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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract:  

Grass blades (turf grass) have been selected as a cheap biomass source of producing activated 

carbon for supporting Pt particles for utilizing as electrocatalyst for H2 generation through 

electrolysis of water. Activation is done using ZnCl2 followed by thermal processing at 250oC. 1% Pt 

was supported over the grass derived activated biomass carbon (G-ABC) powder to result in Pt@G-

ABC. After physical characterization, Pt@G-ABC sample has been tested for its catalytic activity in 

1M sulphuric acid solution for H2 gas generation through Linear Sweep & Cyclic Voltammetry. Cost 

factor involved in the production of G-ABC has also been compared with the traditional 

commercially available carbon support.  The studies suggest that grass may be considered not only as 

a potential alternative source for producing carbon supported catalyst for H2 generation but also 

highlight the production of low-cost carbon for further applications like electrode materials, 

adsorbent for color, odor and hazardous pollutants. 

Keywords: grass; activated carbon; catalyst support; electrochemical studies; hydrogen, water 
electrolysis. 
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1. Introduction 

Hydrogen is a promising energy source and hence significant research is currently being 

focused to test its feasibility to meet the world energy demand [1, 2]. It is also ideal from an 

environmental standpoint—it burns cleanly producing water as the only product. Invariably it is 

stored in nature as water and hydrocarbons and one has to expend energy to generate H2 from 

 

either water or hydrocarbons. A number of production methods including water electrolysis, steam 

reformation of natural gas, and coal gasification are the foci of widespread production research; but 

water electrolysis is one of the renowned technologies which provide domestically viable, CO2 

neutral and non-polluting H2. Noble metal like Pt or Ru based electrocatalysts are being employed for 

producing H2 by electrolyzing water. Generally electrocatalysts are prepared by loading or supporting 

fine Pt or Ru particles on quality carbon powders – the so called catalyst support, such that more 

number of active sites will be available for efficient and complete electrolysis. In fact carbon black 

suits well for catalyst support applications [3, 4]. Vulcan XC-72 is the most utilized conducting 

carbon for fabricating electrocatalysts for water electrolysis for hydrogen gas generation [5, 6]. But 

electrocatalysts are costly, hampering widespread commercialization of water electrolysers. 

Consequently, there are two directions in which the cost factor can be addressed. Firstly, usage of 

less noble metal as catalysts and secondly, to use low-cost carbonaceous materials on which the 

metal particles can be supported.  In fact our work aims at achieving the second factor by producing 

carbon support powders from a cheap and abundantly existing resource namely the biomass of grass 

blades. Obviously, the significance of adopting different types of biomass materials as starting 

materials in producing carbon electrodes lies in its abundance, cheap cost, simple and green 

methodologies in obtaining the carbon and the ability to become highly porous carbon or to get 

desired physical features after carbonization procedure. 
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Carbon materials function as a unique material and are characterized by high specific surface 

area and tunable porosity just to find utility in many vital technologies namely, energy conversion 

(fuel cells and solar cells), energy storage (super capacitors, batteries and H2 sorption), sensors, 

environmental production of fine and bulk chemicals and catalysis [7, 8]. The choice of carbon as the 

electrode material is because of its unique properties of electrical conductivity and structural 

diversity.  In addition to being good catalyst and catalyst support, carbon materials are effective in 

removing pollutants (both gaseous and liquid). Further carbon materials being insensitive to toxic 

substances and corrosive (acidic and basic) environments, its regeneration is possible and easy, 

rendering the industrial use of carbon materials an economically viable option [9, 10]. A fact 

observed by researchers that the specific physico – chemical properties that make carbon materials a 

potential adsorbent for pollutants are high specific surface area, porous architecture, high adsorption 

capacity and surface functionality [11]. Carbon consists of a highly porous structure with 

hydrophobic graphene layer as well as hydrophilic surface functional groups making them beneficial 

for sorption and catalytic applications.   

