
Report No. UIUCDCS-R-2006-2714 UILU-ENG-2006-1746

Support Tensor Machines for Text Categorization

by

Deng Cai, Xiaofei He, Ji-Rong Wen, Jiawei Han and Wei-Ying Ma

April 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Support Tensor Machines for Text Categorization∗

Deng Cai† Xiaofei He‡ Ji-Rong Wen∗ Jiawei Han† Wei-Ying Ma∗

† Department of Computer Science, University of Illinois at Urbana-Champaign

∗ Microsoft Research Asia
‡ Yahoo! Research Labs

Abstract

We consider the problem of text representation and categorization. Conventionally, a text

document is represented by a vector in high dimensional space. Some learning algorithms

are then applied in such a vector space for text categorization. Particularly, Support Vector

Machine (SVM) has received a lot of attentions due to its effectiveness. In this paper, we

propose a new classification algorithm called Support Tensor Machine (STM). STM uses

Tensor Space Model to represent documents. It considers a document as the second order

tensor in Rn1 ⊗Rn2 , where Rn1 and Rn2 are two vector spaces. With tensor representation, the

number of parameters estimated by STM is much less than the number of parameters estimated

by SVM. Therefore, our algorithm is especially suitable for small sample cases. We compared our

proposed algorithm with SVM for text categorization on two standard databases. Experimental

results show the effectiveness of our algorithm.

1 INTRODUCTION

Text categorization is a task of assigning category labels to new documents based on a set of pre-

labelled documents. It is usually considered as a supervised or semi-supervised learning problem.

During the last decade, a lot of learning algorithms have been proposed for text categorization, such

as Support Vector Machines (SVM) [7], näıve bayes [9], k-nearest neighbors and linear least square

fit [19]. Most of these works are based on the Vector Space Model (VSM, [13]). The documents

are represented as vectors, and each word corresponds to a dimension. The main reason of the

popularity of VSM is probably due to the fact that most of the existing learning algorithms can

only take vectors as their inputs, rather than tensors.

∗ The work was supported in part by the U.S. National Science Foundation NSF IIS-03-08215/IIS-05-13678. Any

opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not

necessarily reflect the views of the funding agencies.
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Support Vector Machines (SVM) is a relatively new learning approach introduced by Vapnik in

1995 for solving two-class pattern recognition problem [15]. It is based on the Structural Risk Min-

imization principle for which error-bound analysis has been theoretically motivated. The method

is defined over a vector space where the problem is to find a decision surface that maximizes the

margin between the data points in a training set. Previous investigations have demonstrate that

SVM can be superior to other learning algorithms such as näıve bayes [18].

In supervised learning settings with many input features, overfitting is usually a potential prob-

lem unless there is ample training data. For example, it is well known that for unregularized

discriminative models fit via training-error minimization, sample complexity (i.e., the number of

training examples needed to learn “well”) grows linearly with the Vapnik-Chernovenkis (VC) di-

mension. Further, the VC dimension for most models grows about linearly in the number of

parameters [14], which typically grows at least linearly in the number of input features. All these

reasons lead us to consider new representations and corresponding learning algorithms with less

number of parameters.

In this paper, we propose a novel supervised learning algorithm for text categorization, which

is called Support Tensor Machine (STM). Different from most of previous text categorization

algorithms which consider a document as a vector in R
n based on the vector space model, STM

considers a document as a second order tensor in Rn1 ⊗ Rn2 , where n1 × n2 ≈ n. For example,

a vector x ∈ R
n can be transformed by some means to a second order tensor X ∈ Rn1 ⊗ Rn2 .

A linear classifier in R
n can be represented as aTx + b in which there are n + 1 (≈ n1 × n2 + 1)

parameters (b, ai, i = 1, · · · , n). Similarly, a linear classifier in the tensor space Rn ⊗ Rn can be

represented as uTXv+b where u ∈ Rn1 and v ∈ Rn2 . Thus, there are only n1 +n2 +1 parameters.

