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HBF49 feature set: a first unified baseline for online symbol recognition

Adrien Delayea,∗, Eric Anquetila

aIRISA, Rennes, FRANCE

Abstract

As the rise of pen-enabled interfaces is accompanied with an increased number of techniques for recognition of pen-
based input, recent trends in symbol recognition show an escalation in systems complexity (number of features, classifiers
combination) or the over-specialization of systems to specific datasets or applications. In spite of the importance of
representation space in feature-based methods, few works focus on the design of feature sets adapted to a large variety
of symbols, and no universal representation space was proposed as a benchmarking reference. We introduce in this work
HBF49, a unique set of features for the representation of hand-drawn symbols to be used as a reference for evaluation of
symbol recognition systems. An empirical constructive approach is adopted for designing this set of 49 simple features,
able to handle a large diversity of symbols in various experimental contexts. An original effort is made for guaranteeing
transparency of features design and reproducibility of experiments. We demonstrate that using off-the-shelf statistical
classifiers, the HBF49 representation performs comparably or better than state-of-the-art results reported on 8 databases
of hand-drawn objects. We also obtain a good recognition performance for user-defined gestures that further attests the
ability of HBF49 to deal with a great variety of symbols.

Keywords: feature extraction, online sketch recognition, graphics recognition, symbol recognition, pen-based gesture,
benchmarking

1. Introduction

Automatic recognition of electronic ink has been a very
popular topic and has lead to many applications available
on the market. A large amount of research work was con-
ducted for designing highly efficient recognition methods
dedicated to online handwritten characters, cursive words
and sentences (see [1] for a review), Asian characters [2, 3],
scientific notations [4, 5], diagramming and graphics [6],
sketched symbols [7, 8, 9], pen-based gestural commands
[10, 11].

Besides handwriting text recognition systems, methods
for recognition of isolated hand-drawn patterns have flour-
ished in the recent years. Interestingly, methods applied in
different application fields have focused on different prop-
erties of the patterns. Image-based approaches, where the
pattern is represented as a purely visual signal, have been
widely adopted for symbol recognition and sketch interpre-
tation [8, 9, 6, 12], as well as for isolated digit or character
recognition [1]. The online nature of input signal however
contains rich information about the dynamics of the draw-
ing (order and number of strokes, writing direction, speed,
pressure) that can largely benefit the recognition of some
categories of patterns: for example, the handwriting of dig-
its or characters involves a dynamic process that presents
some stability, complementary to the visual one. Several
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methods thus include a description of dynamic information
in addition to the visual one [13, 14, 15, 10]. Alternately, in
the case of gesture recognition, the dynamic information
can be of primary importance. As some hand-held de-
vices support pen-based or touch-based gestures that are
expected to be realized without looking at the sensitive
surface, an increased attention to the dynamics aspects
over the visual one is required [16]. Accordingly, methods
proposed for recognition of gestures often depend strongly
on dynamic information [11, 17, 18, 19].

The most recent developments in recognition of isolated
pen-based patterns have been conducted in two opposite
directions. First, a tendency to more and more complex
recognition systems can be noticed, in an attempt to de-
scribe simultaneously the different aspects of patterns ei-
ther by increasing the number of features [10] or by com-
bining multiple classifiers [14, 20, 15]. Conversely, the sec-
ond tendency is concerned in the design of lightweight,
low-resource classification systems well adapted for ges-
ture and symbol recognition on smart phones [19, 18, 17].
Such systems are highly efficient for recognition of specific
sets of simple gestures, but do not tolerate much varia-
tion in the writing style or drawing process, and cannot
be easily generalized to other categories of symbols.

Although feature-based approaches for hand-drawn pat-
tern recognition have been very popular, the design of fea-
ture set is often rather obscure or hardly explained, while
more attention is paid to the recognition method. While
some research works focus on specific feature extraction
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techniques, we believe there is a lack of a general view
about feature set design. Moreover, although many bench-
marking datasets have been proposed in the community
(such as Ironoff database [21], NicIcon database [22], or
SIGN database [23]), surprisingly no baseline representa-
tion space exist for recognition of diverse patterns, includ-
ing digits, characters, symbols and gestures. It is then very
difficult to compare methods and to evaluate the interest
of new systems proposed in the community.

Our work is guided by the following question: “Is it
possible to design a rather universal set of features, having
a reasonable size, implying no specific drawing constraints
and showing good performance on diverse benchmarking
datasets ?”. A versatile solution to this problem would
be of great help for highlighting true progress when intro-
ducing new sets of features or recognition systems in the
field.

Deep motivations to the quest for universality are the
foreseen evolutions of pen-input recognition systems. Firstly,
an important forthcoming challenge is the ability to deal
with heterogeneous input (i.e. allow the user to mix pen
gestures, handwriting, informal sketching, mathematical
notation, symbol, geometrical shapes . . . ). Secondly, some
pen-based interfaces already admit user-defined classes of
symbol or gestures [23][18][12], but more and more lib-
erty will be expected by the user: freedom to draw single-
stroke or multi-strokes gestures, choice to tolerate orienta-
tion or scale invariant symbols, ability to dynamically add
or delete classes of symbols, and so forth. In this setup, the
designer is not aware of the patterns the system will have
to discriminate, hence the need for universal representa-
tion of patterns. These evolutions call for serious progress
towards the design of feature sets that are versatile, rather
than optimized for the representation of specific and ho-
mogeneous datasets.

Beside flexibility, the simplicity of description is also
highly desirable. Extraction of a baseline feature set should
be easy to implement, involve no hidden parameters or
complex algorithms, and imply only a reasonable coding
investment with limited processing resources. The space
dimensionality should be as limited as possible. Again,
the evolution of pen-based devices also calls for light sys-
tems with small features spaces: whereas the training of
statistical recognizers require more samples as the feature
space grows, in a real situation it is clearly not acceptable
to ask the user to perform many training samples before
he can use a customizable gesture recognition system [24].
Moreover, the credibility of the baseline representation can
only benefit from a moderate dimensionality. If the base-
line is not only a highly accurate method, but also a simple
and light system, then it is guaranteed to be a more useful
safeguard against unjustified complexity of future systems.

This study presents a solution to address these needs.
We introduce a unique set of 49 features, called Hetero-
geneous Baseline Feature set (HBF49), covering diverse
aspects of patterns characteristics, and presenting the fol-
lowing properties:

• ability to describe unconstrained pen-based input
(number of strokes, writing order, direction);

• comparable/better performance with respect to state-
of-the-art results on various benchmarking datasets,
by using a standard Support Vector Machine (SVM)
classifier;

• high performance with a simple 1-Nearest-Neighbor
(1NN) classifier;

• dealing with writer-dependent (WD) or writer-independent
(WI) experimental settings;

• limited in size (reasonably low number of 49 fea-
tures).

The contribution of this paper is to propose this gen-
eral basis for representation of handwritten patterns. Ob-
viously, optimality of the feature set is not possible to de-
fine in an open-world context, since this notion is dataset-
dependent. We thus adopt an empirical constructive ap-
proach, by integrating several families of features in order
to exhaustively cover the aspects of hand-drawn objects
found in a large selection of diverse datasets. To main-
tain a feature space of limited dimension, we only consider
the simplest features sets from each family for inclusion
in the description. Intuitively, maintaining the description
as simple as possible should improve its robustness with
respect to samples from unseen datasets. Experimental
results obtained with standard classifiers show a consis-
tently high performance for 8 datasets with large diversity
of content, and universality of the representation is fur-
ther attested by the good results on a set of user-defined
gestures. Our constructive approach is also validated in
itself, because HBF49 description even outperforms sev-
eral systems from the literature on the dataset for which
they have been optimized.

HBF49 is then an efficient benchmarking tool for on-
line symbol and gesture recognition that can be used in
several ways: new feature sets can be compared to HBF49
for evaluation, or new recognition systems can be com-
pared with HBF49 coupled with an SVM classifier (as in
this paper). Additionally, we make the HBF49 represen-
tation of the 8 experimental datasets available for enabling
the comparison of machine learning methods (see experi-
mental section 5).

In the next section, we review research works related to
recognition of isolated online hand-drawn patterns (section
2) and highlight the great variety of existing approaches.
This review is enriched by the presentation of 8 online
symbol datasets (section 3) that provides an overview of
the diversity of symbols properties and serves as a basis
for supporting the choice of features as well as for exper-
imental validation of our feature set. The construction
of HBF49 is presented as the main practical contribu-
tion of this paper, in section 4. Rather than adapting
the features by optimal selection on datasets, we adopt
a constructive approach, where the diversity of features
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is looked for while maintaining simplicity of the descrip-
tion (section 4). In the experimental section (section 5),
the feature set is shown to provide an excellent descrip-
tion for highly different types of symbols: handwritten
digits, mathematical symbols, iconic gestures, geometrical
objects, architectural objects, single stroke gestural com-
mands, and user-defined gestural commands. For insuring
reproducibility of our experiments, we exploit off-the-shelf
Nearest-Neighbor and Support Vector Machine classifiers,
and make extracted features datasets available under the
WEKA feature format [25]. The associated discussions ex-
emplify how this general baseline representation space can
be used for asserting the interest of recently introduced
symbol recognition systems.

