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Abstract –The emergence of tiny computers, 
such as smart dust, Berkeley motes and Intel 
motes, makes it feasible to envision the 
conversion of a network of tiny computers 
into a regular computing device (i.e., a “PC” 
or personal computer).  While the falling cost 
and increasing (yet tiny) computation power 
of these miniature computers portend well for 
this vision, there are significant technical 
hurdles. In this paper, we take a first step at 
building “PCs” out of such tiny computer 
networks, in order to run regular PC 
applications. Our system, called Beach, 
virtualizes the memory accessed by an 
application at a single sensor mote (a type of 
tiny computer), thus enabling this memory to 
be distributed out over multiple such motes.  
By using distributed page tables and caching, 
we transform the puny memory at each mote 
(few KBs) into several KBs of memory. We 
present trace-driven experimental results 
from running regular PC applications (e.g., 
sorting) on top of the Beach system. Due to 
the exploratory nature of this research, we 
ignore scalability and fault-tolerance issues 
for now. Our work provides initial insight 
into the pros and cons of the vision. 
 

1. INTRODUCTION 
 

 Tiny computers such as smart dust, Berkeley 
motes and Intel motes (I-motes) have small 
capabilities for computation (few MHz CPU), 
memory (few KBs), communication (few 10s of 
KBps) and energy (few days on full batteries at 
100% operating time). Currently, such hardware 
is being used for mostly sensor-type 
applications, e.g., environmental monitoring, 
battlefield tracking, building infrastructures, etc.  
 

However, with the decreasing costs (and sizes) 
of such tiny computers (e.g., motes), we 
envision that it will soon be feasible to use them 
for a different purpose. By stripping away the 
sensor hardware from such motes, and instead 
stringing together a network of tiny computers, 
the collection of motes can be made to function 
like a PC. Regular computation-intensive PC 
applications can then be run on such a “bottle of 
motes”.  
 
Our design decisions are motivated by systems-
level goals. Any network-wide operating system 
consists of several components – virtual 
memory, processes, file systems, resource 
management software. For the tiny computer 
networks envisioned, we believe each of these 
components poses enough challenges that they 
should be dealt with separately and individually.  
 
In light of the scarcity of work in this area so far, 
this paper takes a first step at implementing 
virtualization of memory across a collection of 
motes.  We present the design of a new system, 
called the Beach system, which through 
virtualization and caching, enables a 
computation-intensive application to run on a 
single mote, and yet spread its virtual memory 
over other motes accessible over the network.  
 
Through the Beach system, the master mote 
(which is running the application) will be able to 
malloc, read and write remote pieces of memory 
on other motes. The Beach system is 
customizable. Since we are given little 
optimization information about application-
specific requirements, we will allow the user to 
tune operational parameters at compile time, 
thus avoiding the performance penalty of 
runtime flexibility.  
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We are currently in the process of deploying a 
prototype of Beach on the Intel motes. We 
present simulation results of our TinyOS 
prototype, driven by traces from traditional PC 
applications. This helps us identify the pros and 
the cons of this direction.   
 

2. RELATED WORK 
 

 Existing research for sensor networks 
primarily focuses on routing, power 
management, storage, and reliability. As far as 
we are aware of, there is no research done in the 
area of distributed memory in sensor networks. 
Other pertinent research areas include: 
 
• Distributed Memory: 
Current approaches use a memory management 
unit to divide the address space into pages. 
Pages may be present in memory, or swapped 
out to secondary storage such as network-
mounted disks. These approaches are optimized 
for utilizing idle memory resources of peers on 
high-speed LANs [1, 2]. In the mobile realm, [3] 
proposes a model where PDAs and mobile 
devices request memory from nearby desktop 
systems. Furthermore, these designs rely on the 
presence of hardware support for virtualized 
memory. Such facilities are unavailable on most 
mote platforms.  
 
• Storage Management: 
The two notable storage management solutions 
are Freenet [10] and OceanStore [11], which use 
introspection techniques that guarantee 
optimality of data placement over time. Existing 
file sharing applications offer similar 
fundamental principles to network page 
management requirements such as page 
replication and eviction. Judicious selection of 
parameters can result in a custom-tailored 
protocol optimized for distributed memory in 
sensor networks. The combination of these 
techniques offers better energy efficiency and 
increased performance. 
 
• In-network processing: 
Approaches such as TAG [12] rely on manual 
decomposition of a task into local decisions 
made by sensors; data is aggregated at each node 
and processed at the source. This approach is not 

applicable to a general computational model 
because it is not necessarily Turing-complete 
(SQL). Our approach differs by allowing a mote 
to use virtualized memory resources, moving the 
tunable parameters closer to the system level. 
 
