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Abstract

We propose localized and decentralized protocols to construct and maintain an un-

derlay for sensor networks. An underlay lies in between overlay operations (e.g., data in-
dexing, multicast, etc.) and the sensor network itself. Specifically, an underlay bridges
the gap between (a) the unreliability of sensor nodes and communication and avail-
ability of only approximate location knowledge, and (b) the maintenance of a virtual
geography-based naming structure that is required by several overlay operations. Our
underlay creates a coarse naming scheme based on approximate location knowledge,
and then maintains it in an efficient and scalable manner. The underlay naming can
be used to specify arbitrary regions. The overlay operations that can be executed on
the underlay include routing, aggregation, multicast, data indexing, etc. These overlay
operations could be region-based. The proposed underlay maintenance protocols are
robust, localized (hence scalable), energy and message efficient, have low convergence
times, and provide tuning knobs to trade convergence time with overhead and with
underlay uniformity. The maintenance protocols are mathematically analyzed by char-
acterizing them as differential equation systems. We present microbenchmark results
from a NesC implementation, and results from a large-scale simulation of a Java im-
plementation. The latter experiments also show how routing using the underlay would
perform.

]

1 Introduction

Wireless Sensor networking (henceforth simply sensor networks) applications in the future are likely
to be supported by networking substrates. These substrates will provide services such as multicast,
routing, data indexing (e.g., GHT [2], DIM [1]), aggregation [3]), etc. These protocols can be termed
as overlay protocols, since they are all operations executed on the scale of the entire system (or parts of
it) rather than at the level of individual sensor nodes [7] 1. The main requirements from these overlay
services are reliability, scalability, and energy-efficiency.

However, bridging the gap between the requirements of overlays on the one hand, and the inher-
ent unreliability of sensor nodes and communication, as well availability of only approximate location
knowledge (e.g., from GPS or localization algorithms) on the other hand, remains a challenge. For
example, overlays for multidimensional range querying such as DIM and GHT [1, 2] require the network
to be organized into a hierarchical structure (not necessarily just a spanning tree). Maintaining such
a hierarchical structure that underlies the overlays has remained a difficult problem. Also, specifying
arbitrary regions in the sensor network, and executing overlay operations on them (e.g., multicast,
routing) requires a coarse naming scheme for the network that is only based on approximate location
knowledge of sensor nodes.

1This terminology is analogous to Internetwork-based overlays such as RON [4] and peer to peer systems.
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In this paper, we propose protocols to maintain an underlay scheme that can be used to bridge the
above-mentioned gap, while not compromising the reliability, scalability and energy-efficiency that the
overlay operations seek to provide to the application. The underlay is called the Grid Box Hierarchy
(GBH), and although the structure was proposed in [5], creation and maintenance of the underlay is an
entirely different problem that was not addressed.

In the GBH hierarchy, sensor nodes are located only at the leaves, while the internal nodes of the
hierarchy correspond to virtual aggregated grid boxes (and not to individual sensor nodes). The naming
of these grid boxes and regions is based only on approximate location knowledge 2. GBH allows us to
(a) specify arbitrary regions, either geographically or as collections of sensor nodes, in terms of these
virtual grid boxes, and (b) support a variety of overlay operations including (but not restricted to)
aggregation, data indexing, multicast, and routing, either across the system or within regions.

In this paper, we focus on protocols for maintaining the GBH underlay, and evaluate their impact
for a region-based routing protocol and a region-based multicast protocol. Aggregation using GBH was
the focus of [5]. Supporting indexing schemes such as GHT and DIM over the GBH underlay is simple,
and an evaluation is omitted due to space constraints.

The underlay maintenance protocols are localized and decentralized (i.e., do not rely on the election
of leaders or cluster-heads). Our analysis and experimental results show that the protocol is robust,
resilient, scalable and converges quickly to a stable state. In spite of events that may perturb the
system (e.g., failures), the protocol continues to converge back to the stable state. Further, the protocol
offers tuning parameters that can be adjusted so that metrics such as energy efficiency and speed of
convergence can be traded off as per application requirements.

The paper is organized as follows. Section 2 gives an overview of the GBH and the overview of
our protocols. Section 3 presents two protocols to construct and maintain the grid box hierarchy.
Section 4 presents two naming algorithms to name the grid boxes constructed. Section 5 analyzes the
decentralized maintenance protocol. Section 6 describes an example overlay operation (routing) using
the GBH. Section 7 presents our experimental results. Sections 8 and 10 discuss related work and our
future work respectively. Section 9 concludes the paper.

2 Background

GBH Overview: The abstract structure of the Grid Box Hierarchy (GBH) is as follows [5]. The
GBH for a sensor network of N sensor nodes consists of N/K grid boxes, each box containing an equal
number of sensor nodes (K). K is a constant integer that is independent of N . Each grid box is assigned
a unique (logKN − 1) digit address in base K (i.e., each digit is an integer between 0 and K − 1). All
these grid boxes lie only at the leaves of the virtual hierarchy. For all 1 ≤ i ≤ logKN , subtrees of height
i in the hierarchy contain the set of grid boxes (actually, the sensor nodes inside them) whose addresses
match in the most significant (logKN − i) digits - this is used to name the internal node of the GBH
with a series of wildcards at the end, as shown in Figure 1.