This property makes STM especially suitable for small sample cases.

Recently there has been a lot of interests in tensor based approaches to data analysis in high

dimensional spaces. Vasilescu and Terzopoulos have proposed a novel face representation algroithm

called Tensorface [16]. Tensorface represents the set of face images by a higher-order tensor and

extends Singular Value Decomposition (SVD) to higher-order tensor data. Some other researchers

have also shown how to extend Principal Component Analysis, Linear Discriminant Analysis, and

Locality Preserving Projection to higher order tensor data [2],[6],[20]. Most of previous tensor based

learning algorithms are focused on dimensionality reduction. In this paper, we extend SVM based

idea to tensor data for classification.

It is worthwhile to highlight several aspects of the proposed approach here:

• While traditional linear classification algorithms like SVM find a classifier in R
n, STM finds

a classifier in tensor space Rn1 ⊗Rn2 . This leads to structured classification.

• The computation of STM is very simple. It can be obtained by solving two quadratic op-

timization problems. For each single optimization problem, the computational complexity

approximately scales with
√

n, where n is the dimensionality of the document space. There
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are few parameters that are independently estimated, so performance in small data sets is

very good.

• This paper is primarily focused on the second order tensors. However, the algorithm and the

analysis presented here can also be applied to higher order tensors.

The rest of this paper is organized as follows: Section 2 provides a brief description of the algebra

of tensors and SVM. In Section 3, we give some descriptions on tensor space model for document

representation. The Support Tensor Machine (STM) approach for text categorization is described

in Section 4. In Section 5, we give a theoretical justification of STM and its connections to SVM.

The experimental results on text databases are presented in Section 6. Finally, we provide some

concluding remarks and suggestions for future work in Section 7.

2 PRELIMINARY

In this section, we provide a brief overview of the algebra of tensors and Support Vector Machine.

For a detailed treatment please see [8], [15].

2.1 The Algebra of Tensors

A tensor with order k is a real-valued multilinear function on k vector spaces:

T : R
n1 × · · · × R

nk → R

The number k is called the order of T . A multilinear function is linear as a function of each variable

separately. The set of all k-tensors on R
ni , i = 1, · · · , k, denoted by T k, is a vector space under the

usual operations of pointwise addition and scalar multiplication:

(aT )(a1, · · · ,ak) = a (T (a1, · · · ,ak)) ,

(T + T ′)(a1, · · · ,ak) = T (a1, · · · ,ak) + T ′(a1, · · · ,ak)

where ai ∈ R
ni . Given two tensors S ∈ T k and T ∈ T l, define a map:

S ⊗ T : R
n1 × · · · × R

nk+l → R

by

S ⊗ T (a1, · · · ,ak+l) = S(a1, · · · ,ak)T (ak+1, · · · ,ak+l)

It is immediate from the multilinearity of S and T that S ⊗ T depends linearly on each argument

ai separately, so it is a (k + l)-tensor, called the tensor product of S and T .

For the first order tensors, they are simply the covectors on R
n1 . That is, T 1 = Rn1 , where Rn1

is the dual space of R
n1 . The second order tensor space is a product of two first order tensor spaces,
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i.e. T 2 = Rn1 ⊗ Rn2 . Let e1, · · · , en1
be the standard basis of R

n1 , and ε1, · · · , εn1
be the dual

basis of Rn1 which is formed by coordinate functions with respect to the basis of R
n1 . Likewise,

let ẽ1, · · · , ẽn2
be a basis of R

n2 , and ε̃1, · · · , ε̃n2
be the dual basis of Rn2 . We have,

εi(ej) = δij and ε̃i(ẽj) = δij

where δij is the kronecker delta function. Thus, {εi ⊗ ε̃j} (1 ≤ i ≤ n1, 1 ≤ j ≤ n2) forms a basis of

Rn1 ⊗Rn2 . For any 2-tensor T , we can write it as:

