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W.E. Dunn, Advisor 

A majority of the design and component selection processes for mobile air 

conditioning systems are based on results obtained from steady-state analyses. 

Although valuable, these steady-state tests do not accurately simulate the 

operation of mobile air conditioners. To allow transient testing of mobile air 

conditioning systems for use in model development and component selection, a 

heavily instrumented test facility was built. The test facility can accept any 

prototype or production mobile air conditioning systems. The current setup . 
contains up-to-date components from a Ford 1994 Crown Victoria R-134a air 

conditioning. system. The design and construction of the Crown Victoria test 

sections, as well as several improvements made to the test facility, are discussed in 

detail. 

The test facility can achieve condenser and evaporator air-side versus 

refrigerant-side energy balances within 5% - quite good considering the large 

range of operating conditions tested. Also included in this report is a collection of 

preliminary transient results. These results display the versatility of the test stand 

and the ~bility to collect quality transient data. Future reports from this project will 

contain additional transient results and analyses. 
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1. INTRODUCTION 

Currently, the majority of the design and component-selection processes for 

mobile air conditioning systems are based on results obtained from steady-state 

analyses. While valuable, these steady-state tests do not accurately simulate the 

operating conditions of mobile air conditioners. Because the most typical control 

schemes for mobile air conditioners involve thermostatic expansion valves and/or 

compressor clutch cycling, mobile air conditioners operate most often under 

transient conditions. For this reason, research into the transient characteristics and 

behavior of mobile air conditioners can be valuable and can lead to improved 

performance and better component selection. Transient testing can also be used to 

develop better, more efficient techniques for controlling mobile air conditioning 

systems. 

1.1 Objectives 

To study the transient behavior of mobile air conditioning systems, a heavily 

instrumented test facility, originally designed by Weston (1995), is used to gather 

research quality data. Air conditioning components from a Ford 1994 Crown Victoria 

automobile are used to collect steady-state and transient data. However, before 

reliable transient data can be collected, the test stand must be validated by verifying 

the accuracy of the instrumentation and the component-level energy balances. A 

great deal of the work presented in this report was undertaken with the ·goal of 

achieving the best possible condenser and evaporator energy balances. Once 

steady-state energy balances are verified, the test stand can be used to collect 

reliable transient data for computer model development. A computer model, in 

conjunction with transient data, can then be used to explore alternative control 

techniques that will lead to better component selection and more efficient air 

conditioner operation. 
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2. DESIGN AND CONSTRUCTION OF EXPERIMENTAL FACILITY 

2.1 Introduction 

In this chapter,two major efforts are discussed in detail. The first effort 

involves improvements to the mobile air conditioning test facility described in the 

report by Weston (1995). Heavily instrumented, this facility was designed by 

Weston to gather research quality data for model development. During shake-down 

testing, however, several deficiencies were found; namely, (a) inaccurate mass 

flow rates from refrigerant-line venturi flow meters, (b) large scatter in air-side flow 

rate measurements, and (c) deficiencies in air-side temperature measurements. 

The second effort involves installing and testing a new Ford 1994 Crown 

Victoria air conditioning system. This system can .accommodate testing of 

reciprocating swashplate and scroll compressors without exchanging any 

components other than the compressor. Additionally, it is a robust system that 

allows testing of the great number of transient operating conditions required for 

model development. 

2.2 Improvements to Test Facility 

The following text discusses modifications made to the test stand to correct the 

three problems noted above. 

2.2. 1 Refrigerant-side Venturi Flow Rate Measurements 

In our test stand, venturi flow meters are used to measure refrigerant-side flow 

rates in the discharge line (after compressor and before condenser) and in the liquid 

line (after condenser and before throttling device). Previous tests identified large 

discrepancies between mass flow rates determined from the venturi flow meters and 

a very accurate, corriolis-effect meter (Micro Motion Model 025). Through extensive 

analysis, it was concluded that the Setra pressure transducers used to measure the 

pressure drop across the venturi were not working properly. The transducer output 

voltage--directly related to the pressure differential-varied greatly despite there 
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being no pressure difference appUed to the transducer. The large drift in output 

voltage was attributed to the amplifier in the Setra transducers. 

To corred the problem, new transducers without an amplifier were seleded and 

purchased from Sensotec, Inc. The new transducers are: (a) 0-0.5 psid (Serial No. 

437090) for the liquid-line venturi, and (b) 0-1 psid (Serial No. 411077) for the 

discharge-line venturi. Calibration curves for the two new pressure transducers are 

shown in Figure 2.1. An additional 0-1 psid (Serial No. 427337) pressure transducer 

was purchased as a spare. 

2.2.2 Air-side Flow Rate Measurements 

As stated earlier, instantaneous air-side mass flow rate readings were highly 

scattered although the air blowers were operating -at constant speed. We 

determined that the scatter was caused by nonuniform flow entering the air-side 

venturis. To corred this problem, honeycomb flow straighteners, as shown in Figure 

2.2, were installed in the dud upstream of the venturis. The flow straighteners 

proved sufficient for reducing the scatter in the air flow rate data. It is important to 

note that the air-side venturis, as all venturis, must be calibrated before reliable air 

flow rate measurements can be obtained. 

2.2.3 Air-side Temperature Measurements 

Arguably, the most critical improvement we made to the test facility was in the 

air-side temperature measurements. Previously, air temperature measurements 

were obtained by placing a nine-point thermocouple grid at the inlet and outlet of the 

heat exchanger. The nine-point thermocouple grid is sufficient for measuring the 

inlet air temperature, as it is essentially uniform. For this reason, a nine-point inlet 

thermocouple grid is again used in the new design. As one might exped, however, 

the heat exchanger outlet temperature profile is far from uniform. A nine-point 

thermocouple grid at the heat exchanger is not dense enough to accurately define 

the average outlet temperature. For this reason, new outlet temperature 
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measurement sections were designed. The design and construction of the sections 

used to measure the average outlet temperature are later discussed in detail. 

2.3 Ford 1994 Crown Victoria Component Description 

The following section describes the components used to collect experimental 

data for this report. All components were obtained from Ford Motor Company, 

owing to their active participation in the Air Conditioning and Refrigeration Center 

(ACRC). The components are all standard on a 1994 Ford Crown Victoria R-134a 

air conditioning system. A summary of the components used in the test stand is 

given in Table 2.1. 

Table 2.1: 1994 Ford Crown Victoria Component Summary 

Component Description Model & Part No. 

compressor swashplate, fixed displacement FS-10 19703 

condenser aluminum cross flow tube & fin 19712 

throttling device orifice tube type 190990-AA (brown) 

evaporator alloy cross flow plate & fin 19A559 

accumulator aluminum with desiccant 19C836 

2.3.1 Compressor 

The role of a compressor in an air conditioning system is to raise the pressure 

of the refrigerant and provide the necessary mass flow rate. The AlC compressor 

used in the test facility is a fixed displacement swashplate compressor (Ford type 

FS-10). In our test stand, the compressor is driven by a belt attached to the 

compressor drive motor. The magnetic clutch on the compressor can be engaged 

and disengaged by applying approximately 12 volts to the clutch leads. With the 

clutch engaged, compression is produced by five double-acting cylinders positioned 

axially around the compressor shaft. Cool, low pressure refrigerant enters the 
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compressor through a 5/8-in. diameter tube on the attached manifold. The 

refrigerant exits the compressor through a 1/2-in. tube on the manifold. 

2.3.2 Condenser ... 

As hot refrigerant enters the condenser it is cooled as it transfers energy to the 

air flowing across the face of the condenser. This transfer of energy causes the 

refrigerant temperature to decrease and the state to change from vapor to liquid. 

The Ford 1994 Crown Victoria condenser is a painted aluminum "tube and fin- cross 

flow heat exchanger. Refrigerant enters near the top of the condenser into a header 

and passes across the entire condenser face twice before returning to the header 

and exiting near the bottom of the condenser, as shown in Figure 2.3. The 

condenser cross-section measures approximately 30 in. wide by 19 in. tall. 

2.3.3 Throttling Device 

A throttling device takes high pressure liquid refrigerant exiting the condenser 

and drops its pressure rapidly. The rapid pressure drop converts the liquid 

refrigerant to a two-phase mixture, thereby achieving the refrigeration effect. The 

Ford 1994 Crown Victoria air conditioner uses an orifice tube contained inside 

aluminum tubing as a throttling device. Figure 2.4 shows a typical orifice tube. The 

standard 1994 Crown Victoria system uses an orange color-coded orifice tube with a 

nominal diameter of 0.057 inches. When the Ford system was first installed, it was 

difficult to obtain subcooled liquid refrigerant at the condenser outlet while 

maintaining superheated vapor at the exit of the evaporator. Not being able to 

obtain subcooled liquid and superheated vapor clearly presented a problem, as they 

are both required to obtain accurate enthalpies at the condenser and evaporator 

outlets, respectively. To eliminate this problem, a brown orifice tube with a nominal 

diameter of 0.048 in. was installed. The smaller diameter orifice tube, with its 

greater resistance to flow, reduced the mass flow rate and made is easier to achieve 

both subcooled liquid at the condenser outlet and superheated vapor at the 

evaporator outlet. 
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2.3.4 Evaporator 

One can say the evaporator plays the most important role in an air conditioning 

system, since it is what delivers cool, dehumidified air. As cold, two-phase 

refrigerant enters the"evaporator, it is heated by air flowing across the face of the 

heat exchanger. The refrigerant is heated, and the air cooled, as energy is 

transferred from the, air to the refrigerant. The 1994 Crown Victoria evaporator is 

made of an alloy material and, similar to the condenser, operates in a cross flow 

configuration. Two-phase refrigerant enters the evaporator at the bOHom, passes 

through a bulk of thin, flat plates three times, as shown in Figure 2.5, and exits 

superheated at the top of the heat exchanger. The evaporator cross-section is 

approximately 8-1/4 in. wide and 9 in. tall. 

2.3.5 Accumulator 

After leaving the evaporator, the refrigerant enters the accumulator. The 

accumulator serves three major purposes. The first is to prevent two-phase 

refrigerant exiting the evaporator from entering the compressor. Air conditioning 

compressors are only intended to handle vapor and can be damaged if two-phase 

refrigerant is allowed to enter for extended periods of time. The second purpose of 

the accumulator is to protect the compressor from solid contaminants that may be 

entrained in the refrigerant flow. Two desiccant bags are housed inside the 

accumulator to absorb moisture in the refrigerant system. Absorbing moisture is the 

last major purpose of the accumulator. Figure 2.6 shows the Ford 1994 Crown 

Victoria accumulator. The accumulator is approximately 3-1/2 in. in diameter and 8 

in. tall. 

2.4 Condenser Air Loop Design and Construction 

The condenser air loop contains all the equipment and components that 

provide and measure air to the condenser. A diagram of the condenser air loop is 

shown in Figure 2.7. Because the condenser inlet air is obtained from the room, the 

condenser inlet air temperature cannot be controlled and is determined by the 
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Figure 2.5: Ford evaporator refrigerant flow schematic (looking upstream). 

lOW.PRESSURE 
SERVICE ACCESS 
GAUGE PORT VALVE 

~--FROMAJC 
EVAPORATOR CORE 

Figure 2.6: Ford accumulator/drier. 
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Figure 2.7: Condenser air loop. (modified from Weston, 1995) 



ambient room conditions. This section describes the work required to install the new 

Ford 1994 Crown Victoria air conditioning system condenser. For discussion 

relating to other aspects of the condenser air loop, including a detailed description of 

the condenser air loop instrumentation, the reader should refer to the report by 

Weston (1995). 

To install the 1994 Ford Crown Victoria condenser, only the following test 

sections needed to be constructed: (a) reducer section, (b) measurement section, 

and (c) condenser section. Additionally, a new test section located after the 

condenser was built to correct inaccuracies in the condenser outlet temperature 

measurements. Figure 2.8 shows the rectangular duct pieces used in the condenser 

air loop. The reader should refer to Figures 2.7 and 2.8 frequently in the following 

discussion. 

2.4.1 Converging Section 

With previous condensers, a converging section was needed to reduce the size 

of the galvanized sheet metal duct from the standard 31 in. wide by 21 in. tall to the 

size of the condenser. The Ford Crown Victoria condenser, however, does not need 

a reducing section because its cross-section is only a few inches smaller than the 

galvanized sheet metal duct pieces used to hold the condenser in place. For this 

reason, the galvanized sheet metal duct that typically houses the reducer section is 

empty. 

2.4.2 Inlet Measurement Section 

The condenser inlet measurement section is contained inside a 31 in. by 21 in. 

by 8 in. (L x H x W) galvanized sheet metal duct and houses instrumentation for 

measuring the air-side temperature entering the condenser. As can be seen in 

Figure 2.9, the inlet measurement section is divided into two subsections-the first 

containing two flow conditioning fine-mesh screens, and the second containing a 

nine-point inlet thermocouple grid. 
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The flow conditioning subsedion is construded of 1/2-in. plywood and covered 

with aluminum foil tape (McMaster-Carr No. 76145A23 & 76145A24) to provide 

additional insulation. The plywood frame is 18-13/16 in. tall by 27-13/16 in. wide

the exad outside dimensions of the condenser. To ensure a uniform velocity profile 

entering the thermocouple grid and the heat exchanger, two fine-mesh screens are 

attached to the inlet ~nd outlet of the plywood frame. 

Located diredly downstream of the flow conditioning subsedion is the inlet 

temperature measurement subsection. This subsedion contains the nine-point 

thermocouple grid as well as seven access ports that allow measurement of the 

inlet temperature independently of the grid. Because the inlet air has passed 

through two fine-mesh screens at this point, the flow can be assumed to be uniform. 

All nine thermocouples and access ports are equally -spaced and numbered as 

shown in Figure 2.10. The thermocouples on the inlet grid are held together by 

fishing wire looped through holes drilled in the plywood frame. Yet another fine

mesh screen is located downstream of the thermocouple grid. 

2.4.3 Condenser Section 

As one might assume, the condenser section houses the Ford 1994 Crown 

Victoria condenser. A 1/2-in. plywood frame, covered with aluminum foil tape, is 

used to secure the condenser inside the 31 in. by 21 in. by 8 in. galvanized sheet 

metal dud. A diagram of the condenser sedion is shown in Figure 2.11. Two holes, 

cut out of the sheet metal duct, allow the condenser refrigerant tubing to be 

conneded to the rest of the refrigerant loop. The condenser sedion, as with the 

inlet measurement sedion, has seven access ports spaced 4 in. apart that allow 

dired measurement of the condenser outlet temperature independently of the outlet 

thermocouple grid. The outlet thermocouple grid will be discussed in sedion 2.4.4. 