M2 M4M8M7 M6M3 M5 M1

Grid Box - 00 Grid Box  - 01 Grid Box - 10 Grid Box - 11

Subtree - **

Subtree - 0* Subtree - 1*

Figure 1: GBH with N = 8, K = 2

2Such approximate locations can be obtained using any localization algorithm or using GPS.
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For sensor networks, we require that (1) sensor nodes within each given grid box are physically
proximate, and (2) each pair of grid boxes with close-by names, are physically proximate. Indeed, these
conditions are loosely stated because this turns out to be sufficient for the overlay operations we are
interested in. Condition (2) implies that the smaller the integer difference between two grid boxes, the
closer they are in physical space. Internal nodes in the GBH now correspond to physical regions, and
condition (2) implies that physical proximity also extends to regions spanned by internal nodes of GBH.

Example of Using the GBH Underlay: Such a GBH underlay provides us a basis for building
several important overlay operations. By virtue of the name-physical proximity relation (conditions (1)
and (2)), if these overlay operations are designed in a manner that respects the hierarchy of the GBH,
they will also be efficient in terms of actual message overhead within the wireless ad-hoc sensor network.
For example, if an overlay operation minimizes message transfers between pairs of grid boxes that are
far apart in the name space, the operation is also efficient in terms of actual message overhead. Thus,
a designer of scalable and reliable protocols for overlay operations can design the protocol directly on
top of the GBH underlay, and the GBH will ensure that the protocol will also be efficient in terms of
actual overhead and energy usage.

Examples of overlay operations include:

• Any arbitrary region (specified either as a set of sensor nodes or a geographic region) can be
mapped to a series of grid boxes and internal nodes in GBH.

• Anycast routing can then be done from any source node that is outside this region into the region
itself.

• Multicast can be initiated within a given region by using either flooding or gossiping or a spanning
tree.

• Aggregation can be done as follows [5]. A global aggregate function is calculated bottom up in
this hierarchy, and in logKN phases. In the first phase, each sensor node Mj (or a representative)
evaluates an estimate of the function when evaluated over the values of all sensor nodes in its grid
box. In each subsequent ith (i > 1) phase, each member Mj (or a representative) evaluates the
value of the aggregate function over the set of votes by sensor node belonging to the same height
i subtree as Mj . In each phase, the partial aggregates are spread by using the region multicast
overlay operation.

We discuss regions, routing and multicast operations using GBH in Section 6.

Creating and Maintaining the GBH Underlay: We study protocols to crate and maintain the
GBH underlay. Specifically, we wish to assign each sensor node to a grid box so that all grid boxes
contain an equal number of nodes, and conditions (1) and (2) for the relation between name physical
proximity is attempted to be maintained.

There are two components to our protocols: (a) Balancing protocols that ensure the balance of
sensor nodes across grid boxes, and (b) Naming algorithms for maintaing conditions (1) and (2) above.
The input to the creation algorithms

The GBH creation protocols take as input an approximate location for each node (obtained through
a localization service) or GPS. These are used by the naming algorithm to assign names to grid boxes
3. The balancing algorithm then takes over, and ensures that the grid boxes balance out. The bal-
ancing algorithm continues to run throughout the lifetime of the network and in fact constitutes the
maintenance protocol.

The creation and maintenance protocols are required to be localized, energy-efficient, self-reorganizing
and robust against node failures and rebirths.

3Some grid boxes may be nonexistent if the distribution of nodes is highly non-uniform - this simply results in an
increase in the value of K in the distribution of nodes among the grid boxes.
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3 Diffusion Based Balancing

In this section, we propose two new diffusion based balancing protocols for maintaining the GBH. These
algorithms are similar to algorithms used for load balancing in multiprocessors. Sensor nodes transfer
in between grid boxes (note that this is not physical movement) in order to restore balance.

3.1 Leader Based Diffusion

3.1.1 Direct Neighborhood (DN) Diffusion

This variant is based on leader-election. Figure 2 shows the psedudocode. The next section describes
a decentralized variant. Each grid box Gi has a leader node Li. Li maintains a list of its grid box
members, as well as a list of neighbor grid boxes, their leaders and their sizes. Every Tb time units, Li

checks its neighbor grid box sizes and picks a neighboring grid box Gj with maximum size difference
and sends Lj a balancing request. If the request is accepted, then the leader of the larger box initiates
a transfer of an appropriate number of nodes. The set of nodes transferred may include the leader Li

itself; however this node stays a leader for Gi; leaders do not move very far from their grid boxes since
grid boxes do not ”move” large physical distances. Stale grid box size information in these messages
does not cause inconsistency since each leader is participating in at most one transfer at a time. The
communication between the leaders can be done through TTL-restricted flooding since they are likely
to be close by. The nodes to be transferred may be chosen from among those that are close to the
boundary of Si and Sj, or those that are close to the centroid of Gj (this information is sent by Lj), or
those that add maximum number of edges to Gj .

3.1.2 Average Neighborhood (AN) Diffusion

AN is an extension of DN whereby each grid box balances with more than one neighbor. Up to m
neighbors may be used, where m varies from 1 to all neighbors. We expect that AN will take fewer
messages and time than the DN algorithm. The AN algorithm uses the DN algorithm, where the m
neighbors with highest differences are chosen, and are used for balancing. Implementation details are
omitted since they are similar to DN in, and use Mreq balance, Maccept req balance, and Mreject req balance

messages.
Failure of the leaders in these schemes can hamper the convergence properties of the protocol. This

motivates decentralized schemes that do not reply on leaders. We discuss these schemes in the next
section.

3.2 Decentralized Probabilistic Diffusion

The pseudocode for the Decentralized Probabilistic Diffusion Balancing protocol is shown in Figure 3.
We explain the protocol below.

