
Software Framework for the
Development of Context-Aware

Reconfigurable Systems

Dissertation zur Erlangung des Grades des Doktors der

Ingenieurwissenschaften der Naturwissenschaftlich-Technischen

Fakultät der Universität des Saarlandes

&

Tunisia Polytechnic School

University of Carthage

von

Soumoud FKAIER

Saarbrücken

2021.

B

Tag des Kolloquiums: 23.09.2021

Dekan: Univ.-Prof. Dr. rer. nat. Jörn Walter

Vorsitz: Prof. Dr.-Ing. Stefan Seelecke

Berichterstatter: Prof. Dr.-Ing. Georg Frey

Prof. Dr. Mohamed Khalgui

Prof. Dr. Valeriy Vyatkin

Akademischer Beisitzer: Dr. -Ing. Paul Motzki

Weitere Mitglieder: Prof. Dr. Mohamed Abid

i

Abstract:
English: In this project we propose a new software framework for the develop-

ment of context-aware and secure controlling software of distributed reconfigurable

systems. Context-awareness is a key feature allowing the adaptation of systems

behaviour according to the changing environment. We introduce a new definition

of the term “context” for reconfigurable systems then we define a new context

modelling and reasoning approach. Afterwards, we define a meta-model of context-

aware reconfigurable applications that paves the way to the proposed framework.

The proposed framework has a three-layer architecture: reconfiguration, context

control, and services layer, where each layer has its well-defined role. We define

also a new secure conversation protocol between distributed trustless parts based

on the blockchain technology as well as the elliptic curve cryptography. To get better

correctness and deployment guarantees of applications models in early development

stages, we propose a new UML profile called GR-UML to add new semantics al-

lowing the modelling of probabilistic scenarios running under memory and energy

constraints, then we propose a methodology using transformations between the GR-

UML, the GR-TNCES Petri nets formalism, and the IEC 61499 function blocks.

A software tool implementing the methodology concepts is developed. To show

the suitability of the mentioned contributions two case studies (baggage handling

system and microgrids) are considered.

Deutsch: In diesem Projekt schlagen wir ein Framework für die Entwicklung

von kontextbewussten, sicheren Anwendungen von verteilten rekonfigurierbaren

Systemen vor. Kontextbewusstheit ist eine Schlüsseleigenschaft, die die Anpassung

des Systemverhaltens an die sich ändernde Umgebung ermöglicht. Wir führen eine

Definition des Begriffs “Kontext” für rekonfigurierbare Systeme ein und definieren

dann einen Kontextmodellierungs- und Reasoning-Ansatz. Danach definieren wir

ein Metamodell für kontextbewusste rekonfigurierbare Anwendungen, das den Weg

zum vorgeschlagenen Framework ebnet. Das Framework hat eine dreischichtige

Architektur: Rekonfigurations-, Kontextkontroll- und Dienste-Schicht, wobei jede

Schicht ihre wohldefinierte Rolle hat. Wir definieren auch ein sicheres Konversa-

tionsprotokoll zwischen verteilten Teilen, das auf der Blockchain-Technologie sowie

der elliptischen Kurven-Kryptographie basiert. Um bessere Korrektheits- und Ein-

satzgarantien für Anwendungsmodelle zu erhalten, schlagen wir ein UML-Profil

namens GR-UML vor, um Semantik umzufassen, die die Modellierung probabilis-

tischer Szenarien unter Speicher- und Energiebeschränkungen ermöglicht. Dann

schlagen wir eine Methodik vor, die Transformationen zwischen GR-UML, dem

GR-TNCES-Petrinetz-Formalismus und den IEC 61499-Funktionsblöcken verwen-

det. Es wird ein Software entwickelt, das die Konzepte der Methodik implementiert.

Um die Eignung der genannten Beiträge zu zeigen, werden zwei Fallstudien betra-

chtet.

ii

Français: Dans ce projet, nous proposons un framework pour le développement

d’applications sécurisés et contextuelles des systèmes reconfigurables distribuées. La

conscience au contexte est un élément clé permettant l’adaptation du comportement

des systèmes par rapport à leurs environnement. Une définition du terme “contexte”

pour ce type de systèmes est introduite ainsi qu’une approche de modélisation et de

raisonnement du contexte. Après, un méta-modèle d’applications reconfigurables

et conscientes du contexte est défini. Le cadre proposé a une architecture à trois

niveaux: reconfiguration, contrôle du contexte et services, où chaque couche a son

rôle bien défini. Nous définissons également un protocole de conversation sécurisée

entre les parties distribuées basées sur la technologie de blockchain et sur la cryp-

tographie à courbe elliptique. Pour obtenir de meilleures garanties en termes de

correction et de déploiement des modèles d’applications, un profil UML appelé

GR-UML est introduit pour ajouter les sémantiques permettant la modélisation de

scénarios probabilistes fonctionnant sous contraintes de mémoire et d’énergie, puis

une méthodologie utilisant des transformations entre le GR-UML, le formalisme des

réseaux de Petri GR-TNCES et les blocs fonctionnels de IEC 61499 est introduite.

Un outil logiciel mettant en œuvre les concepts de la méthodologie est développé.

Pour montrer la pertinence des contributions mentionnées, deux études de cas sont

considérés.

Contents

1 Introduction 1

1.1 General Context and Motivation . 2

1.2 Problems and Challenges . 4

1.2.1 Applications Requirements Challenges 5

1.2.2 Software Infrastructure Challenges 6

1.2.3 Modeling Methodological Challenges 8

1.3 Thesis Contributions . 9

1.3.1 Software Framework for Smart Applications. 10

1.3.2 Modeling Methodology using the Framework. 11

1.3.3 Secure Conversation Protocol of a Network of Frameworks . . 12

1.3.4 Software Tool Implementing the Framework Concepts. 12

1.4 Publications . 12

1.5 Thesis Plan . 13

2 State of the Art 15

2.1 Introduction . 16

2.2 Motivation . 16

2.3 Context-Awareness Computing . 17

2.3.1 Context-Awareness Definition 17

2.3.2 Context Life-cycle . 19

2.3.3 Context-Awareness Software 22

2.3.4 Discussion . 24

2.4 Formal Verification . 27

2.4.1 Petri Nets . 27

2.4.2 GR-TNCES Formalism . 28

2.4.3 Discussion . 29

2.5 IEC 61499: Standard of Distributed Systems 29

2.5.1 IEC 61499 Function Block Presentation 29

2.5.2 IEC 61499 Applications . 30

2.5.3 IEC 61499 and Intelligence 30

2.5.4 Discussion . 31

2.6 Model Transformation . 31

2.6.1 UML, Probability, Resource Constraints 31

2.6.2 Transformation Between UML and Petri Nets 32

2.6.3 Transformation Between UML and Function Blocks 32

2.6.4 Transformation Between Petri Nets and Function Blocks . . . 32

2.6.5 Discussion . 33

2.7 Blockchain for Distributed Systems Security 33

2.7.1 Blockchain Applications and Types 34

iv Contents

2.7.2 Consensus Protocols . 34

2.7.3 Blockchain Challenges . 35

2.7.4 Discussion . 35

2.8 Conclusions . 36

3 A Software Framework for Context-Aware Reconfigurable Appli-

cations 37

3.1 Introduction . 38

3.2 Motivation . 38

3.3 Context Definition for Context-Aware Reconfigurable Automated

Control Systems . 39

3.4 Framework Meta-Model . 39

3.4.1 Concept Principles . 40

3.4.2 Meta-Model . 43

3.5 Definition and Formalization . 44

3.5.1 Framework architecture . 44

3.5.2 Reconfiguration Layer . 44

3.5.3 Context Control Layer . 52

3.5.4 Service Layer . 67

3.6 Running Example . 68

3.6.1 Case Study Presentation . 68

3.6.2 Case Study Development with the Proposed Framework . . . 70

3.6.3 Discussions . 77

3.7 Conclusions . 78

4 Modeling Methodology Based on the Proposed Framework 81

4.1 Introduction . 82

4.2 Motivation . 82

4.3 Preliminaries . 84

4.3.1 GR-TNCES . 84

4.3.2 Function Blocks Formal Definition 85

4.4 New UML Profile: GR-UML . 86

4.4.1 Class Diagram Definition . 86

4.4.2 Statechart Diagram Definition 88

4.4.3 Component Diagram Definition 89

4.5 Model Transformations . 89

4.5.1 Transformation of GR-UML to GR-TNCES 89

4.5.2 Transformation of GR-UML to IEC 61499 Function Blocks . 93

4.6 Methodology Work Flow . 97

4.6.1 Applications Modeling Using the Framework Models 98

4.6.2 Behavior Testing Using Formal Verification 99

4.6.3 Function Blocks Models Analysis 100

4.7 Software Tool: ZiZo New Version . 100

4.8 Running Example . 102

Contents v

4.8.1 Phase 1 of the Methodology: Modeling using UML Models of

the Framework . 102

4.8.2 Phase 2 of the Methodology: Formal Verification 103

4.8.3 Phase 3 of the Methodology: Model Screening According to

IEC 61499 Using a Function Block Tool 110

4.9 Comparison with Other Approaches 112

4.10 Conclusions . 113

5 Security of a Network of Frameworks 115

5.1 Introduction . 116

5.2 Motivation . 116

5.3 Framework Security Technique . 117

5.3.1 Composition of the Blockchain Technique (Security Module) 117

5.3.2 Dynamics of the Blockchain Technique (Security Module) . . 118

5.4 Secure Conversation Among Distributed Peers Protocol 119

5.4.1 Protocol First Phase: Demand 120

5.4.2 Protocol Second Phase: Response 122

5.4.3 Protocol Third Phase: Termination 123

5.5 Protocol Implementation . 124

5.5.1 Distributed Messaging Platform 124

5.5.2 Private Blockchain Implementation 125

5.5.3 ECIES Encryption . 127

5.6 Running Example . 127

5.6.1 Case Study Presentation . 127

5.6.2 Microgrids System Model . 128

5.6.3 Electricity Trading Protocol 130

5.6.4 Performance Evaluation . 135

5.7 Discussion . 138

5.8 Conclusions . 139

6 Conclusions and Perspectives 141

6.1 Context and Problems . 142

6.2 Contributions and Outputs . 143

6.3 Perspectives . 144

Bibliography 147

List of Figures

1.1 Reconfigurable automation and control systems presentation. 2

1.2 Reconfigurable applications development challenges. 4

1.3 Multidisciplinary application’s logic. 7

1.4 Overview of the thesis contributions. 9

2.1 Context life-cycle. 20

2.2 Example of behavioral module of GR-TNCES. 28

2.3 Function block type. 29

2.4 Basic function block. 30

2.5 Composite function block.. 30

3.1 Generic structure of smart applications of reconfigurable systems. . . 41

3.2 Statechart diagram of generic context-aware reconfigurable system. . 42

3.3 Generic meta-model of context-aware reconfigurable controlling soft-

ware. 43

3.4 Architecture of the proposed framework. 45

3.5 Inputs module scheme. 46

3.6 Inputs module class diagram. 46

3.7 Context entry structure. 46

3.8 Inputs module statechart diagram. 47

3.9 Proposed context reasoning process. 48

3.10 Context attributes models. 48

3.11 Outputs module class diagram. 51

3.12 Outputs module statechart diagram. 51

3.13 Messaging module class diagram. 52

3.14 Messaging module statechart diagram. 52

3.15 Artificial intelligence module scheme. 53

3.16 Artificial intelligence module statechart diagram. 54

3.17 Method allowing to update the fact base. 55

3.18 Method allowing to simulate the knowledge base. 55

3.19 Method allowing to get the conclusion of a rule. 55

3.20 Method allowing to find a triggerable rule. 55

3.21 Distributed system scheme example. 56

3.22 Coordination module statechart diagram. 57

3.23 Secure communication for distributed peers. 57

3.24 Security module scheme. 58

3.25 Security module statechart diagram. 58

3.26 Services precedence relationship example. 60

3.27 Functional module statechart diagram. 61

3.28 Part of the implementation of the exclusion checking. 62

viii List of Figures

3.29 Timing module statechart diagram. 63

3.30 Timing module helper methods. 63

3.31 Interaction classes. 65

3.32 Collaborative behavior in case of reconfiguration. 66

3.33 Collaborative behavior in case of update. 67

3.34 Supervision behavior. 67

3.35 Reconfiguration behavior. 68

3.36 Baggage handling system layout example. 69

3.37 Component diagram of the BHS application model. 70

3.38 Class diagram of the coordination module. 71

3.39 Statechart diagram of the coordination module. 71

3.40 Baggage handling system context model with OWL. 72

3.41 Controller statechart diagram. 74

3.42 Conveyor C14 failure. 74

3.43 Comparison between the current and sensed values. 77

4.1 Transformation of simple statechart example. 89

4.2 Transformation example of guard condition of transition. 90

4.3 Transformation example of probabilistic guard condition of transition. 91

4.4 Transformation example of transition action. 91

4.5 Transformation example of fork pseudostate. 92

4.6 Transformation example of join pseudostate. 92

4.7 Transformation example of choice pseudostate. 93

4.8 Transformation example of a GR-UML component to a composite

function block. 94

4.9 Transformation example of components to composite function blocks. 95

4.10 Transformation example of state internal activities to ECC of a BFB. 96

4.11 Modeling methodology flowchart. 98

4.12 ZiZo: Probabilistic statechart diagram viewer. 100

4.13 ZiZo: Component diagram viewer. 101

4.14 Export to function blocks button. 101

4.15 Export to GR-TNCES button. 101

4.16 “.fbt” file readable by 4DIAC and FBDK. 102

4.17 “.zz” file readable by ZIZO. 102

4.18 Statechart of the Loading Services subroutine of the controller. . . . 103

4.19 Transformation of the composite state Loading Services. 104

4.20 Probabilistic part of the statechart of the controller. 106

4.21 Probabilistic part of the statechart of the controller. 107

4.22 Prism code of the rerouting analysis module. 108

4.23 Prism module simulation. 108

4.24 Deadlock property. 108

4.25 Successful rerouting. 108

4.26 Success for one year. 109

4.27 Failure for next 12 hours. 109

List of Figures ix

4.28 Failure for one day. 109

4.29 Long running failure. 109

4.30 Transformation of statechart diagram of the controller loading service

subtask to function blocks. 110

4.31 Selecting Service composite function block interface. 111

4.32 Internal composition of the Selecting Service function block. 111

5.1 Composition overview of the proposed security technique. 118

5.2 Proposed security technique behavior. 118

5.3 Block addition to chain behavior. 119

5.4 Conversation protocol using Blockchain and ECIES. 121

5.5 Blocks data structure. 125

5.6 Blockchain confirmation time. 126

5.7 Architecture and membership concept. 129

5.8 Microgrid network communication model. 130

5.9 Trading protocol among microgrids. 131

5.10 Comparison of memory size. 138

List of Tables

2.1 Taxonomy used in Table 2.2. 25

2.2 Comparison of existing software frameworks for the development of

context-aware systems. 26

3.1 Structure of the requests used by the controller. 64

3.2 Structure of the replies returned to the controller. 65

3.3 Excerpt of the BHS CAMS. 75

3.4 Excerpt of the BHS CRS. 75

3.5 Excerpt of the coordination matrix of CM. 75

3.6 Excerpt from the Rule Base of the AIM. 76

3.7 Functional Exclusion Matrix (FEM). 76

3.8 Functional Precedence Array (FPA). 76

4.1 Summary of transformation rules of statechart diagram to GR-TNCES. 93

4.2 Transformation rules of component diagrams to function blocks. . . 97

4.3 Transformation rules of statecharts diagrams to function blocks. . . 97

5.1 Microgrids required electricity quantities. 136

5.2 Component sizes of the used transactions. 137

5.3 Sizes of the demands/responses with ECIES. 137

5.4 Sizes of the demands/responses with RSA. 138

Chapter 1

Introduction

Contents

1.1 General Context and Motivation 2

1.2 Problems and Challenges . 4

1.2.1 Applications Requirements Challenges 5

1.2.2 Software Infrastructure Challenges 6

1.2.3 Modeling Methodological Challenges 8

1.3 Thesis Contributions . 9

1.3.1 Software Framework for Smart Applications. 10

1.3.2 Modeling Methodology using the Framework. 11

1.3.3 Secure Conversation Protocol of a Network of Frameworks . . 12

1.3.4 Software Tool Implementing the Framework Concepts. 12

1.4 Publications . 12

1.5 Thesis Plan . 13

2 Chapter 1. Introduction

1.1 General Context and Motivation

Reconfigurable automation control systems are core elements of the contemporary

world [Liu et al. 2017]. Smart transportation systems, smart factories, autonomous

driving, smart health-care systems, smart electricity grids are some examples of

the present-day systems where reconfiguration is a fundamental enabler for their

efficient operation. Particularly, the controlling software applications are playing

a key role in developing their functionalities. Continuous attempts are carried out

in order to apply advances of the software concepts in the field of reconfigurable

systems, however many challenges are still ahead related to the development and

engineering of the software. Figure 1.1 depicts a generic schematic view of a recon-

figurable automated control system of three examples of systems (smart microgrids,

smart factories, and smart baggage system).

Figure 1.1: Reconfigurable automation and control systems presentation.

One important research focus is how to provide self-adaptation ability

to applications/systems. In previous works adaptation has been frequently

associated to reconfiguration and context-awareness [Mahalle & Dhotre 2020],

[Krupitzer et al. 2018], [Weyns 2019]. In fact, the integration of ICTs made a huge

1.1. General Context and Motivation 3

amount of data available in a real-time and accurate way, which triggers the idea

of exploiting it in the software logic.

The possibility to boost systems with awareness about the context in which

they are working may considerably improve their behavior. Hence, there is a cru-

cial need to a software infrastructure which enables the development of the com-

plex increasing requirements all with promoting the handling of context knowledge

[Iqbal et al. 2018], [Bucchiarone et al. 2017], [Thramboulidis et al. 2017].

The growing complexity of modern systems requirements has also made the

modeling task of the main logic harder, especially when it comes to guaranteeing

some constraints under which the system should operate. It is necessary to find a

methodology enabling an efficient modeling through a practical process and reliable

results. UML has been widely considered for the modeling of software applications

due to the expressivity it provides through the various types of diagrams. However,

it does not provide a way to get sureness about models correctness. For this, many

works consider the formal verification for additional guarantees [Smida et al. 2019].

Formal verification allows to apply mathematical concepts for models analysis in

a way to recognize model ambiguities and errors. These approaches (UML and

formal verification) are very fruitful for all software types, but despite this im-

portance, other modeling languages/tools are often used for the automation and

control systems such as the IEC 61499 standard [Yang et al. 2019a]. Using IEC

61499 function blocks to model distributed applications provides the way to clarify

the structure and the elementary functions of a system/application. Also it has a

great asset enabling the mapping of function block models into implementations

on some hardware platforms. However, it is hard to start the modeling of big and

complicated applications from the function block level despite the compositional

and hierarchical encapsulation ability. Therefore a modeling research challenge can

be formulated in the following question: is it possible to define a method that takes

profit from the advantages of all the mentioned modeling techniques (UML, formal

verification, and IEC 61499 function blocks) but through a lightweight process?

Information security is being always an inherent challenge to all computerized

systems, especially when it comes to distributed parts of a system, in fact, pro-

tecting exchanged data against falsification is an important condition to guarantee

systems availability and reliability. Many of the existing security mechanisms rely

on the concept of a trust third party which plays the role of a legitimate authority

that verifies transactions security. However, the legitimacy and/or trustworthiness

of the authority part is itself questionable since this part can manipulate private

data of managed users. Blockchain technology [Nakamoto 2019] was introduced

to cope with this limitation through making the security build upon a consensus

paradigm. It is considered as a distributed ledger containing all transactions ver-

ified by all (or the majority) the network nodes [Salman et al. 2018]. It provides

transparency and immutability, which makes it very suitable to distributed trust-

less systems. However, its adoption it not free from flaws. In fact, blockchain has a

scalability challenge since all data are registered and never deleted, therefore its size

is continuously growing. In addition, it resolves the trust and transparency issues

4 Chapter 1. Introduction

but violates the privacy since all participants should be publicly identified. Hence,

to make its use suitable we need to answer the following research question: how can

we use the blockchain technology with preserving peers privacy? Is there a way to

improve ledgers scalability? In the following section, the recognized problems and

challenges are presented in detail.

1.2 Problems and Challenges

Researchers have spent an outstanding effort in proposing system modeling ap-

proaches, software architectures, and software infrastructures. However, developing

a controlling software that takes into account the emerging technologies and the

newly arising requirements is still challenging. Complexity of the requirements is

the main problem that underlie these challenges. Hence, abstract and generic soft-

ware support is required to facilitate the development of the applications needs,

especially that a considerable number of functionalities are repetitive and can be

reusable for specific applications. It is efficient for developers to avoid re-performing

the specification for every case (there is a need to avoid re-inventing the wheel)

[Chen 2017].

Figure 1.2: Reconfigurable applications development challenges.

Three types of challenges are recognized in relation with the software develop-

ment process (see Figure 1.2):

1. Challenges related to the satisfaction of applications requirements,

2. Challenges related to the software infrastructure,

3. Challenges related to the methodological process of efficient applications

modeling.

1.2. Problems and Challenges 5

1.2.1 Applications Requirements Challenges

Satisfying requirements and needs of applications must be the core objective of any

application development. This is why an ultimate attention should be paid on sat-

isfying requirements, especially those promoting smartness. For this, we identified

a set of common requirements that are particularly suited to ensure intelligence

features.

� Need to Efficiently Get Contextual Knowledge. One of the key fea-

tures that promote system’s smartness is context-awareness. In fact, from the

context-awareness computing paradigm, a context-aware system is the one

specified by the ability to adjust its behavior in accordance with the changing

situations related to the system goals and/or to the environment. Many con-

cepts are defined to deal with leveraging context information in proper way.

However, given the intricacy, size, and nature of the considered systems, open

questions regarding the extent of efficiency are still open: given the huge infor-

mation sensed from input devices, and given that the same parameters could

be present in different contexts, how to make decision about which context is

the more proper? In case of faults occurrences, is it possible to lead the proper

adaptation/reconfiguration without human intervention? And how much the

sensed data can be trustworthy? Hence, defining proper context modeling

and reasoning mechanisms are needed.

� Need to Ensure Coordination (Distributed Systems). Distribution

is the latest engineering paradigm promoting the flexibility of reconfigurable

systems. In order to lead an adaptation process, peers need to coordinate

with each other to achieve a global system coherence. After any coordination

the system should maintain a stable state. Consistent interactivity between

the mentioned peers is crucial in fulfilling such a need, but how to provide

an efficient mechanism facilitating the coordination of the distributed compo-

nents?

� Need to Provide Security. As it is the case for any computerized system,

software applications of reconfigurable systems can be vulnerable to cyber-

attacks. The distribution of the system components/peers implies the use

of networking and communication technologies. These technologies have a

set of inherent vulnerabilities that might be exploited in malicious way. Vul-

nerabilities could threaten authentication (verifying the identity of a user),

privacy (the ability to exchange data secretly), data tampering (modifying

some credentials, measurements, etc.), or many other attacks that depends

on the system. Therefore, having the ability to include security mechanisms

in some functionalities is required to build trustworthy applications. The soft-

ware should enable the use of standard or personalized security technologies

especially the emerging ones.

6 Chapter 1. Introduction

� Need to Leverage Artificial Intelligence Mechanisms. Artificial in-

telligence (AI) refers to the computer science branch dealing with making

machines learn from human expertise in order to adapt itself to the changing

inputs [Nassar et al. 2020]. Applications of AI prove its efficiency in many do-

mains such as autonomous car driving, military, health-care, etc. A variety of

AI tools and approaches are introduced to facilitate the use of the mentioned

concepts. Hence, taking profit from these techniques in the development of

better adaptation processes of future reconfigurable systems would help in

minimizing the difficulty of setting up software processes and provide better

results, especially it would help in building prediction tasks and problems

anticipation.

� Need to Handle Unpredictable Reconfigurations (functional). Re-

configuration is a key feature of adaptive systems [Khalgui et al. 2019]. It

is defined as the ability to switch from one system state to another without

human intervention and without putting the system off. These reconfigura-

tions could be originated from the system owners that change operational

goals or from system electrical/mechanical failures. The latter are critical

since they often happen unpredictably. Therefore, there is a need to create

a mechanism guaranteeing safe reconfiguration executions, i.e., reconfiguring

the application without functional conflicts that might relate to sharing re-

sources, dependencies, or priorities.

� Need to Satisfy Real-Time Constraints. Future digital smart systems

are not only required to be smart and intelligent, but also accurate. Appli-

cations need to process data and return results within a determined time.

Response time should depend on the processed task, i.e., whether it is event

driven or it is a regular task, as well as on its priority and capacity. Some

of the events or regular tasks need to be processed before specific deadlines,

for some cases if tasks deadlines are exceeded, the system could fail. These

failures induce damages that could end with economic losses. Therefore, in-

troducing real-time analysis techniques [Ghribi et al. 2018] is also required.

Given the above-mentioned analysis of requirements, we rise the following re-

search questions: What is context and context-awareness for such systems? And

how to allow efficient context reasoning? How to enable coordination between dis-

tributed parts in efficient secure way? What security technologies to adopt for such

distributed systems? How to ensure intelligence, functional, and timing efficiency?

1.2.2 Software Infrastructure Challenges

Developing applications of context-aware reconfigurable systems that have many

different requirements -as detailed in the previous paragraphs- is challenging. The

most important challenges are presented in the following.

1.2. Problems and Challenges 7

� Need to Provide an Infrastructure Enabling Reusability. A software

infrastructure that provides reusable generic, tested, structured modules may

considerably promote the productivity of developers, by making them focus

on the unique requirements of the considered case in place of spending time

and effort on repetitive concerns related to the infrastructure.

� Need to Provide Multidisciplinary Aspects (Holistic). Each single

discipline, used in the software logic, presents many attractive concepts and

original philosophy behind it. However, in real world the application of these

concepts must complete each other and/or work together in harmony in order

to provide expected results. For example, using sensed/collected information

from outside is beneficial as far as secure and trusted communication channels

are set up. Otherwise, data might be falsified therefore very harmful to the

application logic. It is required to build a software that takes into account

the different disciplines as mentioned in Figure 1.3.

Figure 1.3: Multidisciplinary application’s logic.

� Need to Provide Clear and Understandable Software Architecture

(Abstract and Generic). Given the numerous requirements and the in-

volvement of different disciplines into the software logic, defining a clear and

understandable architecture becomes a necessity. The application process

should be tailored into elements responsible for well-defined tasks. In addi-

tion, abstraction layers should be introduced to distinguish the separate roles.

So the question that arise here is how to provide functionalities in a loosely

couple way?

Given the aforementioned analysis of software infrastructure, the hereafter re-

search questions arise: How to define a software infrastructure that guarantees

multidisciplinarity but at the same time clarity and simplicity?

8 Chapter 1. Introduction

1.2.3 Modeling Methodological Challenges

Over the years, many software modeling methodologies have been pro-

posed to satisfy development needs [Grichi et al. 2017], [Meskina et al. 2018],

[Oueslati et al. 2018], [Ghribi et al. 2018]. However, for complicated systems, more

suitable methodologies are still required. In fact, for such systems it is needed to

emphasize some features over others, i.e., some constraints are more important over

others. Thus, developers should pay more attention to these constraints. Complex-

ity of applications urges the necessity to test and validate models during early stages

of developments, otherwise ambiguities and/or error may induce difficult/expensive

corrections if discovered lately. Also, different application views need to be provided.

The definition of an efficient methodology is constrained with a set of challenges

classified as follows:

� Need to Provide the Ability to Model Applications from Structural

and Behavioral Views. Application design is a very important phase of

any application development, therefore accomplishing it in a proper way is

primarily needed. A good modeling phase is the one ending with clear and

understandable structural and behavioral views of the application. Modeling

the dynamics of applications helps in assessing the application logic. The

conventional (but not formal) modeling language UML represents a good

solution for developers to perform modeling. It provides the possibility to

design different system perspectives such as the user, implementation, envi-

ronmental, structural, and behavioral perspectives. The structural view offers

the class diagram as a powerful tool frequently used in most of the projects,

and statechart as well as activity diagrams to model the behavioral view.

However, UML does not provide the semantics to specify probabilistic and

resources-constrained features. Further, for the behavioral view modeling of

complicated systems, using UML diagrams is questionable as it is not formal.

More guarantees about the system behavior correctness are required.

� Need to Provide the Ability to Perform Formal Verification. Having

guarantees about applications correct behavior during early stages of devel-

opment is necessary to reduce faulty behaviors and to improve applications

reliability. Therefore, there is a need to a process that allows the exhaustive

testing of all applications behaviors and the exploration of all states.

� Need to Provide the Ability to Test Deployment in Specific Hard-

ware Environment. Before real-world implementation, models need to be

tested. Simulations are traditionally used to emulate the real-world systems.

However, many problems could be faced. In fact, simulations may not give

complete information about the developed applications since tests will depend

on the prototype hardware specifications and the chosen scenario. Hence,

there is a need to a method enabling the deployment testing in a target hard-

ware environment and in efficient way.

1.3. Thesis Contributions 9

� Need to Provide Modification-Friendly Process. Whenever multiple

modeling techniques are adopted, designers may need to refine and modify

models if pitfalls are catched or new features are added. This modification

should not imply the restart of the modeling process, rather there should

be a way allowing the seamless modification. Therefore, providing a process

flow allowing iterative and cumulative modifications is also required. More

importantly, there is a need to a software tool that supports the move from

one modeling scope to another.

Based on the analysis above-mentioned, the following research questions arise:

Is it possible to define a method that takes into consideration all the mentioned

techniques? If yes, how to tackle the different model testing/analysis needs in one

systematic process? What makes a considered process more efficient and easy?

1.3 Thesis Contributions

In response to the research questions raised by the analysis conducted in the pre-

vious section, the current thesis contributes with a set of solutions to improve the

software engineering approaches of context-aware reconfigurable systems. The con-

tributions of this research project are summarized in Figure 1.4.

Figure 1.4: Overview of the thesis contributions.

10 Chapter 1. Introduction

Advanced concepts are used together to introduce: a new software framework,

a new context reasoning approach, a new secure conversation protocol, a new UML

profile, a new modeling methodology, and new software supports. These contri-

butions aim to make software applications of reconfigurable systems smarter. The

following sections resume the contributions.

1.3.1 Software Framework for Smart Applications.

In order to overcome the challenges related to the applications requirements as well

as the software infrastructure problems showed in Section 1.2.1 and Section 1.2.2,

a software framework is introduced. The framework has a three-layer architecture:

(i) Reconfiguration Layer: is the first layer playing the role of an interface between

the framework core and the environment that the framework behaves within, (ii)

Context Control Layer: is the central layer containing the main logic, and (iii)

Service Layer: is the third layer and it contains the services provided by the system.

Each layer is composed of a set of modules, where each module provides a well-

determined functionality.

The proposed framework introduces a set of original contributions presented in

the following.

� Provide Multidisciplinary Development Model. The proposed frame-

work allows to implement a plethora of requirements that could be needed to

develop future smart systems:

Context Awareness

The proposed framework pays a great care to context-awareness paradigm as

it is considered a key enabler of dynamic interaction with the surrounding.

The framework, through its Reconfiguration Layer, allows to pick-up context

information, performs reasoning on it, finds recommendations, and feeds it to

the second layer.

Include Security Techniques

In order to ensure systems reliability, information security mechanisms are

included as one of the features provided by the framework. In particular, a

blockchain based protocol is proposed as one example of the security tools.

Coordination in Distributed Systems

The proposed framework introduces a coordination mechanism allowing the

distributed peers to collaborate together to establish system global operation

coherence.

Include Artificial Intelligence Mechanisms

The proposed framework introduces a way of leveraging artificial intelligence

concepts to allow some optimization operations. In particular, it provides the

way to develop prediction tasks.

Functional Constraints Satisfaction

1.3. Thesis Contributions 11

In order to guarantee coherent operation of system services, the proposed

framework defines a mechanism to check service’s functional safety such as

priorities and dependencies.

Real-time Constraints Respect

Providing the expected results at the right time and before exceeding their

deadlines is an important task of the software application. This is why, the

proposed framework includes a timing analysis mechanism to allow analyzing

tasks schedulability and time-efficiency.

� Complexity Taming through Clear Architecture. The layered-

architecture of the framework allows to build a clear understanding of ap-

plications logic. The separation of concerns principle is adopted in defining

the different functional layers of the architecture. Also, it allows to define the

necessary modules composing each layer. Through separating the interrelated

tasks into different layers and modules, it becomes possible to tame the com-

plexity of the applications development. The framework presents its different

elements (i.e., layers and modules) in a loosely coupled way in order to make

applications more testable.

� Introduce a Novel Context Modeling and Reasoning Approach. The

proposed framework introduces a new efficient context reasoning mechanism

allowing better intelligence and better resources usage. The reasoning process

builds upon an ontology-based context modeling and it consists in a hybrid

reasoning using different checking perspectives to conclude context informa-

tion.

� Compliance with Emerging Technologies: Blockchain. As blockchain

becomes more and more integrated in modern systems, and given its multiple

assets, the proposed framework includes the possibility to use its concepts

and techniques as security enablers. The blockchain is used as a support for

secure transactions between trustless peers composing a distributed system.

1.3.2 Modeling Methodology using the Framework.

A new modeling methodology of context-aware reconfigurable applications of dis-

tributed systems is introduced. A new UML profile called the Generalized Reconfig-

urable UML (GR-UML) is introduced to enrich existing semantics with probabilis-

tic and resources control semantics. The methodology consists of three phases: (1)

modeling of applications using the models of the proposed framework as well as the

new GR-UML concepts, (2) performing formal verification on the models obtained

from the first phase, and (3) performing deployment testing on a target hardware

environment according to the distributed systems standard IEC 61499. A set of

transformation rules is defined to allow an automatic transformation from applica-

tion’s models to GR-TNCES and to IEC 61499 function blocks. A new software

tool that supports the said transformations is implemented.

12 Chapter 1. Introduction

1.3.3 Secure Conversation Protocol of a Network of Frameworks

A secure conversation protocol among distributed peers having software applications

developed using the proposed framework is introduced. The security of the protocol

builds upon the blockchain technology as well as the elliptic curve cryptography.

Transparency, reliability, and cost-efficiency are guaranteed. The protocol resolves

the problem of identities revealing implicated by the blockchain technology through

identifying transactions rather than identifying its source. A key pair of the Ellip-

tic Curve Integrated Encryption Scheme (ECIES) [Gayoso Mart́ınez et al. 2010] is

newly created for every new transaction where the public key is used as a trans-

action identifier. Scalability has been an inherent problem to blockchain since its

creation since all registered transactions are never deleted, so the size of the ledger

keeps growing. To cope with the scalability problems, the phases and steps of the

protocol are defined in a sort that reduces the number and size of the information

to be stored in the blocks, hence to improve the scalability.

