View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by lllinois Digital Environment for Access to Learning and Scholarship Repository

Unified Framework for Flexible and Efficient TopRetrieval in Peer-
to-Peer Networks

Wiliam Connet, Seung-won Hwarfgand Klara Nahrstetit

! Department of Computer Science,
University of Illinois, Urbana, IL, USA 61801-2302
{wconner,klara}@uiuc.edu

2 Department of Computer Science and Engineering,
Pohang University of Science and Technology, Pohangg&o
swhwang@postech.ac.kr

Abstract — As more and more data from distributed data sour ces becomes accessible, supporting queries over peer-to-
peer networks of such data sour ces becomes a more convincing application scenario. In such an application scenario, a
large scale of accessible data from multiple peers naturally calls for ranked retrieval in order to effectively focus the
retrieval on the most relevant, say top-k results. Whiletop-k retrieval hasbeen actively studied lately, existing algorithms
are too restrictive due to their assumptions about the predicates and scoring functions used. These restrictive
assumptions limit the flexibility of individual users to issue personalized queries. In contrast, we present efficient
algorithms that support top-k retrieval customized to the specific predicates and scoring functions desired by the users.
Also, unlike existing approaches that only consider a single type of data partitioning, we generalize the application
scenario to include peer-to-peer networks of a potentially large number of peersthat might partition the data in various
ways. More specifically, we develop a unified top-k query processing framework to cover the following types of data
partitioning: (1) vertical partitioning wher e each peer storespartial scoresof an identical set of data objects, (2) horizontal
partitioning wher e each peer stores complete scores of a digjoint set of data objects, and (3) mixed partitioning wher e each
peer storespartial scoresof adigjoint set of data objects. In particular, we customize queries from usersby transforming
data synopses on a per-query basis. We also reduce bandwidth consumption by using heuristics to schedulethe order in
which predicatesare evaluated. Our resultsvalidate the efficiency and effectiveness of our framework by consideringthe
bandwidth consumption, delay, and correctness of our algorithms.

Keywords: Top-k Query Processing, Ranked Retrieval, Peer-to-Peateft Distribution Networks, Multimedia
Technical Areas. Data Management, Peer-to-Peer

Corresponding Author: wconner@uiuc.edu
1. INTRODUCTION

Peer-to-peer systems are becoming a common archédotusharing large amounts of data [5, 6, 7]. Applications
running on top of peer-to-peer architectures range framage systems [8, 10] to high-bandwidth content
distribution [9]. Due to the popularity of peer-to-peetterys and the wide range of potential applications thiat wi
be built on top of them, it would be useful to support ligeht data retrieval techniques, which help users identif
the most relevant results without suffering from infation overload due to searching through large amounts of
data.

As a key mechanism to reduce information overload, né&kieval [1, 2, 3, 4] has been actively studied.

Ranked retrieval, which orders retrieval results acogrdd relevance, helps users focus on the top few results

https://core.ac.uk/display/4820518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

safely ignore the less relevant resultstop-k query or ranked query, selects thenost relevant answers among a
database oh database objectsl(. . . ,d,). This selection involves two steps. First, eanke of them fuzzy
predicatesq;, . . .,pm) ON each of those data objects must be evaluategadial score in the range [0:1]. Second,
those partial scores must be aggregated using some saamnictgpffi F (e.g.,min) to produce an overall relevance
score for each database object.

To motivate ranked retrieval in peer-to-peer systemssider a peer-to-peer content distribution network
(CDN), such as [9,22], that streams video files to wariolients. Each participating site in the CDN has an
administrator that occasionally wants to identify dslematching certain criteria. Based on the vides'file
metadata, we can build a logical relat\ddeo_meta dat#hat stores the following three columns: video idégrtif
(unigue key), number of accesses to that particular viakeeblte), and the bit rate of that video (attribut&he
relationvideo_meta_dataan be partitioned and distributed among the variousngesites in the system using one
of the data partitioning schemes that we will discuts laAn example query is shown in Example 1.

Example 1

A site administrator may ask a ranked query to find thebtuideos that are both popular and of a certain
quality, as quer®; illustrates below (in SQL-like syntax):

select id from video_meta_data vmd

order by min(p; : populavmd.num_accesseg, : quality(vmd.bitratg)
stop after 5

(QueryQy)

Using some interface support, the administrator desclieespreferences over the attributesfazzy
predicates In Example 1popularandquality are fuzzy predicates defined over the number of accesddsdt rate,
respectively. A fuzzy predicate is a function appliedrte or more attributes that returns a score betweer @ a
For instance, assuming that the maximum bit rate peskibla video in the CDN is MAXBITRATE (e.g., 500

Kbps), an administrator interested in videos encoded atkBHp8 may describe her preference by defining the

following predicatequality over the bit rate attribute values.

| bitrate— 256|
MAXBITRATE

quality(bitrate) = 1

Based on the predicatgiality, a video with bit rate equal to 256 Kbps will score thghbst possible score
1.0 for that predicate, while videos with significantlgtrer bit rates or significantly lower bit rates vattore much

lower. Naturally, this predicate definition is spectficuser needs. For instance, another administratiereisted in

videos downloaded by users with faster Internet cororextinight definequality to favor videos with higher bit
rates (e.g., 350 Kbps or 500 Kbps). In addition to user-defirsay predicates, the query specifies a user-specific
scoring functiorF, indicating how to combine the predicate scores. ekample, ifminis our user-specific scoring
functionF, thenF(0.9, 0.8) = 0.8. The highest scoring videos (accordiri) tall then be retrieved and appear in
the user's query results.

Besides thenin function used in the preceding query example, a top-k quersithlgotypically supports
arbitrary monotonic functions where all attribute resocontribute positively towards the score (e.g., sgesror
weighted average with positive weights). However, aigiovideo metadata is logically represented as a single
relationvideo_meta datat can be stored over multiple data sources in practa® instance, there can be many
peers where each stores the complete information difieaent set of objects. We refer to this casé@izontal
partitioning. For example, consider the case where each peerngtaies all of the video metadata for the videos
stored locally at some node within that site. Altgively, peers may store different attributes of thme set of
objects. We refer to this case\astical partitioning For instance, using our que®y from Example 1, some
peering site may store the numbers of accesses toviesahin the system to evaluate the predipajgular, while
another peering site stores the bit rate of each viddte system to compute predicgtelity. Another possibility
is the combination of both horizontal and verticaltpp@ning. We refer to this case asixed partitioning The

following example illustrates these different peer datamnigositions.

Example 2

Continuing from Example 1, consider a simple dataset aii&osgi

OID | Num_Accesses Bitraje
vid; 10367 128
vid, 9600 56
vidz 834 256
vid, 7809 500
vids 8200 350

First, this logical relation from Example 2 may be degosed vertically across two peers, with the first
peerp, storing the number of accesses to all videos whil¢he@ngeelp, stores the bit rates of all videos. Second,
this logical relation may be decomposed horizontalloss two or more peers. For instanpemay store the
number of accesses and bit rate values of the firesetiideos whilg, stores the number of accesses and bit rate

values of the last two videos. Third, the above twangaositions can be mixed arbitrarily. For instarmgenay

store the number of accesses of the first three sjdebilep, stores the bit rate of the first three videos andesom
other peepsstores the number of accesses and bit rate valuke tHgt two videos.