2. Related work

This section provides a review of recognition methods
for isolated online symbols. We deliberately exclude meth-
ods for recognition of text (based on Latin alphabet, but
also Asian, Indian, Arabic characters and so on), because
their linguistic nature makes them beyond the scope of
this study. We rather limit our investigation to the anal-
ysis of isolated online symbols, digits, pictograms, and
pen gestures. Because of the diversity of patterns and
the broad spectrum of associated applications, existing
recognition systems differ regarding several aspects: draw-
ing constraints imposed to the user (handling of mono
or multi-strokes, order or direction-sensitivity. . . ), pattern
representation (feature vectors, image templates, struc-
tural representations. . . ), or decision-making process (distance-
based classification, discriminative classification, rule-based).
Notably, the consideration of the temporal dimension of
the signal in the different approaches varies greatly de-
pending on the nature of patterns and the target applica-
tion, so we propose to categorize the methods according
to how much importance they give to this dynamic infor-
mation. Note that the large variety of methods exposed in
this section reflects the importance of our work, as it high-
lights the need for a comparable landmark feature space
that will serve as a unified reference.

2.1. Image-based methods

Image-based approaches do not consider the online in-
formation at all in representation and classification of pen-
input patterns: the focus is on the what the pattern visu-
ally looks like rather than how the pattern was written.
This offers the advantage of high robustness with respect
to variations in the number of strokes, writing order and
direction, as may be required, for example, in a writer-
independent multi-strokes symbol recognition context. On
the other hand, only considering the visual aspect of the
patterns is a critical loss of information in style-consistent
databases, such as in writer-dependent digit recognition
or single stroke gestures applications, where discrimina-
tion between gestures sometimes only relies on dynamics

(e.g. when a downward and an upward vertical strokes are
considered to be different symbols).

For digit and character recognition, as for handwrit-
ing recognition in general, many image-based classification
systems have been designed. Obviously, offline recognition
techniques qualify in this category (see for example [26, 27]
for digit recognition). A popular feature set for digit recog-
nition is the stroke direction features, represented as a his-
togram of local direction elements [27]. Moments of in-
ertia, Zernike moments and other statistical combination
extracted from static pattern representation can also be
used [28][29].

Likewise, several approaches for symbol recognition con-
sider only the visual aspect of the hand-drawn pattern and
neglect information about the drawing process. For the
PowerPoint shapes symbols, Hse and Newton [8] extract
Zernike moments as features, and use a Support Vector
Machine (SVM) for classification. In the works of Kara
and Stahovich [12], sketches are represented as binary im-
age templates, and Hausdorff distance is proposed for tem-
plate matching. High recognition performance is reached
on a set of noisy symbols, with unconstrained number and
order of strokes. A very similar method is the one of
Ouyang and Davis [9] for recognition of pen digits, Pow-
erPoint shapes symbols and sketched electrical symbols.
The online input signal is converted into a set of low reso-
lution images, and classification is performed by comput-
ing an Image Deformation Model (IDM) distance between
input images and prototype images, resulting in very good
performances with the three datasets. For recognition of
multi-stroke geometrical shapes, Fonseca and Jorge [30]
first extract geometrical features based on the enclosing
rectangle and the convex hull of the strokes, then clas-
sify symbols by applying fuzzy rules inferred from training
data. Apte et al. [31] classify geometric shapes by a filter-
based approach that considers global geometrical features.
Oltmans [32] constructs a static signature of hand-drawn
symbols by combining local shape contexts.

2.2. Structural methods

These methods adopt a structural representation of the
hand-drawn patterns, involving a segmentation process for
identification of the individual structural primitives. Al-
though structural methods may theoretically be strictly
visual and accord no importance at all to the online in-
formation, most of them actually somehow depend on the
writing order, the pen speed, or the number of strokes, be-
cause these dynamic aspects offer precious information for
the segmentation process. Wether or not utilizing the dy-
namic information in the structural matching is up to the
system designer, so these methods usually are not suited
to cope with many different datasets. Indeed, for handling
different datasets such as symbols, digits and gestures, it
is necessary to adapt the importance of dynamic informa-
tion in the recognition. Structural methods usually per-
form better on clean datasets, with linear or geometrical
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strokes, because noisy or highly curved strokes are harder
to segment properly.

For recognition of multi-strokes symbols from architec-
tural plans, Mas et al. [33] introduced a method based
on adjacency grammars, where the hand-drawn shape is
considered as a set of linear segments (primitives) and ge-
ometric constraints, and described with production rules
that can be inferred from training samples. Graph-based
representations have also been widely used for recognition
of multi-stroke sketched symbols, like in the works of Lee
et al. [7] or Hammond and Paulson [34]. Calhoun et al.
[35] represent symbols as a semantic network of primi-
tives with their relationships, and utilize online informa-
tion (pen speed) for segmentation of primitives. In [36],
the relative positioning of strokes is considered as informa-
tion of primary importance for recognition of multi-strokes
symbols, thus allowing increased robustness to variation in
order or number of strokes.

Several approaches for sketch recognition consider the
sketch as a scene containing symbols that can be isolated
and recognized by applying predefined grammar produc-
tion rules constrained by spatial or temporal limitations
[37, 38, 39]. Obviously, these approaches are not suited
to the recognition of curved patterns, or handling of noisy
patterns, because of the segmentation process that can
only handle geometrical shapes. Macé and Anquetil [40]
proposed a grammar-based approach for recognition of
hand-drawn structured documents where temporal and spa-
tial constraints are used for triggering reduction of gram-
mar rules. In that case, the online pressure information
(pen-ups and pen-downs) plays a critical role in the pars-
ing process.

2.3. Trajectory-based methods

In trajectory-based methods, the actual pen trajectory
is strictly reflected in the pattern representation or in the
recognition process. These methods are intrinsically sub-
ject to variations of the writing process: order and num-
ber of strokes, direction of writing, pen-ups, pressure and
speed.

Dynamic Time Warping consists in measuring similar-
ity between patterns seen as sequences of points (or se-
quence of direction codes). It has been used for recognition
of digits and characters [41][42] as well as multi-stroke ges-
tures [22]. Hidden Markov Models can be seen as stochas-
tic models of point sequences. They are very well suited to
the modeling of handwritten words and sentences [43], but
have also been used for multi-strokes symbols recognition
[44] and gestures [45]. For digit recognition, Kherallah et
al. [46] designed a beta-elliptic representation of the pen
trajectory and velocity.

Trajectory-based methods have been used extensively
for recognition of single stroke gestures, for which the on-
line information is of primary importance. The one-dollar
recognizer [18] is a popular lightweight statistical method
for single stroke gesture recognition. After resampling,
rotation, scale and translation normalizations, the input

gesture is compared to templates of gesture models by
computing a path-distance, which is sensitive to the or-
dering of points. Protractor [17] performs quite similarly,
but the matching of templates is based on an optimal angle
distance. N-dollar recognizer [19] can additionally handle
multi-stroke gestures, at the cost of an increased combina-
torial in the matching, so as to handle alternative stroke
orders and directions. These methods are simple to imple-
ment, require little processing resource, and are extensible
to introduction of new classes of gestures because they rely
on the nearest-neighbor classification paradigm. Although
they perform efficiently on simple gestures, they are not
suited to recognition of messy and unconstrained draw-
ings, such as multi-stroke gestures or sketchy symbols.

Some feature-based approaches are also strongly linked
to the drawing process. Trajectory features are often ex-
tracted from the spatially resampled and rescaled hand-
drawn signal, forming a feature vector that can be clas-
sified by trained statistical recognizers: kNN, neural net-
works, SVMs. . . Ahmad et al. [47] extract such features
for digit recognition, in association with several variants of
neural networks. It is also used as a baseline approach for
comparison with other feature sets in the works of Keshari
and Watt [29] about character and mathematical symbol
recognition, or by Niels et al. [22] for multi-stroke gestures
recognition. In [48], Bahlmann proposes an efficient rep-
resentation for circular variables such as the tangent slope
angle extracted along the pen trajectory that is combined
with linear features (coordinates of points). The technique
proposed by Chakraborty and Chakraborty [49] for on-
line alphanumeric characters also extract features from the
ordered sequence of points, after a special pre-processing
technique is applied for guaranteeing orientation and scale
independence. Golubitsky and Watt [50] recently intro-
duced a new trajectory-based set of features, defined from
Legendre-Sobolev coefficients of the input signal seen as a
temporal function, and applied it to multi-strokes symbol
recognition.