T =
∑

1≤i≤n1
1≤j≤n2

Tijεi ⊗ ε̃j

This shows that every 2-tensor in Rn1 ⊗Rn2 uniquely corresponds to a n1 × n2 matrix. Given two

vectors a =
∑n1

k=1 akek ∈ R
n1 and b =

∑n2

l=1 blẽl ∈ R
n2 , we have

T (a,b) =
∑

ij

Tijεi ⊗ ε̃j(

n1∑

k=1

akek,

n2∑

l=1

blẽl)

=
∑

ij

Tijεi(

n1∑

k=1

akek)ε̃j(

n2∑

l=1

blẽl)

=
∑

ij

Tijaibj

= aT Tb

Note that, in this paper our primary interest is focused on the second order tensors. However,

the algebra presented here and the algorithm presented in the next section can also be applied to

higher order tensors.

2.2 Support Vector Machine

Support Vector Machines are a family of pattern classification algorithms developed by Vapnik [15]

and collaborators. SVM training algorithms are based on the idea of structural risk minimization

rather than empirical risk minimization, and give rise to new ways of training polynomial, neural

network, and radial basis function (RBF) classifiers. SVM has proven to be effective for many

classification tasks [7][12].

We shall consider SVMs in the binary classification setting. Assume that we have a data set

D = {xi, yi}m
i=1 of labeled examples, where yi ∈ {−1, 1}, and we wish to select, among the infinite

number of linear classifiers that separate the data, one that minimizes the generalization error, or

at least minimizes an upper bound on it. It is shown that the hyperplane with this property is the

one that leaves the maximum margin between the two classes. The discriminant hyperplane can

be defined as

f(x) = wTx + b (1)
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where w is a vector orthogonal to the hyperplane. Computing the best hyperplane is posed as

a constrained optimization problem and solved using quadratic programming techniques. The

optimization problem of SVM can be stated as follows:

min
w,b,ξ

1

2
wTw + C

m∑

i=1

ξi

subject to yi(w
Txi + b) ≥ 1 − ξi, (2)

ξi ≥ 0, i = 1, · · · , m.

Given a new data point x to classify, a label is assigned according to its relationship to the

decision boundary, and the corresponding decision function is

g(x) = sign
(
wTx + b

)
(3)

3 TENSOR SPACE MODEL

Document indexing and representation has been a fundamental problem in information retrieval

for many years. Most of previous works are based on the Vector Space Model (VSM, [13]). The

documents are represented as vectors, and each word corresponds to a dimension. In this section,

we introduce a new Tensor Space Model (TSM) for document representation.

In Tensor Space Model, a document is represented as a tensor. Each element in the tensor

corresponds to a feature (word in our case). For a document x ∈ R
n, we can convert it to the

second order tensor (or matrix) X ∈ R
n1×n2 , where n1 × n2 ≈ n. Figure 1 shows an example of

converting a vector to a tensor. There are two issues about converting a vector to a tensor.

The first one is how to choose the size of the tensor, i.e., how to select n1 and n2. In figure 1, we

present two possible tensors for a 9-dimensional vector. Suppose n1 ≥ n2, in order to have at least

n entries in the tensor while minimizing the size of the tensor, we have (n1−1)×n2 < n ≤ n1×n2.

With such requirement, there are still many choices of n1 and n2, especially when n is large.

Generally all these (n1, n2) combinations can be used. However, it is worth noticing that the

number of parameters of a linear function in the tensor space is n1 + n2. Therefore, one may try

to minimize n1 + n2. In other words, n1 and n2 should be as close as possible.

The second issue is how to sort the features in the tensor. In vector space model, we implicitly

assume that the features are independent. A linear function in vector space can be written as

g(x) = wTx. Clearly, the change of the order of the features has no impact on the function

learning. In tensor space model, a linear function can be written as f(X) = uT Xv. Thus, the

independency assumption of the features no longer holds for the learning algorithms in the tensor

space model. Different feature sorting will lead to different learning result in the tensor space

model.
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Figure 1: Vector to tensor conversion. 1∼9 denote the positions in the vector and tensor formats.

