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Heat Transfer and Pressure Drop During Condensation 
of Refrigerant 134a in an Axially Grooved Tube 

Doug M. Graham, John C. Chato and Ty A. Newell l 

ABSTRACT 
R134a condensation experiments have been petfonned over a mass flux range of 75 to 450 

kg/m2-s (55 to 330 klbm/ft2-hr) in an 8.91 rom (0.351") inside diameter, axially grooved, micro

fin tube. At 75 kg/m2-s (55 klbm/ft2-hr), the axially grooved tube petfonns marginally better than 

a smooth tube, but worse than a similarly grooved tube with an 18 degree helix angle over a broad 

range of refrigerant qualities. Mass fluxes at 150 kg/m2-s (110 klbm/ft2-hr) and greater show 

broad quality ranges in which the axially grooved tube petfonns significantly better than both 

smooth and helically grooved tubes. Examination of a Froude rate parameter indicates that the 

axially grooved tube is able to maintain an annular film flow characteristic that results in more 

efficient heat transfer. Pressure drop characteristics of the axially grooved tube are similar to those 

found in an 18 degree helix angle tube. 

NOMENCLATURE 

cp 

Cp,1 

D 
Deq, flow 

EF 

Ffl 

Frso 

Ft 

G 
g 

Ga 

ilv 

Ja 

k 
kl 

ill 
ml 

mv 

Nu 

PF 

specific heat at constant pressure 
specific heat at constant pressure for liquid refrigerant 

diameter 
equivalent flow diameter 

enhancement factor 
liquid-only Froude number 

Soliman's modified Froude number 

Froude rate parameter 

mass flux 

gravitational acceleration 

Galileo number 

enthalpy of vaporization 

Jakob number 

thennal conductivity 
liquid thennal conductivity 

mass flow rate 
liquid mass flow rate 

vapor mass flow rate 

Nusselt number 

penalty factor 

(G/PI)2/gD 
equations (8), (9) 

equations (18), (19) 
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Pr Prandtl number 

PrJ. liquid Prandtl number 

ReI liquid Reynolds number 

Revo vapor only Reynolds number 

Vv vapor velocity 

x quality 
Xi inlet quality 

Xo outlet qUality 
Xtt Lockhart Martinelli number 

<X void fraction 

<Xi inlet void fraction 

<Xo outlet void fraction 

Ml pressure drop 

MlACC acceleration pressure drop 

MlFRIC frictional pressure drop 

<l>f two-phase pressure drop multiplier 

Pv vapor density 

PI liquid density 

Il viscosity 

III liquid viscosity 

Ilv vapor viscosity 

INTRODUCTION 

Ilcplk 

IlCp,likl 

GD(1-x)/lll 

GD/Ilv 

equation (6) 

equation (13) 

equation (12) 

Enhancement of tube heat transfer without an equivalent increase of pressure drop is an active 

area of investigation in the refrigeration and air conditioning fields [1-13]. "Micro-fin" 

enhancements are of special interest because little, if any, additional material is required for 

inscribing the internal tube surface with structures that can result in high heat transfer increases. 

Most studies have investigated "helical" micro-fin tubes [3, 5-13] that are more readily available 

commercially. Additionally, many of the experimental studies have obtained average results rather 

than local heat transfer and pressure drop data. 

Chiang [1] found axial grooved tubes to generally show higher performance than helical tubes 

over a broad range of mass fluxes and qualities for both evaporation and condensation. Direct 

comparison between the axial grooved tubes and helical (18 degree) grooved tubes could not be 

made because the grooves were of significantly different fin geometries and fin frequencies. The 

10 mm (.394") diameter tubes had 72 and 60 internal fins for the axial and 18 degree helix 

grooves, respectively. For the 7.5 mm (.295") diameter tubes, Chiang [1] tested 60 fins for the 

axial and 43 internal fins for the 18 degree helix groove configuration. 
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In the present study, a custom fabricated 8.91 mm (.351 ") diameter tube with 60 axial fIns 

was obtained. The fIn geometry and number offms geometrically matches an 18 degree helix tube 

made by the manufacturer. The 18 degree helix tube was previously tested at the University of 

illinois Air Conditioning and Refrigeration Center's (ACRC) condenser test facility [5, 6]. 

Investigation of the geometrically similar, axially grooved tube has been undertaken in order to 

examine trends and performance differences in a detailed manner over a range of refrigerant mass 

fluxes and qualities. The axial tube, in general, behaves in a signifIcantly different manner than the 

helical grooved tube. 