2.4. Hybrid methods

As a last category, we consider methods where the rep-
resentation or the recognition decision explicitly combines
static, image-based information with dynamic, time-based
information.

It has been stated by several authors that considering
simultaneously the two aspects is beneficial for recogni-
tion of handwritten patterns. For digit recognition, Al-
imoglu and Alpaydin [13] experimented different strategies
for combination of static and dynamic classifiers, show-
ing a significant increase in performance for both writer-
dependent and writer-independent setups. Arandjelovic
and Sezgin [14] proposed to combine a temporal HMM
classifier with a static classifier based on Zernike features
for sketch and multi-strokes gestures recognition.

A simpler way to combine the representations is to in-
clude different types of features in feature-based pattern
representation. As an example, the well-known Rubine’s
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algorithm [11] for single-stroke gesture recognition relies on
a set of 13 features, some of which depend on the writing
process (e.g. distance between the first and last point of
the pen trajectory), while some others do not (e.g. length
of the bounding box diagonal). Paulson et al. [51] sug-
gested combining more geometrical features as a comple-
ment to Rubine features for increasing the importance of
visual information. In the works of Laviola and Zeleznik
[15], a feature set is also constructed by considering both
online and offline aspects of mathematical symbols. For
recognizing multi-strokes characters and gestures, Willems
et al. [10] proposed an original feature set by combining
stroke-level features, following an idea also evoked in [15].
A heterogeneous feature set, containing both static and
dynamic information, is extracted from the global multi-
strokes symbol. Then, the same set of features is extracted
from each of the symbol strokes. In order to deal with
varying number of strokes per sample, the stroke-level fea-
tures are averaged in a unique stroke-level feature set with
a constant size. A third feature set is computed from the
covariance of stroke-level features. The full set, obtained
by concatenation of the three sets, contains a very large
number of features that model both static and dynamic
information at global and local levels.

Directional features are a popular type of hybrid fea-
tures for isolated character recognition [52, 53]. In the
works of Bai and Huo [52] and that of Liu and Zhou [53],
directional features are extracted from the online trajec-
tory and mapped to directional images that are blurred
and subsampled. The final features extracted from the
images combine dynamic information (because directions
are defined with respect to the writing direction of the
strokes) and visual aspect (because the writing order is
lost in the image representation).

2.5. Discussion

We have enumerated in this section a large number of
methods for recognition of handwritten symbols, charac-
ters, digits, and gestures. In spite of a very similar prob-
lem (isolated handwritten symbol recognition), the meth-
ods focus on different properties of the patterns while ne-
glecting some of their aspects. It is extremely difficult to
compare methods from different categories, and applica-
tions in different domains seem to evolve separately: for
example, methods for multi-stroke gestures recognition are
not checked against the problem of digit classification, al-
though digits could be seen as examples of pen-gestures.
The use of benchmarking datasets for comparison is still
not generalized, and is almost never adopted for validation
across various application domains. The large variety of
approaches and the lack of universal baseline make it dif-
ficult to emphasize true contributions to the field, such as
the introduction of new powerful feature sets or new struc-
tural systems. Hopefully, a good baseline method can ease
the evaluation of new methods and permit to judge if the
development of heavy and costly systems is worth the cost.

In the rest of this paper, we introduce a feature set
suited to the representation of symbols for different appli-
cations as a first unified baseline for evaluation of online
symbol recognition methods. We adopt for this a hybrid
feature-based approach, for two main reasons. First, hy-
brid feature-based methods provide a representation space
where the patterns can be discriminated according to dif-
ferent criteria depending on the context. Unlike image-
based methods or trajectory-based methods, they are suited
to description of various types of patterns, from gestures
where the dynamic information is essential, to hand-drawn
symbols where the visual aspect is more important. Sec-
ondly, and contrarily to structural methods, the recogni-
tion procedure of feature-based methods is inherently in-
dependent of the drawing process and thus imposes no
constraints to the user, hence a more easy generalization
to many applications. No choice has to be made before-
hand: by guaranteeing diversity in the features, it may be
possible to insure that the method will properly handle
different categories of patterns, with or without drawing
constraints, in writer-dependent or independent settings.

We expose in section 4 the design of HBF49, an origi-
nal set of heterogeneous features, in an attempt to address
the universal symbol recognition problem. We will adopt
for this a constructive approach, inspired by related works
[10][11][15] and based on the observation of symbols from
different datasets. Beforehand, we present a selection 8
symbol databases that cover different application domains
as an overview of the problems occurring in online symbol
recognition.

3. Benchmarking datasets

This section presents a selection of benchmarking datasets
that are available to the community (they can either be
downloaded from a website, or be obtained by contact-
ing their authors). We selected them so as to cover many
different aspects of online symbol recognition and a large
panel of potential applications, but did not considered
handwriting text recognition databases, such as IAM-Online
database (for English handwritten text recognition) [54] or
CASIA-OLHWDB (online Chinese character recognition)
[55]. The eight retained datasets present a large diver-
sity of content with very different properties (for example
the relative importance of dynamic versus visual informa-
tion greatly varies among the datasets). Some datasets
offer writer-dependent (WD) or writer-independent (WI)
experimental settings, their number of classes varies, as
well as the available amount of training samples per class.
Some constitute a quite easy recognition problem, with
clean or style-consistent data, while others are much more
challenging because of the presence of noisy data, larger
variety of writing styles and higher number of classes or
existence of very similar classes.

This selection is believed to exhaustively cover the con-
texts where online symbols are likely to be used, and thus
to provide a reliable overview of the related recognition
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Table 1: Properties of the datasets. Nature of patterns is described
with following flags: N for multi-strokes patterns, S for single-strokes,
R for rotated patterns, V for vectorized. WI and WD columns
indicate the possibility of running Writer-Independent and Writer-
Dependent experiments.

dataset classes samples nature WI WD
Ironoff-digits 10 4,086 N y n

LaViola 48 11,602 N y y
CVCsymb 25 4,278 N y y
ImiSketchS 10 1,020 N,R,V y n

HHReco 13 7,791 N,R y y
NicIcon 14 26,163 N y y

Sign 17 33,579 S y y
ILG 588 4,656 S n y

difficulties. We will use evidence from observation of these
datasets as a guide for supporting the design of HBF49
feature set in the next section 4. Moreover, we will make
use of these datasets for experimentally validating the uni-
versality of HBF49 in section 5.

Table 1 presents the datasets properties, and figure 1
presents samples extracted from each dataset for visually
attesting the diversity of their content.

The Ironoff-digits (see figure 1(a)) is a subset of IRONOFF
database, a dual online/offline database for isolated char-
acter recognition [21]. Ironoff-digits is limited to the 10
classes of digits in their online representation. It contains
4,086 samples and offers a challenging writer-independent
context, with many different writing styles and only one
sample per writer and per class. Results with this datasets
were reported in [47][56][57], and it served as a benchmark-
ing dataset for Lipitk library [58].

The LaViola dataset [15] (figure 1(b)) is contains a
total of 11,602 samples of handwritten digits, characters
and mathematical symbols, written by 11 persons. Char-
acteristics of this dataset are the higher number of classes
(48) and the relatively few training samples (10 per class
and per writer). Writer-dependent and writer-independent
experiments are possible, and results on this dataset have
been reported in [15][41][29].

CVCsymb is a dual online/offline database of archi-
tectural and electrical symbols [33](figure 1(c)), containing
50 different symbols divided in two sets of 25 (each writer
was asked to draw samples from one of the two sets of
classes only). We retain in our experiment only a half of
the online dataset, consisting of 25 classes of symbols col-
lected from 12 writers, totalizing 4,278 samples. The sym-
bols are composed of linear sections and arcs, freely drawn,
with a varying number of strokes (from 2 to 20 strokes,
with an average of 6) written with varying order and direc-
tion [59]. Writer-independent and writer-dependent exper-
iments are possible, but no global recognition experiments
have been reported [33].

ImiSketchS is a recently collected database of hand-

drawn architectural symbols [60] (figure 1(d)). We retain
from it the set of 1,020 samples from the 10 classes of
furniture symbols. A particularity of this database is the
vectorized form of the patterns resulting from the collect-
ing process. Samples are handwritten offline, and analyzed
with an architectural plan analyzer presented in [61, 62].
Segments are detected from the image data, and extracted
symbols are represented as sets of segments, with no on-
line information (information on the order and number of
strokes is lost). The drawing conditions are constraints-
free, and the symbols may be oriented in any direction,
depending on their original context. Writer-independent
experiments can be conducted.

