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Summary 

 New synthetic biomaterials are constantly being developed for wound repair and 

regeneration. Bioactive glasses (BG) containing strontium have shown successful 

applicationsin tissue engineering account of their biocompatibility and the positive biological 

effects after implantation. This study aimed to assess whether BG-Sr was accepted by the host 

tissue and to characterize oxidative stress biomarker and antioxidant enzyme profiles during 

muscle and skin healing. Wistar rats were divided into five groups (six animals per group): 

the group (I) was used as negative control (T), after ovariectomy, groups II, III, IV and V 

were used respectively as positive control (OVX), implanted tissue with BG (OVX-BG), BG-

Sr (OVX-BG-Sr) and presentedempty defects (OVX-NI). Soft tissues surrounding 

biomaterials were used to estimate superox-ide dismutase (SOD), catalase (CAT), glutathione 

peroxidase (GPx) and malondialdehyde (MDA) concentration. Our results show that 60 days 

after operation, treatment of rats with BG-Sr significantly increased MDA concentration and 

caused an increase of SOD, CAT and GPx activities in both skin and muscular tissues. BG-Sr 

revealed maturation of myotubes followed anormal appearance of muscle regenerated with 

high density and mature capillary vessels. High wound recovery with complete re-

epithelialization and regeneration of skin was observed. The results demonstrate that the 

protective action against reactive oxygen species (ROS) was clearly observed in soft tissue 

surrounding BG-Sr. Moreover, the potential use of BG-Sr rapidly restores the wound skin and 

muscle structural and functional properties. The BG advantages such as ion release might 

make BG-Sr an effective biomaterial choice for antioxidative activity. 

Oxidative stress; Bioglass; Strontium; Soft tissue regeneration; Antioxidative activity 

 

 



Résumé 

Des nouveaux biomatériaux sont synthétisés pour la régénération de tissus. Les verres 

bioactifs (BG) contenant du strontium ont montré des effets biologiques positifs au niveau de 

l’ingénierie tissulaire. Cette étude vise à évaluer la tolérance de BG par le tissu hôte et de 

caractériser les biomarqueurs du stress oxydatif et les profils des enzymes antioxydantes au 

cours de la guérison des muscles et de la peau. Des rates Wistar ont été divisées en cinq 

groupes(six rates par groupe): le groupe (I) était utilisé comme témoin négatif (T), après une 

ovariec-tomie, les groupes II, III, IV et V étaient respectivement utilisés comme contrôle 

positif (OVX),tissu implanté avec BG (OVX-BG), BG-Sr (OVX-BG-Sr) et présenté des 

défauts vides (OVX-NI).Les tissus environnants les biomatériaux ont été utilisées pour 

estimer la superoxyde dismutase (SOD), la catalase (CAT), glutathion peroxydase (GPx) et le 

malondialdéhyde (MDA). Nos résultats montrent que 60 jours après l’opération, le traitement 

des rates avec BG-Sr a entraînéune augmentation de malondialdéhyde (MDA) et les activités 

de SOD, CAT et GPx au niveau de muscle et de la peau. Le BG-Sr a révélé au niveau de 

muscle une maturation et une vascular-isation de tissu. Au niveau de la peau, une complète ré-

épithélialisation a été observée. Les résultats démontrent des effets protecteurs de BG-Sr 

contre les espèces réactives de l’oxygène(ERO). En outre, son utilisation permet de rétablir 

les propriétés structurelles et fonctionnelles musculaires et la régénération de la peau. La 

relarguage des ions par le BG pourrait faire un choix efficace pour l’activité antioxydante. 

MOTS CLÉS 

Le stress oxydatif; Verre bioactif ; Strontium ;La régénération des tissus mous; Des activités 

antioxydantes 

 

 

 

 

 

 

 

 

 



Introduction 

The beneficial effect of strontium (Sr) as a potential antios-teoporotic factor at a low dose has 

been well documented [1]. Current studies have taken the benefits of Sr on bone regeneration 

by incorporating it into various bone graft bio-materials [2]. Among these biomaterials, 

bioactive glasses (BG) have been widely used thanks to their biological properties. In fact, 

they have the ability to bond to hard tissue and to form a carbonated hydroxyapatite layer 

(HCA) when exposed to a biological fluid [3]. Furthermore, the ionic dissolution products 

from bioglass (e.g. Si, Ca, and P) stimulate expression of several osteoblastic cell genes [4]. 