BACKGROUND 
An apparatus has been designed in the ACRC at the University of illinois that allows in-tube 

condensation data to be collected over a wide range of operating conditions. In the test-condenser, 

local, in-tube heat transfer coeffIcients and pressure drops of the working fluid are measured. A 

schematic of the apparatus is provided in Fig. 1. 

Receiver input 
control valve 

Receiver 
Bypass 

Figure 1 Experimental Apparatus (Dobson [2]). 

Sight Glass 

Refrigerant heater 

Le&end 
F - flowmeter 
P - pressure transducer 
PR - pressure relief 
valve 
T - temperature probe 
DP - diff. pressure 
transducer 

The refrigerant is circulated through the refrigerant loop by a MicroPump three gear, variable 

speed pump. This pump needs no lubrication to run, and therefore allows the testing of pure 

refrigerants, without the addition of oil. The mass flux of the refrigerant is measured immediately 
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after the pump, either by a Micro-Motion D mass flow meter, or a Max Machinery positive 

displacement flow meter, depending on the flow rate. 

Mter the pump, the refrigerant is set to the desired condition by the use of a preheater, 

consisting of a 9.52 mm (0.375") o.d. copper tube. Each pass of the tube is wrapped with 

resistance heater tapes that are used to input heat to the refrigerant. This allows the experimenter to 

set the temperature and quality of the refrigerant at the test section inlet. Located systematically 

throughout the test section are thermocouples which measure the wall temperatures. The 

thermocouples are staggered in such a way as to measure circumferential and longitudinal 

temperature distributions at the tube wall. Temperatures were measured with thermocouples that 

were calibrated with a constant temperature bath, which was found to have an uncertainty of 0.1 °C 

(0.18 OF). 

Located across the test section is a differential pressure transducer, which measures the 

pressure drop in a length of 1.22 m (48.0"). The uncertainty of this transducer was estimated to be 

±1 kPa (±.15 psi). Absolute pressure transducers are also located at the test section inlet, the test 

section outlet, at the receiver and before the preheater. These transducers were calibrated together 

on a dead weight tester over their range of applicability. From these tests, the uncertainty of these 

instruments is estimated at ±7 kPa (±1 psi). 

Mter the refrigerant leaves the test section, it is cooled down to a subcooled liquid by an 

aftercondenser and water to refrigerant heat exchanger. The refrigerant then passes through a ftlter 

and is recirculated through the pump. The temperature of the refrigerant is in part controlled by the 

heat input from the preheater to the test section, but the majority of the temperature control is 

obtained by the use of a heated water tank. A refrigerant receiver is placed into this tank, and by 

varying the temperature of the water in this tank, and the amount of refrigerant that flows through 

this receiver, the system pressure can be set to the necessary quantity. 

Water is used to condense the refrigerant in the test section. The water pressure is maintained 

at 101.3 kPa (14.7 psi) in order to ensure that there is no air in the water piping. The water flow 

rate across the test section is set with a rotameter, and the temperature of the water is varied by the 

use of a water heater. After the heater, the water enters an annulus that is centered around the test 

section. This annulus is made with a 19.1 mm (0.75") o.d. plastic tube. Inside the tube are a 

series of plastic mixers that are used to swirl the flow, and maintain a nearly uniform temperature at 

any longitudinal location. The water flow rate is measured at the discharge with a graduated 

cylinder and a stopwatch. The entire experimental apparatus including the test section, water 

section and all the tubing is covered with insulation to minimize losses to the environment, and also 

to help the system maintain steady state conditions. 
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The experiments were all run at a saturation temperature of approximately 35°C (95 OF). 

Once the desired conditions have been set, and steady state is achieved, data is collected for five 

minutes. 

The test section used in this study is a 9.52 mm (0.375") o.d. tube, which contains sixty 

trapezoidal fms that are arranged axially inside the tube at an angle of 0° to the axial direction. The 

maximum inside diameter of the tube is 8.91 mm (0.351 ") and the minimum inside diameter is 

8.53 mm (0.336"). The fins have an average height of 0.180 mm (0.007"). Experiments run by 

Ponchner [6] are also included in this report. Ponchner's experiments were run on the same 

apparatus and his test section differed from the current test section only by the fact that its sixty 

trapezoidal fins were arranged helically inside the tube at an angle of 18°. Fig. 2 shows the cross 

section of the microfinned tube used in this study and the one used by Ponchner [6]. 

