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Abstract 

We present a flexible framework for throttling 
attackers in peer-to-peer media streaming systems. In 
such systems, selfish nodes (e.g., free riders) and 
malicious nodes (e.g., DoS attackers) can overwhelm 
the system by issuing too many requests in a short 
interval of time. Since peer-to-peer systems are 
decentralized, it is difficult for individual peers to limit 
the aggregate download bandwidth consumed by other 
remote peers.   This could potentially allow selfish and 
malicious peers to exhaust the system's available 
upload bandwidth. Our framework provides a solution 
to this problem by utilizing a subset of trusted peers 
(called kantoku nodes) that collectively monitor the 
bandwidth usage of untrusted peers in the system and 
throttle attackers.  We evaluate our framework through 
simulation. 

1. Introduction  

Many peer-to-peer (p2p) media streaming applications 
have been developed over the past few years.  For 
example, PROMISE and CoopNet are p2p media 
streaming systems that support many-to-one streaming 
[1,2], while SplitStream and oStream focus on 
multicast scenarios [3,4].  Both on-demand and live 
p2p streaming scenarios have been considered [5,6]. 
    Although p2p designs offer many benefits, such as 
reduced costs and scalability, they also offer new 
opportunities for misbehavior.  For example, a selfish 
peer might request more than its fair share of 
bandwidth, while a malicious peer might want to 
intentionally exhaust all of the available upload 
bandwidth in the system.  Due to the lack of a central 
server, misbehaving peers can distribute their requests 
throughout the system such that they appear well-
behaved to each individual node, but their aggregate 
behavior would appear to be selfish or malicious 
overall. 
    Given this vulnerability, it becomes clear that such 
p2p systems need effective mechanisms to throttle the 
aggregate bandwidth consumed by each peer in the 
system.  Unlike client-server architectures where 
everything can be monitored at a central server, p2p 

architectures will need a more robust and scalable 
alternative.  
    In this paper, we argue that a subset of trusted peers 
can collectively limit the bandwidth usage of all the 
other untrusted peers in the system.  We refer to these 
trusted nodes as kantoku nodes.  Kantoku nodes 
monitor control messages related to p2p streaming 
sessions in an effort to determine how much bandwidth 
each peer is consuming at any given time.  We should 
emphasize that our approach does not completely 
prevent attacks, rather it adaptively throttles attackers 
according to their level of abuse to ensure that selfish 
and malicious nodes cannot consume more than their 
fair share of bandwidth. 
    In the next section, we present related work.  Section 
3 introduces our kantoku framework.  A simulation-
based performance evaluation follows in Section 4.  
Finally, we conclude our work in the last section. 
 
2. Related Work 
 
The PlanetLab Central (PLC) is an example of a 
centralized global resource utilization enforcement 
infrastructure service that lacks scalability and 
robustness to failures [8,9]. 
    Alternatively, many decentralized solutions have 
been proposed that use tickets, tokens, or credit 
[10,11,12].  However, the expensive steps of credit-
path discovery or token exchange associated with these 
schemes could be too heavyweight for delay-sensitive 
p2p media streaming applications. 
    DoS-limiting network architectures that require edge 
router awareness have also been developed [21].  In 
contrast, kantoku is completely transparent to routers 
and runs completely on end hosts.  Daswani and 
Garcia-Molina consider query flooding attacks in an 
unstructured p2p network, but our work focuses on 
bandwidth exhaustion that results from media 
streaming rather than query message flooding [7]. 
    Previously, we have done work on limiting such 
attacks in p2p media streaming systems [13].  One 
shortcoming of our first protocol was that it treated all 
attackers in the same manner by limiting them to their 
maximum download rate allowed.  Our kantoku 
protocol is more adaptive and flexible because it 
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adjusts to the attacker by punishing the attacker in 
proportion to the level of abuse committed by the 
attacker. 
 