• Programming Sensor Networks: 
TinyOS [5, 6, 7] is a set of modules built using 
the NesC language; it provides an interface to 
commonly used sensor network functionality. 
To build a TinyOS application, a programmer 
connects several components through well-
defined interfaces. Events are generated from 
interrupts, and non-preemptive tasks are posted 
to a FIFO queue for execution. 
 
Virtual machines, such as Maté [8, 9], provide a 
clean abstraction to machine resources. Maté 
allows application programmers to customize 
the instruction set, which is then translated into 
bytecodes. A memory virtualization model using 
this approach will be completely transparent to 
client applications.  
 
• Routing: 
Several techniques and optimizations may be 
applied from existing approaches such as 
Directed Diffusion [13], which establishes 
virtual circuits from sources to sinks of 
information. Geographical routing [14] relies on 
á priori knowledge of mote placement and 
topology to ensure optimal routing. LEACH [15] 
reduces hot-spot formation by ensuring uniform 
long-term availability of sensor motes.  Routing 
facilities can be used in the formation of a static 
group of members which can be optimized for 
low latency communication. 
 
• Allocation: 
TinyAlloc provides a malloc-like interface to 
memory on a mote. It allows applications to 
dynamically allocate space within a specified 
heap area. TinyAlloc requests are split-phased in 
consistence with all TinyOS-based operations. 
In the first phase, a memory request is 
generated. The second phase signals completion 
of the request by sending an event to the 
application. TinyAlloc does not provide an 
interface for remote memory access. Therefore, 
an application requiring more memory than what 



 3 

a single mote can offer does not benefit from 
this interface. 
  
 

3. DESIGN CONSIDERATIONS 
 

 In a typical distributed shared memory 
system, memory is divided into pages. A 
memory management unit (MMU) present on 
each client manages access to memory and 
caches. The MMU is responsible for translating 
virtual addresses used by applications to 
physical addresses. A page table provides a map 
of memory addresses and permission bits for 
each block of memory. In a desktop computer 
page sizes are typically 4 kilobytes. The effect of 
finer granularity on pages is a larger overhead 
for structures describing the allotment of pages. 
Larger pages require less overhead, however, 
they can be prone to waste due to internal 
fragmentation. One approach to help increase 
the utilization ratio without requiring large 
amounts of overhead is to split pages into 
subpages, or keep separate page pools of various 
sizes. In such a pooled architecture pages may 
be sized to powers of two, which makes it easy 
to compute tag addresses for caching.  
 
Distributed shared memory schemes rely on 
messaging to pass pages between nodes. The 
judicious selection of parameters, such as 
appropriate sized quanta for pages, can have 
great impact on performance. Since pages must 
be transmitted as network packets, a page size 
much larger than the optimal packet size may 
lead to fragmentation and ultimately high loss 
rates as partially transmitted pages may need to 
be fully retransmitted to guarantee integrity. 
Larger packets also imply higher error rates and 
latency characteristics; however, they offer the 
lowest overhead and best performance. Smaller 
packets have the advantage of speed and low 
failure rate at the cost of high overhead. An 
application designer must carefully profile the 
results of changing parameters with requirement 
metrics to ensure optimality. We briefly analyze 
and discuss several application scenarios in the 
evaluation section to suggest some suitable 
values. 
 
 

Caching 
 
 Caching is vital to performance in any 
system that relies on frequent access to a 
working set of data. Several cache classes and 
optimizations such as prefetching are available 
at the programmer’s dispense. Cache size may 
affect the application’s aptitude for data 
processing. A small cache has the advantage of 
allowing a programmer to better partition 
memory for application-specific needs. A large 
cache may decrease the miss rate, but occupy 
more application space and unnecessarily waste 
memory if the hit rate is low for the application 
data. Such a scenario may be possible if an 
application only accesses each memory address 
once, such as calculating the sum of a large 
array. Prefetching pages can allow for better 
performance where the access pattern is 
predictable by a simple predictor. This 
optimization has utility in the checksum 
example, but fails in an example that may 
involve sorting. Caches are better suited to 
applications that have high locality of accesses, 
such as bubble sort.  
 
Cache replacement policies can have great effect 
on the performance of an application. For 
applications that repeatedly work on a small 
subset of data, such as matrix relaxation 
algorithms (temperature analysis), a least 
recently used (LRU) replacement policy may be 
best. An algorithm that repeatedly traverses an 
array, such as selection sort, would be best 
suited by a circular replacement policy. LRU, 
LFU (least frequently used) and circular 
replacement policies have worst-case scenarios 
that cause performance degradation. One 
possible solution may be a random cache 
eviction policy. This approach has the benefit of 
providing probabilistically good expected 
running times, but the random choice of an 
eviction may not be cheap to compute on a 
mote.  
 
