a round of PAIRS, the adversary suppresses all messages but one or both

of the messages sent by the pair of processes associated by σ() with the current round number. The messages graphs Gr

associated with PAIRS are formally defined as follows:

∀r :
(

σ(r mod Cn2) = (i, j)
)

⇔
(

(i
r

−→ j) ∨ (j
r

−→ i)
)

.

A main result of [1] concerns computability power of the synchronous models SMPn[adv : TOUR], SMPn[adv : TP], and

SMPn[adv : PAIRS], namely, they are all equivalent to ARWn,n−1[fd : ∅].

A.2 Adding a source to TP and PAIRS

While the property TOUR is, at each round, on each pair of processes, this is not the case of the properties TP and PAIRS. Hence, the

property SOURCE has to be customized to be appropriately associated with TP or PAIRS. More specifically we have the following.

• The eventual source property associated with TP is denoted SOURCEtp. It considers a path instead of an edge. Formally, it is

defined a s follows:

∃s ∈ {1, . . . , n} : ∃r0 ≥ 1 : ∀r ≥ r0 : ∀ i ∈ {1, . . . , n} : (s
r
99K i).

• Similarly the intermittent source property associated with PAIRS is denoted SOURCEpairs. It preserves messages sent by a

source s in every round r such that σ(r) involved s. Formally:

∃s ∈ {1, . . . , n} : ∃r0 ≥ 1 : ∀r ≥ r0 :
(

σ(r mod Cn2) ∈ {(s, i), (i, s)}
)

⇒ (s
r

−→ i).

4This definition of PAIRS is slightly different but equivalent to the one given in [1].
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A.3 SOURCE + TOUR, SOURCEtp +TP, and SOURCEpairs + PAIRS are Equivalent

The following theorem extends to the pairs SOURCE + TOUR, SOURCEtp + TP, and SOURCEpairs + PAIRS, the equivalence of

the properties TOUR, TP, and PAIRS stated in [1]. While the structure of these simulations are based on the ones described in [1],

some of their technical developments are different. This is due to the introduction of the source process which requires message

patterns in consecutive rounds that are no longer fully independent.

Theorem 6 The the system model SMPn[adv : SOURCE, TOUR], the system model SMPn[adv : SOURCEtp, TP], and the

system model SMPn[adv : SOURCEpairs, PAIRS] have the same computational power.

Proof To show that two system models are equivalent, the proof consists in simulating each of them on top of the other one.

The proof first shows that SMPn[adv : SOURCE, TOUR] and SMPn[adv : SOURCEtp, TP] are equivalent. It then shows that

SMPn[adv : SOURCE, TOUR] and SMPn[adv : SOURCEpairs, PAIRS] are equivalent. It then follows by transitivity that

SMPn[adv : SOURCEtp, TP] and SMPn[adv : SOURCEpairs, PAIRS] are equivalent.

Part 1 of the proof: SOURCE + TOUR is a weaker adversary than SOURCEtp + TP.

Since ∀i, j, ∀r > 0 : i
r

−→ j =⇒ i
r
99K j, it follows directly from the property definitions that an adversary that respects the

properties SOURCE and TOUR respects also the properties SOURCEtp and TP.

Part 2 of the proof: simulation of SMPn[adv : SOURCE, TOUR] on top of SMPn[adv : SOURCEtp, TP].
Simulation protocol. Let A be an algorithm designed for SMPn[adv : SOURCE, TOUR]. The simulation consists in executing

2n − 3 simulation rounds of a full information protocol in SMPn[adv : SOURCEtp, TP] in order to simulate each round of A.

For each of these simulated rounds, each process pi does the following. It first sends a set Mi containing all the messages it knows

(initially it knows only the pair (i,msgi) where msgi is the set of messages sent by pi in A during the currently simulated round in

SMPn[adv : SOURCE, TOUR]). Then, it gathers all the messages it receives during a simulation round, and adds the union of all

the sets they contain to its set of known messages Mi. At the end of the simulation round 2n−3, the set of messages known by pi and

addressed to itself is returned as the set of messages it receives during the simulated round of A in SMPn[adv : SOURCE, TOUR].

The simulated message graphs verify TOUR. Let M r
i denote the value of the set Mi of the messages known by a process pi at

the end of the simulation round r (with M0
i = {(i,msgi)}). Let Kr

i denote the set of processes which received msgi before

the end of the simulation round r, namely, Kr
i = {j ∈ {1, . . . , n} : (i,msgi) ∈ M r

j }. Let i and j be two process identities

and r ∈ {1, . . . , 2n − 3} a simulation round number such that, at the beginning of round r, we have (j,msgj) /∈ M r−1

i and

(i,msgi) /∈ M r−1

j (i.e., pi does not know msgj and pj does not know msgi). According to property TP, Gr preserves a path from

pi to pj or from pj to pi:

∃k ≥ 1, ∃(π1, . . . , πk) ∈ {1, . . . , n}k :

(∀l ∈ {1, . . . , k − 1} : (πl, πl+1) ∈ Gr) ∧ ({π1, πk} = {i, j}) .

