
MEDIATE: Learning to Match Entity Mentions

across Text and Databases

AnHai Doan1 Xin Li2 Dan Roth2

1University of Wisconsin-Madison 2University of Illinois-Urbana

Abstract

Many real-world applications increasingly in-
volve both structured data and text. A given
real-world entity is often referred to in differ-
ent ways, such as “Helen Hunt”, and “Mrs. H.
E. Hunt”, both within and across the struc-
tured data and the text. Due to this semantic
heterogeneity, it remains extremely difficult to
glue together information about real-world en-
tities from the available data sources and ef-
fectively utilize both types of information.

This paper describes the MEDIATE system
which automatically matches entity mentions
within and across both text and databases.
The system can handle multiple types of en-
tities (e.g., people, movies, locations), is eas-
ily extensible to new entity types, and oper-
ates with no need for annotated training data.
Given a relational database and a set of text
documents, MEDIATE learns from the data a
generative model that provides a probabilistic
view on how a data creator might have gener-
ated mentions, then applies it to matching the
mentions. The model exploits the similarity
of mention names, common transformations
across mentions, and context information such
as age, gender, and entity co-occurrence. To
maximize matching accuracy, MEDIATE also
propagates information across contexts. Ex-
periments on real-world data show that MEDI-
ATE significantly outperforms existing meth-
ods that address aspects of this problem, and
that it can exploit text to improve record link-
age, and vice versa.

1 Introduction
Many real-world applications increasingly involve a
large amount of both structured data and text. The

Author names are listed alphabetically. The work was per-
formed when the first author was at the University of Illinois.

Technical Report, Department of Computer Science

University of Illinois at Urbana

reason is two fold. First, certain kinds of information
are best captured in structured data, and other kinds
in text. Second, the information required for the appli-
cation may need to be assembled from many sources,
some of which contribute structured data, and others
text. Examples of such applications arise in numerous
domains, including enterprizes, government agencies,
civil engineering, bioinformatics, health care, personal
information management, and the World-Wide Web.

However, effectively utilizing both structured data
and text in the above applications remains extremely
difficult. A major reason is semantic heterogeneity,
which refers to the variability in writing real-world en-
tities in text and in structured data sources, or to using
the same mention to refer to different entities.

Text documents naturally contain much ambiguity.
For example, different movie reviews can mention ac-
tress Helen Hunt as “Helen Hunt”, “Mrs. Hunt”, “He-
len”, or even misspelled as “actress Helen Humt”. In
some domains the ambiguity is even worse. For ex-
ample, news articles have referred to President John
Kennedy as “JFK”, “President Kennedy”, “Represen-
tative Kennedy”, etc. On the database side, different
relational records often refer to the same person, but
use different mentions, such as (Helen Hunt, Beverly
Hills) and (H. E. Hunt, 145 Main St. Beverly Hills).
Conversely, different records may use the same men-
tion to refer to different real-world entities. For exam-
ple, in the Internet Movie Database (imdb.com) the
mention “Helen Hunt” refers to three different people:
two actresses and a make-up artist. This problem is
especially common when data is integrated from mul-
tiple databases, but arises often also in stand-alone
databases, due to the nature of the data, misspelling,
and errors in data entry [32, 18, 35, 9]. Finally, se-
mantic heterogeneity is also pervasive across text and
databases. For example, “Helen Hunt” in a relational
record may refer to the same person as “Mrs. H. E.
Hunt” in a text document, but not “Professor Hunt”.

This paper considers the problem of resolving the
above types of semantic heterogeneity, by matching
mentions that refer to the same real-world entities,
both within and across text and databases. This prob-
lem is more general than record linkage (a.k.a. record

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

matching), the well-known problem of deciding if two
given relational records refer to the same real-world
entity (e.g., [18, 35, 9]). It is also more general than
mention matching in text, as Section 3 will discuss.

Resolving semantic heterogeneity across text and
databases brings several significant benefits:

• Entity Consolidation: Many applications signifi-
cantly benefit from being able to retrieve all infor-
mation related to a given real-world entity, be it from
text or structured data. Solving the above problem
would immediately provide a solution: retrieve all
mentions that belong to the given entity.

• Improve Record Linkage: Even when an appli-
cation deals only with databases, it can still leverage
text in the same domain to improve record matching,
if it can link mentions across databases and text.

• Improve Text Related Tasks: Conversely, prob-
lems on the text side, such as information extrac-
tion, question answering, and robust reading [23],
rely strongly on the ability to accurately match men-
tions in text. This, in turn can benefit from any
available structured data.

• Mining across Text and Databases: The ability
to link mentions can be leveraged to enable discov-
ering groups of related entities, retrieving all entities
that satisfy certain conditions and finding relation-
ships among entities. So far, these have been limited
to either on text or structured data.

Matching mentions can also enable new types of
queries over the linked mentions graph, or improved
information retrieval on both text and databases.

Despite significant potential benefits, as far as we
know, no work has directly addressed mention match-
ing in the context of integrating text and databases,
and current solutions to related problems are not di-
rectly applicable. Solutions for record linkage are not
well designed to handle the unstructured nature of
mentions in text, and solutions for matching text men-
tions are not suited for exploiting the structured nature
of databases.

In this paper we build on recent advances in both
areas, and propose MEDIATE1, a unifying solution
that automatically matches mentions across text and
databases. The key idea underlying MEDIATE is a
generative model that specifies how entity mentions
are generated within a database record or a text doc-
ument. MEDIATE learns the model directly from the
given data set, then applies it to predict the matches.

Specifically, we make the following contributions:

• An architecture for mentions matching in data sets
that involve both text and structured data. The ar-
chitecture builds on a generative probabilistic model,
a commonly used approach in the AI community.
The model provides a principled solution which can

1Matching Entities in Data Instances And TExt

Hunt worked with Nicolson in…

Got an Oscar for “As good as it gets”

Played in a recent Spielberg film…

F

F

M

CA

LA

CA

Helen Hunt

Helen E. Hunt

Tom Hanks

BiographySexAddr.Name

R. Remeckis

S. Spielberg

J. Brooks

T. Hanks

T. Hansk
H. Hunt

1994

1998

1997

Forest Gump

Saving Private Ryan

As good as it gets

DirectorMain ActorYearTitle

Actor

Movie

Oscar Winner Helen Hunt
arrived in DC yesterday…

Hunt declined a role offered
by Charlie Chaplin…

The “Forest Gump” Star
Hanks played an
all-American role in…

(a) Text Collection (b) Relational Database

d1

d2

d3

Figure 1: A simplified data set for a movie application, which
contains both text and structured data. The arrows denote
semantic matches that we want to establish among mentions
of actors and movies.

handle multiple types of entities, is highly extensible
to new entity types, and operates without the need
for expensive hand-crafted training data.

• An extension to the generative model that exploits
context information in the neighborhood of the men-
tions as well as the co-occurrence of real-world enti-
ties, to make accurate matching decisions.

• A mechanism to transfer knowledge across contexts,
to maximize matching accuracy.

• The MEDIATE system that embodies the above in-
novations, and a set of experiments on real-world
data that illustrates the system’s effectiveness. Our
experiments show that MEDIATE achieves high over-
all matching accuracy of 77.2 - 81.7% F-1 across
text and databases, that it significantly outperforms
record linkage techniques on the database side, and
achieves even higher accuracy with the use of text.
The experiments further show that MEDIATE can
exploit structured data when available to improve
text mentions matching, and that it is robust to
varying degrees of semantic heterogeneity.