Keeping in mind that the logical relation can be decomgbds one of many different ways as illustrated
above, a top-k algorithm must perform accesses on peeyather enough scores to correctly identify thektop-
results out ofi database objects. However, since the user is gtéeté only a fraction of the data (i.ks<n), the
top-k results could potentially be identified by partiablexation of a fraction of the data objects. To illast;
consider horizontal decomposition in Example 2 with speerp; storing complete scores faid,, vid,, andvids.
When the user wants to retrieve the top-1 video witthate around 56 Kbps and high popularity wstimas the
aggregate scoring functidh, we may terminate after accessing paestoringvid,, since the aggregated score for
vid, already outscores the upper bound score for the relse gfders (i.e., videos stored at any other peer a&e les
relevant). To take full advantage of these optimizadigmortunities, many top-k algorithms [1,2,3,4,11,13,14] have
been studied lately for both local and distributed scemarHowever, all of these algorithms focus on a sitype
of data partitioning scheme. Also, many of these #lyms limit the flexibility of users regarding their predies
and scoring functions used. In contrast, our solution gespa unified top-k query framework supporting arbitrary
peer data decompositions (i.e., vertical, horizontad, mixed) with arbitrary user-defined predicates and arkitra
monotonic scoring functions. To highlight, our main tcdoutions are listed below:

- InformedDepth algorithm: Since the order in which predicates are evaluatedigaificantly affect the total
number of objects retrieved overall during distributed qpeogessing (as we will show later), we develop
a predicate scheduling algorithm based on a greedy heutistitke another previous greedy predicate
scheduling algorithm [4], our algorithm only needs data jgse® as input to determine this schedule,
which makes it suitable for distributed peer-to-peer emvirents.

— Unified top-k query processing framework: We develop a unified framework over a wide range of peer-
peer retrieval scenarios. In particular, in conttagixisting work focusing either on vertical or horiznt
decomposition, we develop a unified solution for all casbsch is the first to the best of our knowledge.

— Efficiency and effectiveness: We formally and empirically argue our framework isant and effective
in terms of bandwidth consumption, delay, and correctness

To further place our work in context, we review relatenllnin the next section. We then discuss preliminaries

on ranked retrieval and peer-to-peer networks in Se8tias well as present our algorithms that efficieréntify

top-k query results over peer-to-peer networks with diffedata decompositions. Section 4 presents a performance

evaluation of our algorithms obtained by both simulatod analysis. Finally, Section 5 concludes our work.

2. RELATED WORK

Much work has been previously done on top-k query proagssincentralized data management
environments where issues related to network bandwidth delays were not explicitly considered. Fagin's
algorithm (FA) and the threshold algorithm (TA) wereotef the earliest top-k algorithms [1,2]. One of the
scenarios that initially motivated such top-k algorithmere multimedia database systems consisting of $evera
subsystems that store different attributes of the databbjects. For example, an image database mightheave
following two subsystems: color and texture. Unfortulyataoth FA and TA would be prohibitively expensive in
distributed scenarios since they require object retideataeach step and the number of steps is not bounded by
constant. Therefore, the number of message roundewelaeh message round corresponds to one step could also
be potentially high, which leads to large network delays.

Top-k algorithms have also been proposed for sceniariobring the retrieval of the most relevant objects
from Web-accessible databases and evaluating top-k queitiesexpensive predicates [3,4]. Both of these
algorithms are very suitable for Web search scenawtosre accessing attributes might be restricted by some
external Web interface. Unfortunately, neither ofsh algorithms explicitly considers peer-to-peer networks.
However, the idea of greedy predicate scheduling presenféfiias been significantly modified for suitable use in
our algorithms.

Finally, many top-k query processing algorithms suitédig@eer-to-peer environments have been recently
proposed in the literature. TPUT is a threshold-bakgatithm suitable for distributed environments [11]. TPUT
limits the number of phases (or message rounds) to.ttusieg a novel data structure for data synopses, wirch
borrow in our algorithms, KLEE presents a family of apqimate top-k algorithms [13]. Balke et al. present dne o
the few top-k retrieval algorithms that explicitly cateys the underlying peer-to-peer network topology [14]. Our
framework also explicitly considers the underlying netwmology as we explain in our peer-to-peer network
model in the next section. There are two major probleith current top-k query processing algorithms for peer-
peer networks. The first problem is that many topgodthms implicitly assume a single type of data partitign
(i.e., vertical or horizontal). For example, KLEEases vertical data partitioning where each peer is msgge
for a single attribute. In our framework, we explicitnsider how our algorithms can handle different types of
data partitioning (i.e., vertical, horizontal, and mixe@he second problem with some of the existing appraashe

that they have limited flexibility with respect to usiafined predicates and scoring functions. For example, the

TPUT algorithm description clearly shows heumcan be used as the scoring function in their algorithuhit is
not so clear how some other monotonic scoring funcfeg., min) would be plugged in. Our framework is

adaptive in order to support user-defined predicates andaayhitronotonic scoring functions.

3. UNIFIED FRAMEWORK
In our unified framework for top-k query processing in pleepeer networks, we propose a family of
algorithms called thenformedDepth algorithms. Before discussing our proposed algorithnis jitportant to cover
some preliminary background information concerning thieviitng: data model, query model, and peer-to-peer
network model. After presenting these preliminariesthea present the data structures and algorithms used in our

framework.

3.1. Data Model

One of the shortcomings present in existing work orktgpery processing in peer-to-peer networks is that
the existing algorithms are focused only on horizonttd dacomposition or vertical data decomposition [11,13,14].
Unlike existing solutions, one of the main contributi@fiour unified framework is that it can handle all loét
following types of data decomposition: vertical, horitednand mixed.

More formally, suppose we have some relafbwith a set of attribute8 and a set of database objdbts
on which values for those attributes are defined. He following definitions, we identify three possible
decompositions of a relatioR into different peer data sources. Example data decongssiéire illustrated in
Figure 1 with different shades being assigned to one ofdfifferent peers.

1. vertical decompositiareach peer stores values fréton data objects fro@ whereA' [1 A
2. horizontal decompositioreach peer stores values frénon data objects fro®' whereD' 1D
3. mixed decompositioreach peer stores values frérhon data objects fro®' whereA' [1 A andD' LID

obj, | val; | valy; | valy; | vals;
objs | vahs | vabs | vals | valss
oVPRl val, val, val, valy

(a) vertical decomposition (b) horizontal decomposi

(c) grid mixed decomposition (d) arbitrary mixed decomposition
Figure 1. Different types of data decomposition

It is important to distinguish between the differemiety of objects in our data model. First, we have
database objects (e.ghj; in Figure 1) that correspond to tuples (i.e., rows) altigical relatiorR. We also have
attribute value objects (e.galy; in Figure 1) that correspond to attribute values for siquéar database object.
More specifically, attribute value objects map datal@gect identifiers to some corresponding attribute value.
Finally, when a user-defined predicaied is applied to some attribute value objeat,,, predval,,) evaluates to
some partial score objestorg,.