If π1 = i, then, as π1 = i ∈ Kr−1

i and πk = j /∈ Kr−1

i , it exists m ∈ {1, . . . , k − 1} such that πm ∈ Kr−1

i ∧ πm+1 /∈ Kr−1

i .

Since a message goes from πm to πm+1 during round r, |Kr
i | > |Kr−1

i |. If π1 = j, the same reasoning applies and we have then

|Kr
j | > |Kr−1

j |. As initially |K0
i | = |K0

j | = 1, it follows that, for all r ∈ {1, . . . , 2n − 3}, if i /∈ Kr−1

j and j /∈ Kr−1

i , then

|Kr
i |+ |Kr

j | ≥ 2 + r. Consequently:

|K2n−3

i ∩K2n−3

j | = |K2n−3

i |+ |K2n−3

j | − |K2n−3

i ∪K2n−3

j |,

≥ 2 + (2n− 3)− |K2n−3

i ∪K2n−3

j |,

≥ 2n− 1− n ≥ n− 1,

and it follows that {i, j} ∩ K2n−3

i ∩K2n−3

j 6= ∅, which proves that at least one simulated message between pi and pj is received

during the 2n − 3 simulation rounds. As the proof holds for any pair of processes, the proposed protocol simulates a round of

SMPn[adv : SOURCE, TOUR] in 2n − 3 rounds of SMPn[adv : SOURCEtp, TP] and this simulation satisfies the property

TOUR.

The source of SMPn[adv : SOURCEpairs, PAIRS] simulates a source of SMPn[adv : SOURCE, TOUR]. Considering the

previous protocol which simulates a round of SMPn[adv : SOURCE, TOUR] in 2n−3 rounds of SMPn[adv : SOURCEtp, TP], it

is sufficient to show that, if SMPn[adv : SOURCEtp, TP] eventually always preserves paths starting from a process ps to any other

process, then eventually all messages originating from s are preserved in the simulated rounds of SMPn[adv : SOURCE, TOUR].
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Let us consider a simulation in SMPn[adv : SOURCEtp, TP] of a sequence of rounds of SMPn[adv : SOURCE, TOUR]. Each

round R of SMPn[adv : SOURCE, TOUR] is simulated using 2n− 3 rounds (denoted with small r letters) of protocol described

above. Let ps be a process such that, after the simulation round r0, for all r′ ≥ r0, Gr′ is such that there are (message) paths from

ps to any other process. Let r1 = 1 + ⌈ r0−1

2n−3
⌉ × (2n − 3) be the first simulation round after r0 such that the simulation of a new

simulated round R0 = 1 + ⌈ r0−1

2n−3
⌉ of SMPn[adv : SOURCE, TOUR] begins. Hence, for all r′ ≥ r0, the graphs Gr′ are such that

there are paths (possibly changing at every round) from ps to any other process. It follows that the arguments used above hold with

π1 = s and πk = j.

Let r be a round such that r ≥ r1, and R = 1 + ⌊ r−1

2n−3
⌋ be the round of SMPn[adv : SOURCE, TOUR] that is simulated

during r (r ≥ r1 ≥ r0 hence, R ≥ R0). Moreover, let r′ = r − (R − 1) × (2n − 3) = ((r − 1) mod (2n− 3)) + 1 denote

one of the 2n− 3 simulation rounds simulating the round R. With the same notations as above, as s
r
99K j for any pj , the previous

reasoning can be applied with π1 = s and πk = j, namely, if j /∈ |Kr′−1
s | we have |Kr′

s | > |Kr′−1
s |. As this is true for any r ≥ r1, it

is possible, similarly as before, to infer that if j /∈ Kr′−1, then |Kr′

s | ≥ 1 + r′ (if j /∈ Kr′−1
s , then, for all 1 ≤ r′′ ≤ r′, j /∈ Kr′′−1

s ,

consequently |Kr′′

s | > |Kr′′−1
s |, moreover |K0

s | = 1 then a simple induction allows to conclude). It follows that if r′ ≥ n− 1 then

j ∈ Kr′

s , in particular j ∈ K2n−3
s . That implies that, in any simulated round R ≥ R0, the sets of received messages are such that

all processes receive the messages sent by ps. The properties SOURCE + TOUR are consequently verified by the adversary (which

is simulated by sequences of 2n− 3 simulation rounds), which concludes the proof of the computational equivalence of the models

SMPn[adv : SOURCEtp, TP] and SMPn[adv : SOURCE, TOUR].