The substitution of Sr with bioglass enhances bone healing; moreover, it is believed to 

favourably affect the cell proliferation and differentiation and to develop both osteogenesis 

and angiogenesis properties. Interestingly, many previous studies have indicated that the 

release of degradation products from these materials affects the tissue responses. Within these 

responses, reactive oxygen species (ROS) are generated by activated phagocytes. Current 

studies have demonstrated that ROS could exert positive as well as negative effects in many 

tissues [5]. As regards the positive effects, ROS play an important role after injury when 

adequate amounts of reactive ions or molecules including hydrogen peroxide 

(H2O2),superoxide (O2−), hydroxyl radicals (OH·) are produced by damaged endothelial and 

smooth muscle cells. Thus, ROS contribute to angiogenic signalling [6]. The negative ROS 

effects consist in the contribution to the disease pathology and complication [7]. After 

implantation, the skeletal muscles surrounding the biomaterials are affected by different 

particle sizes and morphologies. They exhibited differences in their behavioral, physiological, 

and cellular responses. The effects of implants on bony tissue have been investigated [8]. 

However, only few studies have directly addressed the effect upon the adjacent skeletal 

muscle and skin tissue. Our hypothesis is that Sr may contribute to the ROS imbalance control 

during hormonal insufficiency in the soft tissue surrounding BG-Sr. In the present study, we 

aimed to investigate the antioxidant activity of BG with 0.1 wt% Sr. The particle size ranged 

between 40 and 63  µm against the free radicals induced by estrogen deficiency and correlated 

with the tissue biocompatibility during the osteoporosis development. 

Material and methods 

Bioactive glass synthesis 

The first material studied was pure 46S6 possessing com-positions close to that of Hench’s 

45S5 [9] and used as a reference to validate our experimental procedure. Then, 0.1% wt of Sr 



was introduced into the 46S6 bio-glass. Appropriate amounts of calcium metasilicate, 

sodiummetasilicate, sodium metaphosphate, and magnesium oxide were weighed and mixed 

for 45 min using a planetary mixer. The powdered mixture was heated in a platinum crucible 

at 1300◦C for 3 h. The molten material was then poured into preheated brass molds to form 

cylinders of 13 mm in diameter and 10 mm in height. The prepared samples were annealed for 

4 h at the appropriate temperature, corresponding to the phase transition temperature of the 

glass composition (about 560◦C), in a regulated muffle furnace, which was left to cool to 

room temperature at a rate of 1◦C min−1. After elaboration, the powder particles sized 

between 40—63 µm were compressed in a perfectly isostatic manner. The prepared implants 

were sterilized by ᵧ-irradiation from a 60Co Source gamma irradiation at a dose of 25 Gy 

(Theratron external beam teletherapy, Equinox, Ottawa, ON, Canada) using standard 

procedures for medical devices. 

Animal model 

Female Wistar rats (16—19 weeks of age), obtained from the central pharmacy, Tunisia, and 

bred in the central animal house were used in this study. The rats were acclimatized to their 

new environment for 7 days before the beginning of the study. The animals were fed on a 

pellet diet (Sicco, Sfax,Tunisia) and water ad libitum. All the animals were kept under 

climate-controlled conditions (25◦C; 55% humidity; 12 h of light alternating with 12 h of 

darkness). The handling of the animals was approved by the Tunisian ethical commit-tee for 

the care and use of laboratory animals. All rats were randomly divided into five groups (six 

animals per group): the first group (I) was used as negative control (T). Sixty days after 

bilateral ovariectomy, groups II, III, IV and V were used respectively as positive control 

(OVX), implanted tis-sues with BG (OVX-BG), BG-Sr (OVX-BG-Sr) and the last one 

presented empty defects (OVX-NI).Surgical and postoperative protocol. All surgical 

interventions were performed under general anaesthesia in aseptic conditions. Anaesthesia 

was induced with xylazine (7 to 10 mg/kg (i.P) Rompun®2%) and ketamine (70 to 100 mg/kg 

(i.m) Imalgene®) depending on the bodyweight. Animals were shaved and prepared for 

surgery. BG and BG-Sr in a similar disc form were placed into 1-cm muscular and 

subcutaneous pouches in ovariectomised rats. On days 4, 7, 15, 30 and 60 after implant 

insertion, all rats were sacrificed and specimens were harvested for biological evaluation.  