Initialization: Each sensor node initially knows its approximate grid box address based on its
approximate location and by using a naming algorithm (described in Section 4). It then starts to
maintain the current membership GSi of its grid box Gi. This is achieved by having a newly joining
node TTL-flood an Mentering gb message, and receiving nodes in the grid box include this new node in
their membership lists.

Balancing: After initialization is completed (specified by a timeout), each sensor node participates
in the balancing protocol. Sensor nodes on the periphery of their grid boxes (those with neighbors in a
different grid box) announce any changes in their grid box name and membership size to their neighbors
through a Mmy grid box(Gi, GSi) message, which are recorded at the recipients. Every Tb time units,
sensor sj selects a neighbor si such that Gj �= Gi and |GSj | > |GSi| + 1. Then, with probability PT ,
sj transfers itself from Gj to Gi. Nodes entering or leaving a grid box announce this by TTL-flooding
Mentering gb and Mleaving gb messages respectively.
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Require: Lg is node address, g is initial GB address, timeT = Tb and state = DOING NOTHING

loop

if time > timeT ∧state = DOING NOTHING then

choose neighboring grid box g′ with maximum |size(g) − size(g′)| greater than 1
send Mreq balance(g,Lg) to destination leader Lg′

state ← SENT REQUEST

end if

receive msg

if msg = Mreq balance(g
′, Lg′) then

if state = DOING NOTHING then

send Maccept req balance(g, Lg) to L′

g

state ← BALANCING

if size(g) > size(g′) then

choose S, a set of � size(g)−size(g′)
2

� nodes in grid box g

inform S that their new grid box is g′

inform L′

g to add S to grid box g′

broadcast new size information to neighboring grid boxes
state ← DOING NOTHING

end if

else

send Mreject req balance(g,Lg) to L′

g

end if

end if

if msg = Mreject req balance then

state ← DOING NOTHING

timeT ← time + Tb

end if

if msg = Maccept req balance then

state ← BALANCING

if size(g) > size(g′) then

choose S, a set of � size(g)−size(g′)
2

� nodes in grid box g

inform S that their new grid box is g′

inform L′

g to add S to grid box g′

broadcast new size information to neighboring grid boxes
state ← DOING NOTHING

end if

timeT ← time + Tb

end if

end loop

Figure 2: Direct Neighborhood Diffusion (DN).
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The probabilistic choice PT prevents migrations of large numbers of sensor nodes. This scheme
should be chosen so as to minimize oscillations and assure convergence and a stable solution. We
discuss different ways of setting this probability in Section 3.3.

Maintenance: At regular intervals, every sensor floods (with a TTL enough to reach its grid box)
a Mpresence update heartbeat message. Each entry in GSi at si has a time to live which is initialized
to slightly higher than the heartbeat interval. Entries time out if heartbeats are not received, thus
gracefully removing failed nodes from the grid box and the system itself. Any such change will result
in a subsequent balancing movement.

When a new sensor node joins (or rejoins) the network, it requests its neighbors for their grid box
numbers. It chooses one of them and joins that box. The distribution is balanced out then by the
balancing protocol.

3.3 Probability of Transfer function PT

We discuss different ways of setting the probability PT that determines the rate at which nodes move
across neighboring grid boxes.

Constant Probability p: PT is set to a constant value of p
GSi

. Choosing the right value for p is
crucial to the protocol’s success. A high value for p could result in a large number of nodes in the
periphery of a grid box transferring to a neighboring grid box. If this movement is large enough to alter
the order of grid box sizes, this could cause node oscillations between grid boxes. On the other hand, a
very low value for p will result in slow convergence.

Linear Probability: The probability PT is set as pδ
|GSi|

, where δ is the size of the imbalance (difference

in number of nodes between grid box sizes). This ensures higher imbalances are balanced out faster
(due to the higher probability of doing so).

3.4 Tree Based Update Dissemination

The TTL-flooding used to spread information within grid boxes and across neighboring grid boxes can
be replaced by a tree-based dissemination protocol to spread these updates in a more message- and
energy-efficient manner. The basic idea involves each grid box maintaining a spanning tree containing
all its nodes, as well as a few nodes from neighboring grid boxes. We omit description of the tree
building/maintenance protocol due to its simplicity.

4 Naming Algorithms

A naming algorithm assigns an initial grid box address to a sensor node based on its knowledge of its
approximate geographic location. For simplicity, we assume that all sensor nodes know the layout of
the entire area, and this area is rectangular.

Let X represent the length of the area and Y represent the width. Assume that n = N/K is a power
of K. Consider two cases depending on whether n is an even or odd power of K.

• If n = K2r, split the area into rectangular parts such that there are Kr boxes on each side. Each
box is of length X

Kr and width Y
Kr .

• If n = K2r+1, split the area into rectangular parts such that there are Kr boxes on the smaller
side and Kr+1 on the larger side. If X ≥ Y , each box is of length X

Kr+1 and width Y
Kr .