The paper is organized as follows. The next section
defines the mention matching problem. Sec. 3 reviews
related work. Sec. 4 highlights the important points
of our solution with examples. Sec. 5-7 describe the
MEDIATE system. Sec. 8 presents experiments.

2 Problem Definition
We now describe the specific mention matching prob-
lem considered in this paper.

Data Sets, Entities, and Mentions: We assume
that an application deals with a data set that consists
of relational tables and text documents (but the ideas
here can be generalized to other data representations).
Figure 1 shows a simplified movie data set, with two
tables Actor and Movie, and three news articles.

Given such a data set, we define a set of real-world
entity types that the application is interested in. For
example, the above movie application may be inter-
ested in people and movies, whereas a bibliography
application such as Citeseer may be interested in au-
thors, papers, and publication venues. Next, we as-
sume that instances of real-world entities of the above

types are referred to using mentions of their names
in the data set. In Figure 1, examples of such men-
tions are underlined: “Helen Hunt”, “T. Hanks”, “R.
Remeckis”, “Forrest Gump”, etc. Note that a record
may contain multiple mentions of the same entity (e.g.,
“Helent Hunt” and “Hunt” in the first record of Actor.

Mention discovery in text has received much at-
tention and success in the database, AI, KDD, and
WWW communities, within the context of named en-
tity recognition, information extraction, and text seg-
mentation (e.g., [1, 6, 13]). The developed techniques
also often benefit from learning methods. Mentions in
relational records are often marked up by the record
boundaries (e.g., “Helen Hunt”, “Helen E. Hunt”, etc.
in Figure 1). For those which are not (e.g., mentions
in the text field comment of Table Actor), we can ap-
ply the above techniques for mention discovery in text.
For these reasons, in this paper we assume that men-
tions are already marked up in the data set, and focus
on the problem of matching them.

The Mention Matching Problem: Given the
marked up mentions in a set of relational tables and
text documents, our goal is to link all pairs of men-
tions that refer to the same real-world entities. Fig-
ure 1 shows the links that we want to establish in the
above movie data set.

3 Background & Related Work
We consider related work from several perspectives.

Problem Definition: As described, the mention
matching problem is more general than both record
linkage and mention matching in text. Record linkage
typically treats each relational tuple as a description
of a primary entity, then tries to link tuples that de-
scribe the same entity within a single table, or across
different tables. For example, given table Actor in Fig-
ure 1, it may attempt to decide if the first and second
records refer to the same actress, and so on. Thus,
conceptually it matches mentions that occur only in
certain attributes (e.g., name of Actor). In contrast, we
match all mentions that occur in the database. For ex-
ample, in Table ACTOR we also match mentions such
as “Hunt” and “Spielberg” in attribute biography of
the first and second records with all other mentions in
the database. Our problem therefore subsumes record
linkage. We show examples in Section 4 and demon-
strate empirically in Section 8 that solving mention
matching also improves record linkage accuracy.

Research on mention matching in text has mostly
focused on co-reference resolution [20, 28, 36] within
the context of a single document, which attempts to
determine whether two forms of reference in a text,
typically a name (more generally, a noun phrase) and
a pronoun, actually refer to the same real-world entity.
Only recently have people started to consider mention
matching across documents [24, 23, 22, 3]. Our prob-
lem is more general in that beyond matching mentions

within and across text documents, we also seek to link
them with those in an associated database.

Schema Matching: It is also important to emphasize
that we do not consider semantic heterogeneity at the
database schema level, a related and important prob-
lem that has received much attention [31]. Instead, we
consider semantic heterogeneity at the data level, in
the context of integrating structured data and text.

Techniques: A wealth of techniques have been
developed to match mentions, with respect to both
record linkage and text contexts (e.g., [37, 8, 25, 40,
5, 2, 35, 17, 18, 15, 33, 11, 32]). For record linkage,
early solutions employ manually specified rules [18],
while subsequent works focus on learning matching
rules from training data [37, 5, 35], efficient techniques
to match strings [27, 17], powerful methods to match
entity names [8, 17, 9], scaling up to large number of
tuples [21, 16, 19, 25, 10], matching in online contexts
[7], personal information management [12], matching
XML data [38], and exploiting links [4].

Several recent works have also developed generative
models to match mentions. The work [30] addresses
citation matching in structured contexts, a much nar-
rower problem. It proposes a full-blown probabilistic
relational model [14], and as such is harder to under-
stand, requires a lot of data (to learn the model param-
eters), and has a very high runtime complexity. The
model proposed in [34] for matching tuples is much
more efficient, but does not capture and exploit the
notion of real-world entities, as we do here. The works
[23, 22] propose generative models for mention match-
ing in text. However, none of these works have con-
sidered the addition of structured data. Furthermore,
even within the context of text, they have not consid-
ered exploiting context information, co-occurrence of
entities, and recursive contexts, as we do in MEDIATE.

Several recent works have employed another prob-
abilistic framework called conditional random fields
(CRF) to match mentions [29, 39]. In particular, [39]
attempts to solve both mention discovery and match-
ing at the same time. However, the probabilistic model
of CRFs is less expressive than ours and may not be
sufficient for the problem we consider here, and yet, are
well known to have very high runtime complexity and
are thus not scalable to realistic database domains.

Exploiting Context: Several recent works have also
exploited context in mention matching [30, 2, 4, 29,
39]. [2] was among the first to articulate the idea, but
exploits context only at a syntactic level. For example,
if “X” and “Y” are linked to two occurrences of “Helen
Hunt”, respectively, then it may decide that “X” and
“Y” are related. In contrast, we will first find out if
the two occurrence of Helen Hunt refer to the same
person. The works [4, 29, 39] exploit context at a
higher semantic level (as we do here) but not within
the context of generative models, and do not combine
text and databases.

m3
m4
m5

m8m6
m7

m1
m2

m3
m4
m5

m6
m7

m1 = Prof. Jordam
m2 = M. Jordan

m3 = Michael I. Jordan
m4 = Jordan
m5 = Jordam

m6 = Steve Jordan
m7 = Jordan

(b) (c) (d)(a) e1e2 e3 e4 e5

Prof. M. I. Jordan (205) 414 6111 CA

e3
(e) e4

m8

e3
e1 e4 (f)

m1
m2

Figure 2: The generative model is constructed iteratively by assigning mentions to entities, re-learning model parameters, then
re-assigning the mentions.

4 Overview of Our Approach

We now briefly describe our approach’s key ideas.

Matching Mentions by Assigning to Entities:
First, we convert the problem of matching pairs of
mentions into two problems: (a) finding the set of real-
world entities that are mentioned in the data, and (b)
assigning mentions to entities. Thus, two mentions
match if they are assigned to the same entity.

Developing a Generative Model: To solve the
above two problems, we develop a generative model G
that “explains” how mentions in the data are gener-
ated. G specifies probabilistically how to choose a set
of real-world entities, create their mentions, perturb
the mentions, then “sprinkle” them into the records
and text documents. Thus, G provides a principled
way to compute P (m|e), the probability that a men-
tion is generated from a real-world entity e.

Learning & Applying the Model: Now sup-
pose we are given some training data (text documents
and records), where we already know all entities, and
the mentions have been assigned to the right entities.
Knowing the parametrization of the generative model,
we can use these assignments to learn the specific pa-
rameters of the model G. Afterward, given a new doc-
ument or a record d, we apply G to assign mentions to
entities. Briefly, for each mention mi in d, we assign
mi to the entity e that maximizes P (mi|e), which is
computed using the learned model G.