 

 



Tissue preparation 

 The muscular and skin tissues surrounding the biomaterials were carefully removed, cleaned, 

dried and processed for antioxidant enzyme analysis. The homogenates were pre-pared on ice 

in the ratio 2 g tissue for 8 ml of phosphate buffer saline, centrifuged at 9000 rpm for 15 min 

at 4◦C and frozen at —70◦C until analysis.  

Oxidative stress measurements 

The lipid peroxidation in the muscular and skin tissues of control and all treated animal 

groups was measured by the quantification of thiobarbituric acid-reactive substances 

(TBARS) determined by the method of Buege and Aust [10].The activity of superoxide 

dismutase (SOD) was assayed by the spectrophotometric method of Marklund and Marklund 

[11]. The glutathione peroxidase (GPx) activity was measured by the method described by 

Pagila and Valentine [12]. Catalase (CAT) was assayed calorimetrically at 240 nm and 

expressed as moles of H2O2consumed per minute per milligram of protein, as described by 

Aebi [13]. The level of total protein was determined by the method of Lowry et al.using 

bovine serum albumin as the standard at 660 nm [14]. 

Histological study 

Both muscular and skin tissue of control and all treated groups were fixed in 10% formalin 

and embedded in paraffin. Thereafter, 4—5 µm paraffin sections were stained with 

hematoxylin—eosin and subjected to microscopic examination. 

Statistical analysis 

The statistical analysis of the data was made using Student’st test. All values were expressed 

as means ± SE. Differences are considered significant at the 95% confidence level (P < 0.05). 

Results 

Antioxidant status during skeletal muscle healing  

As illustrated in Fig. 1a—c, the data on the SOD, CAT, and GPx activities in the skeletal 

muscle of OVX rats showed a highly significant decrease when compared to those of control 

rats. Also ovariectomy significantly elevated the malondialdehyde (MDA) levels (P < 0.001) 

(Fig. 2). The results showed that after 4 and 7 days, the CAT, SOD and GPx activities in 

OVX-BG-Sr, OVX-BG groups decreased significantly (P < 0.001) as compared to those of 



OVX rats. In addition, an enhancement increase in MDA levels (P < 0.001) was observed. 

The results clarified that implantation of both BG-Sr and BG showed a pronounced release in 

the free radical content. These activities were more pronounced than those of OVX-NI group. 

However, 15 days after operation, the SOD, CAT and GPx activities showed a significant 

enhancement and the maximum was administered after 60 days. In fact, the SOD, CAT and 

GPx activities in OVX-BG were increased by12%, 22.5% and 12%, respectively when 

compared to those of OVX rats. Besides, we noted a decrease in MDA levels by43.4%. 

Similarly, a significant increase by 16%, 26% and 19.5%was shown in OVX—BG-Sr rats as 

compared to those of OVX groups. We also observed a decrease of MDA by 

44.5%.Antioxidant status during cutaneous wound healing. The data on the SOD, CAT, and 

GPx activities in the cutaneous tissue of OVX rats showed a significant decrease when 

compared to those of controls rats (Fig. 3a—c). More-over, ovariectomy significantly 

elevated the MDA levels. 

Muscle histopathology 

After 4 days of BG and BG-Sr implantation, we noted the presence of numerous necrotic 

myofibrils with different caliber sizes. They were mildly swollen. Their cytoplasm was paler 

than that of control and had a homogenized appearance without striations (Fig. 5a—c). 