The HHReco [8] dataset is a benchmark of 13 sketched
geometric shapes (regular polygons, circle, arch, cylinder. . . )
(figure 1(e)) referred to as Powerpoint symbols, and com-
posed of a mix of linear and curved sections. 19 users pro-
vided a total of 7,410 examples (about 30 per class and per
user), with no constraints in the writing process (orienta-
tion, number and order of strokes). Both writer-dependent
and writer-independent contexts were tested and results
were reported with different methods [8][9].

NicIcon database [22] contains 14 classes of iconic
multi-strokes gestures (figure 1(f)). The gestures represent
chosen pictograms expressing emergency situations (e.g.
fire, accident). While these expressive symbols are famil-
iar and easy to recognize for the human eye, no standard
writing process is known to the writers. Consequently,
the database is quite noisy, with a highly varying num-
ber and order of strokes, retraces, sloppy drawings. This
rich dataset contains a total of 26,163 gestures from 34
writers (in average, 55 samples per writer per class), with
both offline and online data, and includes pressure mea-
sures and pen-ups movements measures. For harmoniza-
tion with other datasets, we simply consider online pen-
down strokes, and remove pressure information. Results
for WI and WD experiments with online data have been
reported in [10, 14, 20, 63].

Sign is a database of 17 classes of single stroke gestures
[23](figure 1(g)). 33,759 samples were collected from 20
users (about 50 samples per class per writer), and results
were reported for incremental recognition in WD experi-
mental settings only [24, 23]. Some classes of gestures in
Sign can only be distinguished based on dynamic infor-
mation, because they are identical up to a change in the
writing direction.

The last dataset is ILG, a collection of single stroke
pen-based gestures (figure 1(h)) [64]. This dataset contains
many user-defined gestures: in the collection process, users
were asked to design a set of 21 gestures of their choice for
triggering commands in a simulated image editor appli-
cation. The collection process was carefully designed so
as to build an immersive environment and to guarantee
a realistic usage scenario (see the details in [64]). We re-
tain the datasets test1 and test2, where each of the 28
writers provided a total of 28×21 = 588 potentially differ-
ent gestures, unequally distributed over the classes. Since
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(a) Ironoff-digits (b) LaViola (c) CVCsymb (d) ImiSketchS

(e) HHReco (f) NicIcon (g) Sign (h) ILG

Figure 1: Samples from the 8 datasets.

ILG contains a very large number of different gestures,
it offers a good benchmarking tool for experimenting how
universal a feature set representation is. Simultaneously,
because it only offers few training samples for each class,
it also constitutes a realistic challenge regarding the rep-
resentation space complexity: in order to train statistical
models for recognition of user-specified classes of gestures,
the feature space should remain limited in size. Obviously,
this dataset can only be used for writer-dependent exper-
iments.

The selection of datasets presented here is believed to
cover the range of problems found in isolated symbol recog-
nition in general: style variations (number and order of
strokes, direction of writing), high number of classes, rota-
tions. . . The diversity of contents also emphasizes the needs
for combining different categories of features in a universal
description. For example, dynamics information have an
obvious importance for the gestures datasets (NicIcon,
Sign and ILG), while more visual description seems re-
quired for CVCsymb or HHReco datasets.

4. Heterogeneous baseline feature set

We introduce here HBF49 (for Heterogeneous Base-
line Features): a set of 49 features for unified descrip-
tion of heterogeneous datasets, where diverse features are
considered in a constructive approach, with the objective
of accurately representing symbols from multiple contexts
(such as in the 8 datasets presented in section 3). First, we
discuss the constructive approach adopted and justify the
choices for inclusion or exclusion of several types of fea-
tures. We then introduce a series of useful notations and
definitions, and describe preprocessing methods applied on
the handwritten symbols before the feature extraction it-
self. The categories of features included in HBF49 are

then presented, with a formal definition given for each fea-
ture.

4.1. Constructive approach justification

In our view, approaches for designing a set of features
can be categorized as theoretical-based, constructive or se-
lective.

Theoretically-based feature sets consist of a number
of features that is theoretically funded, by their defini-
tion. As an example, the number of Zernike features is
determined by the order of Zernike moments considered
(it may depend on a tolerated reconstruction error of the
image)[8]. Theoretical-based approaches are of great inter-
est and often permit to make progress by discovering new
representations; however it is unlikely that any family of
theoretically-based features can handle symbol represen-
tation universally, considering the diversity of datasets.

Selective approaches aim at selecting the best subset of
features (or combination of features), e.g. by optimization
of the recognition score on a given dataset. Selection is
usually applied on a large set of features (itself either the-
oretically defined or defined by construction, as in [10]).
By definition, these approaches do not qualify for the uni-
versality problem directly, because they are tuned with
respect to a dataset. To be widely used, we also believe
that a baseline representation should be simple and require
no such data-dependent optimization scheme.

Constructive approaches are commonly used for solv-
ing specific problems. They are empirical, based on the de-
signer intuition, and often inspired from data observation.
The construction process consists in gathering features de-
scribing different aspects of the data samples to constitute
an accurate global description. This is naturally the ap-
proach we adopt, inspired by the work of Willems et al.
[10], Rubine [11] and LaViola and Zeleznik [15].
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Contrarily to references [10][11][15], we try to exhaus-
tively describe aspects of online symbols from a variety
of contexts. Rubine’s work was focused on single stroke
gesture recognition [11], hence his feature set is not suited
to describe multi-stroke gestures or complex symbols be-
cause it contains no visual features and no global descrip-
tion [10, 51]. The feature set of Willems et al. [10] is
efficient for multi-strokes gestures representation, by com-
bining global and local stroke-level features, but at the
cost of a high dimensionality (758 features are defined in
[10]). Laviola and Zeleznik combine dynamic and visual
features for mathematical symbols recognition [15], by in-
cluding both global and local level description in a set of
47 features. However, it is biased towards dynamics infor-
mation which is exaggeratedly important in their Writer-
Dependent context, with a dataset mostly composed on
single-stroke gestures.

The methodology we adopt consists in combining dif-
ferent families of features, so as to exhaustively cover the
aspects of online symbols encountered in the literature.
We integrate subsets of features that are more or less sen-
sitive to different properties of the patterns: sensitivity to
the writing process (with dynamic features), to the visual
aspect of the pattern (with visual features), invariance to
the pattern orientation. . .

To solve the apparent trade-off between the desired de-
scription simplicity (low dimensionality) and the universal-
ity of representation, we intuitively pick what we consider
to be the simplest set of features for each family and con-
sider for inclusion only small groups of features with a
maximum size of 10 each. This choice disqualifies many
theoretical-based features sets, such as high-order Zernike
moments [8], or directional features extracted from a reg-
ular grid [53]. Moreover, since we want the description to
be as general as possible, we do not perform any selec-
tion of features based on training data, and deliberately
omit features automatically designed from data such as
the ones proposed by Lemieux et al. [65]. We believe
that this inclination towards simplicity of description will
also be strongly beneficial for the robustness of the rep-
resentation, which is highly desirable for universal symbol
recognition.

The good balance between the families of features in-
cluded in this HBF49 is essential for universality. In com-
parison with [15], we then strengthen the visual aspect of
the description and integrate more orientation-invariant
features. Most of features included in HBF49 are in-
spired from [10][11][15], from which we picked the ones we
considered as important, simple to implement (i.e. involv-
ing no complex extraction algorithm) and general (that
are meaningful in any dataset). Additional families of vi-
sual features are incorporated: zoning features (as a coarse
global quantization of the image, sensitive to rotation),
histogram of directions (quantization of the trajectory di-
rection, invariant to rotation), and Hu moments (global
moment-based image description, invariant to rotation).
These three sets offer complementary description of the

patterns, while being independent on the writing process
and very limited in size (9, 8 and 7 features respectively).

The resulting feature set HBF49 is not claimed to be
the best possible set of features for universal symbol recog-
nition. However, we are confident that it provides an ac-
curate and robust description of symbols in a great variety
of context thanks to a complete coverage of the patterns
properties. If our constructive approach cannot guarantee
optimality of performance, we are however convinced that
only a rather large modification of the feature set can bring
a significant improvement of the general performance.

Since we present HBF49 as a baseline method, we give
here all the details that guarantee an easy reproduction
of the feature extraction. Whenever reproducing a fea-
ture presented in one of the reference works [10][11][15],
we mention it with its associated index for completeness.

4.2. Definitions and notations

Definition A pattern S is a (possibly resampled) sequence
of points captured from the trajectory of the pen position
on the input device. S = {s1, .., si, .., sn}, where n is the
number of points in S. Each point si = (xi, yi) is located
in the bidimensional space.

For homogeneous representation, we do not consider time
or pressure information that may be available in some
cases. However, some points can always be detected as
pen-up points: they denote points of the trajectory where
the contact between pen and surface was interrupted. In
particular, the last point sn from S is necessarily a pen-up
point.