In practice, we do not have the annotated training
data, so we learn the model using the EM algorithm,
commonly employed in such situation [26]. First, we
initialize the parameters of G, including the set of real-
world entities, using a clustering method on the men-
tions in the data set. Next, we use this initial model
to assign mentions to entities. Then we use the assign-
ments to re-estimate the parameters for G and the set
of entities, and so on, until the model converges.

We developed three generative models, where each
builds on the previous one and exploits additional
types of knowledge in the data set to improve matching
accuracy. In what follows we illustrates the working
of the models and the types of knowledge exploited
during the matching process.

4.1 ME: Learning from Mention Names

In the first model ME we learn to match mentions using
their names. Consider a simple data set of three text
documents and one relational record, in the (fictional)
area of “basketball research”. Figures 2.a-d show the
data set (only the relevant mentions are shown in text
documents, to avoid clutter). To match the mentions
m1 − m8, we proceed in iterations.

• First iteration: We cluster mentions within each
document and record, using a text similarity measure.
Next, we create an entity for each cluster, and assign
all mentions in the cluster to the entity. Figure 2 shows
the created entities e1−e5 and the assignment of men-
tions. Notice that in document (a) the two mentions
“Prof. Jordam” (where “Jordan” is misspelled as “Jor-
dam”) and “M. Jordan” have not been clustered to-
gether and assigned to the same entity because they
are not sufficiently similar.

Next, we learn the characteristics, that is, the “pro-
file” of each entity, based on the assigned mentions.
For example, consider entity e3. From mentions m3

and m5, we know that the person (corresponding to)
e3 has the first name “Michael”, middle name initial
“I”, last name “Jordan”, and that his last name could
be misspelled as “Jordam”.

• Second iteration: Now given the entity profiles
(i.e., the model learned in previous iteration), we reas-
sign each mention mi to to the best matching entity.

In our example, we end up assigning m8 = “Prof.
M. I. Jordan” (in the record) to entity e3 because m8

also has the middle initial “I” and share the first initial
with e3. We also assign m2 to e3, because m2 = “Jor-
dan” shares the same last name with e3. Figure 2.e
shows the reassignment. Note that entities e2 and e5

become empty and hence are dropped.
Now we relearn all entity profiles. Consider again

person e3. ¿From the mentions assigned to this entity,
we know that, among others, his last name can be
misspelled as “Jordam” and that he can have the title
“Prof.” (due to m8).

• Third iteration: Leveraging the above profile
of e3, we can reassign m1 = “Prof. Jordam” to e3.
Figure 2.f shows the reassignment, which also happens
to be the final reassignment, as subsequent iterations
do not change it.

ME then uses the above assignment to predict that
mentions m1 −m5 and m8 match, and m6, m7 match.

Prof. Jordam
M. Jordan
Berkeley

Michael I. Jordan
Jordan
Jordam

Air Jordan
S. Pippen

(b)

M. Jordan
Scott Pippen

(c) (d)

(2)

(a)
(3)

(4)

(5)

(1)

e3

AffiliationLocationPhoneName

NBAChicago(231) 345 6712 Scott Pippen

CA414 – 6111Mr. Jordan

NBAChicago(231) 456 7823Mike Jordan

BerkeleyMichael Jordan

UCBCA(205) 414 6111Prof. M. I. Jordan

(e)

Figure 3: Examples of exploiting external attributes (e.g., phone, location), co-occurrence of entities, and transferring knowledge
across matches.

The above example illustrates the iterative nature
of learning our models directly from the data set. It
also highlights the global nature of our methods, in
which knowledge is transferred across matches to ac-
cumulate in entity “profiles”, thus enabling more ac-
curate matching. In contrast, a method that matches
a mention pair by examining their names in isolation
is local by nature, and will incorrectly match m4, m5,
and m7 in the above example, because their names
(“Jordan” or “Jordam”) are similar.

4.2 MEC: Learning from Context

The model ME exploits only characteristics of mention
names, such as title, middle initial, etc. To improve
matching accuracy, our second model MEC exploits
context in the following two ways:

Exploiting External Attributes: Consider a
slightly different data set, also in the area of “bas-
ketball research”, as shown in Figure 3.

To match mentions in this data set, we begin by
defining a set of external attributes for each person
entity, such as phone, location, and affiliation in this
case. Next, we apply the ME algorithm as described
earlier, with some modification. In each iteration,
when merging mentions to compute the profile for each
entity, ME computes the values for internal attributes,
such as title, first name, middle name, etc. Now, we
also compute the values for external attributes. Then
when reassigning mentions, we compute the probabili-
ties P (m|e) using all attributes, internal and external.

To illustrate, suppose using ME we have assigned
all mentions in documents (a) and (b) as well as men-
tion “Prof. M. I. Jordan” in tuple (1) to an entity e3

(see Figure 3). After computing values for external at-
tributes, we know that e3 has phone = (205) 414 611
and location = CA (from tuple (1)). Then in the next
iteration, we can assign mention “Mr. Jordan” in tuple
(4) to e3, because the external attributes phone and
location of this mention and of e3 share similar values.
Notice that without using the external attributes, we
would have incorrectly matched mention “Mr. Jor-
dan” in tuple (4) with the first mention “Mr. Jordan”
in document (c), as they share the same name.

Exploiting Entity Co-occurrence: Consider “Mr.
Jordan” and “Air Jordan” in documents (c) and (d).
ME would not match them, because the names are not
sufficiently similar. However, consider the two associ-
ated mentions: “Scott Pippen” and “S. Pippen”. If

we already know that they refer to the same person,
then “Mr. Jordan” and “Air. Jordan” co-occur with
the same entity, and intuitively that would increase
their chance to match. In MEC we develop a method
to exploit such entity co-occurrence to further improve
matching accuracy.

4.3 MEC2: Knowledge Transfer via Contexts

Consider matching “Mr. Jordan” in document (c)
with “Mike Jordan” in tuple (3). Our second model
MEC would declare a no-match, because their names
are not sufficiently similar, and they share no context
information. However, suppose we know that “Scott
Pippen” in document (c) matches “Scott Pippen” in
tuple (5). Then since “Scott Pippen” in tuple (5) has
location = Chicago and affiliation = NBA, it follows
that “Scott Pippen” in document (c) also has the same
location and affiliation. Since mention “Mr. Jordan”
occurs close to “Scott Pippen” in document (c), it can
“borrow” the context information about location and
affiliation from “Scott Pippen”. Armed with this, it
can now match the mention “Mike Jordan” in tuple
(3), since that mention also has the same location and
affiliation. In MEC2, our third and last model, we de-
velop a method to enable such context transfer. The
key challenge there is to transfer the right amount of
context, with little noise.

4.4 Interplay between Text & Databases

The example in Figure 3 also shows that text can
help record linkage, and vice versa. Given only the
database, record linkage would have difficulty match-
ing tuples (1) and (2), since they do not share much
context. Now consider the text documents (a)-(d), and
assume that our method has matched mention m =
“Prof. M. I. Jordan” in tuple (1) with all person men-
tions in documents (a) and (b). Then we can infer that
m has first name “Michael” (from document (b)) and is
also associated with location Berkeley (from document
(a)). This information would enable matching the two
tuples (1) and (2). Similarly, we have shown in Sec-
tion 4.1 that matching mentions in documents (a) and
(b) is difficult unless we can bridge them via mention
“Prof. M. I. Jordan” in tuple (1). This demonstrates
that databases can help mention matching in text.