One clear benefit to caching data comes in the 
form of write caching. By delaying the commit 
of a frequently used cache line, we can avoid 
unnecessary use of the radio. One scenario 
where this might occur is in a simulation where 
highly used variables are stored on several 
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pages. By using a write-back caching policy, 
changes are not committed until the entry is 
evicted. This approach works well when there is 
only a single client, but degenerates in a 
contentious environment. An alternate approach 
is a write-through cache, which updates a cache 
line when written, as well as the original replica. 
This policy helps ensure fast access on future 
reads without the consistency problems of the 
write-back approach. In a small setup with few 
motes we believe that a write-back policy 
controlled by a coordinating node would result 
in the best performance with the least overhead. 
 
Both caching and prefetching may improve the 
performance of certain applications, but possibly 
perform unnecessary preparation in others. In 
the latter situations, the benefits of prefetching 
and caching and the goal to conserve energy 
may be a dichotomy. It is the responsibility of 
the application programmer to determine proper 
and reasonable parameters through traces and 
profiling. 
 
Virtualization Interface  
 
 As described earlier, memory virtualization 
techniques typically require hardware assistance 
(MMU) to effectively maintain the illusion of a 
linear memory space. Without such a facility, 
there are several ways to accomplish the same 
goal. First, a program may employ a virtual 
machine that interprets instructions and remaps 
data references. This is the approach taken by 
Maté, a virtual machine for sensor networks. A 
second approach is to use relative addressing 
instructions. This approach is taken by uClinux, 
a variant of Linux that runs on machines without 
an MMU. In uClinux, applications are compiled 
to be relocatable at runtime. The operating 
system chooses a starting address, and data 
references are all relative to that address. This 
approach requires special support from the 
compiler to generate position independent code. 
Another approach is to generate a fault on an 
illegal memory access. Such accesses can be 
overloaded to implement system calls or 
virtualize memory. Finally, an application may 
guard all memory accesses through a special 
library or compiler preprocessing directives, 

which redirects array, pointer and memory 
accesses. 
 
Each of the methodologies described has 
benefits and drawbacks. The virtual machine 
approach requires an unnecessarily high 
performance overhead on code that does not 
necessarily access remote memory. The 
relocatable code approach and the memory fault 
approach require special support from the 
operating system, hardware, and compiler to 
properly operate. Whereas the virtualization 
library approach requires programmer 
intervention and an implementation would incur 
additional indirection overhead. To minimize the 
requirements, we chose to design and implement 
the virtualization library approach. Although we 
have indirection overhead on every memory 
access, we can replace the access instructions 
with compile-time macros to switch between 
accesses to remote or local virtual memories 
with no runtime cost.  
 
Library Interface 
 
 Our library exports several familiar 
functionalities to the C programmer. We attempt 
to provide similar interfaces to well-established 
libraries, but we had to make special 
modifications to adapt to the event-driven 
programming model of TinyOS.  Each operation 
requires a split-phase asynchronous 
implementation. First, a user requests a memory 
operation, then the library processes the data and 
issues network requests if necessary. Once the 
VM library has finished its work, it signals the 
application by raising a TinyOS event. The 
application then reads the status of the request 
and continues execution.  
 
In TinyOS, execution units are divided into two 
classes: tasks and event handlers. Tasks may not 
be interrupted by other tasks, but they may be 
preempted by an event handler. The proper way 
to divide work is to execute short operations that 
depend on external stimuli in an event handler, 
and post longer operations as tasks. One way to 
implement a blocking virtual memory system 
would be to use a spin lock to suspend 
execution, waiting for the completion of a 
memory request. Such an approach may lead to 
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a code snippet similar to the one depicted in 
Figure 1.  
 

 
 
The problem with this approach is that the spin 
lock unnecessarily wastes CPU cycles and 
energy by waiting on a condition instead of 
sleeping the processor. This approach also 
prevents the execution of other independent 
tasks that might be required to release the lock, 
potentially causing deadlock. The advantage to 
the spin lock approach is that programs are 
executed sequentially in a single-threaded 
manner.  By using the event-driven approach 
TinyOS advocates, we must rewrite our 
applications in a way that is conducive to their 
model. This requires some clever manipulation 
of program structure and loop unrolling to 
express programs at the cost of code clarity. 
Figure 2 demonstrates how a loop may be 
constructed using the TinyOS approach. The 
task repeatedly requests memory and processes 
it, while the event handler posts a task to process 
the incoming data. 
 

 
 
Other Optimizations 
 
 In addition to caching, other techniques such 
as compression, message piggybacking, and 

differential updates may help reduce the total 
number of messages exchanged. While 
considering these options we realized that the 
benefits may be insignificant, and sometimes 
nonexistent, due to the fact that most of the time 
the message packets are completely filled, or the 
data not easily compressible without the 
overhead of extra headers and checksums. 