Definition A stroke S is a subsequence of a pattern S
that is preceded and ended by pen-up points. It describes
the trajectory of a unitary element of writing. A pattern
has at least one stroke. We denote Sk the sequence of
points {si..sj} belonging to the k-th stroke of S, hence
S = ∪Kk=1Sk, where K is the number of strokes in S.

We use the following notation for characterizing prop-
erties of the pattern S (see figure 2(a) for visualization on
an example):

• ux, uy are the unit vectors codirectional with the x
and y axes (we assume y is pointing down as in image
coordinate system),

• n is the total number of points in S,

• s1 and sn are the first and last points in the writing
order of S,

• ||sasb|| denotes the Euclidean distance between points
sa = (xa, ya) and sb = (xb, yb),

• Li,j is the path length from si to sj , where path
length is accumulated as follows:

Li,j =

j−1∑
l=i

{
0 if sl is a pen-up point

||slsl+1|| otherwise
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• L = L1,n is the total length of S,

• sm is the middle-path point, i.e. the point such that
L1,m = Lm,n,

• xmax is the abscissa of the rightmost point of S,
xmin, ymax and ymin are the other extreme coor-
dinates,

• B is the bounding box of S, it is the rectangle parallel
to the axis, defined by xmin, xmax, ymin, ymax,

• w = xmax−xmin is the width of B, and h = ymax−
ymin is the height of B, (if w or h are null, their value
is set to 1),

• cx and cy are the coordinates of the center of B,

• µ = 1
n

∑n
i=1 si = (µx, µy) is the center of gravity of

the pattern.

4.3. Preprocessing

Prior to the feature extraction itself, we expose the pre-
processing operations applied on the input patterns. We
chose to normalize patterns in scale and translation, and
to apply a trajectory resampling strategy. These opera-
tions are simple to perform and guarantee a better sta-
bility of extracted features, for any type of input pattern.
Normalization of the pattern orientation is not desirable
in general, since sensitivity to orientation can be required
in some datasets where patterns from different classes are
identical up to a rotation.

Linear scaling and translation. An input pattern S is first
rescaled so that its maximal dimension is equal to a nor-
malized size. This rescaling is linear; hence produces no
deformation of the pattern proportions or shape. We chose
the normalized dimension as 128 in all our experiments.
The scaled pattern S ′ is translated so that the top-left
corner of its bounding box matches with the origin of axes.

Trajectory resampling. The sampled points of the input
pattern are unequally distributed along the trajectory, due
to variations in writing speed. Although this brings some
dynamic information about the drawing process, an in-
creased robustness of feature extraction is obtained by first
resampling the points. We chose to spatially resample the
points, so that the points on the resampled trajectory are
equidistant. The imposed distance between two points in
the resampled trajectory is fixed to 8, this value being re-
lated to the box dimension of 128.

4.4. Dynamic features

A first category of features included in HBF49 are the
dynamic features. They model the writing process, focus-
ing on how the pattern was accomplished by the writer,
by implicitly or explicitly describing the order of points in
S, the writing direction, the number and order of strokes,
and so on. We deliberately chose to exclude features based

on pressure (pressure variations, off-strokes measures) or
temporal information (speed, acceleration), because this
information is not always available (see [66] for a few ex-
amples). We retain in HBF49 a total of 14 dynamic fea-
tures, as described below.

Starting and ending points position. Positions of the first
and last points constitute important features for distin-
guishing patterns in many situations. For example, single
stroke gestures, digits or letters often present stable be-
ginning and ending points. We compute the coordinates
relatively to a virtual square box of side l = max(h,w),
centered on c = (cx, cy), so as to avoid noisy measures in
the case of objects with very small width or height. The
two features for the starting point are computed as follows:

f1 =
x1 − cx

l
+

1

2
, f2 =

y1 − cy
l

+
1

2
, (1)

and similarly for the ending point:

f3 =
xn − cx

l
+

1

2
, f4 =

yn − cy
l

+
1

2
. (2)

Similar features are also included in [66] (indexes 35-38)
and [15] (side ratios).

First point to last point vector. Related to the first set
of features, the vector v = −−→s1sn conveys additional infor-
mation about the pattern dynamics. The vector length
||v|| = ||s1sn||, as well as the cosine and the sine of its an-
gle with respect to horizontal line are measured (see figure
2(b)):

f5 = ||v||, f6 =
−→vx.−→ux
||v|| , f7 =

−→vy .−→uy
||v|| , (3)

with v = (vx, vy). In order to cope with instability of f6
and f7 angle measurement when f5 is small, we force their
values to zero when the distance f5 is below a minimal
distance empirically set to dmin = max(w, h)/4.

Closure permits to highlight differences between closed
pattern (such as loops, circles, ”0” or ”o” characters, poly-
gons) and patterns that are elongated (”l”, ”1”, ”

∫
”). It is

defined as:

f8 =
||v||
L
. (4)

References for features f5 to f8 are [11](4,5,6), [66] (59 and
6) and [15].

Angle of initial vector. The initial vector is defined by
the first points of the trajectory. In our implementation,
and after spatial resampling of the pattern, we actually
consider the vector between the first and the third point:
w = −−→s1s3, as soon as the first stroke has 3 points or more.
The initial angle is described by the cosine and sine mea-
sures (see figure 2(b)):

f9 =
−→wx.−→ux
||w|| , f10 =

−→wy.−→uy
||w|| . (5)
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Figure 2: Representation of definitions and notations, and definitions of several online features.

Since we consider temporally close points from a spatially
resampled signal, it is guaranteed that the distance ||w||
cannot be too small, so stability of these features is in-
sured. Similar features are used in [11] (1,2) and [66]
(55,56).

Inflexions. Two inflexion features are measured from the
positioning of the middle-path point sm with respect to the
middle point of segment s1sn, so as to distinguish between
cups oriented in different directions (e.g. ”u”-shaped and
”n”-shaped patterns) (see figure 2(b)):

f11 =
1

w

(
xm −

x1 + xn
2

)
, f12 =

1

h

(
ym −

y1 + yn
2

)
.

(6)
These simple features are preferred to explicit cups fea-
tures that involve more complex cup detection algorithm
as in [66](32-34).

Proportion of downstrokes trajectory. As established by
Anquetil and Lorette [67], downstrokes (portions of draw-
ing trajectories oriented towards the bottom of the writing
surface, i.e. oriented towards increasing values in dimen-
sion y) are especially important in the perception of hand-
writing. Since the number of downstrokes might be vari-
able and not pertinent for multi-strokes gestures, we chose
to extract the proportion of trajectory length covered by
the downstrokes. This single feature is computed as:

f13 =

p∑
k=1

Lki,kj (7)

with p the number of downstrokes. A trajectory T =
{ski ..skj} is a downstroke if the following conditions are
satisfied:

• T is included in a single stroke,

• D =
∑kj−1
k=ki

max(0, yk+1 − yk), the cumulative down-
ward distance is superior than a threshold T1,

• T contains no subsequence sp..sq such that the local

cumulative upward distance U =
∑q−1
k=pmax(0, yp − yp+1)

exceeds a threshold T2.

Downstrokes are represented in red in the example of figure
2(b). Considering the mapping of patterns to a normalized
box of maximal dimension 128, we found that satisfying
values for the thresholds are T1 = 2 and T2 = 5.

Number of strokes. The last feature depending on dynamic
information simply accounts for the number of strokes K
in the input pattern.

f14 = K (8)

The number of strokes (or number of pen-up points) is of
great importance for many cases. Actually, it always is
(except for single stroke datasets) a good indication of the
pattern graphic complexity. While the number of strokes
per sample participates in the individual writing style and
can greatly vary from a writer to another, in average peo-
ple obviously tend to use more strokes for more complex
drawings. Some symbols also require to be drawn in sev-
eral strokes (for example the ”+”or ”=”mathematical sym-
bols). This feature has been used in [66](44) and in [15].

Contrarily to the works of Willems et al. [10], we de-
cide not to include any local or stroke-level online features,
because we want to maintain a small number of features.

4.5. Visual features

The second type of features are visual features, in the
sense that they do not depend on the writing process,
but focus on the appearance of the writing result. Since
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visual features are not affected by changes in stroke or-
der or writing direction, they insure an increased robust-
ness for patterns that look the same, no matter how they
are drawn. This information is of particular importance
for recognition of complex or structured symbols, with no
standard writing process, and for writer-independent con-
texts. Moreover, some patterns can only be recognized
with visual descriptors, when their identification is based
on their Gestalt (e.g. recognizing a scratch-out or a he-
lix gesture may require visual features). Over-tracing, or
unexpected connection between strokes are also easier to
handle with this type of features [9]. In essence, the role
of visual features in HBF49 is to cover the description of
aspects exploited by the image-based methods identified in
the literature review (see section 2).

