Thyroid-stimulating hormone and free thyroxine on the ADVIA Centaur immunoassay system: A multicenter assessment of analytical performance.
Nathalie Reix, Catherine Massart, Michèle D’Herbomez, Françoise Gasser, Béatrice Heurtault, Arnaud Agin

To cite this version:
Nathalie Reix, Catherine Massart, Michèle D’Herbomez, Françoise Gasser, Béatrice Heurtault, et al.. Thyroid-stimulating hormone and free thyroxine on the ADVIA Centaur immunoassay system: A multicenter assessment of analytical performance.. Clinical Biochemistry, Elsevier, 2013, 46 (13-14), pp.1305-1308. <10.1016/j.clinbiochem.2013.04.015>. <hal-00916429>

HAL Id: hal-00916429
https://hal.archives-ouvertes.fr/hal-00916429
Submitted on 10 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Thyroid-stimulating hormone and free thyroxine on the ADVIA Centaur immunoassay system: A multicenter assessment of analytical performance

Nathalie Reix a,b,c,*, Catherine Massart c,d,e, Michèle d’Herbomez c,f,g, Françoise Gasser a,c, Béatrice Heurtault a,h, Arnaud Agin a,b,c

a Laboratoire d’Hormonologie, Hôpitaux Universitaires de Strasbourg, 1 place de l’Hôpital, 67091 Strasbourg Cedex, France
b Université de Strasbourg/CNRS, ICube UMR 7357, Fédération de Médecine Translationnelle de Strasbourg, Institut de Physique Biologique, 4 rue Kirschleger, 67085 Strasbourg Cedex
c Société Française de Médecine Nucléaire, Groupe de Biologie Spécialisée, Centre Antoine Béclère, 45 rue des Saints Pères, 75270 Paris, France
d Unité Fonctionnelle d’Hormonologie, CHU Pontchaillou, rue Henri Le Guilloux, 35043 Rennes, France.
e INSERM 0203 Centre d’Investigation Clinique, Université de Rennes 1, France
f Laboratoire de médecine nucléaire, Centre de Biologie, CHRU de Lille, 59037 Lille cedex, France
g Université de Lille-II, 59000 Lille, France
h Equipe de Biovectorologie, Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199 CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch Cedex, France
* Corresponding author: Plateau Technique de Biologie, Nouvel Hôpital Civil, 1 place de l'Hôpital, 67091 Strasbourg Cedex, FRANCE, Phone: +33 369 550 827, FAX : +33 369 551 885; E-mail: nathalie.reix@chru-strasbourg.fr

Objectives: We assessed the analytical performance of the TSH and FT4 assays on ADVIA Centaur in a multicenter national evaluation.

Design and methods: A precision study and a method comparison were performed. Reference values stated by the manufacturer were checked from 379 normal subjects.

Results: For TSH and FT4, the intra-assay CVs were below 2.3 and 5.2%, respectively, and the inter-assay CVs below 4.4% and 7.2%, respectively. Therefore, the precision and reproducibility were acceptable. Bland-Altman bias plots revealed good correlation and agreement with Cobas assays. TSH and FT4 data yielded reference ranges of 0.64-3.24 mIU/L and 10.5-18.9 pmol/L, respectively.

Conclusion: These assays demonstrate reliable characteristics. The reference ranges obtained can be used for interpretation of thyroid function.

Keywords:
Thyroid-stimulating hormone; Free thyroxine; Evaluation; Reference values
1. Introduction

Thyroid disorders are an important health problem and have an estimated prevalence of 13% in France [1]. Serum thyroid-stimulating hormone (TSH) measurement is the most common test used for the diagnosis and monitoring of thyroid diseases. It requires highly sensitive TSH assays with third-generation functional sensitivity (National Academy of Clinical Biochemistry, NACB, guidelines [2]). Free thyroxine (FT4) should be measured in some cases to identify and manage thyroid dysfunctions. Thus, TSH and FT4 are the most frequently encountered immunoassays in routine clinical testing. These first-line tests are the subject of international collaborative investigations aimed at studying the key performances and comparability of results between the available tests [3,4]. The standardization of TSH and thyroid hormone measurements remain a concern for the application of clinical practice guidelines. At the laboratory-scale, performance quality should be assessed to ensure agreement with the performance announced by the manufacturer. Indeed, studies have reported discordances between the manufacturers’ claims and the laboratory assessment [5,6]. Consequently, when Siemens optimized the TSH3 and FrT4 assays to produce the new and improved TSH3-ultra (TSH3-UL) and FT4 assays, we assessed the key analytical performance characteristics of the new assays on the ADVIA Centaur immunoassay system in a multicenter national evaluation. In a previous study, we had assessed the functional sensitivity of the TSH3-UL assay [7]. We report here all analytical performance characteristics of this TSH assay as well as those of the FT4 assay, and the checking of the reference values stated by the manufacturer.