5 The MEDIATE Approach
We now describe our three generative models in detail.

Entities, Mentions, & Representatives: We
consider matching mentions in a data set D =

{d1, d2, . . . , dm}. Each di is a relational record or
a text document, and henceforth will be referred to
as a “document”. We assume D contains mentions
(i.e. real occurrences) of |T | types of real-world enti-
ties (e.g., person, movie, etc.). For each document d,
we use Ed = {edi} to denote the set of entities men-
tioned in d, and Md = {mdi} to denote the set of
mentions. For example, for entity “Tom Hanks”, the
corresponding set of mentions in a document may con-
tain “Hanks”, “T. Hanks” and “Actor Tom Hanks”.

Among all mentions of an entity edi in document d
we select the one with the longest writing as the repre-
sentative of edi, and denote this mention as rdi. Rep-
resentatives can be viewed as a typical representation
of an entity, as mentioned at a specific time and place.
For example, “Director Tom Hanks” and “Oscar Win-
ner Tom Hanks” may be representatives of “Tom
Hanks” in different documents. Other mentions are
usually shorter and are considered to be transformed
from the representative. We use Rd = {rdi} ⊆ Md to
denote the set of representatives in document d.

We now can represent each document d as a col-
lection of its entities, representatives and mentions
d = {Ed, Rd, Md}.

Internal Attributes: Let E, M , and R be the
collection of all possible entities, mentions, and rep-
resentatives in the world, respectively. We associate
with each element in the set W = E ∪ R ∪ M a set
of internal attributes A = {a1, . . . , ap}, which capture
the most important characteristics of mention names,
for matching purposes. (In the next section we de-
fine attributes external to names, to be used in model
MEC.) For example, for person names we define title
(Mr., Prof., etc.), first name, middle name, and last
name. For movies we define title (e.g., “Lord of the
Ring”), abbreviated title (e.g., LOTR), and sequence
number (e.g., “III” in “Star War III”). Attribute val-
ues can be string or numeric, and can be missing for
certain mentions.

Mention Matching: Let E∗
d be the most likely set

of entities in each document d. Given a probability
model with parameter θ, this set can be computed as:

E
∗
d = argmaxE′⊆EP (d|θ) = argmaxE′⊆EP (E′

, Rd, Md|θ).
(1)

For each mention m ∈ d, knowing E∗
d immediately

gives the most likely entity e∗m that m belongs to. As
mentioned in Section 4, being able to assign mentions
to entities solves the mention matching problem.

5.1 Constructing the ME Generative Model

We now describe a model to compute P (E′, Rd, Md|θ)
in Equation 1. The model generates documents as fol-
lows (see Figure 4). For each document d ∈ D, we first
decide its type: either a database record or a text ar-
ticle. Since the type of each document is known given
D, we assume this step to be deterministic. Further,
even though a database record or a text article could

be generated differently in different domains, in the
current models, we reduce the modeling complexity
by generating them in the same fashion. Next, we se-
lect a number denoted as size(Ed), then select a set of
size(Ed) entities Ed ⊆ E to appear in a document d,
according to a probability P (Ed).

Next, for each entity edi ∈ Ed, we choose a repre-
sentative rdi ∈ R according to a probability P (rdi|edi).
The set of all chosen representatives forms Rd. Then
for each edi, we generate a set of size(Mdi) mentions
(denoted as Mdi), using representative rdi. Each men-
tion mdj ∈ Mdi is independently generated from rdi

according to a transformation probability P (mdj|rdi)
(typically by “perturbing” representative rdi). Finally,
we “sprinkle” the mentions into document d.

Example 5.1 Figure 4.a shows the document gener-
ation process, while Figures 4.b-c show specific exam-
ples of generating a text document and a relational
record. For instance, Figure 4.b shows how the basket-
ball player Michael Jordan generates the representative
“Michael Jordan”, which in turn generates mentions
“Michael Jordan” and “Mike” in the text document.2

As described above, our generative model has the
following four components (which forms the parame-
ters θ): (1) a set of entities E; (2) a prior distribution
P (E) that governs how entities are distributed into a
document d. In model ME we assume that entities
are independently chosen into a document. Thus, we
can compute P (Ed) =

∏

edi∈Ed
P (edi); (3) quantities

size(Ed) – the number of entities in a document, and
size(Mdi) – the number of mentions for each entity
edi. In all three models (ME, MEC, and MEC2), we
make the simplifying assumption that these numbers
are determined uniformly over a small plausible range;
(4) the transformation probability distribution PW |W

of a name being transformed from another. We use
this distribution to compute P (m|r) – the probability
that a mention m is generated (i.e., transformed) from
its representative r, as well as P (r|e) – the probabil-
ity that a representative r is generated from an entity
e. We model P (W |W) as a product distribution over
relational transformations of internal attribute values
(to be described shortly).

Assuming conditional independence between Md

and Ed given Rd, and ignoring the size components
due to assumptions of uniform distributions, using the
above model we can compute
P (d) = P (Ed, Rd, Md) = P (Ed)P (Rd|Ed)P (Md|Rd)

≈

|Ed|=ld
∏

i=1

[P (edi)P (rdi|edi)]
∏

(rdj ,mdj)

P (mdj|rdj).(2)

We can replace P (d|θ) in Equation 1 with this quan-
tity, to compute E∗

d .

5.2 Learning the ME Model

To compute P (d) in Equation 2, we must know the
parameters θ of the generative model. If we have a set

Actor Tom HanksForrest GumpRepresentatives Rd

Mentions M d

Entities Ed

Entities in the
real world E

1994Robert Zemeckis Hanks won Oscar…Actor Tom HanksForrest Gump

Deciding Document Type
(text, record)

Chicago Bulls Michael
Jordan

Michael Jordan was born …
Chicago Bulls… Bulls, Mike

Generating a
textual article

Generating a
database record

(a) (b) (c)

Figure 4: Generating database records and text documents.

of annotated training documents Dt, where for each
document d ∈ Dt we already manually assign each
mention to the correct entity, then θ can be estimated
by the common method of maximum likelihood esti-
mation: θ∗ ≡ argmaxθP (Dt|θ). Specifically, the com-
ponents of θ can be computed as follows:

• The set of entity E is computed as the set of all
entities in the training data set Dt.

• We model the prior distribution P (E) as a multi-
nomial distribution. Suppose the training data set Dt

contains n pairs of (mention,entity) assignments, then
for any entity e, we compute P (e) = freq(e)/n, where
freq(e) is the number of pairs containing e.

• Computing the transformation probability dis-
tribution P (W |W) reduces to computing P (n2|n1),
where n1, n2 ∈ W). This intuitively is the probabil-
ity that name n2 is obtained by transforming name
n1, and is modeled as a product of the transformation
probabilities over internal attribute values.

The transformation probability for each internal at-
tribute is further modeled as a multinomial distribu-
tion over a set of predetermined transformation types:
TT = {copy, missing, typical, non − typical}. Type
copy denotes v′k is exactly the same as vk; missing de-
notes “missing value” for v′k; typical denotes v′k is a
typical variation of vk, for example, “Prof.” for “Pro-
fessor”, “Andy” for “Andrew”; finally, non-typical de-
notes a non-typical transformation.

