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Executive summary

Hybrid systems modelers exhibit a number of difficulties related to the mix of continuous and discrete dynamics
and sensitivity to the discretization scheme. Modular modeling, where subsystems models can be simply
assembled with no rework, calls for using Differential Algebraic Equations (DAE). In turn, DAE are strictly more
difficult than ODE. They require sophisticated pre-processing using various notions of index before they can be
submitted to a solver.

In this report we study some fundamental issues raised by the modeling and simulation of hybrid systems
involving DAEs. The objective of this work is to serve for the evolution and the design of future releases of the
Modelica language for such systems. We focus on the following questions:

e What is the proper notion of index for a hybrid DAE system?
e What are the primitive statements needed for a DAE hybrid systems modeler?

The differentiation index for DAE explicitly relies on everything being differentiable. Therefore, generalizations to
hybrid systems must be done with caution. We propose relying on non-standard analysis for this. Non-standard
analysis formalizes differential equations as discrete step transition systems with infinitesimal time basis. We can
thus bring hybrid DAE systems to their nonstandard form, where the notion of difference index can be firmly used.

From this study, general hints for future releases of Modelica can be drawn.

Accessibility : PUBLIC




D.4.1.1

INAN D Rlo MODRIO (ITEA 2 — 11004)

Summary

Task description: Provides the formal definition and semantics of multi-mode DAE systems.
The first version of this deliverable is the basis for the prototypes in WP4.2. The second

version is an improved form taking into account the experience with the prototypes. ................ 1
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1.

Introduction

Modern hybrid systems modelers aim at adressing systems involving:

Nonsmooth dynamics with bilateral (equality) and unilateral (inequality) constraints, thus giving
raise to systems with multiple modes of operation—depending on which inequality constraint
is active;

Differential Algebraic Equations (DAE), which requires supporting index reduction techniques;
The handling of multiple modes with its associated mode switching and their use in
synchronizing different sub-systems---for instance, the switching from free to contact motion in
multi-body dynamics causing a change in the control law.

1.1. Issues raised by hybrid systems modelers

Existing modelers can exhibit, for some (non pathological) examples spurious behaviors, such as:

Unwanted coupling between otherwise noninteracting subsystems;

Simulation results that are highly nonrobust, depending on the discretization scheme,
configuration, or even parameter values used;

Wrong scheduling of reset operations at mode changes.

1.2. Some difficult examples from the physics

The above pictures shows three samples of systems that are difficult for modelers. The first hit in
American billiard game exhibits a cascade of shocks whose outcome is highly unpredictable and thus
difficult to simulate. The same holds for the circuit breaker. The ABS system for brakes operates with
an on-and-off mode with very fast dynamics and is an instance of so-called sliding mode control. All
these examples are difficult in that they exhibit a dense cascade of events. This cascade may be finite
(e.g., the first two examples) or possess a positive duration (e.g., the ABS system). Events generally
cause ODE/DAE solvers to stop for reset operations. For some classes of systems, however, stopping
is not required as we show in the next section.
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1.3. Nonsmooth Systems

Such systems arise in multi-body mechanics or analog circuits involving ideal diods. The simplest
instance of this class is the Moreau Sweeping Process, shown on the next figure.

The figure shows a rectangular table---from above---carrying two configurations of a two-body system
comprising a white, convex cavity that contains an unimpeded black ball. The cavity can freely move
and change its shape, whereas the ball only moves in response to the forces at the boundary of the
cavity. In the configuration at left, the ball is not moving since it is not touching the cavity boundary. In
the configuration at right, however, the ball is subject to contact forces normal to the boundary that
keep it within the cavity. A near-Zeno situation occurs when the ball approaches the corner of the
cavity. Moreau's Sweeping Processes are global discretization schemes that ignore mode change
events, as when the ball hits or leaves the boundary. Variations on the basic scheme have recently
been developed by V. Acary and colleagues® for the modeling of hair.