 
4. CORE DESIGN 

 
 In the Beach system, there are two primary 
roles: master motes, which request memory 
resources, and slave motes, which offer and 
broker these memory resources. Masters 
maintain a page table with references to remote 
memory, as well as a cache that improves 
performance for repeated accesses. Slaves have 
a persistent data store and an allocation table. In 
our design, the allocation table and the page 
table are modeled by the same data structures. 
The cache and persistent storage structures are 
also equivalent. Therefore, the same structure 
assumes different roles depending on 
functionality of the mote. A single compile-time 
flag selects the role of a mote. All motes in a 
mote network run the same binary image, 
making replication and code updates easy. As a 
result of our design, running a simulation in the 
TinyOS simulator (TOSSIM) is very 
straightforward. 
 
 Masters are responsible for computation. 
They may access memory resources through 
four basic operations. These operations are: 
malloc, read, write, and free. 
 
Malloc – is a split-phase asynchronous call 
which creates a contract between master and 
slave motes for memory allocation. Memory 
requests are made to the granularity of a page; 
larger allocations request multiple pages. In the 
first malloc phase, a request for the amount of 
memory needed is broadcasted to all first-hop 
slave motes, which respond indicating their 
ability to satisfy the request. Each response is 
sent if the node can fulfill all or part of the 
memory request. For networks reaching their 
capacity, partial allocations can allow better 
utilization of free space. Based on these 
responses the leader decides whether the offers 

task void doComputation() { 
   call VM.readMemory(…); 
   …  
} 
event void operationComplete(…) { 
   //save received data  
   //to a buffer 
   post doComputation(); 
} 
 
Figure 2 - Event-based loop 

task void doComputation() { 
   … 
   call VM.readMemory(…); 
   while(!ready); 
   … 
} 
event void operationComplete(…) { 
   ready = TRUE; 
} 
 
Figure 1 - Spin lock 
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received are sufficient and signals a completion 
code. The offers are processed in the order they 
were received, guaranteeing that the 
topologically closest slaves are selected in order 
to minimize latency. If the responses indicate a 
valid request, the leader then sends a binding 
message to the selected slaves, which completes 
the memory reservation. In response, the slaves 
acknowledge the request and provide a unique 
handle (which encodes the mote address) to the 
master. All subsequent requests must refer to 
this handle to access memory in the allocated 
area. 
 
Read – There are two versions of the read 
command that differ in access granularity. A 
readPage call takes as input the page offset 
within a handle and a flag specifying whether 
the data is cacheable, and returns a buffer 
holding the data associated with that page. Its 
implementation determines whether the 
requested data exists in the cache: if the data is 
found in the cache, the request is satisfied 
locally, otherwise a lookup is performed in the 
page table to find the mote responsible for that 
page. Once the page is located, a request is sent 
to the remote mote to retrieve the page. A 
message indicating the result of the operation is 
returned by the slave mote. If the operation 
succeeded, the buffer holding the received page 
is returned, and, depending on the value of the 
“cacheable” flag, the data is inserted into the 
local cache (possibly evicting another entry, 
according to the cache replacement policy).  
Cache parameters and eviction policies may be 
selected by the application programmer to 
optimize the hit rate.  
 
To provide a more flexible programming model 
we created a wrapper interface around readPage 
that takes as input an offset in the page to start 
reading from, the size of the read request (in 
bytes), a buffer where the data retrieved must be 
placed, and a flag indicating whether the data 
should be cached or not. Using this wrapper, a 
program can read any number of bytes, allowing 
the underlying implementation to determine 
exactly how many pages are needed to satisfy 
the request and perform the actual readPage 
operations. 
 

Write – Similar to the read operation, a 
writePage function is provided that operates at 
the page level. Based on the caching policy 
employed, the cache is updated and a write 
request containing the page is sent to the mote 
responsible for it. The location of the page offset 
is determined by examining the index of the 
entry in the page table.  
  
The writeBytes function is also provided for 
added convenience, and allows the programmer 
to specify the offset, the size (in bytes), and a 
flag indicating the caching policy preferred. 
Programmers seeking to optimize the library 
might define their own replacement policies and 
prefetch predictors to match memory access 
patterns. 
 
Both read and write operations transfer data in 
blocks. Since a TinyOS message has a 
maximum payload size of 29 bytes, our block 
size is limited by this value and the overhead of 
our message header. Currently we use a paging 
model where the page size is fixed (equal to the 
block size minus header data), but we provide a 
discussion about variable size pages, their 
advantages and disadvantages, in the Future 
Work section.  
 