Condenser sedion assembly was achieved by placing the wood frame inside 

the sheet metal dud, sliding the condenser into the wood frame, and securing the 

two remaining frame pieces with nails and aluminum foil tape. 
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2.4.4 Outlet Temperature Measurement Section 

The outlet temperature measurement section contains the air-side outlet 

thermocouple grid.. As previously stated, the outlet temperature profile is 

nonuniform, requiring a finer thermocouple grid than the nine-point grid used at the 

inlet of the condenser. In addition to a finer grid, the flow is contracted upstream of 

the outlet grid and cylinders are located directly before the thermocouples. The 

cylinders are used to generate eddies across the thermocouples and provide 

additional temperature averaging. Using the cylinders for temperature averaging is 

a novel technique that was selected after careful design and analysis based on our 

prior experience with wind tunnels. For the cylinders to perform properly, the 

Reynolds number of the air passing by the cylinders, with respect to the cylinder 

diameter, must be greater than 500 and the thermocouples must be approximately 

two diameters downstream of the cylinders. To obtain a Reynolds number greater 

than 500 at the cylinders and to remove flow inhomogeneities (required for accurate 

temperature average), the flow area is contracted to approximately 25% of the heat 

exchanger face area by a 1/4-in. plywood converging section. Figure 2.12 shows a 

drawing of the entire outlet measurement section. The reader should refer to this 

drawing frequently throughout this discussion. 

Using the method mentioned above, 40 thermocouples are located behind eight 

3/4-in. diameter cylinders and spaced two diameters (1-1/2 in.) apart. A schematic 

showing thermocouple numbering and spacing is provided in Figure 2.13. 

Selected because it can be easily cut, 1-in. thick foam insulation is used to 

secure the eight cylinders. Holes approximately 1 in. deep, drilled into the side of 

the foam insulation, hold the wood cylinders in place. Another sheet of 1-in. thick 

foam insulation is located after the cylinder section. This section provides the 

required 2 diameter spacing between the cylinders and thermocouples. The second 

foam piece also provides a foundation for the wire mesh used to hold the 40 

thermocouples with small wire ties. All 40 thermocouples are connected in parallel 

at an external junction box. A single thermocouple lead is used to measure the 
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thermocouple voltage of the entire parallel grid. The resulting measured 

thermocouple voltage is the arithmetic mean the 40 independent thermocouples. 

Downstream of the thermocouple grid is a 1/4~in. plywood diverging section. 

This section allows the flow to be expanded back to the size of the. original 

galvanized sheet metal duct. the separate pieces that constitute the condenser 

outlet measurement section are sealed and secured to each other with aluminum foil 

tape and putty, as shown in Figure 2.14. 

The condenser loop air humidity is measured using a Vaisala HMP35A 

humidity sensor located on the rectangular@to=round transition piece downstream of 

the condenser outlet thermocouple grid, as shown in Figure 2.7. Since the humidity 

ratio of air cannot be changed by heat addition, humidity is only measured after the 

condenser. For this reason, the humidity entering the condenser is assumed to be 

same as that at the condenser exit. It is important to note that, while the air 

temperature changes across the condenser, the of water in the air does 

2.4.5 Condenser Ductwork Assembly 

Once all condenser sections were constructed they were assembled together. 

The first step In accomplishing this was to join and seal the inside plywood-framed 

ductwork with aluminum foil tape and putty. It is extremely important that the 

ductwork not leak, as leaks will destroy the system calorimetry. The second step 

was to connect the flanges on the inlet measurement and condenser sections using 

small nuts and bolts. Foam inSUlation was then sprayed to fill the empty space 

between the galvanized sheet metal duct and the wooden frame. When applying the 

foam insulation, it is best to only spray several inches of insulation at a time and 

allow this amount to dry and expand before spraying again. While the insulation 

dries, it will likely flow over the edge of the sheet metal duct. The excess dry foam 

can then be cut with a small saw. condenser air loop duct pieces, except for the 

rectangular-to-round transition piece, were then joined together. The duct pieces 

were then aligned with the plenum and taped to the inside plenum wall with duct 

tape to prevent leakage. Finally, the rectangular-to-round transition 
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piece was attached to the exit of the outlet measurement section and condenser fan 

entrance. 

2.4.6 Condenser Air Loop Zone Box 

To ensure accurate thermocouple measurements, the condenser air loop 

thermocouples are placed inside an insulated, isothermal box. We refer to this box 

as the condenser air loop "zone box". The condenser air loop zone box contains the 

electrical connections for all condenser air-side measurements. Some of these 

connections are output signals to the Strawberry Tree data acquisition system, while 

others are inputs to instrumentation (such as power). Due to the limited amount of 

space in the other zone boxes, not all connections on the condenser air loop zone 

box concern condenser air loop measurements and equipment. Table 2.2 

summarizes the instrumentation connected through the condenser air loop zone 

box. A detailed diagram of the zone box is provided in Figure 2.15. The "name" 

heading in column one of Table 2.2 refers to the variable name used in Figure 2.15. 

As the condenser zone box diagram shows, a single thermocouple wire is used to 

transport the outlet air temperature signal from a separate zone box that 

consolidates the 40 outlet air thermocouples. A Type-T tbermocouple wire must be 

used for connecting the signal to avoid creating "virtual" thermocouples from 

connections made using wires with conductive materials other than those in Type-T 

thermocouples. All 40 thermocouples in the separate outlet temperature grid zone 

box are wired in a similar manner as the inlet thermocouple grid shown in 

Figure 2.15. 

2.5 Evaporator Air Loop Design and Construction 

Ukethe condenser air loop, the evaporator air loop contains all equipment and 

components that deliver air to the evaporator. Figure 2.16 shows a diagram of the 

evaporator air loop. The major difference between the evaporator and condenser air 

loops, other than the smaller size of the ductwork, is that the air in the evaporator 

loop is recirculated and an electric duct heater is used to control the evaporator inlet 
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Table 2.2: Condenser Air Loop Zone Box Summary 

Measurement Model Serial Input Output 
(Name, Instrument) No. No. Signal Signal 

Venturi Flow Tube P -In Setra 239 398563 Power Supply Data Aq.: 
(Pcav, Pressure Trans.) Rail: 24 V 0-5 V 

Venturi Flow Tube AP Setra C239 307533 Power Supply DataAq.: 
(dPcav, Pressure Trans.) Rail: 24 V 4-20 rnA 

Venturi Flow Tube T in Type-T N/A N/A DataAq.: 
(Tcav, Thermocouple) Thermocouple J.l.V 

Relative Humidity Vaisala 595725 Power Supply DataAq.: 
(RHcao, Humidity Sensor) HMP35A Rail: 24 V 0-5 V 

Temp @ Humidity Probe Vaisala 595725 Power Supply Data Aq.: 
(TRHcao, Humidity Sensor) HMP35A Rail: 24 V RTD 

Condenser T In Type-T N/A N/A DataAq.: 
(Tcai, Thermocouple Grid) Thermocouple J.l.V 

Condenser T Out Type-T N/A N/A DataAq.: 
(Tcao, Thermocouple Grid) Thermocouple J.l.V 

Refrigerant Flow Rate DS025S119SV 56767 Ale Power DataAq.: 
(mdoCmicro, Micro Motion) 4-20 rnA 

Refrigerant Oil % N/A N/A External 12V Flight TIITI8: 0-5 V 
(Sonic Device) Power Temp: 0-5 V 

Condenser Blower Set Pt. Toshiba 92854690 DataAq: NlA 
(Strawberry Tree Data Aq.) VF-SX 2037P Square Wave 

Condenser Heater Set Pt. CAPP/USA 964200201 DataAq: NlA 
(Strawberry Tree Data Aq.) . 535-44120BOSO 1 Not Used 

25 



To 

T©a@ 
(40 pt grkl) 

Thath ~CU~~~~~ 

Figure 2.15: Condenser loop zone box diagram. 

26 



N 

""" 

1 

15 14 12 13 

Flow 

1. Plenum 
2. Entrance Section 
3. Reducer Section 

9. Rectang~lar-to-Round Transition 
10. Outlet Humidity Sensor 
11. Blower 

4. Inlet Humidity Sensor 
5. Inlet Measurement Section 
6. Evaporator Section 
7. Outlet Measurement Section 

12. 6" Sheet Metal Pipe 
13. flow Straightener 
14. 3" PVC Pipe 
15. Venturi Row Tube 

8. Duct Heater Section 16. Plenum Screens 

figure 2.16: Evaporator air loop. (modified from Weston, 1995) 



air temperature. The heater is located before the blower so the blower can mix the 

air and prevent temperature stratification at the evaporator inlet. This sedion 

describes the work required to install the Ford 1994 Crown Vidoria air conditioning 

system evaporator, For discussion relating to other aspeds of the evaporator air 

loop. including a detailed description of the condenser air loop instrumentation, the 

reader should refer to the report by Weston (1995). 

To install the Ford 1994 Crown Vidoria evaporator, only the following test 

sedions needed to be construded: (a) reducer sedion, (b) measurement sedion, 

and (c) evaporator section. Additionally, a new test sedion was designed for 

accurately measuring the evaporator air outlet temperature. The galvanized sheet 

metal dud pieces used in the evaporator air loop are shown in Figure 2.17. The 

reader may wish to refer to Figures 2.16 and 2.17 in the following discussion. 

2.5.1 Converging Section 

located after the plenum, the converging sedion reduces the air flow area from 

the sheet metal dud standard of 16 by 16 in. to the evaporator face area of 8-3/8 in. 

wide by 9 in. tall. The converging sedion is constructed of 1/4-in. plywood and 

covered with aluminum foil tape. The four plywood pieces that constitute the 

converging section are joined together with small right angle metal brackets. A 

drawing of the evaporator converging sedion is shown in Figure 2.18. 

2.5.2 Inlet Measurement Section 

The evaporator inlet measurement sedion is housed inside a 16 in. by 16 in. by 

8 in. (l x H x W) galvanized sheet metal dud and contains instrumentation for 

measuring the evaporator air-side inlet humidity and temperature. As shown in 

Figure 2.19, the evaporator inlet measurement section is divided into two 

subsections. The first subsection contains a Vaisala Model HMP35A humidity 

sensor located between two flow conditioning fine-mesh screens. The second 

subsedion contains a nine-point inlet thermocouple grid used to measure the 

evaporator air inlet temperature. Both subsedions are constructed of 1I2-in. 
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35plywood and covered with aluminum foil tape. The plywood frames are 9 in. tall 

byS-3/S in. wide-the exact outside dimensions of the evaporator. 

The humidity probe is located 2-1/4 in. from the entrance of the humidity and 

flow conditioning subsection. Residing near the middle of the duct, the probe 

measures the relative humidity of the inlet evaporator air. To ensure a uniform 

velocity profile entering the thermocouple grid and the evaporator, two fine-mesh 

screens are attached to the inlet and outlet of the subsection plywood frame. 

As shown in Figure 2.19, the inlet temperature measurement subsection is 

located directly downstream of the humidity and flow conditioning subsection. This 

subsection contains the nine-point evaporator inlet thermocouple grid and seven 

access ports that can be used for measuring the inlet temperature independently of 

the grid. The air can be assumed to be uniform at this point because it has passed 

through two fine-mesh screens. All nine thermocouples are equally spaced and 

numbered as shown in Figure 2.20. The inlet thermocouples are attached to fishing 

wire that is looped through small holes drilled in the plywood frame. Another fine

mesh screen is located downstream of the thermocouple grid. 

2.5.3 Evaporator Section 

The evaporator section houses the Ford 1994 Crown Victoria evaporator. A 

1/2-in. plywood frame, covered with aluminum foil tape, is used to secure the 

evaporator inside the galvanized sheet metal duct. The evaporator section is shown 

in Figure 2.21. Two holes, cut out of the sheet metal duct, allow the evaporator 

refrigerant tubing to be connected to the rest of the refrigerant loop. Unlike the 

condenser section, the evaporator section contains a heavy-gauge sheet plastic 

drain pan that allows the condensate collected on the evaporator to drain into a 

graduated cylinder. The plastic drain pan funnels condensate into a drain hole that 

is secured to the galvanized sheet metal duct. During transient operation, the 

graduated cylinder that collects the condensate can be weighed to determine the 

latent load on the evaporator. The evaporator section, as with the inlet 

measurement section, has six access ports spaced 1.39 in. apart that allow direct 
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measurement of the evaporator outlet temperature independently of the outlet 

thermocouple grid. The outlet thermocouple grid is discussed in Sedion 2.5.4. 

Assembling the evaporator section is somewhat more complex than the 

condenser sedion. . "f:he initial step is to put the first wood frame inside the sheet 

metal dud. The evaporator is then placed against the first wood frame, paying 

careful attention to ~here the evaporator refrigerant tubing fits through the dud. The 

second wood frame is then seated against the evaporator and all seams, except for 

the plastic drain pan area, are sealed with aluminum foil tape. The final step is to 

secure the plastic drain pan to the plywood frame with aluminum foil tape and 

thumbtacks and to the galvanized sheet metal dud using the fittings shown in 

Figure 2.21. 

2.5.4 Outlet Temperature Measurement Section 

The outlet temperature measurement section contains the outlet air 

thermocouple grid. As stated earlier, the outlet temperature profile is nonuniform, 

requiring a finer thermocouple grid than the nine-point grid used at the inlet of the 

evaporator. In a similar fashion as the condenser outlet measurement sedion, the 

flow is contraded and the thermocouple grid is located behind a row of small wood 

cylinders. The eight 1/4-ln. diameter cylinders are spaced 1/2 in. apart and generate 

eddies to provide additional temperature averaging. To generate the required 

Reynolds number of at least 500 at the cylinder array. and to remove flow 

inhomogeneities (required for accurate temperature average), the flow area is 

contraded to approximately 25% of the evaporator face area. The converging 

sedion consists of three 1-in. thick pieces of foam insulation that incrementally 

decrease the flow area, as shown in Figure 2.22. 

Using the method stated above, 46 thermocouples are attached to a rigid wire 

mesh with small wire ties and placed two cylinder diameters (112 in.) behind the 

eight rods. A schematic showing the evaporator outlet thermocouple numbering and 

spacing is provided in Figure 2.23. 
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As with the condenser outlet temperature measurement section, i-in. thick 

foam insulation is used to secure the eight cylinders. Holes approximately 1 

deep, drilled into the side of the foam insulation, hold the wood cylinders place, 

Because the cylinders used in the evaporator outlet measurement section are 

smaller than those used in the condenser outlet sedion, no spacer piece is needed, 

For this reason, the thermocouple wire mesh is attached to the cylinder foam piece 

-maintaining the required two diameter spacing between the cylinders and 

thermocouples. 46 thermocouples are connected parallel at an external 

jundion box. A single thermocouple lead is used to measure the thermocouple 

voltage of the entire parallel grid. The resulting measured voltage is the arithmetic 

mean of the 46 independent thermocouples. 

Downstream of the thermocouple grid is a 1I4-in. plywood diverging section. 

