
Throttling Attackers in Peer-to-Peer Media Streaming Systems

William Conner and Klara Nahrstedt
Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL 61801

Abstract

We present a flexible framework for throttling
attackers in peer-to-peer media streaming systems. In
such systems, selfish nodes (e.g., free riders) and
malicious nodes (e.g., DoS attackers) can overwhelm
the system by issuing too many requests in a short
interval of time. Since peer-to-peer systems are
decentralized, it is difficult for individual peers to limit
the aggregate download bandwidth consumed by other
remote peers. This could potentially allow selfish and
malicious peers to exhaust the system's available
upload bandwidth. Our framework provides a solution
to this problem by utilizing a subset of trusted peers
(called kantoku nodes) that collectively monitor the
bandwidth usage of untrusted peers in the system and
throttle attackers. We evaluate our framework through
simulation.

1. Introduction

Many peer-to-peer (p2p) media streaming applications
have been developed over the past few years. For
example, PROMISE and CoopNet are p2p media
streaming systems that support many-to-one streaming
[1,2], while SplitStream and oStream focus on
multicast scenarios [3,4]. Both on-demand and live
p2p streaming scenarios have been considered [5,6].
 Although p2p designs offer many benefits, such as
reduced costs and scalability, they also offer new
opportunities for misbehavior. For example, a selfish
peer might request more than its fair share of
bandwidth, while a malicious peer might want to
intentionally exhaust all of the available upload
bandwidth in the system. Due to the lack of a central
server, misbehaving peers can distribute their requests
throughout the system such that they appear well-
behaved to each individual node, but their aggregate
behavior would appear to be selfish or malicious
overall.
 Given this vulnerability, it becomes clear that such
p2p systems need effective mechanisms to throttle the
aggregate bandwidth consumed by each peer in the
system. Unlike client-server architectures where
everything can be monitored at a central server, p2p

architectures will need a more robust and scalable
alternative.
 In this paper, we argue that a subset of trusted peers
can collectively limit the bandwidth usage of all the
other untrusted peers in the system. We refer to these
trusted nodes as kantoku nodes. Kantoku nodes
monitor control messages related to p2p streaming
sessions in an effort to determine how much bandwidth
each peer is consuming at any given time. We should
emphasize that our approach does not completely
prevent attacks, rather it adaptively throttles attackers
according to their level of abuse to ensure that selfish
and malicious nodes cannot consume more than their
fair share of bandwidth.
 In the next section, we present related work. Section
3 introduces our kantoku framework. A simulation-
based performance evaluation follows in Section 4.
Finally, we conclude our work in the last section.

2. Related Work

The PlanetLab Central (PLC) is an example of a
centralized global resource utilization enforcement
infrastructure service that lacks scalability and
robustness to failures [8,9].
 Alternatively, many decentralized solutions have
been proposed that use tickets, tokens, or credit
[10,11,12]. However, the expensive steps of credit-
path discovery or token exchange associated with these
schemes could be too heavyweight for delay-sensitive
p2p media streaming applications.
 DoS-limiting network architectures that require edge
router awareness have also been developed [21]. In
contrast, kantoku is completely transparent to routers
and runs completely on end hosts. Daswani and
Garcia-Molina consider query flooding attacks in an
unstructured p2p network, but our work focuses on
bandwidth exhaustion that results from media
streaming rather than query message flooding [7].
 Previously, we have done work on limiting such
attacks in p2p media streaming systems [13]. One
shortcoming of our first protocol was that it treated all
attackers in the same manner by limiting them to their
maximum download rate allowed. Our kantoku
protocol is more adaptive and flexible because it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

adjusts to the attacker by punishing the attacker in
proportion to the level of abuse committed by the
attacker.

3. Kantoku Framework

In this section, we present our framework for throttling
selfishness and malicious denial-of-service (DoS)
attacks from downloaders in p2p media streaming
systems. Our framework, which we refer to as the
kantoku1 framework, utilizes a subset of trusted nodes
to cooperatively monitor and limit the amount of
download bandwidth consumed by individual nodes.
Flash crowds and DoS attacks are two examples when
the upload bandwidth available in the system might be
exhausted [14]. In both cases, aggressively limiting
each node to download no more than its fair share
when resources are scarce prevents both selfish and
malicious nodes from gaining an unfair advantage over
well-behaved nodes.
 Before explaining kantoku in detail, we must first
describe our application model, p2p lookup model, and
attack model. We conclude this section with a detailed
description of our protocol and algorithms used.