9.52 mm (0.375") 

8.53 mm (0.336") 

AA 

o degrees 
........ 

SectionAA 8.53 mm (0.336") 

18 degrees 

" 
SectionAA 8.53 mm (0.336") 

Figure 2 Cross section of the micro finned test sections. 
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In this study two parameters are used to compare the performance of the microfinned tubes to 

the performance of a similar smooth tube. The first parameter compares the heat transfer 

characteristics, while the second compares the pressure drop characteristics. 

The parameter used to compare the heat transfer characteristics is the enhancement factor, EF. 

For the purpose of this study, the enhancement factor is defmed to be the ratio of the heat transfer 

of the enhanced tube to the heat transfer of a similar smooth tube, operating at the same conditions. 

EF = (qmicrofm J 
Qsmooth same conditions 

Here the heat transfer rate for the two tube geometries can be defined with the following equations: 

Qmicrofin = hmicrofinAmicrofinilT 

Qsmooth = hsmoothAsmoothilT 

Since ilT is the same in both equations, the enhancement factor can be represented as the heat 

transfer enhancement multiplied by the area ratio. If the area of the smooth tube is taken as the area 

of a smooth tube with an inside diameter equal to the maximum inside diameter of the microfmned 

tubes, the area ratio becomes 1.62. 

EF = ( hmicrofin JArat = 1. 62( hmicrofm J 
l hsmooth l hsmooth (1) 

The heat transfer coefficient for the comparable smooth tube was calculated using a Dobson 

correlation [2], which is divided into a wavy flow correlation and an annular flow correlation. The 

form of the annular correlation is the following: 

0.8 0.4[ 2.22 ] Nu = O.023Rej Prj 1 + X~.889 
(2) 

The wavy correlation is the following: 

O.23Ree~2 [GaPrJO.25 
Nu = 058 -- + (1- 8I!n)Nuforced 

1 + 1. llXu· Ja (3) 

where: 

81 = angle subtended from the top of the tube to the liquid level 

(4) 
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where: 

The turbulent-turbulent Lockhart-Martinelli parameter [14] can be calculated by: 

( )0.5( )0.1( _ )0.9 X=Pv ~ ~ 
tt 

For O<Frl~O. 7: 

Cl =4. 172+5.48Frl-1.564FrI2 

C2= 1. 773-0. 169Fl) 

For Frl>O.7: 

cl=7.242 

c2=1.655 

PI J.1v X 

(5) 

(6) 

The liquid level angle, 81, can be related to the void fraction by the following equation, if the area 

occupied by the condensate film is neglected: 

_ 81 sin(281) 
a. - - - --'--""'-

1t 21t (7) 

Dobson [2] also recommended the conditions under which each of the correlations should be used. 

The parameter used to predict the flow regime is the Froude number, as defined by Soliman[15]. 

For a Frso<20, Dobson [2] recommends that the wavy correlation be used, and for Frso>20 

Dobson [2] recommends that the annular form of the correlation be used. 

where: 

( 
0039 )1.5 1.59 1 + 1. 09Xtt· 1 

Frso = 0.025ReI ----o:s for ReI ~ 1250 
Xtt Ga (8) 

(9) 

Along with the heat transfer enhancement of the microfinned tube, there is also a penalty 

factor due to the increased pressure drop generated by the fins. Here the penalty factor, PF, is 
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defmed as the ratio of the pressure drop found in the microfmned tube to the pressure drop of a 

similar smooth tube operating at the same conditions, over the same length. 

PF = (L\P microfm ) 

L\P smooth equal length (10) 

The corresponding pressure drop for the smooth tube was calculated using the correlation 

proposed by Souza [16, 17]. This correlation takes into account both frictional and acceleration 

pressure drops and is defined as: 

where: 

f = 0.079 
L ReO.25 

L 

The void fraction (a.) can be calculated using the Zivi [18] correlation: 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

It should be noted that the smooth tube diameter used in the above calculations is an 

equivalent flow diameter, Deq,flow. The equivalent flow diameter is related to the cross-sectional 

inside area of the micro-finned tube by the following equation: 

(17) 

RESULTS 
Trends in the axially grooved tube's heat transfer are shown in Fig. 3 over a range of qualities 

and for mass fluxes from 75 to 450 kg/m2-s (55 to 330 klbm/ft2-hr). With the exception of the 75 

kglm2-s (55 klbm/ft2-hr) mass flux condition, the axially grooved tube generally outperfonned the 
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18 degree helix angle tube. Plotting the axially grooved tube and the 18 degree helix grooved tube 

using the enhancement factor defined by equation (1) helps identify important trends in the data. 