Let x represent the length of the system area in terms of boxes and y represent the width of the
system area in terms of boxes. We model the naming scheme as a function fxy that takes a grid box
Gij (where i and j represent the grid box’s position along X and Y axes) and assigns it a number in
base K. Two intuitive schemes are stated below,
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Require: i is node address, g is initial GB address, GS is the initial member set of g, timeT = Tb and N is set of known
neighboring nodes and their grid box sizes
loop

if time > timeT then

choose (j, g′, GS′) from N with minimum |GS′|.
if |GS| > |GS′| + 1 then

if rand < p then

GS ← GS′ ∪ i

flood Mentering gb(g
′, i) and Mleaving gb(g, i)

g ← g′

broadcast Mmy gb(i, g, GS)
end if

end if

timeT ← time + Tb

end if

receive msg

if msg = Mmy gb(j, g
′, GS′) then

update N to contain neighbor j, its grid box address g′ and its member set GS′

end if

if msg = Mentering gb(g, j) then

GS ← GS ∪ {j}
broadcast Mmy gb(i, g,GS)

end if

if msg = Mleaving gb(g, j) then

GS ← GS − {j}
broadcast Mmy gb(i, g,GS)

end if

end loop

Figure 3: Balancing through Decentralized Probabilistic Diffusion.

Linear: In this scheme fxy(Gij) = j × x + i. In other words, the boxes are numbered row-wise.
Recursive: Assume that we have to name Kn boxes. Split the area into K × K big boxes each of
which has to house Kn−2 grid boxes. Now number the big boxes in row-wise order from 0 to K2 − 1.
This needs 2 digits in base K and will act as prefix for the names of all boxes inside each big box. Now
recursively split, name and add the prefixes.

A simple analysis below shows that the recursive scheme produces clusters that are more squarish
than that produced by the linear scheme. This results in better proximity between nodes in the same
cluster.

First consider the case when n = N/K = K2r, an even power of K. Consider the subtree (in GBH)
comprising of boxes that match in the t most significant digits. Let us compute the squareness of this
level (we call this the t-level for simplicity) for both schemes. For the linear scheme, we need to consider
two cases t < r and t ≥ r. If t ≥ r, then the t-level is a rectangle of size K2r−t × 1. If t < r, then
the t-level is a rectangle of size Kr × Kr−t. Consider the recursive scheme. We need to consider two
cases: t is even and t is odd. If t is even, then the t-level is going to be the same as the 0-level of a
hierarchy with K2r−t boxes. This is of size Kr− t

2 × Kr− t
2 . If t is odd, then the t-level is going to be

the same as a linear arrangement of the 0-levels of K hierarchies with K2r−(t+1) boxes. This is of size

Kr− t−1
2 ×Kr− t+1

2 . Let us define squareness as the ratio of the smaller side to the larger side. The closer
it is to 1, the better it is. Linear scheme has squareness 1

K2r−t if t ≥ r and 1
Kt when t < r. Recursive

scheme has squareness 1 if t is even and 1
K

if t is odd. It is easy to see that recursive scheme achieves
much better squareness. It can be similarly shown for the case when n is an odd power of K.

5 Analysis

In this section, we analyze the decentralized probabilistic balancing protocol with linear probabilities
of transfer.

Let us consider a grid box system with N×N regular grid boxes. The analysis can be easily extended
to a system where the sides are not equal. Let the grid boxes be numbered in a rowwise fashion and
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let si represent the size (in number of nodes) of grid box Gi. Assume Gi and Gj are boxes that share
a common side. The two boxes can diffuse nodes between them if si �= sj. Assume w.l.o.g that si > sj.
Now the probability of transfer for a node on the boundary of the two boxes but on the Gi side is given
by p

si
(si−sj). If f is the fraction of si that form the boundary, then the overall rate of transfer of nodes

from Gi to Gj is given by f × si ×
p
si

(si − sj) which evaluates to f × p(si − sj). Let us w.l.o.g assume
f = 1 which results in a node transfer rate of p(si − sj) from Gi to Gj .

Now, we figure out the total rate of transfer out of Gi by considering all 4 neighboring boxes (which
may be 3 or 2 depending on edge/corner cases). This can be represented as −dsi

dt
= p(si − si−1)+p(si −

si+1) + p(si − si−N ) + p(si − si+N ). More concisely, dsi

dt
= p(si−1 + si+1 + si−N + si+N − 4si). Let NGi

represent the set of neighboring grid boxes of grid box Gi. Then the equation for rate of change of si

can be given as,

dsi

dt
= p{(

∑
Gj∈NGi

sj) − |NGi| × si} (1)

We prove convergence properties of a simple system at first and then extend it to any general system.
All theory behind the proofs can be found in [27].

5.1 A Simple System

For an example 2 × 2 system, the rate of change equations can be given by,

ds0

dt
= p(s1 + s2 − 2s0) (2)

ds1

dt
= p(s0 + s3 − 2s1) (3)

ds2

dt
= p(s0 + s3 − 2s2) (4)

ds3

dt
= p(s1 + s2 − 2s3) (5)

Let s represent the column vector containing the sizes of grid boxes in row wise order. Then, the
above set of equations can be given as ṡ = As, where A is the coefficients matrix,

A = p ×

⎛
⎜⎜⎝

−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2

⎞
⎟⎟⎠

A linear differential equation system as above can be solved for by computing the eigenvalues and
eigenvectors of A. The eigenvalues of A can be computed as the roots of the characteristic equation
|A − Iλ| = 0. The roots are λ = 0,−2p,−2p,−4p where −2p is a repeating root. The corresponding
eigenvector for each eigenvalue λi can be computed as a solution vi to Avi = λivi. We then have,

λ0 = 0 v0 =
(

1 1 1 1
)

λ1 = −2p v1 =
(

1 1 −1 −1
)

λ2 = −2p v2 =
(

1 −1 1 −1
)

λ3 = −4p v3 =
(

1 −1 −1 1
)

Then the general solution to ṡ = As is given by, s =
∑

0≤i≤3 civie
λit. For the eigenvalues and

eigenvectors computed above, this can be written out as,

s0 = c0 + (c1 + c2)e
−2pt + c3e

−4pt (6)

s1 = c0 + (c1 − c2)e
−2pt − c3e

−4pt (7)

s2 = c0 − (c1 − c2)e
−2pt − c3e

−4pt (8)

s3 = c0 − (c1 + c2)e
−2pt + c3e

−4pt (9)
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We can make a number of observations from the solution above for the relatively simple system,

• Given sin
0 , sin

1 , sin
2 , sin

3 as the initial grid box sizes, we can solve for the constants ci. In particular,

c0 turns out to be equal to
P

i sin
i

4 which is the average grid box size.