3.1. Application Model

 Our p2p media streaming application consists of a
set of distributed nodes that stream media to one
another. Each individual streaming session consists of
one or more senders and a single receiver, which is
similar to many current p2p media streaming systems
[1,2]. Our application assumes a simplified session
control protocol where nodes initiate streaming
sessions with START messages and terminate sessions
with STOP messages. For the purposes of our
application model, we do not assume a particular
media type (e.g., audio or video), but we do assume
multiple description coding (MDC) could be used as
mentioned in [2]. Figure 1 depicts the many-to-one
streaming application model that we have just
described with four uploading peers W, X, Y, and Z
each streaming a description desc for the same video to
a single downloading peer P. Our model assumes that
every node has a maximum upload capacity and a
maximum download capacity. These maximum
capacities could be determined by the application's
download policy (e.g., no downloading at an aggregate
rate higher than 1 Mbps), external policy (e.g., ISP
limits), or even physical limitations (e.g., dial-up

1 In Japanese, the term kantoku roughly translates to
"overseer."

connection limited to 56 Kbps). We assume that
coordination among uploaders is receiver-driven as
explained in [1].

Figure 1. Many-to-one streaming with MDC

 Formal definitions that we use throughout this
section appear below in Table 1.

rij current data rate from node i to node j
Dmaxj maximum download rate allowed for node j

current aggregate download rate for node j
= ∑i=1 to n (rij)

Dj

must be ≤ Dmaxj for each node j
Table 1. Formal application model definitions

 Referring to the model in Table 1 for some node i,
we cannot expect node i to voluntarily enforce the
constraint Di not exceed Dmaxi, because it would be
limiting its own benefit (e.g., node i might want to
download more descriptions for higher quality video).
Therefore, download rate limitations must be enforced
by some other means, which is the motivation for our
kantoku framework.

3.2. P2P Lookup Model

 Our framework assumes that the underlying p2p
routing substrate can map any given key in a specified
identifier range to a single corresponding node based
on node identifiers from that same range. The
particular p2p lookup protocol used determines both
routing as well as which nodes are responsible for
storing which keys. Although several types of p2p
systems might be suitable for our purposes, we note
that distributed hash tables (DHTs) for structured peer-
to-peer systems provide this needed functionality
[15,16,17]. At least one p2p media streaming system
has already been implemented on top of a DHT [1,15].

3.3. Attack Model

 Our attack model considers attacks that can lead to
bandwidth exhaustion. For example, selfish peers
might request more descriptions than their bandwidth
limitations allow in order to receive higher quality
video or audio. Malicious peers might want to

W

X Y

Z

P descW,P

descX,P descY,P

descZ,P

uploaders

downloader

overwhelm the system by initiating a large number of
sessions in a short amount of time. Using our
application model as a reference, a selfish or malicious
node j could make several requests to different nodes
such that Dj is greater than Dmaxj, but for each
individual node i that is uploading to node j, rij ≤
Dmaxj. Consider Example 1 below, which is based on
Figure 1 (all rates are in Kbps).

Example 1
rWP = 350, rXP = 350, rYP = 350, rZP = 350
DmaxP = 500, DP = 1400

 In Example 1, none of the uploaders (i.e., W, X, Y,
or Z) can locally determine that downloader P is
downloading at a rate almost three times its maximum
download rate allowed. Even if given DmaxP, each
uploader U only knows rUP and therefore cannot
determine that P is in violation (i.e., DP > DmaxP).
 Kantoku is designed to throttle selfish and malicious
downloaders. Currently, malicious uploaders (e.g.,
nodes intentionally sending bogus content) are not
considered, but will be included in future work.

3.4. Protocol

 Our kantoku protocol handles attacks that attempt to
exhaust all of the available upload bandwidth in the
system. Basically, our kantoku nodes collectively
monitor the download rate of each untrusted peer in
the system and use this information to throttle
misbehaving peers.

3.4.1. Assigning Untrusted Nodes to Kantoku Nodes

 In addition to the p2p media streaming application's
overlay network, kantoku nodes form their own
separate p2p overlay network. Creation and
maintenance of both overlay networks is done by the
underlying p2p routing layer [15,16,17]. The kantoku
architecture is depicted in Figure 2.