This sedion allows the flow be expanded back to the original size of the 

galvanized sheet metal dud. fine-mesh screen is used at the exit of the diverging 

section to provide nearly uniform flow to the evaporator loop dud heater. Uniform 

flow is required at the dud heater to prevent the heater coils from overheating. All 

the pieces that constitute the evaporator outlet measurement sedion are sealed and 

secured to each other with aluminum foil and putty, as shown in Figure 2.24. 

As shown in Figure 2.16, the evaporator air-side outlet humidity is measured 

using a Vaisala Model HMP35A humidity sensor located on the redangular-to-round 

transition piece downstream of the dud heater, the evaporator air loop, inlet and 

outlet humidity sensors are necessary to account for the condensation of water that 

occurs on the evaporator surface. It was determined during data analysis that the 

evaporator air-side outlet humidity sensor was generating faulty readings when high 

evaporator inlet air temperatures were required, Faulty readings were obtained 

because (a) the air was not properly mixed before it was read by the sensor and, 

therefore, (b) the temperature at the sensor was above the maximum recommended 

operating limitof 140 OF, 
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2.5.5 Evaporator Ductwork Assembly 

The evaporator ductwork is assembled in a fashion similar as the condenser 

ductwork. The first step is to join and seal the inside plywood-framed ductwork with 

aluminum foil tape and putty while making sure no small holes exist. Small holes 

can cause leaks and destroy the system calorimetry. The second step is to connect 

the flanges on the inlet measurement and evaporator sections together using small 

nuts and bolts. Foam insulation is then sprayed to fill the empty space between the 

galvanized sheet metal duct and the wooden frame. All evaporator air loop pieces, 

except for the duct heater and the rectangular-to-round transition piece, are then 

joined together. The duct pieces are then aligned with the plenum and taped to the 

inside plenum wall with duct tape to prevent leakage. Finally, the duct heater and 

rectangular-to-round pieces are attached to the exit of the outlet measurement 

section and evaporator fan entrance. 

2.5.6 Evaporator Air Loop Zone Box 

To ensure accurate thermocouple measurements, the evaporator air loop 

thermocouples are located inside an insulated, isothermal box. The evaporator air 

loop zone box contains the electrical connections for all evaporator air-side 

measurements. As with the condenser air loop zone box, some of the connections 

are output signals to the data acquisition system, whereas others are inputs to 

instrumentation. In additi~n to housing all the evaporator air loop measurements, 

the zone box contains all the connections necessary to provide power to the 

compressor and measure the rotational speed and torque of the compressor drive 

motor. Table 2.3 summarizes the connections inside the evaporator zone box. A 

detailed diagram of the zone box is shown in Figure 2.25. 

A single Type-T thermocouple wire is again used to transport the air-side outlet 

temperature grid signal from an external junction box to the evaporator loop zone 

box. A Type-T wire must be used to prevent "virtual" thermocouples froin being 

created at all connections made with wire containing dissimilar metals. The 46 
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Table 2.3: Evaporator Air Loop Zone Box Summary 

Measurement Model Serial Input Output 
(Name, Instrument) No. No. Signal Signal 

Venturi Flow Tube P In Setra 239 409977 Power SUpply DataAq.: 
(Peav, Pressure Trans.) Rail: 24V 0-5 V 

Venturi Flow Tube AP . Setra C228-1 355739 Power SUpply DataAq.: 
(dPeav, Pressure Trans.) Rail: 24V 4-20 rnA 

Venturi Row Tube T lil Type-T NlA N/A DataAq.: 
(Teav, Thennocoup~) Thennocouple J,LV 

Inlet Relative Humidity Vaisaia 618479 Power Supply DataAq.: 
(RHeai, Humidity Sensor) HMP35A Rail: 24V 0-5 V 

Temp @ In Humidity Probe Vaisaia 618479 Power Supply DataAq.: 
(TRHeai, Humidity Sensor) HMP35A Rail: 24 V RTD 

Outlet Relative· Humidity Vaisaia 595698 Power Supply DataAq.: 
(RHeao, Humidity Sensor) HMP35A Rail: 24V 0-5 V 

Temp @ Out Humidity Probe Vaisaia 595698 Power Supply DataAq.: 
(TRHeao, Humidity Sensor) HMP35A Rail: 24 V RTD 

Evaporator T In Type-T N/A N/A DataAq.: 
(Teai, Thermocouple Grid) Thermocouple J,LV 

Evaporator T Out Type-T N/A --N/A DataAq.: 
(Teao, Thennocouple Grid) Thermocouple J,LV 

Compressor Drive Speed Daytronic 2072 Extemal Power DataAq.: 
(krpm, Speed Sensor) 3240A (8621) 0-5 V 

Compressor Drive Torque Daytronic 2103 Extemal Power DataAq.: 
(ktorque, Torque Sensor) 3278 (31030) 0-5 V 

Compressor Clutch On/Off N/A NlA DataAq: NlA 
(Strawberry Tree Output) Square Wave 

Evaporator Blower Set Pt. Toshiba 92854452 DataAq: NlA 
(Strawberry Tree Data Aq.) VF-SX2007P Square Wave 

Evaporator Heater Set Pt. CAPP/USA 964200202 DataAq: NlA 
(Strawberry Tree Data Aq.) 535-4412080S01 Not Used 
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Figure 2.25: Evaporator loop zone box diagram. 
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thermocouples in the outlet temperature grid are wired in a similar manner as the 

inlet thermocouple grid shown in Figure 2.25. 

2.6 Refrigerant Loop Design and Construction 

The refrigerant loop contains all the refrigerant tubing that delivers R-134a 

refrigerant to the Ford 1994 Crown Vi"ctoria air conditioning components. This 

section discusses issues related to the design and construction of the 1994 Crown 

Victoria refrigerant loop. For other details regarding the refrigerant loop, the reader 

should refer to the report by Weston (1995). 

2.6.1 General Description 

In the refrigerant loop, Circular tubing is used to connect the refrigerant sections 

of the Crown Victoria air conditioning components. The majority of these 

connections consist of copper tubing and fittings joined with silver brazing 

compound. Silver brazing is used because of its strength at high temperatures. In 

addition to the brazed connections, refrigerant hoses and Gyrolok compression 

fittings are used where necessary. 

Because the refrigerant loop was designed (Weston, 1995) to allow for easy 

modifications, the general procedure for installing a new air conditioning system is to 

install the air-side ductwork, attach the compressor to the drive motor, and use new 

or cleaned refrigerant tubing to connect the components together. The refrigerant

side connections made to the Ford 1994 Crown Victoria air conditioning components 

are discussed in the next section. 

2.6.2 Refrigerant Loop Connections 

2.6.2.1 Compressor 

A manifold, provided to us by Ford Motor Co., is used to attach the inlet and 

outlet refrigerant tubing to the Ford FS-10 compressor. The manifold provides 

female spring lock connections that, when mated with their male spring lock 
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counterparts, can be easily removed and re-attached without damaging the fittings. 

For this reason, male spring lock mating pieces were purchased from the 1994 

Murray Temperature Control catalog. The pieces used are: (a) one 900 male SIB-in. 

spring lock to #10 hose coupling (Murray No. 40S973) at the inlet, and (b) one 900 

male 1I2-in. spring lock to #B hose coupling (Murray No. 40S972) at the outlet. The 

#B and #10 hoses were attached to the couplings with a bubble-style crimping tool 

specifically designed for refrigerant hoses (Murray No. 400300). Figure 2.26 shows 

the compressor with the fittings described above. 

A 21-mm thick by 123S-mm long six groove belt (Gates Micro-V K0604BO), is 

used to connect the compressor drive pulley to the compressor. Specially designed 

brackets are used to attach the compressor to the test stand mounting plate. These 

brackets, in conjunction with the movable pulley on the compressor drive shaft, allow 

the compressor to be perfectly aligned to minimize vibration. Although the process 

of aligning the pulley can be quite tedious, it is necessary because excessive test 

stand vibration can cause the refrigerant-side compression fittings to loosen and 

leak. 

2.6.2.2 Condenser 

The condenser inlet and outlet tubes are attached to the refrigerant loop with 

Gyrolok 1/2-in. and 3/B-in., 900 -elbow compression unions, respectively. The 

origi"nal connections on the Crown Victoria condenser contained spring lock 

couplings. These couplings were removed, however, because their orientation did 

not allow the condenser tubing to be easily attached to the refrigerant loop. The 

condenser connections are shown in Figure 2.27. 

2.6.2.3 Throttling Device 

The orifice tube throttling device is contained inside a 1/2-in. nominal diameter 

aluminum tube. Using a flathead screwdriver, small indentations were made on the 

outside of the aluminum tube to prevent the orifice tube from sliding inside the 
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1. Compressor 
2. Manifold 
3. Spring-lock Couplings 
4. Refrigerant Hoses 

Figure 2.26: Compressor refrigerant loop connections. 

1. Inlet Tube 
2. Outlet Tube 
3. Compression Fittings 

Figure 2.27: Condenser refrigerant loop connections. 
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refrigerant tubing. Gyrolok 1/.2@in. compression fittings are again used conned 

orifice tube to rest refrigerant as shown Figure .2 . .2S. 

2.6.2.4 Evaporator 

Though somewhat more complicated to conned than the other components, 

evaporator is attached to the refrigerant loop with both compression fittings and 

hose couplings. the inlet, a Gyrolok 90°-elbow compression union is used 

mate 1/2-in. copper refrigerant tube to the 1/2=in. circular already 

attached the evaporator. Figure .2.29 shows the evaporator inlet refrigerant 

connedion. 

the standard 1994 Crown Vidoria system, the accumulator is threaded to a 

fitting conneded to the evaporator outlet tube. This configuration, however, is not 

possible in our system because the evaporator outlet pressure and temperature 

need to be measured. To allow space for the pressure and temperature 

measurement, and to be able to use the threaded connedion on the evaporator, a 

straight male SIB-in. insert "0" ring to #10 hose fitting (Murray No. 405010) is used at 

the evaporator outlet The #10 hose is conneded to the copper refrigerant tube with 

a hose to metal compression splicer (Murray 401052), as shown in Figure 2.30. 

2.6.2.5 Accumulator 

As stated above, the accumulator inlet contains a SIS-in. male threaded 

connedion. For this reason, a 90° SIS-in. female O-ring to #10 hose fitting (Murray 

No. 406903) is used to conned the refrigerant loop to the accumulator inlet The 

accumulator outlet is conneded to the refrigerant loop with a straight male 3/4-in. 

spring lock to #12 hose coupling (Murray No. 405074). Figure 2.31 shows the 

accumulator refrigerant loop connedions. 

summary of all the fittings used to connect the refrigerant loop to the Ford 

1994 Crown Vidoria components is provided Table 2.4. 
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1. Aluminum Tube 
(orifice tube inside) 

2. Compression Fittings 

Figure 2.28: Orifice tube refrigerant loop connections. 

1. 900 Elbow Compression 
Fitting 

2. Aluminum Tube 

Figure 2.29: Evaporator inlet refrigerant loop connection. 
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1. #10 Refrigerant Hose 
2. Hose to Metal Compression 

Splicer 

Figure 2.30: Evaporator outlet refrigerant loop connection. 

1. Accumulator 
2. Inlet Fitting 
3. Outlet Fitting 

Figure 2.31: Accumulator refrigerant loop connections. 
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Table 2.4: Fittings Used for Connecting Crown Victoria Components 
to Refrigerant Loop 

Compone~t I Fitting Description I Part No. 

Compressor Manifold 90° male S/8-in. spring lock Murray 40S973 
Inlet to '10 hose 

Compressor Manifold 90° male 1/2-in. spring lock Murray 40S972 
Outlet to'8 hose 

Condenser Inlet 1/2-in. 90° elbow Hoke Gyrolok 8LU 
compression union 

Condenser Outlet 3/8-in. 90° elbow Hoke Gyrolok 6LU 
compression union 

Throttling Device 1/2-in. 90° elbow Hoke Gyrolok 8LU 
(Orifice Tube) Inlet compression union 

Throttling Device 1/2-in. 90° elbow Hoke Gyrolok 8LU 
(Orifice Tube) Outlet compression union 

Evaporator Inlet 1/2-in. 90° elbow Hoke Gyrolok 8LU 
compression union 

Evaporator Outlet straight male S/8-in. insert Murray 40S010 
O-ring to '10 hose 

Accumulator Inlet 90° 518-in. female O-ring to Murray 406903 
'10 hose 

Accumulator Outlet straight male 3/4-in. spring Murray 40S074 
lock to '12 hose 
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2.6.3 Sight Glasses 

To provide further insight into the refrigerant flow characteristics, five 8-in. long 

circular glass tubes,.surrounded by a polycarbonate plastic shield, are placed at 

critical locations thf;oughout the refrigerant loop. As shown in the system schematic, 

Figure 2.32, these five "sight glasses" are at the following locations: (a) condenser 

inlet, (b) between condenser outlet and liquid-line venturi inlet, (c) evaporator inlet, 

(d) evaporator outlet, and (e) compressor inlet. A typical sight glass is shown in 

Figure 2.33. The sight glasses are extremely valuable for quickly diagnosing 

problems such as the following: 

• low charge level, characterized by two-phase refrigerant (bubbly flow) at the 

condenser outlet sight glass, 

• inadequate oil circulation, characterized by little or no oil being visible on the 

inside walls of the vapor line sight glasses, 

• lack of subcool exiting the condenser, again characterized by bubbly flow at 

the condenser outlet sight glass, and 

• lack of superheat exiting the evaporator, characterized by misted flow at the 

evaporator outlet sight glass. 

In addition to diagnosing problems, the sight glasses are used during normal test 

stand operation to determine refrigerant flow regimes. The reader should refer to 

the report by Weston (1995) for additional details on sight glass design and 

construction. 

2.6.4 Pressure and Temperature Measurements 

Since the long-term goal of our project is to develop and test a transient 

computer model for mobile air conditioning systems, an abundance of 

instrumentation is located throughout the refrigerant loop. Perhaps the most critical 

measurements, in conjunction with mass flow rate, are pressure and temperature. 

These measurements are important because pressure and temperature 

measurements are used to calculate single phase refrigerant enthalpies. Inaccurate 

readings can lead to incorrect system calorimetry. Another important issue is that 
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1. Refrigerant Tube 
2. Sight Glass 
3. Polycarbonate Sight Glass Shield 

Figure 2.33: Typical refrigerant loop sight glass. 

1. Pressure Transducer Connection 
2. 3" Type-T Thermocouple Probe 
3. Main Refrigerant Channel 

Figure 2.34: Typical refrigerant loop pressure and temperature tap. 
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refrigerant pressures and temperatures must be measured as close to each other as 

possible. To facilitate this, pressure and temperature taps, similar to the one shown 

in Figure 2.34, are widely used. 