Free – This operation works in a similar manner 
to malloc. It iterates through the page table 
entries to retrieve the host ids and remote indices 
allocated for that handle, and sends out 
messages to the respective motes indicating that 
they should free those specific memory areas. If 
any entries are also found in the local cache, 
they are evicted.  
Upon receipt of a free request, a remote mote 
employs a similar algorithm that identifies the 
pages held by a particular handle, marking them 
as unused. 
 

5. IMPLEMENTATION DETAILS 
 

We have created a prototype implementation 
of our virtual memory library (VM) as a NesC 
module that utilizes the radio to talk to similar 
master or slave modules in the network. Each 
VM module contains a page table, a cache and a 
buffer for holding temporary information 
received from a read request. 
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Page Table Format 
 
 Each page table consists of a set of page 
table entries. Handles to memory references are 
simply indices into the page table shown in 
Figure 3. Each line contains a host id, describing 
which mote holds the storage of the contents of 
pages managed under the handle. Page table 
entries may form a linked list using ‘next’ 
pointers that allows for variable-sized handles. A 
handle allocates memory in quanta of pages, 
which are listed in the cache id fields. Each page 
table entry contains a list of cache ids. There is 
one cache id per page in the handle. The list of 
cache ids is null-terminated. Each entry of the 
list either refers to an index in the cache that is 
currently holding the block, or contains a special 
value indicating that the cache does not contain 
the block. The cache id fields implicitly refer to 
a page by its index into the handle structure, 
delegating the task of locating the page to the 
slave node, or the cache. Since the actual 
management of handle memory is distributed to 
the slave mote, it is allowed to delegate contents 
of pages to other motes, forming a topology.  
 
Cache Format 
 

Caches are composed of cache lines of un-
typed memory (Figure 4). Each line refers to the 
contents of a page. Cache validity is determined 
by checking if a handle in the page table refers 
to a cache entry. Care is taken by the library not 
to alias a cache line to multiple handles or pages. 

Caches may employ replacement policies 
described previously.  

 
 

Figure 4 - Cache Diagram 
 
 

Message Format 
 

Messages are derived from TinyOS 
messages which allow for a 29 byte data 
payload. We divide this payload into two 
sections:  the first section includes a common 
header containing information about the 
operation type, its return status, and the address 
of the mote sending the request or reply; the 
second section contains operation-specific 
headers providing details about the operation. 
Figure 5 and Figure 6 show details of the 
messaging format. 

 
The size of a page is highly dependent on 
message size because we would like pages to fit 
into a single message for efficiency and 
performance reasons. 

 
 

 

Figure 3 - Page Table Format 
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Figure 5 – Messaging Format - Requests 

 

 
Figure 6 - Messaging Format – Replies 

 
 

6. EVALUATION 
 

6.1 SIMULATION RESULTS 
 
To evaluate our prototype implementation 

we created a simple micro benchmark and a 
trace-driven simulator that makes use of the four 
defined operations, and calculated the number of 
messages exchanged between the master and 
slave motes, as well as the running time of each 
individual operation averaged over four trials. 
The pseudo code of our simple test case is 
described in Figure 7. 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
Table 1 shows the running time of each 
operation. Be aware that the TOSSIM simulation 
does not accurately simulate latency, events, or 
actual performance.  
 

Trial 1 2 3 4 Avg. 
MallocL 168 176 167 168 169.75 
WriteL 106 109 94 112 105.25 
ReadL 198 223 58 160 159.75 

 
Table 1 – TOSSIM micro benchmarks with time 

scaling enabled (milliseconds) 
 
MallocL, WriteL, and ReadL are 
measurements of the running time of the 
respective operations in TOSSIM on a Fujitsu 
Laptop (Pentium 4 1.8 GHz, 512 MB RAM 
running Fedora Core 3 Linux). The L means that 
TOSSIM was running with time scale equal to 
one (option -l = 1), which is supposed to emulate 
near real-time operation. Table 2 shows the 
same readings taken without time scaling.  
 
 
 
 
 

Task void Test() { 
   handle=malloc(10); 
   // wait for the 
   // operationComplete signal 
   write(handle, 0, ”hello”); 
   // wait for the 
   // operationComplete signal 
   read(handle, 0); //read page 0 
   // wait for the 
   // operationComplete signal 
} 
 
Figure 7 - Test code 
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Trial 1 2 3 4 Avg. 
Malloc 150 150 121 152 143.25 
Write 171 205 115 172 165.75 
Read 71 71 56 73 67.75 

 
Table 2 – TOSSIM micro benchmarks without time 

scaling enabled (milliseconds) 
 
The average latency seems to be more indicative 
of the processing time of TOSSIM rather than 
any real metric. Reads seem to have taken the 
longest with time scaling on, but the shortest 
with time scaling off. 
 