\ \

4--\
N \\\\1\\
The principles behind these schemes can be explained with reference to the above figure. Suppose
the system starts in an initial state where the ball is strictly inside the cavity and thus motionless. Now,
if a step occurs in which the cavity moves, there are two possible cases. In the first, the ball is still
inside the cavity and thus the step is complete. In the second, the ball would now be outside the
cavity; a situation which must be corrected by projecting the ball on the cavity. Events of hitting are not
computed by this scheme. It may be that the “exact trajectory” hits or leaves the boundary several

times during the discretization step. Still, it can be proved that this scheme converges to a unique
trajectory, for this two-body system, provided the cavity moves smoothly enough.

1.4. Objectives of this work

A number of reasons explain the artifacts mentioned in Section 1.1. We believe, however, that the
main reasons for these troubles are the following:

e Lack of a fine typing discrete-time/continuous-time for signals and subsystems;

! http://bipop.inrialpes.fr/people/acary/
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e Lack of precise causality analysis and synthesis, resulting in a weak mastering of the possible
scheduling for the different discrete operations handled by the modeler (detecting mode
changes and handling resets);

e Use of a single, centralized, solver for ODEs and DAEs, thus resulting in unwanted coupling
between the different time-scales and bandwidths of the subsystems.

In this work we aim at addressing the above issues. We also advocate the technique of slicing, in
which the simulation engine is structured as a set of off-the-shelf solvers for continuous-time
dynamics, coordinated in discrete-time by a synchronous language engine. In our previous work
restricted to hybrid systems that are input/output functions involving only ODEs, slicing relied on a
typing continuous/discrete for the variables and modules, and the hand was given to the synchronous
discrete engine each time an event was created by some zero-crossing. Since some advanced
solvers for nonsmooth systems are able to jump over such events without stopping, see Section 1.3,
the above mentioned typing discrete/continuous must be revisited for using the latest technology for
DAE solvers. We provide first hints for this.

2. The full document is attached

The extended document is attached in the coming pages.
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Abstract—Hybrid systems modelers exhibit a number of diffi-
culties related to the mix of continuous and discrete dynamics and
sensitivity to the discretization scheme. Modular modeling, where
subsystems models can be simply assembled with no rework, calls
for using Differential Algebraic Equations (DAE). In turn, DAE
are strictly more difficult than ODE.! They require sophisticated
pre-processing using various notions of index before they can be
submitted to a solver.

In this report we study some fundamental issues raised by the
modeling and simulation of hybrid systems involving DAEs. The
objective of this work is to serve for the evolution and the design
of future releases of the Modelica language for such systems. We
focus on the following questions:

« What is the proper notion of index for a hybrid DAE system?

« What are the primitive statements needed for a DAE hybrid

systems modeler?

The differentiation index for DAE explicitly relies on everything
being differentiable. Therefore, generalizations to hybrid systems
must be done with caution. We propose relying on non-standard
analysis for this. Non-standard analysis formalizes differential
equations as discrete step transition systems with infinitesimal
time basis. We can thus bring hybrid DAE systems to their non-
standard form, where the notion of difference index can be firmly
used.

From this study, general hints for future releases of Modelica
can be drawn.”
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I. INTRODUCTION

Modern hybrid systems modelers aim at adressing systems

involving:

1) Nonsmooth dynamics with bilateral (equality) and uni-
lateral (inequality) constraints, thus giving raise to sys-
tems with multiple modes of operation—depending on
which inequality constraint is active;

2) Differential Algebraic Equations (DAE), which requires
supporting index reduction techniques;

3) The handling of multiple modes with its associated mode
switching and their use in synchronizing different sub-
systems—for instance, the switching from free to contact
motion in multi-body dynamics causing a change in the
control law.

A. Issues raised by hybrid systems modelers

As illustrated in [2], [3], [6], existing modelers can exhibit,
for some (non pathological) examples spurious behaviors, such
as:

o Unwanted coupling between otherwise noninteracting

subsystems;

o Simulation results that are highly nonrobust, depending
on the discretization scheme, configuration, or even pa-
rameter values used;

o Wrong scheduling of reset operations at mode changes.