(a) and (b) are two possible tensors. The ‘x’ in tensor (b) is a padding constant.

In this paper, we empirically sort the features (words) according to their document frequency

and then convert the vector into a n1 ×n2 tensor such that n2 = 50. The better ways of converting

a document vector to a document tensor with theoretical guarantee will be left for our future work.

4 SUPPORT TENSOR MACHINES

4.1 The Problem

Given a set of training samples {Xi, yi}, i = 1, · · · , m, where Xi is the data point in order-2 tensor

space, Xi ∈ Rn1 ⊗ Rn2 and yi ∈ {−1, 1} is the label associated with Xi. Find a tensor classifier

f(X) = uTXv + b such that the two classes can be separated with maximum margin.

4.2 The Algorithm

STM is a tensor generalization of SVM. The algorithmic procedure is formally stated below:

1. Initialization: Let u = (1, · · · , 1)T .

2. Computing v: Let xi = XT
i u and β1 = ‖u‖2, v can be computed by solving the following

optimization problem:

min
v,b,ξ

1

2
β1v

Tv + C

m∑

i=1

ξi

subject to yi(v
Txi + b) ≥ 1 − ξi, (4)

ξi ≥ 0, i = 1, · · · , m.

Note: The optimization problem (4) is the same as (2) in the standard SVM algorithm. Thus,

any computational method for SVM can also be used here.
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3. Computing u: Once v is obtained, let x̃i = Xiv and β2 = ‖v‖2. u can be computed by

solving the following optimization problem:

min
u,b,ξ

1

2
β2u

Tu + C

m∑

i=1

ξi

subject to yi(u
T x̃i + b) ≥ 1 − ξi, (5)

ξi ≥ 0, i = 1, · · · , m.

Note: As above, the optimization problem (5) is the same as (2) in the standard SVM

algorithm and we can use the computational methods for SVM to solve (5).

4. Iteratively computing u and v: By step 2 and 3, we can iteratively compute u and v

until they tend to converge.

Note: The convergence proof is given in Section 5.2.

5 JUSTIFICATIONS

In this section, we provide a justification of our STM algorithm.

5.1 Large Margin Classifier in Tensor Space

Suppose we have a set of order-2 tensors X1, · · · ,Xm ∈ Rn1 ⊗Rn2 . A linear classifier in the tensor

space can be naturally represented as follows:

f(X) = sign
(
uTXv + b

)
, u ∈ R

n1 ,v ∈ R
n2 (6)

Equation (6) can be rewritten through matrix inner product as follows:

f(X) = sign
(
< X,uvT > +b

)
, u ∈ R

n1 ,v ∈ R
n2 (7)

Thus, the optimization problem in the tensor space is reduced to the following:

min
u,v,b,ξ

1

2
‖uvT ‖2 + C

m∑

i=1

ξi

subject to yi(u
TXiv + b) ≥ 1 − ξi, (8)

ξi ≥ 0, i = 1, · · · , m.

We will now switch to a Lagrangian formulation of the problem. We introduce positive Lagrange

multipliers αi, µi, i = 1, · · · , m, one for each of the inequality constraints (8). This gives Lagrangian:

LP =
1

2
‖uvT ‖2 + C

∑

i

ξi −
∑

i

αiyi

(
uTXiv + b

)

+
∑

i

αi −
∑

i

αiξi −
∑

i

µiξi
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Note that

1

2
‖uvT ‖2 =

1

2
trace

(
uvTvuT

)

=
1

2

(
vTv

)
trace

(
uuT

)

=
1

2

(
vTv

) (
uTu

)

Thus, we have:

LP =
1

2

(
vTv

) (
uTu

)
+ C

∑

i

ξi −
∑

i

αiyi

(
uTXiv + b

)

+
∑

i

αi −
∑

i

αiξi −
∑

i

µiξi

Requiring that the gradient of LP with respect to u, v, b and ξi vanish give the conditions:

u =

∑
i αiyiXiv

vTv
(9)

v =

∑
i αiyiu

TXi

uTu
(10)

∑

i

αiyi = 0 (11)

C − αi − µi = 0, i = 1, · · · , m (12)

From Equations (9) and (10), we see that u and v are dependent on each other, and can not be

solved independently. In the following, we describe a simple yet effective computational method to

solve this optimization problem.