3.  Kantoku Framework 
 
In this section, we present our framework for throttling 
selfishness and malicious denial-of-service (DoS) 
attacks from downloaders in p2p media streaming 
systems.  Our framework, which we refer to as the 
kantoku1 framework, utilizes a subset of trusted nodes 
to cooperatively monitor and limit the amount of 
download bandwidth consumed by individual nodes.  
Flash crowds and DoS attacks are two examples when 
the upload bandwidth available in the system might be 
exhausted [14].  In both cases, aggressively limiting 
each node to download no more than its fair share 
when resources are scarce prevents both selfish and 
malicious nodes from gaining an unfair advantage over 
well-behaved nodes. 
    Before explaining kantoku in detail, we must first 
describe our application model, p2p lookup model, and 
attack model.  We conclude this section with a detailed 
description of our protocol and algorithms used. 
 
3.1.  Application Model 
 
    Our p2p media streaming application consists of a 
set of distributed nodes that stream media to one 
another.  Each individual streaming session consists of 
one or more senders and a single receiver, which is 
similar to many current p2p media streaming systems 
[1,2].  Our application assumes a simplified session 
control protocol where nodes initiate streaming 
sessions with START messages and terminate sessions 
with STOP messages.  For the purposes of our 
application model, we do not assume a particular 
media type (e.g., audio or video), but we do assume 
multiple description coding (MDC) could be used as 
mentioned in [2].  Figure 1 depicts the many-to-one 
streaming application model that we have just 
described with four uploading peers W, X, Y, and Z 
each streaming a description desc for the same video to 
a single downloading peer P.  Our model assumes that 
every node has a maximum upload capacity and a 
maximum download capacity.  These maximum 
capacities could be determined by the application's 
download policy (e.g., no downloading at an aggregate 
rate higher than 1 Mbps), external policy (e.g., ISP 
limits), or even physical limitations (e.g., dial-up 

                                                
1 In Japanese, the term kantoku roughly translates to 
"overseer." 

connection limited to 56 Kbps).  We assume that 
coordination among uploaders is receiver-driven as 
explained in [1]. 
 
 
 
 
 
 
 

Figure 1.  Many-to-one streaming with MDC 
 
    Formal definitions that we use throughout this 
section appear below in Table 1. 
 
rij current data rate from node i to node j 
Dmaxj maximum download rate allowed for node j 

current aggregate download rate for node j 
= ∑i=1 to n ( rij ) 

 
Dj 

must be ≤ Dmaxj for each node j 
Table 1.  Formal application model definitions 

 
    Referring to the model in Table 1 for some node i, 
we cannot expect node i to voluntarily enforce the 
constraint Di not exceed Dmaxi, because it would be 
limiting its own benefit (e.g., node i might want to 
download more descriptions for higher quality video).  
Therefore, download rate limitations must be enforced 
by some other means, which is the motivation for our 
kantoku framework. 

3.2.  P2P Lookup Model 
 
    Our framework assumes that the underlying p2p 
routing substrate can map any given key in a specified 
identifier range to a single corresponding node based 
on node identifiers from that same range.  The 
particular p2p lookup protocol used determines both 
routing as well as which nodes are responsible for 
storing which keys.  Although several types of p2p 
systems might be suitable for our purposes, we note 
that distributed hash tables (DHTs) for structured peer-
to-peer systems provide this needed functionality 
[15,16,17].  At least one p2p media streaming system 
has already been implemented on top of a DHT [1,15].  
 
3.3.  Attack Model 
 
    Our attack model considers attacks that can lead to 
bandwidth exhaustion.  For example, selfish peers 
might request more descriptions than their bandwidth 
limitations allow in order to receive higher quality 
video or audio.  Malicious peers might want to 
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overwhelm the system by initiating a large number of 
sessions in a short amount of time.  Using our 
application model as a reference, a selfish or malicious 
node j could make several requests to different nodes 
such that Dj is greater than Dmaxj, but for each 
individual node i that is uploading to node j, rij ≤ 
Dmaxj.  Consider Example 1 below, which is based on 
Figure 1 (all rates are in Kbps). 
 