Suppose n1=(a1=v1,a2=v2,...,ap=vp) and
n2=(a1=v′1,a2=v′2,...,ap=v′p) are two names be-
longing to the same entity type, then P (n2|n1) is
modeled as a product distribution (naive Bayes) over
internal attributes:

P (n2|n1) = Πp
k=1P (v′k|vk). (3)

The maximum likelihood estimation of the transfor-
mation probability P (t, k) (t ∈ TT, ak ∈ A) from an-
notated representative-mention pairs {(r, m)}n

1 in the
training data is: P (t, k) = (freq(r, m) : vr

k →t vm
k)/n,

where vr
k →t vm

k denotes the constraint that the trans-
formation from attribute ak of r to that of m is of type
t. We perform simple smoothing for unseen transfor-
mations.

5.3 Applying the ME Model

Once the model has been learned from the training
data, as described above, we can apply it to match
mentions in an unseen document d, by solving Equa-
tion 1, that is, assign mentions Md in d to the most
likely representatives Rd and entities Ed.

However, solving Equation 1 directly is impracti-
cal, due to an exponential number of possible assign-
ments of Ed and Rd to Md. Hence we develop the
following approximate algorithm. First, we compute
Rd by sequentially clustering the mentions: for each
mention m ∈ Md, we compute the transformation
probability P (m|r) for each representative r that have
already been created, then use a fixed threshold to
decide whether to create a new group for m or to
add it to one of the existing group with the highest
P (m|r) value. We then select the longest mention in
each group as a representative. In the second step,
we assign each representative rdi ∈ Rd to the entity
e∗ = argmaxe∈EP (e) · P (rdi|e).

5.4 Learning in an Unsupervised Setting

We have described how to learn the generative model
from training data. However, in practice, manually
annotating data for training is very labor intensive.
Hence, in this paper we propose to learn the model di-
rectly, in a unsupervised fashion. from the input data
set D (recall that D is the set of relational records and
text articles whose mentions we want to match). To-
ward this goal, we adopt the EM algorithm commonly
employed for learning with unlabeled data.

We use an EM variant (called Truncated EM) that
performs greedy search. Given the observed mentions
Md in each document d ∈ D, the algorithm iteratively
updates the model parameter θ (i.e., the probability
distributions and set of entities, as described earlier)
and the structure (i.e., Ed and Rd) of d as follows:

We note that the above algorithm also differs from
standard EM in that in the expectation step it seeks
the most likely Ed and Rd for each document d rather
than the expected assignment. Also, the algorithm
produces a set of assignments between mentions and
entities, which amounts to solving mention matching.

We have described Steps 2-3 in Sections 5.2 - 5.3.
We now complete the algorithm description by dis-

Truncated EM Algorithm

(1) (Initialization): Assign an initial (Ed
0 , Rd

0) to each
document d ∈ D. The set of documents is now
annotated and is denoted as D0 = {(Ed

0 , Rd
0 , Md)}.

(2) (Maximization): Compute model parameter θt+1

that maximizes P (Dt|θ). Given the annotations
supplied in the previous initialization or expectation
step (see below), this is the maximum likelihood
estimation described in Section 5.2.

(3) (Expectation:) For each document d ∈ D,
compute (Ed

t+1, R
d
t+1) that maximizes P (Dt+1|θt+1)

where Dt+1 = {(Ed
t+1, R

d
t+1, M

d)}. This is the
procedure of applying the generative model described
in Section 5.3.

(4) (Convergence:) Exit if no increase is achieved for
P (Dt|θt), otherwise repeat Steps 2-3.

Figure 5: Sketch of the Truncated EM Algorithm

cussing Step 1: initialization. In this step, to com-
pute (Ed

0 , Rd
0), we perform clustering to group men-

tions within the document d. We treat each mention
as a text string, then apply SoftTFIDF [9], to compute
a similarity score for each mention pair. Pairs with
similarity score exceeding a threshold are clustered to-
gether. Next, based on the assumption that mentions
are generated from, and typically shorter than their
corresponding representatives, we select the mention
with the longest name in each cluster as a representa-
tive, and create an entity with the same name for the
cluster. The global set E of entities is then the union
of all entities created in the documents.

6 Learning from Context
The aforementioned model ME exploits only mention
names, i.e. title, middle initial, etc. to match men-
tions. We now build on ME to develop the model
MEC, which exploits the context of mentions to im-
prove matching accuracy. We consider two types of
context: attributes external to names (age, gender,
co-star, studio, etc.), and co-occurrence of entities.

6.1 Exploiting External Attributes

We associate with each mention a set of external
attributes, defined based on the attributes of the
database as well as the types of mentions we can
automatically discover from the text. Recall (model
MESec. 5) that after selecting a set of entities Ed for d,
we generate a representative r for each entity e ∈ Ed,
then generate mention m from representative r, by
transforming the internal attributes of r.

In the current model MEC, we generate mention
m from representative r by transforming both internal
and external attributes of r. We compute this transfor-
mation probability as follows. Given any two elements
n1, n2 ∈ W (e.g., n1 is a mention m and n2 is a rep-
resentative r), assuming independence among all at-
tributes (both internal and external), we can compute

probability P (n2|n1) as a product distribution over at-
tributes as in Eq. 3. The independence assumption
clearly does not hold, but it reduces runtime complex-
ity, and is shown empirically to work well (Sec. 8).

Let the set of internal and external attributes be
a1, . . . , ap. Let n1 = (a1 = v1, a2 = v2, ..., ap = vp)
and n2 = (a1 = v′1, a2 = v′2, ..., ap = v′p)). Since the
external attributes could be of binary, numeric and
textual value, we adopt a more general model to com-
pute P (v′k|vk)(k = 1, · · · , p) for each pair of attribute
values. (1) We first measure the distance between the
corresponding attribute values distk(v′k, vk) = dk us-
ing an attribute-specific distance metric. As default
metrics, for textual attributes, we convert the Soft-
TFIDF [9] similarity between them into a distance;
for numeric attributes, such as user rating, we measure
the Manhattan distance. This approach is general in
that any state-of-art distance metric can be integrated
into the model, as it becomes available. (2) We then
compute P (v′k|vk) as a variation of the Gaussian dis-
tribution (because dk is always non-negative):

fk(v′k|vk) ≡
1

√

π/2σk

· exp (−d2
k/σ2

k) (4)

Currently we assign a constant density to missing val-
ues, and found that it empirically works well, though
more sophisticated methods are clearly possible.

We learn the standard variance σk for each attribute
when learning the model as in Sec. 5.2. Given a set
of annotated entity-representative pairs {(e, r)}n

1 , we
compute the maximum likelihood estimation of σk for

each attribute ak as: σk = [

∑

(e,r)
distk(vk,v′

k)2

n]1/2,
where distk(vk, v′k) is the distance between corre-
sponding attribute values in e and r.

6.2 Exploiting Entity Co-occurrence

Exploiting entity co-occurrence further improves
matching accuracy (see example in Sec. 4.2. We cur-
rently exploit by: (1) modeling entity co-occurrence as
conditional probability between entities P (e2|e1); and
(2) integrating it as an external attribute.