Figure 2. Kantoku architecture

 Figure 2 includes untrusted nodes (shown in white)
and kantoku nodes (shown in gray). The underlying
application overlay (shown in black) runs in parallel
with the kantoku overlay (shown in gray). Untrusted
node assignments to kantoku nodes are indicated by
the dashed outlines. Based on the p2p lookup protocol
used, we can assign each untrusted node to a kantoku
node by treating the untrusted node's identifier from
the application overlay as an object key in the kantoku
overlay as explained in [13]. In this example,
untrusted nodes are assigned to the closest kantoku
node in the virtual ring based on their identifier.

3.4.2. Selecting Kantoku Nodes

 One major challenge in our framework is how to
select nodes trustworthy enough to serve as kantoku
nodes. One possibility is to use one of the reputation
mechanisms that appears in the literature with kantoku
nodes chosen among nodes whose reputation exceeds a
certain threshold [19,20]. Another possibility would be
for the p2p media streaming service provider to
provide some kantoku nodes with trusted hardware.
Unlike a central server setting, the service provider can
adjust the number of trusted peers as necessary.
Kantoku node selection strategies are part of our future
work.

3.4.3. Monitoring Peer Download Rates

 Kantoku nodes may upload and download media
streams, but they have the additional responsibility to
monitor the current download rate of the untrusted
nodes. In order to initiate or terminate a media
streaming session, each untrusted node must send all
control messages through its assigned kantoku node
that will certify the control messages (via a digital
signature) and forward those certified messages to the
peer that will do the actual uploading. Uploading
nodes will ignore all control messages that have not
been certified by a kantoku node. The identity of
kantoku nodes can be verified with a digital certificate
associating trusted status with a kantoku node's
identifier and public key.

Figure 3. Initiating a kantoku-monitored session

H

G

A

B

F C

E D
E's responsibility

A's responsibility

C's responsibility

H

1
2

4

F

E

3

5

G

 Having observed these control messages, the
kantoku nodes can update each untrusted peer P's
current download rate DP and a list UploadersP of
peers from which P is currently downloading.
Whenever a kantoku node receives a control message
from an untrusted node for which it is not responsible,
the kantoku will forward the message to the kantoku
node that is responsible for maintaining that untrusted
node's download information using p2p lookup scheme
for the kantoku overlay network. Upon receiving a
control message from a node for which it is
responsible, a kantoku node will compute the
probability DropProbP with which any packet in one of
P's downloading sessions should be dropped.
DropProbP will then be forwarded to all nodes
appearing in UploadersP. All nodes receiving
DropProbP will probabilistically drop packets destined
for peer P with probability equal to DropProbP.
Determining DropProbP for each untrusted peer P is
explained in Section 3.4.4. Figure 3 shows an example
of how monitoring is accomplished, based on the
scenario depicted in Figure 2, where node G would like
to initiate a streaming session with node H. Also,
assume that G is already currently downloading from
node F. The steps labeled in Figure 3 are listed below.

1. G wants to download stream from H and
sends START session control message to
kantoku node E to which G is assigned.

2. Using DG and DmaxG, E computes DropProbG
and piggybacks DropProbG on certified
START control message forwarded to H.

3. Using UploadersG, E sends newly updated
DropProbG to all nodes currently uploading to
G (i.e., F in this example). E updates
UploadersG = UploadersG ∪ H.

4. H begins to stream media to G with packet
dropping probability equal to DropProbG.

5. F continues to stream media to G, but with
newly updated packet dropping probability
equal to DropProbG.

 The procedure for terminating a session follows
similar steps. We should note that all control messages
are digitally signed to prevent malicious nodes from
spoofing session initiation requests that would make an
innocent node appear to be an attacker. Next, we
explain how to compute drop probability DropProb.

3.4.4. Computing Packet Dropping Probability

 An integral part of our protocol is computing the
packet dropping probability, DropProbP, for all
sessions belonging to a particular downloading peer P.

DropProbP allows us to aggressively reduce traffic
from selfish and malicious peers trying to exceed their
download rate limit.
 We use an idea from core-stateless fair queueing to
compute DropProbP for each untrusted peer P. Core-
stateless fair queueing (CSFQ) was originally
developed in the context of networking to achieve fair
bandwidth allocation for a contiguous network region
consisting of edge routers and core routers [18]. Edge
routers maintain per-flow state and label packets
belonging to a particular flow with the estimated rate r
of that flow. Using r and a locally estimated fair share
rate α, core routers probabilistically drop packets
according to the algorithm presented in [18], which is
designed to drop packets from flows exceeding their
estimated fair share with higher probability. Since
core routers do not maintain per-flow state, they are
considered to be stateless.
 We can view kantoku nodes as trusted nodes that
maintain per-downloader state (i.e., DP and DmaxP) for
each untrusted node P assigned to it. Based on this
per-downloader state, kantoku nodes compute
DropProbP and notify all uploaders to P that they
should drop all packets in a stream destined for P with
probability equal to DropProbP. Equation 1 shows
how we compute packet dropping probabilities.