It is now realized that wastes are unutilized resources. Hence chemical recycling of wastes 

has been recognized as one of the suitable methods of waste management and also to recover 

valuable products, the net result is zero-waste world. There have been many attempts to obtain low-

cost carbon (activated) from agricultural wastes such as sunflower shell [10], pinecone [12], cotton 

residues [12], olive residues [12], wheat [13], corn straw 13], olive stones [14, 15], bagasse [14, 15], 

birch wood [14, 15], miscanthus [14, 15], rapeseed [16], pine rayed [17], eucalyptus maculata [17], 

sugarcane bagasse [17,18], rice hulls [18], pecan shells [18], grape seeds [19], cherry stones [19], 

hazelnut shells [20], apricot stones [19, 20], almond shells [19, 21], peach stones [22], straw [14, 15, 

23], oat hulls [24, 25], corn stover [24, 25],  peanut hull [26], nut shells [19, 27-30], corn cob [22, 

31–33], corn hulls [25], rice husks [34, 35], rice straw [18, 36] and used tea  refuse [37]. An 
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exhaustive report on the various classes of biomasses used for supercapacitor, batteries and fuel cells 

has been made by the authors of the present paper [38].  Although the above biomass have been 

utilized as resources for obtaining carbon powders  for fabricating electrodes for the aforesaid energy 

devices, there has been no report on the usefulness of these biomass carbons as a catalyst supporting 

material. As for the knowledge of the authors of this communication goes, Kang et al [39] describe a 

method of using grass for obtaining carbon nanotubes. Thus the reports on the utilization of grasses 

are only limited and so the current work may likely to get attention from researchers working on non-

conventional energy sources and environmentalists as well.  

 

Carbons have many advantageous features over metal oxide catalyst supports such as (i) a 

high specific surface area up to 3000m2g-1, (ii) high stability in acidic and basic media, and (iii) easy 

recovery of supported metals by burning off the carbon.  However, only specific carbon materials 

belonging to the class of carbon blacks  namely Vulcan XC-72 [5, 6] and black pearls 20001  (both 

from Cabot Corp.) and activated carbon material viz Nuchar carbon (from MWV corp.) with surface 

area 1400-1800 m2g-1 2 have been used as catalyst support. Recently, Andersen et al [40] have 

employed carbon nanofiber and carbon nanotube as catalyst support for PEM fuel cells. So finding 

conductive carbon support for electrocatalyst is an entirely new concept of research, which has not 

been reviewed that much elsewhere. Thus for our work we have planned to use hitherto unutilized 

and novel biomass waste namely grass to convert into active carbons for possible application as 

conductive support for electrocatalyst for water electrolysis for H2  gas evolution. Our work therefore 

represents an essential, easy and innovative strategy to produce carbon powders from grass that may 

have electronic, scientific and industrial applications as conductive support for electrocatalysts for H2 

gas generation through electrolysis of water and the results have been presented in a simplified and 

systematic way.  The work also stresses Green Energy from Waste concept, which is the want of the 

hour. It is to be stated that though there are hundreds of varieties of grasses exist comparison of 



 5

properties of them serves another important and interesting theme of research, but right now it is not 

our intention.   

____________ 

1 www.cabot.com 

2 http://www.meadwestvaco.com/mwv/groups/content/documents/document/mwv039306.pdf 
 

It may be interesting to the readers of this article for the fact that a database called Phyllis 

containing information on the composition of biomass and wastes is now available at 

http://www.ecn.nl/phyllis/ constructed at Energy Research Centre of the Netherlands. Phyllis enables 

making analysis data of individual biomass or waste materials available and offers the possibility to 

obtain the average composition of any combination of groups and/or subgroups. 

  

2.  Experimental  

2.1 Preparation of grass derived activated biomass carbon (G-ABC) 

 

A view of the freshly plucked turf grass bunch can be had from Fig. 1. Mature blades of turf 

grass bunches were collected from our Institute lawn, washed several times with hot distilled water to 

remove soil, dust and dirt and were dried under sun shade. The dried grass blades were shredded into 

small pieces and added to a solution of ZnCl2 taken in the ratio of 1:1 w/w of biomass : ZnCl2. The 

contents were maintained at 600C for 48 hours and finally heat treated at 2500C for 2 hours for 

charring.  