Moreover, we noted that leukocyte infiltration was more accentuated in BG than that of BG-

Sr- treated rat muscles (Fig. 5d, e). This dam-age paralleled the significant enhancements of 

MDA level detected in skeletal muscle tissue implanted with BG and BG-Sr in the same 

period of 4 days. After 7 days, the various events typical of regeneration were observed in BG 

treated muscle. The BG individual myofibers had a thin pericellular endomysium with groups 

of myofibers surrounded by a thicker perimysium than those of BG-Sr treated groups (Fig. 5f, 

g). The BG treated rat myofibers were smaller in size than those of BG-Sr treated rats, but like 

the normal muscle, they were polygonal and possessed peripheral nuclei. 

After 15 days, the myofiber size in BG-Sr group matched that of normal muscle and was 

considerably large. BG-Sr regenerating regenerate muscle exhibited three morphologically 

distinguishable zones: an outer zone of original surviving myofibers, a middle myogenic zone 

composed of proliferated myoblasts and small myotubes, and an inner zone of degenerated 

myofibers (Fig. 5h). Many nerves and blood vessels restoration between fiber muscle in BG-

Sr and BG treated rat muscles was seen (Fig. 5i, j). After 60 days, the entire muscle was filled 

with polygonal myofibers. Moreover, we noted the uniformity of muscle fibers appearing in 



both BG and BG-Sr with longitudinal striations. This regeneration paralleled the significant 

decrease of MDA level detected in skeletal muscle tissue surrounding BG and BG-Sr in the 

same period (Fig. 3k, l). 

Skin histopathology 

The histological examination revealed that skin of BG-Sr and BG treated ovariectomised rats 

showed inflammatory pat-terns on day 4 (Fig. 6a, b). The inflammatory cells were particularly 

abundant in the dermal compartment. However, neither BG-Sr nor BG treated group induced 

prolonged or exaggerated inflammatory responses. In fact, the inflammatory cells and 

microvessels in the regenerated tissues were gradually degraded and substituted by collagen 

fibers (Fig. 6c, d). After 15 days, the histological examination revealed that the growth of 

epidermal cells was retarded in BG treated group and epithelization was limited in the NI 

group in comparison with that of BG-Sr treated group. The restoration kinetics of cellular 

bases was significantly enhanced in BG-Sr treated group. The wound in group BG-Sr site was 

completely covered with epithelial cells and the thickness of the epidermis was comparable to 

that of a nor-mal rat (Fig. 6e). After 8 weeks, the histological sections of BG-Sr skin treated 

group exhibited neovascularisation, manymature hair follicles, sebaceous gland cells and 

completere-epithelialization (Fig. 6f—h). 

Discussion 

Bioglass is considered as a promising material in the con-text of tissue engineering 

applications. The ionic dissolution products from bioglass in vivo are key to understanding 

the behaviour of these materials. During biomaterial/tissue interaction, there is a possible 

imbalance in the oxidative status contributing to the complication of graft substitutes and 

tissue damages. When biomaterials are implanted, a series of biological events occur [15, 16]. 

Proteins adsorb on the biomaterial surface almost immediately. Moreover, inflammation leads 

to the chemo-attraction of activated phagocytes. The phagocytic activities of neutrophils and 

macrophages are an appropriate source that release pro-inflammatory cytokines, cytotoxic 

proteases, and free radicals, including reactive oxygen [17]. Here, as well as in the skin, the 

skeletal muscle tissues surrounding BG-Sr and BG indicated a significant rise in MDA 

concentration level and reduction in SOD, CAT, GPx activities during the first week in 

ovariectomised rats. These activities were very limited in ovariectomised rats. In fact, 

estrogen is a strong antioxidant having the ability to diminish cell membrane disruption. 

Moreover, estrogen showed to prevent the decrease in skin collagen in post-menopausal 



women receiving hormone replacement therapy [17]. Hence, the decrease of the antioxidative 

activities in all treated rats can be partially explained by the fact that after ovariectomy, 

circulating estrogen levels is dropped and their positive effects on skeletal muscle thus 

decrease in all ovariectomised rats. However, the pronounced activity in the BG-Sr and BG 

treated group can be explained by the fact that the degradation products of matrix bioglass 

stimulate inflammatory reactions and leukocyte invasion that can be responsible for further 

collateral damage to healthy tissue. Current findings show that the reactions through neu-

trophils are capable of direct lysis of muscle cell membranes through a superoxide-dependent 

mechanism. Superoxide can be rapidly removed by reaction with other free radicals or by 

conversion to hydrogen peroxide by SOD [18].Hydrogen peroxide is a stronger oxidant than 

superoxide and has the capacity to peroxidize lipids and damage cell membranes [19]. 