DropProbp = max −⋅
p

p

D

Dmax
1,0 β (1)

 Rather than using an estimated fair share rate as
done in [18], we use the maximum download rate
allowed DmaxP. Also, we added a parameter β, where β is real number greater than 0, which allows us to
tune how aggressively we want to throttle the sessions
of users exceeding their download rate maximum
limits. Higher values of β lead to more aggressive
throttling. Referring to Equation 1, we can see that
nodes not exceeding their download rate maximum
will have a DropProb equal to zero. However, nodes
exceeding their maximum download rate will have a
DropProb proportional to the amount by which they
exceed their download limit.
 An alternative strategy that we could have used
would be to completely cut off any peer P that attempts
to exceed its download rate limit DmaxP. However, we
feel that such a strategy is too harsh because it does not
give us the flexibility to distinguish between slight
selfishness (e.g., DP exceeding DmaxP by 1 Kbps for
some peer P) and malicious attacks (e.g., a DoS attack
with DA greater than 100 times DmaxA for some

attacker A). Kantoku punishes attackers according to
their level of abuse.

4. Performance Evaluation

To evaluate the kantoku framework, we ran several
simulations of a p2p media streaming application with
various numbers of kantoku and untrusted nodes
participating. In each simulation, between 20% and
25% of the nodes were malicious attackers executing a
DoS attack. The simulation parameters corresponding
to Equation 1 from Section 3.4.4 were the following: β
= 1.75 and DmaxP = 700 Kbps for each peer P.
 At random times throughout the simulation, each
well-behaved node would initiate a single 30-second
streaming session at 50% of its maximum allowed
download rate. At the beginning of each simulation,
each attacker would request five streams for the entire
simulation duration totaling 250% of its maximum
allowed download rate. Attackers and well-behaved
nodes used the same pool of uploaders to ensure that
kantoku would be evaluated under conditions when
upload bandwidth is scarce.
 The metric we used to evaluate kantoku's
effectiveness was the fraction of content packets
received by the downloader (i.e., packets that were not
dropped by the uploader due to upload bandwidth
capacity constraints). We refer to this metric as the
quality received by the downloader.
 We ran three types of simulations. In None, no effort
was made to try to limit the download rate of
participating nodes. In Rate Limiting (RL), attackers
attempting to initiate sessions that put them over their
download rate limit were denied the additional session.
In kantoku, we follow the algorithm described in
Section 3.4. Our results for various scenarios (i.e.,
500-node and 1000-node networks) appears in Table 2.

k = number of kantoku nodes
g = number of well-behaved nodes
m = number of malicious nodes
type = type of simulation
gq = quality received by well-behaved nodes

k g m type gq
10 368 122 None 0.668
10 368 122 RL 0.691
10 368 122 Kantoku 0.998
50 713 237 None 0.695
50 713 237 RL 0.735
50 713 237 Kantoku 0.995

Table 2. Effectiveness of kantoku on quality received

 As shown in Table 2, kantoku outperforms both
None and RL. Compared to None and RL, kantoku
improves the quality of well-behaved nodes, which is
our goal. None performs poorly because nothing is
done to prevent abuse, which allows attackers to easily
exhaust the upload bandwidth available. The reason
that kantoku outperforms RL is because kantoku is
punitive in the sense that abusers are punished
proportionally to their level of abuse meaning that
attackers might be throttled to a level below their
maximum allowed rate, which makes more bandwidth
available for well-behaved peers. RL simply limits all
nodes to their maximum download rate, but still allows
aggressive attackers to continue downloading at this
maximum rate despite their misbehavior.
 RL could be augmented to drop all attackers'
streaming sessions as soon as they attempt to exceed
their limit, but this approach might be too harsh and
inflexible as we discussed in Section 3.4.4.
 To further support our findings, Figure 4 shows the
aggregate data rate received by well-behaved nodes
over time in our 1000-node simulation run for our
simulations of RL and kantoku. With kantoku, well-
behaved nodes clearly received higher data rates
overall.