We first fix u. Let β1 = ‖u‖2 and xi = XT
i u. Thus, the optimization problem (8) can be

rewritten as follows:

min
v,b,ξ

1

2
β1‖v‖2 + C

m∑

i=1

ξi

subject to yi(v
Txi + b) ≥ 1 − ξi, (13)

ξi ≥ 0, i = 1, · · · , m.

It is clear that the new optimization problem (13) is identical to the standard SVM optimiza-

tion problem. Thus, we can use the same computational methods of SVM to solve (13), such as

[5][10][11].

Once v is obtained, let β2 = ‖v‖2 and x̃i = Xv. Thus, u can be obtained by solving the

following optimization problem:

min
u,b,ξ

1

2
β2‖u‖2 + C

m∑

i=1

ξi

subject to yi(u
T x̃i + b) ≥ 1 − ξi, (14)

ξi ≥ 0, i = 1, · · · , m.
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Table 1: 41 semantic categories from Reuters-21578 used in our experiments

category ModeApte category ModeApte

Train Test Train Test

earn 2673 1040 ipi 27 9

acq 1435 620 nat-gas 22 11

crude 223 98 veg-oil 19 11

trade 225 73 tin 17 10

money-fx 176 69 cotton 15 9

interest 140 57 bop 15 8

ship 107 35 wpi 12 8

sugar 90 24 pet-chem 13 6

coffee 89 21 livestock 13 5

gold 70 20 gas 10 8

money-supply 70 17 orange 12 6

gnp 49 14 retail 15 1

cpi 45 15 strategic-metal 9 6

cocoa 41 12 housing 13 1

alum 29 16 zinc 8 4

grain 38 7 lumber 7 4

copper 31 13 fuel 4 7

jobs 32 10 carcass 6 5

reserves 30 8 heat 6 4

rubber 29 9 lei 8 2

iron-steel 26 11

Again, we can use the standard SVM computational methods to solve this optimization problem.

Thus, v and u can be obtained by iteratively solving the optimization problems (13) and (14). In

our experiments, u is initially set to the vector of all ones.

By comparing the optimization problems of SVM (2) and STM (8), also noting that Xi in (8)

is converted from xi in (2) through the “vector-to-tensor” conversion described in Section 3, STM

can be thought of as a special case of SVM with the following constraint:

wn1(j−1)+i = uivj (15)

For n-dimensional documents, the w in decision function of SVM is also n-dimensional, so there

are n + 1 (≈ n1 × n2 + 1) parameters for SVM. For STM, there are only n1 + n2 + 1 parameters.

Therefore, STM is much more computationally tractable and especially suitable for small sample

cases.
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5.2 Convergence Proof

In this section, we provide a convergence proof of the iterative computational method described

above. We have the following theorem:

Theorem 1 The iterative procedure to solve the optimization problems (13) and (14) will monoton-

ically decreases the objective function value in (8), and hence the STM algorithm converges.

Proof Define:

f(u,v) =
1

2
‖uvT ‖2 + C

m∑

i=1

ξi

Let u0 be the initial value. Fixing u0, we get v0 by solving the optimization problem (13). Likewise,

fixing v0, we get u1 by solving the optimization problem (14).

Notice that the optimization problem of SVM is convex, so the solution of SVM is globally

optimum [1][4]. Specifically, the solutions of equations (13) and (14) are globally optimum. Thus,

we have:

f(u0,v0) ≥ f(u1,v0)

Finally, we get:

f(u0,v0) ≥ f(u1,v0) ≥ f(u1,v1) ≥ f(u2,v1) ≥ · · ·

Since f is bounded from below by 0, it converges.