Nu 

----e- G=75 kg/m2-s (55 klb If t2_ h r) 
m 

-G=150 (110) 
600 ---G=225 (165) 

-.-G=300 (220) 
----&- G=400 (295) 
--+- G=450 (330) 

500 I---_--~--~ ...... 
...................... _-_ ..................... _-· . 400 ........................................... ; .......... . · . · . · . · . · . · . · . · . · . · . · . · . · . 

::: .......... .,r.r.., 
100 

o 0.2 0.4 0.6 0.8 

Quality, x 

Figure 3 Heat transfer coefficient versus quality for the axially grooved tube over a range of 
refrigerant mass fluxes. 

Figs. 4 to 9 show the axial and 18 degree helix enhancement factors for each mass flux 

condition. Dobson's [2] correlations for condensation heat transfer have been used for calculating 

the smooth tube reference heat transfer coefficients. Ponchner's [5] data has been used for the 18 

degree helix performance. As previously described, a Froude number of 20 was defined by 

Dobson as the transition between a stratified wavy dominated flow and an annular liquid fllm flow. 

High gas velocities, caused by high quality and/or high mass flux conditions, result in the annular 

film. 

An interesting trend shown in Figs. 4 to 9 is the systematic progression of high levels of 

enhancement for the axially grooved tube as the mass flux changes. At low mass fluxes the axial 

tube performs poorly. As the mass flux increases, depending on the quality, increases in heat 

transfer enhancement significantly above those for the 18 degree helix tube are observed. 

At the lowest mass flux tested, as shown in Fig. 4, the enhancement factor for the axially 

grooved tube is significantly lower than that of the 18 degree helix tube. The 18 degree helix tube 

shows an enhancement factor somewhat higher than the 62 percent increase in surface area over a 

smooth tube's internal surface. The axial grooved tube shows an improvement that is only 20 

percent greater than the smooth tube. All quality conditions for the low mass flux condition are at 

Froude numbers less than 20. The enhancement factors, therefore, are based on the tubes' 

performances relative to the stratified wavy flow heat transfer predictions. The grooves in the axial 
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tube may be inhibiting fluid from draining into a stratified flow configuration. Additionally, with 

relatively low vapor velocities, liquid may be locked into the grooves, effectively blocking the 

vapor from interacting with the tube wall surfaces. The helical tube's enhancement shows that it 

may somewhat augment the drainage of liquid refrigerant, thus exposing or allowing more of its 

surface area to participate in heat transfer. 
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0 1 SO Helix Angle 
5 

0 0° Helix Angle 
l!! 
.8 
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LL 
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o 0.2 0.4 0.6 O.S 

Average Quality, x 

Figure 4 Enhancement factor for the axial and helical tubes over a range of qualities for a mass 
flux of 75 kg/m2-s (55 klbm/ft2-hr). 

Increases in mass flux, as shown in Figs. 5 to 9, show regions in which the axial grooved 

tube's enhancement is significantly higher than the tube's area enhancement effect. At a mass flux 

of 150 kg/m2-s (110 klbm/ft2-hr), as shown in Fig. 5, the enhancement factor is approximately 2.5 

at higher qualities. The Froude number for the conditions shown in Fig. 5 are all below 20, 

requiring that the stratified wavy flow form of Dobson's relation be used for smooth tube heat 

transfer predictions. The helical tube shows a relatively consistent level of enhancement that is 

essentially that due to the 62 percent surface area enhancement. 

Examining Figs. 6 and 7, reveals that increasing the mass flux to 225 and 300 kg/m2-s (165 

and 220 klbm/ft2-hr) causes the axial tube's region of significant heat transfer enhancement to 

move toward lower qualities. The helical tube generally shows a relatively steady enhancement 

factor that remains near the level expected due to its area enhancement. Peak enhancement factors 

of 2.5 are obtained for the 225 kg/m2-s (165 klbm/ft2-hr) mass flux, while the 300 kg/m2-s (220 

klbm/ft2_hr) mass flux shows enhancements near 2.6. At high qualities, although the heat transfer 

coefficients have increased relative to lower quality conditions (see Fig. 3), the level of axial tube 
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enhancement relative to a smooth tube has diminished. The region where the enhancement level 

drops, at a quality of approximately 0.6 in Figs. 6 and 7, is where the Froude number is 20, 

indicating that the flow in a smooth tube would be in an annular flow configuration. 