1.3.4 Software Tool Implementing the Framework Concepts.

The proposed framework concepts are implemented in a new software tool which

allows to develop applications of context-aware reconfigurable systems.

1.4 Publications

The results of the thesis are published in the following publications.

1. Fkaier, Soumoud, Mohamed Khalgui, and Georg Frey. “Model-

ing Methodology for Reconfigurable Distributed Systems using Transformations

from GR-UML to GR-TNCES and IEC 61499.” In ENASE, 2021. DOI:

10.5220/0010422102210230. In Proceedings of the 16th International Conference

on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages

221-230. ISBN: 978-989-758-508-1. Published, Class B.

2. Fkaier, Soumoud, Mohamed Khalgui, and Georg Frey. “A Software Frame-

work for Context-aware Secure Intelligent Applications of Distributed Systems.”

In Proceedings of the 16th International Conference on Software Technologies -

ICSOFT 2021, ISBN 978-989-758-523-4; ISSN 2184-2833, pages 111-121. DOI:

10.5220/0010604701110121.” Published, Class B.

3. Fkaier, Soumoud, Mohamed Khalgui, and Georg Frey. “Hybrid Context-

awareness Modelling and Reasoning Approach for Microgrid’s Intelligent Control.”

In Proceedings of the 15th International Conference on Software Technologies -

ICSOFT 2020, ISBN 978-989-758-443-5; ISSN 2184-2833, pages 116-127. DOI:

10.5220/0009780901160127 Published, Class B.

1.5. Thesis Plan 13

4. Fkaier, Soumoud, Mohamed Romdhani, Mohamed Khalgui, and Georg Frey.

“Context-awareness Meta-model for Reconfigurable Control Systems.” In Proceed-

ings of the 12th International Conference on Evaluation of Novel Approaches to

Software Engineering - ENASE 2017, ISBN 978-989-758-250-9; ISSN 2184-4895,

pages 226-234. DOI: 10.5220/0006328502260234. Published, Class B.

5. Fkaier, Soumoud, Mohamed Romdhani, Mohamed Khalgui, and Georg

Frey. “R2TCA: New tool for developing reconfigurable real-time context-

aware framework—Application to baggage handling systems.” In Proc. Int.

Conf. Mobile Ubiquitous Comput., Syst., Services Technol.(UBICOMM), pp.

113-119. Venice, Italy, 2016. Published, Selected Paper, Class C.

(https://www.iaria.org/conferences2016/AwardsUBICOMM16.html)

6. Fkaier, Soumoud, Mohamed Romdhani, Mohamed Khalgui, and Georg Frey.

“Enabling reconfiguration of adaptive control systems using real-time context-aware

framework.” In 2016 IEEE/ACS 13th International Conference of Computer Sys-

tems and Applications (AICCSA), pp. 1-8. IEEE, Agadir, Morocco,2016. Pub-

lished, Class C.

7. Fkaier, Soumoud, Mohamed Khalgui, and Georg Frey. “Meta-

Model for Control Applications of Microgrids.” In ENERGYCON, 2020.

doi:10.1109/energycon48941.2020.9236582. Published. Indexed by IEEE

Xplore, Scopus, and SJR platform.

1.5 Thesis Plan

This research project aims to provide novel solutions to enhance the development of

smart software applications for distributed reconfigurable systems. The structure of

the dissertation aligns with the main contributions of the thesis through the third,

fourth, and fifth chapters. The outline of the manuscript is given as follows:

In Chapter 1, which is the current chapter, the thesis is placed into its axes,

where the need to novel concepts, tools and methods in the development of smart

software of distributed reconfigurable systems is analyzed. The analysis has led to

identify a set of related problems and challenges classified into three types: problems

related to the satisfaction of the multitude of requirements especially those related

to secure coordination and context-awareness, problems related to the software

infrastructure that may facilitate the development of applications, and problems

related to modeling methodologies that allows to explore structural and behavioral

views as well as to test its correctness and deployability.

Chapter 2 presents a survey of the context-awareness concepts and tools as well

as the related context-aware computing concepts. This chapter also presents the

areas that the work deals with such as the Petri nets classes (more precisely the GR-

TNCES formalism), the standard of distributed systems IEC 61499, and researches

14 Chapter 1. Introduction

in the field of model transformation. In addition, this chapter provides an overview

of the blockchain technology and points out the challenges associated to its use.

In response to the problem related to the software infrastructure, Chapter 3

introduces the proposed framework. Chapter 3 presents also the design principals,

the meta-model, and the architecture of the framework. A formal definition of its

components is provided as well as UML models of each component are presented.

Chapter 3 introduces also a novel context reasoning mechanism that builds upon a

new definition of the term “context” for reconfigurable systems. The contributions

introduced in this chapter are applied to a running example of a software of an

airport baggage handling system.

Chapter 4 introduces at first a new UML profile, the GR-UML, then a three-

phased modeling methodology which draws upon the framework models and GR-

UML. The definition of the phases is presented as well as the definition of the

transformation rules of the models issued from the first phase to GR-TNCES Petri

nets extension and to IEC 61499 function blocks. An example of use of the defined

methodology is shown using the same example of a baggage handling conveyors

application.

Chapter 5 defines a secure conversation protocol among distributed and trust-

less peers having a controlling software developed with the proposed framework.

The security of the protocol draws upon the blockchain technology as well as the

difficulty of the elliptic curve cryptography. The phases and steps of the protocol

are introduced in a way to optimize the data size of exchanged transactions with

the aim of improving the scalability in terms of storage burden. The protocol is

applied to a case of electricity trading among distributed microgrids.

Chapter 6 concludes the dissertation and shows its contributions and outputs.

Perspectives of the improvement of the framework as well as future software devel-

opment approaches are proposed.

Chapter 2

State of the Art

Contents

2.1 Introduction . 16

2.2 Motivation . 16

2.3 Context-Awareness Computing 17

2.3.1 Context-Awareness Definition 17

2.3.2 Context Life-cycle . 19

2.3.3 Context-Awareness Software 22

2.3.4 Discussion . 24

2.4 Formal Verification . 27

2.4.1 Petri Nets . 27

2.4.2 GR-TNCES Formalism . 28

2.4.3 Discussion . 29

2.5 IEC 61499: Standard of Distributed Systems 29

2.5.1 IEC 61499 Function Block Presentation 29

2.5.2 IEC 61499 Applications . 30

2.5.3 IEC 61499 and Intelligence 30

2.5.4 Discussion . 31

2.6 Model Transformation . 31

2.6.1 UML, Probability, Resource Constraints 31

2.6.2 Transformation Between UML and Petri Nets 32

2.6.3 Transformation Between UML and Function Blocks 32

2.6.4 Transformation Between Petri Nets and Function Blocks . . . 32

2.6.5 Discussion . 33

2.7 Blockchain for Distributed Systems Security 33

2.7.1 Blockchain Applications and Types 34

2.7.2 Consensus Protocols . 34

2.7.3 Blockchain Challenges . 35

2.7.4 Discussion . 35

2.8 Conclusions . 36

16 Chapter 2. State of the Art

2.1 Introduction

This chapter starts with an analysis of the existing software development approaches

of smart/adaptive reconfigurable systems then discusses its limitations. After that

it presents overviews of the topics to be tackled to propose new solutions in the

current thesis.

In Section 2.3, context-awareness computing paradigm is surveyed through pre-

senting the existing context definitions, context life-cycle, and context aware soft-

ware tools, where a thorough focus is made on surveying software frameworks ded-

icated to the development of context-aware systems.

Based on the identified problem concerning the methodological process of ef-

ficient modeling phase, Section 2.4, Section 2.5, as well as Section 2.6 present in

nutshells the topics to be involved in the proposed modeling methodology, which

are the formal verification, the distributed industrial automation systems standard

IEC 61499, and the model transformation of UML models to the two latter.

Section 2.7 briefly presents the foundations of the blockchain technology and

its great potential to ensure security to distributed systems. An analysis of its

limitations is then carried out.

Finally, Section 2.8 recapitulates the outcomes of this chapter and points out

the limitations of the reviewed topics.

2.2 Motivation

Any control automation system strives to ensure more intelligent behavior to

improve users satisfaction. However, given the increasing complexity originated

from distribution matters, data sources heterogeneity, and requirements vari-

ety, the development of the software for such systems becomes really a difficult

task. This is why, over the years many concepts and paradigms have been in-

troduced to promote the integration of knowledge-based and intelligence tech-

niques to the software of reconfigurable systems. For instance, the researches re-

ported in [Schneider et al. 2017], [Schneider et al. 2019], and [Ekaputra et al. 2017]

have proposed ontology and knowledge-based solutions for the operation of con-

trol logic of automation systems. The works reported in [Krupitzer et al. 2018] and

[Weyns 2019] have surveyed existing solutions where intelligence and adaptation are

driven by approaches such as architectures, run-time models, goals, and guarantees

under uncertainties. Among possible solutions, context-awareness computing rep-

resents an important alternative enabling smart behaviors. In fact, thanks to the

advances of embedded devices as well as the highly powerful networking and com-

munication technologies, smarter operations and better services are expected to be

provided. Ubiquitous input devices such as sensors and measurement units, have

helped to afford huge amounts of data in a continuous way about the changing

environment and conditions of their operation. But how to take profit of this

paradigm and apply its concepts for the reconfigurable systems? What

is a context in such type of systems? How can we efficiently use contex-

2.3. Context-Awareness Computing 17

tual information in the software logic? Which software infrastructure to

use in order to be able to implement systems requirements and integrate

context awareness? From another side, cyber security is considered a major con-

cern for computerized and distributed systems. Due to the complexity and scale

of such type of systems, they are generally deployed in reconfigurable distributed

modules, which makes communication at the heart of most of the activities. But

which security techniques to use for distributed reconfigurable systems?

How can we set secure coordination among distributed peers all with

guaranteeing exchanged data integrity and peers anonymity? To provide

robust software applications, the underlying models should be appropriate and clear

enough to ensure successful code implementation, especially that reconfigurable sys-

tems are becoming day-by-day more complex. UML modeling provides the way to

figure out different views, but despite this advantage additional analysis concerning

the mapping to hardware devices and the correct behaviors are required to pick up

errors and ambiguities in early stages. But what modeling techniques could

be used to get more guarantees about models efficiency? How to proceed

to get reliable models?

In order to answer the raised questions, we need first to look at existing works.

2.3 Context-Awareness Computing

This section provides an overview of the context-awareness computing and high-

lights the related topics to the current thesis.

2.3.1 Context-Awareness Definition

A huge amount of data related to the changing environment is made available thanks

to the growing development of ubiquitous computing technologies such as advanced

sensing and networking tools. This availability has created the motivation to ex-

ploit data in applications logic in order to provide the users with more accurate and

proper functionalities that fit the current context. Systems that have the ability

to integrate such ambient information in the operational behavior of the software

applications are known as context-aware systems [Mahalle & Dhotre 2020]. To un-

derstand how can adaptive systems include the context-awareness paradigm, two

paramount basics need to be defined: context and categories of context-awareness

[Li et al. 2015] [Alegre et al. 2016].

2.3.1.1 Context Definition

In 1994, Bill N. Schilit has introduced the term “context-aware computing” to

describe distributed mobile software applications that can react to the changing

context of a person [Schilit et al. 1994]. Context was determined through answer-

ing three questions: “where are you? who you are with?, and what resources are

nearby?”[Schilit et al. 1994]. Hence, the context covers different information such

18 Chapter 2. State of the Art

as the location, the time of the day, the communication bandwidth, the position of

the surrounding persons, etc.

Over time, the context-aware paradigm was integrated to various systems, which

made the context definition no longer fitting to all systems, environments, and tar-

gets. This is why, researchers have introduced different definitions of “context”

given their current context, i.e., considered project characteristics and environ-

ments. Brown et. al. in the work reported in [Brown et al. 1997], define the con-

text as “location, identities of the people around the user, the time of day, season,

temperature and so forth.”. However, Franklin et. al., [Franklin & Flaschbart 1998]

simply define it as “what is happening at this moment”.

It was difficult to provide an accurate, generic, and fit-to-all definition to the

context concept. For this reason, in 1999, Dey and Abowd reviewed the existing

attempts to define context in their research presented in [Abowd et al. 1999] and

introduce the following definition “Context is any information that can be used

to characterize the situation of an entity. An entity is a person, place, or object

that is considered relevant to the interaction between a user and an application,

including the user and applications themselves.” This definition has been well re-

ceived by many researchers and has been adopted in many works. But despite this

acknowledgment, it remains imperfect. Therefore, researchers have continued to

suggest other definitions in an effort to either improve this definition or to provide

definitions appropriate for system’s particularities [Perera et al. 2013].

Most of the definitions consider the user as a central element of context-aware

applications. But does this apply to reconfigurable automated control systems

that are usually based on interaction between devices and where the user’s role is

minimal?

2.3.1.2 Context Categories

To facilitate the handling of context information, researchers resorted to classifying

these information according to the nature of systems. Based on some specific per-

spectives, different categories are defined. For instance in some systems, context

is categorized based on surveillance during run-time into static and dynamic. For

other systems it is classified into physical and virtual, where physical refers to phys-

ical objects such as nearby objects and persons, and virtual refers to the inferred

and learned information. It is also categorized into direct and indirect, into primary

and secondary, into internal and external, etc. One other different categorization

approach is the one adopting the distinction of context through answering a set of

questions such as who?, when?, where?, what?, and why?.

Authors of [Perera et al. 2013] surveyed the categorization schemes and summa-

rize it into two main schemes, conceptual and operational. Xin et. al. also surveyed

context taxonomies in the work reported in [Li et al. 2015]. Both researches end

with a conclusion that there is no perfect approach in the absolute, but depending

on the context one can be preferred over others.

2.3. Context-Awareness Computing 19

2.3.1.3 Context-Awareness Applications

At the beginning of its appearance, the context-aware notions were applied

to mobile applications that aim to provide users with more intelligent appli-

cations [Luo et al. 2020]. For instance, In [Ortiz et al. 2019] mobile context-

aware applications architecture are presented and an analysis of its resources

consumption is conducted. In [Luo & Feng 2015] context-awareness is used

along with Near Field Communication (NFC) technologies to provide better mo-

bile services, while in [Khan et al. 2020] is used to create a recommender sys-

tem for intelligent markets. Since then, its concepts and tools are refined,

expanded, and consolidated and made its adoption invade more fields such

as the employment [Belkadi et al. 2020], education [Psyche et al. 2020], cyber-

security [Verginadis et al. 2017], [Kayes et al. 2019], [Arfaoui et al. 2020], Internet-

of-Things [Gochhayat et al. 2019], and computer science tools [Lee et al. 2018],

[Wang & Varghese 2020]. Context-awareness has also revolutionized the field of

health-care systems through enabling more sophisticated functionalities that save

people lives and improve the medical surveillance of some critical cases. Important

works are reported in [Abdellatif et al. 2019], [Forkan et al. 2015].

In general, reconfigurable systems services are also improved through context-

awareness concepts. In [Singh 2020], a context-awareness solution is provided for

cars smart parking. In [Horcas et al. 2019] context-awareness is used as a key solu-

tion of software adaptation enabling energy efficient applications of cyber-physical

systems. By the advent of Industrie 4.0, many works have tried to provide so-

lutions to the automatic adaptations. The authors of [Flatt et al. 2015] propose

a context-aware assistance systems for smart factories. In [Choi et al. 2018], au-

thors introduce a power equipment management solution for smart cities, while au-

thors of [Donohoe et al. 2013] use context-awareness for intelligent microgird stor-

age. In [Fkaier et al. 2016b], [Fkaier et al. 2016a] context-awareness is introduced

to the software of an airport baggage handling system. In [Fkaier et al. 2017]

it was integrated to the software processes of reconfigurable systems, while in

[Fkaier. et al. 2020a] it was used for better awareness of microgrids.

2.3.2 Context Life-cycle

In order to use efficiently its contributions, context-awareness requires a definition

of a clear and consistent information managing process. Many information process-

ing life-cycles are already defined in the field of software engineering, such as the

Intelligence Cycle [Shulsky & Schmitt 2002]. However, in the context-awareness

computing realm, specific life-cycles are introduced such as the one reported in

[Hynes et al. 2009]. In the current research, four phases are considered to be parts

of the context life-cycle as mentioned in Figure 2.1; context acquisition, modeling,

reasoning, and distribution.

Context Acquisition: In the context acquisition phase, data is received, mea-

sured, sensed, and/or inferred from data sources. Sensors play a fundamental role

20 Chapter 2. State of the Art

Figure 2.1: Context life-cycle.

in providing context information, different types of sensors can be utilized such as

light, humidity, temperature sensors, etc.

Context Modeling: After obtaining the context information, a common presen-

tation format is needed to be defined in order to make the information ready for

processing and storage by applications.

Context Reasoning: Modeled context information may not imply clear mean-

ings. Due to this fact, a context reasoning is required to analyze data and produce

conclusions based on context data.

Context Distribution: In this phase, context information is disseminated to

applications.

In this thesis, the context modeling and reasoning phases are considered the

most important phases in the context life-cycle as they contain conception and

logic inside, and their performance impacts greatly the quality of the applications.

Accuracy as well as resources consumption are to be taken into account when se-

lecting or proposing modeling and reasoning techniques.

2.3.2.1 Context Modeling

To represent acquired context information, various modeling techniques are defined.

In the following, the most used techniques are presented in a nutshell.

Key-Value Modeling : consists in pairs of properties and values that are used to

model context data in many formats like text files. It is generally used for simple

cases as it is a very simple modeling technique.

Markup Modeling : consists in modeling data using tags. Famous markup tech-

niques such as XML can be used. It is better than the key-value modeling through

enabling efficient data retrieve.

Object-Oriented Modeling : leverages the Object Oriented Programming

paradigm since it provides re-usability and encapsulation. Concepts of class and

its relationships (inheritance, polymorphism, etc.) help in creating sophisticated

context rows.

Logic-based Modeling : consists in using the logic theories such as predicate, first-

order, or fuzzy logic, depending on the considered system. Facts, rules, relations

2.3. Context-Awareness Computing 21

could be defined to express context data.

User-centric Modeling : consists in modeling context data through answering

the five questions: when, where, who, what, why, and how. This technique makes

the data easily readable and understandable by users.

Ontology-based Modeling : consists in using semantic representation of data. It

allows to present a set of properties of context data, the relationships between

them, and their categories. The Web Ontology Language (OWL) is considered as

an important tool providing rich and complex knowledge about subjects.

After having over-viewed the most important techniques, which modeling

technique to use for context modeling of reconfigurable systems?

2.3.2.2 Context Reasoning

Similarly as the modeling, in order to process collected contextual data, different

reasoning techniques are defined according to the considered case.

Probabilistic Reasoning : the logic of this method assigns probabilities to facts

related to the considered system. Then, mathematical probability theories are

applied to infer knowledge, such as the stochastic process models, Markov models,

Naive Bayes.

Ontology-based Reasoning : it is a semantic reasoning based on descriptive

logic. It uses the ontology models modeled with the Semantic Web Rule Language

(SWRL), Web Ontology Language (OWL), etc.

Rule-based Reasoning : it consists in a simple and traditional approach of knowl-

edge inferring. IF-THEN rules are triggered to conclude knowledge. Rules are gen-

erally composed of two parts: condition and conclusion. The condition can be a

premise or a set of premises valid simultaneously.

Supervised Reasoning : consists in training labeled data in order to predict out-

puts of unforeseen data. It helps to classify data by means of finding relationships of

input data. Many techniques can be used such as Naive Bayes, random forests, sup-

port vector machines, linear and logistic regression, artificial neural networks,etc.

Unsupervised Reasoning : consists in finding unknown data patterns. This ap-

proach helps in exploratory analysis through automatically identifying data struc-

tures. Different techniques can be used such as K-means, cluster algorithms, hier-

archical clustering, etc.

Fuzzy Logic Reasoning : consists in finding the degree of truth (real number

between 0 and 1) of a variable instead of assigning it a boolean value (1 or 0). This

technique helps to identify the partial truth of data.

After scanning the existing techniques, which one to use for context rea-

soning of automated control systems?

2.3.2.3 Discussion

Based on the literature overview of the context modeling and reasoning presented

previously, it is clear that context-awareness computing represents a huge com-

puting field that has manifold techniques in each step of the context life-cycle.

22 Chapter 2. State of the Art

Concerning the modeling and reasoning (the two steps considered in the current

work), a survey on the big variety of techniques ends with a conclusion that the

ontology-based modeling method has privileges in terms of re-usability, interop-

erability, and extensibility. It allows also to ensure independence from use case

applications through abstracting entities. More importantly, it offers better expres-

sive context representations [Alegre-Ibarra et al. 2018].

Despite its efficiency in context modeling, the ontology-based approach has some

limitations when used for reasoning. Researchers have shown that ontology-based

reasoning is complex and ambiguous for most cases. Also, its suitability remains

questionable for systems having timing constraints [Fkaier. et al. 2020a]. However,

rule-based approach has the potential to provide promising results.

Machine/deep learning is an outstanding reasoning technique that is gaining

great interest in the last few years and it is very powerful for various use cases.

However, its efficiency and suitability for applications of reconfigurable systems are

still open to questions. In fact, to fulfill its intended operation, machine learning

techniques require substantial amount of information for training and obtaining

new knowledge. For this, preparing enough and good data for each particular

instance of a system is necessary, especially that even one additional condition could

considerably impact the reasoning. This task becomes more and more costly by the

increasing intricacy of the considered system. Moreover, machine learning draws

upon the so-called “black box” models. Models are called black boxes because it is

very difficult to understand them and they are of complex and unpredictable nature.

However, it is required to provide easy and clear explanations of the conclusions ob-

tained from a reasoning agent, especially for systems having the obligation to make

financial and security reports (e.g. microgirds). As it can be seen, the adoption

of such a technique may add complexity to the main tasks rather than making it

simpler. Hence, it is wiser to use clear controllable approach such as the rule-based

approach [Fkaier. et al. 2020a].

Given the presented analysis, a hybrid context information obtainment mech-

anism is proposed in this work. The mechanism builds upon ontological context

models and rule-based reasoning. An enhanced reasoning process is proposed to

minimize resource usage.

2.3.3 Context-Awareness Software

Despite of its fascinating and great contributions from a consumption perspec-

tive, context-awareness computing gives rise to difficult challenges for software en-

gineers/developers. It is difficult to implement applications that have to perform

multidisciplinary functionalities, i.e., application’s functional requirements as well

as context-awareness services. This is why, researchers have spent a great effort

in proposing approaches at the aim of providing development supports for context-

aware applications. Several approaches are introduced, among them software frame-

works represent a promising solution.

2.3. Context-Awareness Computing 23

2.3.3.1 Context-Awareness Programming Solutions

In order to produce a viable context-aware application, different approaches (in-

cluding methods, tools, and programming paradigms) are defined in the state of

the art and could be adopted during the development phase.

Concerning the programming paradigms, which are methods with which the pro-

gramming activity is performed, some of the already existing paradigms in the field

of software engineering are also applicable to the development of context-aware ap-

plications. Object-oriented, feature-oriented, aspect-oriented, agent-oriented, and

service-oriented are examples of paradigms used to develop context-aware systems.

The research reported in [Alegre et al. 2016] provides a survey on the usage of these

paradigms in the development of context-aware systems such as the works reported

in [Murukannaiah & Singh 2014].

Concerning the methods, which are systematic development processes composed

mainly of phases and their related techniques, a set of examples are used in liter-

ature. Different terming is used to describe the proposed approaches such as de-

velopment environments, toolkit, platforms, services, etc. Also, example use cases

are introduced to show how these methods are to be used. The work reported in

[Perera et al. 2013] surveys some of the most remarkable approaches. For instance,

in [Chen et al. 2004] a context broker architecture called CoBrA is proposed, a

context-aware service platform called CaSP is proposed in [Devaraju et al. 2007],

an autonomic context management system is proposed in [Hu et al. 2008].

Concerning the tools, two main solutions have been largely adopted: middle-

wares and frameworks. Given that sensors are fundamental actors in context-aware

systems, middlewares were a very interesting solution for many developers. A big

variety of middlewares exists in literature. For example, the survey presented in

[Li et al. 2015] summarizes the most important middlewares proposed between 2009

and 2015. Middelware design is generally influenced by directives specific to the use

case such as interoperability, scalability, and storage needs. For instance, the au-

thors of [Chaqfeh & Mohamed 2012] introduce a middleware of context-awareness

in the Internet-of-Things (IoT), in [El Khaddar et al. 2015] and [Forkan et al. 2014]

middlewares are introduced for healthcare systems, etc. Software frameworks have

been widely researched due to their importance in terms of providing ready to

expand applications. This is why, an overview of the most important works is

presented in a separate paragraph in the following subsection.

2.3.3.2 Context-Awareness Software Frameworks

There is a plethora of frameworks defined with the aim of supporting context-aware

applications development. Due to space limitation, this section presents only some

of the recent ones that are defined in journal papers since 2014.

In 2015, the authors of [Forkan et al. 2015] propose a framework for personalized

knowledge discovery in the assisted healthcare field. The framework uses huge data

provided by the Ambient Assisted Living systems which is stored in cloud.

24 Chapter 2. State of the Art

Later, in 2016, the authors of [Kim et al. 2016] propose a context-aware risk

management framework for cold chain logistics called i-RM framework. The frame-

work consists of two parts: a risk management system and ontology base. In

[Alhamid et al. 2016] also authors propose a multimedia recommendation frame-

work for user experience improvement. Usage history as well as social network are

used to extract context data.

Then, in 2017, authors of [Aid & Rassoul 2017] propose a framework for natural

disasters management. The framework is based on a SoA and relies on web ser-

vices to allow the integration of devices. Additionally, in [Bucchiarone et al. 2017]

authors propose a planning-based composition framework for featuring abstract

requirements and context awareness in the field of Internet-of-Services (IoS). An

automated IoS-based car logistics case is used to show the proposed approach.

After, in 2018, authors of [Iqbal et al. 2018] propose a framework for fog in-

frastructures in the Internet-of-Vehicles (IoV). The framework provides real-time

context-aware services and it builds upon a fog layer architecture. Further in

[Alhanahnah et al. 2018], authors propose a multifaceted framework to support the

trust evaluation of cloud service providers. The framework relies on mathematical

methods to accomplish its tasks. Moreover, in [Cheng et al. 2018] authors propose

a service-oriented framework for mobile applications. The said framework relies on

ontology context-reasoning.

Last, in 2019, [Sikder et al. 2019], authors propose a framework for detecting

threats originated from sensors of smart devices. The framework offers an intrusion

detection observation system to recognize benign and malicious behaviors.

2.3.4 Discussion

Frameworks represent a promising solution for the development of software applica-

tions. In fact, frameworks are generally created to improve the efficiency of software

creation. This is achieved through promoting: (1) reliability: thanks to providing

tested model of applications infrastructure, (2) developers productivity: via making

them focus on the specific/additional requirements of applications rather than on

the infrastructure, and (3) rapidity: through extending the generic framework build-

ing blocks to specific application blocks. Frameworks promote reusability which

facilitates the applications development. However, a study of the above-mentioned

context-awareness frameworks has led to identify some limitations (a recapitulation

of the comparative analysis of the mentioned frameworks is presented in Table 2.2,

the taxonomy used in its presentation is presented in Table 2.1):

� First of all, most of the existing frameworks are dedicated to the development

of mobile applications and few are those that can be applicable to complicated

reconfigurable systems. More importantly, existing frameworks either focus

on the context-data life-cycle and do not take into consideration additional

constraints, or they provide it in restricted ambiguous way.

� Providing UML models of a software infrastructure is of great importance

2.3. Context-Awareness Computing 25

and may help developers to efficiently extend its concepts especially when

it comes to complicated systems. Whereas, most of the existing works do

not provide the frameworks UML models and settle for textual description

or non-unified graphical representation. Thus, it becomes hard to build com-

plete UML models, and consequently to get difficulties in tasks related to the

modeling.

� Despite its importance, verification of concepts by simulation still need ad-

ditional theoretical proofs since simulations are generally dependent on the

chosen test cases.

� Few are the frameworks that take into consideration the distribution of peers

in a context-aware system. However, distribution is a very important feature

of today’s systems.

� Security concerns are inherent to any computerized system. Particularly, sys-

tems relying on geographically distributed peers inevitably need to include

proper security measures in order to ensure systems reliability. Nevertheless,

none of the mentioned frameworks has provided a solution to the security.

� Taking into consideration timing constraints when leading a reconfiguration

process in the software logic is a crucial need to satisfy if accurate and reliable

behavior is desired.

Table 2.1: Taxonomy used in Table 2.2.
Taxonomy Meaning

UML Modeling
UML model available (X), not clear how to use the framework to model
applications (-).

Verification Technique Formal (F), Simulation (S), Not mentioned (-).

CContext Modeling
Ontology-based (O), Key-Value (KV), Graphical modeling (G), Object-
oriented (OO), Logic-based (L), What/When/Where/Who/What-about
(5W), Property-based (P).

Context Reasoning
Ontology-based (O), Supervised learning (SL), Unserpervised learning (USL),
Rule-based (R), Probabilistic (P), Artificial-Intelligence-based (AI).

Distributed Control (X) support distribution, (-) does not support distribution.

Knowledge Manage-
ment

(X) available, (-) not available.

Secure Coordination (X) available, (-) not available.

Real-time reconfigura-
tion

(X) available, (-) not available.

Application Example provided by authors.

2
6

C
h

a
p

te
r

2
.

S
ta

te
o
f

th
e

A
rt

Table 2.2: Comparison of existing software frameworks for the development of context-aware systems.
R

ef
er

en
ce

Y
ea

r

U
M

L
M

od
el

in
g

V
er

ifi
ca

ti
on

T
ec

hn
iq

ue
C

on
te

xt
M

od
el

in
g

C
on

te
xt

R
ea

so
ni

ng
D

is
tr

ib
ut

ed
C

on
tr

ol
K

no
w

le
dg

e
m

an
ag

em
en

t

Se
cu

re
co

or
di

na
ti

on
R

ea
l-
ti

m
e

re
co

nfi
gu

ra
ti

on
A

pp
lic

at
io

n

[Tang et al. 2014] 2014 - S O - X X - - health-care

[Forkan et al. 2015] 2015 - S L SL X X - X health-care

[Kim et al. 2016] 2016 - S O R - X - X
cold chain

logistics

[Alhamid et al. 2016] 2016 - - L P - - - - multimedia

[Aid & Rassoul 2017] 2017 - S 5W - - X - -

disaster

manage-

ment

[Bucchiarone et al. 2017] 2017 X S P AI - X - -
Internet of

Services

[Cheng et al. 2018] 2018 - S O O,R - X - -
smart mo-

bile phones

[Sikder et al. 2019] 2019 - S P P - X - -
smart mo-

bile phones

2.4. Formal Verification 27

Given the shortcomings identified by the analysis and comparison of the existing

frameworks, it can be concluded that there is a crucial need for a new framework

that can be able to overcome all the mentioned challenges in a single software

infrastructure using novel engineering techniques.

2.4 Formal Verification

As the development of reconfigurable systems is increasing in complexity, formal

verification of the logic models on early stages becomes necessary. Formal verifica-

tion consists in automatically checking design correctness through tracking errors

and revealing ambiguities using mathematical techniques. Comparing to other ver-

ification techniques, formal verification offers a set of advantages such as allowing

the detection of pitfalls in early design phases as well as the fast remedy (i.e., the

sooner a bug is catched, the easier it can be fixed). Comparing to simulations,

formal verification provides better efficiency since simulations require hardware or

test beds, consume large time, and results are guaranteed unless the same tested

scenarios are reproduced. On top of all this, simulations become more and more

difficult to set with the increasing design complexity.

In addition to all the aforementioned advantages, formal verification allows also

to obtain better written software, to generate test cases, and even to get refined

documentation and maintenance support.

Formal verification helps verifying design correctness using mathematical tech-

niques. These techniques can be classified into three classes: model checking, theo-

rem proving, and equivalence checking [Grimm et al. 2018]: (1) Model checking is

considered as property checking that builds upon a state-based approach. (2) Theo-

rem proving is considered as a mathematical reasoning technique used to prove that

an implemented system meets its design requirements. It builds upon a proof-based

approach. (3) Equivalence checking consists in verifying that two designs are func-

tionally similar. Two approaches can be used: the Logical Equivalence Checking

(LEC) and the Sequential Equivalence Checking (SEC).

2.4.1 Petri Nets

Petri nets are a modeling tool that builds upon graphical and mathematical bases.

It helps generally to design asynchronous, concurrent, parallel, distributed, and/or

stochastic systems. Thanks to its simple elements, which are places and transitions,

Petri nets play the role of visual aid as block diagrams and flow charts do.

Petri nets help to analyze behavioral properties of modeled systems through the

defined initial marking. Properties are in general the reachability, boundedness,

liveness, reversibility and home state, faireness, synchronic distance, coverability,

and persistence. These properties are analyzable through different methods such as

the incidence matrix and state equation, the reduction rules, the coverability tree,

reachability graphs, linear invariant analysis, and model checking, etc.

28 Chapter 2. State of the Art

To allow formal verification of distributed systems, specifying the system us-

ing distributed state formalism is generally performed. Different formalisms exist

such as the Net Condition/Event Systems (NCES) which is a formalism for the

modeling of discrete-event systems. It is considered as a Petri-net subclass exten-

sion allowing the modular representation of the system components. This formal-

ism is improved through the ability to specify temporal properties in an extension

called Timed Net Condition/Event Systems (TNCES), with the ability to specify

reconfigurations in an extension called Reconfigurable Timed Net Condition/Event

Systems (R-TNCES), and with the ability to specify probabilistic properties in an

extension called Generalized Reconfigurable Timed Net Condition/Event Systems

(GR-TNCES).

2.4.2 GR-TNCES Formalism

Comparing to previous formalism extensions, GR-TNCES provides the possibility to

create rich specification , i.e., in addition to the modular discrete event-based model-

ing, timing, reconfiguration, and mainly it allows to specify probabilistic properties

as well as resources constraints. In addition, it allows to control the verification

time and complexity.

As presented in [Khlifi et al. 2019], the GR-TNCES formalism is defined as a

network of R-TNCES given by: G= {
∑

R-TNCES}, where R-TNCES=(B,R) with

B a behavior module and R a control module. Its behavioral module contains an

additional set allowing the specification of probabilities on arcs. An example of the

behavioral module, is depicted in Figure 2.2.

Figure 2.2: Example of behavioral module of GR-TNCES.