The char was washed several times with doubly distilled water until all the ZnCl2 is 

completely removed. Absence of Zn2+, Cl-, neutrality in pH and low conductivity of the washings 

ensures thorough washing of the sample. The powder was dried in oven and ground.  The powder 

prepared in this way is called grass derived activated biomass carbon (G-ABC). Fig. 2 gives the 

methodology for producing G-ABC.  

http://www.ecn.nl/phyllis/
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2.2  Preparation of 1% Pt on grass derived activated carbon powder (Pt@G-ABC) 

Electrocatalyst powder was prepared by aqueous reduction using NaBH4 as the reducing 

agent. To prepare 1% Pt@G-ABC powder, G-ABC powder is first made wet and homogenized with 

little amount of water and ethanol in a beaker. To this slurry appropriate amount of Pt(NH3)4Cl2 

crystals in minimum quantity of water is added drop wise while stirring the contents slowly and 

thoroughly. Now large excess of NaBH4 solution is added very slowly from a buret while ensuring 

constant mixing of the contents in the beaker. NaBH4 reduces Pt2+ ions to Pt0 and gets deposited or 

precipitated over the biomass carbon particles.  The beaker is left undisturbed overnight.  Completion 

of reduction with NaBH4 is known by testing an aliquot of the filtrate with KI solution. Absence of 

rose coloration with KI shows the complete reduction of Pt ions. The contents are now filtered and 

washed several times with distilled water until the washing is neutral in pH.  The powder is dried and 

stored in an air-tight container.  The above process is explained by the following equation [41]. 

4[Pt(NH3)4]
2+   +   NaBH4   + 8OH-     NaBO2   +   4Pto   +  16NH3   +  6H2O 

 
The sequence of steps involved in the preparation of 1% Pt@G-ABC has been shown in Fig. 3. 

2.3 Preparation of electrode for electrochemical studies  

  SS rods with circular ends of area 1cm2 & 8cm length are employed for fabricating the 

electrodes.  A typical catalyst ink with N-methyl 2 pyrrolidone was obtained by mixing together the 

BC powder or BC supported electro catalyst powder, commercial carbon powder and poly vinylidene 

fluoride binder in the % weight ratio 88:10:2 [42] and was applied to the circular end of the SS rods. 

The electrodes were dried at 800C for 1hour. Heat shrinkable sleeve was used to mask rest of the 

electrode portion.   

2.4 Physical characterization and electrochemical tests 

 

Thermal degradation characteristics of the biomass refuse were studied using 

thermogravimetry. Experiments were performed on a TGA-50 Analyzer. 2mg of the sample was 
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heated from room temperature to 450oC at a ramp rate of 20oCmin-1 in air. Powder X-ray diffraction 

patterns were recorded between 10◦ and 80◦ on an X’Pert Pro X-ray diffractometer with CuK 

radiation source. The ultimate analysis of the activated carbon was carried out using Vario ELIII 

CHNS/O Analyzer. Surface area of the G-ABC powder was determined by BET (Brunauer, Emmet 

and Teller) method using low temperature nitrogen adsorption (Quanta Chrome Nova 1000, US). 

Surface morphology of the activated carbon was studied using S-3000H model microscope. Density 

of the activated carbon powder was estimated by Archimedes’ principle using xylene [43]. 

 
Electro catalytic activity of the activated BC as well as the supported electro catalyst powder 

samples were assessed by performing liner sweep voltammetric and cyclic voltammetric studies (on 

Zahner electrochemical measurement unit; model No. IM6e) with the test cells assembled using SS 

rod loaded catalyst powder (or virgin carbon) as the working electrode, Saturated Calomel Electrode 

as the reference and a Pt wire (1mm diameter) as the counter electrode. The electrochemical 

measurements (linear sweep and cyclic voltammetry) made to evaluate the catalytic activity of the 

samples were carried out in de-aerated 1M H2SO4 electrolyte. Electrode surfaces were first activated 

by cycling in the potential range of −0.2 to +1.1V vs. SCE, in order to obtain stable and reproducible 

voltammograms. 