In addition to the dynamic/visual complementarity, it
is useful to keep in HBF49 features that have different
sensitivity to the orientation of patterns. Whereas in some
datasets orientation should be considered as a discriminat-
ing factor between classes, in other cases orientation-free
representation is better suited. Across the families of vi-
sual features enumerated in this section, we will explicitly
mention the ones that are independent to the orientation
of the pattern.

Bounding box diagonal angle. We measure the box diago-
nal angle with respect to the horizontal (see also [11](4)):

f15 = arctan
h

w
. (9)

Trajectory length. The trajectory length is an orientation-
independent feature also included in [66](1), [11](8) and
[15]:

f16 = L. (10)

A related feature is the ratio between the half-perimeter
of the bounding box and the trajectory length:

f17 =
w + h

L
. (11)

This feature can characterize graphical complexity of ges-
tures, e.g. differentiate between a spiral and a simple circle
having the same bounding box.

Deviation. This orientation-independent feature evaluates
the average distance from points of S to the center of grav-
ity µ (see [66](68)):

f18 =
1

n

n∑
i=1

||siµ||. (12)

Average direction. A first directional feature is computed
by averaging the directions of segments defined in the tra-
jectory of S (see also [66](12)):

f19 =
1

n− 1

n−1∑
i=1

arctan

(
yi+1 − yi
xi+1 − xi

)
. (13)

Note that this measure does not depend on the writing
direction.

Curvature and perpendicularity. These two orientation-independent
features compute the summation of local curvature and
perpendicularity measure between subsequent segments of
S (see [66](8,13), [11](9)). We denote θi the angle defined
by consecutive segments within the same stroke:

θi = arccos

{ −−−→si−1si.
−−−→sisi+1

||−−−→si−1si||||−−−→sisi+1||

}
. (14)

The curvature and perpendicularity are defined as:

f20 =

n−1∑
i=2

θi, f21 =

n−1∑
i=2

sin2(θi). (15)

The curvature of a straight line is null, while curved shapes
have high curvatures. Perpendicularity feature can detect
abrupt changes of direction in the trajectory, e.g. right-
angle corners of polygons.

k-perpendicularity, k-angle. Two additional orientation-independent
angular features are defined from a parameter k that de-
termines another measure of local angles θki :

θki = arccos

{ −−−−→si−ksi.
−−−→sisi+k

||−−−−→si−ksi||||−−−→sisi+k||

}
, (16)

where si−k, si and si+k have to belong to the same stroke.
From the angles θki , we compute the k-perpendicularity
and the maximum k-angle:

f22 =

n−k∑
i=k+1

sin2(θki ), f23 =
n−k
max
i=1+k

θki . (17)

Given the chosen pattern dimension normalization and
spatial resampling distance, fixing k to 2 yields a good def-
inition for these features. Similar measures are proposed
in [66](64,21).

Absolute angle histogram. Additionally to average direc-
tion (feature f19), we measure an angle histogram that
provides four features accounting for the number of seg-
ments oriented in eight directional bins. For each segment
the orientation is given by:

αi = ∠(−−−→sisi+1, ~ux). (18)

From the eight histogram bins (h1 to h8) defined by eight
directions, each angle αi lies between two consecutive bins
h1 (of direction ~v1) and h2 (of direction ~v2). We propose a
fuzzy quantization of angles to the histogram bins, i.e. an
angle contributes to two bins with distinct degrees (con-
trarily to direct quantization proposed by Laviola, where
only the best bin is considered [15]). Suppose that αi is
closer to ~v1 than ~v2, then it contributes to h1 and h2 with
weights w1 and w2:

w1 = 1− ∠(−→uαi
, ~v1)

π/4
, w2 = 1− w1, (19)
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where uαi is the unit vector oriented by αi. Finally, the
four features f24 to f27 are computed as the sum of con-
tributions from all angles αi to opposite directional bins,
in order to guarantee independence with respect to the
direction of writing:

f24 =
h1 + h5
na

, .. f27 =
h4 + h8
na

, (20)

with na the number of segments in S (na = n−K, with K
the number of strokes). These features provide a richer de-
scription of the pattern trajectory dominant orientations.

Relative angle histogram. Another directional histogram
accounts for local changes of direction, as a complement
to the average curvature and (k-)perpendicularity features.
It is independent from the symbol orientation. First, we
find that relative local angles benefit from smoothing by
linear combination of θi and θki (see definitions in equations
14 and 16:

ψki = γθi + (1− γ)θki , (21)

where we empirically set γ = 0.25 and k = 2. The contri-
butions of ψki angles are cumulated in four histogram bins
uniformly distributed in [0, π]. Like for histogram of abso-
lute orientations, contributions to the histogram of relative
orientations are weighted by the inverse of their angular
distance with the central direction of the two neighbor-
ing bins. Four features f28 to f31 are obtained from the
histogram divided by na.

2D histogram. We define a regular 3x3 2D partition of
the bounding box B, providing a global description of
the points repartition by 9 zoning features [68]. Like for
other histograms, we compute a fuzzy weighted contribu-
tion from each point to its 4 neighboring cells, where the
weights depend on the distance from the point to the cell
centers [69]. Figure 3(a) represents the partition defined
over the bounding box of a sample pattern, with the cell
centers ci,j . With this definition, a point s (in red) con-
tributes to four neighboring cells with degrees µ12, µ13, µ22

and µ23. Features f32 to f40 describe the accumulated con-
tribution of the points of S to the nine cells, divided by n:

f32 =
1

n

n∑
i=1

µ11(si) .. f40 =
1

n

n∑
i=1

µ33(s) (22)

These features were not included in the large NicIcon fea-
ture set [66], but we believe that they provide a precious
information about the global visual aspect of S. Laviola
and Zeleznik exploited similar features [15].

Hu moments. Hu moments are a set of seven features com-
puted from inertia moments and presenting invariance to
deformations such as rotation, scale, and translation [70].
First, inertia central moments are computed:

mpq =

n∑
i=1

(xi − µx)p(yi − µy)q, for 0 ≤ p, q ≤ 3 (23)
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Figure 3: Representation of offline features definitions.

where µ = (µx, µy) is the center of gravity of S. The
moments are then normalized, for guaranteeing scale in-
dependence:

νpq =
mpq

mγ
00

, with γ = 1 +
p+ q

2
. (24)

The seven Hu moments, orientation-independent by con-
struction, are finally computed as described in [70]:

f41 = ν02 + ν20

f42 = (ν20 − ν02)2 + 4ν211

f43 = (ν30 − 3ν12)2 + (3ν21 − ν03)2

f44 = (ν30 + ν12)2 + (ν21 + ν03)2

f45 = (ν30 − 3ν12)2(ν30 + ν12)

[(ν30 + ν12)2 − 3(ν21 + ν03)2]

+ (3ν21 − ν03)(ν21 + ν03)

[3(ν30 + ν12)2 − (ν21 + ν03)2]

f46 = (ν20 − ν02)[(ν30 + ν12)2 − (ν21 + ν03)2]

+ 4ν11(ν30 + ν12)(ν21 + ν03)

f47 = (3ν21 − ν03)(ν30 + ν12)

[(ν30 + ν12)2 − 3(ν21 + ν03)2]

− (ν30 − 3ν12)(ν21 + ν03)

[3(ν30 + ν12)2 − (ν21 + ν03)2].

Whereas the set of Hu moments is not popular for sym-
bol representation, we integrate it in HBF49 because it is
a good visual descriptor with low dimensionality and pow-
erful invariance properties. Its definition in the domain
of geometrical moments also makes it complementary to
visual features such as histograms of angles or zoning.

Convex hull features. The last set of features captures
more precisely the geometry of the pattern by consider-
ing its convex hull. The convex hull H of S is computed
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with the Graham algorithm (see [71]). Figure 3(b) repre-
sents a pattern with its convex hull. If H = v1..vp, with
vi = (vi,x, vi,y) denote its ordered vertices, its area AH is
easily computed as:

AH =
1

2

∣∣∣∣∣
p−1∑
i=1

(vi,x ∗ vi+1,y − vi+1,x ∗ vi,y)

∣∣∣∣∣ . (25)

The two related features are the convex hull area normal-
ized by the bounding box area, and the compactness (as
defined in [66](2,3)), which is orientation-independent:

f48 =
AH
w ∗ h, f49 =

L2

AH
. (26)

5. Experiments

We conducted experimental evaluation of the HBF49
pattern representation over the datasets presented in sec-
tion 3. In this section, we first explain our experimental
protocol in details for easy reproducibility. The results are
then presented and compared with other results reported
in the literature. The first objective of these experiments
is to verify the answer to our initial question: we want to
show that a simple set of features, with limited size, in as-
sociation with a standard classification method, can reach
satisfying results for recognition of many different sets of
symbols. Consequently, we conform to a strictly identi-
cal protocol in all experiments, by utilizing the HBF49
features, with no tuning, optimization, or selection of fea-
tures whatsoever. The second objective of this section is
to exemplify the interest of HBF49 as a baseline method
for evaluating symbol recognition systems by running com-
parative experiments.