• All non-constant terms are negative exponential terms which converge to 0 as t −→ ∞. This
implies each si converges to c0 as t −→ ∞. But c0 is the average grid box size and hence all grid
boxes converge to an equal number of nodes.

Thus we have proven that the system converges to a state where every grid box size is equal. In
the next section, we briefly prove without explicitly solving that this extends to any general grid box
system.

5.2 A General System

Consider a general grid box system with N ×N grid boxes whose sizes vary as given by the equations,

dsi

dt
= p{(

∑
Gj∈NGi

sj) − |NGi| × si} (10)

As mentioned in the previous section, this system of differential equations can be concisely repre-
sented by ṡ = As, where A is the coefficients matrix of equations 10.

Lemma 5.1. A has real eigenvalues.

Proof: It is known that a symmetric real matrix has real eigenvalues. We are done if we show that A
is symmetric.

Recall that A is the coefficients matrix corresponding to the N2 equations in N2 variables. Hence,
Aij is the coefficient of sj in the equation for dsi

dt
. Looking at Equation 10 it is obvious that all coefficients

outside of the main diagonal are either -1 or 0. More precisely when i �= j, Aij is 1 iff Gj is a neighbor
of Gi and 0 otherwise. Thus Aij = Aji which concludes the proof.

Lemma 5.2. 0 is an eigenvalue of A.

Proof: ¿From Equation 10, we can see the sum of coefficients in each equation is 0. This means the
each row of A sums to 0. This further implies that,

A.

⎛
⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎠ = 0 = 0.

⎛
⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎠

Therefore 0 is an eigenvalue of A with eigenvector
(

1 1 ... 1
)
. Hence proved.

Defn: A symmetric real square matrix A is negative semidefinite if for any nonzero vector x, we have
xTAx ≤ 0.

Lemma 5.3. A is a negative semidefinite matrix.

Proof: We will first see how this is proved for the 2× 2 system given in the previous section. This is in
spite of actually solving the system to illustrate a proof technique.

xTAx

= xT p

⎛
⎜⎜⎝

−2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2

⎞
⎟⎟⎠x

= 2p(x0x1 + x0x2 + x1x3 + x2x3 −
∑

i x2
i )
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= −p[(x0 − x1)
2 + (x0 − x2)

2 + (x2 − x3)
2 + (x1 − x3)

2]
≤ 0

So intuitively, the proof will proceed by proving xTAx can always be written as the negation of a
sum of squares.

Let a = xTAx for a general A. Notice that Ax is a column vector with the ith row being dxi

dt
.

Therefore the coefficient of x2
i in a is −|NGi| from Equation 10. Similarly the coefficient of xixj in a is

2 if Gi and Gj are neighbors and 0 otherwise. There are no other terms in a. Thus a can be represented
as,

a = −
∑

i

|NGi|x
2
i + 2

∑
N(i,j)=1

xixj (11)

where N(i, j) is 1 if Gi and Gj are neighbors and 0 otherwise.
Because each xi takes part in a product of the form 2xixj exactly |NGi| times, we can rewrite the

above equation as a = −
∑

N(i,j)=1(xi − xj)
2 which means a ≤ 0. Thus we have proved A is a negative

semidefinite matrix.

Theorem 5.4. A has only non-positive real eigenvalues.

Proof: Lemma 5.1 proved A has only real eigenvalues. A negative semidefinite matrix has all non-
positive real eigenvalues and we proved in Lemma 5.3 that A is a negative semi definite matrix. Therefore
A has only non-positive real eigenvalues.

Theorem 5.5. A general system converges to a state where each grid box has an equal size.

Proof: Theorem 5.4 states all eigenvalues of A are negative or 0. In general, the solution to a system
of the form ṡ = As can be written as s =

∑
i civie

λit where λi are the various eigenvalues and vi

is a corresponding set of linearly independent eigenvectors. In the case when such a basis of linearly
independent eigenvectors cannot be found, the exponentials just get scaled by appropriately computed
polynomials in t ([27]). Lemma 5.2 showed that 0 is an eigenvalue. Therefore the constants in si are
all equal to c0 which is equal to the average grid box size upon solving the initial value problem. All
non-constant terms are negative exponentials (proved by Theorem 5.4). Therefore all si converge to c0

as t −→ ∞.

6 Overlay Operations: Regions, Routing and Multicast

We have used the GBH underlay to build routing and multicasting operations. We have also added the
ability to define arbitrary regions.