 
3. Results and Discussion 

3.1 Burn-off 

Conversion of grass biomass in to biomass carbon took place around 250oC, also corroborated 

through TGA studies and the weight of the char was noted to calculate the yield (burn-off).  Since the 

biomass was heated in a furnace a significant amount of carbon content might have been converted as 

CO2. Hence the yield is expected to be less and as expected the yield was only 46%. Higher yields 

could have been obtained if the samples were heated in an inert atmosphere. 
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3.2 Thermogravimetric (TG) Analysis  

Thermal degradation characteristics of the grass sample (dried mass) were studied using 

thermogravimetry.  Around 2mg of the sample was heated from room temperature to 400oC at a 

heating rate of 10oCmin-1 under air atmosphere. The thermogram of the dried grass revealed that 

major decomposition occurred between 250-310oC as shown in the Fig. 4.  The weight loss  

around 52 % may be due to the escape of decomposition products like moisture, CO2, oxides of 

nitrogen and volatile organic compounds. 

 

3.3 Ultimate analysis  

 

Ultimate analysis report of the G-ABC sample shows 76.66 % C, 0.211% N, 0.011 % S & 

1.253 % H and balance oxygen.  Due to the preferential loss of H and O with heating, carbon 

concentration and degree of aromatisation may increase with pyrolysis. Significant % of N, S & H in 

the sample shows the presence of various organic functional groups. Fourier Transform Infra Red 

(FT-IR) data also bears support for these organic functional groups, the presence of which is 

expected to influence the electrochemical behavior of the carbon samples prepared.  

 

3.4 Powder X-ray diffraction (PXRD) studies 

 

 X-ray diffraction patterns of the G-ABC and 1% Pt@G-ABC powders have been depicted in 

Fig. 5 and as an inset in Fig. 5.  The appearance of a broad peak around 24o in the XRD of the G-

ABC indicates the presence of microporous carbon and the microporous structure is amorphous 

carbon in nature with non-crystalline structures [44].  More precisely, disordered single graphene 

layers and stacked structures of graphene sheets may be present simultaneously in the texture of the 

carbon powder [45] and the broad shape indicates highly disordered structure in the carbon [46].  

However the strong peaks in the middle of the humps suggest that an organized crystalline structure 

exists in the amorphous carbon structure of grass. The interplanar space (d002) calculated for the 
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virgin carbon is 4.03 Å, larger than that observed for graphite (3.354 Å) indicating considerable 

disorderliness in the carbon produced [47-49]. Generally the value of d002 is taken as a measure of 

estimating the degree of graphitization in the carbon and growing disorder is reflected in larger 

values of d002.  Changes in the PXRD pattern of the Pt@G-ABC show the modification due to Pt 

particles on the grass. (111) & (200) peaks of Pt are observed (given as inset in Fig. 5) and it is a fact 

that the (002) peak of carbon is found to be suppressed here, revealing predominant and 

homogeneous existence of Pt particles over the entire carbon surface. 

3.5 FT-IR vibrational studies 

The electrochemical properties of activated carbon depend upon the physical properties as 

well as the nature and chemical reactivity of the functional groups present on the carbon surface. 

Knowledge on surface functional groups would give insight to the electrochemical properties of the 

activated carbon. FT-IR data was collected for qualitative characterization of the surface functional 

groups of the activated carbon samples and is presented in Fig. 6.  Various FT-IR signatures observed 

and respective assignment is given in Table 1. An analysis of the table 1 shows the presence of 

COOH, OH, nitro and C-H bonds on the surface of the activated carbon samples. These organic 

functionalities may help in the anchorage Pt particles throughout the carbon surface uniformly. Also 

these polar groups are expected to impart hydrophilicity to the electrode, paving way for the easy 

accessibility of the electrolyte in to the 

pores of the electrode particles, thus facilitating efficient electrolysis of water. Further, the absence of 

a peak around 3400cm-1 shows the evident absence of amino group.  So the nitrogen present in the 

sample may probably due to nitro group. Subramanian et. al. [50] have reported that the organic 

groups with oxygen, typically, phenols, carbonyls, lactones, quinine and quinine-like structures are 

expected to form on the surface during the thermal treatment of the biomass precursors and may 

appear at the edge carbon atoms. This fact may also be applied to grass samples and the effect or 
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mechanism of action of these organics on the electroactivity/catalytic activity of the carbon samples 

may be complex and forms an exclusive research object. The presence of Pt over the carbon surface 

or the coordination of Pt with the organic functional groups can be confirmed only when FT-IR 

spectrum is recorded down to 300cm-1, which is out of our reach as of now.  