Example 1 
rWP = 350, rXP = 350, rYP = 350, rZP = 350 
DmaxP = 500, DP = 1400 
 

    In Example 1, none of the uploaders (i.e., W, X, Y, 
or Z) can locally determine that downloader P is 
downloading at a rate almost three times its maximum 
download rate allowed.  Even if given DmaxP, each 
uploader U only knows rUP and therefore cannot 
determine that P is in violation (i.e., DP > DmaxP). 
    Kantoku is designed to throttle selfish and malicious 
downloaders.  Currently, malicious uploaders (e.g., 
nodes intentionally sending bogus content) are not 
considered, but will be included in future work. 
 
3.4.  Protocol 
 
    Our kantoku protocol handles attacks that attempt to 
exhaust all of the available upload bandwidth in the 
system.  Basically, our kantoku nodes collectively 
monitor the download rate of each untrusted peer in 
the system and use this information to throttle 
misbehaving peers. 
 
3.4.1.  Assigning Untrusted Nodes to Kantoku Nodes 
 
    In addition to the p2p media streaming application's 
overlay network, kantoku nodes form their own 
separate p2p overlay network.  Creation and 
maintenance of both overlay networks is done by the 
underlying p2p routing layer [15,16,17].  The kantoku 
architecture is depicted in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Kantoku architecture 

    Figure 2 includes untrusted nodes (shown in white) 
and kantoku nodes (shown in gray).  The underlying 
application overlay (shown in black) runs in parallel 
with the kantoku overlay (shown in gray).  Untrusted 
node assignments to kantoku nodes are indicated by 
the dashed outlines.  Based on the p2p lookup protocol 
used, we can assign each untrusted node to a kantoku 
node by treating the untrusted node's identifier from 
the application overlay as an object key in the kantoku 
overlay as explained in [13].  In this example, 
untrusted nodes are assigned to the closest kantoku 
node in the virtual ring based on their identifier. 
 
3.4.2.  Selecting Kantoku Nodes 
 
    One major challenge in our framework is how to 
select nodes trustworthy enough to serve as kantoku 
nodes.  One possibility is to use one of the reputation 
mechanisms that appears in the literature with kantoku 
nodes chosen among nodes whose reputation exceeds a 
certain threshold [19,20].  Another possibility would be 
for the p2p media streaming service provider to 
provide some kantoku nodes with trusted hardware.  
Unlike a central server setting, the service provider can 
adjust the number of trusted peers as necessary.  
Kantoku node selection strategies are part of our future 
work. 
 
3.4.3.  Monitoring Peer Download Rates 
 
    Kantoku nodes may upload and download media 
streams, but they have the additional responsibility to 
monitor the current download rate of the untrusted 
nodes.  In order to initiate or terminate a media 
streaming session, each untrusted node must send all 
control messages through its assigned kantoku node 
that will certify the control messages (via a digital 
signature) and forward those certified messages to the 
peer that will do the actual uploading.  Uploading 
nodes will ignore all control messages that have not 
been certified by a kantoku node.  The identity of 
kantoku nodes can be verified with a digital certificate 
associating trusted status with a kantoku node's 
identifier and public key. 
 