6.1 Routing and Multicast

Figure 4 shows the routing pseudocode. It assumes that each grid box node maintains a set of grid
box’s neighboring grid boxes. A routing message is forwarded to neighbors in either its own grid box
or the closest grid box chosen by the closest() function shown in figure 5. The closest function extracts
even and odd numbered digits for each grid box address (neighbors, target and own) and uses these as
coordinates to calculate the Euclidean distance between two grid boxes. The neighbor chosen to route
the message to is the neighbor with the smallest distance from the target grid box. The figure below
shows an example route.
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Require: nodeid is node address, gridbox is initial grid box address in base K, neighborgb is the neighbor grid box set
array, neighbor is the neighbor node array, to is the target grid box, from is the source grid box
if msg = Mrouting msg(to, from) then

if gridbox = to then

for all neighbor grid boxes nbg in neighborgb do

if nb.gridbox = gridbox then

send Mrouting msg(nbg, to, from)
end if

end for

else

closestngb ← closest(neighborgb, gridbox, to)
for all neighboring nodes ng in neighbors do

if ng.gridbox = closestngb or nb.gridbox = gridbox then

send Mrouting msg(nb, to, from)
end if

end for

end if

end if

Figure 4: Routing algorithm

Require: nodeid is node address, gridbox is node grid box address in base K, target is target grid box address in base
K, neighborgb is the neighbor grid box set array, odd ← TRUE

to odd ← digits(target, odd)
to even ← digits(target,¬odd)
mine odd ← digits(gridbox, odd)
mine even ← digits(gridbox,¬odd)
closest dist ← sqrt((to odd − mine odd)2 + (to even − mine even)2)
closest ngb ← nodeid

for all neighbor grid boxes ngb in neighborgb do

nb odd ← digits(ngb, odd)
nb even ← digits(ngb,¬odd)
temp dist ← sqrt((to odd − nb odd)2 + (to even − nb even)2)
if temp dist < closest dist then

closest ngb ← ngb

closest dist ← temp dist

end if

end for

{Returns closest ngb}

Figure 5: Closest Algorithm to choose closest neighboring grid box to target grid box

Require: gridbox is node grid box address in base K, odd for odd numbered digits
for all digits i in gridbox do

if odd and i%2 = 1 then

append gridbox[i]
else if ¬odd and i%2 = 0 then

append gridbox[i]
end if

end for

{Returns final}

Figure 6: Digit Algorithm to extract even and odd digits of a grid box address)

6.2 Defining regions

A region of sensors, specified either as a set of sensors (e.g., close to a given object) or as geographical
region, can be mapped to an aggregated region address. The region is comprised of the set of grid boxes
that contain at least one sensor node intersecting with the region specified. The region can then be
specified using the collection of names of these grid boxes. Any subset of grid boxes from this can be

11



Figure 7: Routing from 1000 to 0111

aggregated if they comprise all grid boxes that are descendants of an internal node in the GBH. For
example, (1000, 1001, 1010, 1011, 0100, 0101) can be rewritten as “10**+010*”. A region-based routing
protocol for this destination region will anycast the message to one grid box in the 10** region (i.e.,
one of 1000, 1001, 1011 and 1010) and to one grid box in the 010* region (0100 or 0101) since these are
separated subregions. A region-based multicast protocol follows up these anycasts with either flooding
or tree-based or gossip-based multicast among all grid boxes within each of these subregions.

7 Simulation Results

We have simulated the above protocols with N = 512, K = 8 which implies that there are 64 grid
boxes. The area of simulation is 10 × 10 and the radio range is 1.0. We are assuming each node knows
its location and thus knows which grid box it is in. Results for protocol performance under approximate
locations are also studied. The simulation proceeds in rounds. During each round, all messages intended
for each node are delivered and the node takes actions and sends messages which get delivered in the
next round. Note that though we use round numbers to stand for running time of the protocol, the
protocols proposed do not need time synchronization.

7.1 Leader-Based Diffusion

7.1.1 Variance in Grid Box Sizes

Figure 8 shows the variance in grid box sizes from K as the protocols (DN and AN) proceed. It can be
seen that both protocols rapidly decrease the variance as time proceeds. AN uses a larger neighborhood
information than DN and converges faster. Note that here AN uses 4 neighbor (2 and 3 for edge and
corner cases respectively) grid box information.

7.1.2 Movement of Grid Box Centroids

Figures 9 and 10 show movement of grid box centroids when compared to their initial positions. Three
curves for maximum, average and minimum movement show that grid box movement is very small.
Comparing Figures 9 and 10, we see that centroid movement is smaller in AN when compared to DN
due to larger neighborhood information. Small grid box movement means lesser skewing of the initial
grid box structure (based on locations) imposed on the system. This is very important for the naming
scheme that was initially used on the grid boxes to be useful when the system reaches a balanced state.
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Figure 8: Variance in grid box sizes vs. round number for DN and AN
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Figure 9: Distance of final grid box centroids from the initial centroid positions for DN

7.2 Decentralized Probabilistic Diffusion

7.2.1 Grid Box Size Variance

Figure 11 shows the variance in grid box sizes from K. The different curves in the figure are the variance
curves for different constant probabilities of transfer. Probability experiments that decide transfers are
done every T = 30 rounds.

7.2.2 Frequency of Node Transfers

Figure 12 shows the number of node transfers that happen until variance becomes less than 1.0 (a
common objective). More node transfers happen when a higher probability is used due to node oscilla-
tions. Node transfers need to be informed across two grid boxes and hence consume energy. This gives
a natural application-dependent tuning factor viz., a higher probability results in faster convergence
but larger energy loss. For a constant probability of 0.1 which has really fast convergence, only 82
broadcasts per node is required. Note that about 60 of these broadcasts happen only at the start of the
protocol when nodes flood to announce their presence in a grid box.
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Figure 10: Distance of final grid box centroids from the initial centroid positions for AN
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Figure 11: Variance in grid box sizes vs. round number for different constant probabilities of transfer

7.2.3 Movement of Grid Box Centroids

Figure 13 shows the movement in final grid box centroids with respect to the initial box centroids. The
graph shows that a higher probability results in larger centroid movement. This is due to a higher
number of transfers which implies a higher expected distance moved by centroids. Again, we see a
tradeoff between convergence rate and protocol correctness.