3.6 Scanning electron microscopic (SEM) studies, Surface area (SBET) and density  

        measurements 

 

The SEM image of G-ABC is shown in the Fig. 7. It is observed that the carbon particles are 

of irregular size and ununiformly distributed. Also the particles appear as layers stacked or bundled 

together. The particles seem to lack porosity and hence it is not possible to offer any correlation 

between the particle morphology and the electrochemical activity as of now. Surface area of the G-

ABC carbon sample was found to be 1201 m2g-1. The surface area of G-ABC is observed to be higher 

than the commonly employed carbon support namely Vulcan XC-72 which has the value of around 

250 m2g-1 [5].  High surface area may be indicative of the presence of enormous electrochemically 

accessible sites or area thereby resulting in increased catalytic activity to the Pt@G-ABC ultimately. 

It is to be mentioned that surface functionalities would not be altered as a result of activating the 

sample and hence for these reasons the authors expect that the catalytic activity observed for the 

Pt@G-ABC sample may be due to the improved surface area. 

 

Density of coconut, lignite, wood and coal activated carbon samples reported in the literature 

is in the range of 0.35 - 0.48 gcc-1 3 while our G-ABC sample has density of 0.77 gcc-1, a value higher 

than that of those seen above. It may convince the readers that the high density value might be the 

result of the presence of significant amount of O and N in our samples. But  

the notion that grass contains enormous cellulose fibers and hence carbon material obtained from the 

thermal treatment of fibrous precursor would be lighter, resulting in fibrous and porous carbon 

structure. Though this feature is not directly evident from SEM given in Fig. 7, it can still be 



presumed that the individual stack or bundle may be fibrous and porous based on the density criteria. 

Further, higher density provides greater volume activity and normally indicates better quality 

activated carbon4. 

__________________ 

3  http://www.carbochem.com/activatedcarbon101.html. 

4  http://en.wikipedia.org/wiki/Activated_carbon.html. 

 

 

4. Results of electrochemical or electrocatalytic characterization studies 

 

4.1 Linear Sweep Voltammetric (LSV) studies  

 

LSV study is undertaken to have an idea on the voltage at which H2 gas evolution occurs from 

water. LSV plot of G-ABC & Pt@G-ABC electrodes are displayed in the Figs. 8 set. Voltage of the 

working electrode was swept from 0.0V to -0.4V Vs SCE at a scan rate of 20mVsec-1. Fig. 8. LSV 

plot of (a) G-ABC & (b) 1% Pt@G-ABC electrodes in 1M H2SO4.  Water decomposition setting in at 

-0.24V Vs SCE for 1% Pt@G-ABC is indicated in Fig. 8b and the rate of increase in current density 

is very much rapid with this electrocatalyst. For G-ABC no activity is observed since current density 

is comparatively less (Fig. 8a).  The results suggest that the remarkable increase in the current density 

causes enhanced H2 evolution (at lower voltages) when Pt@G-ABC catalyst is used.  

 

 

4.2 Cyclic voltammetric (CV) studies  

 

CV of the G-ABC & 1% Pt@G-ABC samples is presented respectively in Figs. 9a & b set. 

CV was recorded between -0.4 to +1.0V at a sweep rate of 20mVsec-1. LSV and CV offer  

almost the same results as far as our study is concerned. These experiments are valuable in letting us 

know the better performing biomass carbon sample(s) based electrocatalysts. The rate of change of 
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current density is taken as an index to measure the catalytic activity of the electrodes studied. No 

change in the current density and hence no electrochemical or catalytic activity with G-ABC (Fig. 9a) 

is observed while H2 evolution is noticed around  -0.2V Vs SCE in Pt@G-ABC (indicated as “**” in 

the Fig. 9b). Oxidation of organic moieties of Pt@G-ABC is also observed at positive potentials 

(indicated as “*” in Fig. 9b).  A similar type of pattern of CV has been observed by Murakami et al 