B. Some difficult examples from the physics

|
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Figure 1. Some difficult examples from the physics

Figure 1 shows three samples of systems that are difficult
for modelers. The first hit in american billiard game exhibits
a cascade of shocks whose outcome is highly unpredictable
and thus difficult to simulate. The same holds for the circuit
breaker. The ABS system for brakes operates with an on-
and-off mode with very fast dynamics and is an instance
of so-called sliding mode control. All these examples are
difficult in that they exhibit a dense cascade of events. This
cascade may be finite (e.g., the first two examples) or possess
a positive duration (e.g., the ABS system). Events generally
cause ODE/DAE solvers to stop for reset operations. For some
classes of systems, however, stopping is not required as we
show in the next section.

C. Nonsmooth Systems

In this section we briefly recall the class of so-called
nonsmooth systems arising, e.g., in multi-body mechanics or
analog circuits involving ideal diods.

The simplest instance of this class is the Moreau Sweeping
Process, shown on Figure 2. The figure shows a rectangular

%

Figure 2.  Moreau’s Sweeping Process [9], [1]. The red inward pointing
arrow indicates the normal contact force applied to the ball.

table—from above—carrying two configurations of a two-
body system comprising a white, convex cavity that contains
an unimpeded black ball. The cavity can freely move and
change its shape, whereas the ball only moves in response to
the forces at the boundary of the cavity. In the configuration at
left, the ball is not moving since it is not touching the cavity
boundary. In the configuration at right, however, the ball is
subject to contact forces normal to the boundary that keep
it within the cavity. A near-Zeno situation occurs when the
ball approaches the corner of the cavity. Moreau’s Sweeping
Processes [9], [1] are global discretization schemes that ignore
mode change events, as when the ball hits or leaves the
boundary. Variations on the basic scheme have recently been
developed by V. Acary and colleagues* for the modeling of
hair.
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Figure 3. Moreau’s Sweeping Process [9], [1]. Left: original position. Top
right: first case, shifting the cavity from dashed to solid. Bottom right: second
case, shifting the cavity from dashed to solid; projection is needed.

The principles behind these schemes can be explained with
reference to Figure 3. Suppose the system starts in an initial
state where the ball is strictly inside the cavity and thus
motionless. Now, if a step occurs in which the cavity moves,
there are two possible cases. In the first, the ball is still inside
the cavity and thus the step is complete. In the second, the ball
would now be outside the cavity; a situation which must be

“http://bipop.inrialpes.fr/people/acary/
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corrected by projecting the ball on the cavity. Events of hitting
are not computed by this scheme. It may be that the “exact
trajectory” hits or leaves the boundary several times during
the discretization step. Still, it can be proved [9], [1] that this
scheme converges to a unique trajectory, for this two-body
system, provided the cavity moves smoothly enough.

D. Objectives of this work

A number of reasons explain the artifacts mentioned in
Section I-A. We believe, however, that the main reasons for
these troubles are the following:

1) Lack of a fine typing discrete-time/continuous-time for
signals and subsystems;

2) Lack of precise causality analysis and synthesis, result-
ing in a weak mastering of the possible scheduling for
the different discrete operations handled by the modeler
(detecting mode changes and handling resets);

3) Use of a single, centralized, solver for ODEs and DAEs,
thus resulting in unwanted coupling between the differ-
ent time-scales and bandwidths of the subsystems.

In this work we aim at addressing the above issues 1-3.

We also advocate the technique of slicing, in which the
simulation engine is structured as a set of off-the-shelf solvers
for continuous-time dynamics, coordinated in discrete-time
by a synchronous language engine. In our previous work
restricted to hybrid systems that are input/output functions
involving only ODEs, slicing relied on a typing continu-
ous/discrete for the variables and modules, and the hand
was given to the synchronous discrete engine each time an
event was created by some zero-crossing [4]. Since some
advanced solvers for nonsmooth systems are able to jump
over such events without stopping, see Section I-C, the typing
discrete/continuous proposed in [3], [6] must be revisited for
using the latest technology for DAE solvers. We provide first
hints for this.