5.3 From Matrix to High Order Tensor

The STM algorithm described above takes order-2 tensors, i.e., matrices, as input data. However,

the algorithm can also be extended to high order tensors. In this section, we briefly describe the

STM algorithm for high order tensors.

Let (Ti, yi), i = 1, · · · , m denote the training samples, where Ti ∈ Rn1 ⊗· · ·⊗Rnk . The decision

function of STM is:

f(T ) = T (a1,a2, · · · ,ak) + b

a1 ∈ R
n1 ,a2 ∈ R

n2 , · · · ,ak ∈ R
nk

where

T (a1,a2, · · · ,ak) =
∑

1 ≤ i1 ≤ n1

.

.

.

1 ≤ ik ≤ nk

Ti1,··· ,ika1
i1
× · · · × ak

ik

As before, a1, · · · ,ak can also be computed iteratively.

We first introduce the l-mode product of a tensor T and a vector a, which we denote as T ×l a.

The result of l-mode product of a tensor T ∈ Rn1 ⊗ · · · ⊗ Rnk and a vector a ∈ R
nl , 1 ≤ l ≤ k will
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Table 2: 56 semantic categories from TDT2 used in our experiments

category
doc

num
category

doc

num
category

doc

num

20001 1844 20087 98 20007 28

20015 1828 20096 76 20041 28

20002 1222 20021 74 20064 28

20013 811 20026 72 20089 25

20070 441 20008 71 20034 25

20044 407 20056 66 20004 21

20076 272 20037 65 20063 19

20071 238 20065 63 20043 18

20012 226 20005 58 20083 17

20023 167 20074 56 20078 16

20048 160 20009 52 20072 13

20033 145 20091 51 20029 13

20039 141 20031 49 20093 12

20086 140 20024 47 20084 12

20032 131 20042 35 20028 12

20047 123 20020 34 20050 11

20019 123 20011 33 20085 10

20077 120 20022 31 20053 10

20018 104 20017 29

be a new tensor B ∈ Rn1 ⊗ · · · ⊗ Rnl−1 ⊗Rnl+1 ⊗ · · ·Rnk , where

Bi1,··· ,il−1,il+1,··· ,ik =

nl∑

il=1

Ti1,··· ,il−1,il,il+1,··· ,ik · ail

Thus, the decision function in higher order tensor space can also be written as:

f(T ) = T ×1 a1 ×2 a2 · · · ×k ak + b

The optimization problem of STM in high order tensors is:

min
a
1,··· ,ak,b,ξ

1

2
‖a1 ⊗ · · · ⊗ ak‖2 + C

m∑

i=1

ξi (16)

subject to yi(Ti(a
1,a2, · · · ,ak) + b) ≥ 1 − ξi,

ξi ≥ 0, i = 1, · · · , m.

Here ‖a1 ⊗ · · · ⊗ ak‖ denotes the tensor norm of a1 ⊗ · · · ⊗ ak [8].

First, to compute a1, we fix a2, · · · ,ak. Let β2 = ‖a2‖2, · · · , βk = ‖ak‖2. We then define

11



Table 3: Performance comparison on Reuters-21578

Train&Test split Method micro F1 macro F1

SVM .8490 .3355

5% Train STM .8666 .4818

SVM .8841 .4553

10% Train STM .8908 .5735

SVM .9225 .6618

30% Train STM .9196 .7357

SVM .9355 .7247

50% Train STM .9282 .7826

SVM .9368 .7356

ModApte STM .9321 .7877

Table 4: Statistical significance tests on Reuters-21578

Train&Test split sysA sysB s-test S-test T-test

5% Train STM SVM ≫ ≫ ≫
10% Train STM SVM > ≫ ≫
30% Train STM SVM < ≫ ≫
50% Train STM SVM < ≫ ≫
ModApte STM SVM < > ≫

“≫” or “≪” means P-value ≤ 0.01

“>” or “<” means 0.01 < P-value ≤ 0.05

“∼” means P-value > 0.05

ti = Ti ×2 a2 · · · ×k ak. Thus, the optimization problem (16) can be reduced as follows:

min
a
1,b,ξ

1

2
β2 · · ·βk‖a1‖2 + C

m∑

i=1

ξi

subject to yi(a
1T

ti + b) ≥ 1 − ξi, (17)

ξi ≥ 0, i = 1, · · · , m.