[51] in their studies with perchloric acid electrolyte. Interestingly, rapid change in the current density 

is observed only in the Pt case.  The improvement in the catalytic activity of Pt@G-ABC over G-

ABC may be attributed to the physical nature and the high active surface area of the sample powders 

activated with ZnCl2. It can thus be regarded that the ZnCl2 activated G-ABC powder may be useful 

as a conductive material for supporting electrocatalyst particles and undoubtedly, 1% Pt supported on 

activated carbon derived from grass blades emerge as one of the candidates of choice for H2 gas 

evolution from acid electrolysis. This is established through various electrochemical studies with 

respect to electrocatalyzed H2 gas generation by water electrolysis. This is considered as the prime 

novelty of our studies.  It is to be stressed that commercial electrocatalysts contain 10%  or higher Pt 

content supported on carbon and so the authors presume that 10% Pt@G-ABC would be definitely as 

good as the commercial ones or even better.  Hence it is worth performing comparative studies with 

the commercial electrocatalysts supported on conducting carbon but has been reserved for the future. 

Furthermore, an analysis of the cost of obtaining G-ABC and that of the most popular and 

commercially available Vulcan XC-72 and 10% Pt supported on Vulcan XC-72 both from Cabot 

Corp. is valid and has been presented here. The intention is that the findings of the cost analysis will 

influence the evolution of future research activities elsewhere involving grass or any other biomass 

for obtaining carbon supported catalysts.  The cost of Vulcan XC-72 from Cabot Corp. is reported to 

be USD 20.00 per 250g and that of 10% Pt on Vulcan-XC-72 is USD 56.00 per gram5. Although G-
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ABC can be obtained from zero-cost biomass commercial success could be achieved only if electrode 

structures, pore volume, particle distribution and electrode stability during hydrogen generation in  

 

____________ 
5 www. fuelcellstore.com 

 

water electrolysers are optimized. However, our preliminary investigation suggests that G-ABC may 

be a better alternative to the traditional carbon supports in the near future.   

               The authors of the present article has extended similar type of studies with activated carbon 

derived from other biomass such as calotropis stem, palm leaves, coconut leaves etc.   Since the 

physical features and chemical constituents influence the electrochemical or the catalytic properties 

we have diversified choice of sources of biomass carbon for utilizing as electrocatalyst conductive 

supports.  Hence research may be oriented towards this area which could lead to carbon powders with 

unexpected properties tunable to the applications.                     

To summarize, we have described how biomass carbon powder from GREEN biomass waste namely 

GRASS can be produced and attempted to evaluate its potential as a conductive support for 

electrocatalysts for the electro-generation of H2 gas from acidified water. Electrocatalyst powder 

samples are prepared using the thus produced biomass carbon supports with 1% Pt loading (Pt@G-

ABC). Further applications of the biomass carbon supported electrocatalyst powder samples obtained 

through this work have also been highlighted. 

1. The work is based on Waste-to-Energy concept. 

2.  The work focuses on preparing low-cost conductive carbon for supporting electrocatalyst for 

the electrochemical generation of H2 gas from water using GREEN BIOMASS namely 

GRASS! (turf grass) 

3. Activated Carbon powders from the grass was obtained by chemical activation with ZnCl2 
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4. Catalyst powders of 1% wt Pt was successfully supported on the carbon produced from the 

grasses by an aqueous reduction using NaBH4 

5. Physical features of the catalyst powders was evaluated through various instrumental 

techniques like PXRD, FTIR, density, SEM, surface area 

6. Electrochemical or catalytic activity of the biomass carbon supported catalyst powders 

assessed by LSV & CV studies 

7. H2 gas liberation activity of 1% Pt supported on grass derived carbon is apparently good 

 

5. Conclusion 

 

The work shows how environmental wastes could be a useful source of obtaining novel 

engineering material like activated carbon or in other words, biomass carbon. In the present work 

grasses are considered as a safer, cheaper and greener way of utilizing them as a source of preparing 

activated carbon as well as conductive support for noble metal electrocatalysts.  Even 1% Pt@G-

ABC has been found to enhance the H2 generation rate through electrolysis of acidified water 

remarkably. In our studies current density has been taken as the index of evaluating the catalytic 

activity of the samples. H2 evolution from water catalyzed by 1% Pt@G-ABC was observed around -