5.1. Experimental protocol

A simple common protocol is employed in the experi-
ments. All the datasets were extracted in the same con-
ditions, with no parameter adaptation in any of the pre-
processing or feature extraction steps. The resulting sets
of features are made publicly available on a dedicated web
page 1, where the Weka Arff format [25] is used to store
the extracted features. Scripting tools are also provided
for an easy reproduction of our experiments.

5.1.1. Classifiers

As standard benchmarking classification systems, we
chose 1-Nearest-Neighbor (NN) and Support Vector Ma-
chine (SVM) classifiers. We make use of the LIBSVM [72]
implementation library for the SVM classifiers. Weka and
LIBSVM are freely available tools that permit to fully re-
produce all the experiments presented. The 1NN classifier
has no parameters; it simply uses the Euclidian distance

1http://www.irisa.fr/intuidoc/HBF49.html

in the feature space to classify a test sample with the la-
bel of its closest prototype (where all training samples are
kept as prototypes). For the SVM classifier, we chose to
use a Gaussian kernel with fixed parameters that appeared
to provide good results: gamma parameter is set to 10−2

and the slack variable C is set to 102. We decide not to
optimize these parameters, since this operation is dataset-
dependent.

5.1.2. Data partitioning

Since information about the writer identity is not al-
ways available (see section 3), we adopt different exper-
imental settings on the datasets. For HHReco, Sign,
CVCsymb and LaViola, a Writer-Independent (WI) Cross-
Validation (CV) scheme is adopted, where each CV fold
contains the data from one writer. The global WI recogni-
tion rate is then averaged from k CV experiments, where
k is the number of writers. On LaViola, a predefined
Train/Evaluation (T/E) partition is available on the data
of each writer, and we use it for Writer-Dependent (WD)
performance evaluation. On HHReco, Sign and CVC-
symb, we run a 10-CV on the data from each writer and
then average the performance over all the writers.

For datasets ImiSketchS and Ironoff-digits, we pro-
ceed respectively to a 5-CV (as suggested by the dataset
partitioning) and a 10-CV experiments for WI performance,
while WD tests are not feasible. Since no data partitioning
is suggested by the authors of the database, we use a Strat-
ified Random Cross-Validation strategy for generating all
the CV folds.

For NicIcon, a partition of the samples is determined
for both WD and WI settings. Since no optimization needs
to be performed, we use both training and test sets for
training the classifiers and the evaluation set for measuring
the recognition performance (T+V/E).

The ILG dataset is exploited only in WD setting: we
use the 3 first samples of each class as the training data
(they correspond to the samples asked to the user at the
initialization of the application in the collect process) and
remaining samples for test. For each of the 28 experiments
(one per writer), 21 classes are in competition, but these
classes vary from a writer to another.

5.2. Baseline results

We first present the results obtained with the HBF49
set of features on the 8 datasets, following the protocols
exposed in the previous paragraph. Table 2 summarizes
the recognition rates obtained for each experiment.

The obtained recognition performance first validates
the ability of HBF49 to properly handle objects of differ-
ent nature and datasets of diverse difficulty in both WD
and WI settings. Having a recognition rate above 85% for
all the experiments with the simple NN classifier demon-
strates a consistent behavior of the feature set over highly
different application contexts. This illustrates the univer-
sality of HBF49 and offers solid guarantees of its abil-
ity to deal with other datasets in the future. Note that
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Table 2: recognition rates obtained with HBF49 feature set, on the
8 datasets, in both WD and WI modes. For each dataset, the number
of classes is recalled (see table 1).

Dataset #cl exp NN SVM
Ironoff-digits 10 WI 10-CV 97.01 98.07

LaViola 48 WI-CV 91.40 93.64
WD T/E 92.09 93.41

CVCsymb 25 WI-CV 89.50 96.58
WD 10-CV 98.34 99.46

ImiSketchS 10 WI 5-CV 86.83 94.39
HHReco 13 WI-CV 86.26 92.55

WD 10-CV 99.73 99.74
NicIcon 14 WI T+V/E 94.55 97.44

WD T+V/E 98.87 99.30
Sign 17 WI-CV 99.09 99.56

WD 10-CV 99.53 99.65
ILG 21 WD 93.38 93.54

whereas HBF49 contains several rotation-sensitive fea-
tures and no particular normalization is applied on these
datasets, the recognition rates are still high for HHReco
and ImiSketchS, where symbols from the same class can
have a different orientation. Obviously, introduction of
more orientation-independent features, or a specific nor-
malization method can significantly improve these results,
but the baseline method performs reasonably well even
with this type of difficulty.

In accordance to what can be expected, the SVM clas-
sifier offers enhanced performance for all the experiments.
With this classifier, HBF49 representation is particularly
efficient with the datasets NicIcon (multi-stroke gestures),
Ironoff-digits (digits), Sign (single stroke gestures), and
CVCsymb (multi-strokes symbols), with recognition rates
above 96% and as high as 99.5%. WD settings generally
lead to higher results in comparison with WI experiments,
showing that the HBF49 representation efficiently cap-
tures individual writing styles. For the LaViola dataset,
where WI surprisingly performs better, we suspect that the
high number of classes make it harder for the SVM classi-
fier to generalize from a small training database (as in WD
mode) than from a larger database (as in WI mode). In
WD experiment on datasets CVCsymb, HHReco, NicI-
con and Sign, recognition rates are extremely accurate
(from 99.30% to 99.74%).

The datasets Sign and ImiSketchS were introduced
quite recently, and our experiments establish a new base-
line performance for future comparisons. Performance on
ImiSketchS can be significantly improved by applying a
rotation normalization as a pre-processing (for example
by rotation the patterns based on their minimal bounding
rectangle). The Sign database does not present difficulty
for recognition methods, but it would be interesting to try
reducing the number of features. A more compact rep-
resentation is indeed desirable for building systems that
can evolve to match the user needs and preferences [23].
For CVCsymb, to our knowledge no other results were
reported on this classification task.

Table 3: Comparisons on Ironoff-digits. 1NN = Nearest Neigh-
bor; FIS = Fuzzy Inference System; MLP = MultiLayer Perceptron;
TDNN = Time-Delay Neural Network

System protocol %
[57] 480 star features, 1NN WI 3-CV 93.5
[56] 43 features, FIS WI 0.5/0.5 95.6

43 features, SVM WI 0.5/0.5 95.5
[58] Dynamic Time Warping, 1NN n.a. 97.94
[47] 350 time-based features, MLP n.a. 98.2

350 time-based features, TDNN 98.4
350 time-based features, SVM 98.83

49 features HBF49, NN WI 10-CV 97.01
49 features HBF49, SVM WI 10-CV 98.07

On the peculiar ILG dataset, our WD experiment leads
to a recognition rate of 93.54% (with SVM). In this case
where patterns only consist of single stroke gestures, a
trajectory-based method such as Dynamic Time Warp-
ing may give better results. However, this experiment
demonstrates that the representation offered by HBF49
is quite efficient even for unpredictable patterns such as
these user-defined gestures. Of course, the reduced num-
ber of training samples is also a strong limit to the classifier
performance, and it is not surprising that the NN classi-
fier, that involves no training step, performs comparably
well. This is the first recognition performance reported on
this dataset.

5.3. Comparative results

In this section, we confront our baseline method with
other systems based on results reported in the literature
on the four datasets Ironoff-digits, LaViola, HHReco
and NicIcon. The comparison not only involves the over-
all performance of the systems, but also the systems com-
plexity (number of features, combination of classifiers. . . ).
The first objective is to attest the goodness of baseline
results reported in table 2, in comparison with state-of-
the-art results. The second objective is to demonstrate the
interest of the HBF49 baseline representation for evaluat-
ing the interest of sometimes complex symbol recognition
methods. Since it is often difficult to reproduce experi-
ments from the literature so as to directly compare the
performance of feature sets, this study merely compares
our method as a complete recognition system (HBF49
representation combined with a SVM or NN classifier) to
results reported by other authors. This is one of the fore-
seen usages of the HBF49 baseline, and it permits to eval-
uate the interest of any type of systems, feature-based or
not.

5.3.1. Ironoff-digits

The table 3 presents results reported with the Ironoff-
digits dataset, in a Writer-Independent context.