 
 
 
 
 
 
 

Figure 3.  Initiating a kantoku-monitored session 
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    Having observed these control messages, the 
kantoku nodes can update each untrusted peer P's 
current download rate DP and a list UploadersP of 
peers from which P is currently downloading.    
Whenever a kantoku node receives a control message 
from an untrusted node for which it is not responsible, 
the kantoku will forward the message to the kantoku 
node that is responsible for maintaining that untrusted 
node's download information using p2p lookup scheme 
for the kantoku overlay network.  Upon receiving a 
control message from a node for which it is 
responsible, a kantoku node will compute the 
probability DropProbP with which any packet in one of 
P's downloading sessions should be dropped.  
DropProbP will then be forwarded to all nodes 
appearing in UploadersP.  All nodes receiving 
DropProbP will probabilistically drop packets destined 
for peer P with probability equal to DropProbP.  
Determining DropProbP for each untrusted peer P is 
explained in Section 3.4.4.  Figure 3 shows an example 
of how monitoring is accomplished, based on the 
scenario depicted in Figure 2, where node G would like 
to initiate a streaming session with node H.  Also, 
assume that G is already currently downloading from 
node F.  The steps labeled in Figure 3 are listed below. 
 

1. G wants to download stream from H and 
sends START session control message to 
kantoku node E to which G is assigned. 

2. Using DG and DmaxG, E computes DropProbG 
and piggybacks DropProbG on certified 
START control message forwarded to H. 

3. Using UploadersG, E sends newly updated 
DropProbG to all nodes currently uploading to 
G (i.e., F in this example).  E updates 
UploadersG = UploadersG ∪ H. 

4. H begins to stream media to G with packet 
dropping probability equal to DropProbG. 

5. F continues to stream media to G, but with 
newly updated packet dropping probability 
equal to DropProbG. 

  
    The procedure for terminating a session follows 
similar steps.  We should note that all control messages 
are digitally signed to prevent malicious nodes from 
spoofing session initiation requests that would make an 
innocent node appear to be an attacker.  Next, we 
explain how to compute drop probability DropProb. 
 
3.4.4.  Computing Packet Dropping Probability 
 
    An integral part of our protocol is computing the 
packet dropping probability, DropProbP, for all 
sessions belonging to a particular downloading peer P.  

DropProbP allows us to aggressively reduce traffic 
from selfish and malicious peers trying to exceed their 
download rate limit. 
    We use an idea from core-stateless fair queueing to 
compute DropProbP for each untrusted peer P.  Core-
stateless fair queueing (CSFQ) was originally 
developed in the context of networking to achieve fair 
bandwidth allocation for a contiguous network region 
consisting of edge routers and core routers [18].  Edge 
routers maintain per-flow state and label packets 
belonging to a particular flow with the estimated rate r 
of that flow.  Using r and a locally estimated fair share 
rate α, core routers probabilistically drop packets 
according to the algorithm presented in [18], which is 
designed to drop packets from flows exceeding their 
estimated fair share with higher probability.  Since 
core routers do not maintain per-flow state, they are 
considered to be stateless. 
    We can view kantoku nodes as trusted nodes that 
maintain per-downloader state (i.e., DP and DmaxP) for 
each untrusted node P assigned to it.  Based on this 
per-downloader state, kantoku nodes compute 
DropProbP and notify all uploaders to P that they 
should drop all packets in a stream destined for P with 
probability equal to DropProbP.  Equation 1 shows 
how we compute packet dropping probabilities. 
 

DropProbp  =  max   −⋅
p

p

D

Dmax
1,0 β   (1) 

 
    Rather than using an estimated fair share rate as 
done in [18], we use the maximum download rate 
allowed DmaxP.  Also, we added a parameter β, where β is real number greater than 0, which allows us to 
tune how aggressively we want to throttle the sessions 
of users exceeding their download rate maximum 
limits.  Higher values of β lead to more aggressive 
throttling.  Referring to Equation 1, we can see that 
nodes not exceeding their download rate maximum 
will have a DropProb equal to zero.  However, nodes 
exceeding their maximum download rate will have a 
DropProb proportional to the amount by which they 
exceed their download limit. 
    An alternative strategy that we could have used 
would be to completely cut off any peer P that attempts 
to exceed its download rate limit DmaxP.  However, we 
feel that such a strategy is too harsh because it does not 
give us the flexibility to distinguish between slight 
selfishness (e.g., DP exceeding DmaxP by 1 Kbps for 
some peer P) and malicious attacks (e.g., a DoS attack 
with DA greater than 100 times DmaxA for some 



attacker A).  Kantoku punishes attackers according to 
their level of abuse. 
 