GR-TNCES Petri nets extension, as it is a generalized formalism, it is adopted in

the specification and verification of many reconfigurable distributed systems such

as medical robots, smart grids, microgrids, automotive, etc. The work reported

in [Guellouz et al. 2016] uses the formalism to perform the formal verification of

reconfigurable function blocks applied to a medical robot called BROS. The re-

search reported in [Guellouz et al. 2018] uses GR-TNCES to verify a fault recovery

strategy of smart grids. In [Khlifi et al. 2017] the formalism is used to verify the un-

predictable reconfigurations running under resources constraints of a skid conveyor

2.5. IEC 61499: Standard of Distributed Systems 29

system of automotive industry. The work reported in [Smida et al. 2019] selects

the extension to analyze the reliability of an autonomous and self-sufficient control

strategy of microgrids.

2.4.3 Discussion

Given the numerous assets that are provided by the formal verification techniques,

precisely by the GR-TNCES formalism, considering it to verify the models of de-

signed applications may provide promising results. A solution that combines UML

and formal verification modeling techniques can considerably reduce the burden on

developers/designers to create robust and reliable applications behaviors.

2.5 IEC 61499: Standard of Distributed Systems

The IEC 61499 is a standard for the development of distributed control systems that

involve intelligent devices and sensors. IEC 61499 comes to overcome the limitations

of the IEC 61131-3 [Thramboulidis 2015] for the centralized control through allow-

ing applications reconfigurability, portability, and interoperability. Applications are

built by a network of function blocks. The function block is the elementary unit

introduced by IEC 61499.

2.5.1 IEC 61499 Function Block Presentation

A function block is the basic unit of IEC 61499 standard and it is encapsulating

data and algorithms. Every function block has an interface composed of a set of

input/output events, input/output data, and the association between these events

and data as depicted in Figure 2.3. The flow of events and data is from left (i.e.,

inputs) to right (i.e., outputs).

Figure 2.3: Function block type.

Two main types of function blocks exists: basic function block and composite

function block. The basic function blocks are composed of two parts: the execution

control chart (ECC) and a set of algorithms as depicted in Figure 2.4. These

algorithms are written in object oriented languages such as C++ and Java or also

in IEC 61131-3 programming languages such as Structured Text (ST). The ECC

30 Chapter 2. State of the Art

is an event-driven state machine connected to the algorithms. The execution of a

particular algorithm is triggered by ECC transitions.

Basic function blocks could also be interfaces to services provided by other parts

and it is called in this case Service Interface Function Block (SIFB).

Figure 2.4: Basic function block. Figure 2.5: Composite function block..

A network of basic function blocks can be encapsulated in one higher-level func-

tion block known as composite function block as depicted in Figure 2.5. The work

flow is determined through the interface of the composite type. Also the execution

flow of internal algorithms of component function blocks is determined through the

composed network.

2.5.2 IEC 61499 Applications

IEC 61499 concepts are used in the modeling of different distributed systems such

as smart grids, material handling systems, product lines, manufacturing systems,

telecommunication, and others [Thramboulidis 2007], [Andren et al. 2017].

The works reported in [Patil et al. 2013], [Yang et al. 2019a], and

[Veichtlbauer et al. 2016] use the IEC 61499 function block as a basic model-

ing element of smart energy systems. For example, in [Patil et al. 2013], function

blocks are used to develop a distributed load balancing approach. The standard

is also used to develop material handling systems such as airports Baggage

Handling Systems (BHS). The researches presented in [Yan & Vyatkin 2013],

[Dai et al. 2015],and [Dai et al. 2016] provide important approaches to the au-

tomation and control of BHS using IEC 61499 concepts. The standard helps

the development of product lines and manufacturing systems as mentioned in

[Panjaitan & Frey 2007], [Garcia et al. 2017]. It is also used in the field of telecom-

munication, the work reported in [Lindgren et al. 2016] uses function blocks in the

Ethernet switches development.

2.5.3 IEC 61499 and Intelligence

In order to improve systems responsiveness to changes without or with minimal

human intervention, embedding intelligence in the system’s control logic is highly

2.6. Model Transformation 31

recommended. However, few are the works that provide solutions that exploit intel-

ligence paradigms (such as artificial intelligence, context-awareness, etc.) in favor

of such systems. In [Nikolakis et al. 2018] the authors proposed an approach based

on context-awareness to design shop floor intelligence and automation. IEC 61499

was used to characterize the system behavior. Authors of [Alsafi & Vyatkin 2010]

have proposed an approach for fast reconfiguration based on an ontology knowledge

of the manufacturing environment. In [Mousavi & Vyatkin 2015] authors have in-

troduced an approach of agent function block in order to integrate intelligence in

the controlling software. The intelligence is exhibited via communication with the

environment and via knowledge reasoning.

2.5.4 Discussion

Although UML provides a multitude of useful diagrams allowing to properly design

applications, using automation related standards to model applications helps def-

initely to improve its quality. Combining UML and IEC 61499 may clarify more

issues related to the field. More importantly, IEC 61499 provides the opportunity

to simulate models in a defined hardware environment thus to explore topics that

help in the implementation. Hence, it is of great importance to align with IEC

61499 to get more powerful modelings.

2.6 Model Transformation

Model transformation approaches have been widely adopted in the software engi-

neering field thanks to its benefits. It consists in an automated method of models

creation and modification based on source models. Its main advantages are reducing

modeling errors, avoiding deviations of the views of a model, and saving efforts.

In this thesis, we propose a modeling methodology of applications of context-

aware distributed reconfigurable systems that builds upon model transformations.

A new UML profile, called GR-UML, as well as a new software tool implementing

the contributions of the methodology are introduced.

In the following, we present an overview of the related transformations methods

that involve UML, the Petri nets formalism, and the IEC 61499 function blocks.

2.6.1 UML, Probability, Resource Constraints

UML is a semi-formal modeling language for the specification and modeling of

software and systems. It offers a set of advantages that allow better development

processes, such as using different types of diagrams, detecting errors, the organized

view to the system/application, etc. However, UML still do not provide the seman-

tics to model probabilistic scenarios running under memory and energy constraints,

which are very important features to the software of reconfigurable distributed sys-

tems.

32 Chapter 2. State of the Art

In [Addouche et al. 2006] have added new semantics to the class and state-

chart diagrams in order to verify probabilistic properties. Later, the authors of

[Nokovic & Sekerinski 2013] have extended state diagrams in order to allow prob-

abilistic verification. However, both works do not allow the verification of proba-

bilistic resource-constrained scenarios neither they allow to express reconfigurations.

The research reported in [Salem et al. 2015a] has extended the semantics of UML

to become suitable for reconfigurable systems, however, despite its importance, this

work does not enable the modeling and verification of reconfigurable probabilistic

logic that must run under resources constraints.

2.6.2 Transformation Between UML and Petri Nets

Despite of its various advantages, UML still not ensuring models reliability and

correctness. Hence, developers have introduced many transformation approaches

that map UML and its profiles to formal models. Authors in [Noulamo et al. 2018]

have proposed a transformation of UML statechart diagrams to time colored Petri

nets. In [Grobelna et al. 2010] a transformation of UML activity diagram into Petri

nets is introduced. The study provided in [Salem et al. 2015a] proposes a trans-

formation of R-UML profile to R-TNCES formalism. The research reported in

[Cardoso & Sibertin-Blanc 2001] presents a transformation of UML sequence dia-

gram to Petri nets. To the best of our knowledge, there are no transformations that

between UML and GR-TNCES.

2.6.3 Transformation Between UML and Function Blocks

IEC 61499 is the standard concerned with the distributed control system and having

as main concept the building of applications using the function block as primary

element. This fact (i.e., using the function block as the only modeling means)

imposes some limitations especially when it comes to big and complex systems.

Thus, many works have been proposed to integrate the UML diagrams and to

introduce transformations between UML diagrams and function blocks.

These existing transformations can be classified into two types: (1) Those

adding UML diagrams to improve the whole development process of applications

based on function blocks. In fact, UML supports the different phases of appli-

cations development life-cycle with a set of diagrams (for example during the

requirements elicitation), while the IEC 61499 proposes only one tool which is

the function block one [Tranoris & Thramboulidis 2003], [Thramboulidis 2004], and

[Panjaitan & Frey 2006]. (2) Those adding UML to have more fine-grained appli-

cation architectural modeling through exploiting the manifold types of diagrams

offered by UML [Dubinin et al. 2005].

2.6.4 Transformation Between Petri Nets and Function Blocks

Looking from another point of view -this is generally adopted by control engi-

neers not software ones- applications can be modeled directly using function blocks

2.7. Blockchain for Distributed Systems Security 33

then transformed into Petri nets for formal verification. The work reported in

[Pang & Vyatkin 2008] presents an automatic function block model generation us-

ing the Petri nets formalism Net condition/Event Systems (NCES). Authors in

[Ivanova-Vasileva et al. 2008] have also proposed a transformation between func-

tion block interfaces and NCES formalism in order to prove the correct behavior of

distributed control systems. Recently, the study reported in [Guellouz et al. 2018]

presents a transformation between an extended version of function blocks and the

GR-TNCES formalism.

2.6.5 Discussion

Using UML for modeling software applications is adopted in most of the projects,

hence it is wiser to rely on “almost” conventional language to create applications

models. Therefore, considering the UML model as the basic modeling technique and

using transformations for additional modeling and analysis techniques may provide

good results. However, current UML semantics and existing profiles are not suitable

to the modeling of probabilistic scenarios that must run under memory and energy

constraints. Hence, there is a need for more adequate semantics for the efficient

modeling of such features.

Coming now to transformations, for the best of our knowledge, there are no

transformations from UML to GR-TNCES models. Also, existing transformations

from UML to function blocks are simplistic and not sufficiently adequate. Con-

sequently, there is a pressing necessity for more thorough transformations that

would transform UML models to function blocks and to GR-TNCES. A systematic

methodology involving model transformations as well as appropriate software tools

are required for better modeling efficiency.

2.7 Blockchain for Distributed Systems Security

Blockchain [Yuan & Wang 2018] is a digital ledger of transactions that is distributed

and duplicated in every peer in the system. The ledger is presented by a list

of blocks chained using cryptography. A block has a cryptographic hash of the

precedent block, transaction data, and a timestamp. Each time a transaction is

made, a record containing its data is added in every peer’s copy. The blockchain

is designed to be resilient to data change or hacks on the system. In fact, the

deployment in a peer-to-peer network helps in validating the blocks. The validation

is generally ensured using a consensus protocol that must be run by all or the

majority of the network. Blockchain is introduced in 2008 by Satoshi Nakamoto to

be the public transaction ledger of the cryptocurrency Bitcoin [Nakamoto 2019]. It

was introduced to overcome the need to a trust authority/party.

34 Chapter 2. State of the Art

2.7.1 Blockchain Applications and Types

Applications: Blockchain technology was first used in the financial field, namely

the digital currency Bitcoin. Thanks to its advantages, especially the decentraliza-

tion, the transparency, and the immutability, blockchain was evolved and introduced

in many other fields. Ethereum is an important blockchain solution that allows the

development of all distributed applications types through the DApps. DApps pro-

vide the execution of application’s code through smart contracts in which the user’s

rights and obligations are formulated. In December 2015, the Linux Foundation has

introduced Hyperledger to be an open source blockchain platform dedicated to the

development of global business transactions. The use of blockchain is still expand-

ing to cover many other fields such as the IoT, the health insurance, the smart

grids, etc., [Salman et al. 2018].

Types: Blockchain technology is of three types: (1) Public blockchain: where

the access to the network is open to anyone. The validation of transactions is also

open. Bitcoin and Ethereum are two famous example of public blockchains. (2)

Private blockchain: are blockchains where there are rules indicating who can access

and see the chain. Private blockchains are generally better suited to enterprises. (3)

Consortium blockchain: this type is considered as semi-private since the validation

of the blocks is made by some authorized nodes in the network [Salman et al. 2018].

2.7.2 Consensus Protocols

To reach an agreement about the state of the blockchain, consensus proto-

cols are introduced to ensure a Byzantine Fault Tolerance. Different pro-

tocols are designed to fit different use cases, among them are the proof-

of-work, proof-of-stake, delegated-proof-of-stake, leased-proof-of-stake, proof-of-

activity, proof-of-burn, proof-of-capacity, proof-of-authority, proof-of-elapsed-time,

directed-acyclic-graphs, practical-Byzantine-fault-tolerance, proof-of-importance,

etc. [Yang et al. 2019b]. Most of the listed protocols are not developed rather

are still concepts needing to be analyzed and proved. However, proof-of-work and

proof-of stake are the most used and proved ones in the context of blockchains.

This is why we build conduct a comparison between these two.

Proof-of-Work (PoW) is a consensus method used in public and private

blockchains and its reliability and security are proved. It provides a solution for

the transactions taking place between trustless parties. However, it has one main

drawback which is greediness in terms of energy consumption.

Proof-of-Stake (PoS) is introduced to overcome this limitation of the proof-of-

work therefore to consuming less electricity. However, proof-of-stake entails some

drawbacks making its efficiency questionable: The nothing at stake problem:

whenever a fork is created, whether it is accidental or a malicious attempt, this

method states that validators can rewrite the history and reverse a transaction, then

collect rewards without verification about simultaneous voting. Vulnerability:

rich malicious nodes have the ability to destruct the system since money is the only

2.7. Blockchain for Distributed Systems Security 35

used tool, however in the proof-of-work money, electricity, expertise, and time are

used for verification. The rich-get-richer problem: the richest stakeholders have

the highest chance to validate blocks thus to collect more rewards, and consequently

to get richer and control the whole system. The long range problem: this is a

prospective attack where validators try to start a fork from the old past (hundreds

of thousands of blocks back). It can happen that attackers mine thousands of blocks

into the future since no proof of work is required. Therefore, new users cannot know

which chain is the correct one.

As it can be seen, both techniques have inherent limitations (for PoW is the

energy consumption and for PoS is the security). In the current thesis, the focus

is made on security and it is assumed that the energy consumption is manageable.

For this, the proof-of-work is considered as better solution for enabling consensus

protocol between the untrusted parties.

2.7.3 Blockchain Challenges

As any other technology, despite the benefits that it provides, blockchain has some

challenges mainly the privacy and scalability ones.

Privacy: Generally, participating in a blockchain network implies revealing the

identity of the participants. This fact can impose a serious problem for participants

especially when it comes to competitor traders (no one like to show its balance to

competitor neither to clients). In addition, knowing all financial balance details can

be exploited by malicious parties to conduct attacks based on political or criminal

purposes, etc. Hence, privacy concerns should be taken into account for blockchain-

based systems.

Scalability: The concept of blockchain dictates that new blocks are continu-

ously added to the chain without ever deleting any information. Hence, the size of

the chain is always growing consequently there is a challenge of exponential storage.

Therefore, it is necessary to deeply analyze the way of use of the chain (exchanged

data intensity, size, etc.) and to provide convenient and “affordable” solution.

2.7.4 Discussion

The adoption of the blockchain technology for ensuring security especially in dis-

tributed systems is as stated very beneficial. However, since it is still relatively a

new technology, some of its issues are still open to research. To begin, it is substan-

tial to provide privacy solutions to the participants otherwise malicious tracking

and tracing could happen. Privacy is required to protect not only identities but

also exchanged data. Further, in order to guarantee timing efficiency, defining time

frames of transactions exchange over the blockchain should be defined, consequently

it is first required to know how to calculate the confirmation time of blocks added

to the blockchain. However, and to the best of our knowledge, the calculation of

confirmation time is not yet defined. Moreover, scalability has been an inherent

challenge to the blockchain, hence any proposed solution should take into account

36 Chapter 2. State of the Art

the storage costs optimization.

2.8 Conclusions

As it can be seen in the literature overview (see discussion subsections), many

limitations are faced when trying to find suitable solutions and tools that may help

in obtaining smart applications and in efficient way.

The need to integrate advanced intelligence techniques, namely context-

awareness, in the controlling software becomes day-by-day a necessity to keep up

with the increasing requirement’s complexity. Most of the existing frameworks are

dedicated to the development of context-aware mobile applications and few are

those that can be applicable to complicated reconfigurable systems. More impor-

tantly, existing frameworks either focus on the context-data life-cycle and do not

take into consideration additional constraints, or they provide it in restricted am-

biguous way. From another side, security techniques that fit to both the distribution

paradigm (as it is a prominent paradigm of modern systems) and safety require-

ments are needed. Integrity, transparency, and privacy are important features to

ensure for reliable communications. Having an efficient systematic methodology to

model applications is also of great importance. Guarantees about obtained models

correctness and efficiency are required.

In this context, we propose a software framework for the development of context-

aware applications of distributed reconfigurable systems. Briefly, the contributions

of the thesis lie in introducing: a definition of the term “context” for reconfig-

urable automation and control systems, an effective context reasoning approach, a

framework meta-model, a framework (architecture, composition, mechanisms, and

software infrastructure), a modeling methodology for better correctness and deploy-

ment guarantees in early stages, a new UML profile, a software tool implementing

the concepts of the methodology, and a secure coordination protocol based on the

blockchain technology (a method to calculate confirmation time for blockchain in

general is also introduced).

Chapter 3

A Software Framework for

Context-Aware Reconfigurable

Applications

Contents

3.1 Introduction . 38

3.2 Motivation . 38

3.3 Context Definition for Context-Aware Reconfigurable Au-

tomated Control Systems . 39

3.4 Framework Meta-Model . 39

3.4.1 Concept Principles . 40

3.4.2 Meta-Model . 43

3.5 Definition and Formalization 44

3.5.1 Framework architecture . 44

3.5.2 Reconfiguration Layer . 44

3.5.3 Context Control Layer . 52

3.5.4 Service Layer . 67

3.6 Running Example . 68

3.6.1 Case Study Presentation . 68

3.6.2 Case Study Development with the Proposed Framework . . . 70

3.6.3 Discussions . 77

3.7 Conclusions . 78

38
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

3.1 Introduction

This chapter introduces the basics of the proposed software framework. First, the

theoretical abstraction is presented through a meta-model upon which the frame-

work concepts are built. Thereafter, the framework architecture design and mech-

anisms are defined including the different layers and modules. The contributions

of the framework are applied to an airport baggage handling system as an example

application implementing the architecture.

The contributions of this chapter are summarized as follows:

� Introducing a new definition of the term “context” for reconfigurable automa-

tion and control systems.

� Definition of a meta-model for context-aware reconfigurable automation and

control systems.

� Introducing an efficient context modeling and reasoning approach.

� Introducing the framework (the architecture including the layers, modules,

and its mechanisms are defined).

3.2 Motivation

As the smart behavior becomes more and more important for future reconfig-

urable systems, the reusability of its software model and code gains more concern.

Reusability offers the opportunity to reduce development costs via decreasing time

and risks and increasing efficiency. In fact, due to the increasing size and com-

plexity of systems, providing reusable software infrastructures may help to achieve

better effectiveness, by making developers spend more time and effort on the system

particularities rather than on repetitive and generic parts.

As analyzed in the state-of-the-art chapter, a set of requirements needs to

be taken into account when introducing a software framework for reconfigurable

context-aware systems. These needs are summarized in the following list:

� The need to define the term context for reconfigurable automation and control

systems.

� The need to define an efficient context-awareness reasoning process.

� The need to ensure coordination in distributed reconfigurable systems.

� The need to introduce artificial intelligence mechanisms to provide systems

with more sophisticated operations.

� The need to include security techniques.

� The need to preserve functional constraints.

3.3. Context Definition for Context-Aware Reconfigurable Automated
Control Systems 39

� The need to preserve real-time constraints.

In order to take profit of the assets of software reusability, and in order to satisfy

the list of redundant requirements above-mentioned, we propose in this chapter a

software framework dedicated to the development of context-aware reconfigurable

systems. We present the architecture and mechanisms of the framework side by

side with the component’s UML models (both behavioral and structural views).

3.3 Context Definition for Context-Aware Reconfig-

urable Automated Control Systems

Before diving in the details of the mechanisms defined here, it is needed to define

what is a context for reconfigurable automated control systems. As presented in

Chapter 2, most of the context definitions existing in the literature are user-centric

and they generally draw upon the fact that the application is mobile. However,

these definitions are not that relevant for reconfigurable automated control systems.

Even the most acknowledged definition reported in [Abowd et al. 1999] does not fit

very well with what is intended from a reconfigurable system. For these reasons we

introduce the following definition to describe what is a context for context-aware

reconfigurable systems:

New Context Definition for Context-Aware Reconfigurable Auto-

mated Control Systems

A context is the combination of specific conditions having the potential to

make a system reconfigure itself, where conditions are data sensed and/or

measured and/or read from the surrounding environment that reflect system

reconfiguration parameters.

Now that what we intend by “context” in the course of this research work is

defined, we can move to present the dynamics of the framework modules.

3.4 Framework Meta-Model

In modern reconfigurable systems, distribution of the software and intelligence are

becoming more and more required to achieve better efficiency. This makes the

development of applications more and more difficult. Hence, it is important to

start with defining high level abstraction modeling for such huge and complicated

systems. An abstract and generic meta-model will help in offering commonly un-

derstandable software structures and unified view to such systems.

However, defining a meta-model of software applications for such kind of systems

is challenging due to many reasons that could be summarized in three points: (i)

the multidisciplinary requirements, (ii) the big number of constraints, and (iii) the

40
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

relation between the physical and computational components of the system. This

is why, it is first required to define the directives of the definition of a meta-model

through specifying what requirements and principles are to be considered.

3.4.1 Concept Principles

In order to easily define the software design, an overview of a set of examples

(including the smart microgrids and the smart baggage handling) leads to recognize

common characteristics of these systems [Fkaier et al. 2020b], [Fkaier et al. 2017].

In spite of the application field and the functional particularity, there are some

recurrent components and processing tasks existing in the majority of them. In

fact, all of them require first to acquire information from their environment, to

check a set of constraints mainly functional and real-time ones, to satisfy some

needs such as intelligence operations, etc.

At the aim of easily elucidating the requirements of an application and reducing

the design complexity, abstraction models become really necessary. Also, in order

to provide consistent modeling base, different perspectives should be taken into ac-

count to cover all system facets. For this, three modeling perspectives are provided

in this work: the constraints, the behavioral, and the structural perspectives.

3.4.1.1 Structural Perspective

An analysis of the tasks to be fulfilled by smart software applications of recon-

figurable automated control systems have led us to conclude that three abstract

functional levels could be defined: (i) communication level, (ii) processing and con-

trol level, and (iii) functionality store level. Figure 3.1 presents the considered

structure.

The definition of the three levels is built upon the class/type of topics and

responsibilities to be performed by the application. In fact, all input/output op-

erations could be classified in one level called Communication Level. Similarly, all

algorithms from the different disciplines could be encapsulated together in one level

called Processing and Control Level. Finally, all the code of the system particular

functionalities could be organized in a separate level called Functionalities Store

Level.

The first level, i.e., the communication level, has as topic the interaction with

the environment that the application needs to behave within. The responsibilities

of this level are: (i) the sending/reception of messages from/to other peers in the

system, (ii) the reading of input information sensed by sensors, (iii) the reading of

metering and measurements performed by metering units, and (iv) the application

of decisions and the actuation of actuators.

The second level, i.e., the processing and control level, has as topic the checking

of constraints such as the functional and timing ones, the satisfaction of require-

ments such as the intelligence, coordination, and security.

3.4. Framework Meta-Model 41

Figure 3.1: Generic structure of smart applications of reconfigurable systems.

The third level, i.e., the functionalities store level, has as topic the holding of

the system functionalities in separate units.

3.4.1.2 Constraints Perspective

Reconfigurable systems are generally running under a set of constraints such as the

timing constraints, the computational resources constraints (processing unit time,

memory, and energy usage), functional constraints (priorities, dependencies, safety,

coherence, etc.) and many other constraints. Since it devotes a considerable part of

the computation to intelligence and awareness tasks, more constraints could arise.

Therefore, more attention should be paid to satisfy all constraints.

Restricting the modeling on using the conventional modeling diagrams such

as UML class or component diagrams may not be sufficient since not all relevant

aspects can be represented. In fact, it is required, and especially when it comes to

reconfigurable systems, to clearly specify constraints without ambiguities. For this,

it is proposed in this work to define constraints using the formal language Object

Constraints Language (OCL) to express constraints. OCL is integrated to UML

and allows to easily read and write constraints.

3.4.1.3 Behavioral Perspective

An analysis of the behavior of smart reconfigurable systems allows to observe several

shared states during its operation. Five main states are frequently used as depicted

in the UML statechart diagram of Figure 3.2.

Systems need to read information from outside. Reading Inputs is an abstract

42
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Figure 3.2: Statechart diagram of generic context-aware reconfigurable system.

state that consists in other nested states as follows: the process starts with reading

data which may be the reading of sensor’s data, the measurements of measurement

units, the messages sent from other devices, etc. Then, a reasoning about the

received information is performed. Afterwards, conclusions of the previous step are

extracted.

As offering a smart behavior is an important feature of future reconfigurable

systems, checking some intelligence needs is necessary to provide. This can be

achieved through two directives: (i) the collaboration and coordination with other

distributed peers in the system, and (ii) the reasoning and perception of contextual

information to help taking the proper decisions. The artificial intelligence con-

cepts should also be considered for more smart processing. Hence, the Processing

Reconfiguration Needs state includes two nested states: Processing Coordination

Needs and Processing Intelligence Needs (as mentioned in Figure 3.2) which are

responsible for intelligent behaviors.

Verifying the satisfaction of operational constraints is required to ensure systems

efficiency. Functionalities of a system could have many functional constraints such

as the coherence, the precedence, or the priorities constraints. Moreover, timing

constraints are deemed to be very important ones. Therefore, checking constraints

is performed through the Checking Functional Constraints and Checking Timing

Constraints as presented in Figure 3.2.

The services (i.e., functionalities, operation modes) to be offered by the system

are loaded in the state Loading Services.

3.4. Framework Meta-Model 43

Finally, the decisions made by the logic control unit are written to the output

objects in the state Feeding Outputs.

3.4.2 Meta-Model

Figure 3.3: Generic meta-model of context-aware reconfigurable controlling soft-

ware.

Figure 3.3 depicts a meta-model for the controlling software of generic reconfig-

urable systems where Controlling Unit plays the role of the most important element

in the meta-model. It uses tow main meta-classes : Constraints Checking and Ad-

ditional Features Checking.

Constraints Checking represents a generalized meta-class of the constraints un-

der which an application can run such as the timing constraints (designed through

the meta-class Timing Constraints Checking) or the functional constraints (designed

through the meta-class Functional Constraints Checking).

Additional Features Checking represents a generalized meta-class of a set of

additional features that an application may have such as the security operations

44
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

(designed through the meta-class Security Using which is composed of a set of

security methods), the coordination operations (designed through the meta-class

Coordination Using which is composed of a set of coordination methods), and ar-

tificial intelligence operations (designed through the meta-class Intelligence Using

which is composed of a set of intelligence methods).

The Controlling Unit uses the meta-class Functionality Providing to get some

application functionalities and the meta-class Input Output Providing to interact

with its environment.

3.5 Definition and Formalization

The core of the framework consists in a novel architecture offering efficient algo-

rithms and allowing the communication with the applications environment. The

framework architecture is designed to fit most of the reconfigurable applications

that builds upon context-awareness and requires a set of miscellaneous require-

ments such as the needs to intelligence, security, timing, functional safety, and

collaboration [Fkaier et al. 2016a] [Fkaier. et al. 2021b]. To present the concepts

of the framework, an example of conveyors of airport baggage handling systems is

considered in this chapter.

As the Unified Modeling Language (UML) is a semi-formal and internationally

standardized modeling language, the framework concepts are introduced using UML

(class, sequence, component, statechart diagrams).

3.5.1 Framework architecture

Figure 3.4 presents the proposed framework architecture. Based on the defined

meta-model and in order to get loosely-coupled application components, the archi-

tecture consists of three layers where each is composed of a set of modules.

The first layer, Reconfiguration Layer, is responsible for the communication with

the environment of the application and for reasoning contextual inputs. The second

layer, Context Control Layer, is responsible for controlling the logic of applications.

Finally, the third layer, Service Layer, is responsible for storing the application

functionalities as services.

The framework is formally defined as a tuple

FW = (RL,CCL, SL) (3.1)

where RL,CCL, and SL stand respectively for Reconfiguration Layer, Context

Control Layer, and Service Layer.

In the following sections, definitions of the dynamics of the components of each

layer are presented.

3.5.2 Reconfiguration Layer

The Reconfiguration Layer, denoted by RL, represents the interface between the

framework and the external environment. Its main role can be generalized as han-

3.5. Definition and Formalization 45

Figure 3.4: Architecture of the proposed framework.

dling the inputs/outputs. This layer is defined as

RL = (IM,OM,MM) (3.2)

where IM being the Inputs Module, OM being the Outputs Module, and MM

being the Messaging Module. In the following, details of each module are provided.

3.5.2.1 Inputs Module

The acquisition and recognition of context information from the surrounding envi-

ronment is performed thanks to this module.

Composition of the Inputs Module

The inputs module IM is responsible for providing input data to the core logic of

the framework, specifically to the controller (to be introduced later) in a form of

a “context entry”. The sources of input data are generally sensors and metering

equipment. These input data are classified into critical and uncritical. A schematic

description of IM is provided in Figure 3.5.

Data that are considered critical are sent directly to the controller whenever

an event occurs without any further processing so that the controller can take

rapid measures. For uncritical inputs, a reasoning is applied to data in order to

determine the context and provide contextual recommendations to the controller.

Reading inputs from uncritical data sources is performed in a periodic way. This

additional processing and reasoning ensures the awareness of applications. A UML

class diagram of IM is depicted in Figure 3.6.

46
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Figure 3.5: Inputs module scheme.

Figure 3.6: Inputs module class diagram.

The output of IM is a context entry which contains a time-stamp TS, a list

of values of received data LRV , and a list of recommendations LR as depicted in

Figure 3.7. The list of recommendations is left empty for the case of critical inputs.

Figure 3.7: Context entry structure.

Dynamics of the Inputs Module

The dynamic behavior of IM is provided through the statechart diagram presented

in Figure 3.8. Ensuring the context-aware behavior to applications, is performed

thanks to IM that has an important activity (i.e., state) which is the Reasoning-

Context. This state is a composite state composed of three substates: Formatting-

Data, ComparingToCurrentContext, and InferringRecommendations. In fact, these

substates reflect a lightweight context reasoning process proposed in this research

3.5. Definition and Formalization 47

work to enable the context-awareness features [Fkaier. et al. 2020a]. Definition and

details of the context-reasoning process are provided in the following section.

Figure 3.8: Inputs module statechart diagram.

3.5.2.2 New Lightweight Context Reasoning Approach for Reconfig-

urable Context-Aware Automation and Control Systems

Given the analysis of existing modeling and reasoning methods presented in Chapter

2, a hybrid context obtainment mechanism is proposed in this work. The mechanism

builds upon an ontology-based context modeling and consists in a rule-based context

reasoning, where an enhanced process is proposed to minimize resources usage. An

example of use of the proposed mechanisms applied to microgrids is reported in

[Fkaier. et al. 2020a].

Ontology-based Context Modeling: The adoption of ontology based mod-

eling ensures a multitude of benefits. In fact, it offers the ability to build easy

understandable models. More importantly, this technique is easily extensible. Ex-

tensibility is very important since modern technologies are continuously evolving

and changes in a system environment are most likely to happen. Ontology-based

modeling allows the derivation, addition, and/or modification of new semantics.

The model can be easily created using the Web Ontology Language (OWL) tools.

Efficient Rule-based Context Reasoning: This research work proposes a

lightweight process for context reasoning. The efficiency of the proposed rule-based

process lies in smartly run the search for rules through diagnosing received data

first. The reasoning process flow consists in three steps as depicted in Figure 3.9:

(1) data formatting, (2) comparison to current context, and (3) search new context.

(1) Data Formatting

Sensed and measured data are generally provided in real numerical values, that

without additional information are not meaningful and do not provide useful se-

48
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Figure 3.9: Proposed context reasoning process.

mantic. For this, the first step to do is formatting data in order to meaningfully

present it.

Initially, developers or system owners need to define what kind of sensed and/or

measured data the considered system is dealing with. This must be based on the

defined ontological entities and their attributes defined in the modeling phase. Af-

terwards, a store containing the inputs values and their related meanings need to be

defined in the form of a store called the Context Attribute Models Store (CAMS).

Figure 3.10 depicts an example of context attributes that could be used to fill the

store.

Figure 3.10: Context attributes models.

A context attribute model cam is defined as a tuple

3.5. Definition and Formalization 49

cam = (camtype, camranges) (3.3)

where camtype stands for the semantic type of the input value and it is presented

by its root in the ontology o, entity e, and attribute a. camranges is a set of range

of values such that camranges = {rangei|i ∈ (1, ..., |camranges|)} where rangei is

defined as

rangei = (min,max, label) (3.4)

with min is the minimum value of the range, max is the maximum value of the

range, and label is the label assigned to the range.

For example (see Figure 3.10), let us suppose that we have a model containing

temperature as a context attribute of a weather ontology. The values in [0, 10] are

labeled as low temperature, in [10, 25] as medium temperature, and in [25, 35] as

high temperature; where low, medium, and high are defined as labels.

The CAMS is used in this step to determine the context row CR which is

defined as

CR = {ci|i ∈ (1, ..., n)} (3.5)

with n being the number of inputs of the system, and ci is a context item defined

by

ci = (cin, civ, cil) (3.6)

with cin is the name of the item (i.e., input), civ is the input value, and cil is

the label to be assigned to the item.

The pseudo-code of the Data Formatting step is the following:

Algorithm 1 Data Formatting Pseudo-code
Input: LRV
Output: CR
for each value in LRV do

Search correspondent context attribute model ccam from CAMS
for each range in ccam do

if value ∈ [rangemin, rangemax] then
Create a context item ci such that cin = ccamtype, civ = value, cil = rangelabel
Add ci to CR

(2) Comparison with Current Context

In order to get efficient applications, context information should be available

in real-time. Thus, calculations have to be performed continuously. However, in

many cases the input data could be repeated or a little different from the current

one. Thus, computations will return near results which means the same context. To

overcome this limitation and to improve the performance of the computing units, we

propose to create this second step, which is responsible for comparing the new input

values LRV with the current ones, denoted by V = {v1, ..., vn}. The comparison

50
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

is performed to a predefined similarity threshold that must be fixed based on the

system particularity.

This difference calculation is performed through the following formula

D =

n∑
j=1

(|valuej − vj |/[(valuej + vj)/2]× 100)/n. (3.7)

For instance, let us consider the current context values V = {35, 1, 1100} and

let the new input values be LRV = {30, 1, 1000}. Let the threshold value be 10%.