As shown in the system schematic (Figure 2.32), refrigerant pressure and 

temperature are measured at the entrance and exit of the compressor, the 

condenser, and the evaporator-the components that account for and create energy 

transfer in the system. Pressure and temperature are also measured at the 

entrance of the refrigerant-side venturis. The reader may wish to refer to the system 

schematic frequently throughout the remainder of this chapter. 

All pressure transducers were calibrated using a very accurate dead weight 

tester. A valve has been placed across the low and high pressure ports of the 

differential pressure transducers, as shown in Figure· 2.35, so that zero offset 

readings can be obtained when the system is charged with refrigerant. Table 2.5 

contains descriptions of the pressure transducers and their calibration results. All 

pressure transducers,except for the Sensotec transducers discussed earlier, require 

a 24-VDC power input. 

As shown in Figure 2.34, Type-T immersion thermocouple probes are used to 

measure refrigerant-side temperatures. The 3-ln. length probes were purchased 

from Omega Engineering (Part No. TMQSS-062U-3). For other information 

concerning thermocouple selection and installation the reader should refer to the 

report by Weston (1995). 

2.6.5 Flow Rate Measurements 

Because it is a fundamental parameter required to calculate heat transfer, 

refrigerant-side mass flow rate measurements must be reliable and accurate. Two 

methods are used to measure the refrigerant-side· mass flow rate. The first method 

involves using two refrigerant-line venturi flow tubes in conjundion with differential 

pressure transducers. As shown in Figure 2.32, one venturi is located on the vapor 

line (after compressor and before condenser) and the other on the liquid line (after 

condenser and before throttling device). Figure 2.36 shows the vapor-line venturi 
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1 0 Pressure Transducer 
2. Copper Tube 
3. Cross Valve 

Figure 2.35: Differential pressure transducer cross valve assembly. 

1. Entrance Section 
2. Venturi Flow Tube 
3. Exit Section 
4. Refrigerant Tube 

Figure 2.36: Vapor-line venturi flow tube. 
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Table 2.5: Pressure Tranducer Description and Calibration Results 

Description Pressure Model Serial Output Calibration 
(Variable Name) Range No. Range Curve Fit 

Evaporator Inlet Refrigerant 
Rressure (Peri) 

0-100 psig Setra 207 247866 0-5 V P(psig)=20.038(V)-2.6437 

Evaporator Refrigerant Pressure 
Drop (dPer) 

0-25 psid Setra 228-1 258209 0-5 V P(psid)=5.1463(V)-0.25249 

Compressor Inlet Refrigerant 
Pressure (Pkri) 

0-100 psig Setra207 270489 0-5V P(psig)=20.38(V)-2.0578 

Comp Outlet Refri~rant Press 
(Pkro), Discharge enturi Inlet 

Ref Press (Pdv) 

0-500 psig Setra207 202281 0-5V P(psig)=121.07(V)-13.389 

Discharge Venturi Refr~erant 0-1 psid Sensotec Z 
Pressure Differential ( Pdv) 

411077 Input 
Dependent 

P(psid)=1.0144(mVouIVw-0.0022797 

Condenser Inlet Refrigerant 
Pressure (Pcri) 

0-500 psig Setra207 253458 0-5V P(psig)= 1 00.63(V)-9 .2972 

Condenser Refrigerant Pressure 0-25 psid Setra 228-1 258208 0-5 V P(psid)=4.9448(V)-2.55 
Drop (dPcr) 

. Uquid Venturi Inlet Refrigerant 
Pressure (Plv) 

0-500 psig Setra207 253459 0-5V P(psig)=1 00.86(V)-7 .0731 

Uquid Venturi Refriperant 0-0.5 psid SensotecZ 437090 . Input P(psid)=0.50393(mVouIV~-0.001313 
Pressure Differentia (dPlv) Dependent 

Evaporator Air Flow Venturi Inlet 0-15 inH20 Setra239 40997 0-5 V p(inH206=3·0014(V)-0.061338 
I Pressure (Peav) P(psig)= .10833(V)-0.0021936 

Evaporator Air Flow Venturi 
Pressure Differential (dPeav) 

0-1 psid Setra C228-1 355739 4-20 rnA P(psid)=0.065652(mA)-0.26203 

Condenser Air Flow Venturi Inlet 0-15 inH20 Setra239 398563 0-5 V p(inH2~=2.9698(V)-0.95581 
Pressure (Pcav) P(psig)- .10719(V)-0.034478 

Condenser Air Flow Venturi 0-30 inH20 SetraC239 307533 ,4-20 rnA P(in H2OJ=1.8956(mA)-7.6934 
Pressure Differential (dPcav) P(psid)= .06841 (mA)-0.27766 



flow tube installed in the system. A drawing showing the typical venturi pressure 

transducer connections is provided in Figure 2.37. The second method for 

measuring refrigerant mass flow rate involves using a Micro Motion coriolis-effect 

flow meter (Model D25). 

To obtain reliable mass flow rate readings from the venturi flow tubes, the 

refrigerant-side venturis must first be calibrated. Calibration was achieved by 

comparing the flow rates obtained by the very accurate (approximately ± 0.2%) 

Micro Motion meter and the two venturi flow tubes. Through a series of tests 
, " 

covering a wide range of mass flow rates, the correct venturi discharge coefficient 

was determined and henceforth applied to the venturi equation. The results of the 

refrigerant-side venturi calibrations are presented in Chapter 3. 

When measuring the refrigerant mass flow rate with the vapor-line venturi, it is 

important to observe the flow rate being displayed by the data acquisition system. 

This is important because the oil flowing with the refrigerant can sometimes cause 

an incorrect venturi mass flow rate to be reported. What creates this error is the 

surface tension of the oil causing oil to be pulled into the small 1/8 in. pressure 

transducer lines. Because the vapor-line venturi pressure transducer has a range of 

only 0-1 psid, the effect of the oil surface tension is significant and therefore does 

not allow the correct pressure to be transmitted to the differential pressure 

transducer. A quick solution to this problem is to periodically open the cross valve 

attached to the differential pressure transducer for a few minutes. To permanently 

solve the problem, larger diameter pressure transducer tubing should be installed on 

the vapor-line venturi. 

2.6.6 Oil Concentration Optimization 

According to our contacts at Ford Motor Co., the typical amount of oil circulating 

in the refrigerant loop for the 1994 Crown Victoria system operating under normal 

conditions is 3% by mass. Because of this recommendation, the 3% oil condition 

was our target before extensive data would be collected. On our test stand, as 

shown in Figure 2.32, there are two methods for measuring oil concentration. The 

56 



0'1 
-....I 

Shut-off valve 
(needle type) 

_ilIiIII!IlI!I.~ 

To differential pressure 
transducer (high port) 

" 
To differential pressure 
transducer (low port) 

To inlet P 
+ pressure transducer 

Figure 2.37: Refrigerant-side venturi pressure transducer connections. (Weston. 1995) 



first method uses a sonic device, developed by another investigator in our project, to 

measure real-time oil concentration. Although this method shows great promise, it is 

still under development and no quantitative data from this device is used in our 

study. 

The second method requires that a small section of refrigerant tubing, 

containing approximately 3 gm. of refrigerant-oil mixture, be removed. The section 

is then weighed and allowed to expand through a cascade impactor. A cascade . 

impactor is a device that incrementally separates particles (such as oil droplets) of 

varying diameters. The separation is achieved as large particles, with relatively 

higher momentum than the mainstream particles, "impact out- on surfaces inside the 

cascade impactor. As the refrigerant escapes through the impactor, the oil is 

deposited on the inside surfaces of the impactor and on small pieces of circular filter 

paper. The small pieces of paper are then be used to collect the excess oil on the 

impactor surfaces and weighed. The mass of the oil collected on the tissue paper, 

divided by the total mass removed from the small refrigerant tube, is the fraction of 

oil in the circulating refrigerant-oil mixture. Even though this method is highly 

accurate and repeatable, a small amount of refrigerant is lost each time a sample is 

removed from the system. After repeated tests, the amount of refrigerant removed 

can become significant enough to affect the heat transfer characteristics of the air 

conditioning system. 

Due to the abundance of pressure transducer tubing in our test stand, the initial 

amount of oil circulating was considerably lower « 1 %) than the 3% recommended 

by Ford. Using the method for determining oil concentration described in the 

previous paragraph, FS-10 compressor oil was added in 30 ml increments until the 

amount of oil circulating was approximately 3%. To add the oil, 30 ml was poured 

into a8 in. long by 1 in. diameter cylinder that was then charged with refrigerant 

vapor from the high pressure side of the refrigerant loop (compressor outlet). The 

pressurized cylinder and oil mixture was then turned upside down and discharged 

into the low pressure vapor section of the test loop (compressor inlet). As oil was 

being added to the refrigerant loop, increasingly higher amounts of oil were visible 

on the inside walls of the sight glasses. 
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2.6.7 Refrigerant Loop Zone Box 

The re.frigerantloop zone box is an insulated and isothermal chamber that 

contains the electricaf connections for all refrigerant-side pressure and temperature 

measurements. As with the two other zone boxes, some of the connections are 

outputs to the data acquisition system, whereas others are inputs to instrumentation. 

Table 2.6 summarizes the refrigerant loop zone box connections. Due to the 

abundance of refrigerant-side instrumentation, the refrigerant loop zone box contains 

only refrigerant-side connections. Five gage pressure and four differential pressure 

transducers, as well as eight thermocouples and a thermistor, are connected 

through this zone box, as shown in Figure 2.38. The thermistor shown in Figure 

2.38 is located inside a constant temperature bath that is used as a reference for all 

the thermocouples in the test stand. Unlike the other zone boxes, the refrigerant 

loop zone box has access to both 5- and 24-VDC power supplies. 
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Table 2.6: Refrigerant Loop Zone Box Summary 

Measurement Model Serial Input Output 
(Name, Instrument) No. No. Signal Signal 

Evaporator Ref. T In Type-T N/A N/A DataAq.: 
(Teri, Thermocouple Probe) Thermocouple IJ,V 

Evaporator Ref. TOut Type-T N/A N/A DataAq.: 
(Tero, Thermocouple Probe) Thermocouple IJ,V 

Condenser Ref. T In Type-T N/A N/A Data Aq.: 
(Teri, Thermocouple Probe) Thel1'TlQCOuple IJ,V 

Conc;lenser Ref. TOut Type-T N/A N/A DataAq.: 
(Tero, Thermocouple Probe) Thermocouple IJ,V 

Compressor T In Type-T N/A N/A DataAq.: 
(Tkri, Thermocouple Probe) Thermocouple IJ,V 

Compressor T Out Type-T N/A N/A DataAq.: 
(Tkro, Thermocouple Probe) Thermocouple IJ,V 

Liquid Venturi T In Type-T N/A N/A DataAq.: 
(Tlv, Thermocouple Probe) Thermocouple IJ,V 

Oil Section T Type-T N/A N/A Data Aq.: 
(Toil, Thermocouple Probe) Thermocouple IJ,V 

Evaporator Ref. Pin Setra 207 247866 Power Supply DataAq: 
(Peri, Pressure Trans.) RaU:24 V 0-5 V 

Condenser Ref. P In Setra 207 253458 Power Supply DataAq: 
(Peri, Pressure Trans.) Rail: 24 V 0-5 V 

Compressor Ref. P In Setra 207 270489 Power Supply DataAq: 
(Pkri, Pressure Trans.) Rail:24V 0-5 V 

Compressor Ref. POut Setra 207 202281 Power Supply DataAq: 
(Pkro, Pressure Trans.) RaU: 24 V 0-5 V 

Liquid Venturi P Setra 207 253459 Power Supply DataAq: 
(Plv, Pressure Trans.) Rail: 24 V 0-5 V 

Evaporator Ref. ~P Setra 228-1 258209 Power Supply DataAq: 
(dPer, Pressure Trans.) RaU:24 V 0-5 V 

Condenser Ref. ~P Setra 228-1 258208 Power Supply DataAq: 
(dPer, Pressure Trans.) RaU:24V 0-5 V 

Discharge Venturi ~P Sensotee Z 411077 Power Supply DataAq: 
(dPdv, Pressure Trans.) RaU:5 V Input Dependent 

Liquid Venturi ~P Sensotee Z 437090 Power Supply DataAq: 
(dPIv, Pressure Trans.) Rail: 5 V Input Dependent 

Reference Bath T Omega 44032 Power Supply DataAq: 
(Tbath, Thermistor) ON-970 RaU:5V Input Dependent 
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Figure 2.38: Refrigerant loop zone box diagram. 
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3. EXPERIMENTAL RESULTS AND ANALYSIS 

3.1 Introduction 

Two major efforts are discussed in this chapter. The first effort, presented in 
-, 

Section 3.2, involves the calibration and validation of the test stand. Test stand 

validation is critical to ensure the data collected during transient testing is correct. 

The second effort is presented in Section 3.3 and contains preliminary transient 

results intended to show the capabilities of the current control system used in the 

test stand. These results are "preliminary" because the current control system is not 

intended for complicated transient control. At the time of writing, a more advanced 

transient control system is being installed in the test stand. Forthcoming reports will 

contain more complicated transient patterns and, consequently, more detailed 

analyses. 

3.2 Steady-state Results and Analysis 

Although the overall goal of our project is to develop and validate a transient 

computer model for mobile air conditioners, the test facility must first be validated to 

ensure the accuracy of the data collected. To this end, a goal of achieving the best 

possible system calorimetry was set and a series of steady-state tests were 

conducted to analyze the system calorimetry. The steady-state tests were also used 

to calibrate the two refrigerant-side venturi flow tubes which measure refrigerant 

mass flow rate. Accurate results are critical because during transient operation the 

refrigerant charge migrates between the evaporator and the condenser, therefore 

creating different mass flow rates in the refrigerant-side venturis. This section 

. discusses the results of the steady-state tests. 

3.2.1 Energy Balance Program Description and Calculations 

The energy balance program, again used to analyze the steady-state system 

calorimetry ,- serves one major purpose: to calculate and compare the evaporator 

and condenser air-side and refrigerant-side heat transfer rates. In the process of 

determining the heat transfer rates, the program calculates other valuable variables 
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such as air-side and refrigerant-side mass flow rate. The energy balance equations 

were solved using the Engineering Equation Solver (EES) because it contains built

in property routines for refrigerants (R-134a in this case) and most common 

substances. 

All instrumentation variables are recorded with the Strawberry Tree data 

acquisition system in their raw form (volts, milli-amps, J,l-volts, etc.). Their values are 

then imported into the EES energy balance program, which after a series of 

calculations using instrumentation calibration curves and equations, determines their 

physical values (temperature, pressure, enthalpy, heat transfer rate). The remainder 

of this section is devoted to discussing the energy balance program calculations. 

For completeness, the entire energy balance program is provided in Appendix A. 