Again, we can use the standard SVM computational methods to solve this optimization problem.

Once a1 is computed, we can fix a1,a3, · · · ,ak to compute a2. So on, all the ai can be computed

in such iterative manner.

6 EXPERIMENTS

In this section, several experiments were performed to show the effectiveness of our proposed

algorithm. Two standard document collections were used in our experiments: Reuters-21578 and

TDT2. We compared our proposed algorithm with Support Vector Machines.
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6.1 Data Corpora

Reuters-21578 corpus1 contains 21578 documents in 135 categories. The ModApte version of

Reuters-21578 is used in our experiments. Those documents with multiple category labels are

discarded, and the categories with more than 10 documents are kept. It left us with 8213 doc-

uments in 41 categories as described in Table 1. For ModeApte split, there are 5899 training

documents and 2314 testing documents. After preprocessing, this corpus contains 18933 distinct

terms.

The TDT2 corpus2 consists of data collected during the first half of 1998 and taken from six

sources, including two newswires (APW, NYT), two radio programs (VOA, PRI) and two television

programs (CNN, ABC). It consists of 11201 on-topic documents which are classified into 96 semantic

categories. In this dataset, we also removed those documents appearing in two or more categories

and use the categories which contain more than 10 documents thus leaving us with 10021 documents

in 56 categories as described in Table 2. After preprocessing, this corpus contains 36771 distinct

terms.

Each document is represented as a term-frequency vector and each document vector is normalized

to 1. We simply removed the stop words, and no further preprocessing was done. For STM, we

empirically sort the features (words) according to their document frequency and then convert the

vector into a n1 × n2 tensor such that n2 = 50.

6.2 Evaluation Metric

The classification performance is evaluated by comparing the predicted label of each testing docu-

ment with that provided by the document corpus. The standard recall, precision and F1 measure

are used here [17]. Recall is defined to be the ratio of correct assignments by the classifier divided

by the total number of correct assignments. Precision is the ratio of correct assignments by the

classifier divided by the total number of the classifier’s assignments. The F1 measure combines

recall (r) and precision (p) with an equal weight in the following form:

F1(r, p) =
2rp

r + p

These scores can be computed for the binary decisions on each individual category first and then

be averaged over categories. Or, they can be computed globally over all the n×m binary decisions

where n is the number of total test documents, and m is the number of categories in consideration.

The former way is called macro-averaging and the latter way is called micro-averaging. It is

understood that the micro-averaged scores tend to be dominated by the classifier’s performance on

common categories, and the macro-averaged scores are more influenced by the performance on rare

categories. Providing both kinds of scores is more informative than providing either alone.

1Reuters-21578 corpus is at http://www.daviddlewis.com/resources/testcollections/reuters21578/
2Nist Topic Detection and Tracking corpus is at http://www.nist.gov/speech/tests/tdt/tdt98/index.html
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Figure 2: Micro-averaged F1 on Reuters-21578
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Figure 3: Macro-averaged F1 on Reuters-21578

We also use a set of significance tests for comparing two classification methods with various

performance measures. These significance tests are:

• Micro sign test (s-test): A sign test designed for comparing two systems, A and B, based on

their decisions on all the document/category pairs.

• Macro sign test (S-test): A sign test for comparing two systems, A and B, using the paired

F1 values for individual categories.

• Macro t-test (T-test): A t-test for comparing two systems, A and B, using the paired F1

values for individual categories.