Part 3 of the proof: simulation of SMPn[adv : SOURCE, TOUR] on top of SMPn[adv : SOURCEpairs, PAIRS].
The definitions of SOURCE + TOUR and SOURCEpairs + PAIRS imply directly that Cn2 consecutive rounds of SMPn[adv :
SOURCEpairs, PAIRS] simulate a round of SMPn[adv : SOURCE, TOUR]. Indeed, to send a message m to a process pj in the

currently simulated round R of SMPn[adv : SOURCE, TOUR], a process pi just sends m during the simulation round r associated

with the pair {pi, pj}.

The simulated message graphs verify TOUR. As at least one of the two messages exchanged by pi and pj is preserved by SMPn[adv :
SOURCEpairs, PAIRS] at this round r, and as each pair of processes is associated with one of the Cn2 rounds, it follows that, in the

simulated round R of SMPn[adv : SOURCE, TOUR], at least one message is preserved on each link, thus GR satisfies TOUR.

The source of SMPn[adv : SOURCEpairs, PAIRS] simulates a source of SMPn[adv : SOURCE, TOUR]. According to definition

of SOURCE, it exists a process ps and a round r0 after which no message from ps is removed by the adversary in all the rounds

associated with a pair containing ps. Let r1 = 1 + ⌈ r0−1

Cn2
⌉ × Cn2 be the first round after r0 at which the simulation of a new round

R0 = 1 + ⌈ r0−1

Cn2
⌉ of SMPn[adv : SOURCE, TOUR] begins. In all the simulated rounds starting from R0, all processes receive

ps’s message. The source property of TOUR is then verified.

Part 4 of the proof: simulation of SMPn[adv : SOURCEpairs, PAIRS] on top of SMPn[adv : SOURCE, TOUR].
Here again, it follows directly from the definitions of PAIRS and SOURCE + TOUR that a protocol which, for each simulated round

R, suppresses all the messages except the ones sent by the processes of the pair associated (by PAIRS) with R, simulates a round

of SMPn[adv : SOURCEpairs, PAIRS] (moreover, a simulated round R requires exactly one simulation round r). Moreover, as at

least one message is preserved in each round on each link by TOUR, it follows that one of the two messages sent by the processes that

belong to the pair associated with the round R is not removed. Thus the PAIRS property is verified by the simulated system. Beside

that, by definition of SOURCE, it exists a process ps and a simulation round number r0 such that all the messages sent by ps after

r0 are preserved. It follows that, after r0, all the messages sent by ps (during the simulation rounds associated with a pair to which

it belongs) are preserved. Consequently, the property SOURCEpairs is verified, which concludes the proof of the computational

equivalence between SMPn[adv : SOURCE, TOUR] and SMPn[adv : SOURCEpairs, PAIRS]. ✷Theorem 6

The next corollary follows from Theorem 2 and the previous theorem.

Corollary 1 A task T can be solved in ARWn,n−1[fd : Ω] iff it can be solved in any of the three following synchronous models:

SMPn[adv : SOURCE, TOUR], or SMPn[adv : SOURCEtp, TP], or SMPn[adv : SOURCEpairs, PAIRS].
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B The Failure Detector Ωk

Definition Ωk (1 ≤ k ≤ n) is called an anti-omega-k failure detector [18, 24]. It is a simple generalization of Ω (Ω1 = Ω).

In the system model AMPn,n−1[fd : Ωk], each process pi is endowed with a local variable xxi = leadersi that always contains

a (possibly changing) set of k process identities. Moreover, there is a time τ and a process identity ℓ ∈ C such that ∀τ ′ ≥ τ :

(i ∈ C) ⇒ (leadersτ
′

i = ℓ).

ARWn,n−1[fd : Ωk] ≃T SMPn[adv : k − SOURCE, TOUR] It is possible to extend the Theorem 2 to the system model

ARWn,n−1[fd : Ωk]. The corresponding adversary, denoted k-S-TOUR is defined as follows:

∃S ⊆ {1, . . . , n}, ∃r0 > 0 : (|S| = k) ∧ (∀r ≥ r0 : ∃sr ∈ S : ∀ i : sr
r
→ i).

The proof that a task is solvable in ARWn,n−1[fd : Ωk] iff it is solvable in SMPn[adv : k−SOURCE, TOUR] is a straightforward

generalization of the previous one. It is left to the reader.
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