Calculating the difference D gives 8.3% which is less than 10%. In this case, there

is no need to pursue the process since there is no context change. However, if the

difference is more than the threshold then, new context must be determined.

(3) Search For New Context

To determine the new context, a Context Rule Store (CRS) must be set.

CRS contains rules, where a rule has the form of conditions → conclusion, with

conditions being a conjunction of premises. The labels of context items of the in-

put context row (determined in Step 1) are used as conditions of the rules, while

conclusions are considered as recommendations to be sent in the context entry to

the controller of the upper layer of the framework.

The pseudo-code of the search for new context is given as follows:

Algorithm 2 Search For New Context Pseudo-code
Input: CRS, CR
Output: LR
repeat

Select all triggerable rules from CRS.
if more than one rule is found then

Compare the number of premises of the rules.
Start triggering from longest to shortest rule.
if there are rules equal in length then

Calculate Euclidean distance between the input values from CR and the corresponding mid-range
of context attributes.
Start triggering from the rule having the minimal distance to the input.
Add conclusions to LR

until no triggerable rules in CRS

3.5.2.3 Outputs Module

The role of the Outputs Module OM is conveying commands/decisions made by

the controller of the upper layer to the connected output devices.

Composition of Outputs Module

After all necessary processing made by the upper layer (i.e., Context Control Layer),

decisions or commands to be applied to the connected devices are managed through

this outputs module. OM is responsible for feeding outputs devices -which are gen-

erally actuators- with new values considered as context consequences. Figure 3.11

depicts the class diagram of OM .

3.5. Definition and Formalization 51

Figure 3.11: Outputs module class diagram.

Dynamics of Outputs Module

The dynamic behavior of OM is depicted through the statechart diagram provided

in Figure 3.12. This module has a simple behavior that can be resumed in two

important states ReadingCommands and UpdatingDevices.

Figure 3.12: Outputs module statechart diagram.

3.5.2.4 Messaging Module

The proposed framework can also help in developing communicative software appli-

cations of distributed reconfigurable systems through enabling components of the

system to communicate with each other using messages. Messaging allows compo-

nents to be interactive and able to achieve self and/or other’s objectives.

Composition of Messaging Module

This module MM is devoted to ensure: (1) sending messages from current controller

to other parts in the system that the application behaves within, and (2) receiving

messages from other parts. It is worth noting that, the transport of the messages

between peers (i.e., outside the framework) can be performed using any technology

and/or protocol relevant to the considered use case. Thus, regardless of the adopted

technology, a mapping is necessary to convert messages in order to guarantee a

conformance with the structure required by the framework.

A message exchanged between MM and the controller of the upper layer has a

structure composed of four fields: a time-stamp, the source identifier, the destina-

tion identifier, and the content. Figure 3.13 depicts the class diagram of MM .

52
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Figure 3.13: Messaging module class diagram.

Dynamics of Messaging Module

This module MM has two main behaviors, as depicted in Figure 3.14, receiving and

converting messages from outside of the framework, and sending and converting

messages to the outside.

Figure 3.14: Messaging module statechart diagram.

3.5.3 Context Control Layer

This layer, the Context Control Layer (CCL), is the central layer and it has a very

important role since it contains a main part of the logic. CCL is defined as

CCL = (C,AIM,CM,FM,SM, TM). (3.8)

To accomplish its roles, it relies on six modules: Controller (C), Artificial In-

telligence Module (AIM), Coordination Module (CM), Functional Module (FM),

Security Module (SM), and Timing Module (TM).

3.5. Definition and Formalization 53

3.5.3.1 Artificial Intelligence Module

Complexity and increasing requirements of smart reconfigurable systems has mani-

fested the need for robust entities that have the ability to handle new, unpredictable,

intricate changes whenever it happens and also whenever it is prospective to hap-

pen. Artificial intelligence provides the ability to simulate the human intelligence

in machines/applications that are programmed to resolve complex situations and

to anticipate expected ones. This feature is becoming more and more in demand

with the increasing attention paid to self-manageable systems which rely heavily on

self-improvement issues. For this reason, we find it substantial to consider artificial

intelligence as one of the mainstays of the software processes. Thus, we define this

module AIM to be a container of a generalized artificial intelligence technique that

can be used in multiple objectives depending on the system and the use case, for

example to predict, plan, repair, etc.

Composition of Artificial Intelligence Module

The proposed artificial intelligence module AIM consists in an expert system, de-

noted by ES, composed of -as traditional expert systems- a knowledge base and

an inference engine. Additionally, it contains a system history as depicted in Fig-

ure 3.15.

Figure 3.15: Artificial intelligence module scheme.

� Knowledge Base, denoted by KB, is composed of two bases: a facts and rules

base.

1. Fact Base (FB): a base containing the facts about the system. It is

defined as FB = {fi|i ∈ {1, ..., n}}, where a fact is defined by its name

< fact > and value < value > such that fi :< fact >=< value >.

2. Rule Base (RB): a base containing rules which are logical forms enabling

the deduction of new facts. It is defined as RB = {ri|i ∈ {1, ..., n}},
where ri is a rule having this form: ri : IF < premise > THEN <

conclusion >. The rules in RB must be defined by experts to resolve

specific problems.

54
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

� History, denoted by H, contains the history of the system behavior defined

as: H = {hk|k ∈ {1, ..., p}}, where hk is a previous demarche executed by

AIM having this form hk = (IntReq, Cls) where IntReq is an intelligence

request sent by the controller module to AIM and Cls is the set of conclusions

resulted after the processing of the IntReq by AIM .

� Inference Engine, denoted by IE, is responsible for processing requests with

the help of KB and H to infer knowledge. IE provides two reasoning meth-

ods, the forward and backward chaining, that could be used according to the

specific cases.

Using a knowledge-base for expert systems allows developers to easily represent

information since it is based on IF-THEN rules. It allows also to easily maintain

knowledge thanks to the rapid process.

Dynamics of Artificial Intelligence Module

In order to improve the behavior of the inference process, we propose to add the

history component to AIM to record all interactions with the controller. In fact,

it might happen that some reconfigurations will be repeated during the life of an

application. Thus, it is more efficient to save computational power and time with

checking historical interactions first. Hence, the dynamic behavior of AIM is as

represented in Figure 3.16. Based on the content of the request made by the con-

troller IntReq, AIM reads the conditions, which are considered facts, and checks

the history H to verify whether it is a new or repeated case. Then it decides whether

to start off an inference process.

Figure 3.16: Artificial intelligence module statechart diagram.

A part of the implementation of the InferringKnowledge state is presented in

Figure 3.19, Figure 3.20, Figure 3.17, and Figure 3.18.

3.5. Definition and Formalization 55

Figure 3.17: Method allowing to update

the fact base.

Figure 3.18: Method allowing to simulate

the knowledge base.

Figure 3.19: Method allowing to get the conclusion of a rule.

Figure 3.20: Method allowing to find a triggerable rule.

3.5.3.2 Coordination Module

The lack of autonomy, the heterogeneous technologies, and the single point of fail-

ure problems, have manifested the importance of considering the distributed ap-

proach. Distribution provide the possibility to overcome the aforementioned lim-

itations through making multiple interconnected peers responsible for the system

operation. Moreover, by considering the distributed approach many other advan-

tages could be provided such as the possibility to add/remove some peers and the

easy isolation/recovery of failures.

Generally, peers of distributed reconfigurable systems have partial, limited view

of the system. Hence, there is a need to provide them with the ability to coordinate

56
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

in order to perform some tasks. Figure 3.21 shows an example of a distributed

system composed of peers where each group has a partial view of the system: c51

views c52 and c53, while c13 views c11, c12, c14, c71, and c44.

The coordination between peers is not an easy task to perform. This is why, a

coordination module CM is added to the framework.

Figure 3.21: Distributed system scheme example.

Composition of Coordination Module

As we are interested in context-aware distributed reconfigurable systems, and as a

context is defined as a system configuration, coordination processes, for this frame-

work, are devoted to reach a consensus of a coherent reconfiguration process. Hence,

the task of CM is performed based on a matrix, denoted by cmmatrix, defining all

possible configurations that could take place between the software instances of the

part of the system viewed by the current instance.

cmmatrixm,n =


I1,1 I1,2 · · · I1,n

I2,1 I2,2 · · · I2,n
...

...
. . .

...

Im,1 Im,2 · · · Im,n


where n represents the peers existing in the part of the system in which the

current framework instance is used, and m represents the partial configurations that

could take place in the considered part of the system, Ii,j is a set of instructions/data

to be used as configuration i of the peer j, such that i, j ∈ N.

CM helps the controller of CCL to coordinate with other controllers in other

peers of the system. This coordination/communication is granted by messaging

through MM .

3.5. Definition and Formalization 57

Dynamics of Coordination Module

The dynamic behavior of CM is presented through the statechart diagram depicted

in Figure 3.22. The operation of CM starts when a coordination request, denoted

by CoordReq, sent by the controller is received. Then, based on the defined coor-

dination matrix, it searches all possible partial configurations and returns reply to

controller.

Figure 3.22: Coordination module statechart diagram.

3.5.3.3 Security Module

While significant advantages can be achieved thanks to its concepts, distribution

paradigm gives rise to different challenges such as the security issues. In fact,

distributed peers may need to collaborate with each other in multiple tasks. Some

of these tasks could require the exchange of important information that should be

secured (see Figure 3.23). Major security requirements that are often required in

distributed system are the insurance of confidentiality and integrity.

Figure 3.23: Secure communication for distributed peers.

For this, we propose this module SM to be a container of security tools that de-

velopers could use, extend, adapt in their applications in order to fit the considered

use cases requirements. In this thesis, we propose a security protocol devoted to

allow a secure communication between peers based on blockchain technology. The

protocol is presented in Chapter 5.

58
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Composition of Security Module

As mentioned above, the security module is devoted to store security techniques.

Developers could add, for example, the required encryption methods or authenti-

cation tools. The role of this module is providing the infrastructure that allows

the addition of techniques and the proper communication with the controller. Fig-

ure 3.24 shows a schematic presentation of the module components.

Figure 3.24: Security module scheme.

Dynamics of Security Module

The behavior of SM depends on the adopted security technique. But if we try to

cover all steps required by the chosen technique in a submachine state, then we can

simply resume the behavior in extracting data subject to security before starting

the process and a submachine state including all necessary states (see Figure 3.25).

Figure 3.25: Security module statechart diagram.

3.5.3.4 Functional Module

As mentioned previously, the proposed framework is dedicated to the develop-

ment of context-aware reconfigurable applications of distributed systems. Context-

awareness and self-reconfiguration abilities of applications are coming from the fact

3.5. Definition and Formalization 59

that, based on the sensed/metered input data, the controller can automatically lead

changes. The automated reconfigurations imply the modification or switch of the

running functionality, which are defined as services in the framework (to be detailed

in next sections).

Leading automated self-reconfiguration is eligible since it promotes applications

adaptability and autonomy. However, the loading/unloading of a set of function-

alities may give rise to some errors and/or problems. In fact, the relationships

between functionalities need to be respected, especially, dependencies and inclu-

sion/exclusion relationships. It is needed to provide a way to ensure that the ad-

dition/removal/change of functionalities does not cause any logical requirements

violation or malfunctions.

To avoid this, we introduce the functional module FM to be responsible for

functional constraints checking whenever reconfigurations need to take place.

Composition of Functional Module

In order to accomplish its task, this module FM relies on two types of functional

constraints: (1) coherence constraint, and (2) precedence constraint.

The coherence constraint represents the ability of functionalities to operate to-

gether in harmony. In fact, with the multi-services that an application can provide,

contradiction and conflict relationships could take place between some of the func-

tionalities, such that the execution of the one(s) implies the suspension/cessation

of the other(s). Hence, it is important to define the relation between functionalities

in order to guarantee safe and coherent reconfiguration processes. For this, a Func-

tional Exclusion Matrix, denoted by FEM , is introduced to specify these relations.

FEM is given by

FEM [i][j] =

{
1 si excludes sj .

0 otherwise.
(3.9)

FEM is a square matrix of order n such that i, j ∈ (1, ..., n), where n is the

number of services of the considered application (stored in the services layer SL)

and si is the ith service of SL. si excludes sj means that the operation of the

service si implies the suspension of the service sj .

The precedence constraint represents the logical order of the operation of a set

of functionalities (i.e., services) or to all of them. In fact, for the operation of a set

of services, it is required to use the outputs (e.g. signal, data, specific processing

result, etc.) of other services. Thus, the precedence order should be preserved.

To specify this precedence relationship constraint, a Functional Precedence Array,

denoted by FPA, is defined in order to, for a given service si, it defines a set of

pairs of its predecessors.

For a given service si, the search for predecessors is performed by:

1. Read the corresponding set, denoted by csi, from FPA,

60
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Figure 3.26: Services precedence relationship example.

2. Save the found csi,

3. Repeat steps (1) and (2) for each element in csi. The loop ends when csi is

equal to the empty set.

4. Return a set of pairs (sp, sq) determining the order of operation, i.e., sp must

operate before sq.

For example, let us consider the services mentioned in Figure 3.26, the corre-

sponding FPA is given by

FPA:

s1 ∅
s2 {s1}
s3 {s1}
s4 {s3}
s5 {s4}
s6 {s5, s3}
s7 ∅
s8 {s7}
s9 {s6, s7, s8}
s10 {s7}

The search for predecessors of s6 gives FPA[s6] = {s5, s3}, FPA[s5] = {s4},
FPA[s4] = {s3}, FPA[s3] = {s1}, FPA[s1] = ∅. Hence, the predecessors of s6 are

{(s1, s3), (s3, s4), (s5, s6), (s3, s6), (s4, s5)}.

Dynamics of Functional Module

Each time the functional module receives a request from the controller, denoted

by FuncReq, a check to the FEM and FPA is made by FM and the results are

returned to the controller. The behavior can be modeled as depicted in Figure 3.27

A part of the implementation of the exclusion checking is presented in Fig-

ure 3.28.

3.5. Definition and Formalization 61

Figure 3.27: Functional module statechart diagram.

3.5.3.5 Timing Module

By the increasing functionalities that must be fulfilled, modern reconfigurable sys-

tems become more constrained with time, especially that event-driven reconfigura-

tions must also be successfully handled. In order to ensure a timing efficiency, a

timing module TM is proposed to be one of the mainstays of the framework.

This module TM has the role of temporal behavior analyzer of services to be

applied. Analysis are conducted with the aim of checking the time feasibility in case

of leading reconfiguration processes, i.e., whether tasks of the functionalities added

due a reconfiguration respect their deadlines. To achieve this, the schedulability of

tasks issued from reconfiguration processes must be conducted. Schedulability is

defined as the ability of tasks to meet their deadlines.

Composition of Timing Module

This module reflects an estimation of a set of tasks that are schedulable and exe-

cutable by the central processing unit (CPU) of a specific operating system running

under a specific hardware. The tasks properties, such as the capacity (i.e., how

many time slots necessary for execution), the priority, the period, the deadline,

etc., must be determined by experts after a study of the considered system who

muster all details pertained to it. Then, a set of schedulability algorithms that are

based on the famous and widely used real-time scheduling protocols can be included

in this module to help in evaluating the schedulability and feasibility.

Many real-time scheduling protocols are available and each is devoted for specific

type of tasks [Fkaier et al. 2016b] periodic, non-periodic, and whether there is a

resources sharing. For periodic tasks, there are protocols that handle tasks with

static priority such as the Rate Monotonic or the Deadline Monotonic, or also

tasks with dynamic priority such as the Earliest Deadline First or the Least Laxity

First. Non-periodic tasks are generally handled with servers such as the Polling

62
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Figure 3.28: Part of the implementation of the exclusion checking.

Server, Deferrable Server, and Sporadic Server. Sharing Resources is handled with

protocols such as the Priority Ceiling Protocol or the Priority Inheritance Protocol.

In this module, an example of a scheduling according to Rate Monotonic for

periodic tasks along with a Polling Server for non-periodic tasks is provided. This

case is considered due to its simplicity, other schedulability tests can be added by

users/developers since this module contains a representation of tasks.

In case of addition of a service as an aperiodic task, the use of the Polling Server

is performed through a periodic task devoted to the execution of the aperiodic tasks.

The server is characterized by a capacity, denoted by Cs, and a period, denoted by

Ps. The aperiodic tasks are executed each period Ps for a maximum number of time

slots equal to Cs. If there is no request waiting for the server, the task is suspended

until the next period [Buttazzo 2011].

The condition for an isolated task (i.e., no other aperiodic task is waiting, de-

noted by Ja, arriving at an instant Aa, having a worst case execution time Ca, and

a deadline Da) is as follows:

� If Ca ≤ Cs, the execution of Ja is finished at maximum after 2Ps, and the

acceptance condition is

2Ps ≤ Da (3.10)

� Generally we do not have Ca ≤ Cs, the execution of Ja is finished at Ps +

dCa/CsePs, and the acceptance condition is

Ps +

⌈
Ca
Cs

⌉
Ps ≤ Da (3.11)

3.5. Definition and Formalization 63

Dynamics of Timing Module

This module is playing the role of: (1) taking the functionalities to be processed (ser-

vices) and based on the estimation of experts/engineers about the properties (i.e.,

capacity, priority, period, deadline) of each functionality along with the available

scheduler/hardware, made the proper calculations and return it to the controller.

Figure 3.29 depicts the behavior of the timing module. Two main scenarios can

take place, the first when the request from the controller requires the addition of

a new combination of services. The second is when the request from the controller

requires the addition of one service as a non-periodic service.

Figure 3.29: Timing module statechart diagram.

The implementation of some of the helper methods of the time-related analysis

are presented in Figure 3.30.

Figure 3.30: Timing module helper methods.

64
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

3.5.3.6 Controller Module

The controller C is the master element in the architecture. It is the component

containing the main logic of applications. It performs the control task with the

help of the other CCL modules as well as the other layers. Based on the received

inputs it decides the modification level that should take place.

Composition of Controller Module

In order to accomplish its task, the controller needs to have three main mechanisms:

(1) interaction with the rest of modules either from the same layer (i.e., CCL) or

from other layers (i.e., RL and SL), (2) view and parameterization of the service

layer (i.e., how many services in SL, properties of services, etc.), and (3) view and

parameterization of the reconfiguration layer, specifically the input module IM and

the output module OM (i.e., table of inputs containing their properties and table

of outputs containing their properties).

To facilitate the handling of these mechanisms, a set of internal interaction

requests, denoted by Req, a set of internal interaction replies, denoted by Rep, as

well as a set of parameterization lists, denoted by Parameters, are defined such

that,

Req = (IntReq, CoordReq, SecReq, FuncReq, T imeReq). (3.12)

As mentioned earlier, IntReq denotes the request to the artificial intelligence

module, CoordReq denotes the request to the coordination module, SecReq denotes

the request to the security module, FuncReq denotes the request to the functional

module, and TimeReq denotes the request to the timing module. These requests

can be used multiple times, as much as it is required according to the use case. The

structure of each request is mentioned in Table 3.1.

Table 3.1: Structure of the requests used by the controller.
Request Name Request structure

IntReq < list of premises > | < execution mode >

CoordReq < list of services names >

SecReq
< type of the technique > | < data subject to security > | <

data not subject to security >

FuncReq < list of services names >

TimeReq < list of services names > | < list of services properties >

After finishing its processing, each module should return a reply to the controller

containing the obtained result. The set of all replies usable by the controller is

defined as;

Rep = (IntRep, CoordRep, SecRep, FuncRep, T imeRep). (3.13)

3.5. Definition and Formalization 65

As mentioned is previous sections, IntRep denotes the reply of the artificial in-

telligence module, CoordRep denotes the reply of the coordination module, SecRep

denotes the reply of the security module, FuncRep denotes the reply of the func-

tional module, and TimeRep denotes the reply of the timing module.

The structure of each reply is depicted in Table 3.2.

Table 3.2: Structure of the replies returned to the controller.
Reply Name Reply structure

IntRep < list of conclusions >

CoordRep < list of possible configurations >

SecRep < secured data > | < operational data >

FuncRep < list of exclusion services > | < ordered list of services >

TimeRep < schedulable >

Figure 3.31 depicts the classes used to allow the interaction mechanism between

the controller and the rest of the modules.

Figure 3.31: Interaction classes.

The controller interacts with the inputs module IM with two ways: (1) it

receives data from IM periodically, or (2) it demands data from IM whenever

necessary (e.g., after a reception of a message).

In addition, the controller “works” with the other layers through a set of general

parameters defined as

Parameters = (TServices, TCurrentServices, TSecurityTechniques, TInputs, TOutputs).

(3.14)

where TServices designs a table describing the services of the service layer SL and

contains the service identifier (i.e., name) and its timing properties, TCurrentServices

66
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

designs a table containing the currently executed services, TSecurityTechniques de-

signs a table enumerating the available security techniques provided by the security

module, TInputs (resp. TOutputs)designs a table listing the considered inputs (resp.

outputs) of the system and their properties

Dynamics of Controller Module

The behavior of the controller cannot be limited to a specific statechart diagram

because the logic is dependent on the applications implementations. However, to

facilitate the task for developers, four main behaviors are provided: a collaborative

behavior, a supervision behavior, a reconfiguration behavior, and an emergency

behavior. The details of the four behaviors are described as follows:

1. Collaborative Behavior: this behavior is executed when the controller re-

ceive a message from other agents/peers/applications in the system that the

current application behaves within. The collaborative behavior is reached in

two scenarios: either a reconfiguration is taking place in other peers and it is

required that the current peer reconfigure accordingly, so a negotiation can

take place before decisions (see Figure 3.32), or it is required to update the

information of the current peer (see Figure 3.33).

Figure 3.32: Collaborative behavior in case of negotiation.

2. Supervision Behavior: this behavior is executed most often and it is con-

sidered as the normal operational behavior where the application is executing

3.5. Definition and Formalization 67

Figure 3.33: Collaborative behavior in case of update.

a set of services. Figure 3.34 depicts an example of supervision where no

reconfiguration and no collaboration are required.

Figure 3.34: Supervision behavior.

3. Reconfiguration Behavior: this behavior is executed when the received

input data and/or recommendations from the inputs module IM indicates

that a context change is happening and an adaptation/reconfiguration must be

conducted. Also this behavior can take place when the result of a negotiation

process indicates that a reconfiguration is necessary. Figure 3.35 depicts an

example of the main process of reconfiguration (updating other peers in the

system and using security can be added).

4. Emergency Behavior: this behavior is executed when the controller receives

alert and/or emergency events from the inputs module. The behavior is very

similar to the reconfiguration one, except that some steps can be skipped

such as the search for optimal configurations. In fact, in urgent situations

it is important to eliminate the big risks first by finding any operational

configuration then optimization can take place.

3.5.4 Service Layer

This layer contains the services of the system. A service, denoted by si, is considered

as a functionality or an operation mode to be done by an application, i.e., the set of

methods responsible for accomplishing a system activity. These methods are hold

68
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Figure 3.35: Reconfiguration behavior.

in separate elements (i.e., the services) in the purpose of allowing more clarity and

avoiding possible conflicts arising from multiple activities of applications.

3.6 Running Example

In this section, we tackle a use case of the proposed framework applied to a for-

mal example of an airport Baggage Handling System (BHS). We show how the

framework features facilitate the software development, i.e., how to make develop-

ers focus on the specific requirements of the use case and not the infrastructure

necessary for it (UML models, architecture, generic code). It is worth noting that,

a second case study of microgrids software development is elaborated and reported

in [Fkaier. et al. 2021b].

3.6.1 Case Study Presentation

Before demonstrating the details of the application development, it is necessary to

introduce the considered case first. In the following, a presentation of the system

and its requirements are provided.

3.6. Running Example 69

3.6.1.1 Airport Baggage Handling System

BHS is one example of the goods transportation systems that have known a

great expansion during the last years. Intelligence and awareness are the ma-

jor characteristics that have been studied in order to be introduced into BHS

[Nakagawa et al. 2014], [Sørensen et al. 2019]. In this context, we choose to ap-

ply the proposed framework concepts on BHS as a conveying system having to be

more intelligent.

Composition: BHS components contains generally three parts: (1) computing

unit processing the logic, (2) inputs/outputs elements ensuring the communication

with the outer environment, and (3) a software application holding the operational

logic.

Services: The BHS functionalities are generally conveying luggage (forward

and backward directions), tracking bags, sorting, etc.

The layout of the considered BHS in this case study is depicted in Figure 3.36.

Figure 3.36: Baggage handling system layout example.

3.6.1.2 BHS Application Requirements

By the increasing of air transport, airports become more and more challenged with

the quality of service especially in terms of reducing passengers waiting times includ-

ing the baggage waiting. To cope with this challenge, modern and future baggage

handling systems must provide better control and management solutions. As the

BHS is an important subsystem in airports, developing intelligent context-aware

software applications of conveyors may offer promising results.

BHSs have the need to smart controlling software applications that allow:

1. self-repair and extensibility with minimal or without human intervention,

2. energy saving through powering the conveyors down when no baggage is de-

tected,

3. automatic speed adaptation in order to minimize the passengers waiting times,

70
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

4. behavior optimization mechanisms through using optimized routing (i.e., ap-

plication that could reason taking into account the system layout including

the shared and critical routes that might induce baggage bottleneck).

3.6.2 Case Study Development with the Proposed Framework

We show in the following the development of context-awareness, self-repair, and

optimized route finding using the framework modules.

3.6.2.1 Application Model with UML

The first step to be done, and after analyzing the requirements of a BHS, is the

design decisions of the software application. Determining the UML model of appli-

cations is very important in the development life-cycle since it allows to practically

represent its structure and functionalities. The different diagrams offered by UML

provide the opportunity to design and analyze different scopes of the application,

e.g., the behavior can be modeled in detail with statechart diagrams, the high-level

structure with the component diagrams, the deep structure with class diagrams,

and the interactions with the sequence diagrams.

This step is facilitated thanks to framework model defined at the beginning

of this chapter. The analysis of the target application leads us to define a set

of services (functionalities), a set of input items, and a set of output items. For

simplicity reasons, in this case study we consider four services that a BHS can

do: track bags, move belts forward, move belts backward, and halt (sleep mode).

Hence, the general component diagram is given as depicted in Figure 3.37.

Figure 3.37: Component diagram of the BHS application model.

The four services are modeled with the four components MoveForwardService,

MoveBackwardService, HaltService, and TrackService. The roles of the rest of mod-

3.6. Running Example 71

ules will be as follows (it is worth noting that security is not considered in this case

study):

� The timing module contains the timing feasibility analysis especially for the

execution of reconfiguration events.

� The functional module contains the functional constraints under which the

services of the conveyor have to work: exclusion relation between (move for-

ward and move backward), (move forward and halt), (move backward and

halt). Hence, the functional safety relationships are carefully defined.

� The coordination module contains the coordination matrix enabling the col-

laboration between the different devices (such as pushers) and conveyors in

the BHS: the definition of the possible configurations of the system including

the state of each device on it.

� The artificial intelligence module contains a knowledge base allowing a pre-

diction task used to optimize the baggage routing.

The modules models are based on the models provided in previous sections.

Whenever some tasks of the framework modules are not needed, the models can be

modified accordingly. Otherwise, the application models will be similar to those of

the framework. For example, the class diagram of the Coordination Module (CM)

remains as depicted in Figure 3.38 and Figure 3.39.

Figure 3.38: Class diagram of the coordination module.

Figure 3.39: Statechart diagram of the coordination module.

72
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

It is also substantial in this modeling step to define the models of some elements

necessary for the use of the framework: we need to model the context (necessary

to enable the context-awareness feature of the Reconfiguration Layer). Moreover,

we need to define the purpose of the intelligence module through determining the

general rules upon which the inference builds. Operational constraints also need to

be analyzed.

Context-Awareness: To enable the BHS with context awareness, and accord-

ing to the framework first layer, it is required to define the ontology-based context

model. Figure 3.40 depicts the defined context model of the most important ele-

ments that impact the context. The model is edited with the graphical ontology

editor OWLGrEd Version 1.6.10 1. It is worth noting that this model can be en-

riched with more ontologies (and this an advantage of the selected approach, i.e.,

ontology context models).

Figure 3.40: Baggage handling system context model with OWL.

For example, the context information depends on the physical layout of the

BHS, this is why we define an ontology called ArchitectureLayout. It is important

to the controller to know the available paths and their types (i.e., main, emergency,

alternate, etc.) so that it can lead the proper coordination and routing processes.

Another example, is the one of Conveyor ontology which is a sort of Equipment

substantial to the BHS. The properties of conveyors such as the motor speeds,

directions, as well as the belt width, length, and others, are all important informa-

tion that could impact the performance of the system, subsequently the software

functionalities.

Timing ontology and its specialization Schedule and Season are very important

entities that impact the quality of service and the performance of the whole baggage

1http://owlgred.lumii.lv/get started

3.6. Running Example 73

handling system. For example, a flight delay is a fact that the BHS must be aware

of in order to behave properly and efficiently.

Routing and Prediction: To enable the conveyor system with proper pre-

diction feature for better routing, it is necessary first to make it understand the

architectural layout of the BHS. More importantly it is required to define the ini-

tial routes, the back-up routes, and the bridging conveyors. In this example, the

initial routes are those marked with the green arrow in Figure 3.36 where the initial

routes consists in conveyors running in forward direction. For simplicity reasons,

two initial routes are defined: Route 1= (C1, C2, C3, C8, C9, C10, C11, C12,

C13, C14, C15) and Route 2= (C4, C5, C18, C20, C21, C22, C23, C24, C25), one

back-up route: Route 3= (C4, C5, C18, C27, C28, C29, C30, C31, C32, C33, C34),

and a set of bridging conveyors: {C26, C19, C6, C3, C17}.
Constraints: It is in this step to design and analyze the probable constraints

such as the timing and functional constraints. The Object Constraint Language

(OCL) can be used to elucidate the constraints. For example, the services are

constrained with coherence relationships that could be expressed according to the

following invariant:

Context CoherenceRelation inv:

self.ForwardMove.isActive = true implies self.BackwardMove.isActive= false

More importantly, the controller which is the major element of the architec-

ture and which its logic and behavior are left to the developers to perform, needs

to be carefully modeled in this step. Examples of probable behaviors are provided

(among the framework models) to help in developing the controller. Statechart and

class diagrams of the final controller must be defined in order to facilitate its imple-

mentation later. In this example, we model the statechart diagram of the controller

in case of reconfiguration in the context of a self-repair operation. The diagram is

provided in Figure 3.41.

It is worth noting that the development of the controller logic is a delicate task

that must produce reliable outputs, especially when it comes to critical use cases

(where errors may induce big losses). For this, a modeling methodology is intro-

duced in this research work that uses formal verification techniques to ensure model

correctness. Details of this methodology are defined in Chapter 4. For the current

chapter, we content with presenting the UML model before implementation but the

complete modeling process contains also formal verification and other guarantees.

3.6.2.2 Scenario Example

The framework concepts are developed using Java programming language. In order

to implement BHS applications, and after having idea about the framework mecha-

nisms and services, developers need just to import the framework classes and start

using its code. In the following, we present the scenario of reconfiguration and how

the controller finds solutions.

A scenario of reconfiguration must take place when a failure (mechanical or

74
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Figure 3.41: Controller statechart diagram.

electrical reasons) occurs in the conveyor C14 as depicted in Figure 3.42. Here,

the application needs to take rapid measures to minimize the impact on the system

throughput.

Figure 3.42: Conveyor C14 failure.

The failure information is detected by sensors of the conveyor C13. According

to the Context Attributes Models Store (CAMS) defined in Table 3.3, specifically

the attribute Neighbor Activity Signal, and using the context reasoning mechanism

based on the Context Rules Store (CRS) defined in Table 3.4, specifically the rule

R2, the input module IM sends a context entry to the controller containing recom-

mendations to power-down the conveyor and reroute baggage.

The controller analyzes the context entry entry and starts to prepare for a recon-

figuration. A reconfiguration decision should be taken efficiently through checking

some conditions and constraints. In fact, as mentioned previously, a reconfiguration

should be performed in coordination between the distributed elements of the BHS,

3.6. Running Example 75

Table 3.3: Excerpt of the BHS CAMS.
Attribute Name Values

Bag weight (kg) [0, 24]-light, [25, 35]-medium, [36, 50]-heavy

Bag length (m) [0, 0.4]-small, [0.41, 0.6]-medium, [0.61, 0.8]-big

Schedule
[00:00, 09:59]-regular, [10:00, 12:00]-peak, [12:01, 15:59]-regular,

[16:00, 18:00]-peak, [18:01, 23:59]-regular

Neighbor activity signal 1-alive, 0-dead

Bag detection signal 1-bag exists, 0-no bag exists

Table 3.4: Excerpt of the BHS CRS.
Id Rules

R1 (BagDetectionSignal is NoBagExist) → (Power-down conveyor).

R2 (NeighborActivitySignal is Dead) → (Power-down conveyor) and (reroute bags).

R3 (Schedule is PeakTime) → (Speed-up conveyors).

R4 (Flight is Delayed) and (Check-in is Completed) → (Update path state for routing).

R5 (Flight is Delayed) and (PlannedPath is Busy) → (Speed-up conveyors).

R6
(Flight is Delayed) and (PlannedPath is Busy) and (Season is Shoulder) → (Search alternate

route).

R7 (Flight is Delayed) and (Season is Peak) → (Use emergency route).

therefore a coordination should take place. Then, the controller interacts with the

coordination module CM to get possible configurations in which the conveyor C14

is out of service. Based on the coordination matrix, defined as depicted in Table 3.5,

CM parses cmmatrix and returns Config8 and Config9 to the controller.

Table 3.5: Excerpt of the coordination matrix of CM.
.. C13 C14 C15 C26 P3 .. C20 C21 C22 C27 C28 ..

..

Config7 .. F F F H N .. F F F H H ..

Config8 .. B H H F A .. F F F H H ..

Config9 .. H H H F A .. H H H F F ..

..

In Table 3.5 F is the forward service, B is the backward service, H is the halt

service, A is active state, and N is non-active state.

Having more than one possible configuration, the controller needs to choose the

configuration ensuring better routing. For this, it interacts with AIM to predict

probable behavior of each configuration. The failure information of C14 is con-

sidered as a fact and it is added in the fact base. The inference engine performs

reasoning using the rule base depicted in Table 3.6. In the considered case, it is

assumed that the two paths convey baggage for the same flight.

76
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

Table 3.6: Excerpt from the Rule Base of the AIM.
Id Rules

R1 IF (C14 is in failure) AND (C12 is in forward) THEN (made C13 in backward).

R2 IF (C14 is in failure) AND (C12 is in forward) THEN (made C26 in forward).

R3 IF (C23 is in failure) THEN (made C26 in backward).

R4 IF (C26 is in forward) AND (C22 is in forward) THEN (bottelneck).