3.2.1.1 Temperature 

The energy balance program requires two steps to calculate a thermocouple 

temperature. The first step determines the equivalent Type-T thermocouple voltage 

of the thermistor located inside the water-filled constant temperature bath using the 

following equations: 

(Vtmstr) Tbalh(Of) = 164.96 Vsv +60.96, 

5 T balh(OC) = - (T baIh(Of) - 32) , 
9 

VTbath= co + c1T baIh(OC) + C2 T balh(oC)2 + C3 Tbalh(0C)3 

+C4 T balh(°C) 4 + CsT balh(°C) 5 + Cs T balh(0C) 6 

+C7 T balh(OC) 7 + Cs T balh(°C) 8 + C9 T baIh(OC) 9 

+C10 T balh(OC) 10 + c11T balh(OC) 11 + C12 T balh(0C) 12 

+C13 T baIh(OC) 13 + C14 T balh(OC) 14 

(3.1 ) 

(3.2) 

(3.3) 

where Tbalh is the bath temperature, VtmSIt is the recorded thermistor voltage in VDC, 

Vsv is the voltage applied to the thermistor using the 5 VDC power supply in VDC, 

and VTbalh is the equivalent thermocouple voltage in mVDC determined from the IPS-
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90 Tables in the CRC Handbook of Chemistry and Physics (Ude & Frederikse, 

1994). The coefficients for Equation 3.3 are provided in Appendix A. This previous 

step is required because all single thermocouples and thermocouple grids are 

referenced to the constant temperature bath. The second step is to add the ..... . 

equivalent thermocouple voltage determined above to the relative Type-T 

thermocouple voltage recorded by the data acquisition system and calculate the 

temperature using the following equation: 

(3.4) 

where T is the temperature at the particular thermocouple probe and V is the 

thermocouple voltage in mVDC. The coefficients for Equation 3.4 are again provided 

in Appendix A. All thermocouple voltages in the test stand are calculated using the 

method described above. 

3.2.1.2 Pressure 

To calculate pressure, the energy balance program transforms the gage 

pressure and differential pressure transducer outputs, either in VDC or mA, to 

pressure using the calibration equations discussed in Chapter 2. All of the 

transducers, except for the Sensotec Model Z differential pressure transducers, have 

an offset output. The offset output is the transducer output generated when no 

pressure is applied to the transducer. A typical equation used to calculate pressure 

is: 

P = m(Vout- Voffset) +P8InI, (3.5) 

where P is the absolute or differential pressure in psi, m is the calibration equation 

slope in psiNDC, Vout is the output voltage recorded by the data acquisition system 

in VDC, V o""t is the offset voltage in VDC, and Palm is the pressure in the laboratory 

room. 
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3.2.1.3 Enthalpy 

Because it defines the amount of energy in a specific substance, the enthalpy is 

a very important calculation in the energy balance program. Enthalpy, as with other 

properties, is calculated automatically in EES. For the refrigerant-side enthalpy 

function in EES, only the pressure and temperature of the substance (R-134a) are 

needed, as shown below. 

hR134a = Enthalpy(R134a, T = T1, P = P1), (3.6) 

where T is the temperature in of and P is the pressure in psia. To account for 

moisture in the air, the air-side enthalpy is calculated by adding the air enthalpy and 

the steam enthalpy. EES contains property routines for automatically calculating the 

enthalpy of air and water mixtures, but these routines are not as accurate as the 

method described above. For this reason, the air-side enthalpy is determined using 

the following set of equations: 

co=HumRat(AirH20, T=TRH, P=P, R=RH/100), 

h = Enthalpy(Air, T = T) 

+co[Enthalpy(Steam, T = T, x = 1))" 

(3.7) 

(3.8) 

Hum Rat and Enthalpy are both internal EES functions. The arguments to the 

humidity ratio function (Equation 3.7) are temperature at the relative·humidity sensor 

TRH in OF, pressure P in psia, and relative humidity R. The humidity ratio co is used 

to calculate the enthalpy of the air-water mixture using Equation 3.8., where h is the 

total enthalpy and x is the steam quality. 

3.2.1.4 Mass Flow Rate 

There are five different mass flow rates calculated in the energy balance 

program. Three of these are in the refrigerant loop: discharge-line venturi, Iiquid-
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line venturi, and Micro Motion co rio lis-effect meter; whereas the other two are in the 

air loops: condenser venturi and evaporator venturi. The Micro Motion refrigerant

side mass flow rate is determined using the following calibration equation supplied 

by the manufacturer:; 

rTlmicro = 25.0(Amicro - 4.00), (3.9) 

where rTlmicro is the refrigerant mass flow rate in Ib,Jhr and Amicro is the signal recorded 

by the data acquisition system in rnA. 

As one might assume, the process for determining the mass flow rate for the 

four venturis is quite different than that for the Micro Motion. However, because all 

venturi mass flow rates are calculated in a similar fashion, the following discussion is 

general in nature and applies to all four venturis. 

The theoretical equation for calculating venturi mass flow rate is derived by 

combining the conservation of mass and conservation of momentum equations. The 

equation used to calculate the actual mass flow rate is shown below as Equation 

3.10. Except for the two factors C and Fa' the actual mass flow rate equation is 

identical to the theoretical mass flow rate equation. 

(3.10) 

. The variable C in Equation 3.10 is the venturi discharge coefficient-a unitless 

coefficient that represents the ratio of actual to theoretical rate of flow. For classical 

venturis, the discharge coefficient is usually about 0.98-0.99. However, since our 

venturis are not classical venturis, the discharge coefficient must be determined by 

calibration. The calibration results will be discussed later in this chapter. For 

completeness, the size of the four venturis and the calibrated discharge coefficients, 

are shown in Table 3.1. 

The variable Fain the mass flow rate equation is a unitless factor that accounts 

for the thermal expansion of the venturi material. It is defined as: 
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(3.11 ) 

where a is the thermal expansion fador of the venturi material (1.0x1 0-5 1 flF for the 

brass refrigerant-side'yenturis and 6.7x1 0-6 1fOF for the steel air-side venturis) and T 

is the venturi temperature iri of. 

In Equation 3.10, P1 and P 1 are the flowing substance density and pressure at 

the venturi entrance, P2 and P 2 are the density and pressure at the throat, Ii is the 

throat to entrance inside diameter ratio, and ~ is the throat area. 

Table 3.1: Venturi Size and Discharge Coefficient 

Venturi Throat Diameter, Diameter Ratio Discharge 
d (in.) (Throat/Entrance), Ii Coefficient, C 

Refri~erant-side 0.3750 0.4091 0.910 
Disc arge Une 

Refrigerant-side 0.1890 0.2625 0.954 
Uquid Une 

Air-side 4.4913 0.7336 0.825 
Condenser 

Air-side 1.8767 0.6084 0.940 
Evaporator 

3.2.1.5 . Energy Balance 

To ,calculate energy balances, the EES program first determines the heat 

transfer rates for the condenser and evaporator air-side and refrigerant-side loops. 

These are calculated using the following equations: 

qref = rilref (href•out - href,in) (3.12) 

(3.13) 

Two energy balances, evaporator and condenser, are calculated in the EES energy 

balance program. Both calculations u,se the following equation: 
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Ebal = (qref. - qair ) X 1 00% 
qref 

(3.14) 

As can be seen by examining Equation 3.14, a positive energy balance indicates a 

higher refrigerant-sjde than air-side heat transfer rate and a negative energy balance 

indicates the opposite. 

Several variables are more critical than others when calculating the final energy 

balance. Because several of these variables can have a greater effect on the 

energy balance calculation, the test stand operator must ensure that the 

instrumentation that generates these variables is working properly. The three most 

critical variables used in the energy balance calculations are: humidity, temperature, 

and flow rate. 

3.2.2 Steady-state Test 'Plan 

To ensure that correct data could be obtained from the test stand, a test plan 

encompassing a wide range of operating conditions was developed. The test plan 

contains a list of tests that covers the entire operating range of each controllable 

steady-state parameter on the test stand. The steady-state test plan is shown in 

Table 3.2. The actual tests were conducted in a random order, not in the order 

shown in Table 3.2. 

The compressor motor drive speed, condenser blower drive speed, and 

evaporator blower drive speed are designated in Table 3.2 in terms of the variable

frequency drive Hz, with the approximate compressor speed in. revolutions per 

minute (RPM) and blower flow rate in cubic feet per minute (CFM) shown in 

parentheses. A setting of 20 Hz corresponds to 1/3 (20Hz/60Hz) of the maximum 

operating range of the drive. Because of the relatively small amount of air flow rate 

required· in the evaporator air loop, the evaporator variable-frequency drive can be 

run at speeds higher than 60 Hz. For the opposite reason, the maximum setting for 

the compressor variable-frequency drive is 56.5 Hz. 

The settings in Table 3.2 were selected from initial tests that determined the 

maximum and minimum compressor RPM and blower flow rates. Several of the 
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Table 3.2: Steady State Test Plan 

Test Compressor Cond Air Cond Air In Evap Air Evap Air In 
No. Speed . BlowerSpd Temp BlowerSpd Temp 

Hz(RPM)·; Hz (CFM) OF Hz (CFM) of 

1 20(1100) 25 (750) Ambient 30 (130) 90 

2 20(1100) 25 (750) Ambient 42.5 (200) 75 

3 20(1100) 25 (750) Ambient 42.5 (200) 90 

4 20 (1100) 25 (750) Ambient 42.5 (200) 110 

5 20 (1100) 25 (750) Ambient 42.5 (200) 125 

6 20 (1100) 25 (750) Ambient 60 (280) 110 

7 20(1100) 25 (750) Ambient 77.5 (360) 75 

8 20 (1100) 25 (750) Ambient 77.5 (360) 110 

9 20 (1100) 40.8 (1200) Ambient . 30 (130) 90 

10 20 (1100) 40.8 (1200) Ambient 42.5 (200) 90 

11 20 (1100) 40.8 (1200) Ambient 60 (280) 110 

12 20 (1100) 40.8 (1200) Ambient n.5 (360) 75 

13 20 (1100) 40.8 (1200) Ambient 77.5 (360) 110 

14 20 (1100) 56.6 (1650) Ambient 30 (130) 90 

15 20(1100) 56.6 (1650) Ambient 42.5 (200) 90 

16 20 (1100) 56.6 (1650) Ambient 60 (280) 110 

17 20 (1100) 56.6 (1650) Ambient 77.5 (360) 75 

18 20 (1100) 56.6 (1650) Ambient 77.5 (360) 110 

19 40 (2300) 25 (750) Ambient 30 (130) 90 

20 40 (2300) 25 (750) Ambient 42.5 (200) 90 
2°1 40 (2300) 25 (750) Ambient 60 (280) 110 

22 40 (2300) 25 (750) Ambient n.5 (360) 75 

23 40 (2300) 25 (750) Ambient· 77.5 (360) 110 

24 40 (2300) 40.8 (1200) Ambient 30 (130) 90 

25 40 (2300) 40.8 (1200) Ambient 42.5 (200) 90 

26 40 (2300) 40.8 (1200) Ambient 60 (280) 75 

27 40 (2300) 40.8 (1200) Ambient 60 (280) 90 

28 40 (2300) 40.8 (1200) Ambient 60 (280) 110 

29 40 (2300) 40.8 (1200) Ambient 60 (280) 125 

30 40 (2300) 40.8 (1200) Ambient 77.5 (360) 75 

31 40 (2300) 40.8 (1200) Ambient 77.5 (360) 110 

32 40 (2300) 56.6 (1650) Ambient 30 (130) 90 

69 



Table 3.2 cont.: Steady State Test Plan 

Test Compressor Cond Air Cond Air In EvapAir Evap Air In 
No. Speed .... BlowerSpd Temp BlowerSpd Temp 

Hz (RPI4) .:, Hz (CFM) of Hz (CFM) of 

33 40 (2300) 56.6 (1650) Ambient 42.5 (200) 90 

34 40 (2300) 56.6 (1650) Ambient 60 (280) 110 

35 40 (2300) 56.6 (1650) Ambient n.5 (360) 75 

36 40 (2300) 56.6 (1650) Ambient 77.5 (360) 110 

37 60 (3500) 25 (750) Ambient 30 (130) 90 

38 60 (3500) 25 (750) Ambient 42.5 (200) 90 

39 60 (3500) 25 (750) Ambient 60 (280) 110 

40 60 (3500) 25 (750) Ambient 77.5 (360) 75 

41 60 (3500) 25 (750) Ambient .n.5 (360) 110 

42 60 (3500) 40.8 (1200) Ambient 30 (130) 90 

43 60 (3500) 40.8 (1200) Ambient 42.5 (200) 90 

44 60 (3500) 40.8 (1200) Ambient 60 (280) 110 

45 60 (3500) 40.8 (1200) Ambient n.5 (360) 75 

46 60(3500) 40.8 (1200) Ambient n.5 (360) 110 

47 60 (3500) 56.6 (1650) Ambient 30 (130) 90 

48 60 (3500) 56.6 (1650) Ambient 30 (130) 110 

49 60 (3500) 56.6 (1650) Ambient 30 (130) 125 

50 60 (3500) 56.6 (1650) Ambient 42.5.(200) 90 

51 60 (3500) 56.6 (1650) Ambient 60 (280) 110 

52 60 (3500) 56.6 (1650) Ambient n.5 (360) 75 

53 60 (3500) 56.6 (1650) Ambient n.5 (360) 110 
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tests in the steady-state test plan could either not be conduded or had to be altered 

because of the following reasons: (a) insufficient air flow to the evaporator air loop 

dud heater, resulting in overheating and consequent tripping of the heater circuit, 

and (b) lack of superheated refrigerant at the evaporator outlet, a requirement for 

calculating the evaporator refrigerant-side heat transfer. For verification purposes, a 

number of tests were repeated. The results discussed in the following sedion 

contain data from 68 steady-state tests-50 from the original test plan and 18 . 

repeated. 

3.2.3 Calorimetry Results 

Using the data from the test plan described in the previ~us sedion, condenser 

and evaporator energy balances were calculated using the energy balance 

equations and EES. These results are presented in the two following sedions. 

3.2.3.1 Condenser 

The condenser calorimetry results are shown in Figure 3.1. This figure 

contains a plot of the air-side versus refrigerant-side heat tran~fer for the condenser. 

The majority of the points are contained within lines that represent a ± 5% 

calorimetry. It should be noted that ± 5% is considered quite good because of the 

wide range of operating conditions tested. All of the test points lie within ± 10%. 

The average error for the. condenser heat transfer is -0.2%-meaning that, for the 

tests conduded, the air-side shows slightly more heat transfer than the refrigerant-

side. The standard deviation of the error (0) in the energy balance is 4.9% and the. 

average absolute error is 4.0%. These last two values can be interpreted as 

meaning that approximately 68% of the test points lie within ± 4.9% of the theoretical 

heat transfer line and that the average test point is 4.0% from the theoretical line. 