In our data model, notice that we also make a distinchetween two different types of mixed
decompositions. When every peer is responsible fortlgxaattributes ana objects, we refer to this casegsl
mixed decomposition as shown in Figure 1(c). When diftgperrs might be responsible for different numbers of

attributes and objects, we refer to this casarbirary mixed decomposition as shown in Figure 1(d).

3.2. Query Model

Our query model assumes that some reladmas its data partitioned either vertically, horizdgtaor
mixed across several different peers in the networkusér will then define predicatgs,...,pm to apply to the
various attributeattry, ... ,attr,, to obtain a score from each object for each preglicab obtain an overall score for
each database objeabj, the user defines a scoring functibpnwhich is applied to combine the various partial
scores for that object. To avoid information ovadpeach user can also specify the maximum number ofsésul
retrieve ak with the objects returned in order starting with tighkst scoring objects accordingRo Our query
model is expressed in SQL-like syntax as Query 2 belowwitkstraditional databases, top-k queries expressed in
declarative languages like SQL must be translated intauggacplans. An example plan to retrieve the partial
score objects for Query 2 witR partitioned vertically across peers is illustrated in Figure 2.

select obj

fromR

order by F(p,(R.attr),, p(R.attr))
stop after k

(Query 2)

Query
Initiator

Query, pz(Rattrz 1) PR)

;;).r;.(R.attrm,n)

Query, p2(Rattrz,)

P1 (R.attrl,l)

(obj, R.attr 1) p. (Rattri)) | (obj, R.attr 1) (obj, R.attr, 1)

(obp, R.attr) (obp, Rattny) | ... (obj, R.attr,)

(obi,, R.att1 ;) (obi,, R.att1>) (0biy, R.attin.)
Peey Peep Peer,

Figure 2. Example execution plan

Observe that this class of top-k queries significaaitends existing peer-to-peer queries that focus on
Boolean range queries. An example Boolean range query beulde following: select all objects that have an
attribute value greater than some threshold. We leetiee extension provided by top-k queries in peer-to-peer
networks significantly improves on Boolean queries irr{pegeer networks for several reasons. First, clamsig
the potentially overwhelming amount of data accessiBimlean queries often return too many results (i.e.,
information overload), while ranking queries enablectiffe retrieval of the highest scoring results of ngesdble
sizek. Second, user predicates can be defined at run timehwhables the retrieval of the most relevant result
that best match the user's specific needs. Our queryl modbles us to support an effective ranked retrieval of
desirable size for user-specific ranking criteria. Withta and query models defined, we describe our peer-to-peer

network model in the next section.

3.3. Peer-to-Peer Network Model

Since our algorithms make certain assumptions about thexlyimg peer-to-peer network organization, we
must first explain our peer-to-peer network model befordegeribe our algorithms in detail. Our model assumes a
peer-to-peer topology based on a ring-like distributed basle (DHT), such as those described in [5,6,7]. Our
algorithms are not limited to ring-like DHTSs, but suchT> have previously been shown to provide scalabitity a

robustness [5,6,7]. Also, since many existing peer-to-gpplications are already built on top of ring-like DHTs

(e.g., [8,9,10]), our top-k algorithms can be incorporateti thiese applications seamlessly without requiring the
installation of a new peer-to-peer routing middlewaretday

In our framework, we assume that each node and objeca heique identifier. In our application, an
object stored at a node consists of one or mordatérivalue objects for some corresponding database ¢bj¢lee
case of vertical and mixed decompositions) or consisdll of the attribute value objects for some corresfiog
database object (in the case of horizontal decompokitilt is important to note that an object idestifin our peer-
to-peer network is not necessarily the same as tintifide for the corresponding database object. For @kam
val; in Figure 1(a) with vertical decomposition, would be repréed as an attribute value object that maps
database object identifiebj; to some attribute value for attribusdtr;. Here, the peer-to-peer network object
identifier is different from the database object idigeti Given the object's identifier, each objectuisiquely
assigned to a node using the object assignment ruldsatgpdrticular ring-like DHT. For example, in Chord,leac
object is assigned to the node tlsatceedst in the circular identifier space moving clockwisedg~igure 3 for
more details) [5]. Therefore, the type of data partitig and ring-like DHT used dictate how node and object
identifiers will be assigned.

In addition to the underlying DHT that includes all of tiegles in the peer-to-peer network, which we will
refer to as thaode-level DHTwe also organize a subset of nodes, which we vidt te aggroup leadersfrom the
peer-to-peer network into another DHT on top of the fledel DHT to form agroup-level DHT Our group
leaders and group-level DHT are somewhat analogous tugiernodes and backbone mentioned in [14], but our
approach is unique in that we utilize groups in our top-k @lgos. Also, our underlying peer-to-peer network
topology is DHT-based while the underlying topology preskirtg14] is HyperCuP-based. All nodes in the node-
level DHT are assigned to one of the group leaders usenghlject assignment rules for the DHT with their node
identifiers from the node-level DHT treated as objdentifiers in the group-level DHT as shown in Figure/8.

similar peer-to-peer network organization appears in [15].

LT

o6 Node-Level 8
ode-Lev
/ Summary for \ 56 8
Objects:
48 1,2,3,4,5,6,7 16
40 24
32 32
(a) Node-level DHT (b) Group-level DHT

Figure 3. Example peer-to-peer Network

Our reason for choosing this particular peer-to-peerar&tmodel is that we want to reduce the amount of
statistical summary information that must be retriewhen queries are issued as explained in more detailioisec
3.4. In our peer-to-peer network, each individual nodestélle a statistical summary of all the objects fhiclv it
is responsible (i.e., summary of objects stored at tiode). In addition to storing a local per-node siaébt
summary, the group leaders in the group-level DHT alse statistical summaries derived from the statistical
summaries of all the nodes assigned to its group. We agsiainthe number of nodbkin the group-level DHT is
much less than the number of nodesn the node-level DHT. Therefore, based on previousimg analysis of
ring-like DHTs, messages in the group-level DHT willveese O(logM) hops while messages in the node-level
DHT will traverse O(logN) hops [5,6,7]. However, we also assume that per-group stiemaae approximately the
same size as per-node summaries, which means per-groupasesiiave coarser details since the per-node
summaries must be aggregated. Since we askugeN with both summaries having roughly the same size, then
routing messages over the group-level DHT is less expeirsiterms of communication cost, but it also reggev
summaries with less detail. Consider the peer-to-peterank shown in Figure 3 with eight nodes in the nodetleve
DHT and three of those eight nodes in the group-level DBxample summaries are only shown for node 8, which
is also a group leader (remember that the correspondirgopersummaries are at each individual node and the

corresponding per-group summaries are at each group leader).

3.4. InformedDepth Algorithms
We now complete our explanation of our framework by priogotop-k query processing algorithms for

peer-to-peer networks with vertical, horizontal, oxedi data partitioning. We first discuss the HistogramBkom

10

data structure that we use for per-node and per-group sumraanesl as how we adapt those summaries for the
particular query issued. Next, we discuss the notion ettbety that we use in our algorithm. Finally, we edpl
our proposed algorithms. Unless otherwise stated, ounsdien is in the context of vertical partitioning. In

Section 3.4.6, we show how other data decompositionbeaeduced to the case of vertical partitioning.