We attempted to use another emulator, ATEmu, 
which simulates TinyOS and the underlying 
processor on an instruction-by-instruction level. 
Tasks may be preempted using ATEmu, but 
TOSSIM does not model this behavior. 
Unfortunately, we were not able to obtain real 
performance numbers from ATEmu directly, 
because it lacked the ability to output debug 
messages.  
 
In terms of the number of messages exchanged, 
the malloc operation takes four messages to 
inquire and contact the target node, while the 
read, write, and free take only two messages, for 
a total of ten messages. 

 
6.2 TRACE-DRIVEN SIMULATION 

  
From our initial tests, we conclude that the 

majority of latency in the library is due to radio 
transmissions, therefore instead of focusing on 
synthetic benchmarks obtained from a simulator, 
we wrote a trace-driven simulation of the effects 
of caching parameters. Since the algorithms and 
inputs are well-known, implementing the sort in 
C or TinyOS would make no difference in the 
memory access patterns. Our implementation 
generates traces from algorithms run in C on a 
desktop machine, and replays the same actions 
on a single master mote. The master then 
executes the logged operations on in conjunction 
with a single simulated slave node. Read and 
write are the only logged operations, and 
execution of the log is done at the full speed of 
the simulated mote. This approach allows us to 
test complex algorithms that may be too error-

prone to implement on a real mote, while 
providing a reasonably accurate simulation.  

 
We present our performance evaluation in 

Figures 8 through 11. The first figure shows 
cache hit rate plotted against block size. The 
graph shows that Bubble sort benefits most from 
caching, perhaps due to its myopic sorting 
methodology. Quicksort seems to benefit least 
because its access pattern is more random 
through use of the partition function. The most 
drastic performance gain from an increased 
block size is in quicksort, this is due to the 
ability to “see” a larger view of the array to be 
sorted at any given time. Selection sort and 
bubble sort benefit less from the larger window. 
Figure 9 shows the hit rate plotted against the 
number of cache lines. Not surprisingly, bubble 
sort has a higher hit rate than quicksort; 
however, its hit rate remains nearly constant 
independent of the number of cache lines. This 
is once again due to the myopic view. Quicksort 
quickly increases its hit rate with more cache 
lines because its access pattern is more spread. 
Figures 10 and 11 show the number of messages 
and the running times of our traces for various 
page sizes.  Recall that the message payload size 
is equal to the page size, for simplicity. 
 
These results show that there are diminishing 
returns with increasing page size for these 
particular test scenarios. To provide an 
assessment of the practicality of our approach, 
we perform two indirect measures. The first 
measure, number of messages, is meant to give a 
rough estimate of the power requirements of our 
library for a given task. In the worst case 
analysis, running bubble sort on 15 elements 
takes at most 575 messages over 46 seconds 
when forced to use the worst-case block size of 
1 byte. According to CrossBow, a typical mote 
is capable of running for 172 hours with a packet 
sent every four seconds. Slightly extrapolating, a 
mote might be capable of slightly under 
9288000 messages over the lifetime of the two 
AA batteries. Our application consumes a mere 
fraction of the available capacity of the device. 
If we were doing the sorting at the same rate as 
Crossbow's tests, it would take 38.3 minutes to 
send requests from the master, and a total of 77 
minutes to complete execution. 
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Figure 8 - Cache Hit Rate vs. Block Size 

 

Cache Hit Rate vs. Cache Size
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Figure 9 - Cache Hit Rate vs. Number of Cache Lines 
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Figure 10 – Number of messages sent for the 

different trace simulations with varying block size 
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Figure 11 – Running times for the traces with 

different block sizes 
 

Our second metric is running time in TOSSIM. 
We measure the running time of these traces 
using the UNIX time command. As the graphs 
show, the worst case performance is 46 seconds, 
a factor of improvement over the worst-case 
scenario of sending four packets every minute 
(as described in the CrossBow documentation). 
 

7. ADVANCED FEATURES 
 

Since our VM approach does not dictate a 
routing substrate, we have assumed a simple 
topology until now. This has resulted in a 
simplistic one-hop strategy that is suitable for 
applications which have small marginal 
requirements, and the need for high 
performance. One simple approach for 
expansion is to allow for partial memory 
allocations on each node. Such a scheme would 

alleviate contention, and better distribute data 
across the network, resulting in benefits due to 
parallel accesses. This is similar to a RAID0 
striping arrangement. We see that the benefits 
multiply when the access medium is slow in 
nature, such as flash memory. The network may 
be several times faster than long-term storage on 
certain devices, especially when certain motes 
only wake up during specific time intervals.  