Because of the large number of tests conduded, the root-mean-square (RMS) error 

is identical to the standard deviation. 
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Figure 3.1: Condenser air-side versus refrigerant-side calorimetry. 



3.2.3.2 Evaporator 

The evaporator calorimetry results are slightly better than the condenser, as 

shown in Figure 3.2., Again, considering the wide range of operating conditions 

tested, the results are"quite good, as the majority of the test points lie within ± 5% of 

the theoretical straight line and all of them lie within ± 10%. The average evaporator 

heat transfer error is -0.2%, once again showing a slightly higher air-side than 

refrigerant-side heat transfer. Approximately 68% of the test points lie within the 

standard deviation (o)'of ± 4.0% of the theoretical heat transfer line. The average 

absolute error of the evaporator heat transfer is 3.2%. Because of the large number 

of test conducted, the root-mean-square (RMS) error is again identical to the 

standard deviation. 

The slightly better evaporator than condenser heat transfer results are likely 

due to several reasons. The first reason is that the condenser air-side flow rate has 

a range of approximately 900 CFM, while the evaporator air-side flow rate has a 

range of only 230 CFM. The condenser air-side venturi therefore measures flow 

rates over a larger range than the more limited and therefore better "matched" 

evaporator air-side venturi. For this reason, the standard deviation of the error is 

higher in the condenser calorimetry than in the evaporator calorimetry. The second 

reason for the evaporator calorimetry results being slightly better than the condenser 

is that the evaporator air-loop is a closed system. Because it is a closed system, the 

evaporator blower does not have to work against the sometimes fluctuating 

pressur~s being transmitted to the condenser blower through the exhaust hood. 

3.2.4 Venturi Calibration Results 

As stated above, the four venturis in the test stand were calibrated using the 

data collected from the steady-state test plan. The venturi calibration results are 

discussed in the following sections. 
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3.2.4.1 Air-side 

The air-side venturi calibration results were used to generate the energy 

balance plots shown in Figures 3.1 and 3.2. The condenser and evaporator air-side 

venturi discharge ',coefficients were found to be 0.825 and 0.940, respectively. 

These values are quite different than those shown in the report by Weston (1995) 

because the they were obtained from an in-situ calibration using air as the 

substance flowing through the venturis. The results reported by Weston were 

obtained from calibrations using water as the substance flowing through the air-side 

venturis. Since water is essentially incompressible, it cannot be used to simulate the 

actual phenomenon taking place in the test stand air loops. For this reason, the 

discharge coefficient values stated in this report should be used in place of those 

reported by Weston. 

3.2.4.2 Refrigerant-side Discharge Une. 

As stated in Chapter 2, the refrigerant-side discharge-line venturi is located on 

the high pressure/high temperature refrigerant line between the compressor and the 

condenser. This venturi was calibrated by comparing the mass flow rate results with 

the very accurate Micro Motion coriolis-effect meter using the. data collected from the 

test plan. The calibration results are shown in Figure 3.3. The discharge coefficient 

C for the refrigerant-side discharge-line venturi was found to be 0.910. Even though 

a wide range of operating conditions were tested, a . large majority of the test points 

line within ± 5% of the theoretical line. The average discharge-line venturi error is 

-0.1o/o-meaning that, forthe data points collected, the discharge-line venturi shows 

slightly more mass flow rate than the Micro Motion. The standard deviation of the 

error (0) for the venturi versus Micro Motion mass flow rate is 3. ~k and the average 

absolute error is 2.9%. These results are considered quite good, as approximately 

68% of the test plan points lie within ± 3.7% ofthe theoretical mass flow rate line and 

the average test point is only 2.9%. from the theoretical line. As with the energy 

balance results, the large number of tests conducted makes the RMS error identical 

to the standard deviation. 

75 



'C' 200 
~ 

t 
C = 0.910 ---E / .c - / 

Q) 

1U 167 ~ 
, 

,,~-~ .. ,' /' 
0: 
3: / ,. 
0 / ~" 
U. 

/ ,,' 
UJ , 

~ ·135 / .. ' "-! .• /' 
~ / , .. ' -:., /' 
'i:: / ,'. .' /' 

'-I :::J ., ..... /' ... /. , m c::: ,.' , 
Q) . ,. /' 

> 102 ~~. ,~/' 
Q) /,. ~' /' 
C) / ",. ..'/, I········· +5% ~ cu /e" ..... /' 
~. - - - +10% 
0 

' , ., . , 

.~ ,,' .'/ 
0 

' , 

70 
70 102 135 167 200 

Micro Motion Mass Flow Rate (Ibm/hr) 

Figure 3.3: Discharge-line venturi versus Micro Motion mass flow rate. 



3.2.4.3 Refrigerant-side Liquid Line 

The refrigerant-side liquid-line venturi, located between· the condenser and the 

orifice tube throttling cjevice, was calibrated by comparing the mass. flow rates of the 

venturi with the mass'flow rates of the Micro Motion coriolis-effect meter. As shown 

in Figure 3.4, the calibration results yielded a venturi discharge coefficient of 0.954. 

All but one of the test points lie within ± 5% of the theoretical mass flow rate line. 

The average error for the liquid· venturi mass flow rate is -0.1%. Because of the 

large number of data points collected, one can say that approximately 68% of the 

test points line within one standard deviation, or 1.9%, of the theoretical line. The 

average absolute error of the venturi mass flow rate is 1.4%. Again, the RMS is 

error is identical to the standard deviation. 

The reader should not be surprised by the fact that the best results were 

obtained from the liquid-line venturi. A couple of phenomenon may contribute to this 

result. The first phenomenon, though probably the least important, is that the liquid

line venturi and the Micro Motion are both located between the condenser and 

throttling device and both mass flow rate devices have liquid refrigerant running 

through them. The likely reason for the liquid-line venturi results being better than 

the discharge-line venturi results is that the refrigerant-oil mixture flowing around the 

loop is in a single phase at the liquid-line venturi, whereas it is a liquid-vapor mixture 

of refrigerant and oil at the discharge-line venturi. 

Because good results were obtained from the calibration of the venturis, they 

can comfortably be used to collect transient data. By having two calibrated 

refrigerant-line venturis, the refrigerant charge migration that occurs during transient 

operation can be studied and documented. The results of the four. calibrated 

venturis in the test stand are summarized in Table 3.3. 
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Table 3.3: Venturi Calibration Results Summary 

Venturi Ayg. Error, Std. Dey. Ayg. Absolute Discharge 
" 

% of Error, 0, % Error, % Coefficient, C 

Air-side -0.2 4.9 4.0 0.825 
Condenser 

Air-side -0.2 4.0 3.2 0.940 
Evaporator 

Refrigerant-side -0.1 3.7 2.9 0.910 
Discharge Une 
Refrigerant-side 

Liquid Line 
-0.1 1.9 1.4 0.954 

3.3 Transient Results and Analysis 

The transient results presented in this section are intended to show the 

flexibility of the mobile air conditioning test stand. Transient data was collected as 

the Ford 1994 Crown Victoria air conditioning system responded to naturally-induced 

transients such as cabin pulldown and pressure-cycled compressor clutch, and pre

programmed transients such as time-cycled compressor clutch and simulated driving 

conditions. This section discusses the results of these transient tests. Because 

evaporator analysis can be considerably more meaningful than condenser analysis, 

the majority of the results presented in this section are concerned with evaporator 

refrigerant-side and air-side temperatures. Future reports from this project will 

contain additional results. 

3.3.1 Cabin Pulldown 

"Cabin pulldown" refers to the lowering of the temperature (and consequently 

humidity) inside a vehicle by an air conditioning system from a high, uncomfortable 

temperature to a low, more comfortable temperature. In our test stand, the cabin 

temperature is simulated by recording the air-side temperature entering the 

evaporator. After the air exits the evaporator, as shown in Figure 2.32, it passes 

through a duct heater, a blower, and the evaporator plenum before entering the 
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evaporator again. The duct heater is used to simulate the thermal load on a vehicle 

and the plenum is used to simulate the vehicle cabin. Three types of pulldown tests 

were conducted to reduce the evaporator air-side inlet temperature (vehicle c~bin 

temperature) from_ 110 OF to 60 of. The pulldown types tested were: (1) a free 

response test where the duct heater is turned off, (2) a linear puUdown test where 

the heater controller is programmed to reduce the cabin temperature linearly over 

several time periods, and (3) an exponential pulldown test where the heater 

controller is programmed to reduce the cabin temperature exponentially in 14 min .. 

Figure 3.5 shows the evaporator air-side inlet temperature for the three types of 

pulldowntests. 

As stated in the previous paragraph, the evaporator air-side inlet temperature is 

set to 110°F before the compressor clutch is engaged. -The conditions for th~ test 

stand components, shown- in Table 3.4, were constant for the three types of . 

pulldown tests. These conditions were selected because they are representative of 

the conditions a mobile air conditioning system may encounter during pulldown. 

Table 3.4: Pulldown Test Conditions 

Compressor Condo Air Condo Air Evap. Air Evap. Air 
Speed (RPM) Flow (CFM) In Temp (oF) Flow (CFM) In Temp (oF) 

1150 800 Ambient 280 110 initial 

To conduct the linear pulldown tests, the evaporator duct heater was 

programmed to reduce the evaporator air-side inlet temperature linearly from 110 to 

60 OF at several different rates. Figure 3.6 shows the actual and theoretical 

evaporator air-side inlet temperature for linear rates of 6, 14, and 22 min .. Due to 

the large time constant associated with the duct heater being far upstream of the 

evaporator air-side inlet, the temperature followed the unheated temperature profile 

for the first minute of the tests before the heater "recovered" and was able to control 

the temperature linearly. The effects of the large time constant, however, lasted 

through as many as 6 min. for the 22 min. pulldown case. The large time constant of 

the heater control circuit is also responsible for the ~light one to two minute offset in 
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the time required to reach 60 of for the 14 and 22 min. cases. The large 

discrepancy between the actual and theoretical inlet temperatures for the 6 min. 

linear pulldown· can be attributed to the fact that the air conditioning system cannot 

reduce the evapor~tot inlet temperature any faster than it can when the duct heater 

is turned off. The inlet temperature for the unheated pulldown can be interpreted as 

being the fastest possible pulldown for the Ford 1994 Crown Victoria air conditioning 

system under the conditions in !able 3.4 .. Additionally, the unheated case can be 

used to determine the maximum slope of the pulldown line at any given evaporator 

air-side inlet temperature. 

The evaporator air-side inlet and outlet temperatures for the 14 min. linear 

pulldown case are shown in Figure 3.7. Because the evaporator air-side outlet 

temperature depends on the inlet temperature, it is· not surprising the outlet 

temperature follows a similar profile as the inlet. The effects of the large time 

constant associated with the heater are especially noticeable in this figure since the 

inlet temperature does not begin to drop until approximately one minute after the 

compressor clutch is engaged. This result can be interpreted as meaning that one 

minute elapses before the effects generated by the system being turned on reach 

the evaporator air-side inlet. 

As shown in Figure 3.8, the evaporator air-side outlet temperature for the 

exponential pulldown case again follows a similar pattern as the inlet temperature. A 

delay of approximately one minute in the evaporator air-side inlet temperature was 

also experienced due to the large time constant of the duct heater. However, 

because this pulldown is exponential, the inlet temperature follows a similar pattern 

as the theoretical inlet temperature. 

3.3.2 Pressure-cycled Compressor Clutch 

A common method used to control air conditioning systems, especially when a 

system uses an orifice tube as a throttling device, involves engaging and 

disengaging the compressor clutch. This method is used to prevent the condensate 

on the evaporator surface from freezing. For this reason, several tests were 
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conducted in which the compressor clutch was cycled as the evaporator refrigerant 

outlet pressure traveled between two sets of upper and lower limits. The first set of 

limits, clutch engaged at 45 psig and disengaged at 24 psig (45/24), were suggested 

by our sponsors at. FOrd Motor Company. A second set of limits, clutch engaged at 

50 psig and disengaged at 20 psig (50/20), was selected to explore the effects that a 

wider range of operating pressures would have on the system. 

For all the pressure-cycled tests, the evaporator air loop duct heater was 

programmed to maintain an evaporator air-side inlet temperature of 90 OF. The 

conditions for the test stand components, shown in Table 3.5, were constant for all 

the pressure-cycled clutch tests. These conditions were also used for the time

cycled clutch tests that will be discussed in Section 3.3.3. 

Table 3.5: Pressure-cycled and Time-cycled Clutch Test Conditions 

Compressor Condo Air Condo Air Evap. Air Evap. Air 
Speed (RPM) Flow (CFM) In Temp (oF) Flow (CFM) In Temp (oF) 

1150 800 Ambient 215 90 

For all the pressure-cycled tests, data were collected from the time the system 

was turned on until the system reached a steady-state. To demonstrate the 

pulldown that occurs after the system is started, the evaporator air-side outlet 

t~mperature is shown in Figure 3.9 for the test with a 45/24 pressure-cycled clutch. 

The spikes in Figure 3.9 represent the times when the clutch was engaged and 

disengaged. As can be seen in this figure, the evaporator outlet temperature 

reaches a quasi steady-state value. For the remainder of the figures, the data 

plotted are for shorter periods of time while the system was operating under quasi 

steady-state conditions. Three engaged compressor clutch cycles are shown in all 

the figures. The reader should keep in mind that the time span shown in the 

upcoming figures is 70 s for the 45124 pressure-cycled clutch case and 150 s for the 

50/20 pressure-cycled clutch case so that three complete on cycles could be shown 

on each graph. The time span for the 50/20 pressure cycled clutch case is larger 
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because of the greater difference in refrigerant outlet pressure that the system must 

go through before the clutch can be engaged and disengaged. 

Figures 3.10 and 3.11 show the evaporator refrigerant inlet temperature and 

outlet pressure al0r:tg*ith the compressor torque. Obviously, the compressor torque 

and outlet pressure were chosen to show when the clutch is engaged and 

disengaged. The slight deviations from the theoretical cycling pressures evident in 

Figures 3.10 and 3.11 are due to the zero offset of the pressure transducers used to 

measure the evaporator refrigerant-side outlet pressure. As might be expected, the 

temperature and pressure in the evaporator decrease when the clutch is engaged 

and increase when the clutch is disengaged. The maximum compressor torque 

occurs at the moment the clutch is engaged and is 92 in.-Ib for the 45/24 case and 

95 in.-Ib for the 50/20 case. The torque is higher for the 50120 case because the off 

cycle la$t longer and the compressor has to pump additional refrigerant that has . 

been emptied into the evaporator from the high pressure side of the air conditioning 

system. Additionally, the high initial torque in the compressor can be caused by 

small amounts of liquid refrigerant passing through the compressor during start-up. 