Modeling as Conditional Probabilities: In the
document generation process (Section 5.1), instead of
assuming independence among entities, we select en-
tities sequentially according a conditional probability
P (ei|E

i−1
d): each entity ei is selected into a document

d according to the set of entities Ei−1
d selected be-

fore it. This gives P (Ed) =
∏|Ed|

i=1 [P (edi|E
i−1
d)], where

E0
d = ∅ and P (ed1|E0

d) = P (ed0). Thus we have

P (d) ≈

|Ed|
∏

i=1

[P (edi|E
i−1
d)P (rdi|edi)]×

∏

(rdj ,mdj)

P (mdj |rdj).

(5)
Computing P (edi|E

i−1
d) raises the challenge of ranking

entities in a document in a sequential order, and also
the sparsity problem when learning the model in an

unsupervised setting. To address these, we approxi-
mate P (edi|E

i−1
d) as maxedj∈Ed,i6=jP (edi|edj). Next,

we approximate P (edi|edj) as P (edi), if edi and edj

never co-occur, and as 1 otherwise. We now can apply
these formulas directly in the Truncated EM algorithm
(Section 5.4), to compute P (edi|E

i−1
d).

Integrating as an External Attribute: We also
integrate entity co-occurrance as an additional exter-
nal attribute to each representative/entity. That is, we
expand the representation of a representative/entity
with an external attribute con. This set-valued at-
tribute contains all other representative names in the
same document. For example, for an author in a ci-
tation, its con attribute contains all other coauthor
names. The con attribute of an entity is the combina-
tion of the con attributes of all its representatives in
different documents.

Let the con attribute of a representative r and
an entity e be con(r) = {n1, n2, . . .} and con(e) =
{n′

1, n
′
2, . . .}. To measure their distance, we first apply

the SoftTF-IDF [9] string metric to compute the simi-
larity s(ni, n

′
j) ∈ [0, 1] (ni ∈ con(e), n′

j ∈ con(e)), then
compute the distance as

distcon(r, e) ≡
∏

ni∈con(r)

[1 − maxn′

j
∈con(e)s(ni, n

′
j)] (6)

The probability of the context of a representative
being transformed from that of an entity is still com-
puted by Equation 4. Note that we do not expand
the representation of a mention since this co-occurring
information does not benefit the mention level.

7 Knowledge Transfer via Contexts
As we have motivated in Section 4.3, often an en-
tity can “borrow” some context from its neighboring
entities, and leverage the augmented context to in-
crease matching accuracy. Hence, in the final exten-
sion, MEC2, we enable such “borrowing”.

Similar to model MEC, in MEC2 we add to each rep-
resentative/entity a context attribute con. However,
unlike MEC, this attribute now not only contains the
co-occurring names in the same document, but also
the names of “distant”: co-occurring entities (e.g., co-
occurring entities of co-occurring entities).

However, exploiting more distant entity dependency
can hurt matching accuracy, if it links irrelevant enti-
ties together. The problem is then how far we should
follow context of entities. Currently we adopt the fol-
lowing mechanism. Let cl(e) be the l-th context of e,
namely, the set of entities that have a recursive co-
occurring relation of distance no larger than l from en-
tity e. We then consider the con attribute of an entity
e to be the set {c1(e), . . . , ck(e)}, for a pre-specified
k (currently set at three in our experiments). The
distance between the contexts of a representative and
an entity is then a weighted sum of the distance over
each level of context: distcon(r, e) ≡

∑

l wl ·distcl
(r, e),

where distcl
(r, e) is defined as a distance between two

sets of names, measured in the same way as in Equa-
tion 6. We currently apply a reciprocal weighting:
wl ≡ 1/l, to reflect the intuition that more distant
contexts contribute less to the matching process.

8 Empirical Evaluation
We now present experimental results that demon-
strate the utility of MEDIATE. We show that MEDI-
ATE significantly increases accuracy over current base-
line matching methods, and that it can utilize text to
improve accuracy for record matching, and vice versa.

8.1 Experimental Settings

Data Sets: We evaluated MEDIATE on two data
sets obtained from the Internet Movie Database IMDB
at imdb.com and the CS Bibliography DBLP at
dblp.uni − trier.de. From IMDB, we downloaded all
news articles in 2003-2004 (to be treated as text doc-
uments in our experiments), then retrieved the IMDB
home pages of people (such as actors, directors) and
movies mentioned in the news articles. Next, we
converted each home page into a structured record,
thereby obtaining two tables: PEOPLE and MOVIES,
whose schemas are shown in Figure 6.

From DBLP, we downloaded 472 home pages of au-
thors, focusing on home pages with high degree of am-
biguity. For each paper X in the downloaded home
pages, we followed URL links to retrieve home pages
of the conference that X was published in, as well as
the HTML abstract (wherever available) that is a text
blurb listing the conference name, author affiliation,
and the paper abstract. The conference home pages
and HTML abstracts are treated as the text docu-
ments in our experiments. Finally, we converted each
paper citation to a structured record, thereby obtain-
ing a table: CITATIONS, whose schema is shown in
Figure 6.

We then marked up the mentions (people names,
movie titles, and author names), exploiting the already
existing HTML markups and employing an automatic
tagger method whenever necessary. Next, we manually
found all pairs of matching mentions, to be used in
evaluating experimental results.

In the next step, following common research prac-
tice in record linkage [18, 2], we perturbed the tables of
the data sets, to generate varying degrees of semantic
ambiguity for experimental purposes. For the IMDB
tables, we randomly selected records with a probabil-
ity p, then perturbed each selected record in several
ways, e.g., randomly adding titles and misspelling, and
abbreviating the first names. For movie titles we ran-
domly removed articles (a, an, the) and sequel num-
bers (e.g., Star War III → Star War), and added mis-
spelling. We also randomly split records, by keeping
certain mentions (e.g., certain actor names in attribute
actors of table MOVIES in Figure 6), and dropping oth-
ers. We also perturbed the DBLP table by randomly

IMDB: Two tables: people and movies; with 2,043 records and 868 text documents;

People:<name, gender, brithdate, birthplace, deathdate, deathplace, movies>

Movies: <title,year,genre,runtime,language,country,director,color,rating,actors>

Contains 9,725 mentions of 1,687 entities, and 55,147 correct matching pairs.

People have 1,231 records 4,227 mentions.

Movies have 812 records 5,498 mentions.

DBLP: One table of citations with 944 records and 721 text documents;

Citations: <title, authors, coference/journal, pages, year>.

Contains 7,356 mentions of 1672 authors, and 55,186 correct matching pairs.

Figure 6: Characteristics of the data sets.

removing middle names, and abbreviating first names.
Figure 6 describes a data set where all IMDB

records were perturbed (i.e., p = 1). Our goal is to
match the mentions of three types of entities: people,
movies, and authors, in these data sets. We use this
data set for experiments in Sections 8.2- 8.4. In Sec-
tion 8.5, we present sensitivity analysis with data sets
perturbed using varying p values.

Baseline Matching Methods: We compare ME-
DIATE with three methods commonly used in record
linkage and matching mentions in text.

• Pairwise matching of names: This method de-
clares two mentions matched if the similarity of their
names exceeds a threshold. For computing similari-
ties, we use SoftTF-IDF, a measure described in [9]
and shown empirically to be the best among several.

• Clustering: Many different clustering algorithms
have been developed for record linkage (e.g., [25, 10]),
as well as mention matching in text [22]. We im-
plemented a variation of these algorithms, using the
SoftTF-IDF measure [9] to compute similarities be-
tween mention names.