Hydrogen peroxide can also be converted to more highly reactive free radicals including 

hydroxyl radicals. Therefore, modified muscle and skin tissue used during and after surgical 

procedures can affect the level of SOD expression [20]. In general, the persistent formation of 

ROS can overcome antioxidant defenses, and thus result in the oxidative stress imbalance. In 

this study, after 8 weeks, BG-Sr materials with 0.1 wt% Sr treated muscular group showed a 

16%, 26% and 19.5% increase in SOD, CAT and GPx activities and decrease of MDA by 

44.5% compared with those of other groups. Moreover, the skin showed 31.1%, 26% 

and45.5% increase in SOD, CAT, GPx activities and a decrease in MDA level by 44,6% as 

compared with those of other groups. A recent study showed that with biocompatible 

materials, an early resolution of the acute and chronic inflammatory responses occurred with 

the chronic inflammatory response usually lasting no longer than two weeks. Moreover, a cur-

rent study shows a strong relationship between free radicals and inflammatory response. 

Therefore, free radicals could indeed be a useful tool in tissue engineering. In fact, muscle-

derived free radicals can reduce neutrophil mediated lysis of muscle cells and decreases 

superoxide concentration in the media [21]. This protective effect could occur by free radicals 

scavenging of superoxide to prevent its conversion to a more cytotoxic oxidant [22]. Muscle 

and skin-derived free radicals may also serve to protect tissues from dam-age by 

inflammatory cells by inhibiting the expression of adhesion molecules that are necessary for 

leukocyte interactions with the vascular endothelium [23]. On the other hand, the imbalance 

in the oxidative situation can be associated with biomaterials properties such as surface 

chemistry, size and shape. These properties are responsible for modifying the inflammatory 

intensity, time duration and wound healing processes. Recently, there has been a study 

regarding data on SiO2nanoparticle-induced oxidative stress and pro-inflammatory responses 



in rodent and in different types of cultured mammalian cell lines [24]. In our study, bio-

glasses are largely the result of the uniformity of granules within a narrow size range from 40 

to 63 m. It has been shown that when the particle size is lower than 200 µm, biomaterial 

resorption occurs too rapidly [25]. Conversely, when the particle size is greater than 400 µm, 

the particles remain unreacted and are not resorbed, thus impeding the formation of new bone 

tissues throughout the particle-bone matrix [26]. The results suggest that ROS generated from 

BG-Sr biomaterial may be involved in creating appropriate conditions for healing tissues and 

affect positively angiogenesis, remodeling and proliferation in both skeletal muscle and skin 

tissues. In fact, a recent study has been per-formed to determine the ability of strontium-doped 

calcium polyphosphate (SCPP) to induce angiogenesis via researching its effect on the mRNA 

expressions and protein secretion of VEGF and bFGF in/from cultured cells [27]. Nowadays, 

there is a broad consensus that for most tissues and organs, vascularization is the key process 

for regeneration. It represents an attractive target cell source for therapeutic neovascular-

ization and revascularization, which can provide nutrients for tissue regeneration, and create 

suitable conditions for tissue growth [28]. Sr affects angiogenesis, which is imperative in 

wound healing to maintain the cell activity for tissue repair. Here, in both muscular and skin 

tissues, the tissue healing as a function of implant time shows an enhanced angiogenesis. 

Accordingly to these results, bioglass containing 0.1% dose of strontium serve as a potential 

biomaterial for stimulating angiogenesis and tissue regeneration in the context of tissue 

engineering applications. 