3.4.1. HistogramBloom Structure

A variant of the HistogramBloom, introduced in [13]the data structure used to provide per-node and
per-group statistical summaries about the attribute vaioeed at a particular node or within a particular group,
respectively. As the name suggests, HistogramBloom& a@mbination of both histograms and Bloom filters
(with Bloom filters being introduced in [18]). A histognds an array of cells where each cell has a frequemmt
for the number of values that fall within the rangehaft cell. Each histogram cell's range is specified ower
bound and an upper bound. A Bloom filter is a compact reptaon of set membership. Bloom filters consist o
x hash functions ang bits initially set to 0. The& hash functions are independent and hash inputs intatige r
[0,y-1]. Toinsert an elememtinto the Bloom filter, we set each bit indexed byrhasctionhash(e) fori = 1,...x
to the value 1. An elememtis considered to be a member of a Bloom filter dhehit indexed byash(e) for i =
1,...xis equal to 1. As described, the possibility of falssitp@s exists in Bloom filters. Specifically, a Bl
filter with x hash functions any bits that storeg elements has a false positive probabilitflf- exz’y)x during a
membership test [19].

A HistogramBloom is a histogram where the cells &f ltlistogram, in addition to specifying a range and
frequency count, also contain membership informatia@utthe members of each particular cell. The memkgersh
information for each cell is represented compactlyabBloom filter. Figure 4 depicts a simple example of a

HistogramBloom.

low upper | freq BF
0 5 6| 1110..................17
5 10| 17| 1011.................. 11
10 15| 12| 1111..................1(
15 20 8| 1000.................. 0]

Figure 4. Example HistogramBloom
In the above example, forty-three objects are digteith amongst the various HistogramBloom cells based

on the object's value. The lower bound range for licéhdicated bylow and the upper bound igper The

11

frequency distribution of object values into the cdlgidicated byreq and the corresponding Bloom filter for each

cell is represented BF.

3.4.1.1. Estimating HistogramBloom Cell's Frequency Count

Our algorithm, presented in Section 3.4.5, requires us &rndiete the size of the membership (i.e.,
frequency count) of HistogramBloom cells at various stephese HistogramBloom cells might be the result of
combining two or more other cells. Such a frequeneytoan be stored with the Bloom filter as an additiona
field, or it can be determined by looking at the full, empressed membership vector for the corresponding
HistogramBloom cell. Using a separate field for theqérency count of a cell in a HistogramBloom could be
problematic when that cell is the result of combintwg or more other cells (e.g., union or intersectioim) many
cases when Bloom filters are combined, we cannetraiéhe the exact frequency count field of the resultirgpii
filter without full membership information. Howeveetrieving full membership information is extremely ttps
and defeats the initial purpose of compactly represengihgiembership with Bloom filters.

Therefore, we take the approach of estimating the freyueount for HistogramBloom cells that have
been combined by taking the bitwise AND (i.e., inéet®n) or bitwise OR (i.e., union) of all of thewwrresponding
bit positions. To estimate the frequency count, we gdthe number of bits set to value 1 and divide that sum by
the number of hash functions used in the cell's Bldtiar.f If the number of collisions is small, thdrig estimate
should give us an approximate frequency count. However, digdligions, the possibility exists that our frequency
count estimation could potentially underestimate or atenate. For our simulations in Section 4, this estiom
method performed well enough to get the correct results.

Reynolds and Vahdat propose a more expensive alternativenfiote set intersection using Bloom filters
that could be applied to get an accurate frequency couhg dfitersection of two membership lists represented by
Bloom filters [16]. Rather than intersecting two Biodilters directly (as we do), a peer sends its Bloom filteb;
compactly representing its membership listto peerP,. P, will then test each member of its own llist for
membership irb; and send the elemenlts from L, thought to be irb; back toP;. P; can then verify which
elements of.,' actually belong td; to compute the exact intersection of the two memigedgis. Of course, this

alternative is much more expensive because it requijest®tbo be sent in addition to a Bloom filter.

12

3.4.2. Node-Level to Group-Level Summary

As mentioned earlier, each peer in our network maistaiper-node summary of the information stored at
that particular node, which is then combined into agsetyp summary stored at the group leader for that node.
These group-level summaries provide a synopsis of alhtue-level summaries from nodes that comprise that
group. In order to build the group-level summary, we musigasthe objects represented in the node-level
summary into their corresponding place in the group-lsweimary.

First, we assume that each node-level HistogramBlcelinfrom a peer has a range corresponding to a
subinterval of some group-level HistogramBloom celisge. More formally, suppose that we have node-level
HistogramBloom celt; from some peegp; with range lower bounth; and range upper bounds for ¢;. Given any
suchc;, we can find some group-level HistogramBloom aglwherelb; > Ib; andub < ub. Based on this
assumption, all members of a node-level HistogramBlamt will be assigned to the same group-level
HistogramBloom cell (i.e., members of same node-legklare not split between two or more group-leveksgel

At this point, adding a node-level summary into a growptlsummary becomes straightforward. We
simply take each node-level HistogramBloom cell and firedcorresponding group-level HistogramBloom cell that
completely covers its range. We then perform a b&#@®& operation on the corresponding Bloom filters efttto
cells to add the node-level HistogramBloom cell to ¢ineup-level HistogramBloom cell. We can repeat this

process for each cell of each HistogramBloom of esmte belonging to a group.

3.4.3. Summary Adaptation

As mentioned in our introduction, one of our contribmsias that our framework is flexible, which allows
the user to submit personalized queries with arbitrarpatomic scoring functions and arbitrary user-defined
predicates. This flexibility is partially achieved bglapting the statistical summaries on-demand, which are
represented by HistogramBlooms, for the specific query.

Unlike previous work that assumes fixed predicates and figedng functions that combine those
predicates, we want to support user-defined predicates amidgsfinctions on-demand when a query is issued. For
example, a useam; could define a predicatguality; (shown in Example 3) mapping attribligrate into a score
indicating thatu, prefers videos encoded at the highest possible bit Gitilarly, useru, might define its own

predicatequality, if u, prefers videos encoded as close as possible to 256 Kbps.

13

Example 3
quality; = 1 — (bitrate / MAXBITRATE)

quality, = 1 - (pitrate — 256f / MAXBITRATE?)

Supporting such user-defined predicates on-demand makes prélizaisummaries infeasible because
the system cannot anticipate which predicates theniberse until the query is issued. However, the otlxéreene
of building a completely new HistogramBloom from scrattienever a new query is issued is also infeasible due to
the prohibitive computational costs of accessing esinjbute value object for every database object terdene
its predicate score. Therefore, we take a hybrid apprehere we adapt the attribute-based HistogramBlooms (thi
HistogramBloom ispredicate obliviousand only needs to be computed once initially) by reandeits cells in
decreasing order of the maximum predicate score possibéafobject in that cell. For instance, tprality;, we
can order cells in the decreasing order of the upper bduheéio respectivéitrate ranges. Finding such ordering
can be trickier foquality,. Assume that the lower bound and upper bound for eachiscedhge is denoted lty,
andub, respectively. Foguality,, the maximum predicate score for each cell that daesomdain bitrate 256 Kbps
is given bymaxquality,(lb;), quality,(ub)), while the maximum score for the cell that consdiitrate 256 Kbps is
quality»(256) = 1.0.