• Pairwise LW (linear weight) record linkage:
When examining MEDIATE’s performance on the task
of record linkage, we also want to compare it to state-
of-the-art record linkage methods. Numerous such
methods have been developed in the past few years
(see Section 3), but no comprehensive study is avail-
able yet to evaluate them. For our experiments, we im-
plemented the pairwise attribute-based method, which
has been applied successfully in many database and
AI works [18, 35, 9]. Given two records, this method
computes a similarity score between each pair of corre-
sponding attributes (using attribute-specific similarity
measures), then combines the scores and deciding the
match using linear weighted sum, or learning meth-
ods such as decision tree, SVM, etc. [35]. We experi-
mented with a small set-aside developing set and found
linear weighted sum work best.

Performance Measures: We convert the outcome
of each matching method into a set Mp of mention
pairs that are predicted to match. Since we want to
retrieve all and only matching pairs, we use precision,
recall, and F-1 to measure the method’s performance.
Specifically, let Ma be the set of all matching pairs

from the data set (as determined manually). Then pre-
cision P = |Mp∩Ma|/|Mp|, recall R = |Mp∩Ma|/|Ma|,
and F − 1 = (2P · R)/(P + R). These measures are
commonly used in record linkage and mention match-
ing in text [22].

8.2 Overall Matching Accuracy

Table 1: Matching accuracy over both databases & text.

F1(R/P) IMDB DBLP
Entity Type Person (4227) Movie (5498) Author (6356)

Pairwise 60.5 (65.7/56.0) 75.0 (84.4/67.4) 67.4 (66.0/68.9)
Clustering 54.2 (74.7/42.5) 76.7 (77.3/76.1) 61.9 (68.1/56.9)
Model ME 74.1 (63.6/88.8) 77.5 (75.7/79.3) 77.7 (86.3/70.6)
Model MEC 74.7 (63.3/91.0) 80.7 (76.7/85.1) 78.5 (86.3/72.0)

Model MEC2 77.2 (67.3/90.5) 81.7 (78.1/85.6) 81.6 (85.9/77.8)

Table 1 shows the accuracy of different methods for
mention matching over both databases and text. The
rows show the F-1 values (with R and P in paren-
theses) for pairwise matching, clustering, ME, MEC,
and MEC2 (i.e., the complete MEDIATE system). Note
that the LW record linkage method is not applicable
because it cannot extract attribute values for mentions
in the text documents.

The results show that MEC2 achieves high accu-
racy across the entity types in both IMDB and DBLP,
ranging from 77.2 to 81.7% F-1. In contrast, the best
baseline methods (pairwise for actors and authors, and
clustering for movies) obtain only 60.5 - 76.7% F-1.

Compared to the best baseline, applying ME sig-
nificantly improves accuracy by 10.3 - 13.6% (except
0.8% for movies). Exploiting context and entity co-
occurrence in MEC further improves accuracy by 0.6 -
3.2%. Exploiting recursive context in MEC2 adds 1 -
3.1%. In all our experiments, subsequent versions of
MEDIATE outperform previous ones, confirming that
our generative model is able to exploit immediate con-
text, entity co-occurrence, and recursive context.

An analysis of the results shows that the accuracy
gains depend on the nature of transformations for men-
tions, as well as the discriminative power of the con-
text. For instance, movie titles usually are not trans-
formed as frequently or significantly as person names.
This explains why the basic MEDIATE which relies
only on movie titles to match movies obtained only
a minimal improvement over pairwise and clustering.

Finally, Table 2 shows the number of real-world en-
tities that MEC2 estimated in each iteration of the
Truncated EM algorithm. The final estimated num-
bers of entities, and the correct number of entities are
in the last second lines, respectively.

Table 2: Number of entities, as estimated in each iteration.

Person Movie Author
Initialization 2111 2611 4124
1st Iteration 1423 1559 2145

Last Iter. (between 5-8) 963 927 1382
Annotated 890 797 1672

Accuracy over Databases, Text, and Cross-
Linking: To further understand the above results,
we break the accuracy down into “within database”,

People Movies Authors

50

60

70

80

90

Text helps DB

A
cc

u
ra

cy
 F

1 (
%

)

Pairwise Matching
Clustering
LW Record Matching
MEC2 over DB
MEC2 over DB, exploit text

Figure 7: MEC2 achieves significantly higher accuracy
than LW record linkage when applied to databases, and
obtains even higher accuracy when exploiting text.

People Movies Authors

60

70

80

90

DB helps Text
Pairwise matching
Clustering
MEC2 over Text
MEC2 over text, exploit DB mentions
MEC2 over text, exploit DB entities

Figure 8: MEC2 can exploit databases to improve accuracy
over text.

“within text”, and “across database and text”, re-
spectively. The results (not shown on figures) demon-
strates that MEC2 (i.e., the complete MEDIATE) out-
performs the baselines across all three entity types,
and achieves accuracy of 70 - 91% F-1, while the
best baseline method achieves 51.8 - 84.8% F-1. This
suggests that MEDIATE can link mentions within
databases, text, and across them with high accuracy.

8.3 Exploit Text to Improve Record Linkage

Figure 7 shows the accuracy of MEDIATE in matching
records on the database side. For each of the three
entity types people, movies, and authors, the first four
bars show the F-1 accuracy of the pairwise matching
method, clustering, LW record matching, and MEC2,
when they are given only the databases (with no as-
sociated text). The last bar shows the accuracy of
MEC2 when it is also given text documents (as de-
scribed in Figure 6) and can exploit them for record
matching purposes. The results show that, first of all,
record matching beats baseline methods, which exploit
only names, to reach accuracy of 75.6-82.5% F-1. Sec-
ond, MEC2 even without the help of text beats record
matching significantly, improving accuracy by 6 - 8.6%
F-1, to reach 81.6 - 90%. Finally, when text is avail-
able, MEC2 can exploit it to improve accuracy across
all three entity types, by 0.9 - 3.9%.

8.4 Exploit DBs to Match Text Mentions

Figure 8 shows the accuracy of MEDIATE in matching
mentions in text. Again, for each entity type, the first
three bars show the accuracy of pairwise matching,
clustering, and MEC2 when they are not given any as-
sociated database. The fourth bar shows the accuracy
of MEC2 when it is given a database to aid in matching
mentions in text. The fifth bar describes a situation
similar to that of the fourth bar, but here MEC2 is
also told that the database contains all entities whose

0 20 40 60 80 100

50

60

70

80

90

100

Degree of Ambiguity

A
cc

u
ra

cy
 F

1 (
%

)

(a) People

0 20 40 60 80 100

60

80

100

Degree of Ambiguity

(b) Movies

0 20 40 60 80 100

60

80

100

Degree of Ambiguity

(c) Authors

MEC2

MEC
ME
Clustering
Pairwise

Figure 9: The MEDIATE system is robust across a broad
range of degrees of semantic ambiguity.

1000 5000 10000
0

20

40

60

80

Data Size (# of mentions)

R
u

n
n

in
g

 T
im

e
(s

ec
.)

Figure 10: Runtime of MEC2 as a function of data size.

mentions appear in text (a situation that commonly
arises in practice).

The results show that, on text side alone, best
baseline (pairwise or clustering) achieves 66.4 - 84.2%,
whereas MEC2 achieves 72.2 - 90%, resulting in a gain
of 5.7 - 12.4%. It also shows that MEC2 can exploit
the given databases to improve accuracy by 1.8 - 4.6%,
to reach 76.8 - 91.7%.