It shows that the baseline HBF49 performance is com-
parable or better than most approaches. The best found
reference, from the works of Ahmad et al. [47], with a
recognition rate of 98.83%, is significantly higher than
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Table 4: Comparisons on LaViola dataset. MSFT = Microsoft
Classifier; T = predefined training set; E = predefined Evaluation
set

System protocol %
[15] 47 hybrid features, Adaboost T/E WD 93.0

86 features (47f + MSFT), Adaboost 94.6
86 features, Adaboost + MSFT pruning 94.6

[41] Freeman chaincodes, 1NN T/E WD 92.1
Reduced Freeman chaincodes, 1NN 92.0

[29] Chebyshev coef 11th order, SVM T/E WD 92.9
180 features (sampling 30 points), SVM 94.5
66 features (sampling 11 points), SVM 93.5

49 features HBF49, NN T/E WD 92.09
49 features HBF49, SVM T/E WD 93.41

Table 5: Comparisons on HHReco dataset. IDM = Image Defor-
mation Model.

System protocol %
[8] Zernike moments 10th order, SVM WI-CV 96.7
[9] image templates, IDM distance WI-CV 98.2

image templates, IDM (no rotation) 95.2
[32] visual parts WI-CV 94.4

49 features HBF49, NN WI-CV 86.26
49 features HBF49, SVM WI-CV 92.55

[8] Zernike moments 10th order, SVM WD 10-CV 97.3
49 features HBF49, NN WD 10-CV 99.73

49 features HBF49, SVM WD 10-CV 99.74

HBF49, but with 7 times more features. The HBF49
performance is slightly higher than DTW result reported
by [58], and significantly outperforms the two methods of
Ragot and Anquetil [56]. The interest of high-dimensional
star feature set introduced by Dinesh and Sridhar [57]
is questionable when its performance is compared to our
baseline result with NN classifier.

5.3.2. LaViola

Results about LaViola dataset, only available for the
Writer-Dependent mode, are presented in table 4.

In all the reported experiments, the same data parti-
tioning is adopted (following the partition suggested by
the authors), insuring a perfect comparability of the per-
formances. HBF49 performs comparably with several
of other methods, better than trajectory-based methods
from Simistra et al. [41], and better than the Cheby-
shev features introduced in [29]. The baseline result with
SVM classifier is only outperformed by a large set of 180
trajectory-based features [29], and by Laviola’s systems
with 86 features [15], that includes the Microsoft gesture
Recognizer as a weak classifier in the Adaboost system.

5.3.3. HHReco

For the HHReco dataset, most of the methods only
focus on the WI mode (see table 5).

With this experimental settings, the HBF49 perfor-
mance is significantly lower than competitors, because no

Table 6: Comparisons on WI/WD tests with NicIcon dataset. T
= Training set; V = Validation set; E = Evaluation set. 1NN =
Nearest Neighbor; HMM = Hidden Markov Models; MCS = Multiple
Classifier System.

System protocol %
[14] HMM WI T/E 58.8

Zernike moments features, SVM 70.3
Combination HMM+SVM 83.1

[69] Blurred Shape Models (offline) WI 90.62
[63] DTW WI T/E 93.6

28 global features, SVM 73
30 trajectory-based features, SVM 90.30
60 trajectory-based features, SVM 88.62
545 selected features (mfsI), SVM 96.43

MCS (4 SVM, 4 MLP, DTW) 97.83
[20] 257 visual features, 1NN subset 96

49 features HBF49, NN WI T+V/E 94.55
49 features HBF49, SVM WI T+V/E 97.44

[69] Blurred Shape Models (offline) WD T/E 94.38
[63] DTW WD T/E 98.41

660 selected features (mfsD), SVM 99.25
MCS (4 SVM, 4 MLP, DTW) 99.51

49 features HBF49, NN WD T+V/E 98.87
49 features HBF49, SVM WD T+V/E 99.30

specific treatment is performed for insuring orientation-
independence. Actually, we noticed that in HHReco, the
rotation variations are a mark of individual user style: for
example one writer may draw his triangles pointing down
while all others draw triangles that point up. This make
the rotation variations very hard to handle in a WI con-
text, since sometimes the rotation of samples from the
testing set is completely different from all cases seen in
the training set. The method of Ouyang and Davis [9] al-
leviates this problem by augmenting the training database
with rotated versions of the training samples, and reaches a
high performance of 98.2%. Without this treatment, their
performance drops to 95.2%. In the works of Hse and
Newton [8], only rotation-invariant features are utilized
(Zernike moments), leading to a performance of 96.7%.

The results obtained on WD mode confirm that HBF49
is perfectly able to handle the symbols from this dataset:
a 99.74% accuracy rate is obtained, which is significantly
higher than the performance obtained with rotation-invariant
features from Hse’s work.

5.3.4. NicIcon

Many methods have been proposed for recognizing sym-
bols from the NicIcon dataset (see table 6).

In WI mode, the HBF49 representation provides the
second highest recognition rate found in the literature,
only outperformed by a Multiple Classifier System (MCS)
that combines 9 classifiers: 4 SVM classifiers with different
features sets (respectively 28, 30, 60, and 550 features), 4
MLP classifiers with the same feature sets, and a DTW
classifier. Results from [14] show that HMM is not a
good representation for multi-strokes gestures of NicIcon.
Strictly visual approaches, like the Zernike-based method
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from [14] or the method of Almazan et al. [69] perform
quite poorly as well. In the works of Tumen et al. [20],
different types of features are also combined (Zernike mo-
ments, Image Deformation Model features, Shape Context
features, Extended Trace Transform features) but no dy-
namic features are included, and optimal selection of 257
features leads to a recognition rate of about 96% (on a
reduced dataset).

The rich set of 545 heterogeneous features proposed by
the authors of the database performs well [63]. However,
the significantly higher performance of HBF49 permits
to be doubtful about the interest of multiplying stroke-
level features for representing multi-stroke gestures. In
HBF49, the introduction of several global visual features
(like zoning features and Hu moments features) seem to
provide an important information that is not compensated
by hundreds of stroke-level features. Likewise, the inter-
est of combining classifiers such as HMM and SVM with
Zernike features for mixing visual and dynamic informa-
tion is clearly not established by the results from Arand-
jelovic et al. [14].

For the WD mode, fewer results are found in the liter-
ature. The strictly visual approach presented in [69] per-
forms significantly lower than other methods, illustrating
the importance of dynamic information for WD symbol
recognition. This is confirmed by the high recognition
rate reached by a DTW-based classifier [63]. Similarly to
results in WI mode, the HBF49 approach performs bet-
ter than an optimized, high-dimensional feature set from
[63]. Only the heavy MCS system presents a better per-
formance, of 99.51%.

5.3.5. Synthesis

We have compared in this section the performance of
HBF49 (in combination with off-the-shelf SVM and NN
classifiers) with state-of-the-art results reported in the lit-
erature over 4 datasets, including a total of 35 symbol
recognition results from 14 references (all published be-
tween 2002 and 2011). Among the 35 comparisons, in 22
cases our method with SVM classifier performs better than
the results reported from the literature. In one experimen-
tal setup (HHReco in WD), our method outperforms the
best result reported in the literature, and in most cases
our result is very close to the best reported ones, while
our system is often much more simpler than competitors
(in number of features or classifier complexity).

This not only proves that HBF49 is an efficient base-
line for evaluating new systems, but also demonstrates the
interest of our constructive approach for universal feature
set design. Indeed, we would like to emphasize that our
universal feature set competes with systems that were de-
signed, tuned and optimized for the recognition of specific
datasets. For example, on the NicIcon dataset, HBF49
outperforms most systems from [63] that have been opti-
mized specifically on this dataset (in particular by employ-
ing feature selection). This proves that a careful construc-
tive approach can yield a better description than selective

approaches.

6. Conclusion

In this paper, we have introduced a new set of simple
features, chosen from different categories of features so as
to constitute a reproducible baseline experiment for eval-
uation of future handwritten symbol or gesture recogni-
tion methods. HBF49 was constructed based on empirical
choices and careful data observation, with the constraint
of maintaining a low dimensionality. Despite its simplicity
and compactness, it performs very well on many bench-
marking datasets, showing its ability to deal with many
application contexts and its robustness with respect to pat-
terns of diverse nature. Performance comparable or better
than state-of-the-art is obtained with standard classifiers
in several configurations with publicly available datasets.
First landmarks are also established on several recently
introduced datasets. It is expected that HBF49 can be
utilized by researchers as a benchmarking experiment for
better highlighting their contributions to the field of hand-
drawn pattern recognition. Transparency of our approach,
details of the features extraction design, and presentation
of our simple experimental protocol are aimed towards an
easy exploitation of our work for this matter.

Additionally to baseline experiments, we believe that
HBF49, designed as a generic representation of symbols,
without consideration of drawing constraints or domain
specificities, can serve as a basis for designing universal
systems. As future user-centered interaction systems will
offer more flexibility and give more liberty to the final user
(ability to choose his personal gestures and customize the
system), the recognition methods will have to be exten-
sible and to deal with new unpredictable symbols. With
its experimentally validated flexibility and its reasonably
reduced size, HBF49 is a good initial guess for designing
symbol recognition systems of our near future.
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