2. Materials and methods

This collaborative study was conducted by the working group of “Biologie Spécialisée” (Société Française de Médecine Nucléaire). It was performed in three clinical laboratories in France (Strasbourg, Rennes and Lille). The precision study was performed and the reference ranges established in Strasbourg and Rennes. The method comparison was made in Strasbourg.

2.1. ADVIA Centaur assays

TSH3-UL and FT4 assays were performed on a fully automated ADVIA Centaur analyzer (Siemens Healthcare Diagnostics, Munich, Germany). TSH3-UL and FT4 are new assays based on the electrochemiluminescence reaction of a new generation of acridinium ester. This new acridinium ester displays lower non-specific binding and exhibits enhanced light output and greater reactivity for labelling proteins and antibodies than the ester incorporated in previous TSH and FT4 assays. The TSH3-UL assay is based upon a two-site sandwich principle and the FT4 test is a competitive immunoassay.

2.2. Analytical performance evaluation

Samples

Residual material from daily routine sampling was used. Human blood samples were collected into serum separating tubes and stored, until later use, at -20°C. This procedure has been shown to have no effect on TSH and FT4 concentrations for several years [8].

Precision study

Experiments were performed using low, medium and high levels of ligands provided by the manufacturer (ref. 9815171, 9815172 and 9815173). Aliquots of ligands were stored frozen (-
20°C) and thawed immediately before analysis. The intra-assay imprecision was determined by performing replicate measurements (n = 20) in a single run. The inter-assay imprecision was obtained by analyzing ligands for 30 non-consecutive days over a minimal period of 3 months with 2 or 3 reagent lots. New calibrations were performed at weekly intervals.

Method comparison

Serum samples were analyzed on the same day with the ADVIA Centaur and the Cobas e 411 (Roche Diagnostics GmbH, Mannheim, Germany) TSH and FT4 assays. The software program MedCalc version 12.2 (Mariakerke, Belgium) was used for statistical analysis, which included Deming regression analysis and Bland-Altman agreement plots.

2.3. Reference ranges

Reference ranges of TSH and FT4 were obtained from 379 healthy subjects (187 nonpregnant women and 192 men, mean age 44 years, range 15-72 years) from the western (n = 137), northern (n = 111) and eastern (n = 131) regions of France. Normal subjects were selected appropriately according to the NACB guidelines [2]. Enrolled individuals were undergoing no treatment, except oral contraception, showed no clinical evidence or history of thyroid diseases, as confirmed by accurate clinical examination (no visible or palpable goitre), and had no detectable levels of anti-TPO antibodies (DYNOTEST anti-TPO RIA, Brahms Diagnostica GmbH, Berlin, Germany or Access TPO antibody, Beckman Coulter, CA, USA). Informed consent was obtained from all subjects before testing. TSH values were logtransformed before analysis to obtain a set of normally distributed values [2]. Normal distributions of FT4 and log-transformed TSH concentrations were checked with the Chi-Square test, and the 2.5th and 97.5th percentiles then calculated using the normal distribution method (MedCalc).

3. Results and discussion

The precision studies showed that for TSH concentrations from 0.365 mIU/L to 18.43 mIU/L, the intra-assay CV ranged from 2.0% to 2.3% and the inter-assay CV from 3.4% to 4.4%. These precision results were similar to previously published data obtained with the Elecsys 2010 system [9] or the Olympus AU3000i system [10] for example, and were better than those obtained with the earlier TSH3 assay with the Centaur analyzer [11,12]. For FT4 concentrations from 8.62 pmol/L to 51.74 pmol/L, the intra-assay CV ranged from 3.0% to 5.2% and the inter-assay CV from 2.5% to 7.2%. FT4 precision performances were lower than those obtained with the Elecsys 2010 [9,13] and Olympus AU3000i systems [10] but higher than the Centaur FrT4 assay precision performance [11]. Therefore the Centaur TSH3-UL and FT4 thyroid assays showed acceptable precision performance, exceeding that achieved by the former TSH3 and FrT4 assays.