Conclusion 

The present study indicated significant alterations in antioxidant profile during muscular and 

cutaneous wound healing in ovariectomised treated rats. All these alterations were observed 

mostly during the first week of healing. After 8weeks of treatment, this study demonstrated 

that soft tissue surrounding BG materials with 0.1 wt% Sr had significantly decreased MDA 

concentration level and increased the activities of SOD, CAT and GPx. BG-Sr used as a 

substitute graft might be an effective strategy for soft tissue healing therapies as it might 

contribute to the control of ROS imbalance during hormonal insufficiency. 
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Figure 1. Effects of bioglass (BG) and strontium-doped bioglass(BG-Sr) on superoxide 

dismutase (SOD) (a), catalase (CAT) (b) and glutathione peroxidase (GPx) (c) activities in 

muscular tissue ofovariectomised female Wistar rats for 4, 7, 15, 30 and 60 days. Val-ues are 

given as mean ± SE. *: significantly less enzymatic activity inthe indicated group than control 

group (T). +: less enzymatic activ-ity compared to ovariectomised group (OVX). §: higher 

enzymaticactivity than ovariectomised group with empty defects (OVX-NI).Les effets du 

bioverre (BG) et du bioverre dopé au strontium (BG-Sr)sur les activités de la superoxyde 

dismutase (SOD) (a), la catalase (CAT) (b) et la glutathion peroxydase (GPx) (c) au niveau 

dutissu musculaire des rattes ovariectomisées de souche Wistar ont été évalués durant quatre, 

sept, 15, 30 et 60 jours. Les valeurs sont exprimées en moyenne ± SE. * : la valeur de 

l’activité enzymatique est significativement inférieure dans le groupe indiqué par rapport au 

témoin (T). + : la valeur de l’activité enzymatique est moins significative par rapport au 

groupe ovariectomisé (OVX).§ : la valeur de l’activité enzymatique est plus élevée que celle 

du groupe ovariectomisé avec de perte de substance osseuse sans comblement (OVX-NI). 

 



 

 

 

 

Figure 2. Effects of bioglass (BG) and strontium-doped bioglass (BG-Sr) on malondialdehyde 

(MDA) level. *: significantly higher levelin the indicated group compared to the control 

group (T). §: lesserenzymatic activity than ovariectomised group with empty defects(OVX-

NI). Les effets du bioverre (BG) et du bioverre dopé au strontiumbioverre (BG-Sr) sur le taux 

de malondialdéhyde (MDA). * : le niveau est significativement plus élevé dans le groupe 

indiqué par rap-port au groupe témoin (T). § : le niveau de l’activité enzymatiqueest inférieur 

à celui de groupe ovariectomisé avec de perte desubstance osseuse sans comblement (OVX-

NI). 

 

 

 

 



 

 

Figure 3. Histological secions of muscular tissue implanted withbioglass (BG) and strontium-

doped bioglass (BG-Sr). Normal mus-cular tissue (a). Necrotic myofibrils in muscular tissue 

implantedwith BG (b) and with BG-Sr (c), leukocyte infiltration in BG treatedgroup (d) and 

with BG-Sr (e). A thin pericellular endomysiumi BG (f) with groups of myofibers surrounded 

by a thicker perimysiumthan those of BG-Sr treated groups (g). Three morphologically dis-

tinguishable zones: an outer zone of original surviving myofibers,a middle myogenic zone 

composed of proliferated myoblasts andsmall myotubes, and an inner zone of degenerated 

myofibers (h).Nerves (head arrow) and blood vessels (arrow) restoration between fibre 

muscle in BG treated rat muscles (i) and in BG-Sr treated ratmuscles (j). The entire muscle 

was filled with polygonal myofibersin BG treated rat muscles (k) and in BG-Sr treated rat 

muscles (l). Hematoxylin—eosin stain. Des coupes histologiques de tissu musculaire 

implantées par dubioverre pur (BG) et du bioverre dopé au strontium (BG-Sr), 



tissumusculaire normal (a). Myofibrilles avec des foyers de nécrose auniveau de tissu 

musculaire implanté par du BG (b) et du BG-Sr (c), graftinfiltration des leucocytes dans le 

groupe traité par le BG (d) etle BG-Sr (e). Une mince couche de tissu conjonctif, 

l’endomysiumchez le groupe implanté avec le BG (f), des groupes de fibres mus-culaires 

entourées d’une couche de périmysium comparé avec lesgroupes traités par les BG-Sr (g). 