For more details about these significance tests, please refer to [18].

6.3 Experimental Results

We used the LIBSVM system [3] and tested it with the linear model, since previous researches [18]

show that linear SVM is effective enough for text categorization.

The dataset was randomly split into training and testing sets. In order to examine the effective-

ness of the proposed algorithm with different size of the training set, we ran several tests that the
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Table 5: Performance comparison on TDT2

Train&Test split Method micro F1 macro F1

SVM .8881 .6477

5% Train STM .9064 .7507

SVM .9292 .7692

10% Train STM .9343 .8317

SVM .9602 .9063

30% Train STM .9563 .9152

SVM .9684 .9307

50% Train STM .9640 .9402

Table 6: Statistical significance tests on TDT2

Train&Test split sysA sysB s-test S-test T-test

5% Train STM SVM ≫ ≫ ≫
10% Train STM SVM ≫ ≫ ≫
30% Train STM SVM ≪ ∼ ∼
50% Train STM SVM ≪ > >

training set contains 5%, 10%, 30% and 50% documents, for both Reuters-21578 and TDT2. In all

these splits, we kept at least two documents in every category of the training set. For each test,

we averaged the results over 10 random splits. Moreover, for Reuters-21578 dataset, we also tested

on the ModApte split which contains around 70% training sample.

Table 3 and 5 show the classification results on two datasets. Table 4 and 6 summarized the

statistical significance tests. Figure (2,3,4,5) show the performance with respect to the training set

size.

As can be seen from the above results, when the training set is small (5% and 10%), STM

outperforms SVM on both micro-averaged F1 and macro-averaged F1. As the number of training

samples increases, STM performed better than SVM on macro-averaged F1 but worse on micro-

averaged F1.

As we know, the micro-level measure is dominated by the performance of the classifiers on large

categories, while the macro-level measure is more sensitive to the performance of the classifiers on

small categories [18]. The experimental results show the greater performance of STM on small

training sample cases over SVM.

To get a more detailed picture of the performance difference between STM and SVM over

different size of training samples, we plot the performance curves of STM and SVM over different

categories in Figure 6 and 7. The categories are sorted by the number of training samples. For

those categories with the same number of training samples, we averaged their F1 scores. We can
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Figure 4: Micro-averaged F1 on TDT2 dataset
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Figure 5: Macro-averaged F1 on TDT2 dataset

see that STM is better than SVM on the left side of the figures (corresponding to small training

set) but worse than SVM on the right side of the figures. This observation indicates that our STM

algorithm is especially suitable for small sample problems. This is due to the fact that the number

of parameters need to be estimated in STM is n1+n2+1 which can be much smaller than n1×n2+1

in SVM.

7 Conclusions

In this paper we have introduced a tensor framework for document representation and classification.

In particular, we have proposed a new classification algorithm called Support Tensor Machines

(STM) for learning a linear classifier in tensor space. Our experimental results on Reuters-21578

and TDT2 databases demonstrate that STM is especially suitable for small sample cases. This is

due to the fact that the number of parameters estimated by STM is much less than that estimated

by standard SVM.

There are several interesting problems that we are going to explore in the future work:

1. In this paper, we empirically construct the tensor. The better ways of converting a document

vector to a document tensor with theoretical guarantee need to be studied.

16



10
1

10
2

10
3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

ac
ro

 F
1

Number of training samples per category

STM
SVM

 

Figure 6: Performance curves of all categories

on Reuters-21578 dataset (30% training sam-

ples case)
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Figure 7: Performance curves of all categories

on TDT2 dataset (10% training samples case)

2. STM is a linear method. Thus, it fails to discover the nonlinear structure of the data space.

It remains unclear how to generalized our algorithm to nonlinear case. A possible way of

nonlinear generalization is to use kernel techniques.

3. In this paper, we use a iterative computational method for solving the optimization problem

of STM. We expect that there exists more efficient computational methods.
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