R5 IF (C26 is in forward) AND (C12 is in forward) THEN (bottelneck).

R6 IF (C5 is in forward) AND (C17 is in forward) THEN (bottelneck).

R7 IF (C18 is in forward) AND (C19 is in forward) THEN (bottelneck).

The AIM starts by checking in history whether such scenario was faced in the

past and it finds that this scenario is new, then it starts triggering rules in order to

find the path that does not lead to a congestion. Each possible configuration (i.e.,

Config8, Config9) is analyzed apart and the forward chaining is applied to check

whether the considered configuration lead to bottlenecks.

Starting by Config8, which has as facts fact1: C26 is in forward and fact2: C22

is in forward, so the rule R4 is triggered and we obtain a conclusion of possible bot-

tleneck. Moving to Config9, taking facts from the configurations mentioned in this

route and triggering possible rules does not produce any congestion, therefore this

configuration is selected to be better solution. AIM finishes by sending Config9

to the controller which consists in stopping [C20..C22] and to run [C27..C34] on

forward move.

The controller creates a functional request and sends it to FM to check the

absence of incoherences. The Functional Exclusion Matrix (FEM) for the current

case study is defined as depicted in Table 3.7. According to FEM , tracking bags

and moving backward services can work together with no exclusion relationship.

The Functional Precedence Array (FPA) is defined as depicted in Table 3.8, and

it dictates that the tracking of bags should precede the backward service (i.e.,

acknowledgement of tracking service should be done before continuing with moving

backward).

Table 3.7: Functional Exclusion Matrix (FEM).

F B T H

F - 1 0 1

B 1 - 0 1

T 0 0 - 0

H 1 1 0 -

Table 3.8: Functional Precedence Array (FPA).

(T, F) (T, B) (T, H)

3.6. Running Example 77

Finally, after having checked the different reconfiguration requirements, the con-

troller sends a command related to the backward service to the outputs module to

apply change in form of commands.

3.6.3 Discussions

In this section we highlight the contributions and originality of the framework

through showing the efficiency of the context-awareness reasoning process and

through discussing the use of the proposed framework in comparison to other frame-

works.

3.6.3.1 Context Modeling and Reasoning Mechanism Performance

One of the challenges of modern smart applications is the resources consumption in

terms of usage of computational time and physical resources such as the memory

and energy. Therefore, providing a solution that can achieve the target with less

resources consumption is always in demand.

The proposed context reasoning approach includes an intermediary step between

the data formatting and the rules triggering concerned with comparing the sensed

and current context values. A difference threshold must be defined to determine

how much the difference is. The purpose of this step is to avoid unnecessary com-

putations that are originated from the same or very near values that generally do

not imply a context semantic change.

Let us consider the current context values given by CC = {35, 1, 1100} and

let us consider the four context measurements given by V1 = {40, 1, 1200}, V2 =

{32, 1, 1020}, V3 = {35, 1, 900}, V4 = {35, 1, 1488}}. The calculation of the difference

between CC and V1, ..., V4 is presented in Figure 3.43.

Figure 3.43: Comparison between the current and sensed values.

Figure 3.43 shows that the threshold is not reached with the four samples,

therefore this step allows to save computational time four times.

78
Chapter 3. A Software Framework for Context-Aware

Reconfigurable Applications

3.6.3.2 Discussion about the use of the Proposed Framework

In this section, a discussion about the framework is tackled through highlighting its

benefits and also mentioning what is missing and what needs improvement.

The framework consists in a programming tool of context-aware reconfigurable

applications having an organized architecture. The clear architecture offers a com-

plete view of the data flow from contextual data to the higher functionalities. The

second layer of the framework includes a set of modules addressing the most preva-

lent requirements and constraints of smart systems. The contributions of the frame-

work are implemented in a software tool using Java programming language as a

proof of concept that helped to explore the framework assets. An example of a

BHS also allowed to show in practice how the framework is fruitful.

Compared to the existing context-awareness frameworks, that are presented in

detail in Chapter 2, our framework allows to develop not only context-awareness

feature but also additional features such as the intelligence, timing, security, and

functional safety needs. Unlike the majority of existing ones, our work provides the

UML models of the framework which are very important to engineers, that have

now clear structure (i.e., UML class and component diagrams). Secure coordination

between distributed peers is also an original contribution tied to our framework

since most of the existing works do not provide solutions to the coordination in

distributed reconfigurable systems and the minority that consider it do not tackle

security issues.

Despite its advantages, there is still some scopes that need to be improved. For

example, the software tool is still in a proof of concept level and needs to be more

robust/mature in order to be used in more complex real-life systems. This could be

achieved through making more extensive tests (such as unit tests). Different case

studies may also help to prove more the suitability of the framework.

3.7 Conclusions

In this chapter, we have introduced a software framework for the development of

context-aware reconfigurable controlling software applications of distributed sys-

tems. First, a meta-model is defined to be the base of the framework concepts.

Then, the concepts of the framework are introduced.

The framework consists in three layers representing the different functional levels

of an application: a Reconfiguration Layer responsible for the interaction of appli-

cations with their environment especially the context-awareness and the initiation

of reconfigurations, a Context Control Layer responsible for checking conditions of

any reconfiguration procedure, and a Service Layer holding the functionalities of

applications. The layers and modules have allowed to achieve the desired loose

coupling between the different application scopes.

The concepts of the framework are applied to a formal case study of a BHS

through which the benefit of using a programming model is exhibited. It is

shown how developers can just focus on the requirements not how to ensure read-

3.7. Conclusions 79

ing/writing inputs/outputs, how to express and define the different constraints, how

to define intelligence and coordination strategies not how to define the infrastructure

necessary for it.

Chapter 4

Modeling Methodology Based

on the Proposed Framework

Contents

4.1 Introduction . 82

4.2 Motivation . 82

4.3 Preliminaries . 84

4.3.1 GR-TNCES . 84

4.3.2 Function Blocks Formal Definition 85

4.4 New UML Profile: GR-UML 86

4.4.1 Class Diagram Definition . 86

4.4.2 Statechart Diagram Definition 88

4.4.3 Component Diagram Definition 89

4.5 Model Transformations . 89

4.5.1 Transformation of GR-UML to GR-TNCES 89

4.5.2 Transformation of GR-UML to IEC 61499 Function Blocks . 93

4.6 Methodology Work Flow . 97

4.6.1 Applications Modeling Using the Framework Models 98

4.6.2 Behavior Testing Using Formal Verification 99

4.6.3 Function Blocks Models Analysis 100

4.7 Software Tool: ZiZo New Version 100

4.8 Running Example . 102

4.8.1 Phase 1 of the Methodology: Modeling using UML Models of

the Framework . 102

4.8.2 Phase 2 of the Methodology: Formal Verification 103

4.8.3 Phase 3 of the Methodology: Model Screening According to

IEC 61499 Using a Function Block Tool 110

4.9 Comparison with Other Approaches 112

4.10 Conclusions . 113

82
Chapter 4. Modeling Methodology Based on the Proposed

Framework

4.1 Introduction

This chapter introduces the proposed modeling methodology for correct and efficient

controlling software of context-aware distributed reconfigurable systems. First, the

background that has motivated the proposition of a new methodology is presented.

Then, a new UML profile, called GR-UML, is proposed in order to enable the

specification of application’s probabilistic features that need to run under memory

and energy constraints. After that, transformation rules from GR-UML to GR-

TNCES and to IEC 61499 function blocks are introduced. Right after, the method-

ology work flow that consists of three phases is proposed. A software tool chain

that implements the methodology concepts is introduced. Finally, the methodology

is applied to an example of a baggage handling system application is depicted. A

second case study tackling the example of microgrids software is elaborated and

reported in [Fkaier. et al. 2021a].

The contributions of this chapter are summarized in the following:

� The definition of a new UML profile called GR-UML aiming at specifying

probability as well as memory and energy constraints.

� The definition of transformation rules that transform GR-UML to GR-

TNCES and to IEC 61499 function blocks.

� The definition of a new modeling methodology aiming at creating clear, cor-

rect, and operable model.

� The implementation of a software tool for the proposed methodology.

4.2 Motivation

The modeling complexity of reconfigurable distributed systems is continually grow-

ing which prompts the necessity for finding more effective design methodologies

and tools. IEC 61499 modeling standard is introduced to allow the design of dis-

tributed systems using the function block as elementary component. This standard

provides a set of advantages that encourages its adoption. In fact, IEC 61499 pro-

vides portability, reconfigurability, and interoperability features. IEC 61499 allows

also to model distributed agents communicating through messages thanks to its

event-driven communication. It also offers the possibility of execution of agents

directly on micro Programmable Logic Controllers (PLC). However, despite of its

multiple merits, there is still a need for some stages and complementary processes

in order for us to obtain clear and effective models and in effective way as well.

In fact, using function blocks in the early stages of modeling does not provide the

possibility to analyze the system/application requirements [Thramboulidis 2006],

[Thramboulidis 2007].

Using UML instead allows rich analysis through different perspectives namely

the structural and behavioral views. UML offers also a semi-formal modeling base

4.2. Motivation 83

for software applications. More importantly, some advanced application’s features

(especially that we talk about context-aware intelligent applications) could not be

easily modeled with function blocks. Nevertheless, UML still has also some limita-

tions when it comes to models correctness. UML does not offer formal semantics

that enable to design probabilistic scenarios running under memory and energy con-

straints. Therefore, there is a need to extend the existing UML semantics with new

semantics that enable to specify probabilistic and resources constrained scenarios.

As stated in Chapter 2, formal verification provides various benefits that im-

prove the design efficiency through catching ambiguities and errors, and provide

reliable results with less time and effort. To benefit from these assets, analyzing the

application models with formal verification techniques such as Petri nets formalism

might provide promising results.

In addition to all that, it is important to provide a systematic method that

helps in improving the modeling efficiency and flexibility: a method that supports

the incremental modification, refinement, and evaluation at multiple levels and that

provides reliable results.

Considering these basis, we propose a new UML profile, called the Generalized

Reconfigurable UML (GR-UML) which enriches the existing semantics with the

ability to model probabilistic and resource constrained scenarios. Afterwards, we

introduce a modeling methodology which consists in modeling applications using

the framework models (models presented in Chapter 3 can be extended according

to the use case) as well as the new GR-UML. In fact, the logic of the controller

and the services can include probabilistic logic and applications can have resources

constrained control. After that, formal analysis is conducted over the Petri nets

models of the application. Finally, analysis and simulation of the function block

models of the application on target hardware environment can be tested through

the function block edition tools.

The accomplishment of the second and third phases is achieved thanks to a set

of model transformation rules that map the models from GR-UML to GR-TNCES

Petri nets extension and to IEC 61499 function blocks. A visual software tool that

implements the defined transformations rules is developed.

It is worth noting that there are approaches that transform function block mod-

els to Petri nets. But not all application features can be modeled in the function

block level [Thramboulidis 2008], e.g., the rule bases, the inference engine, etc. In

real world implementations, applications can be deployed in different parts such as

PLCs, networked servers, networked computers, and even the cloud [Lu et al. 2019].

Hence in order to cover the whole application model analysis, it is better to trans-

form the UML application model to Petri nets rather than transforming the function

block model to Petri nets model. Nevertheless, developers who are interested to ver-

ify the obtained function block behavior can do it using the existing approaches.

84
Chapter 4. Modeling Methodology Based on the Proposed

Framework

4.3 Preliminaries

In this section, we present the GR-TNCES formalism as well as our formal definition

of the IEC 61499 concepts.

4.3.1 GR-TNCES

As presented in [Khlifi et al. 2019], the GR-TNCES formalism is defined as a net-

work of R-TNCES given by: G= {
∑

R-TNCES}, where R-TNCES=(B,R) with

B a behavior module and R a control module.

The behavioral module B is defined as a union of multiple TNCES and given

by: B = (P, T, F,QW,CN,EN,DC, V, Z0)

where;

� P is a finite non-empty set of places,

� T is a finite non-empty set of transitions,

� F is a finite set of flow arcs such that F ⊆ (P × T) ∪ (T × P)

� QW = (Q,W) with Q : F → [0, 1] is the probability of the arc and W is a

mapper that maps a weight to a flow arc such that (P ×T)∪(T ×P)→ {0, 1},
W (x, y) > 0 if (x, y) ∈ F and W (x, y) = 0 otherwise, with x and y ∈ P ∪ T ,

� CN is a set of condition signals with CN ⊆ (P × T),

� EN is a set of event signals with EN ⊆ (T × T)

� DC is a superset of time constraints on output arcs such that F ⊆ (P ×T)→
[l, h]

� V : T → {∨,∧} indicates an event processing mode to each transition (AND

or OR),

� Z0 = (T0, D0) where T0 : P → {0, 1} is the initial marking position and

D0 : P → {0} is the initial clock position.

The control module R is defined as a set of reconfiguration functions {r1, ..., rn}
running under resource constraints (memory and energy). A reconfiguration func-

tion called r is defined as a structure given by: r = (Cond,Q,E0,M0, S,X) where;

� Cond : CN → {true, false} is the precondition of r and is evaluated to true

or false,

� Q : F → [0..1] is the TNCES probability that can be an internal (TNCES

related) or a reconfiguration probability,

� E0 : P → [0..max] is controlling the energy required by the TNCES,

� M0 : P → [0..max] is controlling the memory required by the TNCES,

4.3. Preliminaries 85

� S : TN(•r)→ TN(r•) is the modification instruction of a reconfiguration,

� X : laststate(•r) → initialstate(r•) is the state processing function, where

laststate(•r) indicates the last state of •r before the application of r and

initialstate(r•) indicates the initial state of r• after the application of r.

4.3.2 Function Blocks Formal Definition

IEC 61499 standard provides a function block concept having three main function

block types: basic, composite, and service interface function blocks, denoted re-

spectively by BFB, CFB, SIFB. A function block, regardless its type, is defined

by an interface, denoted by I, and an internal structure.

The interface I of all function block types is given by

I = (InE,OutE, InD,OutD, InW,OutW). (4.1)

where

� InE (resp. OutE) is a set of input (resp. output) events.

� InD (resp. OutD) is a set of input (resp. output) data.

� InW (resp. OutW) is a set of With-associations for inputs (resp. for outputs).

4.3.2.1 Basic Function Block

A basic function block BFB is defined as

BFB = (I, ECC,A). (4.2)

where I is its interface, ECC is its execution control chart, and A is the encap-

sulated algorithms.

A is the algorithms defining the encapsulated functionalities of a basic function

block and it is given by

A = {algi|i ∈ {1, ..., |A|}}. (4.3)

where algi is an algorithm.

ECC is the execution control chart supervising the operation of a function block.

It is given by:

ECC = (ES,EA,ET,EF). (4.4)

where,

� ES is a set of states of ECC.

� EA is a set of actions, an action is associated to an algorithm algi and output

events of I.

86
Chapter 4. Modeling Methodology Based on the Proposed

Framework

� ET is a set of transitions between ECC states. Each transition has a guard

condition which is the coming of an input event of I.

� EF indicates the flow between the different ECC states.

4.3.2.2 Composite Function Block

A composite function is defined as

CFB = (I,N). (4.5)

where N is a network of basic and/or composite function blocks.

4.3.2.3 Service Function Block

SIFB this type of function blocks represents an interface to services offered by

the operating system or the device, e.g., interface to hardware (sensors, motors,

controllers) or communication services (client/server communication).

4.4 New UML Profile: GR-UML

Thanks to the extensibility mechanisms offered by UML, we improve the class and

statechart diagrams by means of the definition of new semantics at the aim of

specifying the probabilistic features and memory and energy constraints.

4.4.1 Class Diagram Definition

UML class diagram is introduced as one of the structural view enablers of a sys-

tem/application. It describes the system structure by showing the classes, their

attributes, their methods, and the relations among objects.

In order to make the semantics of this diagram more suitable to the probabilistic

reconfigurable systems that can operate under resources constraints (i.e., memory

and energy), we extend its vocabulary by using new stereotypes to express the prob-

abilistic property. Hence, we extend the solution proposed in [Salem et al. 2015a]

by defining nine stereotypes of the attributes of classes as follow:

� << probability >>: stereotype used to determine that the given attribute is

a probabilistic functionality/operation.

� << memory >>: stereotype used to determine that the given attribute rep-

resents memory resources of an operation.

� << energy >>: stereotype used to determine that the given attribute repre-

sents energy resources of an operation.

� << in >>: stereotype used to determine that the given attribute is a module

input.

4.4. New UML Profile: GR-UML 87

� << out >>: stereotype used to determine that the given attribute is a module

output.

� << input >>: stereotype used to determine that the given attribute is system

input.

� << output >>: stereotype used to determine that the given attribute is a

system output.

� << eventInput >>: stereotype used to determine that the given attribute is

an input event of a module.

� << eventOutput >>: stereotype used to determine that the given attribute

is an output event of a module.

� << integer >>: stereotype used to determine that the given attribute is an

integer.

� << boolean >>: stereotype used to determine that the given attribute is a

boolean.

Whenever it is required to model equipment resources consumption especially

memory and energy ones, it is required to have relevant methods for it. Thus, we

define the hereafter methods:

� checkEnergy(name : string) : bool - controls the energy resources mentioned

by name.

� checkMemory(name : string) : bool - controls the memory resources men-

tioned by name.

Based on this semantic extension, a class diagram can be defined as follows:

CD = {Cl,At,Me, S, ψ, ω}. (4.6)

where,

� Cl = {cl1, cl2, ..., clm} is a finite set of classes.

� At = {at1, at2, ..., atn} is a finite set of attributes of classes.

� Me = {setInput, setOutput, resetInput, resetOutput, checkEnergy,
checkMemory; setCeiling} is a set of methods of the classes.

� S = {<< probability >>,<< memory >>,<< energy >>,<< in >>

,<< out >>,<< input >>,<< output >>,<< eventInput >>,<<

eventOutput >>,<< boolean >>,<< integer >>} is a finite set of stereo-

types.

� ψ : ati → clj is a function mapping the attribute ati to the class clj .

88
Chapter 4. Modeling Methodology Based on the Proposed

Framework

� ω : si → atj is a function mapping the stereotype si to the attribute atj .

Based on the new extended class diagram definition, we present an exam-

ple of use of the added elements (i.e., the stereotypes << probability >>,

<< memory >>, << energy >> and the methods checkEnergy, checkMemory)

as follows, let us consider these stereotyped attributes << Memory >>→
OperationMode1Memory : real, << Energy >>→ OperationMode1Energy :

real as well as the methods checkMemory(“OperationMode1Memory”) and

checkEnergy(“OperationMode1Energy”) that can be used by classes that are re-

sponsible for resources control, and << probability >>→ Behavior1Probability :

real, << probability >>→ Behavior2Probability : real, that can be used by

classes responsible for the logic.

4.4.2 Statechart Diagram Definition

Statechart diagram is a tool proposed by UML to specify the behavior of objects

(which are issued of a specific class). Some of the events of the statechart diagram

can be specified with the << eventInput >> and << eventOutput >> stereotypes,

and more importantly, guard conditions can now include the << probabilty >>

stereotype that allow to express probabilistic transition from one state to another.

We define statechart diagram as follows

SD = {St, Tr, Ev,G,Ac, Fr, Jn, F l, Ch, γ, δ, ε}. (4.7)

where:

� St = {st1, st2, ..., stn} is a finite set of states in an SD.

� Tr = {tr1, tr2, ..., trm} is a finite set of transitions in an SD.

� Ev is a finite set of events in transitions of SD.

� G is a finite set of guards in SD.

� Ac is a finite set of actions in SD.

� Fr is a finite set of fork pseudostates in SD.

� Jn is a finite set of join pseudostates in SD.

� Fl is a finite set of the transitions flow, such that Fl ⊆ (St×Tr)∪ (Tr×St).

� Ch is a finite set of choice pseudostates.

� γ: evi → trj is a function mapping an event evi of Ev to a transition trj of

Tr.

� δ: grk → trj is a function mapping a guard grk of Gr to a transition trj of

Tr.

� ε: actl → trj is a function mapping an action actl of Ac to a transition trj of

Tr.

4.5. Model Transformations 89

4.4.3 Component Diagram Definition

In the current research, only simple components are used in the UML component

diagram. Hence, we define a component diagram ComD as

ComD = {Co, In, αdep, αrea}. (4.8)

where:

� Co is a finite set of components of ComD.

� In is a finite set of interfaces of ComD.

� αdep is a finite set of dependency relationships of components to interfaces

such that αdep ⊆ (In× Co).

� αrea is a finite set of realization relationships of interfaces by components such

that αrea ⊆ (Co× In).

4.5 Model Transformations

In this section, the transformation of the GR-UML models to GR-TNCES and IEC

61499 function blocks is provided.

4.5.1 Transformation of GR-UML to GR-TNCES

We propose the following list of transformation rules:

� Rule 1: A state st ∈ St is mapped to a place p ∈ P of an R − TNCES. For

example, Figure 4.1 shows an example where the state stb is transformed to

a place p1.

� Rule 2: A transition tr ∈ Tr is mapped to a transition t ∈ T of an R −
TNCES. For example, Figure 4.1 shows an example where the transition tr

is transformed to a transition t1.

Figure 4.1: Transformation of simple statechart example.

90
Chapter 4. Modeling Methodology Based on the Proposed

Framework

� Rule 3: A transition tr in SD is given by a pair of states, stb and ste, where

the first is the state from which tr is taken and the second is the next state if tr

fires. A transition t and two places pout and pto are created using, respectively,

Rule 2 and Rule 1. Rule 3 creates in the R − TNCES a flow arc, fa1 ∈ F ,

linking pout to t, and another one, fa2 ∈ F , linking t to pto. Figure 4.1 shows

an illustrative example of Rule 3.

� Rule 4: In SD, guard conditions can be assigned to some transitions. A guard

gr is transformed to three condition arcs, ca, in an R−TNCES. A condition

output signal, co, is added to the place guaranteeing the condition and a con-

dition input signal, ci, to the related transition. Figure 4.2 shows an example

of a guard condition mapping. In this example, the place guaranteeing the

condition is p3 belonging to TNCES2.

Figure 4.2: Transformation example of guard condition of transition.

� Rule 5: In an SD, guards stereotyped with << probability >> are mapped

to the set QW of the behavioral module B of R − TNCES. A probabilistic

guard gr has the form of [Probai == x] where Probai stands for the proba-

bility on the transition and x is the value of the probability which is a real

number between 0 and 1. Figure 4.3 shows an example of a probabilistic

guard condition mapping. In this example, Proba1 is mapped to Q1 which

may take two values x1 or x2.

� Rule 6: In SD, actions can be assigned to some transitions. An action ac is

mapped to four event arcs, ea, in an R − TNCES. An event output signal,

eo, is added to the transition from which the event is triggered and an event

input signal, ei, as well as an transition tac are added to the related transition

t. Figure 4.4 shows an example of an action mapping.

4.5. Model Transformations 91

Figure 4.3: Transformation example of probabilistic guard condition of transition.

Figure 4.4: Transformation example of transition action.

� Rule 7: A fork pseudostate fr in an SD that splits an SD transition tr into

several orthogonal regions of a composite state cst, is mapped in R−TNCES
to a transition tfr1 linked to a place pcst representing the composite state cst,

and pcst is linked to a transition tfr2 that is linked to n places representing

the internal simple states of a cst. Figure 4.5 shows an example of a fork

pseudostate mapping.

� Rule 8: A join pseudostate jn in an SD that merges SD transitions from

several orthogonal regions of a composite state cst, is mapped in R−TNCES
to a transition tjn1 that is linked to n places representing the internal simple

states of a cst, tjn1 is linked to a place pcst representing the composite state

cst, and pcst is linked to a transition tjn2 . Figure 4.6 shows an example of a

join pseudostate mapping.

92
Chapter 4. Modeling Methodology Based on the Proposed

Framework

Figure 4.5: Transformation example of fork pseudostate.

Figure 4.6: Transformation example of join pseudostate.

� Rule 9: A choice pseudostate ch in an SD that splits an SD transition to

multiple conditional outgoings is mapped in R− TNCES to a decision state

along with transition tch that is linked to n places representing the target

states, also n input/output condition signals are added according to Rule 4.

Figure 4.7 shows an example of a choice pseudostate mapping.

4.5. Model Transformations 93

Figure 4.7: Transformation example of choice pseudostate.

The Table 4.1 depicts a summary of the proposed transformation rules.

Table 4.1: Summary of transformation rules of statechart diagram to GR-TNCES.

ID
GR-UML Statechart Dia-

gram
GR-TNCES

Rule 1 St P

Rule 2 Tr T

Rule 3 Fl F

Rule 4 gr ∈ G ci ∈ Cin, co ∈ Cout, {ca} ⊂ CN

Rule 5 probabilistic {gri} ⊂ G Q of QW

Rule 6 ac ∈ Ac ei ∈ Ein, eo ∈ Eout, t ∈ T, {ea} ⊂ EN

Rule 7 jn ∈ Jn t ∈ T, {fa} ⊂ Fl

Rule 8 fr ∈ Fr t ∈ T, {fa} ⊂ Fl

Rule 9 ch ∈ Ch
p ∈ P , {t} ⊂ T, {fl} ⊂ Fl, {ci} ⊂ Cin,

{co} ⊂ Cout, {ca} ⊂ CN

4.5.2 Transformation of GR-UML to IEC 61499 Function Blocks

In order to get the function blocks model of an application, both GR-UML com-

ponent and statechart diagrams are used for transformation. Statechart diagram is

used to transform the execution control chart of basic function blocks while compo-

nent diagram is used to map the network of function blocks, i.e., relations between

94
Chapter 4. Modeling Methodology Based on the Proposed

Framework

function blocks as well as function blocks interfaces. We extend the work reported

in [Panjaitan & Frey 2007] to obtain the following transformation rules.

� Rule 10: A component co ∈ Co of the component diagram ComD corresponds

to a composite function block CFB. Figure 4.8 shows an example of transfor-

mation of Component1 of the GR-UML components diagram to a composite

function block of the IEC 61499 function block.

Figure 4.8: Transformation example of a GR-UML component to a composite func-

tion block.

� Rule 11: In GR-UML component diagram, as it is the case for class diagram,

interfaces contain methods, where each method has a name, a set of input

arguments defined by their name and type, and a return value defined by

its type. An interface in ∈ In realized by a component coa and used by a

component cob of a component diagram ComD is mapped to inputs of the

interface Ib (i.e., subsets of InE, InD, InW) of function block fbb and a part

of the interface Ia (i.e., subsets of InE, InD, InW,OutE,OutD,OutW) of

function block fba.

� Rule 12: Based on Rule 11, methods defined an interface in are mapped to

Ia as follows:

– Every provided method defined in in is mapped to an input event

inei ∈ InE with the proper associated with-association inwi ∈ InW

as well as the relevant input data indi ⊂ InD, such that the name of the

method is mapped to the name of event, the arguments of the method

are mapped to the associated data, and the types of method arguments

are the mapped to the type of input data.

– The output of the provided method is mapped to an output event outei ∈
OutE with the proper associated with-association outwi ∈ OutW as well

as the relevant output data outdi ⊂ OutD, such that the return type is

the output data type.

For example, Figure 4.9 shows an example of transformation of Method2 of

Interface1 to the input event method2 associated with the input data input2,

4.5. Model Transformations 95

Figure 4.9: Transformation example of components to composite function blocks.

input3, input4 and the return of Method2 is transformed to the output event

Osignal2 associated with the output data output2.

� Rule 13: Based on Rule 11, required methods defined an interface in are

mapped to Ib as follows: Every method defined in in is mapped to an input

event inei ∈ InE with the proper associated with-association inwi as well as

the relevant input data indi ⊂ InD, such that the name of the method is

mapped to the name of event and the arguments of the method are mapped

to the associated data. The types of method arguments are the mapped

to the type of data. From Figure 4.9, Component2 uses/requires Interface1

and Interface2, then the outputs of method1, method2, method3, method4 are

mapped to inputs of Component2.

96
Chapter 4. Modeling Methodology Based on the Proposed

Framework

� Rule 14: The internal activity of each module (i.e., component) is transformed

according to its statechart diagram as follows: each simple state is mapped to

a basic function block while each composite state is mapped to a composite

function block.

� Rule 15: A state requiring the use of a ”data base” such as the rule base of

the artificial intelligence module AIM , the system history H of AIM , context

attributes model CAMS of the inputs module IM , the context rule store CRS

of IM , can be mapped to service interface function blocks SIFB since such

functionalities are generally performed by computers/servers networked with

field devices not by function blocks.

� Rule 16: States in a GR-UML statechart diagram do generally hold a set

of different internal activities (entry action, do activity action, exit action,

deferrable trigger). These activities (i.e., actions) are transformed to the

algorithms of a basic function block. The evolution of state activities are

transformed to the execution control chart ECC as depicted in Figure 4.10,

where each internal action iai is mapped to a state esi ∈ ES of ECC along

with the algorithm associated to it.

Figure 4.10: Transformation example of state internal activities to ECC of a BFB.

� Rule 17: Each transition tri ∈ Tr in a statechart diagram that is leaving

a state sta and entering a state stb is transformed to transitions linking an

output event outei ∈ OutEa and the related output data outdi ⊆ OutDa to

the input event inei ∈ InEb and the related input data indi ⊆ InDb (i.e.,

blue and red links in Figure 4.9).

� Rule 18: Each guard gri associated to a transition tra linking a state sta to a

state stb in the statechart diagram is transformed to output data outdi along

with a with-association outwi of the interface of the source function block fba
and to input data indi along with a with-association inwi of the interface of

the destination function block fbb.

4.6. Methodology Work Flow 97

These transformation rules facilitate the generation of function blocks

through creating the skeleton of the model. Details and precision of the model

(for example the order of transitions in ECC) could be added manually.

The Table 4.2 depicts a summary of the proposed transformation rules from

GR-UML component diagram to IEC 61499 function block network, while Table 4.3

depicts a summary of transformation rules from GR-UML statechart diagram to

function blocks.

Table 4.2: Transformation rules of component diagrams to function blocks.

ID
GR-UML Component Dia-

gram
IEC 61499 Function Block

Rule 10 ComD CFB network

Rule 11
(1) required interfaces, (2) provided inter-

faces

(1) set of inputs of I, (2) part of the interface

I

Rule 12 provided method

indi ⊆ ind, outdi ⊆ outd, inei ⊆

ine, outei ⊆ oute, inwi ⊆ inw, outwi ⊆

outw.

Rule 13 required method indi ⊆ ind, inei ⊆ ine, inwi ⊆ inw.

Table 4.3: Transformation rules of statecharts diagrams to function blocks.

ID
GR-UML Statechart Dia-

gram
IEC 61499 Function Block

Rule 14 (1) simple state, (2) composite state
(1) basic function block, (2) composite function

block

Rule 15 states requiring the use of data storage service interface function block SIFB

Rule 16 state internal activities ECC of a basic function block and its algorithms

Rule 17 transition tri ∈ Tr
outei ∈ OutEa, outdi ⊆ OutDa, outwi ∈ OutWa,

inei ∈ InEb, indi ⊆ InDb, inwi ∈ InWb

Rule 18 transition gri ∈ Gr
outdi ⊆ OutDa, outwi ∈ OutWa, indi ⊆ InDb,

inwi ∈ InWb

4.6 Methodology Work Flow

The methodology consists of three phases and its work flow is presented in Fig-

ure 4.11.

� The first phase consists in modeling applications using/extending the frame-

work UML models according to the considered case, and using GR-UML to

model the controller as well as the services logic.

� The second phase consists in performing formal analysis using the mathemat-

ical tools of the GR-TNCES Petri nets extension, also model checking can

98
Chapter 4. Modeling Methodology Based on the Proposed

Framework

Figure 4.11: Modeling methodology flowchart.

be conducted since GR-TNCES provides the possibility to export models to

PRISM model checker [Uddin et al. 2019].

� The third phase consists in analyzing the IEC 61499 function block models of

applications. Deployment in target hardware environment analysis using the

function block tools can also be performed.

The flow of the methodology provides the ability to analyze the output of each

phase and to conduct modifications and refinements whenever required. The iter-

ation through the three phases ends when the desired application model structure

and behavior are obtained. The methodology makes the move from one phase to

another easy thanks to the software tool chain that implements the defined trans-

formation rules. In the following, more details about each phase are demonstrated.

4.6.1 Applications Modeling Using the Framework Models

Using abstract/high level modeling tools provides many advantages such as reduc-

ing time and effort, having unified understanding of the application, as well as con-

ducting more sophisticated tests of particular applications [Thramboulidis 2004],

4.6. Methodology Work Flow 99

[Schneider 2019]. In fact, defining the structural view (using component and class

diagrams) helps to clearly model the application logic, parts, and components.

Further, to make this task easier for designers, this phase is performed based on

the framework models as well as the GR-UML: designers have the possibility to use

the concepts of the framework via extending it according to the considered use case.

The framework facilitates the task through providing the “skeleton” of applications.

Developers can take it as the starting base as it provides a well-organized software

architecture, so there is no need to think about repetitive basic requirements, in-

stead the effort is made on applications specificities. The framework architecture

is defined in a way to reduce the complexity of application’s design. It provides

requirements presentation in a loosely coupled way. Thus easy to understand and

easy to maintain. In addition, more sophisticated specification of probabilistic and

resources constrained features of the controller or services logic can be performed.

4.6.2 Behavior Testing Using Formal Verification

Framework models facilitate the task of creating consistent and clear application

models. However, for particular applications it is necessary to get more guarantees

about the models correctness, especially for complicated reconfigurable systems in

which ambiguities and errors can occur.

In this case, formal verification is required to get correctness guarantees based

on mathematical basis. For this, a formal testing and analysis is proposed to be

done as a second phase of the modeling of distributed reconfigurable applications.

Models obtained in Phase 1 are transformed into GR-TNCES Petri nets models

and formal analysis as well as model checking becomes possible.

Concerning the choice of the formalism, GR-TNCES provides a set of advantages

over other Petri nets extensions as follows:

1. It ensures the modeling and verification of reconfigurable systems through

providing a reconfiguration module which helps to make modeling of recon-

figurable application simpler.

2. It is a “generalized” formalism where many aspects can be tackled including

the probabilistic ones.

3. It allows to specify and verify resources constraints (memory and energy).

4. It allows optimizing the verification time [Hafidi et al. 2019].

The proposed framework as well as GR-UML are dedicated to develop reconfig-

urable systems, therefore GR-TNCES is more suitable than other formalism.

In this phase, Petri nets can be visualized in ZIZO [Salem et al. 2015b] the

editor and simulator of GR-TNCES, places, transitions, input/output conditions,

input/output events, arcs probabilities, TNCES modules and its networks can all

be modeled and visualized. This graphical representation helps at first to recognize

the model structure. Afterwards, manual mathematical analysis can be performed,

100
Chapter 4. Modeling Methodology Based on the Proposed

Framework

moreover ZIZO provides the possibility to export models to “.pm” files readable by

PRISM model checker, where easier properties checking is enabled.