8.5 Sensitivity Analysis

Figure 9 shows the accuracy of the matching methods
over different degrees of semantic ambiguity. The data
points at, say, value 60 on the X axis, represent the F-
1 accuracies when run on a data set that was created
by perturbing the original IMDB and DBLP data sets
with p = 0.6. The results show that MEDIATE is ro-
bust to varying degrees of semantic ambiguity.

8.6 Efficiency

In our implementation, we have optimized MEDIATE
for efficiency, using the canopy/window techniques de-
tailed in [25, 18], as well as inverted indexing, to re-
duce the number of representative/entity pairs that
are compared in each iteration of the Truncated EM
algorithm (Section 5.4). Because of space limitation,
we defer the detailed description of these techniques to
the full paper. With these optimizations, our imple-
mentation ran under three minutes on an Intel Xeon,
with 1G memory and 2.5G CPU. Figure 10 shows the
runtime of MEDIATE as a function of the data size.

9 Conclusion and Future Works
We have proposed the MEDIATE approach which au-
tomatically matches entity mention within and across
both text and databases. At the heart of our approach
is a generative model that provides a probabilistic view
on how a data creator might have generated mentions
into a database record or a text document. MEDIATE
can employ the model to match multiple types of en-
tities, with no need for expensive annotated training
data. MEDIATE can also integrate multiple types of
relevant information into the model, such as the sim-
ilarity of mention names, context information such as

age, gender, and co-occurrence among entities. Ex-
periments on real-world data show that MEDIATE sig-
nificantly outperforms existing methods, and that it
can exploit text to improve record linkage, and vice
versa. Besides more extensive evaluation of MEDI-
ATE, we plan to extend it to exploit limited super-
vision (e.g., known number of entities) to better learn
the models, and to perform aggregate operations on
the found matches (e.g., to obtain reliable answers to
questions such as “how many movies has Peter Jackson
directed?”).

References

[1] E. Agichtein and V. Ganti. Mining reference tables for
automatic text segmentation. In Proc. of KDD-04, 2004.

[2] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Elimi-
nating fuzzy duplicates in data warehouses. In Proc. of
VLDB-02.

[3] A. Bagga and B. Baldwin. Entity-based cross-document
coreferencing using the vector space model. pages 79–85.
Association for Computational Linguistics, 1998.

[4] I. Bhattacharya and L. Getoor. Iterative record linkage for
cleaning and integration. In Proc. of the 9th ACM SIG-
MOD DMKD Workshop, 2004.

[5] M. Bilenko and R. Mooney. Learning to combine trained
distance metrics for duplicate detection in databases. Tech-
nical Report Technical Report AI 02-296, Artificial Intel-
ligence Laboratory, University of Texas at Austin, Austin,
TX, Feb. 2002.

[6] V. Borkar, K. Deshmukh, and S. Sarawagi. Automatic text
segmentation for extracting structured records. In Proc. of
ACM SIGMOD-01, 2001.

[7] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Ro-
bust and efficient fuzzy match for online data cleaning. In
Proc. of SIGMOD-03, 2003.

[8] W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity.
In Procceedings of SIGMOD-98, 1998.

[9] W. Cohen, P. Ravikumar, and S. Fienberg. A compari-
son of string metrics for name-matching tasks. In IIWeb
Workshop 2003, 2003.

[10] W. Cohen and J. Richman. Learning to match and cluster
entity names. In Proc. of SIGKDD-02.

[11] T. Dasu and T. Johnson. Exploratory Data Mining and
Data Cleaning. John Wiley and Sons, 2003.

[12] X. Dong, A. Halevy, J. Madhavan, and S. Nemes. Reference
reconciliation in complex information spaces. In Proc. of
SIGMOD-05, 2005.

[13] D. Freitag. Multistrategy learning for information ex-
traction. In Proc. 15th Int. Conf. on Machine Learning
(ICML-98), 1998.

[14] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. In Proc. of IJCAI-99, 1999.

[15] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. An
extensible framework for data cleaning. In Proc. of ICDE-
00.

[16] V. Ganti, S. Chaudhuri, and R. Motwani. Robust identifi-
cation of fuzzy duplicates. In Proc. of ICDE-05, 2005.

[17] L. Gravano, P. Ipeirotis, N. Koudas, and D. Srivastava.
Text join for data cleansing and integration in an rdbms.
In Proc. of ICDE-03.

[18] M. Hernandez and S. Stolfo. The merge/purge problem for
large databases. In SIGMOD Conference, pages 127–138,
1995.

[19] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in
large data sets. In Proc. of DASFAA-03, 2003.

[20] A. Kehler. Coherence, Reference, and the Theory of Gram-
mar. CSLI Publications, 2002.

[21] N. Koudas, A. Marathe, and D. Srivastava. Flexible string
matching against large databases in practice. In Proc. of
VLDB-04, 2004.

[22] X. Li, P. Morie, and D. Roth. Identification and tracing
of ambiguous names: Discriminative and generative ap-
proaches. 2004.

[23] X. Li, P. Morie, and D. Roth. Robust reading: Identifi-
cation and tracing of ambiguous names. In Proceedings of
HLT-NAACL, 2004.

[24] G. Mann and D. Yarowsky. Unsupervised personal name
disambiguation. 2003.

[25] A. McCallum, K. Nigam, and L. Ungar. Efficient clustering
of high-dimensional data sets with application to reference
matching. In Proc. of SIGKDD-00.

[26] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[27] A. Monge and C. Elkan. The field matching problem: Algo-
rithms and applications. In Proc. 2nd Int. Conf. Knowledge
Discovery and Data Mining, 1996.

[28] V. Ng and C. Cardie. Improving machine learning ap-
proaches to coreference resolution. 2002.

[29] Parag and P. Domingos. Multi-relational record linkage.
In Proc. of the KDD Workshop on Multi-Relational Data
Mining, 2004.

[30] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity uncertainty and citation matching. In Proc. of
NIPS-03, 2003.

[31] E. Rahm and P. Bernstein. On matching schemas auto-
matically. VLDB Journal, 10(4), 2001.

[32] E. Rahm and H. Do. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[33] V. Raman and J. Hellerstein. Potter’s wheel: An interac-
tive data cleaning system. In The VLDB Journal, pages
381–390, 2001.

[34] P. Ravikumar and W. Cohen. A hierarchical graphical
model for record linkage. In Proc. of UAI-04, 2004.

[35] S. Sarawagi and A. Bhamidipaty. Interactive deduplication
using active learning. In Proc. of SIGKDD-02.

[36] W. Soon, H. Ng, and D. Lim. A machine learning ap-
proach to coreference resolution of noun phrases. Com-
putational Linguistics (Special Issue on Computational
Anaphora Resolution), 27:521–544, 2001.

[37] S. Tejada, C. Knoblock, and S. Minton. Learning domain-
independent string transformation weights for high accu-
racy object identification. In Proc. of the 8th SIGKDD
Int. Conf. (KDD-2002), 2002.

[38] M. Weis and F. Naumann. Dogmatix tracks down dupli-
cates in xml. In Proc. of SIGMOD-05, 2005.

[39] B. Wellner, A. McCallum, F. Peng, and M. Hay. An in-
tegrated, conditional model of information extraction and
coreference with application to citation matching. In Proc.
of UAI-04, 2004.

[40] W. Yih and D. Roth. Probabilistic reasoning for entity and
relation recognition. In Proc. of COLING’02, 2002.