Our summary adaptation process for any differentiableirggofunction DF is to rearrange the
HistogramBloom cells in decreasing order of their maxinpuadicate score possible, which is defined below.

Definition (Cell's Maximum Predicate Score Possible): PointBBrwhere its derivative is equal to zero

are callectritical points The maximum predicate score possible of some pregidgataaxp(lb;),p(ub))

for the attribute value range= [lb;,ub] without any critical point anchax{ p(Ib;), p(ub), p(c)} for r;

containing critical points;, . . . ,Cx.

We can similarly support non-differentiable ranking fuores by plugging in the function-specific routine

for computing each cell's maximum predicate score possiHe.example, such a routine foin is simplyp(ub).

3.4.4. Selectivity

Since executing top-k queries in distributed environmesdsiires the retrieval of partial score objects
corresponding to candidates for the final top-k resujtveetvant to try to minimize the number of irrelevahjects
retrieved in an effort to reduce bandwidth. To achiwegoal, we rely heavily on the concept of selegtjwithich
has previously been discussed in the context of bothtitvadi relational database queries and top-k queries [4,17].
Selectivity for a predicate basically refers to thenter of objects that we expect to retrieve by evaigathat

predicate.

14

Notice that, unlike relational queries that use Booleaaticates, the order in which fuzzy predicates are
evaluated in a scoring function for a top-k query can Bagmitly affect the number of objects retrieved olgr.
Consider Example 4 with the following predicapesndp, with four objects sorted from highest to lowest based
their normalized scores in the range [0:1] for each pateli Our scoring functidh in this example i§ =p; + p;
(i.e.,sum. Also, suppose we know that the minimum overall speqgeired to appear in the top-k results where k =

1lisF(0) > 1.4 for each objed. In this example, notice that our predicate evaluatotredules could be eithef, =

(P1.p2) Or S = (P2,P1).

Example 4
| P2 F(0)
0::0.7| @:0.7 0::1.4
0:06 | q:0.3 0,:0.8
0,:05| 9:0.2 0,:0.8
0,:04 | a@:0.1 0,:0.5

Remember that our goal is to reduce the number otumal objects retrieved. In the caseSpfafter
evaluating each object's score frpmand before evaluating each object's score fogmve realize that each object
could potentially appear in the top-k results. The redlsaheach object is still a candidate is that edsgjbcts
score undep, is unknown and therefore we must assume that each obgeives the best possible score umder
which is 1.0 in this scenario. If we know the scaredfach object according pg and assume that the score for each
object undemp, is 1.0, then potentialliz(o) > 1.4 for every objead. Therefore, each object must still be considered
a candidate and thus evaluated according.toAfter evaluating each object accordingptan S;, we eventually
determine that only(03) > 1.4. However, using similar reasoning & we see thabs emerges as the only
possible candidate after evaluatipgfirst in S, before evaluating,. Therefore, considering the selectivitypaf
relative to the selectivity of;, scheduleS, has higheraggregate selectivity Aggregate selectivity for fuzzy
predicates, introduced in [4], is the summation of the rewrobpartial score objects that we expect to retradter
evaluating each predicate in a schedule or sub-scheduig@larSio [4], in order to reduce the costs of retrigvin
objects, we attempt to have the highest aggregate is#tlegossible in our algorithms by determining an
appropriate predicate evaluation schedule for each top-k.quéowever, rather than minimizing our per-object
probing as done in [4], we instead attempt to minimize depth of cells visited at each peer in an adapted,

predicate-specific HistogramBloom from which partialrscobjects must be retrieved. Using the data synopses f

15

the various predicates, which represent global infoionati a summarized format, we can determine the depth of

cells that must be visited for each predicate at eagh gdence, we refer to our algorithmsiagrmedDepth .

3.4.5. Vertical Data Decomposition
Now that we have explained how we adapt our summariesérrdefined predicates and scoring functions

as well as the notion of aggregate selectivity, wegrasent our algorithmvformedDepth for the case of vertical data
decomposition where each group stores all of the atérNmltie objects for a single attribute for all dataludgects.
In such a group, each node stores a subset of the attvidlue objects for a single attribute and the corrafipgn
per-node summary represented as a HistogramBloom. Ialgarithm, we assume that all the metadata from
database objects has been extracted with the correagoattiibute value objects stored at the appropriate nodes.
In addition to its own per-node summary, we assume tloafpgeaders have already collected all of the per-node
summaries from other group members to construct a per-guoumary, also represented as a HistogramBloom
(combining node-level summaries into group-level sumreasiexplained in Section 3.4.2).

Ideally, using the notion of aggregate selectivity, watwa find the optimal predicate evaluation schedule that
is cost-minimal based on achieving the highest aggresgdeetivity possible in order to minimize the numbgr o
irrelevant objects retrieved, which leads to bandwédtvings. Unfortunately, finding such cost-minimal schiedgul
is NP-hard as proven in [23]. Therefore, we develop adyralgorithm for predicate evaluation scheduling where
the next predicate that we choose to schedule at egrisstiways the predicate that provides the highest adgrega
selectivity considering the preceding predicates schedules fdr. Although the idea of greedy predicate
scheduling based on aggregate selectivity was introducdd, iour work is unique in that we determine this greedy
schedule using only HistogramBloom summaries for eachgattedrather than having the ability to probe on a per
object basis. Greedy predicate scheduling based only tansgiaopses, as is done iformedDepth, is ideal for
distributed environments where retrieving objects qreaobject basis is too expensive. Before going over th
steps in detail, we should mention thigformedDepth assumes that each HistogramBloom cell for both pdeand
per-group summaries uses Bloom filters with the same nuoflits and identical hash functions. This allows us
to perform intersection and union operations on our mlfitters. Of course, individual cell memberships antl ce

ranges will differ from summary to summary.

16

Any node can issue a top-k query, which is executed biptlogiing algorithm at any ped? wishing to do so.

The InformedDepth algorithm is illustrated in Figures 5 and 6 with non-groaglée peeP,, issuing query,, via its

group leader pedgs,.

1
2.
3

If P is not a group leadeP, sends quer® to its group leade®. Otherwise, skip this step (Figure 5a).
G floodsQ on the group-level DHT to the other remote group lea(égsire 5b) .

Gando

ther group leaders adapt predicate-oblivious sumihergreate a predicate-specific summidry

(as described in Section 3.4.3) for the qu@ry

G collec

ts all of the adapted summaries, including its (wigure 5b).

Using the adapted summaries, which correspond to presjittageprocedurmp(k,FHset)is run byG to
determine the top-k results whérare the desired number of resuRds the scoring function, artdsetis
the set containing the adapted summaries. The procenhfkeRHset)is briefly described below at a

high-lev
a.

el. Detailed pseudocode fop(k,FHset)appears in the Appendix.