The paper is organized as follows. In Section II we recall the
background on the differentiation index and index reduction
for DAE. Difference index is the counterpart of differentiation
index, for discrete time difference Algebraic Equations (dAE);
this is developed in Section III. To properly study the notion
of index for hybrid DAE systems we map the problem to non-
standard analysis, for which we recall the basics in Section IV.
We revisit the notion of index using nonstandard analysis in
Section V. The central section of the paper is Section VI,
where we use our previous material to introduce the notion
of index for hybrid DAE systems. Practical considerations are
discussed in Section VII and an example is developed. Finally,
hints for future evolutions of Modelica (and any hybrid system
modeling language) are drawn in Section VIIL

II. BACKGROUND ON INDEX REDUCTION FOR DAE

The basic references are the works of Campbell and
Gear [11] and Mattson and Sodderlin [12]. Let R denote the
set of reals, Z the set of positive or negative integers, and N
the set of non-negative integers.

In this section we consider DAE problems of the following
form:®

F(z,4) = 0 (1)

where x takes its values in R™ and F' in R™. In the sequel,
F, and F); denote the partial derivatives of F' with respect to
the first and second variables of F', respectively.

Definition 1: [11] DAE (1) is solvable® in the connected
open set 2 C R?" if there are connected open sets A C R”
and Z C R and a function (¢,A) — ®(¢, \) such that:

1) ©(t,A\) = (t,®(t,N)) is a diffeomorphism of ZxA into

R7HL,

2) ®(t, ) is a solution of (1) for each value of .

3) (®(t, ), L0(t,\)) € Q for every A € A and t € T.

4) If x(t) is a solution of (1) such that (z(t), z(t)) € Q for

some t € Z, then it holds that x(t) = ®(¢, ) for some

A € A. A pair (t,z) is called consistent if x = ®(t,\)

holds for some A. |
Condition 2) expresses that A acts as a daemon solving the pos-
sible nondeterminism. Condition 4) expresses that A expresses
all the nondeterminism. Indeed, A\ parameterizes consistent
initial conditions, which, in turn, determine solutions of (1).

Systems with exogeneous inputs, of the form, e.g.:

F(z,z,u) = 0 ()

are used in control and when composing subsystems to form
larger systems. Systems of the form (2) are a specialization of
(1) by putting y = (x,u) and reformulating it as a DAE with
state y. Systems of the form (2) leave generally some freedom
on exogeneous u (subject to the constraints) when selecting
solution ®(¢, \).

A. The differentiation index

The differentiation index for DAE (1) is defined as follows.
The kth derivative array associated to (1) is:

F(x, )
G F(x, i) .
. =det Fp(v,7,w) = 0 3)
;t—kF(:E,x)
where w  =gef (:v(Q), - ,x(k“)) 4)

where we recall that %F(m, z) = Fy(x, &)t + Fi(x, )%, and
so on for higher degree derivatives. In (4) (1) = &, 2 =
#,203) = ... denote the successive derivatives of .

The reason for considering the kth derivative array equations
is the following. Adding %F (z,£) = 0 to the original
DAE adds new equations and new variables, namely some
components of z(?) involved in these new equations. As the
subsequent examples show, some of the new equations may
not bring fresh variables, but only reuse previous variables,

SWe may also consider F'(t,z,4&) = 0, but dependence on time ¢ can
always be removed by making ¢ an additional variable obeying ¢t = 1.
6The term used in [11] is geometrically solvable.



which they further constrain. In this case, hidden constraints
get revealed.

Following again [11], a value z is called consistent for (3)
if there exists (v, w) such that

Fi(z,v,w) = 0 5)

seen as an algebraic equation. Given a consistent value x for
(3), algebraic equation (5) will generally have a set of solutions
for (v, w).

Definition 2: Assume that DAE (1) is solvable. The differ-
entiation index of this DAE, denoted by vp, is the smallest
index k such that v is uniquely determined by the algebraic
equation (5) for any consistent value = for (3). O
That is, the map

x — Jw.F,,(z,v,w)=0 (6)

defines v as a deterministic function of x. Since (3) is equiv-
alent to the original DAE, (6) determines « and is, therefore,
sort of an ODE that can be solved for x.