0

2

4

6

8

10

12

14

16

18

0 200 400 600

Simulation Time (seconds)

A
g

g
re

g
at

e
D

at
a

R
at

e
(M

b
p

s)

RL Kantoku

Figure 4. Aggregate data rate received by all well-

behaved peers in the system

5. Conclusion

We have presented our kantoku framework, which uses
a subset of trusted nodes to effectively monitor the

download rate of all untrusted peers in the system and
throttle misbehaving peers accordingly. We have
evaluated our framework through simulation and
initial results indicate that kantoku is very effective at
ensuring that well-behaved nodes receive their fair
share of available upload bandwidth while punishing
attackers appropriately.

References

[1] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B.
Bhargava. "PROMISE: peer-to-peer media
streaming using CollectCast." 11th ACM
Conference on Multimedia, 2003.

[2] V. Padmanabhan, H. Wang, P. Chou, and K.
Sripanidkulchai. "Distributing streaming media
content using cooperative networking." 12th
International Workshop on Network and
Operating Systems Support for Digital Audio and
Video, 2002.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, A.
Nandi, A. Rowstron, and A. Singh. "SplitStream:
high-bandwidth multicast in a cooperative
environment." 19th ACM Symposium on
Operating Systems Principles, 2003.

[4] Y. Cui, B. Li, and K. Nahrstedt. "oStream:
asynchronous streaming multicast in application-
layer overlay networks." IEEE Journal on Selected
Areas in Communications, Vol. 22, No. 1, January
2004.

[5] X. Zhang, J. Liu, B. Li, and T.-S. Yum.
"CoolStreaming/DONet: a data-driven overlay
network for peer-to-peer live media streaming".
IEEE INFOCOM, 2005.

[6] N. Magharei and R. Rejaie. "PRIME: peer-to-peer
receiver-driven mesh-based streaming." IEEE
INFOCOM, 2007.

[7] N. Daswani and H. Garcia-Molina. "Query-flood
DoS attacks in Gnutella." 9th ACM Conference on
Computer and Communications Security, 2002.

[8] L. Peterson, T. Anderson, D. Culler, and T.
Roscoe. “A blueprint for introducing disruptive
technology into the Internet.” 1st ACM Workshop
on Hot Topics in Networking, 2002.

[9] B. Chun and T. Spalink. “Slice creation and
management.” PlanetLab Design Note 03-013,
July 2003.

[10] Y. Fu, J. Chase, B. Chun, S. Schwab, and A.
Vahdat. “SHARP: an architecture for secure
resource peering.” 19th ACM Symposium on
Operating Systems Principles, 2003.

[11] A. Nandi, T.-W. Ngan, A. Singh, P. Druschel, and
D. Wallach. "Scrivener: providing incentives in

cooperative content distribution systems."
Middleware, 2005.

[12] N. Liebau, V. Darlagiannis, A. Mauthe, and R.
Steinmetz. "Token-based accounting for p2p-
systems." Kommunikation in Verteilten Systemen
(KiVS), 2005.

[13] W. Conner, K. Nahrstedt, and I. Gupta.
"Preventing DoS attacks in peer-to-peer media
streaming systems." 13th Annual Conference on
Multimedia Computing and Networking, 2006.

[14] J. Jung, B. Krishnamurthy, and M. Rabinovich.
"Flash crowds and denial-of-service attacks:
characterization and implications for CDNs web
sites." 11th International World Wide Web
Conference, 2002.

[15] A. Rowstron and P. Druschel. "Pastry: scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems." Middleware,
2001.

[16] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. "Chord: a scalable peer-to-peer
lookup service for internet applications." ACM
SIGCOMM, 2001.

[17] I. Gupta, K. Birman, P. Linga, A. Demers, and R.
van Renesse. “Kelips: building an efficient and
stable p2p DHT through increased memory and
background overhead.” 2nd International
Workshop on Peer-to-Peer Systems, 2003.

[18] I. Stoica, S. Shenker, and H. Zhang. "Core-
stateless fair queueing." IEEE/ACM Transactions
on Networking, Vol. 11, No. 1, February 2003.

[19] E. Damiani, S. di Vimercati, S. Paraboschi, P.
Samarati, and F. Violante. "A reputation-based
approach for choosing reliable resources in peer-
to-peer networks." 9th ACM Conference on
Computer and Communications Security, 2002.

[20] S. Marti and H. Garcia-Molina. "Identity crisis:
anonymity vs. reputation in p2p systems." 3rd
IEEE International Conference on Peer-to-Peer
Computing, 2003.

[21] X. Fu and J. Crowcroft. "GONE: an infrastructure
overlay for resilient, DoS-limiting networking."
16th ACM International Workshop on Networking
and Operating Systems Support for Digital Audio
and Video, 2006.