Estimate lower bound top-k score by finding minimum lidpif HistogramBloom cells that must
be visited in each adapted summary (whkiethe same for all summaries) until the intersectio
of the union of cells visited in each summary indictied at leask objects have been seen in
each summary. The lower bound top-k estimate equatstinang functiorF applied to the lower
bound of thed™ cell from each summary.

b. Based on aggregate selectivity and this lower boun# sgore, build a predicate evaluation
schedules by greedily choosing the predicate with highest seliggtat each step when a
predicate is added ® When each predicafeis chosen for the schedule, save the depth of cells
that should be visited in that predicategpatepth
c. For eactpin S retrieve the partial score objects only for thpagtial score objects stored in the
top p.depthcells in the adapted summary fofthese scores are found amongst peers in the same
group for the vertical case, palepthonly has to be sent to one group) (Figure 6b).
d. With the necessary partial score objects retriex@upute the top-k resulopK
e. SendlopKtoP (Figure 6a).
56 8
4 A\ > Qus 8
48 16
\ / H'se .
H'g
40 24 Q24

32 ‘JQZA 32 "o '
top(k,{ H's, H's2, H'se})

(a) Node-level DHT

(b) Group-level DHT

Figure5. InformedDepth algorithm — Phase 1

17

56 8
/ \ 56 retrieve 8
.d
48 16 _ (p.depth)
) candidatesg
\ / retrieve)
20 % ” (p.depthp) candidateg
32 local_retrieve | 32 compute to-k
(p.depthy) (candidateg,
(a) Node-level DHT (b) Group-level DHT Candidates,,
candidates)

Figure6. InformedDepth algorithm — Phase'2

3.4.6. Horizontal and Mixed Data Decomposition
Both the cases of horizontal and mixed data decompasitian easily be reduced to the case of vertical data
decomposition. In horizontal and mixed data decomposjti@@sh node might maintain one or more
HistogramBlooms for one or more attributes rathenthaingle HistogramBloom for a single attribute. Hasve
in addition to assuming that each HistogramBloom cedldhBloom filter with the same number of bits and iabah
hash functions, we also assume that each HistogrammBfimoa particular attribute isonsistent By consistent, we
mean that the same number of cells must be used assville same cell ranges (i.e., lower bounds and upper
bounds) for each corresponding cell. Although two Histoddlaoms for the same attribute must be consistemt, tw
HistogramBlooms for two different attributes do notdhémbe consistent. We use the following algorithmpkeer
P issuing a top-k query in the cases of horizontal or miledel decompositions.
1. IfPis not a group leadeP, sends quer® to its group leadeG. Otherwise, skip this step.
2. GfloodsQ on the group-level DHT to the other remote group leaders.
3. G and other group leaders adapt each one of their predigateas summariesi; to create a
corresponding predicate-specific summidry (as described in Section 3.4.3) for the qu@ry
4. G collects all of the adapted summaries (including its own)
5. G collects these adapted summaries and combines themamdéng cells of each respective summary to
build a single predicate-specific summaétyor each attribute
6. Hset which contains all of the predicate-specific sumnsrgan then be used to comptap(k, FHset)
and proceed as in the vertical case. However, nateptrtial scores for a single predicate might be

retrieved from several groups of peers rather thanghesgroup of peers as is done in the vertical case.
Therefore p.depthfrom Section 3.4.5 might need to be sent to multiple groager than one group.

! Upon receiving retrieve(depth), group leade6, will collect the necessary candidates from the nanxgteaders
in its group to construct the smndidates Group leade6,, will also construct candidates based on
local_retrieveg.depth,) in a similar fashion.

2 By candidates, we mean the partial scores for atlidate objects that could potentially belong to the topskilt.

18

3.4.7 Algorithm Correctness

Our algorithm is provably correct if the exact sizetted membership can be determined for all Bloom
filters. Basically, using our summaries and greedy presligetieduling algorithm, we identify all candidates that
possibly could score above our lower bound top-k scorghwis estimated in Step 5(a) from Section 3.4.5. We
then evaluate the complete scores for all of thesdidates to determine the top-k results. The only Wway dur
algorithm might produce incorrect results is when databbgets in the true top-k results are missed because we
determined that they do not have potential scores hidyaer the lower bound top-k score estimated in Step 5(a).
However, we prove by contradiction that no such candideduld be part of the true top-k result.

Proof. Suppose some objemj in the true top-k result has an overall score leas thur estimated lower

bound top-k score. When we estimate our lower bound ggmre, we know that at ledstandidates have

appeared in the intersection of the union of cells feawh HistogramBloom up to some de@thSince we
apply the scoring functioR to the lower bound of thé" cell from each HistogramBloom to compute the

lower bound top-k score, we know that at ldasandidates have overall scores above the lower bopad t

k score. This contradictshj being in the true top-k result because at lk&téments must have higher

scores.

Since retrieving full membership information is pratiiely expensive, we use Bloom filters to compactly
represent this membership information. Bloom filtersoduce the possibility of false positives and fregqyen
count errors causing our algorithm to be correct witleréain probability. Specifically, when estimating tbwer
bound top-k score in Step 5(a) of the algorithm, if weresttmate that we have seen at léaskements when we
have actually seen less thielements, our lower bound top-k score might be too high ¢verly optimistic). If
the lower bound top-k score is too high, we might exclueescandidates of the true top-k result from being
considered (i.e., candidates in the true top-k resultsn@gssed). Underestimation errors might affect peréoroe
by being overly pessimistic and thus retrieving additiaraididates, but they will not affect the correctraddbe
algorithm. Of course, since Bloom filters have tuegidrameters, the number of hash functions and numbis of
can be chosen in such a way that the probabilitgle&fpositives or overestimation errors is very I&ince user-

defined predicates are fuzzy, many peer-to-peer applicatianstolerate a tunable amount of error. In our

simulations, we were able to determine the corrgektoesults in each simulation run.

19

4. PERFORMANCE EVALUATION

We evaluatedinformedDepth by building on Examples 1 and 2. In our simulation scesavie have a
logical relationVideo Meta_ Dataontaining metadata about video files stored in a mepe¢r CDN. The schema
for the logical relation/ideo_Meta_Datas shown below.