Comment 1: [11] If the considered DAE is solvable, and
k>vp, then v gives the vector field defined by the solutions
on the manifold formed by the solutions. (I

Comment 2: Computing the differentiation index is, strictly
speaking, a numerical problem. It becomes a structural prob-
lem, however, if we wish to compute the structural differen-
tiation index, that is, the essential minimum (minimum up
to some zero Lebesgue measure set) of the differentiation
index when the non-zero parameters of (1) vary over some
neighborhood. U

Finally, since the additional rows %F, etc., are linear in
the derivatives of degree > 2, matrices play a central role in
finding the differentiation degree. We thus recall some basic
material in the next section.

B. Structurally nonsingular matrices

Rectangular mxn-matrix A is called structurally nonsin-
gular if it remains almost everywhere’ nonsingular when its
non-zero entries vary over some neighborhood. Square m xm-
matrix P is a permutation matrix iff p;; = Id;(;), where Id
is the m-identity matrix and o is a permutation. Pre- and post-
multiplication of a matrix A by a permutation matrix results in
permuting the rows and columns of this matrix. It is shown that
A is structurally nonsingular iff PA has a nonzero diagonal
(all entries of the diagonal are nonzero) for some permutation
matrix P; the entries of this nonzero diagonal yield an output
set for A. As an example, since

EREEINEE

{c, b} is an output set for A. This terminology will be justified
when using output sets for Jacobians in DAE.

We shall furthermore use Block Lower Triangular (BLT)
partitioning of matrix A by applying simultaneous row and

7«Almost everywhere” means “outside a set of zero Lebesgue measure”.

column permutations over P A, which yields QTPAQ, where
Q is another square permutation matrix; QT PAQ=q.t P’ AQ
has same diagonal as PA. As an example,

RIS

BLT is useful to decompose a problem into subproblems, as
we shall see.

These definitions apply to the nonlinear equation F'(z) =0
by considering the Jacobian V F'(z) at a solution of F'(x) = 0.
An output set then defines which variables can be taken as
outputs in the system F'(z) = 0, see the pendulum example
below.

C. The pendulum example

Consider the pendulum example (7" is an unkown constant):

r = Tx
y = Ty—yg (7)
L? = 2?2442
Form (1) for (7) is:
T = u
uw = Tz
y = v (8)
v = Ty—yg
L? = 2?2442

This is not index 0 since the Jacobian with respect to
,u,y,0,T is singular:

1 0 00 0
01 0 0 —x
0 010 0
0 00 1 —y
0 00O 0

So we must differentiate the system. Differentiating the third
equation twice yields:

r = u (11)

@ = Tz (i2)

g = v (iil)

v = Ty—gyg (#12) 9)
L? = 22442 (114)

0 = zz+yy (iv)

0 = dzx+i?+9%+y (v

Unknowns of highest derivative order are &, u, 3, v, I'. Rewrit-
ing all equations (i—v) in the form 0 = . .. yields the following
Jacobian for the equations involving , %, y, v, T":



- aGil)  AGl) A3kl AGl)  A3il) -
ox ou oy ov oT
a(i2) a(i2) 9(i2) a(i2) a(i2)
oz ou oy ov oT
a(iil)  B(il)  8(il)  B@H1)  d(iil)
ox o ay v oT
a(ii2)  A(ii2)  8(i2)  8(>i4i2)  A(ii2)
ox ou oy v oT
A(iv) A(iv) A(iv) A(iv) A(iv)
oz ou 9y o0 oT
() () () () 9(v)

L 0z ou oy ov or 4

[ 1 0 0 0 0
0 1 0 0 —x
B 0 0 10 0
- 0 0 0o 1 —y
T 0 Y 0 0

| 2z x 2y Y 0

which, by reordering the rows, yields the Jacobian:

T 0 Y 0 0

1 0 0 0 0

0 1 0 0 —x

0 0 1 0 0 (10)
2z x 2y Y 0

0 0 0 1 -y

Under the condition y#0, removing the red row yields a struc-
turally nonsingular Jacobian. Hence, , 1, y, v, T is determined
as a function of other variables—when y is small, then, due to
constraint (7i%), x is not small and we can exchange the roles
of z and y. Hence, the index was found equal to 2.