Trois zones morphologiquementdistinctes sont observées : une zone externe de fibres 

musculaires,une zone centrale composée des myoblastes et des petits myotubes,et une zone 

intérieure composée de fibres musculaires dégénérées(h). Nerfs (tête de flèche) et des 

vaisseaux sanguins (flèche) entreles fibres musculaires de rattes traitées par le BG (i) et les 

rattestraitées par le BG-Sr (j). La totalité de muscle est caractérisée pardes fibres musculaires 

polygonales chez les rattes traitées par leBG (k) et par le BG-Sr (l). Coloration 

hématoxyline—éosine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4. Effects of bioglass (BG) and strontium-doped bioglass (BG-Sr) on superoxide 

dismutase (SOD) (a), catalase (CAT) (b) andglutathione peroxidase (GPx) (c) activities in 

cutaneous tissue ofovariectomised female Wistar rats for 4, 7, 15, 30 and 60 days.Values are 

given as mean ± SE. *: significantly less enzymatic activ-ity in the indicated group than 

control group (T). +: compared toovariectomised group (OVX). §: higher than ovariectomised 

groupwith empty defects (OVX-NI). #: higher than group implanted with bioglass (OVX-

BG). Les effets du bioverre (BG) et du bioverre dopé au strontium (BG-Sr)sur les activités de 

la superoxyde dismutase (SOD) (a), la catalase(CAT) (b) et la glutathion peroxydase (GPx) 

(c) au niveau du tissucutané des rattes ovariectomisées de souche Wistar ont été évaluésdurant 

quatre, sept, 15, 30 et 60 jours. Les valeurs sont expriméesen moyenne ± SE. * : la valeur de 

l’activité enzymatique est significativement inférieure dans le groupe indiqué par rapport 

autémoin (T). + : la valeur de l’activité enzymatique est significa-tivement inférieure par 

rapport au groupe ovariectomisé (OVX).§ : la valeur de l’activité enzymatique est plus élevée 

que celledu groupe ovariectomisé avec de perte de substance osseuse sans comblement 

(OVX-NI). # : la valeur est supérieur chez les rattes implantées avec le bioverre pur (OVX-

BG).  



 

 

Figure 5. Effects of bioglass (BG) and strontium-doped bioglass(BG-Sr) on malondialdehyde 

(MDA) level. *: significantly higher levelin the indicated group compared to the control 

group (T). +: com-pared to ovariectomised group (OVX). §: lesser than ovariectomisedgroup 

with empty defects (OVX-NI).Les effets du bioverre (BG) et du bioverre dopé au strontium 

(BG-Sr)sur le taux de malondialdéhyde (MDA). * : le taux est significa-tivement plus élevé 

dans le groupe indiqué par rapport au groupetémoin (T). § : le taux de l’activité enzymatique 

est inférieur àcelui de groupe ovariectomisé avec de perte de substance osseusesans 

comblement (OVX-NI). 

 

 

 

 

 



 

Figure 6. Histological sections of cutaneous tissue implanted with bioglass (BG) and 

strontium-doped bioglass (BG-Sr). Leukocyte infiltra-tion in BG treated group (a) and BG-Sr 

(b). Collagen fibers in treated group with BG (c) and with BG-Sr (d). Complete re-

epithelialization(Ep: epiderm, De: derme, Hy: hypoderm) (e). Many mature hair follicle cells 

(f) neovascularisation (g), sebaceous gland cells (h) in BG-Srtreated group. Hematoxylin—

eosin stain.Des coupes histologiques du tissu cutané implanté avec le bioverre (BG) et le 

bioverre dopé au strontium (BG-Sr). L’infiltration de leucocytesdans le groupe traité avec le 

BG (a) et le BG-Sr (b). Observation des fibres de collagène dans le groupe traité par le BG (c) 

et avec le BG-Sr(d). La ré-épithélialisation est complète (Ep : épiderme, De : derme, Hy : 

hypoderm) (e). Observation des cellules matures du follicule pileux(f) des néovascularisation 

(g), des cellules des glandes sébacées (h) chez le groupe traité avec le BG-Sr. Coloration 

hématoxyline—éosine. 

 

 



 

 