4.6.3 Function Blocks Models Analysis

Analysis of applications models according to IEC 61499 function blocks is performed

in this phase. Guaranteeing compliance with IEC 61499, since it is a distributed

systems reference modeling standard, is of great importance. Structural and behav-

ioral aspects of applications developed in the first and second phases become more

valuable if its analysis and even deployment is tested in a target environment. In

this research, the open source PLC framework for industrial automation and con-

trol 4DIAC 1 is used for analysis. 4DIAC includes a development environment, a

runtime environment, and a function block library that helps to easily set up tests.

Other tools like the FBDK2 can also be used.

4.7 Software Tool: ZiZo New Version

In order to facilitate the task of designers, we have created a visual software envi-

ronment, called ZiZo, that implements the concepts of the proposed methodology.

ZiZo was initially introduced in [Salem et al. 2015b], [Khlifi et al. 2019] as a editor,

simulator, and verifier of R-TNCES as well as GR-TNCES models.

We have extended ZiZo with new features in order to allow the modeling of GR-

UML. We have extended the statechart diagram viewer with the ability to draw

probabilistic transitions as mentioned in Figure 4.12. We have also added an editor

of component diagrams (see Figure 4.13).

Figure 4.12: ZiZo: Probabilistic statechart diagram viewer.

In addition, we have created new buttons having the role of transforming the

created models into GR-TNCES models in the form of “.zz” files (as mentioned in

1https://www.eclipse.org/4diac/
2http://ftp.holobloc.com/fbdk2/index.htm

4.7. Software Tool: ZiZo New Version 101

Figure 4.13: ZiZo: Component diagram viewer.

Figure 4.15) and into IEC 61499 function block models in the form of “.fbt” files

(as mentioned in Figure 4.14). The logic behind these buttons contains the defined

transformation rules.

Figure 4.14: Export to function blocks

button.

Figure 4.15: Export to GR-TNCES but-

ton.

The “.zz” files are readable by the part of ZiZo that contains the GR-TNCES

modeling and simulation (the structure is mentioned in Figure 4.17), while “.fbt”

files are readable by some tools of the IEC 61499 such as the 4DIAC and FBDK

(the structure is like the XML as mentioned in Figure 4.16).

102
Chapter 4. Modeling Methodology Based on the Proposed

Framework

Figure 4.16: “.fbt” file readable by 4DIAC

and FBDK.

Figure 4.17: “.zz” file readable by ZIZO.

4.8 Running Example

This section shows how the methodology allows to get reliable applications models,

we consider especially the ones of the controller and the services. In fact, since the

logic and behavior of the services and controller must be elaborated/terminated

by developers, it is required to provide a way to get guarantees about the models

correctness and efficiency. The controller has to interact with the rest of the modules

and to make decisions of reconfigurations, etc. Therefore, proving the correctness

of the controller and the whole application behavior is needed. In further step,

the deployment testing in target hardware environment can be modeled/simulated

using IEC 61499 function blocks.

To illustrate the methodology process, the same example of baggage handling

system is considered. For simplicity reasons, we detail the modeling of one simple

controller subroutine/subtask of loading services in the context of reconfiguration.

4.8.1 Phase 1 of the Methodology: Modeling using UML Models
of the Framework

The first phase of the methodology consists mainly in using the ready/provided

framework models and to define the models of the services and controller.

Figure 4.18 depicts a statechart diagram where the states of the controller are

grouped in three main composite states: SearchingForConfiguration in which the

interaction with the rest of modules can be accomplished, DiscussingAboutConfig-

uration in which a messaging with the distributed components of the BHS can be

performed, and finally LoadingServices in which the controller needs to interact

with the Service Layer (SL) in order to feed the outputs.

The focus of the current example is made on the last state, where Figure 4.18

depicts its detailed states. Four services are considered in this example, Tracking

Service that must run in parallel with any other service, Moving Backward, Moving

Forward, and Halt.

4.8. Running Example 103

Figure 4.18: Statechart of the Loading Services subroutine of the controller.

The tracking service must run in parallel with any other service, this is why

the services are designed using an orthogonal state, which is a kind of composite

state where regions are assumed to be run in parallel, the first region contains the

tracking service and the second region contains the other services.

Since the forward, backward, and halt service are excluding services, i.e., the

execution of the one means the non execution of the others, a choice along with

guard conditions are used to ensure the selection of only one of them.

4.8.2 Phase 2 of the Methodology: Formal Verification

One of the important advantages of the GR-TNCES formalism is that it provides

modular representation and verification of complex applications, through decompos-

ing/dividing the target into smaller modules, then a verification module-by-module

can be accomplished. This feature helps to facilitate the task, make it clearer, and

also to easily localize errors if they exist.

After transforming the GR-UML models, using the transformation rules pre-

sented earlier, we get the following GR-TNCES formal model. For example, Rule 1

results in seven places since we have seven states, Rule 4 and Rule 9 result in three

condition inputs since we have a choice pseudostate with three guard conditions,

Rule 8 results in having concurrent subnets since we have a fork pseudostate.

ZIZO tool allows to visualize and edit the GR-TNCES models. In this step,

104
Chapter 4. Modeling Methodology Based on the Proposed

Framework

Figure 4.19: Transformation of the composite state Loading Services.

TNCES modules network can be visualized/created, etc. ZIZO enables also to

compute the set of reachable states. Figure 4.19 depicts the visual Petri net of the

considered example.

Now many properties can be checked, such as liveness and safety properties.

It is recalled here that safety signifies that nothing undesired happens, and live-

ness signifies that a property is fulfilled by all the net’s executions (deadlock free

behavior).

It is noted that ZIZO allows the automatic code generation of PRSIM code in the

form of “.pm” files. PRISM is a probabilistic model checker where Computation

Tree Logic (CTL) and especially Probabilistic Computation Tree Logic (PCTL)

properties can be used to analyze models of complex probabilistic scenarios.

In the current case, we show a simple verification example. At first, we have

created the reachability graph of the given behavior model and verified that the

model is deadlock free. Then, we checked a set of properties. As an example of the

safety properties that can be checked for the LoadingServices module, we present

the following,

1. Service forward and service backward should never happen simultaneously.

This means that we need to check whether it is possible to reach a state

where both places SelectingForward and SelectingBackward hold. For this we

check this CTL formula

4.8. Running Example 105

EF(SelectingForward ∧ SelectingBackward). (4.9)

The result returns false, then no contradictory states can happen.

2. Service forward and service halt should never happen simultaneously.

3. Service backward and service halt should never happen simultaneously.

As an example of the functional properties that can be checked for the Load-

ingServices module, we present the following,

1. Service track should work together with halt, backward, and forward services.

This means that the place SelectingTrack holds often on every computation

path. Hence, we verify this CTL formula

AG(AFSelectingTrack). (4.10)

The obtained result is true, then we are sure that tracking will always be

activated.

Probabilistic properties verification: Let us suppose that the delays of

flights arrivals is on average about 20% per year for the considered airport example.

Delays by 15 minutes or more can generally happen due to many reasons such as

the adverse weather, air traffic control, connecting passengers, security clearance,

and many other reasons. This fact incites the use of probabilistic logic to model the

possible controlling scenarios at the aim of optimizing the waiting times [Frey 2014]

and bags processing. To illustrate the transformation of probabilistic GR-UML

statechart diagram to GR-TNCES and how it can be analyzed with PRISM, let

us show a part of the logic of the composite state SearchingForConfiguration of

Figure 4.18. Let us assume that the controller must lead two different processing

“branches”, the first is used whenever all flights are managed as planned and the

second is used whenever delays happen (a delay may induce disturbances in the

associated flight and in the successive ones as well). These two scenarios must not

be used together.

Figure 4.20 shows that the probability of delays occurrence is characterized by

proba1 and consequently the likelihood to enter in a ProcessingDelayDueScenario

is proba1.

Thanks to the fifth transformation rule (Rule 5), we get two flow arcs leaving

a place WaitingForArrivalOfBagsAtCarousel that are weighted with probabilities

(0.2 and 0.8). The complete model can be visualized and edited with ZIZO and

then probabilistic properties can be verified with PRISM. For example, to verify

the confluence property it is possible to check that only one of the two scenarios is

chosen at the same time. Let x = 1 be the state in PRISM code (which is based

on a Markov chain model) indicating that the controller has to process baggage

as planned and x = 2 be the state indicating the scenario issued by delays. The

106
Chapter 4. Modeling Methodology Based on the Proposed

Framework

Figure 4.20: Probabilistic part of the statechart of the controller.

verification of the following formula returns zero then never the two scenario will

take place simultaneously.

P =?[F x = 1 & x = 2] (4.11)

For further probabilistic analysis, and given that the BHS has a planned schedule

where paths (i.e., conveyor sections) are reusable, we need to estimate the successful

re-routing that might unpredictably take place (because of failures, or delays, etc.)

and which gives rise to the need to handover bags from one path to another. Let us

focus on the part which has the responsibility to analyze the efficiency of probable

rerouting which is included in the composite state ProcessingDelayDueScenario as

mentioned in Figure 4.21.

For simplicity reasons, let us assume that we have three successive paths P1, P2,

and P3, and that P1 has only the ability to handover bags to P2, P2 can handover

bags to P1 and P3, and P3 can handover bags to P2. Let us also assume that the

capacity of a path is expressed in terms of bags weight.

In order to analyze the efficiency of rerouting, and after transforming the model

to PRISM, we can apply PCTL formulas. Figure 4.22 shows the PRISM code used

to analyze the routing analysis task, in which the probability of delay occurrence

in the path P1 is once per week p1 = 1/(7 ∗ 24 ∗ 3600), in P2 is twice per week

p2 = 2/(7 ∗ 24 ∗ 3600), and in P3 is three times per week p3 = 3/(7 ∗ 24 ∗ 3600),

also the probability to reroute bags from P1 to P2 is p11 = 0.5, from P2 to P3 is

p21 = 0.45, from P2 to P1 is p22 = 0.45, and from P3 to P2 is p31 = 0.5.

As mentioned in Figure 4.22, the state s = 0 represents the idle state, s = 1

(respectively s = 2, s = 3) represents a delay in P1 (respectively P2, P3). The state

s = 11 represents the final state. The rest of states are defined as follows,

� s = 4 means that bags are handed-over from P1 to P2 and a reconfiguration

4.8. Running Example 107

Figure 4.21: Probabilistic part of the statechart of the controller.

is successful (using different configuration for example with more speed, with

activating deactivating merging and diverting pushers, etc.).

� s = 5 means that bags cannot be handed-over from P1 to P2 and a reconfig-

uration is failed.

� s = 6 means that bags are handed-over from P2 to P3 and a reconfiguration

is successful.

� s = 7 means that bags are handed-over from P2 to P1 and a reconfiguration

is successful.

� s = 8 means that bags cannot be handed-over from P2 to P1 nor to P3 and

a reconfiguration is failed.

� s = 9 means that bags are handed-over from P3 to P2 and a reconfiguration

is successful.

� s = 10 means that bags cannot be handed-over from P3 to P2 and a recon-

figuration is failed.

As first step, a simulation of the model is carried-out (see Figure 4.23).

Then verifying formulas can be done. First, we verify that the rerouting module

does not contain any deadlock. This is achieved via the formula E[F”deadlock”]

which is proven to be false, i.e., the module is deadlock free (see Figure 4.24).

108
Chapter 4. Modeling Methodology Based on the Proposed

Framework

Figure 4.22: Prism code of the rerouting analysis module.

Figure 4.23: Prism module simulation.

Figure 4.24: Deadlock property. Figure 4.25: Successful rerouting.

4.8. Running Example 109

Figure 4.26: Success for one year. Figure 4.27: Failure for next 12 hours.

Figure 4.28: Failure for one day. Figure 4.29: Long running failure.

Then, we want to know what is the probability of reaching a state where the

rerouting is successful. Thus, we verify this formula P =?[F (s = 11&reroute = 1)]

which returns 0.633 (see Figure 4.23), this means that in 63% of all cases we can

have successful rerouting.

We verify the successful reconfiguration (i.e., rerouting) for one year via the

formula P =?[trueU <= (365 ∗ 24 ∗ 3600)(s = 11)&(reroute = 1)] which returns

0.62 (see Figure 4.26). We also estimate the probable failure for next 12 hours (see

Figure 4.27) and next day (see Figure 4.28).

We verify also, in the long run, the chance that failed reconfigurations are met

is less than 0.38 using the long-run (steady-state) probabilistic operator S in the

following formula S < 0.38[s = 11&reroute = 0] (see Figure 4.29).

After analyzing a set of properties, system designers can made assumptions

about the satisfactory level they need. Models can be refined and its properties can

be re-verified.

In this phase, all desired behaviors could be verified and model changes can

take place whenever necessary. Once the considered model is analyzed and it is

considered to be robust, then a move to next step becomes possible.

110
Chapter 4. Modeling Methodology Based on the Proposed

Framework

4.8.3 Phase 3 of the Methodology: Model Screening According to
IEC 61499 Using a Function Block Tool

After checking the models of the controller, services, and the whole application

with formal verification, it is now possible to move to the next type of “verification”,

where the models are transformed to IEC 61499 function blocks and a simulation on

a particular platform becomes possible, for example using Raspberry-SPS as I/O,

specific communication protocols such as HTTP, Modbus, or any other hardware

provided by function block simulators.

Figure 4.30: Transformation of statechart diagram of the controller loading service

subtask to function blocks.

In this example, 4DIAC/FORTE is adopted to explore the deployment of the

application. As an example, we continue to show how the model of the controller

subtask, which is the Loading Service, is obtained. According to Rule 14, the

composite state LoadingServices is transformed to a composite function block, i.e.,

the function block LoadingServices in Figure 4.30. The state SelectingService is

transformed to a composite function block as orthogonal states are composite states

where regions are supposed to work in parallel. The initial, idle, LoadingForward,

4.8. Running Example 111

Figure 4.31: Selecting Service composite function block interface.

Figure 4.32: Internal composition of the Selecting Service function block.

LoadingBackward, LoadingTrack, and LoadingHalt states are transformed to basic

function blocks called respectively Initial-BFB, Idle-BFB, LF-BFB, LB-BFB, LT-

BFB, and Starter-LH.

Figure 4.31 and Figure 4.32 show the obtained interface as well as the internal

composition of the composite function block SelectingService.

Applications models could then be analyzed: composition, encapsulation, and

modular structures can be examined. Additionally, simulation on a target hardware

environment, such as FORTE PC provided by 4DIAC using Ethernet for commu-

nication could take place.

Function blocks models analysis and refinement can be performed until obtain-

ing the desired results.

Finally: At the end of the three phases, we obtain a reliable application model

and implementation becomes straightforward. Implementing applications starts in

basis of the provided framework code.

112
Chapter 4. Modeling Methodology Based on the Proposed

Framework

4.9 Comparison with Other Approaches

In this section, we compare the proposed modeling methodology with existing ones,

where we highlight the advantages of our methodology. We build our comparison

according to two scopes: (1) the modeling, and (2) the verification.

Concerning the modeling, three main methodologies are recognized for mod-

eling control systems (such as goods handling systems, microgrid, etc.) requiring

the intelligence and distribution:

First method: is to start the modeling of applications using function blocks,

such as the works reported in [Yan & Vyatkin 2013]. In this approach, abstract

models are not provided, even though an attempt to model the controller is made

through defining two software elements, High Level Control (HLC) and Low Level

Control (LLC), where HLC refers to the integration of software agent technology.

Instead, the use of UML/GR-UML may provide promising results especially that

it is considered the semi-formal software modeling language.

Second method: it consists in the use of UML only for clarifying the process

of the development not the application itself, as stated in the research reported

in [Panjaitan & Frey 2006]. As IEC 61499 does not provide complete development

method, researchers have tried to use UML for better capturing requirements and

better model component-based systems.

Third method: it consists in applying software design patterns, such as the

Model/View/Control pattern, and software design approaches, such as the Multi-

Agent Systems in combination with the function blocks to model systems, for exam-

ple the work presented in [Black & Vyatkin 2009]. Again, this methodology does

not provide the way to explore the different scopes of applications in comparison

with the use of UML, rather it helps to model the software according the physical

infrastructure of a system.

Despite the assets of the mentioned methodologies, it is still required to have the

ability to provide applications UML models, especially to get a model that captures

probable requirements and provides its abstract representation as well as the tool

to its development.

Concerning the verification, there are works that use simulation of function

blocks as testing, others simulate on testbeds, and some others transform func-

tion block model to Petri nets (NCES extensions). The problem with simulation,

whether in some prototype testbed or emulated platform through simulation tools,

is that results are tied to the considered scenarios, absolute guarantees cannot be

obtained. Formal verification of function blocks model may not cover all the appli-

cation features/functionalities, since it may be that some parts/components could

not be modeled with function blocks (e.g. intelligence mechanisms), consequently

verification will be made only on function blocks part, but we often need to get

guarantees about an application as a whole. Besides, to the best of our knowl-

edge, our methodology is the first to consider the three modeling scopes and with

a software tool support.

In conclusion, given the limitations of the methodologies above-mentioned,

4.10. Conclusions 113

our methodology is introduced to provide better process through allowing mod-

eling using the conventional semi-formal modeling language of software systems

(UML/GR-UML), to enable formal verification for all applications parts, and to

explore software analysis in compliance with function block platforms, therefore to

get better application’s models before implementation.

4.10 Conclusions

This chapter has presented a modeling methodology for clear, correct, and op-

erable models of controlling software applications of context-aware reconfigurable

distributed systems. The chapter has also introduced a new UML profile called

Generalized Reconfigurable UML (GR-UML). In addition, it has introduced a new

software tool implementing the methodology concepts.

The methodology consists of three phases, applications modeling starting from

the framework models and using GR-UML semantics, formally analyzing the be-

havior of applications and mainly the controller and services ones, and finally an-

alyzing the models in target hardware environment in compliance with IEC 61499

standard. The methodology helps designers and developers to obtain reliable appli-

cations models before starting the implementation step, hence it helps in catching

modeling errors and ambiguities. The process flow of the methodology offers flex-

ibility to developers through enabling the iterative modifications and refinements.

This process is made easier thanks to a set of transformation rules facilitating the

transformation of UML models to GR-TNCES and function blocks models. We

applied the contributions of this chapter to the controlling software application of

BHS presented in Chapter 3.

Chapter 5

Security of a Network of

Frameworks

Contents

5.1 Introduction . 116

5.2 Motivation . 116

5.3 Framework Security Technique 117

5.3.1 Composition of the Blockchain Technique (Security Module) 117

5.3.2 Dynamics of the Blockchain Technique (Security Module) . . 118

5.4 Secure Conversation Among Distributed Peers Protocol . . 119

5.4.1 Protocol First Phase: Demand 120

5.4.2 Protocol Second Phase: Response 122

5.4.3 Protocol Third Phase: Termination 123

5.5 Protocol Implementation . 124

5.5.1 Distributed Messaging Platform 124

5.5.2 Private Blockchain Implementation 125

5.5.3 ECIES Encryption . 127

5.6 Running Example . 127

5.6.1 Case Study Presentation . 127

5.6.2 Microgrids System Model . 128

5.6.3 Electricity Trading Protocol 130

5.6.4 Performance Evaluation . 135

5.7 Discussion . 138

5.8 Conclusions . 139

116 Chapter 5. Security of a Network of Frameworks

5.1 Introduction

Traditional security techniques rely heavily on the concept of a trust third party

and authorized agents to provide security solutions. Emerging security technolo-

gies are revolutionizing the field through introducing new concepts that get rid of

classic limitations, namely the blockchain technology. In this context and with the

undeniable need to security for computerized systems especially distributed ones,

this chapter introduces a security protocol for transparent, privacy-preserving, and

distributed communication between distributed peers. The protocol builds upon

blockchain technology and the elliptic curve cryptography.

The outline of the chapter is organized as follows: First, the background and

motivation of the protocol are presented. Then, the protocol concepts, phases, and

mechanisms are defined. Lastly, an example of use of the proposed protocol in an

electricity trading scenario among microgrids is depicted.

The contributions of this chapter are summarized as follows:

� Ensuring secure communication between distributed peers in trustless envi-

ronment.

� Providing a solution to the privacy limitation of blockchain technology.

� Defining cost-effective solution to the scalability challenge inherent to the

blockchain.

� Defining a method to calculate the confirmation time for the proof-of-work

based blockchains.

5.2 Motivation

Establishing trust between communicating distributed parts of a same reconfig-

urable automation and control system is a paramount condition to ensure relia-

bility and efficiency. Traditionally, this is provided by a trust third party (TTP)

that plays the role of a trusted entity which two communicating parts entrust. The

TTP verifies, on behalf of the relying parties, that transactions are safe against any

malicious manipulation. Many application cases of this security paradigm are set

up through a certificate authority. However, despite the assets of this approach, the

risk of fraudulent actions and malicious use of relying parties’ data is still there. In

fact, the legitimacy and authority of this “trusted” part must be always reviewed,

otherwise there is no guarantee that responsible parts may misuse data. Moreover,

centralized techniques have an inherent risk of single point of failure, so an attack

on TTP means a risk to leak/ endanger any user relying on it.

In this context, blockchain technology was introduced to overcome the need to

use TTPs. It relies on a distributed ledger for transactions storage along with a

consensus mechanism ensuring the validity of the data. Blockchain also guarantees

an open access to all its users, in fact it is possible to any member in the network to

5.3. Framework Security Technique 117

read and consult any stored transaction. Hence it is a great tool for transparency

insurance especially for applications where no trust can exist between users. This

also can help in reducing costs spent for administration and infrastructure require-

ments. More importantly, blockchain provides a great solution for immutability

since once a transaction is recorded it can never be deleted or even modified.

Given these assets, blockchain technology was introduced in many applications,

especially in the economic field. Nevertheless, few are the works that study/apply

its concepts in the automation and control fields. It has to be said that this tech-

nology is still in its infancy phase and many questions and challenges need to be

alleviated, but its high potential to provide promising solutions also for intelligent

reconfigurable systems lead us to propose a conversation model among peers that

builds upon blockchain. In the proposed framework, we always try to benefit of the

advances achieved in the software realm (context-awareness, artificial intelligence,

blockchain based cyber security) to make reconfigurable systems smarter and more

efficient.

As discussed in Chapter 2, blockchain technology is challenged with two main

limitations: privacy and scalability. Concerning the privacy, the use of blockchain

implies the revealing of identity. This fact can be problematic for many cases

because of privacy issues. In fact, transparency is important but this can be in the

same time a privacy threat as malicious tracking and use of others information can

lead to dangerous consequences. From another side, immutability is also great but

adding transactions without ever deleting anything gives rise to scalability problems.

Storage in memory must be optimized in order to ensure long-living applications

with mature blockchain.

5.3 Framework Security Technique

As mentioned in the defintion of the Security Module SM of the Context Control

Layer (CCL), many security techniques (such as the encryption, certification, etc.)

can be defined. In this thesis, we focus on the use of the secure conversation protocol

based on a blockchain technique.

5.3.1 Composition of the Blockchain Technique (Security Module)

In order to use the proposed protocol that draws upon blockchain, we need to use

different elements. Figure 5.1 depicts an overview of the class diagram of the ele-

ments necessary to use for the proposed protocol. We distinguish between classes

related to the functioning of the security module through the package Security-

ModuleInteraction, classes related to the protocol process through the package Pro-

tocolTransactionProvider, and classes related to the operation of the blockchain

through the package BlockchainTools.

118 Chapter 5. Security of a Network of Frameworks

Figure 5.1: Composition overview of the proposed security technique.

5.3.2 Dynamics of the Blockchain Technique (Security Module)

The blockchain security technique component of the SM has mainly four behaviors:

(1) create a protocol demand, (2) create a protocol response, (3) create a protocol

termination, and (4) participate in the mining of others blocks. Figure 5.2 depicts

a UML statechart diagram that describes the aforementioned behaviors.

Figure 5.2: Proposed security technique behavior.

The first thing to do in the states related to the protocol phases is to prepare

the content of each transaction then to create the transaction itself, finally put it

5.4. Secure Conversation Among Distributed Peers Protocol 119

in a block and publish it in the blockchain. The block addition has the same steps

for all the behaviors, this is why we separate it in a reusable sub-machine state

AddBlockToChain. This sub-machine is detailed in Figure 5.3.

Figure 5.3: Block addition to chain behavior.

5.4 Secure Conversation Among Distributed Peers

Protocol

We propose a secure conversation protocol to be used by distributed peers having

software applications developed by the proposed framework at the aim of enabling

secure exchange of data in the context of coordination or other communicative

operations (e.g. trading process as it is mentioned later in the case study example).

The peers are assumed to be equal (i.e., equal hierarchy, equal rights, and equal

permissions).

Target: The protocol is devoted to group’s interactions where in order to pro-

vide a service, “demanders” aggregate their demands in one single demand and

“responders” may provide separate responses or also may aggregate their responses

in one response. Such type of interaction can be required in many cases of the

e-commerce such as the whole sale trading, electricity trading, e-auction, etc.

Overview: The protocol is composed of three phases:

� Phase 1 called “Demand Phase” in which peers needing to discuss/negotiate

about one operation and/or coordination process initiate the conversation.

� Phase 2 called “Response Phase” in which other peers answer to the requests

made in the first phase. The proposed protocol provides “responders” to make

replies/responses in two different communication ways:

120 Chapter 5. Security of a Network of Frameworks

1. in the first way, the response is made by a set of peers that can satisfy

the demand. These responding peers also unite their responses in a single

reply.

2. in the second way, the response is made by individual peers (i.e., no

gathering of replies).

� Phase 3 called “Termination Phase” in which the decisions/ measures issued

from the conversation must take place.

Figure 5.4 depicts a process flow of the proposed protocol. The transactions

made in each phase can be defined in a away to fit particular use cases as we

detail in the running example. The protocol provides the infrastructure upon which

coordinations/negotiations can be built.

Before moving to the process of the protocol, it is worth noting that peers need

to arrange and agree about the ECIES setup in order to properly use key sizes,

versions, etc. In the following sections, the symbol “||” denotes a concatenation.

In order to avoid the controversial property of blockchain, which is the revealing

of peers identity, we propose to create identifier of transactions rather than its

sources. For this, peers are asked to create a key pair of ECIES scheme and use the

public key as a transaction identifier. This operation must be re-performed with

each new transaction. Thus, we ensure also the avoidance of any possible binding

of a set of transactions to one specific peer.

5.4.1 Protocol First Phase: Demand

This is the first phase of the protocol, where peers that have the need to a certain

service gather their demands efficiently by means of the blockchain. This phase

is composed of three steps: initial demand, gathering demands, and final demand.

The technical description of each step is provided in the following.

5.4.1.1 Initial Demand

In this step, a peer A that needs a specific service (the service must be de-

fined/agreed upon according to the use case) starts by publishing a demand in

the blockchain. A demand is denoted by d and given by

di = (λi||contenti). (5.1)

where λi is the identifier of di and it is the public key of an ECIES key pair, and

contenti, as its name indicates, is the content of the demand. In order to identify

new demands and not their source, i.e., peer A, new λi is newly created for each new

demand. This way we preserve the anonymity of A and avoid possible malicious

binding of demands.

The submission of di by peer A in the blockchain denotes the need of A to start

a conversation with the rest of peers in the network.

5.4. Secure Conversation Among Distributed Peers Protocol 121

Figure 5.4: Conversation protocol using Blockchain and ECIES.

5.4.1.2 Gathering Demands

Once di is added to the blockchain, it becomes readable by the rest of the peers in

the network. Then, any peer that is concerned with the conversation and has the

same need as A must create its demand which has the following structure,

dj = (λj ||contentj ||λi). (5.2)

122 Chapter 5. Security of a Network of Frameworks

where λj is the identifier of dj and it is created by its owner similarly as λi of

A, λi is the identifier of the initial demand and it is added in dj to indicate that it

is related to di, and contentj is the content of the answer.

The gathering step lasts a period of time that must be defined by the system

owners according to the requirements of the use case.

5.4.1.3 Final Demand

After a gathering time has elapsed, A which is the peer that has initiated the

conversation process, must read all submitted demands and create a final demand

Di which has this form

Di = (λi||Contenti). (5.3)

where λi is reused to identify the final demand, and Contenti is the final demand

tenor.

The logic indicating how A should create Contenti is a separate concern that is

related to the use case, and since we are focusing on the procedural security aspect

of the protocol, this logic is left proprietary.

5.4.2 Protocol Second Phase: Response

This is the second phase of the protocol, where peers that have read the final

demand Di and that have the ability to satisfy the request can make responses and

post them in the blockchain.

This phase is composed of three steps where the first and last are optional

steps, while the second step is obligatory. The flow of this phase can be accom-

plished in two ways depending on the requirements of the use case: (1) collective

responses: performed by means of the three steps : initial response, responses,

and final response, (2) individual responses: performed by means of one step,

the obligatory one, which is the responses step.

5.4.2.1 Initial Response

If the first scenario, the collective responses scenario, is adopted by system owners,

then the second phase starts with this step.

Once Di is added to the blockchain, it becomes readable by the rest of the peers

in the network. Then, any peer that is concerned with the conversation and wants

to answer the demand, must create a reply, denoted by ap and is defined as

bp = (λp||λi||contentp). (5.4)

where λp is the identifier of bp and it is created by its owner similarly as λi of

A, λi is the identifier of the initial demand and it is added in bp to indicate that it

is related to Di, and contentp is the content of the answer.

5.4. Secure Conversation Among Distributed Peers Protocol 123

The submission of the first reply constitutes the first step and the initiator peer

gets the responsibility of following and terminating the whole phase.

5.4.2.2 Responses

In this step, any peer that has the ability to satisfy the demand Di issued from the

first phase can create a response and add it to the blockchain. The response can

have two structures according to the two responding scenarios.

For the collective responses, where responses are directed to the initiator

peer, a response is defined as

br = (λr||λp||contentr). (5.5)

where λr is the identifier of br and it is created by its owner similarly as λi of

A, λp is the identifier of the initial response and it is added in br to indicate that it

is related to bp, and contentr is the content of the answer.

For the individual responses, where responses are directed to A peer, a

response is defined as

br = (λr||λi||contentr). (5.6)

where λr is the identifier of br and it is created by its owner similarly as λi of

A, λi is the identifier of the final demand and it is added in br to indicate that it is

related to Di, and contentr is the content of the answer.

This step starts from the moment when bp is added to the blockchain and lasts

a period of time specified by the systems owners.

5.4.2.3 Final Response

If the first scenario, the collective responses scenario, is adopted by system owners,

then the second phase ends with this step.

After the responding time is elapsed, the initiator peer must read all the sub-

mitted responses and creates a final response having this form

bp = (λp||λi||Contentp). (5.7)

The logic indicating how Contentp can be created must also be defined by the

owners according to the use case.

5.4.3 Protocol Third Phase: Termination

After the demands and responses phases are performed, we come finally to the

last phase, in which decisions can be made. This phase is composed of two steps:

decision and settlement.

124 Chapter 5. Security of a Network of Frameworks

5.4.3.1 Decision

To close the conversation, since A is the initiator of the conversation, it is the one

who submits a decision based on the replies provided in the previous phase.

Decision’s specific logic must be defined separately according to the use case.

Then, once a decision is made, its value is presented in a field called decisionplaintext,

encrypted using the ECIES encryption scheme, and submitted in the blockchain as

follows

Ter1 = ENCλbest(decisionplaintext). (5.8)

where ENC(.) is the encryption function of the ECIES scheme that uses

the public key of the best response λbest to encrypt the decision plaintext

decisionplaintext.

Once the decision is added to the blockchain, all peers that have added replies

(all peers in case of individual responses and first peers of collective responses) must

try to decrypt the decision. Here, only one peer succeed to decrypt the cryptogram

which is the one having the private key associated to the public key that is chosen by

A to encrypt the decision. Hence, the fact that a decision have been made is known

by all the blockchain peers but the identity of the chosen peer is kept anonymous

and details of the decision are kept secret. Therefore, we preserve privacy of the

chosen responding peer and the decision details.

5.4.3.2 Settlement

In this step may include multiple interactions inside and outside of the blockchain

depending on the use case. The most important thing is that at the end A must

submit a transaction mentioning the end of the conversation defined as follows:

Tern = (λi||end). (5.9)

where λi is used by A to indicate that this transaction is related to the first

demand, and end as its name indicates, it is a field/flag mentioning the end of the

conversation.

5.5 Protocol Implementation

In this section, the implementation of the protocol and the necessary technologies

are presented.

5.5.1 Distributed Messaging Platform

In order to allow the implementation of the secure conversation protocol, the first

thing to provide is the communication platform or the messaging technique. This

part can be ensured by any distributed technique selected by system developers.

5.5. Protocol Implementation 125

The necessary thing is to prepare the connection between the chosen technology

and the messaging module of the framework.

In the case study (to be presented in detail in the following section), the Java

Agent Development Framework (JADE) framework is adopted to simulate the pro-

tocol usage scenario. JADE 1 allows to simulate the communication among dis-

tributed peer using messages. It provides the possibility for execution in different

hardware systems comprising embedded ones such as Raspberry Pies and support-

ing various operating systems such as Android, Windows, and Linux.

5.5.2 Private Blockchain Implementation

A private blockchain is implemented to be the base of the conversation protocol.

Microgrids software is implemented using the proposed framework where the secu-

rity pool contains the methods necessary to use the trading protocol. In order to

simulate the network of microgrids, the instances of the framework (i.e., microgrids

software) are hosted in a set of virtual machines created on a VirtualBox2.

In this thesis, blockchain is used as secure distributed communication and stor-

age ledger, not for payment or crypto-currencies. The implementation is performed

using also Java programming language and a set of libraries such as Bouncy Castle
3 are used for cryptography.

Chaining: The blocks are chained chronologically through calculating the hash

of the new block based on the hash of the previous block. This chained hash

represents the digital signature of a block and it is created using the SHA-256

algorithm. The structure of blocks is depicted in Figure 5.5.

Figure 5.5: Blocks data structure.

Consensus: The validity of the chain is ensured through the Proof-of-Work

(PoW) consensus. This consensus mechanism guarantees that every node (i.e.,

framework) spends enough time and computational effort to add a block in the

1https://jade.tilab.com/
2https://www.virtualbox.org/
3https://www.bouncycastle.org/documentation.html

126 Chapter 5. Security of a Network of Frameworks

blockchain. Here it is assumed that all nodes are miners. All nodes must solve a

difficult puzzle before adding a block to the chain, the puzzle in this thesis is finding

a hash that starts with five zeros “00000”. In every new attempt to calculate a hash,

a new random value, the nonce, is modified. In this paper the nonce is an integer

incremented by one.