The relation between the Advia Centaur TSH3-UL and TSH cobas e 411 assays is shown in Fig. 1A and B. The Deming regression analysis (Fig. 1A) shows a slope of 0.926, and an intercept of -0.017 mIU/L. The 95% confidence interval (852 to 1.000) indicates that the slope is not statistically different from 1.0, and the 95% confidence interval of the intercept (-142 to 107) shows no statistical difference from zero. This suggests that there is no statistical difference between the two methods. The bias plot representing the relation between the difference and the mean of measurements obtained with both methods is shown in Fig. 1B. A negative bias of 7% was observed for TSH measurements obtained with the Centaur assay which yielded lower values than the cobas e 411 assay. Since the TSH3-UL
The new TSH and FT4 assays run on the Advia Centaur analyzer demonstrate several performance characteristics that contribute to their reliability. Good precision, reproducibility and inter-method correlation are important criteria for their use in the clinical laboratory. The reference ranges of TSH and FT4 reported here were obtained in a large population of healthy subjects in accordance with the reference intervals stated by the manufacturer for the exploration of thyroid function.
Acknowledgements

The authors gratefully acknowledge Anne-Sophie Gauchez and other members of the Groupe de Biologie Spécialisée (SFMN) for helpful discussion and comments. The authors thank the medical laboratory technicians on each site for their technical contribution. We thank Siemens, France, for providing the TSH and FT4 reagents.

References

Captions

Figure 1. Comparison between the Advia Centaur and cobas e 411 TSH and FT4 assays. TSH (A) linear regression and (B) bias plot with a mean difference of –7%. FT4 (C) linear regression and (D) bias plot with a mean difference of 17%.

Figure 2. Relative frequencies of A) TSH (log-transformed) and B) FT4 concentrations, indicating Gaussian distributions of values, all French sites combined (n=379). C) Adult reference ranges of TSH and FT4, analyzed for each site.
Figure 1

A. Scatter plot showing the relationship between TSH (cobs e 411) and TSH (Centaur). The regression line is y = 0.017 + 0.926 * cobs. The correlation coefficient is 0.95, and the Deming regression line is also shown.

B. Bland-Altman plot comparing TSH (cobs e 411) and TSH (Centaur). The mean difference is -1.96 SD, and the limits of agreement are -3.08 to -0.84.

C. Scatter plot showing the relationship between FT4 (cobs e 411) and FT4 (Centaur). The regression line is y = 1.745 + 1.052 * cobs. The correlation coefficient is 0.97, and the Deming regression line is also shown.

D. Bland-Altman plot comparing FT4 (cobs e 411) and FT4 (Centaur). The mean difference is 1.96 SD, and the limits of agreement are 3.39 to -0.63.

Figure 2

A. Chi-Square test, P = 0.7849. The distribution of log TSH is normal, as indicated by the histogram and the normal curve.

B. Chi-Square test, P = 0.5023. The distribution of FT4 is also normal, as indicated by the histogram and the normal curve.

C. Table showing the distribution of TSH and FT4 across different locations.

<table>
<thead>
<tr>
<th></th>
<th>No. of Samples</th>
<th>Median</th>
<th>Range</th>
<th>Central 95% Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH (mIU/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lille</td>
<td>111</td>
<td>1.34</td>
<td>0.514-3.58</td>
<td>0.838-2.87</td>
</tr>
<tr>
<td>Rennes</td>
<td>137</td>
<td>1.52</td>
<td>0.398-4.75</td>
<td>0.951-3.61</td>
</tr>
<tr>
<td>Strasbourg</td>
<td>131</td>
<td>1.39</td>
<td>0.422-3.98</td>
<td>0.828-3.56</td>
</tr>
<tr>
<td>FT4 (pmol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lille</td>
<td>111</td>
<td>15.21</td>
<td>9.74-21.49</td>
<td>11.16-20.99</td>
</tr>
<tr>
<td>Rennes</td>
<td>137</td>
<td>15.09</td>
<td>11.03-18.08</td>
<td>12.01-18.15</td>
</tr>
<tr>
<td>Strasbourg</td>
<td>131</td>
<td>13.38</td>
<td>8.65-18.88</td>
<td>10.12-18.45</td>
</tr>
</tbody>
</table>