6 

0 1 Sa Helix Angle 
5 0 00 Helix Angle 

III 

B 4 () 
res u. 
E 
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E 0 
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c: 
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o 
o 0.2 0.4 0.6 o.s 

Average Quality, x 

Figure 5 Enhancement factor for the axial and helical tubes over a range of qualities for a mass 
flux of 150 kg/m2-s (110 klbm/ft2-hr). 
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Figure 6 Enhancement factor for the axial and helical tubes over a range of qualities for a mass 
flux of 225 kg/m2-s (165 klbm/ft2-hr). 
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Figure 7 Enhancement factor for the axial and helical tubes over a range of qualities for a mass 
flux of 300 kg/m2-s (220 klbm/ft2-hr). 

Figs. 8 and 9 show a continued progression of the axial tube's region of high enhancement 

moving toward lower qualities as the mass flux continues to increase. The diminished 

enhancement effect relative to a smooth tube and the helical tube occurs at higher qualities. The 

drop in enhancement is generally occurring where the Froude number is 20 and the smooth tube 

flow is transitioning to an annular flow condition. Peak axial tube enhancement factors continue to 

show higher levels of enhancement. A mass flux of 400 kglm2-s (295 klbm/ft2-hr) shows peak 

enhancement factors of 2.7 while a mass flux of 450 kglm2-s (330 klbm/ft2-hr) reaches an 

enhancement level of 2.8. It is interesting to note that the helical tube continues to show an 

enhancement that generally reflects the area enhancement, rather than the pronounced enhancement 

effect shown by the axial tube. The helical tube seems to show a flow field configuration that 

consistently follows that of a smooth tube. That is, the relatively flat enhancement factor over the 

range of qualities where the smooth tube correlation switches from stratified wavy to annular flow 

configurations indicates that the helical tube transitions between these flow regions in a similar 

manner. It should also be noted that at higher mass fluxes and qualities, both axial and helical 

tubes show a trend toward enhancement levels that are less than their smooth tube area ratios. 

Pressure drop characteristics of the axial tube, relative to the helical tube, are shown in Figs. 

10 to 13 using the penalty factor defmed by equation (10). Pressure drop data for mass fluxes 

below 225 kglm2-s (165 klbm/ft2-hr) are below the level of reliable resolution of the experiment's 

pressure transducer. Both tubes generally show that the micro-fm configuration results in low 
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penalty factors. The most interesting feature of these figures is the similarity in penalty factors for 

the axial and helical tubes. Even though the axial tube shows significant deviations from the helical 

tube's characteristics on a heat transfer basis, these effects do not show up in the pressure drop 

data. 
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Figure 8 Enhancement factor for the axial and helical tubes over a range of qualities for a mass 
flux of 400 kg/m2-s (295 klbm/ft2-hr). 
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Figure 9 Enhancement factor for the axial and helical tubes over a range of qualities for a mass 
flux of 450 kg/m2-s (330 klbm/ft2-hr). 
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Figure 10 Penalty factor for the axial and helical tubes over a range of qualities for a mass flux of 

225 kg/m2-s (165 klbm/ft2-hr). 
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Figure 11 Penalty factor for the axial and helical tubes over a range of qualities for a mass flux of 

300 kg/m2-s (220 klbm/ft2-hr). 
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Figure 12 Penalty factor for the axial and helical tubes over a range of qualities for a mass flux of 
400 kg/m2-s (295 klbm/ft2-hr). 
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Figure 13 Penalty factor for the axial and helical tubes over a range of qualities for a mass flux of 
450 kg/m2-s (330 klbm/ft2-hr). 
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Hurlburt and Newell [19] have examined the transition between stratified flow and annular 

flow and have found that a "Froude rate" parameter indicates a transition between the two flow 

configurations. For the refrigerant conditions investigated in this study, numerical values for the 

Froude rate are similar to those for the Froude number. Over an extended range of conditions 

where variation of an annular flow's film thickness is of interest, the Froude rate parameter is 

significantly different and appropriately determines the characteristics of the flow field. The 

Froude rate parameter is defined as: 

(18) 

The Froude rate, as seen above, is a ratio related to the vapor's power due to its kinetic energy to 

the power required to pump liquid from the bottom of the tube to the top of the tube. Alternatively, 

the Froude rate can be written in terms of refrigerant mass flux and quality. 