Confirmation Time: Defining confirmation times of a blockchain is an im-

portant step that facilitates the analysis and evaluation of use cases efficiency. Fig-

ure 5.6 depicts a graphical presentation that help us explain the calculation of the

proposed blockchain confirmation time.

Figure 5.6: Blockchain confirmation time.

Before starting the explanation, it is worth to note that the calculation of the

confirmation time is not yet standardized and in this thesis we propose the following

method to calculate it.

Preliminaries: we define the terminology use in the calculation of the confir-

mation time as follows:

� Average Mining Time: denoted by xamt, is the time taken by a node to solve

the puzzle. This time slot depends on many factors such as the hashrate

(hardware power), the number of nodes in the network, the puzzle difficulty

(5 in this thesis), and the network infrastructure (e.g., bandwidth).

� Average Validation Time: denoted by xavt, is the time taken by nodes to

verify the solution found by the first miner that succeed to solve the puz-

zle. This time slot also depends on the size of the network and the network

infrastructure.

� Average Block Time: denoted by xabt, is the time taken to mine and validate

5.6. Running Example 127

a new block. and it is given by

xabt = xamt + xavt. (5.10)

� Subsequent Blocks: denoted by xsb, is the number of blocks created after

the block subject to confirmation time calculation. This parameter is also

not yet fixed by standardization establishments nor by the first blockchain

implementation (i.e., Bitcoin). The number definition is left to be proprietary

and to be defined based on the assumptions of system owners. In this thesis,

as we do not transfer money over blockchain, rather some important data,

three is defined to the number of subsequent blocks.

Based on the aforementioned parameters, the blockchain confirmation time,

denoted by xct, is calculated as follows:

xct = xsb × xabt. (5.11)

Note: the values of the parameters influencing the confirmation time calculation

are controllable. In fact, if we need to get minimal times it is possible to minimize

the difficulty, to strengthen miners with more powerful hardware, to improve the

network connections, etc.

5.5.3 ECIES Encryption

ECIES is used to allow encryption/decryption of secret data whenever necessary and

also to serve as public identifier provider for protocol transactions (i.e., demand,

response, and termination). The ECIES operations are used following the IEEE

P1363a 4. The used curve is the “secp256r1” where “256” is the size of the prime

curve and “r” is the type random of the curve parameters. AES with CBC is used

for the symmetric encryption and 128-bit MAC as well as 128-bit block cipher key

size are adopted.

5.6 Running Example

In this section, we tackle a use case of the proposed secure conversation protocol

applied to a formal example of electricity trading among microgrids. We demon-

strate how the protocol helps to achieve security and efficiency required for a trading

protocol.

5.6.1 Case Study Presentation

Microgrids are local groups of distributed electricity loads and resources that oper-

ate in on and off modes with the traditional power grid. Microgrids are promoted

with ICTs in order to enable smart operation through a bidirectional flow of infor-

mation as well as electricity that helps to perform advanced functionalities such as

renewable energies integration and electricity trading.

4http://www.secg.org/sec1-v2.pdf

128 Chapter 5. Security of a Network of Frameworks

5.6.1.1 Context of the Study

The integration of ICTs in the electricity grid brings the cyber-vulnerabilities to

the computerized grid. In fact, many attacks can be oriented to the communication

among microgrids in the context of trading. In fact, revealing the identities of

trading parts can serve attackers with information about the activity as well as

the purchasing power of particular entities so they can attack in critical moments

through making denial of service attacks, malicious binding, and/or transaction

integrity attacks.

5.6.1.2 Challenges

Some existing works have tried to solve the problem through using a trust third part

(TTP) as a mediator to trade electricity on behalf of microgrids. This approach

poses several problem apart from the centralized/decentralized fact which is weak

face to security. It has been proven that this approach has a weakness in terms of

single point of failure, i.e., attacks on the TTP may threaten all its linked parts.

Moreover, additional costs in the financial as well as the computational sides must

be dedicated.

Some other existing works, have tried to solve the problem through using the

blockchain technology. Blockchain allows to provide a solution to the distribution

and avoidance of TTP. It enables to establish trust among non-trustful parts without

the need to a third authority. However, this approach poses a problem of privacy.

In fact, using blockchain implies revealing the identity of all participants since all

transactions will be public and accessible by all parts. In addition, using blockchain

means continuously add new blocks to the chain without deleting anything. This

poses a problem of growing stored data that require additional costs for storage.

In this context, we propose a trading process based on the conversation protocol

to resolve the aforementioned challenges.

5.6.2 Microgrids System Model

The smart grid system is designed as a network of distributed microgrids where each

microgrid is governed with a software application developed using the framework

and having the possibility to trade electricity. The focus here is on the security

side of the trading process not in the operational details. In the aim of providing

a solution to the scalability challenge and to the costs minimization, we propose to

divide microgrids into families of microgrids and the families to group of families.

5.6.2.1 Architecture and Membership Concept

Two main types of classification are proposed:

Family of microgrids: a family of micorgirds, denoted by fm, is defined as

a set of geographically near microgrids. A family provides a price discount for its

members when a trading process is happening between its members (i.e., buyer and

5.6. Running Example 129

seller belong to the same family). Figure 5.7 shows an example of a smart grid

having seven families. For example, fm1 = {m1,m2,m3,m4} where mi denotes a

microgrid.

Group of families: a group of families, denoted by g, is defined as a set of

families that have a pricing privilege when a trading process takes place among

its members. For example, Figure 5.7 shows an example of a group of families:

g1 = {fm1, fm6, fm2, fm5}.

Figure 5.7: Architecture and membership concept.

5.6.2.2 Communication Model

The communication among microgrids can be performed through any networking

solution defined by the system owners. For example, it can be guaranteed thanks

to the Wide Area Network (WAN) solutions based on Internet. Virtual Private

Networks (VPN) can be deployed for more security, IP addresses control, and secure

channels. From the application level point of view, data is exchanged between

microgrids through the Hypertext Transfer Protocol (HTTP). Figure 5.8 depicts

the communication model of the considered system. The communication between

sensing and metering infrastructure setup in the physical fields and the control

applications is guaranteed thanks to ICTs (the standard IEC 61850 presents more

details about such technologies).

It is also assumed that intelligent equipment are used in the electricity handling

such as remotely operated circuit breakers, remotely operated switches. In addition,

basic and emergency electric lines.

130 Chapter 5. Security of a Network of Frameworks

Figure 5.8: Microgrid network communication model.

5.6.3 Electricity Trading Protocol

In this section we show how the proposed conversation protocol can serve as a

base for a trading process. In the considered scenario, the demand phase is used

as an aggregation phase, the response phase is used as an auction phase, and the

termination phase is used as settlement phase.

The proposed trading protocol offers a fully distributed security solution, ensures

reliable process (through the characteristic of transparency and immutability of the

blockchain), allows an anonymous participation in the trading, preserves the privacy

of the sale information, and it reduces the costs in terms of number and size of

exchanged data. Figure 5.9 depicts the phases and steps of the trading protocol.

5.6.3.1 Demand Phase: Aggregation

In order to reduce the number of exchanged transactions between microgrids, a

coalition creation is proposed as a form of gathering in the first phase of the trading

process. In fact, gathering requests of energy buying in one request in place of

triggering many trading conversations may help considerably in reducing the data

storage burden.

A microgrid coalition is a temporary joining together of different microgrids that

belong to the same family for the purpose of buying electricity in one sale. This

5.6. Running Example 131

Figure 5.9: Trading protocol among microgrids.

coalition creation phase is performed through the three steps of the first phase: (1)

initial demand, (2) gathering demands, and (3) final demand.

132 Chapter 5. Security of a Network of Frameworks

Step 1: Initial Demand

A microgrid mi that needs to buy electricity begins with adding a demand di in the

blockchain,

di = (λi||contenti). (5.12)

contenti = typei||fmi||qi||ti. (5.13)

where the content of the demand contenti contains four fields: (1) typei is the

type of the demand. In fact, two types of demands are defined: the type “initial”

indicating the that the demand is the one triggering the start of a trading process,

and the type “final” indicating the final electricity demand of the first phase. (2)

fmi is the family to which mi belongs. (3) qi is the electricity amount. (4) ti is the

required time of supply.

Step 2: Gathering Demands

After di is added to the blockchain, microgrids that belong to the same family and

that need to buy energy can create demands and submit it to the blockchain too,

dj = (λj ||contentj). (5.14)

contentj = qj ||tj ||λi. (5.15)

where λj represents the identifier of dj , qj is the required electricity quantity, tj
is the desired time of supply, and λi is used to mention that the current demand is

related to di.

This gathering step lasts a period of time defined by the system owners.

Step 3: Final Demand

Once the aggregation time is elapsed, the microgrid mi must read all demands

related to its own one and then calculate the global quantities as well as the total

supply time,

Di = (λi||typei||fmi||Qi||Ti). (5.16)

where λi is the same identifier used for di, typei this time the type contains

“final”, fmi is the family to which the buyer microgrids belong, Qi is the sum of

the demanded electricity quantity, Ti is the total desired supply time.

Details of scenarios that may happen with the choice of large single desired

supply time, resulted big quantity that may not be available by one seller, and

many other possible scenarios related to the variations of the demand/response

details are out of the scope of this protocol. We focus on the security side taking

as example a simple trading scenario (without taking into account the exceptions

and energy profile details).

5.6. Running Example 133

5.6.3.2 Response Phase: Auction

This phase takes place among seller microgrids. In this case study, the individual

responses communication way is chosen. Therefore, this phase is composed of one

step: the auction step.

Step 4: Auction

Once the finial demand is posted in the blockchain, all microgrids in the system must

verify their resources and plans and decide whether to participate in the auction or

not. Afterwards, if it is possible to provide the total required electricity amount, a

price might be calculated. The details of the pricing function are out of the scope of

this protocol, however, the protocol dictates a price discount for traders belonging

to the same group of families, and a higher discount for traders belonging to the

same family.

Similar to the demands, bids made in the auction step are identified through the

public key of the ECIES key pair. Thus, the bid, denoted by b, has the following

structure,

bq = (λq||λi||pλiq). (5.17)

where λq is the identifier of the bid bq, λi is used to refer to Di, and pλiq is

the proposed price. Hence, the bid is public to all microgrids in the system, so

microgrids bidding at the end of the auction step have the possibility to propose

lower prices if they want to win the sale. Also, this pricing transparency help to

establish trust and help to get liberal competitive prices.

5.6.3.3 Termination Phase: Purchase

This is the last phase where the seller knows that it is the chosen bidder. Then

the agreement about details concerning the payment and electricity transfer can

be performed. This phase is accomplished in two steps: (1) decision, and (2)

settlement. First microgrids need to safely exchange contact data then all steps can

be accomplished.

Step 5: Decision

After the end of the auction time, mi must read all bids proposed in the auction

step and select the best offer. In this thesis, the first-price auction model is used,

where the best price to be paid is the lowest proposed price.

In order to protect seller microgrid against any attack, the decision should be

secret, but in the same time we need to inform the rest of the microgrids that

a decision is made and with minimal resources usage. For this, we propose the

following solution: mi must encrypt the identifier of the best bid using the public

key mentioned in the bid itself with adding a variable containing the contact data

and post it in the blockchain. Thus the decision is defined as follows:

134 Chapter 5. Security of a Network of Frameworks

decision = ENCλbest(pbest||ci||x). (5.18)

where pbest is the best offered price, ci is the contact of mi (may be a phone

number/email/address, etc.), and x is random variable used to make the decision

more secure (e.g. against brute force attack).

Thanks to the difficulty of the elliptic curve discrete logarithm problem and

the Diffie-Hellman problem, the cipher text cannot be decrypted except by the

microgrid having the private key related to the public key used in encryption, i.e.,

no microgrid can decrypt the cipher except the chosen bidder.

Step 6: Settlement

In this step, microgrids need to exchange the contact data that allows the payment.

For this, six steps are defined as follows:

� s1: The seller sends its contact data (bank data/address) denoted by cseller
to mi using the contact ci included in the decision. This step does not involve

the blockchain.

� s2: The buyer posts in the blockchain its bank data, the price, and the

contact of the seller cseller using every public key of coalition members (that

have participated in the gathering step). The creation of these transactions

is performed in the same order of appearance in the gathering step.

xj = ECIESenc(βi||pbest||cseller). (5.19)

where xj denotes the notification to the coalition member mj , βi is the bank

data of mi, pbest is the chosen price, and csller is the contact of the seller which

will be used to send details of which electric lines to consider for electricity

transfer.

� s3: Coalition members send money to mi using βi and send electricity transfer

addresses to seller using cseller. This step does not involve the blockchain.

� s4: mi sends the sum of money to the seller. Also this step does not involve

the blockchain.

� s5: Seller transfer electricity to concerned microgrids.

� s6: Microgrid mi confirms the end of the trading process by adding the

following termination transaction to the blockchain,

Tern = (λi||end) (5.20)

5.6. Running Example 135

5.6.4 Performance Evaluation

In this section, we analyze the performance of the proposed electricity trading

protocol via three scopes: first we compare the current protocol to existing trading

protocols, then a security and privacy analysis is conducted, finally we analyze the

memory consumption costs.

5.6.4.1 Comparison to Existing Works

Compared to existing works, the current trading protocol provides a secure, dis-

tributed, and cost-effective protocol.

Concerning the security, the proposed protocol guarantees privacy for both

buyers and seller not only buyers. Compared to the use of RSA (the largely used

encryption scheme), the use of ECIES is more secure. In fact, for the same security

level, the keys of ECIES are thousands of times harder to break than RSA keys 5.

Concerning the distribution, the current protocol finds a solution to make

the process fully distributed not like other works where TTP is not used but some

of the nodes are considered trustful, which make the process decentralized rather

than distributed.

Concerning the cost efficiency, the definition of the gathering step helps to

considerably reduce the number of exchanged transactions, thus to reduce the data

to be stored in the blockchain. Compared to other works, in which aggregations are

made through an aggregator or a TTP, the current paper achieves the advantages

of aggregations without the use of any TTP.

5.6.4.2 Security and Privacy

In order to demonstrate the security and privacy of the protocol, the honest-but-

curious adversary model is used to prove that each peer knows only what it is

allowed to know and curious peers fail to know any secret information.

In the demand phase (aggregation), microgrids that need to buy electricity

post in the blockchain a demand identified by the public key of the ECIES key pair.

The demands are considered anonymous since they are posted in the chain but no

one knows its source. Thus, the identity of microgrids is kept private. Additionally,

new keys are newly generated with each new transaction, hence no binding can

happen.

In the response phase (auction), the auction step is guaranteed thanks to

the blockchain, on the contrary to existing works that relies on TTP that plays a

role of a trusted auctioneer, the proposed approach make the trust under the respon-

sibility of all microgrids. In addition, man-in-the-middle attack has less chances in

this type of architecture. From another side, the immutability of the blockchain

guarantees that bids are never modified, hence we avoid the price modification

attack or any other sort of integrity attack.

5http://www.secg.org/sec1-v2.pdf

136 Chapter 5. Security of a Network of Frameworks

In the termination phase (settlement), in the decision step, the use of

ECIES encryption scheme makes it extremely hard to decrypt the cryptogram given

the difficulty of Diffie-Hellman problem and the elliptic curve discrete logarithm

problem. In addition, settlement data are exchanged also as encrypted messages,

so it is hard to apply attack in this level also.

5.6.4.3 Cost-Efficiency

In order to show the efficiency in terms of memory usage, let us consider the fol-

lowing scenario. A formal case study is considered in which six brother microgrids

{m1, ..., m6} need to buy the following amounts of energy (see Table 5.1).

Table 5.1: Microgrids required electricity quantities.
Name Electricity quantity (MWh)

m1 0.4

m2 0.55

m3 0.65

m4 0.6

m5 0.2

m6 0.35

Let us consider 14 bidders {m7, ..., m20} that can provide the requested energy.

m1, ..., m10 belong to a same family fm1. m11, ...,m15 belong to fm2, m16, ...,m20

belong to fm3. fm1 and fm2 belong to the group g1, and fm3 belong to the group

g2.

Now it is demonstrated that the adoption of the proposed protocol allows better

resources usage specifically the optimization of the size of the stored data in the

blocks of the blockchain. Let us consider the same formal case study and suppose

that for every demand from a buyer, there will be only five bids.

Scenario 1 denotes the case when m1,..., m6 apply individually.

Scenario 2 denotes the case when m1 applies for a demand of the aggregation

of the six microgrids.

Before presenting the calculation of the costs in the two scenarios, let us list the

sizes of every field in the demands, responses (i.e., bids) and termination transaction.

Using the information in Table 5.2, a demand stored in the blockchain di con-

sumes the size of λ + type + fm + q + t = 124 + 2 + 2 + 6 + 11 = 145 bytes, a

reply consumes the size of λ + q + t + λ = 124 + 6 + 11 + 124 = 265 bytes, a bid

consumes the size of λ+λ+ p = 124 + 124 + 5 = 253 bytes, and finally the decision

d consumes 181 bytes (summarized in Table 5.3).

Now an analysis and comparison of the storage burden in the blockchain is

presented.

In Scenario 1, every microgrid applies individually for power, six final demands,

thirty bids, and six decisions will be stored in the blockchain. This means that

(6× 145) + (30× 253) + (6× 181) = 9546 bytes have to be stored in the blockchain.

5.6. Running Example 137

Table 5.2: Component sizes of the used transactions.
Name Size

λ ECIES public key having the size 124 bytes (3072 bits/564 bytes for RSA)

type is of size 2 bytes

fm is of size 2 bytes

q,Q quantities are of size 6 bytes

t, T service times are of size 11 bytes

p the price is of size 5 bytes

x the random variable is of size 2 bytes

β the bank data is of size 45 bytes

c the contact variable is of size 45 bytes

decision cipher of ECIES of size 181 bytes (384 bytes for RSA)

Table 5.3: Sizes of the demands/responses with ECIES.

Name Size

initial demand d λ+ type+ fm+ q + t = 124 + 2 + 2 + 6 + 11 = 145 bytes

demand d λ+ q + t+ λ = 124 + 6 + 11 + 124 = 265 bytes

final demand D λ+ type+ fm+Q+ T = 124 + 2 + 2 + 6 + 11 = 145 bytes

bid b λ+ λ+ p = 124 + 124 + 5 = 253 bytes

decision decision 181 bytes

In Scenario 2, where the six microgrids are united in a coalition, one initial

demand, five demands, one final demand, five bids, and one decision will be stored

in the blockchain. This means that (2×145)+(5×265)+(5×253)+(1×181) = 3061

bytes have to be stored in the blockchain. Therefore the use of the coalition concept

reduces considerably the storage burden. For the considered case it saves 6485 bytes

which is around 67% of the size of data to be stored in the blockchain.

For the same security level 128, adopting ECIES encryption also helps to reduce

the storage burden compared with RSA encryption. When using RSA encryption,

a demand needs λ+ type+fm+q+ t = 564+2+2+6+11 = 585 bytes, a coalition

demand consumes the size of λ + q + t + λ = 564 + 6 + 11 + 564 = 1145 bytes, a

bid consumes the size of λ + λ + p = 564 + 564 + 5 = 1133 bytes, and finally the

decision consumes 384 bytes (summarized in Table 5.4).

If RSA is used in stead of ECIES in Scenario 2 (with coalition), then (2 ×
585) + (5× 1145) + (5× 1133) + (1× 384) = 12944 bytes have to be stored in the

blockchain. Hence the adoption of ECIES reduces considerably the sizes of the data

to be stored in the blocks. For Scenario 2 the use of ECIES encryption in place of

RSA encryption reduces around 75% of the size of data.

Figure 5.10 depicts the contribution of the proposed protocol in terms of re-

ducing the amount of data to be stored in the blocks of the blockchain compared

with the non-use of the aggregation approach and compared with the use of RSA

138 Chapter 5. Security of a Network of Frameworks

Table 5.4: Sizes of the demands/responses with RSA.

Name Size

initial demand d λ+ type+ fm+ q + t = 564 + 2 + 2 + 6 + 11 = 585 bytes

demand d λ+ q + t+ λ = 564 + 6 + 11 + 564 = 1145 bytes

final demand D λ+ type+ fm+Q+ T = 564 + 2 + 2 + 6 + 11 = 585 bytes

bid b λ+ λ+ p = 564 + 564 + 5 = 1133 bytes

decision decision 384 bytes

encryption.

Figure 5.10: Comparison of memory size.

Figure 5.10 shows that the adoption of the coalition phase along with the ECIES

encryption scheme highly reduce the size of the data to be stored in the blockchain.

5.7 Discussion

The proposed secure conversation/coordination protocol has multiple assets that

can be summarized in four main points: distribution, security, privacy-preserving,

and cost-efficiency. These features are achieved thanks to the characteristics of the

blockchain as well as the Elliptic Curve Integrated Encryption Scheme (ECIES):

� Security and Privacy-preserving. (a) The security of the protocol lies in

the immutability of stored data hence data cannot be falsified once it is added

to the chain. (b) The protocol guarantees anonymous participation for peers

through a mechanism identifying transactions rather than their source. This

also improve peers privacy.

� Full Distribution. In the proposed protocol any peer of the system have

the possibility to participate in a public conversation without the need to go

through a trusted mediator. In addition, validation and mining are made by

all peers not authorized ones (decentralized approach) or a TTP (centralized

approach).

5.8. Conclusions 139

� Cost-efficiency. Secret information is encrypted with the ECIES scheme

which guarantees better security level with less memory usage compared with

RSA encryption [Gayoso Mart́ınez et al. 2010]. In addition, the concepts of

groups conversation helps to minimize the number of exchanged data.

In addition to the aforementioned assets, the proposed protocol can have more

improvements such as including more functional steps enabling the withdrawal of

transactions whenever unpredictable changes occur. Such problem involves the

timing and procedural issues. Therefore more details would provide more guarantees

and improve the quality of the protocol.

5.8 Conclusions

This chapter has dealt with the secure conversation among a network of frame-

works. First, we defined a generic secure conversation process that builds upon the

blockchain technology as well as the elliptic curve cryptography. Then, the concepts

are implemented using Java programming language on a formal case study of an

electricity trading protocol among microgrids.

The security and efficiency of the case study are analyzed and the analysis proves

the robustness of the protocol. The protocol ensures a transparent communication

between peers and respects the full distribution paradigm. It provides the partici-

pants with the ability to preserve anonymity and privacy of important information.

More importantly, the steps and phases of the protocol promote the costs mini-

mization, especially the memory usage one, which contributes considerably in the

scalability of the system.

Chapter 6

Conclusions and Perspectives

Contents

6.1 Context and Problems . 142

6.2 Contributions and Outputs 143

6.3 Perspectives . 144

142 Chapter 6. Conclusions and Perspectives

This chapter concludes the dissertation with a summary of the obtained research

contributions and presents outlooks and perspectives for future work.

6.1 Context and Problems

Intelligence and smartness are fundamental features for the efficient and success-

ful operation of future reconfigurable systems. In order to enable such features,

software advances in the field of context-awareness and intelligence computing tech-

niques should be taken into account. From another side, the development of software

of these systems includes a set of repetitive requirements where a reusable software

infrastructure may help in improving the development process through minimizing

the time and effort of modeling/implementing of these complex and repetitive fea-

tures. Hence, an ultimate objective is to provide a software solution ensuring the

software robustness all with improving developers productivity.

However, achieving such objectives is not easy given the set of problems asso-

ciated to the engineering of these systems. Problems are related to the intricacy

of reconfigurable systems and its miscellaneous requirements as well as constraints.

To reduce the complexity of these problems, we first classify them into three types.

Then a set of solutions is defined to resolve them one by one:

Requirements satisfaction problems. This category tackles the problems

of finding solutions that fits the case of reconfigurable systems. Many requirements

need to be provided such as the coordination in distributed systems, the respect

of timing and functional constraints, the satisfaction of intelligent and predictive

needs. More importantly, answers to these questions need to be addressed: How to

allow context-awareness and dynamic interaction with the environment?

How to guarantee secure interaction between distributed peers against

tampering, eavesdropping, and malicious tracking threats?

Software infrastructure problems. This category tackles the problem of

developing a variety of features that must operate together in harmony using one

single support. The problems are formulated through the hereafter questions: How

to promote reusability especially that many of the aforementioned features are

frequently required by different systems? How to satisfy a variety of requirements

from a single architecture and in clear way?

Methodological problems. This category tackles the problems of helping

designers to get guarantees about the correctness of applications models in early de-

velopment stages. UML semantics do not cover all features especially those related

to probabilistic as well as resource-constrained scenarios. Analyzing the behavior of

applications could not guarantee sureness if only UML models are adopted, hence

there is a need to formal methods to get better guarantees. Equally important to

formal methods, analyzing the applications models using the distributed systems

standard, the IEC 61499, may allow to analyze the behavior in target hardware

environment using one of its editors/simulators. But which analysis method to

adopt and is it possible to define a process that takes advantages from the three

6.2. Contributions and Outputs 143

mentioned techniques (UML, formal verification, and IEC 61499 function blocks)?

How to facilitate the task of using different application modeling perspectives to

developers?

In response to the above-mentioned problems, the current thesis has introduced

a set of novel contributions presented in the following section.

6.2 Contributions and Outputs

This dissertation presents a new software framework dedicated to the development

of context-aware reconfigurable applications of distributed automation and control

systems. The aim of this project was to address the challenges associated with the

development of context-aware, distributed, secure applications based on: (1) sound

applications model, (2) efficient modeling and verification methodology, as well as

(3) consistent software infrastructure.

The project provides solutions to develop context-aware applications from de-

sign to implementation. At design time, a meta-model as well as UML framework

models are defined to help in conceiving systems/applications. Furthermore, a con-

text modeling and reasoning mechanism is introduced to help define context-aware

behaviors. A secure conversation protocol between distributed peers in a trustless

environment is also introduced. For more reliability and efficiency, formal verifi-

cation and deployment testing methodology is introduced. At implementation

time, using the framework programming software tool represents a base of any

customized applications. A protocol software that builds upon the blockchain tech-

nology is also provided.

The contributions achieved through this project are summarized in the following.

Chapter 2 has surveyed the context-awareness computing state-of-the-art by

defining the most important mainstay concepts as well as presenting the most im-

portant works in the community. This survey has motivated the need for a new

definition of the term context in the field of reconfigurable automated systems as

well as the need for a suitable software tool. From another side, this chapter has

presented in nutshells each related topic to the project contributions. In response

to the limitations and motivations recognized in this chapter, the third, fourth

and fifth chapters have introduced the framework and its techniques, the modeling

methodology, and the security protocol.

Chapter 3 has started with defining the term context for the use in context-aware

reconfigurable applications of distributed systems. Then, a meta-model from which

the framework architecture was hailed is introduced. This meta-model has helped

to identify the different functional levels as well as the necessary compartments,

which are defined as layers and modules in the framework architecture. Afterwards,

the framework concepts and mechanisms are defined. The framework provides

developers with the ability to seamlessly develop multi-disciplinary applications

through its architecture that covers a set of different topics related in a loosely

coupled way. A context reasoning approach was introduced in the first layer. A

144 Chapter 6. Conclusions and Perspectives

running example was also used to prove the suitability of the concepts.

Chapter 4 has first introduced a new UML profile named GR-UML extending the

existing semantics with probabilistic and resource control ones. Then, a modeling

methodology is introduced to allow the modeling of applications using GR-UML, the

formal verification of applications models, and the modeling according to IEC 61499

function blocks. The methodology has an iterative incremental process ensuring a

flexibility in terms of modification and refinement during each phase. The process

is made easier thanks to a set of model transformation rules. A software tool

implementing the mapping rules of GR-UML models to GR-TNCES models as well

as to IEC 61499 function block models is developed.

Chapter 5 has introduced a secure conversation protocol among a set of appli-

cations developed according to the framework. The security of the protocol draws

upon the blockchain technology and the elliptic curve cryptography. A private

blockchain is created where trustless nodes interact with transparency and relia-

bility. The validity of the chain is maintained through a proof-of-work consensus

mechanism where all nodes are considered as miners. The concepts of the proto-

col were extended and applied to an electricity trading scenario among distributed

microgrids.

6.3 Perspectives

This research project aims at contributing towards resolving the identified problems.

Nevertheless, questions for further research opened through the current thesis are

defined.

The concepts of the proposed framework are implemented using Java program-

ming language. This tool needs some improvements such as more testing through

applying more case studies. An improvement of the quality of the code would make

the tool more powerful.

Using the framework concepts in the development of other examples may prove

more its suitability. Future smart factories is an example of reconfigurable sys-

tems requiring context-awareness and intelligence mechanisms. Therefore, using

the framework may provide promising results.

In order to improve the data storage and access during the deployment of smart

reconfigurable systems, the enrichment of the framework features with the ability to

use the cloud computing [Mahmud et al. 2020] techniques need to be studied. Cloud

computing may provide solutions for cost savings and promoting collaboration of

distributed parts.

Providing a solution to analyze the quality of service [Abid et al. 2020] of appli-

cations code would also offer better efficient systems. Software quality parameters

or metrics corresponding to the context-aware reconfigurable software applications

may help to assess the quality of resulted software, hence future research activities

should include this perspective.

Current deep learning techniques and tools embodies some limitations as pre-

6.3. Perspectives 145

sented in Chapter 3. However, given the numerous effective features offered by the

deep learning, more research would lead to efficient results that could improve the

context reasoning process.

Bibliography

[Abdellatif et al. 2019] Alaa Awad Abdellatif, Amr Mohamed, Carla Fabiana Chi-

asserini, Mounira Tlili and Aiman Erbad. Edge computing for smart health:

Context-aware approaches, opportunities, and challenges. IEEE Network,

vol. 33, no. 3, pages 196–203, 2019. (Cited on page 19.)

[Abid et al. 2020] Chaima Abid, Marouane Kessentini and Hanzhang Wang. Early

Prediction of Quality of Service Using Interface-level Metrics, Code-level

Metrics, and Antipatterns. Information and Software Technology, page

106313, 2020. (Cited on page 144.)

[Abowd et al. 1999] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies,

Mark Smith and Pete Steggles. Towards a better understanding of context

and context-awareness. In International symposium on handheld and ubiqui-

tous computing, pages 304–307. Springer, 1999. (Cited on pages 18 and 39.)

[Addouche et al. 2006] Nawal Addouche, Christian Antoine and Jacky Montmain.

Methodology for UML modeling and formal verification of real-time systems.

In 2006 International Conference on Computational Inteligence for Mod-

elling Control and Automation and International Conference on Intelligent

Agents Web Technologies and International Commerce (CIMCA’06), pages

17–17. IEEE, 2006. (Cited on page 32.)

[Aid & Rassoul 2017] Aicha Aid and Idir Rassoul. Context-aware framework to

support situation-awareness for disaster management. International Journal

of Ad Hoc and Ubiquitous Computing, vol. 25, no. 3, pages 120–132, 2017.

(Cited on pages 24 and 26.)

[Alegre-Ibarra et al. 2018] Unai Alegre-Ibarra, Juan Carlos Augusto and Carl

Evans. Perspectives on engineering more usable context-aware systems. Jour-

nal of Ambient Intelligence and Humanized Computing, vol. 9, no. 5, pages

1593–1609, 2018. (Cited on page 22.)

[Alegre et al. 2016] Unai Alegre, Juan Carlos Augusto and Tony Clark. Engineering

context-aware systems and applications: A survey. Journal of Systems and

Software, vol. 117, pages 55–83, 2016. (Cited on pages 17 and 23.)

[Alhamid et al. 2016] Mohammed F Alhamid, Majdi Rawashdeh, Haiwei Dong,

M Anwar Hossain, Abdulhameed Alelaiwi and Abdulmotaleb El Saddik. Re-

cAm: a collaborative context-aware framework for multimedia recommenda-

tions in an ambient intelligence environment. Multimedia Systems, vol. 22,

no. 5, pages 587–601, 2016. (Cited on pages 24 and 26.)

148 Bibliography

[Alhanahnah et al. 2018] Mohannad Alhanahnah, Peter Bertok, Zahir Tari and Sa-

hel Alouneh. Context-aware multifaceted trust framework for evaluating

trustworthiness of cloud providers. Future Generation Computer Systems,

vol. 79, pages 488–499, 2018. (Cited on page 24.)

[Alsafi & Vyatkin 2010] Yazen Alsafi and Valeriy Vyatkin. Ontology-based recon-

figuration agent for intelligent mechatronic systems in flexible manufactur-

ing. Robotics and Computer-Integrated Manufacturing, vol. 26, no. 4, pages

381–391, 2010. (Cited on page 31.)

[Andren et al. 2017] Filip Andren, Georg Lauss, Roland BrUndlinger, Philipp Svec,

Christian Seitl and Thomas Strasser. Smart Grid Laboratory Automation

Approach Using IEC 61499. Distributed Control Applications: Guidelines,

Design Patterns, and Application Examples with the IEC 61499, page 463,

2017. (Cited on page 30.)

[Arfaoui et al. 2020] Amel Arfaoui, Omar Rafik Merad Boudia, Ali Kribeche, Sidi-

Mohammed Senouci and Mohamed Hamdi. Context-aware access control

and anonymous authentication in WBAN. Computers & Security, vol. 88,

page 101496, 2020. (Cited on page 19.)

[Belkadi et al. 2020] Farouk Belkadi, Mohamed Anis Dhuieb, José Vicente Aguado,

Florent Laroche, Alain Bernard and Francisco Chinesta. Intelligent assistant

system as a context-aware decision-making support for the workers of the

future. Computers & Industrial Engineering, vol. 139, page 105732, 2020.

(Cited on page 19.)

[Black & Vyatkin 2009] Geoff Black and Valeriy Vyatkin. Intelligent component-

based automation of baggage handling systems with IEC 61499. IEEE Trans-

actions on Automation Science and Engineering, vol. 7, no. 2, pages 337–351,

2009. (Cited on page 112.)

[Brown et al. 1997] Peter J Brown, John D Bovey and Xian Chen. Context-aware

applications: from the laboratory to the marketplace. IEEE personal com-

munications, vol. 4, no. 5, pages 58–64, 1997. (Cited on page 18.)

[Bucchiarone et al. 2017] Antonio Bucchiarone, Annapaola Marconi, Marco Pistore

and Heorhi Raik. A context-aware framework for dynamic composition of

process fragments in the internet of services. Journal of Internet Services

and Applications, vol. 8, no. 1, page 6, 2017. (Cited on pages 3, 24 and 26.)

[Buttazzo 2011] Giorgio C Buttazzo. Hard real-time computing systems: pre-

dictable scheduling algorithms and applications, volume 24. Springer Science

& Business Media, 2011. (Cited on page 62.)

[Cardoso & Sibertin-Blanc 2001] Janette Cardoso and Christophe Sibertin-Blanc.