As the on cycle proceeds, the compressor torque decreases because of the lower 

amount of refrigerant it has to pump through the refrigerant loop. As the clutch is 

disengaged, the compressor torque is reduced to approximately zero. 

The refrigerant inlet temperature is shown in Figures 3.10 and 3.11 along with 

the outlet pressure because the compressor clutch is often cycled to prevent the 

freezing of condensate on the evaporator surface. The average refrigerant-side inlet 

temperature is 35 of for both pressure-cycled cases--clearly high enough to prevent 

the freezing of condensate. Because the time required to complete a on/off cycle is 

longer for the 50/20 pressure-cycled case, the refrigerant inlet temperature (and 

therefore.inletloutlet pressure) has a larger temperature range (30 OF versus 20 OF) 

than the 45/24 pressure-cycled case. 

As can be seen in Figures 3.10 and 3.11 , the refrigerant inlet temperature and 

outlet pressure follow a similar pattern. This is not surprising because (1) the 

refrigerant entering the evaporator is saturated and the saturation temperature of 

R-134a in OF is almost the same as the saturation pressure in psig, and (2) the 
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refrigerant-side differential pressure is small compared to the gage pressure, 

therefore making the outlet pressure essentially the same as the inlet. Because the 

evaporator pressures follow a similar pattern as the inlet refrigerant temperature, the 

remaining analysis will be limited to showing the evaporator temperatures. 

Analogous conclusions can be made about the evaporator refrigerant-side 

pressures. 

Figures 3.12 and 3.13, which show the evaporator air-side temperatures for 

both pressure-cycled clutch cases, are used to examine the effects of clutch cycling 

on evaporator air-side temperatures. The inlet temperature for the 45/24 case 

remains essentially constant, whereas the temperature for the 50/20 case oscillates 

slightly. No oscillations are noticed in the 45/24 case because the clutch cycles 

occur too fast for the effects to propagate all the way down to the evaporator inlet 

temperature. Because the outlet temperature measurement is located directly 

downstream of the evaporator, the effects of clutch cycling on the air-side outlet 

temperature are quite noticeable for both clutch cycling cases. For both cases, the 

temperatures average approximately 55 OF with an oscillation of approximately 

± 5 OF. The fact that the air-side outlet temperatures for both pressure-cycled clutch 

cases oscillate about the same value means that a 90 OF inlet air temperature, using 

the test stand conditions in Table 3.5, will generate an outlet temperature of 55 OF for 

cycling periods shorter than a certain limit. 

The results for the evaporator refrigerant-side temperatures, shown in Figures 

3.14 and 3.15, combine the effects discussed in the previous two paragraphs. The 

refrigerant-side inlet and outlet temperatures both oscillate as the clutch is engaged 

and disengaged. Also, both temperatures oscillate about the same approximate 

values: 35 OF for the inlet and 74 OF for the outlet. As expected, the refrigerant-side 

temperatures increase when the clutch is engaged and decrease when the clutch is 

disengaged. 
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3.3.3 Time-cycled Compressor Clutch 

To examine how the Ford 1994 Crown Victoria air conditioning system 

responds to pre-prog~ammed transients, several different time-determined patterns 

for compressor clutch-' cycling are tested. These patterns are: (1) clutch on for 80 s 

and off for 20 s (80/20), (2) clutch on for 20 s and off for 80 s (20/80), (3) clutch on 

for 8 s and off for 2 s (812), and (4) clutch on for 2 s and off for 8 s (218). This section 

is devoted to the discussion of the effects of these clutch cycling patterns on the 

evaporator air-side and refrigerant-side temperatures. 

Figures 3.16 and 3.17 show the evaporator air-side temperatures for the 80/20 

and 20/80 time-cycled clutch cases. Both figures show the inlet temperature 

Oscillating ± 3-5 OF about an average inlet temperature of 89-90 OF. The oscillations 

in the air-side inlet temperature are due to the large diStance, and therefore large 

time constant, between with the duct heater and the inlet temperature measurement. 

The air-side outlet temperature oscillates as the compressor clutch is cycled. When 

the compressor clutch is engaged, the outlet temperature decreases sharply as a 

greater amount of heat transfer occurs between the air-side and refrigerant-side. A 

greater amount of heat transfer occurs because of the large difference between the 

air-side inlet and refrigerant-side inlet temperatures. The outlet temperature 

increases sharply when the clutch is disengaged as less throttled refrigerant is 

provided to the condenser and therefore less heat transfer occurs. The outlet 

temperature oscillations are greater for the 20/80 case because the long off cycle 

allows the outlet temperature to approach the inlet temperature, whereas in the 

80/20 case, the compressor clutch is not off long enough for the outlet temperature 

to approach the inlet temperature. As with the pr$ssure-cycled clutch, the maximum 

compressor torque is greater for the case that has a longer off cycle (the 20/80 case) 

because the compressor has to initially pump a great deal of refrigerant that has 

been discharged into the evaporator. In terms of passenger comfort, the 80/20.case 

is preferable because the outlet air temperature variations are smaller and, as in the 

pressure-cycled cases, an average outlet temperature of 55 OF is maintained. The 
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20/80 case is impractical and inadequate because it cannot maintain a low enough 

average evaporator outlet temperature. 

Even more so than the air-side temperatures, the evaporator refrigerant-side 

temperatures, shoy.'riJn Figures 3.18 and 3.19, depend on the clutch cycling. Both 

temperatures decrease when the compressor clutch is engaged and increase when 

it is disengaged. As expected, the refrigerant-side temperatures are lower for the 

80/20 case where the compressor clutch is engaged for a longer fraction of the 

cycle. For both cases, though, the average refrigerant-side inlet temperature 

remains near or above the 32 of limit required to prevent the freezing of condensate 

on the evaporator surface. 

Figures 3.20 and 3.21 show the evaporator air-side inlet and outlet 

temperatures for the 8/2 and 218 time-cycled compressor clutch cases. Because the 

period for an entire cycle is so short, the evaporator inlet temperature is unaffected 

in both cases. This is not true for the evaporator outlet temperatures. For the 8/2 

case, the average outlet temperature is approximately 52 of with small fluctuations 

occurring as the compressor clutch is engaged and disengaged. For the 218 case, 

the temperature fluctuations are slightly higher and have an average of 

approximately 67 of. Unlike the 8/2 case, the relatively high average outlet 

temperature for the 218 case is not low enough to provide a comfortable passenger 

environment. As with all the other cases in which the compressor clutch is off for a 

longer fraction of the cycle than it is on, the 218 case has peak torque values higher 

than the 812 case. 

The evaporator refrigerant-side temperatures for the 8/2 and 218 time-cycled 

compressor clutch cases are shown in Figures 3.22 and 3.23. As with the majority 

of the pressure- and time-cycled clutch cases, the inlet and outlet temperatures 

decrease when the compressor clutch is engaged and increase when the clutch is 

disengaged. The inlet temperature fluctuations, though comparable, are again 

greater in the 218 case than in the 8/2 case. The outlet temperature for the 8/2 case 

remains virtually constant because the cycle period is so small and the compressor 

is on for most of the cycle. The opposite is true for the 218 case, where the small on 

cycle causes greater fluctuations in the refrigerant-side outlet temperature. 
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Figure 3.22: Evaporator refrigerant-side temperatures for time-cycled 
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It has been determined through the analyses in the previous paragraphs that 

the time cycles where the compressor is on for a greater fraction of the cycle period 

(the 80/20 and 812 cases) will generate lower evaporator air-side outlet temperature 

and therefore provi,de;greater passenger comfort. Of these two cases, the 8/2 case 

provides lower evaporator air-side outlet temperatures. However, there is a payoff 

for the lower outlet temperatures because, since the clutch is cycled so frequently, 

there will be additional wear on the clutch and the surfaces inside the compressor. 

A cl~tch cycling pattern where the compressor clutch is cycled somewhere in 

between the 80/20 and 812 cases, such as those induced by natural phenomenon 

and shown in the pressure-cycled section, presents a better compromise between 

clutch and compressor wear and passenger comfort. 

3.3.4 Simulated Driving Cycle 

In the simulated driving cycle tests, the Ford 1994 Crown Victoria air 

conditioning components are operated at conditions that simulated their exposure to 

a vehicle-induced driving cycle. To simulate a driving cycle, the compressor speed 

and condenser blower flow rates are ramped simultaneously. Because most 

compressors are connected to the vehicle engine drive shaft with belts, the 

compressor speed change is caused by vehicle acceleration and the condenser 

blower change is caused by the increasing .amount of air passing across the 

condenser as the vehicle achieves higher speeds. For the driving cycle, the 

compressor speed was set to 1150 RPM for 20 s to simulate the vehicle idling at a 

stop light. The idling was then followed by a 15 s acceleration to 3050 RPM. The 

3050 RPM compressor speed was maintained for 120 s before being reduced to the 

original idle speed of 1150 RPM by a 10 s deceleration. While the compressor 

speed was being changed, the condenser speed was simultaneously ramped from 

800 to 1600 CFM to simulate the additional air being provided to the condenser. 

Figure 3.24 shows the compressor speed and condenser air flow rate patterns for 

the simulated driving cycle. The settings for the test stand components are shown in 

Table 3.6. Other than the compressor speed and condenser air flow rate 
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oscillations, these settings are the same as those used for the pressure-cycled and 

time-cycled clutch tests. Tests were done with the conditions in Table 3.6 using a 

continuously-engaged clutch and a 50/20 pressure-cycled clutch. 

Table 3.6: Simulated Driving Cycle Test Conditions 

Compressor Condo Air Condo Air Evapo Air Evapo Air 
Speed (RPM) Flow (CFM) In Temp (oF) Flow (CFM) . In Temp (oF) 

1150-3050 800-1600 Ambient 215 90 

As with the pressure-cycled and time-cycled tests, the following discussion will be 

limited to the evaporator air-side and refrigerant-side temperatures. The following 

. figures contain the compressor speed instead of the torque so that the reader can 

know the driving cycle stage. 

Figures 3.25 and 3.26 show the evaporator air-side inlet and outlet 

temperatures for the driving cycles with a continuously-engaged clutch and a 50/20 

pressure-cycled clutch. When comparing the compressor speed in each graph, one 

can clearly note the spikes in the pressure-cycled clutch case that are caused when 

the clutch is engaged. The clutch cycling only has a slight effect on the air-side inlet 

temperature, with the clutch cycling case temperature being slightly more jagged, 

but generally following the same pattern as the continuously-engaged clutch. 

Another trend in both figures, though not as noticeable in the clutch-cycled case, is 

that the outlet temperature increases and decreases as the compressor speed 

increases and decreases. This is opposite to what was experienced in the previous 

pressure-cycled and time-cycled tests. The reason for this opposite trend is that, in 

this driving simulation, the condenser air flow rate is changed simultaneously with 

the compressor speed. A commonly observed phenomenon is that an increase in 

condenser flow rate causes a decrease in refrigerant mass flow rate. Because of 

the decrease in refrigerant mass flow rate, there is less heat transfer, causing the 

air-side evaporator outlet temperature to be raised. 

Some of the trends observed in the evaporator refrigerant-side temperatures, 

shown in Figure 3.27 and 3.28, are similar to those observed in the evaporator air-
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Figure 3.25: Evaporator air-side temperatures for simulated driving 
cycle with continuously-engaged clutch. 
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side temperatures. In the case with the continuously-engaged compressor clutch, 

the inlet refrigerant-side temperature increases during low compressor speeds and 

decreases during high compressor speeds. This is not surprising because during 

high compressor ~peeds there is a greater pressure differential across the orifice 

tube throttling device. The greater pressure differential causes the refrigerant at the 

evaporator inlet to be at a lower pressure and, because it is saturated, a lower 

temperature. In the 50/20 pressure-cycled case, this trend cannot be observed 

because the effects of the cycling clutch dominate those of the throttling device. For 

both the continuously-engaged clutch and the 50/20 pressure-cycled clutch cases, 

the refrigerant-side outlet temperatures increase during high compressor speeds. 

The reason for this is the same as that explained in the previous paragraph-the 

effect of increasing the condenser air-side flow rate dominates over the increase in 

compressor speed, therefore resulting in higher evaporator refrigerant-side outlet 

temperatures during the portions of the driving cycle with high compressor speeds. 

Because the average outlet air-side temperature is lower for the test with the 

continuously-engaged clutch than for the 50/20 pressurs_-cycled clutch (48 OF versus 

58 OF), the temperature of the vehicle cabin will be reduced faster, providing greater 

passenger comfort. There is a trade-off, however, because in the continuously

engaged clutch case the average refrigerant~side inlet temperature is extremely low 

(10°F) when compared to the temperature for the pressure-cycled clutch (35 OF). 

Clearly, the continuously-engaged clutch case is unfavorable because the 

refrigerant-side inlet temperature is too low and the condensate on the evaporator 

surface will freeze. 
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4. CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

With the work di~cussed in this report, the following conclusions can be drawn. 
; 

• Because most of the points lie within ± 5% of the theoretical heat transfer 

line, the goal of achieving good calorimetry was reached; therefore allowing 

for further testing of the air conditioning system operating under transient 

. conditions.· 

• The instrumentation in the test stand generates correct results. Data from 

the extensive instrumentation provides excellent insights into transient 

system operation. 

• The five mass flow rate calculations can be used to record accurate values 

and, specifically, the refrigerant-side venturis can be used to obtain mass 

flow rates that are frequently within ± 2· of the mass flow rate reported by the 

Micro Motion coriolis-effect meter. However, the reader should realize that 

accurate venturi mass flow rates can ·only be obtained after proper venturi 

calibration. 

• The test facility was shown to be capable of reliably generating the wide 

range of operating conditions required for transient testing. 

4.2 Recommendations 

Despite the accuracy of the results, a few recommendations concerning the test 

facility instrumentation are presented. 

• The evaporator air-side outlet humidity probe should be moved from its 

current location (downstream of the duct heater) to the blower outlet 6-

sheet metal pipe (see Figure 2.16). This will (a) ensure the air is mixed 

before being read by the sensor and (b) maintain the temperature at the 

sensor below the maximum recommended operating limit of 140 OF. 

• Larger diameter copper tubing should be installed on the refrigerant-side 

venturi differential pressure transducers. The larger tubing will prevent the 
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surface tension of the refrigerant oil from affecting the transmission of 

pressure to the very sensitive differential pressure transducers. 