Ft = [x3G2/(Pv2gD(I-x»]1!2 (19) 

The transition between stratified flow and a non-uniform annular film flow is observed when one 

plots a "symmetry" parameter; the ratio of average fIlm thickness to the bottom fIlm thickness, 

versus the Froude rate. Unlike typical flow regime maps, this method for determining the 

transition between stratified and annular flow regions distinguishes between a "true" stratified flow 

and a non-uniform annular film flow. Local film thickness data is required in order to determine 

the transition point. For air-water systems, the Froude rate shows the transition region in smooth 

tubes to be near a value of 20. No local film thickness measurement data has been found for 

refrigerant-type substances. However, assuming similar trends occur, one would expect that a 

similar level of energy is required from the vapor for distributing liquid around the periphery of the 

tube. 

Fig. 14 shows axial tube enhancement factors plotted versus the Froude rate parameter for all 

the experimental data. The plot shows that the region of high enhancement, relative to smooth 

tubes and the helical tube, occurs between Froude rate values of 1 and 20. A closer examination of 

the trends is shown in Fig. 15 for axial tube data with Froude rates less than 20. The different 

character of the 75 kglm2-s (55 klbm/ft2-hr) mass flux relative to the higher mass fluxes is clearly 

seen in both Figs. 14 and 15. Fig. 14 shows that at Froude rates greater than 20, the relative 

enhancement is diminished with mass flux. Fig. 15 shows that peak enhancement levels obtained 

in the high enhancement region increase with mass flux. Also shown in Fig. 15 is the sharp drop 

in enhancement as Froude rates decrease below 1 to 2. Based on Figs. 14 and 15, the axially 

grooved tube appears to maintain an annular flow configuration that is more efficient than the 

16 



stratified flow configuration found in smooth tubes. The helical tube appears to maintain a flow 

configuration similar to that of a smooth tube. 
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Figure 14 Plot of axial tube enhancement factors versus the Froude rate parameter for all axial 
tube data. 
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Figure 15 Plot of the axial tube enhancement factors versus the Froude rate parameter for Froude 
rate data less than 20. 
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Fig. 16 is a parametric plot of Froude rate versus mass flux for R134a at 35°C (95°F) in an 8 

mm (.315") inside diameter tube. Lines of constant quality from 0.1 to 0.8 are also marked on 

Fig. 16. A region between Froude rates of 1 and 20 and mass fluxes from 150 to 450 kg/m2-s 

(110 to 330 klbm/ft2-hr) is outlined in order to show the range where an axial tube would have 

enhancements significantly above those of a helical tube. At the low mass flux range, qualities 

from 0.2 to 0.8 would be significantly enhanced. Mid-range to higher range mass fluxes of 300 to 

450 kg/m2-s (220 to 330 klbm/ft2-hr) would enhance heat transfer between qualities of 0.1 and 

0.6. 
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Figure 16 Plot showing an estimated region for an 8 mm diameter tube in which axial grooves 
may result in significant performance over helical and smooth tubes. 

It should be noted that an alternative approach to be considered in the data reduction is to not 

use the equivalent flow diameter when calculating the Froude rate. Instead, if one recognizes that 

the denominator in the Froude rate is the power required to pump liquid from the bottom of the 

tube to the top of the tube, it might be more accurate when looking at an axial micro-finned tube to 

consider the power required to pump the liquid from one fin to the next. For example, the tube 

considered in this study had sixty trapezoidal fins. Therefore, in order to get from the bottom of 

the tube to the top, the liquid must go over 20 to 30 fins. If one considers only the power required 

to go from one fin to the next, the total Froude rate would increase by a factor of twenty to thirty. 
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CONCLUSIONS 
Axial micro-fm grooving shows a region of significant heat transfer enhancement when 

compared to a similarly grooved helical tube. Results show the enhanced heat transfer to be 

dependent on the mass flux and quality of the refrigerant. A Froude rate parameter provides a 

basis for correlating the region of enhancement over the mass flux and quality ranges studied. The 

level of enhancement also appears to be dependent on mass flux. Higher mass fluxes have higher 

levels of peak: enhancement. In terms of pressure drop, the axial tube has a penalty factor that is 

equivalent to the helical tube. 

Future questions to be answered relate to the extension of these results to other conditions. 

Higher pressure refrigerants (such as R22 with higher vapor densities) and lower pressure 

refrigerants (such as R123 with lower vapor densities) should be examined. Geometric 

dependencies should also be examined; The effects of groove geometry and tube diameter 

variations are unknown. Finally, the effect of oil and its ability to "clog" grooves should be 

examined. 
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