7.2.4 Dispersion of Grid Box Nodes

Another parameter that is important is how close nodes within a grid box are to each other. This is
shown in Figure 14 as the average area of the bounding box of each grid box. Node dispersion increases
with probability of transfer since a higher number of transfers generally disperses the grid boxes more.

7.2.5 Linear Probability

Figure 15 shows the variance in grid box sizes with protocol rounds for different linear probability
functions. Note that the curves are plotted for different p. The number of transfers and hence message
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Figure 12: Total number of node transfers in the system vs. constant probability of transfer
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Figure 13: Distance of final grid box centroids from initial centroids vs. constant probability of transfer

complexity, grid box dispersion and centroid movement is decreased. We do not show explicit graphs
due to lack of space.

7.2.6 The Gap of 1 Problem

In previous simulations, node transfers do not happen when the size difference between two grid boxes
is 1, because then the situation would only reverse. A typical final state for N = 512,K = 8 showing
grid box sizes is shown below. Notice that there are grid boxes that differ in at most 1 from each of their
neighboring boxes and this gradient slowly builds across the network. This is the cause for the base
variance of 0.5 below which the previous graphs could not venture. We call this the gap of 1 problem.
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Figure 14: Average final grid box area vs. constant probability of transfer
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Figure 15: Variance in grid box sizes vs. round number for different linear probabilities of transfer (plotted for the
various constants shown)

Now, we allow a node transfer across a gap of 1 boundary with a certain small probability. The
intuition is that a transfer can open up differences that are greater than 1 and thus reduce variance by
balancing. This is shown in the final state below, where the gradient has disappeared and most grid
boxes are of size K after 10000 rounds.
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The variances in grid box sizes corresponding to the above two systems are shown in Figure 16.
However note that this small probability of transfer implies there will always be little oscillation in the
system depending on the value of the probability.
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Figure 16: Variance in grid box sizes vs. round number for different linear probabilities of transfer (plotted for the
various constants shown) with transfers across gaps of size 1

7.2.7 Naming Algorithms

We now measure how good the naming scheme is on top of the decentralized protocol. Since the
recursive and linear naming schemes are the same when N = 512,K = 8, we obtain results using
N = 512,K = 2. Figure 17 shows the performance of linear probability based transfer protocol using
linear and recursive naming schemes respectively. The curve shows average distance between nodes
having certain maximum common prefix length in grid box addresses. This is important in aggregation
protocols as pointed out in [5] because nodes that share a common prefix take part at the same level
of aggregation and hence require to be proximal to each other. It can be seen that recursive naming
scheme not only achieves lower average distance between nodes sharing a common prefix but also the
lower maximum distance between such nodes.
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Figure 17: Average distance between nodes vs. length of maximum common prefix in grid box addresses for both naming
scheme
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7.2.8 Maintenance

Figure 18 shows the maintenance phase with node death between rounds 3000 and 4000 followed by
resurrection of half of the dead nodes between rounds 7000 and 7500. Note that this is a drastic loss
rate and results in about 100 sensors out of 512 being removed over a span of 1000 rounds and 50
added over 500 rounds. The variance initially goes up and then the maintenance mechanism kicks in
stabilizing the system. During node losses (network failures), the behavior of the protocol is incorrect,
but when the network returns to normal, the protocol stabilizes and returns to correct execution. Note
that we have however ensured that network partitions do not occur. Testing resiliency of the protocol
under network partitions is part of our future work.
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Figure 18: Variance in grid box sizes vs. round number for linear probability (0.005) of transfer under drastic node loss
followed by node resurrection

7.2.9 Grid box Final State

A sample final state after decentralized balancing with a linear probability of transfer function is shown
in Figure 19(a). The bounding boxes of grid boxes are shown with the grid box’s linear address in the
center. Notice that the boxes are very big and there are several overlapping areas. This is not good
for the system because overlapping boxes implies inter box bandwidth contention and loss of locality
for intra box operations. We now restrict transferrable nodes to be the set of nodes that are within
1.0 distance units from the destination box’s centroid. This results in much better grid box shapes as
shown in Figure 19(b). It however reduced the rate of convergence and a higher probability of transfer
was used.

7.2.10 Approximate Locations

The decentralized protocol uses locations for nodes to arrive at an initial grid box assignment. In
this section, we show that the protocol performs well even under coarse location knowledge. A node’s
assumed location is shifted in an arbitrary direction by a randomly chosen distance from 0 to 70% of
the communication radius (1.0 in this case). The final grid box shapes obtained are shown in Figure
19(c). Notice that the boxes are slightly larger, but the general layout is still maintained. Hence the
protocol can perform well under approximate location information.
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Figure 19: (a) Grid boxes at the end of 10000 rounds (b) Grid boxes at the end of 10000 rounds with transfer restrictions
(c) Grid boxes at the end of 10000 rounds under approximate locations

7.2.11 Routing

Endpoints Hops GBH routing latency

0 - 63 17 18.16
9 - 54 12 14.85
8 - 45 9 9.75
25 - 30 10 11.42
0 - 7 14 17.5

Section 6 described a protocol for routing a message from a node in a grid box to any node in
a destination grid box. The table below shows the performance of GBH based routing in terms of
its routing latency vs. the shortest distance. The table shows routing endpoints (grid boxes), the
shortest path length between them and the latency over GBH routing. GBH based routing can achieve
a routing latency that is really close to the shortest path without having to flood between the source and
destination. The endpoints were chosen to exercise different kinds of paths viz., diagonal, horizontal,
edge aligned etc.