4. Performance Evaluation 

To evaluate the kantoku framework, we ran several 
simulations of a p2p media streaming application with 
various numbers of kantoku and untrusted nodes 
participating.  In each simulation, between 20% and 
25% of the nodes were malicious attackers executing a 
DoS attack.  The simulation parameters corresponding 
to Equation 1 from Section 3.4.4 were the following: β 
= 1.75 and DmaxP = 700 Kbps for each peer P. 
    At random times throughout the simulation, each 
well-behaved node would initiate a single 30-second 
streaming session at 50% of its maximum allowed 
download rate.  At the beginning of each simulation, 
each attacker would request five streams for the entire 
simulation duration totaling 250% of its maximum 
allowed download rate.  Attackers and well-behaved 
nodes used the same pool of uploaders to ensure that 
kantoku would be evaluated under conditions when 
upload bandwidth is scarce. 
    The metric we used to evaluate kantoku's 
effectiveness was the fraction of content packets 
received by the downloader (i.e., packets that were not 
dropped by the uploader due to upload bandwidth 
capacity constraints).  We refer to this metric as the 
quality received by the downloader. 
    We ran three types of simulations. In None, no effort 
was made to try to limit the download rate of 
participating nodes.  In Rate Limiting (RL), attackers 
attempting to initiate sessions that put them over their 
download rate limit were denied the additional session.  
In kantoku, we follow the algorithm described in 
Section 3.4.  Our results for various scenarios (i.e., 
500-node and 1000-node networks) appears in Table 2. 
 

k = number of kantoku nodes 
g = number of well-behaved nodes 
m = number of malicious nodes 
type = type of simulation 
gq = quality received by well-behaved nodes 
 

k g m type gq 
10 368 122 None 0.668 
10 368 122 RL 0.691 
10 368 122 Kantoku 0.998 
50 713 237 None 0.695 
50 713 237 RL 0.735 
50 713 237 Kantoku 0.995 

 
Table 2.  Effectiveness of kantoku on quality received 

    As shown in Table 2, kantoku outperforms both 
None and RL.  Compared to None and RL, kantoku 
improves the quality of well-behaved nodes, which is 
our goal.  None performs poorly because nothing is 
done to prevent abuse, which allows attackers to easily 
exhaust the upload bandwidth available.  The reason 
that kantoku outperforms RL is because kantoku is 
punitive in the sense that abusers are punished 
proportionally to their level of abuse meaning that 
attackers might be throttled to a level below their 
maximum allowed rate, which makes more bandwidth 
available for well-behaved peers.  RL simply limits all 
nodes to their maximum download rate, but still allows 
aggressive attackers to continue downloading at this 
maximum rate despite their misbehavior. 
    RL could be augmented to drop all attackers' 
streaming sessions as soon as they attempt to exceed 
their limit, but this approach might be too harsh and 
inflexible as we discussed in Section 3.4.4. 
    To further support our findings, Figure 4 shows the 
aggregate data rate received by well-behaved nodes 
over time in our 1000-node simulation run for our 
simulations of RL and kantoku.  With kantoku, well-
behaved nodes clearly received higher data rates 
overall. 
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Figure 4.  Aggregate data rate received by all well-

behaved peers in the system 
 

5.  Conclusion 

We have presented our kantoku framework, which uses 
a subset of trusted nodes to effectively monitor the 



download rate of all untrusted peers in the system and 
throttle misbehaving peers accordingly.  We have 
evaluated our framework through simulation and 
initial results indicate that kantoku is very effective at 
ensuring that well-behaved nodes receive their fair 
share of available upload bandwidth while punishing 
attackers appropriately. 
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