0.24V Vs SCE and the good performance of the same may be due to high % carbon content, 

favorable physical properties & uniform dispersion of Pt particles on G-ABC powder.  Thus grass 

derived carbon could be an appropriate low-cost alternative to the conventional carbon supports for 

electrocatalysts for the renewable source of hydrogen gas. The developed electrocatalysts could be 

used in proton exchange membrane fuel cells as well and many other applications indicated in the 

previous section.  The objective and the fundamental experimental results presented here would 

break through not only the limits of carbon sources but also the conventional idea of obtaining active 

carbon and then applying them into various technologies where carbon is vital. 
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FIGURE CAPTIONS  

Fig. 1. A view of turf grass bunch. 

Fig. 2. Flow sheet for the preparation of G-ABC. 

Fig. 3. Flow sheet for preparing Pt particles supported on G-ABC (Pt@G-ABC). 

Fig. 4.  Thermogram of dried grass sample. 

Fig. 5. Powder XRD of G-ABC sample. Inset: XRD of 1% Pt@G-ABC. 

Fig. 6. FT-IR spectrum of G-ABC. 

Fig. 7. SEM of G-ABC. 

Fig. 8. LSV plot of (a) G-ABC & (b) 1% Pt@G-ABC electrodes in 1M H2SO4. 

Fig. 9. CV of (a) G-ABC & (b) Pt@G-ABC electrodes in 1M H2SO4. 

 

 

TABLE CAPTIONS 

Table 1. FT-IR spectral data on G-ABC. 
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Table 1 FTIR spectral data on G-ABC. 

 

IR frequency (cm-1) Assignment 
 

3731 Free O – H groups 
 

2464 O – H stretch from strongly H-bonded –COOH group 
 

2913 O – H stretching of –COOH group  
 

1713 Free –C – O group stretching 
 

1562 Carboxylate anion stretching & NO2 group 
 

1222 C – N stretching 
 

1377 C = N stretching 
 

1055 C – C stretching 
 

1498 & 1402 C – H bending 
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Fig. 1. A view of turf grass bunch. 
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Stirring for 48 hrs at 600c
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Collection of biomass
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Drying

Fig. 2. Flow sheet for the preparation of activated carbon from grass blades (G-ABC). 
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Fig. 3. Flow sheet for preparing Pt particles supported on G-ABC (Pt@G-ABC). Fig. 3. Flow sheet for preparing Pt particles supported on G-ABC (Pt@G-ABC). 

  
  
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
Fig. 4.  TG of dried grass sample. Fig. 4.  TG of dried grass sample. 

  
  



 

 
 

      Fig. 5. Powder XRD of G-ABC sample. Inset: XRD of 1% Pt@G-ABC. 
 

 
Fig. 6. FTIR spectrum of G-ABC. 
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Fig. 7. SEM of G-ABC. 
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Fig. 8. LSV plot of (a) G-ABC & (b) 1% Pt@G-ABC electrodes in 1M H2SO4. 
 
 
 

 
 

Fig. 9. CV of (a) G-ABC & (b) Pt@G-ABC electrodes in 1M H2SO4. 
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	Electrocatalyst powder was prepared by aqueous reduction using NaBH4 as the reducing agent. To prepare 1% Pt@G-ABC powder, G-ABC powder is first made wet and homogenized with little amount of water and ethanol in a beaker. To this slurry appropriate amount of Pt(NH3)4Cl2 crystals in minimum quantity of water is added drop wise while stirring the contents slowly and thoroughly. Now large excess of NaBH4 solution is added very slowly from a buret while ensuring constant mixing of the contents in the beaker. NaBH4 reduces Pt2+ ions to Pt0 and gets deposited or precipitated over the biomass carbon particles.  The beaker is left undisturbed overnight.  Completion of reduction with NaBH4 is known by testing an aliquot of the filtrate with KI solution. Absence of rose coloration with KI shows the complete reduction of Pt ions. The contents are now filtered and washed several times with distilled water until the washing is neutral in pH.  The powder is dried and stored in an air-tight container.  The above process is explained by the following equation [41].
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