8 Related Work

Clustering algorithms have been proposed in ad hoc networks using the notion of a cluster-head. [18]
proposes the Mobility-Adaptive Clustering for Ad Hoc networks protocol. This ensures that nodes elect
themselves as cluster-heads only if they have a sufficiently high weight (in the neighborhood) which
defines a measure of permanency. The weight of a node can be fixed based on several parameters. A
naive way is to elect the lowest ID node ([19]). A weight based on energy available at the nodes was
proposed in [20]. Cluster-heads that are low mobility nodes were used in [21]. A robust hierarchical
clustering algorithm for the amorphous computing model has been proposed in [15] which uses the
persistent nodes ([17]) to obtain a hierarchy called the PNHierarchy.

The work of Corradi et all [23] investigates simple diffusion based policies for dynamic load balancing
using only a local view of the system. The work is based on the physical phenomenon of diffusion that
forces a system towards a homogenous distribution relying only on local state information. Each element
tries to move in the direction of decreasing energy. They prove that in the static load situation, the
execution of a diffusive load balancing policy results in global balancing.

In section 10 we show that obtaining a GBH is equivalent to the incapacitated transportation
problem. The transportation problem consists of a bipartite graph with m sources and n sinks. It has
the form
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maximize
∑

(i,j)εA

aijxij

subject to∑
jεA(i)

xij = αi, ∀i = 1, ...,m,

∑
iεB(j)

xij = βj , ∀i = 1, ..., n,

0 ≤ xij , ∀(i, j)εA

It has been shown in [24] that the transportation problem can be converted to the assignment
problem, i.e. assigning n persons to n objects such that the benefit, aij , of assigning person i to object
j is maximized. The resulting assignment problem can be solved in a distributed manner using auction
algorithms. It has been shown that such auction algorithms terminate in a finite number of iterations
with an optimal assignment.

9 Conclusion

Building and maintaining the GBH is a crucial step towards implementing hierarchical gossiping al-
gorithms in wireless sensor networks. Further, this hierarchy can be used for geographic routing and
geocasting. We have presented diffusion based algorithms for constructing and continuously maintain-
ing the GBH so that it is self-organizing and self-reconfiguring. In particular, we present two distinct
approaches: one requiring a leader to be elected for each grid box and the other being completely de-
centralized relying on a probabilistic transfer function. However, the leader based approach is not fault
tolerant and the probabilistic method stands out as a viable and efficient underlay self-assembly and self-
reconfiguration protocol. Our results show that the Diffusion Based Protocols self-organize quickly
and overcome the gap of 1 problem. The recursive naming scheme achieves lower distances between
nodes that share a higher common grid box address prefix length. In particular, the Decentralized
Probabilistic Diffusion Protocol also recovers from node failures and node rebirths and stabilizes
the variance in grid box sizes. Overall, it achieves a highly scalable, robust, energy efficient, application
dependent manner of GBH self-organization and self-reconfiguration for wireless sensor networks.

10 Future Work

Consider the area being split into a set G of grid boxes Gij where (i, j) is represents the position of a
grid box in the matrix of boxes. Let the number of nodes in box Gij be Kij . Divide the set G into sets
S = {Gij |Kij ≥ K} and C = {Gij |Kij < K} which represent the suppliers and consumers respectively.
Let, Gij −→

r Gkl represent the transfer of r nodes from Gij to Gkl. Since the transfer of nodes happen
by cascading the effect of several transfers between adjacent boxes, the cost of this transfer can be
represented as C(Gij −→r Gkl) = r × (|i − k| + |j − l|). Now the problem reduces to finding values
∀ijkl0 ≤ i, k < x ∧ 0 ≤ j, l < y, aijkl which represent the number of nodes to transfer from Gij to Gkl.
The constraints on the system are given below,

aijkl ≥ 0 (12)

∀ij
∑
kl

aijkl = Kij − K (13)

∀kl
∑
ij

aijkl = K − Kkl (14)
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The goal is to minimize the cost function
∑

ijkl C(Gij −→aijkl Gkl). This is clearly a transportation
problem. The problem can be solved optimally using centralized methods such as the Simplex method
or the Hungarian method. However, we would want a distributed solution and the auction method is
directly applicable. Each grid box could have leaders that take part in the auction or a distributed
scheme without leaders could be tried out.

In the decentralized probabilistic scheme, we have probabilities of node transfer that are proportional
to the difference. We will want to factor other parameters into this probability p. We could also try
to ensure maximum connectivity within a grid box by inducting the number of edges a node adds to a
grid box into the probability function for transfer. For example, a node that is part of a small vertex
cut (only considering edges within the grid box) should not be removed from the box too easily even if
it is along the periphery.

There have been proposals for attaining uniform coverage of sensors in a sensor network after deploy-
ment. The virtual force algorithm ([26]) computes virtual forces (sensors close to each other repel, and
those far apart attract) between sensors at a central location and comes up with optimal node movement
to attain required sensor coverage. It is a reasonably straightforward extension to the Decentralized
Probabilistic Diffusion protocol to attain a uniform distribution of nodes. Sensors instead of implicitly
deciding to move to a neighboring grid box, physically move thus achieving uniform distribution in
terms of grid boxes.
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