- . ~ 
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APPENDIX 

EES Energy Balance Program 

{This program is used to calculate the condenser and evaporator air-side versus 
refrigerant-side energy balances. In the process of determining the energy balance, 
the program calculates all other test stand parameters such as: flow rates, 
temperatures, and pressures.} 

{Function that calculates temperature(C) given thermocouple voltage(mV) 
obtained from IPS-90 tables in CRC Handbook of Chemistry and Physics} 
Function TfV(V) 

If (V<O) Then 
CO:=O 
c1 := 2.5949192E1 
c2:= -2.1316967E-1 
c3:= 7.9018692E-1 
c4:= 4.2527n7E-1 
c5:= 1.3304473E-1 
c6:= 2.0241446E-2 
c7:= 1.2668171 E-3 

Else 
co:=o 
c1 :=2.592800E1 
c2:= -7.602961 E-1 
c3:= 4.637791 E-2 
c4:= -2.165394E-:3 
c5:= 6.048144E-5 
c6:= -7.293422E-7 
c7:=O 

Endlf 
TfV:=e0+c1*V+c2*V"2+c3*V"3+c4*V"4+c5*V"5+c6*V"6+c7*V"7 

END 

{Function that calculates thermocouple voltage(mV) given temperature (C)} 
Function VfT(T) 

If (T <0) Then 
CO:=O 
c1 := 3.87481 06364E-2 
c2:= 4.4194434347E-5 
c3:= 1.18443231 05E-7 
c4:= 2.0032973554E-8 
c5:= 9.0138019559E-10 
c6:= 2.2651156593E-11 
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c7:= 3.6071154205E-13 
c8:= 3.8493939883E-15 
c9:= 2.8213521925E-17 
c10:= 1.4251594779E-19 
c11 := 4.8768662286E-22 
c12:= 1.0795539270E-24 
c13:= 1.3945027062E-27 
c14:= 7.9795153927E-31 

Else 
cO:= 0 
c1:= 3.8748106364E-2 
c2:= 3.3292227880E-5 
c3:= 2.0618243404E-7 
c4:= -2.1882256846E-9 
c5:= 1.0996880928E-11 
c6:= -3.0815758772E-14 
c7:= 4.5479135290E-17 
c8:= -2.7512901673E-20 
c9:= 0 
c10:= 0 
c11:= 0 
c12:= 0 
c13:= 0 
c14:= 0 

Endlf 
VfT:=cO+c1 *T +c2*TA2+c3*TA3+c4 *TA4+c5*TA5+c6*TA6+c7*TA7 +C8*TA8+c9*TA9+ 

c10*TA10+c11*TA11+c12*TA12+c13*TA13+c14*TA14 
END 

{Function that converts degrees C to F} 
Function FfC(C) 

FfC=9/5*C+32 
end 

{Function that converts degrees F to C} 
Function CfF(F) 

CfF=5/9*(F-32) 
end 

{BEGINNING OF MAIN EES PROGRAM} 
{Correct the barometer for temperature and gravity as per the users manual, p. 11} 
Pt=Proom+Proom*((1 +L*(Troom-Ts))/(1 +M*(Troom-Tm))-1) {inHg @ 32 F} 
Ts=62 {F} 
Tm=32 {F} 
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L=0.0000102 {inlin-F} 
M=0.0001 010 {inA3linA3-F} 

PI=Pt+Pt*(980.616/980.665*(1-Q.0026373*cos(2*phi)+0.0000059*(cos(2*phi) )A2)-1 ) 
{inHg at 32 F}J 

phi=40.109 {Latitude· Of Urbana, Illinois in degrees} 

{Calculate atmospheric pressure from corrected barometer reading. Conversion 
factor is from CRC Handbook, 64th ed., p.F-314: 70.7262{psf/inHg @ 32 
F}*1 {psi}/144{psf}=0.491154 {psilinHg @ 32 F}} 
Patm=PI*0.491154 {psia} 

{Enter pressure transducer calibration slopes "m" below (from curve fit of 
Pressure=m*Volts+b)} 
m_Peri=20.038 {psigN} 
m_dPer=5.1463 {psidIV} 
m_Pkri=20.38 {psigN} 
m_Pkro=121.07 {psigN} 
m_dPdv=1.0144 {mVN} 
m_Pcri=100.63 {psigN} 
m_dPcr=4.9448 {psidN} 
m_Plv=100.86 {psigN} 
m_dPlv=O.50393 {mVN} 
m_Peav=0.10833 {psigN} 
m_dPeav=0.065652 {psidlma} 
m_Pcav=0.10719 {psigN} 
m_dPcav=0.06841 {psidlma} 

{Calculate pressures from slope "m", daily offset value Yo, and atmospheric 
pressure Patm} 
Peri=m_Peri*(V _Peri-Vo_Peri)+Patm {psia} 
dPer=m_dPer*(V _dPer-Vo_dPer) {psid} 
Pkri=m_Pkri*(V _Pkri-Vo_Pkri)+Patm {psia} 
Pkro=m_Pkro*(V _Pkro-Vo_Pkro)+Patm {psia} 
dPdv=m_dPdv*(V _dPdv-Vo_dPdv)*1 OOON _5V-0.0022797 {psid} 
Pcri=m_Pcri*(V _Pcri-Vo_Pcri)+Patm {psia} 
dPcr=m_dPcr*(V _dPcr-Vo_dPcr) {psid} 
Plv=m_Plv*(V _Plv-Vo_Plv)+Patm {psia} 
dPlv=m_dPlv*(V _dPlv-Vo_dPlv)*1 OOON _5V-0.0013125 {psid} 
Peav=m_Peav*(V _Peav-Vo_Peav)+Patm {psia} 
dPeav=m_dPeav*(A_dPeav-Ao_dPeav) {psid} 
Pcav=m_Pcav*(V _Pcav-Vo_Pcav)+Patm {psia} 
dPcav=m_dPcav*(A_dPcav-Ao_dPcav) {psid} 

{Calculate water bath temp & back out thermocouple voltage} 
Tbath_F=164.96*V_TmstrN_5V+60.96 {F} . 
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{Calculate thermocouple temperatures from logged voltages} 
Teai=FfC(TfV(V _ TCBath+V _ Teai*1 000» {F} 
Teao=FfC(TfV(V _ TCBath+V _ Teao*1 000» {F} 
Teav=FfC(TfV(V _ TCBath+V _ Teav*1 000)) {F} 
Tcai=FfC(TfV(V _ TCBath+V _ Tcai*1 000» {F} 
Tcao=FfC(TfV(V _ TC Bath +V _ Tcao*1000» {F} 
Tcav= FfC(TfV(V_TCBath +V_Tcav* 1 000» {F} 
Teri=FfC(TfV(V _ TCBath+V _ Teri*1 000» {F} 
Tero=FfC(TfV(V _ TCBath+V _ Tero*1 000» {F} 
Tkri=FfC(TfV(V _ TCBath+V _ Tkri*1 000» {F} 
Tkro=FfC(TfV(V _ TCBath+ V _ Tkro*1 000» {F} 
Tcri=FfC(TfV(V _ TCBath+V _ Tcri*1 000» {F} 
Tcro=FfC(TfV(V _ TCBath+V _ Tcro*1 000» {F} 
Tlv=FfC(TfV(V _ TCBath+V _ Tlv*1 OOO)){F} 

{Calculate Micro Motion flow. 'Micro Motion checked by John Cioch & calibrated to 
read 4.00mA at zero flow.} 
m_Micro=25.0 {Ibmlhr/ma} 
mdoCMicro=m_Micro*(A_Micro-4.000) {Ibm/hr} 

{Calculate other variables in the loop} 
Tdv= Tkro {F} 
Pdv=Pkro {psia} 
Pcro=Pcri-dPcr {psia} 
Pero=Peri-dPer {psia} 
Pcai=Patm {psia} 
Pcao=Patm {psia} 
Peai=Patm {psia} 
Peao=Patm {psia} 

{Calculate humidity ratios} 
. weai=HumRat(AirH20,T = TRHeai,P=Peai,R=RHeai/1 00) {Ibm H20/Ibm dry air} 
weao=HumRat(AirH20,T = TRHeao,P=Peao,R=RHeao/100) {Ibm H20/Ibm dry air} 
wca=HumRat(AirH20,T = TRHcao,P=Pcao,R=RHcao/100) {Ibm H20/Ibm dry air} 

{Calculate enthalpies} 
heri=Enthalpy(R134a,T = Tlv,P=Plv) {Btu/lbm} 
hero=Enthalpy(R134a,T = Tero,P=Pero) {Btu/lbm} 
hcri=Enthalpy(R134a,T = Tcri,P=Pcri) {Btu/Ibm} 
hcro=Enthalpy(R134a,T = Tcro,P=Pcro) {Btu/Ibm} 
hlv=Enthalpy(R134a,T = Tlv,P=Plv) {Btu/Ibm} 

heai=Enthalpy(Air,T = Teai)+weai*Enthalpy(Steam,T = Teai,x=1.0) {Btu/Ibm dry air} 
heao=Enthalpy(Air,T = Teao)+weao*Enthalpy(Steam,T = Teao,x=1.0) {Btu/Ibm dry air} 
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hcai=Enthalpy(Air,T = Tcai)+wca*Enthalpy(Steam,T = Tcai,x=1.0) {Btu/Ibm dry air} 
hcao=Enthalpy(Air,T = Tcao)+wca*Enthalpy(Steam,T = Tcao,x=1.0) {Btu/lbm dry air} 

{Calculate densities at venturi inlet and throat} 
Rho_eav=1Nolume(AjrH20,T = Teav,P=Peav,w=weao) {Ibm wet air/ftA3} 
s1_eav=Entropy(AirH20,T = Teav,P=Peav,w=weao) {BtU/lbm-hr} 
s2_eav=s1_eav {isentropic sos2=s1, solve for T2 below} 
s2_eav=Entropy(AirH20,T = Teav2,P=Peav-dPeav,w=weao) {Btu/lbm-hr} 
Rho_eav2=1Nolume(AirH20,T = Teav2,P=Peav-dPeav,w=weao) {Ibm wet air/ft"3} 
Rho_cav=1Nolume(AirH20,T = Tcav,P=Pcav,w=wca) {Ibm wet air/ft"3} . 
s1_cav=Entropy(AirH20,T = Tcav,P=Pcav,w=wca) 
s2_cav=s1_cav 
s2_cav=Entropy(AirH20,T = Tcav2,P=Pcav-dPcav,w=wca) {Btu/lbm-hr} 
Rho_cav2=1Nolume(AirH20,T = Tcav2,P=Pcav-dPcav,w=wca) {Ibm wet airlft"3} 
Rho_dv=1Nolume(R134a,T = Tdv,P=Pdv) {lbmlft"3} 
s1_dv=Entropy(R134a,T = Tdv,P=Pdv) 
s2_dv=s1_dv 
s2_dv=Entropy(R134a,T = Tdv2,P=Pdv-dPdv) {Btu/lbm-hr} 
Rho_dv2=1Nolume(R134a,T = Tdv2,P=Pdv-dPdv) {lbm/ft"3} 
Rho_lv=1Nolume(R134a,T = Tlv,P=Plv) {lbm/ftA3} 
s1_lv=Entropy(R134a,T = Tlv,P=Plv) 
s2_Iv=s1_lv 
s2_lv=Entropy(R134a,T = Tlv2,P=Plv-dPlv) {Btullbm-hr} 
Rho_lv2= 1 Nolume(R 134a,T = Tlv2,P=Plv-dPlv) {lbm/ft"3} 

{Venturi diameters and beta ratios} 
01 eav=3.085 {in} 
01cav=6.123 {in} 
01 dv=0.917 {in} 
01Iv=0.720 {in} 

deav=1.8n {in} 
dcav=4.491 {in} 
ddv=0.375 {in} 
dlv=0.189 {in} 

Beav=deavlD1 eav 
8cav=dcav/01 cay 
Bdv=ddv/01 dv 
Blv=dlvlD1lv 

{Venturi discharge coefficients} 
Ceav=O.946 {From caUbration} 
Ccav=0.830 {From calibration} 
Cdv=O.910 {From calibration} 
Clv=0.954 {From calibration} 
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{Vapor venturi area expansion factors} 
alpha_steel=S.7e-S {inlin-F} 
alpha_brass=1.0e-5 {inlin-F} 
Fa_eav=(1+alpha_steel*(Teav-S8))"2 
Fa_cav=(1 +alpha....;$teel*(Tcav-S8) )"2 
Fa_dv=(1 +alpha_brass*(Tdv-S8))"2 
Fa_lv=(1 +alpha_brass*(Tlv-S8) )"2 

{Calculate mass flows using conservation of mass and momentum equations} 
meav=Ceav*Fa_eav*deav"2*pi/4*3S00/12*sqrt«2*32.174*Rho_eav*dPeav)/ 
(Rho_eav/Rho_eav2-Beav"4)) {Ibm/hr} 
mcav=Ccav*Fa_cav*dcav"2*pi/4 *3S00/12*sqrt( (2*32.17 4* Rho_cav*dPcav)/ 
(Rho_cav/Rho_cav2-Bcav"4)) {Ibmlhr} 
mdv=Cdv*Fa_dv*ddv"2*pi/4*3S00/12*sqrt( (2*32.17 4*Rho_dv*dPdv)/ 
(Rho_dv/Rho_dv2-Bdv"4)) {Ibmlhr} 
mlv=Clv*Fa_lv*dlv"2*pi/4*3S00/12*sqrt«2*32.17 4*Rho_lv~dPlv)/ 
(Rho_lv/Rho_lv2-Blv"4)) {Ibmlhr} 

Oeav=meav/Rho_eav/SO {cfm} 
Ocav=mcav/Rho_cav/SO {cfm} 

{Calculate energy balances} 
meav_dry=meav/(1 +weao) {Ibm dry airlhr} 
hw=Enthalpy(Steam,T = Teao,x=O.O) 
erht=mlv* (hero-hlv) {BtU/hr} 
eaht=meav _dry*( (heai-heao )-(weai-weao )*hw) {Btulhr} 
eEbal=(erht-eaht)/erht*100 {%} 

erht_micro=mdoCMicro*(hero-hlv) {BtU/hr} 
eEbaLmicro=( erht_micro-eaht)/erhcmicro*1 00 {%} 

mcav_dry=mcav/(1 +wca) {Ibm dry air/hr} 
crht=mlv* (hcri-hcro) {Btu/hr} 
caht=mcav_dry*(hcao-hcai) {Btulhr} 
cEbal=(crht-caht)/crht*100 {%} 

crht_micro=mdot_Micro*(hcri-hcro) {Btulhr} 
cEbaLmicro=(crht_micro-caht)/crht_micro*100 {%} 

{Compressor Information} 
PulleyRatio=0.99S3 {Compressor drive pulley ratio for Ford FS-10 compressor as 

determined with strobe} 
krpm=PulleyRatio*drpm {rpm} 
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ktorque=-1*dtorque/PulleyRatio {in-Ib} {The -1 is to change the sign on the dtorque 
value. The dtorque value always logs negative because the torque is counter
clockwise} 

{Oil Concentration DeVice. to be used later} 
Dummy1 = Toil {F}', .. ' 
Dummy2= TOF {micro sec} 
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