Ordering actions in sequence diagrams of UML. In Proceedings of the 23rd

Bibliography 149

International Conference on Information Technology Interfaces, 2001. ITI

2001., pages 3–14. IEEE, 2001. (Cited on page 32.)

[Chaqfeh & Mohamed 2012] Moumena A Chaqfeh and Nader Mohamed. Chal-

lenges in middleware solutions for the internet of things. In 2012 inter-

national conference on collaboration technologies and systems (CTS), pages

21–26. IEEE, 2012. (Cited on page 23.)

[Chen et al. 2004] Harry Chen, Tim Finin, Anupam Joshi, Lalana Kagal, Filip

Perich and Dipanjan Chakraborty. Intelligent agents meet the semantic web

in smart spaces. IEEE Internet computing, vol. 8, no. 6, pages 69–79, 2004.

(Cited on page 23.)

[Chen 2017] Hong Chen. Applications of cyber-physical system: a literature re-

view. Journal of Industrial Integration and Management, vol. 2, no. 03,

page 1750012, 2017. (Cited on page 4.)

[Cheng et al. 2018] Xiufeng Cheng, Jinqing Yang and Lixin Xia. A service-oriented

context-awareness reasoning framework and its implementation. The Elec-

tronic Library, 2018. (Cited on pages 24 and 26.)

[Choi et al. 2018] Chang Choi, Christian Esposito, Haoxiang Wang, Zhe Liu and

Junho Choi. Intelligent power equipment management based on distributed

context-aware inference in smart cities. IEEE Communications Magazine,

vol. 56, no. 7, pages 212–217, 2018. (Cited on page 19.)

[Dai et al. 2015] Wenbin Dai, Valeriy Vyatkin, James H Christensen and Victor N

Dubinin. Bridging service-oriented architecture and IEC 61499 for flexibility

and interoperability. IEEE Transactions on Industrial Informatics, vol. 11,

no. 3, pages 771–781, 2015. (Cited on page 30.)

[Dai et al. 2016] Wenbin Dai, Victor N Dubinin, James H Christensen, Valeriy Vy-

atkin and Xinping Guan. Toward self-manageable and adaptive industrial

cyber-physical systems with knowledge-driven autonomic service manage-

ment. IEEE Transactions on Industrial Informatics, vol. 13, no. 2, pages

725–736, 2016. (Cited on page 30.)

[Devaraju et al. 2007] Anusuriya Devaraju, Simon Hoh and Michael Hartley. A

context gathering framework for context-aware mobile solutions. In Proceed-

ings of the 4th international conference on mobile technology, applications,

and systems and the 1st international symposium on Computer human in-

teraction in mobile technology, pages 39–46, 2007. (Cited on page 23.)

[Donohoe et al. 2013] Michael Donohoe, Brendan Jennings and Sasitharan Bala-

subramaniam. Context-aware microgrid storage using electric cars. In IEEE

PES ISGT Europe 2013, pages 1–5. IEEE, 2013. (Cited on page 19.)

150 Bibliography

[Dubinin et al. 2005] Victor Dubinin, Valeriy Vyatkin and Thomas Pfeiffer. En-

gineering of validatable automation systems based on an extension of UML

combined with function blocks of IEC 61499. In Proceedings of the 2005

IEEE International Conference on Robotics and Automation, pages 3996–

4001. IEEE, 2005. (Cited on page 32.)

[Ekaputra et al. 2017] Fajar Ekaputra, Marta Sabou, Estefańıa Serral Asensio, El-

mar Kiesling and Stefan Biffl. Ontology-based data integration in multi-

disciplinary engineering environments: A review. Open Journal of Informa-

tion Systems, vol. 4, no. 1, pages 1–26, 2017. (Cited on page 16.)

[El Khaddar et al. 2015] Mehdia Ajana El Khaddar, Mhammed Chraibi, Hamid

Harroud, Mohammed Boulmalf, Mohammed Elkoutbi and Abdelilah Maach.

A policy-based middleware for context-aware pervasive computing. Interna-

tional Journal of Pervasive Computing and Communications, 2015. (Cited

on page 23.)

[Fkaier et al. 2016a] Soumoud Fkaier, Mohamed Romdhani, Mohamed Khalgui

and Georg Frey. Enabling reconfiguration of adaptive control systems using

real-time context-aware framework. In 2016 IEEE/ACS 13th International

Conference of Computer Systems and Applications (AICCSA), pages 1–8.

IEEE, 2016. (Cited on pages 19 and 44.)

[Fkaier et al. 2016b] Soumoud Fkaier, Mohamed Romdhani, Mohamed Khalgui

and Georg Frey. R2TCA: New tool for developing reconfigurable real-

time context-aware framework—Application to baggage handling systems.

In Proc. Int. Conf. Mobile Ubiquitous Comput., Syst., Services Tech-

nol.(UBICOMM), pages 113–119, 2016. (Cited on pages 19 and 61.)

[Fkaier et al. 2017] Soumoud Fkaier, Mohamed Romdhani, Mohamed Khalgui and

Georg Frey. Context-awareness Meta-model for Reconfigurable Control Sys-

tems. In Proceedings of the 12th International Conference on Evaluation

of Novel Approaches to Software Engineering - Volume 1: ENASE,, pages

226–234. INSTICC, SciTePress, 2017. (Cited on pages 19 and 40.)

[Fkaier. et al. 2020a] Soumoud Fkaier., Mohamed Khalgui. and Georg Frey. Hy-

brid Context-awareness Modelling and Reasoning Approach for Microgrids

Intelligent Control. In Proceedings of the 15th International Conference

on Software Technologies - Volume 1: ICSOFT,, pages 116–127. INSTICC,

SciTePress, 2020. (Cited on pages 19, 22 and 47.)

[Fkaier et al. 2020b] Soumoud Fkaier, Mohamed Khalgui and Georg Frey. Meta-

Model for Control Applications of Microgrids. In 2020 6th IEEE Inter-

national Energy Conference (ENERGYCon), pages 945–950. IEEE, 2020.

(Cited on page 40.)

Bibliography 151

[Fkaier. et al. 2021a] Soumoud Fkaier., Mohamed Khalgui. and Georg Frey. Mod-

eling Methodology for Reconfigurable Distributed Systems using Transforma-

tions from GR-UML to GR-TNCES and IEC 61499. In Proceedings of the

16th International Conference on Evaluation of Novel Approaches to Soft-

ware Engineering - ENASE,, pages 221–230. INSTICC, SciTePress, 2021.

(Cited on page 82.)

[Fkaier. et al. 2021b] Soumoud Fkaier., Mohamed Khalgui. and Georg Frey. A Soft-

ware Framework for Context-aware Secure Intelligent Applications of Dis-

tributed Systems. In Proceedings of the 16th International Conference on

Software Technologies - ICSOFT,, pages 111–121. INSTICC, SciTePress,

2021. (Cited on pages 44 and 68.)

[Flatt et al. 2015] Holger Flatt, Nils Koch, Carsten Röcker, Andrei Günter and

Jürgen Jasperneite. A context-aware assistance system for maintenance ap-

plications in smart factories based on augmented reality and indoor localiza-

tion. In 2015 IEEE 20th Conference on Emerging Technologies & Factory

Automation (ETFA), pages 1–4. IEEE, 2015. (Cited on page 19.)

[Forkan et al. 2014] Abdur Forkan, Ibrahim Khalil and Zahir Tari. CoCaMAAL: A

cloud-oriented context-aware middleware in ambient assisted living. Future

Generation Computer Systems, vol. 35, pages 114–127, 2014. (Cited on

page 23.)

[Forkan et al. 2015] Abdur Rahim Mohammad Forkan, Ibrahim Khalil, Ayman

Ibaida and Zahir Tari. BDCaM: Big data for context-aware monitoring—A

personalized knowledge discovery framework for assisted healthcare. IEEE

transactions on cloud computing, vol. 5, no. 4, pages 628–641, 2015. (Cited

on pages 19, 23 and 26.)

[Franklin & Flaschbart 1998] David Franklin and Joshua Flaschbart. All gadget

and no representation makes jack a dull environment. In Proceedings of the

AAAI 1998 spring symposium on intelligent environments, pages 155–160,

1998. (Cited on page 18.)

[Frey 2014] Markus Frey. Models and Methods for Optimizing Baggage Handling

at Airports. PhD thesis, Technische Universität München, 2014. (Cited on

page 105.)

[Garcia et al. 2017] Marcelo V Garcia, Edurne Irisarri, Federico Perez, Elisabet Es-

tevez and Marga Marcos. An Open CPPS Automation Architecture based

on IEC-61499 over OPC-UA for flexible manufacturing in Oil&Gas Indus-

try. IFAC-PapersOnLine, vol. 50, no. 1, pages 1231–1238, 2017. (Cited on

page 30.)

[Gayoso Mart́ınez et al. 2010] Vı́ctor Gayoso Mart́ınez, Luis Hernández Encinas

and Carmen Sánchez Ávila. A survey of the elliptic curve integrated en-

cryption scheme. 2010. (Cited on pages 12 and 139.)

152 Bibliography

[Ghribi et al. 2018] Ines Ghribi, Riadh Ben Abdallah, Mohamed Khalgui, Zhiwu

Li, Khalid Alnowibet and Marco Platzner. R-codesign: Codesign methodol-

ogy for real-time reconfigurable embedded systems under energy constraints.

IEEE Access, vol. 6, pages 14078–14092, 2018. (Cited on pages 6 and 8.)

[Gochhayat et al. 2019] Sarada Prasad Gochhayat, Pallavi Kaliyar, Mauro Conti,

Prayag Tiwari, VBS Prasath, Deepak Gupta and Ashish Khanna. LISA:

Lightweight context-aware IoT service architecture. Journal of cleaner pro-

duction, vol. 212, pages 1345–1356, 2019. (Cited on page 19.)

[Grichi et al. 2017] Hanen Grichi, Olfa Mosbahi, Mohamed Khalgui and Zhiwu Li.

New power-oriented methodology for dynamic resizing and mobility of re-

configurable wireless sensor networks. IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 48, no. 7, pages 1120–1130, 2017. (Cited on

page 8.)

[Grimm et al. 2018] Tomás Grimm, Djones Lettnin and Michael Hübner. A survey

on formal verification techniques for safety-critical systems-on-chip. Elec-

tronics, vol. 7, no. 6, page 81, 2018. (Cited on page 27.)

[Grobelna et al. 2010] Iwona Grobelna, Micha l Grobelny and Marian Adamski.

Petri Nets and activity diagrams in logic controller specification-

transformation and verification. In Proceedings of the 17th International

Conference Mixed Design of Integrated Circuits and Systems-MIXDES 2010,

pages 607–612. IEEE, 2010. (Cited on page 32.)

[Guellouz et al. 2016] Safa Guellouz, Adel Benzina, Mohamed Khalgui and Georg

Frey. Zizo: A complete tool chain for the modeling and verification of recon-

figurable function blocks. In Proc. 10th Int. Conf. Mobile Ubiquitous Com-

put., Syst., Services Technol.(UBICOMM), pages 144–151, 2016. (Cited on

page 28.)

[Guellouz et al. 2018] Safa Guellouz, Adel Benzina, Mohamed Khalgui, Georg Frey,

Zhiwu Li and Valeriy Vyatkin. Designing efficient reconfigurable control

systems using IEC61499 and symbolic model checking. IEEE Transactions

on Automation Science and Engineering, vol. 16, no. 3, pages 1110–1124,

2018. (Cited on pages 28 and 33.)

[Hafidi et al. 2019] Yousra Hafidi, Laid Kahloul, Mohamed Khalgui and Mohamed

Ramdani. New Method to Reduce Verification Time of Reconfigurable Real-

Time Systems Using R-TNCESs Formalism. In International Conference

on Evaluation of Novel Approaches to Software Engineering, pages 246–266.

Springer, 2019. (Cited on page 99.)

[Horcas et al. 2019] Jose-Miguel Horcas, Mónica Pinto and Lidia Fuentes. Context-

aware energy-efficient applications for cyber-physical systems. Ad Hoc Net-

works, vol. 82, pages 15–30, 2019. (Cited on page 19.)

Bibliography 153

[Hu et al. 2008] Peizhao Hu, Jadwiga Indulska and Ricky Robinson. An autonomic

context management system for pervasive computing. In 2008 Sixth Annual

IEEE International Conference on Pervasive Computing and Communica-

tions (PerCom), pages 213–223. IEEE, 2008. (Cited on page 23.)

[Hynes et al. 2009] Gearoid Hynes, Vinny Reynolds and Manfred Hauswirth. A

context lifecycle for web-based context management services. In European

Conference on Smart Sensing and Context, pages 51–65. Springer, 2009.

(Cited on page 19.)

[Iqbal et al. 2018] Razi Iqbal, Talal Ashraf Butt, M Omair Shafique, Manar

Wasif Abu Talib and Tariq Umer. Context-aware data-driven intelligent

framework for fog infrastructures in internet of vehicles. IEEE Access, vol. 6,

pages 58182–58194, 2018. (Cited on pages 3 and 24.)

[Ivanova-Vasileva et al. 2008] Ioanna Ivanova-Vasileva, Christian Gerber and Hans-

Michael Hanisch. Basics of modelling IEC 61499 function blocks with

integer-valued data types. IFAC Proceedings Volumes, vol. 41, no. 3, pages

169–174, 2008. (Cited on page 33.)

[Kayes et al. 2019] ASM Kayes, Wenny Rahayu, Tharam Dillon, Elizabeth Chang

and Jun Han. Context-aware access control with imprecise context char-

acterization for cloud-based data resources. Future Generation Computer

Systems, vol. 93, pages 237–255, 2019. (Cited on page 19.)

[Khalgui et al. 2019] Mohamed Khalgui, Olfa Mosbahi and Zhiwu Li. On recon-

figuration theory of discrete-event systems: From initial specification until

final deployment. IEEE Access, vol. 7, pages 18219–18233, 2019. (Cited on

page 6.)

[Khan et al. 2020] Aftab Khan, Aakash Ahmad, Anis Ur Rahman and Adel

Alkhalil. A Mobile Cloud Framework for Context-Aware and Portable Rec-

ommender System for Smart Markets. In Smart Infrastructure and Appli-

cations, pages 283–309. Springer, 2020. (Cited on page 19.)

[Khlifi et al. 2017] Oussama Khlifi, Christian Siegwart, Olfa Mosbahi, Mohamed

Khalgui and Georg Frey. Specification Approach using GR-TNCES: Appli-

cation to an Automotive Transport System. In ICSOFT, pages 105–115,

2017. (Cited on page 28.)

[Khlifi et al. 2019] O Khlifi, O Mosbahi, M Khalgui, G Frey and Z Li. Model-

ing, simulation and verification of probabilistic reconfigurable discrete-event

systems under energy and memory constraints. Iranian Journal of Science

and Technology, Transactions of Electrical Engineering, vol. 43, no. 2, pages

229–243, 2019. (Cited on pages 28, 84 and 100.)

154 Bibliography

[Kim et al. 2016] Kwanho Kim, Hyunjin Kim, Sang-Kuk Kim and Jae-Yoon Jung.

i-RM: An intelligent risk management framework for context-aware ubiqui-

tous cold chain logistics. Expert Systems with Applications, vol. 46, pages

463–473, 2016. (Cited on pages 24 and 26.)

[Krupitzer et al. 2018] Christian Krupitzer, Martin Breitbach, Felix Maximilian

Roth, Sebastian VanSyckel, Gregor Schiele and Christian Becker. A sur-

vey on engineering approaches for self-adaptive systems (extended version).

2018. (Cited on pages 2 and 16.)

[Lee et al. 2018] Tae-Dong Lee, Byung Moo Lee and Wonjong Noh. Hierarchical

cloud computing architecture for context-aware IoT services. IEEE Transac-

tions on Consumer Electronics, vol. 64, no. 2, pages 222–230, 2018. (Cited

on page 19.)

[Li et al. 2015] Xin Li, Martina Eckert, José-Fernán Martinez and Gregorio Rubio.

Context aware middleware architectures: survey and challenges. Sensors,

vol. 15, no. 8, pages 20570–20607, 2015. (Cited on pages 17, 18 and 23.)

[Lindgren et al. 2016] Per Lindgren, Johan Eriksson, Marcus Lindner, Andreas

Lindner, David Pereira and Lus Miguel Pinho. End-to-end response time

of IEC 61499 distributed applications over switched ethernet. IEEE Trans-

actions on Industrial Informatics, vol. 13, no. 1, pages 287–297, 2016. (Cited

on page 30.)

[Liu et al. 2017] Yang Liu, Yu Peng, Bailing Wang, Sirui Yao and Zihe Liu. Review

on cyber-physical systems. IEEE/CAA Journal of Automatica Sinica, vol. 4,

no. 1, pages 27–40, 2017. (Cited on page 2.)

[Lu et al. 2019] Huimin Lu, Qiang Liu, Daxin Tian, Yujie Li, Hyoungseop Kim and

Seiichi Serikawa. The cognitive internet of vehicles for autonomous driving.

IEEE Network, vol. 33, no. 3, pages 65–73, 2019. (Cited on page 83.)

[Luo & Feng 2015] Jianchao Luo and Hao Feng. A Framework for NFC-based

Context-aware Applications. International Journal of Smart Home, vol. 9,

no. 1, pages 111–122, 2015. (Cited on page 19.)

[Luo et al. 2020] Chu Luo, Jorge Goncalves, Eduardo Velloso and Vassilis Kostakos.

A Survey of Context Simulation for Testing Mobile Context-Aware Applica-

tions. ACM Computing Surveys (CSUR), vol. 53, no. 1, pages 1–39, 2020.

(Cited on page 19.)

[Mahalle & Dhotre 2020] Parikshit N Mahalle and Prashant S Dhotre. Context-

Aware Pervasive Systems. In Context-Aware Pervasive Systems and Appli-

cations, pages 49–66. Springer, 2020. (Cited on pages 2 and 17.)

[Mahmud et al. 2020] Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ra-

mamohanarao and Rajkumar Buyya. Profit-aware application placement

Bibliography 155

for integrated Fog–Cloud computing environments. Journal of Parallel and

Distributed Computing, vol. 135, pages 177–190, 2020. (Cited on page 144.)

[Meskina et al. 2018] Syrine Ben Meskina, Narjes Doggaz, Mohamed Khalgui and

Zhiwu Li. Reconfiguration-based methodology for improving recovery perfor-

mance of faults in smart grids. Information Sciences, vol. 454, pages 73–95,

2018. (Cited on page 8.)

[Mousavi & Vyatkin 2015] Arash Mousavi and Valeriy Vyatkin. Energy Efficient

Agent Function Block: A semantic agent approach to IEC 61499 function

blocks in energy efficient building automation systems. Automation in Con-

struction, vol. 54, pages 127–142, 2015. (Cited on page 31.)

[Murukannaiah & Singh 2014] Pradeep K Murukannaiah and Munindar P Singh.

Xipho: Extending Tropos to engineer context-aware personal agents. In Pro-

ceedings of the 2014 international conference on Autonomous agents and

multi-agent systems, pages 309–316, 2014. (Cited on page 23.)

[Nakagawa et al. 2014] Elisa Yumi Nakagawa, Rafael Capilla, Francisco J Dı́az and

Flávio Oquendo. Towards the dynamic evolution of context-based systems-

of-systems. In 8th WDES Workshop, Maceió, Brazil, pages 45–52, 2014.

(Cited on page 69.)

[Nakamoto 2019] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.

Technical report, Manubot, 2019. (Cited on pages 3 and 33.)

[Nassar et al. 2020] Mohamed Nassar, Khaled Salah, Muhammad Habib

ur Rehman and Davor Svetinovic. Blockchain for explainable and

trustworthy artificial intelligence. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery, vol. 10, no. 1, page e1340, 2020. (Cited

on page 6.)

[Nikolakis et al. 2018] Nikolaos Nikolakis, Konstantinos Sipsas and Sotiris Makris.

A cyber-physical context-aware system for coordinating human-robot collab-

oration. Procedia CIRP, vol. 72, pages 27–32, 2018. (Cited on page 31.)

[Nokovic & Sekerinski 2013] Bojan Nokovic and Emil Sekerinski. pState: A proba-

bilistic statecharts translator. In 2013 2nd Mediterranean Conference on Em-

bedded Computing (MECO), pages 29–32. IEEE, 2013. (Cited on page 32.)

[Noulamo et al. 2018] Thierry Noulamo, Emmanuel Tanyi, Marcellin Nkenlifack,

Jean-Pierre Lienou and Alain Djimeli. Formalization Method of the UML

Statechart by Transformation Toward Petri Nets. IAENG International

Journal of Computer Science, vol. 45, no. 4, 2018. (Cited on page 32.)

[Ortiz et al. 2019] Guadalupe Ortiz, Alfonso Garcia-De-Prado, Javier Berrocal and

Juan Hernandez. Improving resource consumption in context-aware mobile

156 Bibliography

applications through alternative architectural styles. IEEE Access, vol. 7,

pages 65228–65250, 2019. (Cited on page 19.)

[Oueslati et al. 2018] Raja Oueslati, Olfa Mosbahi, Mohamed Khalgui, Zhiwu Li

and Ting Qu. Combining semi-formal and formal methods for the devel-

opment of distributed reconfigurable control systems. IEEE Access, vol. 6,

pages 70426–70443, 2018. (Cited on page 8.)

[Pang & Vyatkin 2008] Cheng Pang and Valeriy Vyatkin. Automatic model gen-

eration of IEC 61499 function block using net condition/event systems. In

2008 6th IEEE International Conference on Industrial Informatics, pages

1133–1138. IEEE, 2008. (Cited on page 33.)

[Panjaitan & Frey 2006] Seno Panjaitan and Georg Frey. Combination of UML

modeling and the IEC 61499 function block concept for the development

of distributed automation systems. In 2006 IEEE Conference on Emerging

Technologies and Factory Automation, pages 766–773. IEEE, 2006. (Cited

on pages 32 and 112.)

[Panjaitan & Frey 2007] SD Panjaitan and Georg Frey. Development process for

distributed automation systems combining UML and IEC 61499. Interna-

tional Journal of Manufacturing Research, vol. 2, no. 1, pages 1–20, 2007.

(Cited on pages 30 and 94.)

[Patil et al. 2013] Sandeep Patil, Valeriy Vyatkin and Bruce McMillin. Implemen-

tation of FREEDM Smart Grid distributed load balancing using IEC 61499

function blocks. In IECON 2013-39th Annual Conference of the IEEE Indus-

trial Electronics Society, pages 8154–8159. IEEE, 2013. (Cited on page 30.)

[Perera et al. 2013] Charith Perera, Arkady Zaslavsky, Peter Christen and Dim-

itrios Georgakopoulos. Context aware computing for the internet of things:

A survey. IEEE communications surveys & tutorials, vol. 16, no. 1, pages

414–454, 2013. (Cited on pages 18 and 23.)

[Psyche et al. 2020] Valery Psyche, Ben K Daniel and Jacqueline Bourdeau. Learn-

ing Spaces in Context-Aware Educational Networking Technologies in the

Digital Age. In Educational Networking, pages 299–323. Springer, 2020.

(Cited on page 19.)

[Salem et al. 2015a] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed

Khalgui and Georg Frey. Transformation from R-UML to R-TNCES: New

formal solution for verification of flexible control systems. In 2015 10th In-

ternational Joint Conference on Software Technologies (ICSOFT), volume 2,

pages 1–12. IEEE, 2015. (Cited on pages 32 and 86.)

[Salem et al. 2015b] Mohamed Oussama Ben Salem, Olfa Mosbahi, Mohamed

Khalgui and Georg Frey. ZiZo: Modeling simulation and verification of re-

configurable real-time control tasks sharing adaptive resources. In Proc. Int.

Bibliography 157

Conf. Health Inform.(HEALTHINF), pages 20–31, 2015. (Cited on pages 99

and 100.)

[Salman et al. 2018] Tara Salman, Maede Zolanvari, Aiman Erbad, Raj Jain and

Mohammed Samaka. Security services using blockchains: A state of the art

survey. IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pages

858–880, 2018. (Cited on pages 3 and 34.)

[Schilit et al. 1994] Bill Schilit, Norman Adams and Roy Want. Context-aware com-

puting applications. In 1994 First Workshop on Mobile Computing Systems

and Applications, pages 85–90. IEEE, 1994. (Cited on page 17.)

[Schneider et al. 2017] Georg Ferdinand Schneider, Pieter Pauwels and Simone

Steiger. Ontology-based modeling of control logic in building automation

systems. IEEE Transactions on Industrial Informatics, vol. 13, no. 6, pages

3350–3360, 2017. (Cited on page 16.)

[Schneider et al. 2019] Georg Ferdinand Schneider, Hendro Wicaksono and Jivka

Ovtcharova. Virtual engineering of cyber-physical automation systems: The

case of control logic. Advanced Engineering Informatics, vol. 39, pages 127–

143, 2019. (Cited on page 16.)

[Schneider 2019] Georg Ferdinand Schneider. Semantic Modelling of Control Logic

in Automation Systems-Knowledge-Based Support of the Engineering and

Operation of Control Logic in Building and Industrial Automation Systems.

2019. (Cited on page 99.)

[Shulsky & Schmitt 2002] Abram N Shulsky and Gary James Schmitt. Silent war-

fare: understanding the world of intelligence. Potomac Books, Inc., 2002.

(Cited on page 19.)

[Sikder et al. 2019] Amit Kumar Sikder, Hidayet Aksu and A Selcuk Uluagac. A

context-aware framework for detecting sensor-based threats on smart devices.

IEEE Transactions on Mobile Computing, 2019. (Cited on pages 24 and 26.)

[Singh 2020] Pradeep Kumar Singh. Proceedings of icric 2019: Recent innovations

in computing. Springer Nature, 2020. (Cited on page 19.)

[Smida et al. 2019] Moncef Ben Smida, Khaoula Miled, Mohamed Khalgui, Georg

Frey and Zhiwu Li. Modeling and Verification of a Reliable Multi-Agent

Solution Promoting the Autonomy and Self-Sufficiency of Microgrids in an

Isolated Location. IEEE Access, vol. 7, pages 55090–55107, 2019. (Cited on

pages 3 and 29.)

[Sørensen et al. 2019] René A Sørensen, Michael Nielsen and Henrik Karstoft. Deep

Reinforcement Learning for Route Optimization in Baggage Handling Sys-

tems. In Proceedings of the 1st International Conference on Advances in

158 Bibliography

Signal Processing and Artificial Intelligence. International Frequency Sensor

Association Publishing, pages 29–33, 2019. (Cited on page 69.)

[Tang et al. 2014] Lei Tang, Zhiwen Yu, Hanbo Wang, Xingshe Zhou and Zongtao

Duan. Methodology and tools for pervasive application development. Inter-

national Journal of Distributed Sensor Networks, vol. 10, no. 4, page 516432,

2014. (Cited on page 26.)

[Thramboulidis et al. 2017] Kleanthis Thramboulidis, P Bochalis and

J Bouloumpasis. A framework for MDE of IoT-based manufacturing

cyber-physical systems. In Proceedings of the seventh international

conference on the internet of things, pages 1–8, 2017. (Cited on page 3.)

[Thramboulidis 2004] Kleanthis C Thramboulidis. Using UML in control and au-

tomation: a model driven approach. In 2nd IEEE International Conference

on Industrial Informatics, 2004. INDIN’04. 2004, pages 587–593. IEEE, 2004.

(Cited on pages 32 and 98.)

[Thramboulidis 2006] Kleanthis Thramboulidis. Design alternatives in the IEC

61499 function block model. In 2006 IEEE Conference on Emerging Tech-

nologies and Factory Automation, pages 1309–1316. IEEE, 2006. (Cited on

page 82.)

[Thramboulidis 2007] Kleanthis Thramboulidis. IEC 61499 in factory automation.

In Advances in Computer, Information, and Systems Sciences, and Engi-

neering, pages 115–124. Springer, 2007. (Cited on pages 30 and 82.)

[Thramboulidis 2008] Kleanthis Thramboulidis. Facts and Fallacies in the

IEC61499 Function Block Model. 2008. (Cited on page 83.)

[Thramboulidis 2015] Kleanthis Thramboulidis. A cyber–physical system-based ap-

proach for industrial automation systems. Computers in Industry, vol. 72,

pages 92–102, 2015. (Cited on page 29.)

[Tranoris & Thramboulidis 2003] Christos Tranoris and Kleanthis Thramboulidis.

Integrating UML and the function block concept for the development of dis-

tributed control applications. In EFTA 2003. 2003 IEEE Conference on

Emerging Technologies and Factory Automation. Proceedings (Cat. No.

03TH8696), volume 2, pages 87–94. IEEE, 2003. (Cited on page 32.)

[Uddin et al. 2019] Riaz Uddin, Ali S Alghamdi, Muhammad Hammad Uddin,

Ahmed Bilal Awan and Syed Atif Naseem. Ethernet-Based Fault Diagno-

sis and Control in Smart Grid: A Stochastic Analysis via Markovian Model

Checking. Journal of Electrical Engineering & Technology, vol. 14, no. 6,

pages 2289–2300, 2019. (Cited on page 98.)

Bibliography 159

[Veichtlbauer et al. 2016] Armin Veichtlbauer, Manuel Parfant, Oliver Langthaler,

Filip Prostl Andren and Thomas Strasser. Evaluating XMPP communica-

tion in IEC 61499-based distributed energy applications. In 2016 IEEE 21st

International Conference on Emerging Technologies and Factory Automa-

tion (ETFA), pages 1–8. IEEE, 2016. (Cited on page 30.)

[Verginadis et al. 2017] Yiannis Verginadis, Antonis Michalas, Panagiotis Gouvas,

Gunther Schiefer, Gerald Hubsch and Iraklis Paraskakis. Paasword: A holis-

tic data privacy and security by design framework for cloud services. Journal

of Grid Computing, vol. 15, no. 2, pages 219–234, 2017. (Cited on page 19.)

[Wang & Varghese 2020] Nan Wang and Blesson Varghese. Context-aware Dis-

tribution of Fog Applications Using Deep Reinforcement Learning. arXiv

preprint arXiv:2001.09228, 2020. (Cited on page 19.)

[Weyns 2019] Danny Weyns. Software engineering of self-adaptive systems. In

Handbook of Software Engineering, pages 399–443. Springer, 2019. (Cited

on pages 2 and 16.)

[Yan & Vyatkin 2013] Jeffrey Yan and Valeriy Vyatkin. Distributed software archi-

tecture enabling peer-to-peer communicating controllers. IEEE Transactions

on Industrial Informatics, vol. 9, no. 4, pages 2200–2209, 2013. (Cited on

pages 30 and 112.)

[Yang et al. 2019a] Chen-Wei Yang, Victor Dubinin and Valeriy Vyatkin. Auto-

matic Generation of Control Flow from Requirements for Distributed Smart

Grid Automation Control. IEEE Transactions on Industrial Informatics,

2019. (Cited on pages 3 and 30.)

[Yang et al. 2019b] Ruizhe Yang, F Richard Yu, Pengbo Si, Zhaoxin Yang and

Yanhua Zhang. Integrated blockchain and edge computing systems: A sur-

vey, some research issues and challenges. IEEE Communications Surveys &

Tutorials, vol. 21, no. 2, pages 1508–1532, 2019. (Cited on page 34.)

[Yuan & Wang 2018] Yong Yuan and Fei-Yue Wang. Blockchain and cryptocurren-

cies: Model, techniques, and applications. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 48, no. 9, pages 1421–1428, 2018.

(Cited on page 33.)

	Introduction
	General Context and Motivation
	Problems and Challenges
	Applications Requirements Challenges
	Software Infrastructure Challenges
	Modeling Methodological Challenges

	Thesis Contributions
	Software Framework for Smart Applications.
	Modeling Methodology using the Framework.
	Secure Conversation Protocol of a Network of Frameworks
	Software Tool Implementing the Framework Concepts.

	Publications
	Thesis Plan

	State of the Art
	Introduction
	Motivation
	Context-Awareness Computing
	Context-Awareness Definition
	Context Life-cycle
	Context-Awareness Software
	Discussion

	Formal Verification
	Petri Nets
	GR-TNCES Formalism
	Discussion

	IEC 61499: Standard of Distributed Systems
	IEC 61499 Function Block Presentation
	IEC 61499 Applications
	IEC 61499 and Intelligence
	Discussion

	Model Transformation
	UML, Probability, Resource Constraints
	Transformation Between UML and Petri Nets
	Transformation Between UML and Function Blocks
	Transformation Between Petri Nets and Function Blocks
	Discussion

	Blockchain for Distributed Systems Security
	Blockchain Applications and Types
	Consensus Protocols
	Blockchain Challenges
	Discussion

	Conclusions

	A Software Framework for Context-Aware Reconfigurable Applications
	Introduction
	Motivation
	Context Definition for Context-Aware Reconfigurable Automated Control Systems
	Framework Meta-Model
	Concept Principles
	Meta-Model

	Definition and Formalization
	Framework architecture
	Reconfiguration Layer
	Context Control Layer
	Service Layer

	Running Example
	Case Study Presentation
	Case Study Development with the Proposed Framework
	Discussions

	Conclusions

	Modeling Methodology Based on the Proposed Framework
	Introduction
	Motivation
	Preliminaries
	GR-TNCES
	Function Blocks Formal Definition

	New UML Profile: GR-UML
	Class Diagram Definition
	Statechart Diagram Definition
	Component Diagram Definition

	Model Transformations
	Transformation of GR-UML to GR-TNCES
	Transformation of GR-UML to IEC 61499 Function Blocks

	Methodology Work Flow
	Applications Modeling Using the Framework Models
	Behavior Testing Using Formal Verification
	Function Blocks Models Analysis

	Software Tool: ZiZo New Version
	Running Example
	Phase 1 of the Methodology: Modeling using UML Models of the Framework
	Phase 2 of the Methodology: Formal Verification
	Phase 3 of the Methodology: Model Screening According to IEC 61499 Using a Function Block Tool

	Comparison with Other Approaches
	Conclusions

	Security of a Network of Frameworks
	Introduction
	Motivation
	Framework Security Technique
	Composition of the Blockchain Technique (Security Module)
	Dynamics of the Blockchain Technique (Security Module)

	Secure Conversation Among Distributed Peers Protocol
	Protocol First Phase: Demand
	Protocol Second Phase: Response
	Protocol Third Phase: Termination

	Protocol Implementation
	Distributed Messaging Platform
	Private Blockchain Implementation
	ECIES Encryption

	Running Example
	Case Study Presentation
	Microgrids System Model
	Electricity Trading Protocol
	Performance Evaluation

	Discussion
	Conclusions

	Conclusions and Perspectives
	Context and Problems
	Contributions and Outputs
	Perspectives

	Bibliography