 
To implement partial allocation, each slave node 
must use a reply message that indicates it wishes 
to allocate only a subset of the requested 
amount. Recall that our allocation procedure is 
two-phase. The first phase solicits replies from 
able servants, while the second phase commits 
to the allocation by sending an allocation 
commit message. Using this protocol, the 
solicitation phase may ask all nodes which have 
idle capacity to contribute, and then allocate 
based on partial results. Each page table entry 
contains a host id, remote page table id, a next 
pointer to another page table entry, and a list of 
cache entries. In the partial allocation scheme, 
each constituent node would occupy a page table 
entry, with values that are relevant to the node. 
Since the next pointer does not fix a particular 
host and handle id, this functionality may be 
used to reference different nodes and remote 
handle ids within the same local handle. The 
overall effect of this approach is that we can 
have an arbitrary mapping of remote memory 
locations on many nodes to a single local handle. 
As memory accesses increase, the local cache 
can ensure that many of the hits will incur low-
cost.  
 
We have currently implemented a subset of the 
features required for a partial allocation scheme. 
Our implementation uses a two-phase malloc as 
described above, and a set of wrappers around 
the block-based read and write operations. We 
have found that partial allocation allows the use 
of several effects. First, with partial allocation, 
large memory allocations become possible 
among a group of motes. If a fair allocation 
scheme is used to budget the size of each 
individual allocation, this can lead to hotspot 
reduction, and parallelism benefits described 
earlier.  
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We faced several implementation issues 
regarding our use of the TOSSIM simulator with 
partial allocation. Using just two motes, there is 
little chance of race conditions and packet loss. 
When partial allocation is used, many messages 
may be sent in response to a single read 
message, which can specify multiple blocks. 
Since TOSSIM is a discrete event simulator, it 
tends to have two negative effects. First, 
messages may be lost instead of queued when 
many responses are received. We remedy this by 
waiting for a reply on each request. Secondly, 
events may be delivered out of order. We correct 
this by carefully blocking the system execution 
until a correct reply is received. Both of these 
effects lead to a suboptimal messaging system 
where there is a lot of blocking time and extra 
messages sent. Had TOSSIM queued messages 
and guaranteed total ordering, these measures 
would not be necessary.  
  

8. POSSIBLE EXTENSIONS 
 

Our current design forms the necessary basis 
to address and manage virtual memory 
primitives in a small tightly-knit mote network. 
In the event that a computation requires greater 
resources, a developer has several options. 
Among the available choices is the option to 
convert the problem into a specialized 
distributed algorithm, such as those used by 
TAG and Maté. If generality is important, our 
system may be extended to provide marginal 
benefits in cases that are slightly larger. We 
describe possible extensions in our system in 
this section with focus on simplicity of the 
protocol. 

 
One major improvement can be the inclusion of 
multi-hop neighbors. Using the same mechanism 
for partial allocations, a slave node may delegate 
a memory allocation to a second-level slave. 
Since the data structures on master and slave 
nodes are equivalent, this method requires 
minimal changes. Upon a memory access, a 
master accesses the page table index associated 
with a handle. The master then looks up the 
remote address, handle and offset to send to the 
slave mote. Upon receipt, the slave mote repeats 
the same steps until a leaf node is reached. Once 
a leaf is reached, the real address is located in 

the cache/backing store, and then the data is 
percolated back to the originating master.  
 
Although this approach may seem slow, there 
are several techniques that may help. First, if the 
nodes allocate only in an increasing direction 
away from the master, due to lack of 
geographically closer viable nodes, then 
performance can be guaranteed by hop 
minimization. A simple approach would be to 
use a geographic hash table to initially set up 
allocation preferences. Secondly, a routing 
substrate which respects geographically and 
reliability-oriented nodes first can aide the 
allocation mechanism in making an optimal 
node choice.  
 
Using the multi-hop scheme, it might be 
expected that frequent access to data structures 
may be slow. We debunk this myth by 
exemplifying through P2P file sharing systems. 
First, it is expected that our static allocation of 
data within a network limits flexibility of 
location. Secondly, long chains might damage 
reliability characteristics of data storage in event 
of a failure. While the former may seem true at a 
first glance, the actual case is that as data is 
accessed along the multi-hop route, each node 
caches the access. The overall effect is similar to 
that seen in Freenet, where files are migrated 
and replicated along access paths [10]. While we 
do not explicitly replicate, this has the effect of a 
multilevel cache, where local events on the 
primary cache have little effect on higher level 
caches, ensuring a high hit rate on second and 
third level caches. There may be much 
unnecessary cache duplication overhead, but we 
can combat this effect by using a probabilistic 
caching scheme, where the probability that a 
remote entry is cached is based on a parameter 
p. This allows long chains of length n to occupy 
approximately np space in the caches, greatly 
reducing the crowding effect. The latter 
argument relating to reliability may also be less 
severe than previously thought. Since our system 
is designed for short-term allocation, and many 
memory accesses have good cache locality 
through our multi-tier cache, the most important 
data is likely to be replicated many times in 
lower-level caches. This implies that a mote 
network using our system may have many leaf-
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level caches, but fewer supernodes near the 
master. This may lead to a network that has 
properties similar to a power-law or exponential 
network. The random failure of a few nodes is 
likely to only affect leaf nodes, and most of the 
network remains intact, with the common data 
still fresh in the caches. While we do not yet 
have detailed simulation traces, we argue that 
the similarity in formation to existing networks, 
such as Gnutella offers us temporary immunity 
to some degrees of failure. 