Video Meta Data(fileld, numAccesseavgDuration runtime bitrate, size

In Video_Meta_Datgafileld is the key for some video file that uniquely identifiesnumAccesseis the
number of times that the file has been streamedéotslof the CDN.avgDurationis the average viewing time of
the video file by clients of the CDNruntime is the length of the video file in minuteditrate indicates the
encoding bhit rate for the video file aszeindicates the size of the file in bytes. For ourdprates, we normalize
the attribute values by dividing each attribute valuénleymaximum value for that particular attribute in thatieh
Video_Meta_Data We simulated a site administrator issuing the folhgwguery (shown below) wheratr;
indicates the normalized value of tifeattribute (e.g.attr; indicates the normalized value fuumAccessg¢sndw;
indicates the weight of that attribute's value to terall score. Each predicgie= wi(attr;) implicitly indicates the
importance of each attribute to that particular query.

select fileld

from Video_Meta_Data

order by scoring function F = wattr;) + ws(attr,) + wa(attrs) + wy(attry) + ws(attrs)

stop after k

Our logical relationvideo Meta Datacontained 1000 database objects with 975 of those objettedie
from a synthetic streaming media workload generator andf 2Bose objects created manually. Medisyn, the
synthetic streaming media workload generator used, catecsgnthetic request logs for media servers based on
statistical properties of request logs from real medigese [24]. We use this media server workload to model th
client access patterns (along with video file metgdataur peer-to-peer CDN. We also added 25 manually cteate
video files that would be potential best candidates fwrquery. The goal of our simulations was to evaluate the
performance ofinformedDeptfi according to its ability to retrieve these best cdatdis in a database containing
hundreds of other synthetically generated candidates. fiv@alifferent types of attribute value objects were
assigned to five different groups (i.e., vertical pantitiy where each attribute is assigned to a different group)

Each group has 10 peers with one of those peers assigbedhe group leader. Each HistogramBloom summary

20

had five cells with Bloom filters for each cell usitigee hash functions and 2048 bits. Of course, cell rdoges
each HistogramBloom differed based on the predicate.

We evaluatedinformedDepth by comparing it to a version ofnformedDepthi With random predicate
scheduling (as opposed to the greedy predicate scheduling yacisedl inInformedDept) and the basic version of
TPUT, which is described below. Since the basicierrsf TPUT, as described below, is limited in its supbr
user-defined predicates and scoring functions, we used edgalsvie our scoring functiok for a fair comparison

to TPUT.

4.1. Three-Phase Uniform Threshold (TPUT)

The TPUT algorithm is another top-k algorithm desigmeztsically for distributed environments [11]. It
considers only vertical partitioning. Our running examgflex peer-to-peer CDN streaming videos is actually
motivated by the application scenario presented by titleoes of TPUT, which involves running simple top-k
gueries over a CDN containing cached Web documents.tsAsaime suggests, TPUT consists of three phases,
which are listed below (taken from [11]).

1. Establish a lower bound on the top-k result seirst, retrieve the top-k partial scores from epefr.

Based on these partial scores, compute the partial duims abjects. Set the estimated lower botintd

thek™ highest partial sum.

2. Prune away ineligible objectsSet threshold = (t; / m) wheremis the number of predicates. Retrieve all
partial scores whose values are greater than or emialAt this point, all possible members of the top-k
result set have had at least one partial score rettjas proven in [11]. With these additional partial
scores, re-compute the partial sums of the objectst @ gined lower bound, which is equal to thi"
highest partial sum. Also, compute upper bounds for eaebtagsuming the maximum possible score for
all unknown partial scores. Eliminate all objects snapper bounds are less than Assign the
remaining objects to candidate Set

3. Identify top-k objectsRetrieve all unknown partial scores for each candiite® from all peers. Compute
the complete overall scores for the candidatesand return the top-k candidates based on overall scores.

4.2. Bandwidth Consumption

To show the benefit gained by greedy predicate schedulingféfnedDepts, we show the number of
objects retrieved when greedy predicate scheduling is ussdsvéhe number of objects retrieved when the
predicates are scheduled randomly. If greedy predicate stipdabs described in Sections 3.4.4 and 3.4.5) is

indeed effective, thennformedDepth should retrieve significantly fewer objects comparedvien predicates are

scheduled at random. Figure 7 shows our results#ot,...,10.

21

4500
4000
3500
3000
2500 Random3
2000
1500
1000
500

0 \
1 2 3 4 5 6 7 8 9 10

InformedDepth

Number of Partial Scores Retrieved

Figure 7. Bandwidth consumptionfformedDepth versus Random Predicate Scheduling)

As shown above, usingnformedDepth Significantly reduces the number of candidate objediseved
compared to the three random schedules shown in thefigeor k> 6, we see an order of magnitude reduction
when using greedy predicate scheduling compared to random peesoteeduling. We simulated a total of 10
random schedules (withnformedDepth consuming significantly less bandwidth than each onthade random
schedules), but decided to include only three random schedagure 7 for clarity. The random schedules shown
in Figure 7 range from best to worst as far as the pedoce of the ten different random schedules simulated.

In Figure 8, we compare the number of objects retrievatyusur algorithm compared with the basic

version of TPUT described in Section 4.1.

1000
900
800
700
600
500
400
300
200
100

TPUT

Retrieved

InformedDepth

Number of Partial Scores

Figure 8. Bandwidth consumptionigformedDepth versus TPUT)
As shown above, usin@formedDepth also reduces the number of candidate objects retri@ragared to

TPUT. TPUT performs better than random predicate scimegubut InformedDepth with greedy predicate

22

scheduling still retrieves fewer objects than TPUT ordspecifically, between 77% and 80% fewer objects are
retrieved usingnformedDepth With greedy predicate scheduling compared to TPUT.
4.3. Delay

Based on the algorithm description feformedDeptf, it is clear that determining the top-k results takes t
message rounds (i.e., two round-trips). The adapted supswad retrieved during the first round-trip and all ef th
partial scores for all candidate objects are retrieathg the second round-trip. As shown in Section 4.1, TTPU
requires three round-trips with each round-trip correspantlb one phase of the algorithm. In scenarios with
potential network bottlenecks, this extra round-trip migighificantly delay results. Part of our future work
involves simulating such scenarios and also running bgéhnedDept and TPUT on the PlanetLab network testbed

[12].

4.4. Correctness of Top-k Results
Since the cell membership of each cell in a Histodlwom is represented by a Bloom filter, the
possibility of false positives and overestimation esris present as discussed in Section 3.4.7. Therefere,
checked our results to make sure that each simulationfritfoenedDepth would output the correct top-k results.
Not only did InformedDepth output the correct top-k results in the correct orderndugach simulation, but
InformedDepth also computed the correct top-k score each time.
5. CONCLUSION
InformedDepth can flexibly and efficiently calculate the top-k resudf a query executed in a peer-to-peer
network. Unlike previous approaches that only focus simgle type of data partitioninguformedDepth includes
algorithms for handling different types of data decompmséti To execute top-k queries effectivalyformedDepth:
uses data synopses to make greedy predicate schedulingefeéasitistributed peer-to-peer environments. Our
simulation results indicate thakuformedDepth exhibits good performance in terms of bandwith consunmeti a
correctness compared to current top-k query processingithlger for distributed environments. Our simple
analysis also demonstrates thigformedDepth has fewer message rounds than TPUT. In the futurplameto fully
implementinformedDepth and run it on the PlanetLab testbed to get actual detmpurements.
REFERENCES

[1] R. Fagin. Combining fuzzy information from multipdgstems.Proceedings of the ¥5SACM Symposium on
Principles of Database Systems (PODI®96.

23

[2] R. Fagin, Amnon Lote, and Moni Naor. Optimal aggregaalgorithms for middlewareProceedings of the
20" ACM Symposium on Principles of Database Systems (PQD).

[3] N. Bruno, L. Gravano, and A. Marian. Evaluating-togueries over web-accessible databagesceedings of
the 18" International Conference on Data Engineering (ICDE)02.