 
Another method to enhance fault tolerance is to 
borrow schemes from distributed file systems. In 
many distributed systems, there is the concept of 
a primary replica, which manages pointers and 
replication policies of specified data. We can use 
this approach to delegate responsibility of a 
shared page to a single slave mote. This slave 
can then request an identical allocation on 
another slave, and keep pointers to a secondary 
group of slaves, whom replicate the same data. 
Heartbeats among this group can guarantee 
liveness, and upon node failure, a new master 
may be selected. Protocols in distributed hash 
tables with group membership are particularly 
suited for this purpose. 
 
Finally, our single-master approach may not be 
completely scalable for larger computations; we 
can partially alleviate this by having multiple 
master nodes. Since a memory reference is a 
tuple containing a node address and a handle, 
this access tuple may be passed around the 
network as a capability to other nodes such as 
slaves to aid in computation. Even though this 
does not provide any direct parallelization 
benefits, it does partially help address the issue 
of fragmentation of the global memory pool 
across all motes. One perspective to view our 
framework is to compare the memory allocation 
we offer against that of a network without the 
virtualization system. In such a network, there 
are a high percentage of motes with unused 
memory resources, and the fragmentation of 
these resources can inhibit overall operation. We 
allow users to partially recover reasonable-size 
chunks of these resources to continue 
computation. 
 
 

9. CONCLUSIONS 
 

 In this paper we presented the Beach system 
as a first step towards the virtualization of 
resources provided by these small computing 
devices, called motes. We introduced a low 
overhead virtualization library to automatically 
manage remote memory on mote devices.  Using 
a systems approach, our library breaks memory 
into user-specified fixed-sized quanta that are 
allocated by applications. Through several 
mechanisms such as partial allocation, we can 
reclaim memory wasted in a mote network due 
to fragmentation. This allows small sporadic 
computations, which have large temporary 
memory requirements, to run effectively. A 
caching system avoids excessive utilization of 
the radio, and allows motes to gain better access 
to most recently used material. We implemented 
our system and found that our caching scheme 
significantly reduces the number of radio 
transmissions for common sorting benchmarks. 
  
By specially designing our page tables, we can 
indirect blocks between slave nodes. We can use 
this indirection technique to form a tree of 
participants whom contribute small amounts of 
memory to the network. Specialized master 
replicas can be designed to ensure fault tolerance 
in the system without significant performance 
penalties. Through the use of hierarchical 
allocation and master replicas, we can build a 
scalable and reliable system to redistribute 
memory in a mote network. 
 
Our work represents an initial attempt at 
designing a system to handle efficient resource 
reallocation within a mote network. With partial 
allocation and caching, we already see a great 
improvement in the capabilities of motes as a 
viable platform for larger computations. Unlike 
TAG and in-network computation, our system 
can be used to run code that is difficult or 
impossible to transform into an in-network 
processing equivalent. This allows programmers 
to use traditional algorithms on mote networks 
without excess regard to resource 
considerations.  
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10. ONGOING DEPLOYMENT ATTEMPTS 
 

 We have begun some initial testing with 
mote hardware from both Crossbow and Intel. 
At present, we do not have reliable 
measurements, but we expect to be able to 
obtain them soon. We had trouble with operating 
the radios on the Crossbow motes we received, 
so we opted to try out the next generation Intel 
motes. At the time of this writing we are early in 
the testing phase since we only received the new 
hardware very recently. So far we have 
experienced a number of problems with the 
build process, and found the lack of 
documentation on the iMote TinyOS Bluetooth 
radio interface model to be a significant 
shortcoming of these motes. We did have 
limited success with the demo applications and 
porting some of the basic TinyOS examples, 
such as CntToRfm. We are actively exchanging 
messages with other researchers on the TinyOS 
mailing lists and community resources to 
address the various issues we’ve encountered. 
Given that the iMotes are still in an early beta 
phase, maturity of the product over time may 
help to ease our efforts. 
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