[4] K. C. Chang and S.-W. Hwang. Minimal probing: suppgrtixpensive predicates for top-k queries.
Proceedings of the ACM International Conference on Management of Data (S} I@DQ.

[5] I. Stoica, R. Morris, D. Karger, M. F. KaashoekdaH. Balakrishnan. Chord: A Scalable Peer-to-peekup
Service for Internet Applicationroceedings of the ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCQNGO01.

[6] A. Rowstron and P. Druschel. Pastry: Scalabldritlised object location and routing for large-scale peer-
peer systemsProceedings of theBInternational Middleware Conference (Middlewargpo1.

[7] B.Y. Zhao, L. Huang, J. Stribling, S. C. Rhea,DA.Joseph, and J. Kubiatowicz. Tapestry: a resiliertiagto
scale overlay for service deploymenEEE Journal on Selected Areas in Communicati®ud. 22, No. 1,
January 2004.

[8] A. Rowstron and P. Druschel. Storage managementacidng in PAST, a large-scale, persistent peer-to-peer
storage utility. Proceedings of the Y8ACM Symposium on Operating Systems Principles (SQ8@).

[9] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandli,Rowstron and A. Singh. SplitStream: high-bandwidth
multicast in a cooperative environmerroceedings of the Y9ACM Symposium on Operating Systems
Principles (SOSR)2003.

[10]F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, arstoica. Wide-area cooperative storage with CFS.
Proceedings of the ¥8ACM Symposium on Operating Systems Principles (SQ8@).

[11]P. Cao and Z. Wang. Efficient top-k query calculatiodistributed networksProceedings of the 23ACM
Symposium on Principles of Distributed Computing (PQR20D4.

[12] PlanetLab.http://mww.planet-lab.org

[13]S. Michel, P. Triantafillou, and G.Weikum. KLEEframework for distributed top-k query algorithms.
Proceedings of the $linternational Conference on Very Large Databases (VL.2B)5.

[14] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaddprogressive distributed top-k retrieval in peer-to-peer
networks. Proceedings of the 21nternational Conference on Data Engineering (ICDE)05.

[15] W. Conner, K. Nahrstedt, and |. Gupta. Preventin§ Bttacks in peer-to-peer media streaming systems.
Proceedings of the 3Conference on Multimedia Computing and Networking (MMQB)6.

[16] P. Reynolds and A. Vahdat. Efficient peer-to-pegwied searchingProceedings of % International
Middleware ConferencéMiddlewarg, 2003.

[17] J.M. Hellerstein and M. Stonebreaker. Predicadtgation: optimizing queries with expensive predicates.
Proceedings of the ACM International Conference on Management of Data (S} W/@33.

[18] B. H. Bloom. Space/time trade-offs in hash codiritfp wllowable errors.Communications of the ACNol.

13, Issue 7, July 1970.

[19]L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sumyn@ache: a scalable wide-area web cache sharing
protocol. Proceedings of the ACM Conference on Applications, Technologies, Atehéeand Protocols for
Computer Communication (SIGCOMM)998.

[20] Los Alamos National Laboratorhttp://www.lanl.gov

[21] DOE Joint Genome Instituténttp://www.jgi.doe.gov.

[22] M. J. Freedman, E. Freudenthal, and D. Mazieresndogatizing content publication with CordProceedings
of the ' USENIX/ACM Symposium on Networked Systems Design and ImplemeihtSiidy 2004.

[23] K. C. Chang and S.-W. Hwang. Minimal probing: supporérpensive predicates for top-k queries. Technical
Report UIUCDCS-R-2001-2258, University of lllinois, Deceme01.

[24]W. Tang, Y. Fu, L. Cherkasova, A. Vahdat. MediSymtisetic streaming media service workload generator.
Proceedings of the ¥anternational Workshop on Network and Operating Systems Support for Audio and
Video (NOSSDAY, 2003.

24

APPENDIX

Top-k-resultstop(int k, ScoringFunction F, HistogramBloomSet
Hset){
PredicateSe® = {};
for each HistogramBloorb in Hset
add Predicatp to P with p.hb = hb;
Schedules = findGreedySchedulk,P);
for each Predicatein S
Retrieve partial scores from remote peers
corresponding tp.hb's cells up t@.depth
UseF to compute overall scores from partial scoresened;
return top-k results based on overall scores;

}

Schedule findGr eedySchedule(int k, ScoringFunction F,
PredicateSet P){
float lowerBoundTopkScore
estimateLowerBoundTopkScokef,P);
Schedules= {};
while P is not empty
Choosep from P where
selectivity{owerBoundTopkScoré&, S [l p,P-p)
is minimal;
Setp.depthto the second integer returned by
selectivity();
AddptoS
Removep from P;
returnS;

}

float estimatel ower BoundT opkScor e(int k, ScoringFunction F,
PredicateSet P){
BloomFilterSeB = {};
fori = 1 tomwherem is the number of predicatesin
Create BloomFiltecumulativewith all bits initialized
to O;
Add cumulativeto B;
fori = 1 tonumcellswherenumcellsare the number of cells in
each predicate iR
for j = 1 tom wherem is the number of predicates in
P
Predicatep = | predicate irP;
HistogramBloomCelt; =i cell from
p.hb;
BloomFilterbf, = BloomFilter forc;;
cumulative= " BloomFilter fromB;
Updatecumulative= cumulative L] bf;

BloomFilterintersection= ﬂ j cumulativefor all j
wherecumulativgisj™" BloomFilter fromB
if estimated number of membersiersection> k)
returnF applied to lower bound of cell
from each predicatein P;
returnF applied to lower bound of last cell from each jpratép
inP;

struct Predicate{
int depth
HistogramBloorrhb;

}

struct Candidate{
int depth
float upperbound
BloompFilterbf;

}

(int,int) selectivity(float lowerBoundTopKScore, ScoringFunction
F, Schedule S, PredicateSet UnknownPset){
CandidateSet = findCandidate${,S,UnknownPsegt
Remove all candidatesfrom C whose maximum upper bound
scores are less théowerBoundTopkScore
Return the number of bits set to 1 in all Bloortefis of all
candidates i€ and maximunt.depthamong all candidates

}

CandidateSet findCandidates(ScoringFunction F, Schedule S,
PredicateSet UnknownPset){®

CandidateSet = {};

1. Find all possible combinations of cells (i.eqss product
of cells) from the predicatgs, ...,p, that comprise all
subsets o6 and add a corresponding Candidat€;to

2. For each Candidaten C, figure out the maximum depth
of a cell in the combination and sadepthto this
maximum depth;

3. For each Candidatein C, figure out the upperbound score
for ¢ givenF, UnknownPsetand its constituent cells;

a. Assume maximum possible predicate scores
from predicates iunknownPset

b. Assume cell upperbound scores for predicates in

Swhere it has a score and the lowest possible
score otherwise (i.e., unseen candidate);
c. Setc.upperboundo refined upperbound
estimate;
4. For each Candidatein C, setc.bf to the intersection of all
the Bloom filters for constituent cells;
returnC;

% The algorithm, as described, is very inefficient.e Bietual implementation is more efficient, but alsseno

difficult to explain.

25