In principle, Definition 2 requires that we not only differen-
tiate (4i7) twice, but also (¢1-¢2). This would, however, intro-
duce fresh variables (2, z®) w2 @) y2) yB3) 42 4B
which enter the w of (6); eliminating this w is simply achieved
by ignoring the differentiation of (i1-ii2). Observe that this
was a structural reasoning.

Following (5), a consistent value for the tuple z,u,y,v
must satisfy the following equations, obtained by substituting
& using (71) and g using (¢41) in (iv)—this accounts for the
red row in (10):

2 =
0 =

z? + y?
ur + vy

(4i1)
(iv)
The remaining equations form a DAE of index 0 (i.e., is equiv-
alent to an ODE) with highest order derivatives z,u, v, v, T,

since the Jacobian is structurally nonsingular (outside a neigh-
borhood of y = 0):

(1)

T = u (1)

i@ = Tz (i2)

g = v (iil) (12)
v = Ty—yg (#i2)

0 = ar+u?+0>+0y (v)

The combination (11,12) is a DAE of index 1, for which good
solvers exist. Still, these solvers require projecting derivatives
at each integration step to maintain the constraints (11).

D. Mattson-Soderlin “dummyfication”

One can get rid of the difficulty mentioned at the end
of Section II-C by using a method due to Mattson and
Soderlin [12]. We develop it here by first discussing the
pendulum example.

1) The pendulum example: Replace, in (12), ¢, by so-
called dummy derivatives x',u’, which are fresh variables.
Doing so yields:

L? = 22442 (i)

0 = ur+ovy (iv)

¥ = u (i1)

W = Tx (12) (13)
y = v (#1)

v = Ty—g (#2)

0 = dr+u>+0iP+0y  (v)

The first observation of Mattson and Soderlin is that

Property 1: Problem (13) is equivalent to original pendu-
lum problem (7) in that the respective solutions coincide on
the triple (x,y,T") of variables. O
We could have equally well turned, in (9), y, v into dummy
derivatives while leaving &, @ unchanged. This is useful, e.g.,
when y becomes too close to 0—note that in this case we have
x nonzero unless the pendulum has zero-length.

The second and key observation in Mattson-Soderlin
method is about the execution scheme of (13).

Execution Scheme 1: The execution scheme for (13) is:

1) given y,v, T on the solution at some instant;

2) use the first four equations to compute x, 2, u, u’;

3) using ODE (iil,ii2,v) autonomously, evaluate y,v, T

for the next discretization instant and repeat. (|

By doing so, static invariants are preserved without the need
for any projection in the discretization scheme of this au-
tonomous ODE. The key idea is to “dummyfy” the right
number of state variables of the index 1 DAE system so that:

1) Property 1 holds, and

2) Pivoted execution scheme 1 applies.
In the next section we present a sketch of the general method
of [12] and refer the reader to that reference for details.

2) The general case: (1) is in state space form (derivatives
of order at most one). By eliminating spurious state coordi-
nates x; of the form &; = z; we rewrite (1) in operator form

Fr = 0 (14)

where the remaining variables appear algebraically or differ-
entiated up to some finite order.

We now introduce some notations. D = d/dt is the differ-
entiation operator. Tuple v = (v; ... v,,) is a multi-index of in-
tegers and D” = diag(D",...,D""). u(F) = (p1 ... tn) €
N"™ is the multi-index such that D*() collects the highest-
order derivatives appearing in (14), i.e., xj(f” ) is the highest-
order derivative of x; that appears in (14). Applying Block-
Lower-Triangular (BLT) partitioning yields:

PF'Q = PD"PTPFQ = DP"PFQ (15)



DAE system (14) is called structurally nonsingular if there is
an output set when we consider x as unknown and we do not
distinguish algebraic and differentiated occurrences of a same
variable.®
Consider a structurally nonsingular DAE Fz = 0. Pan-
telides algorithm finds the minimal multi-index v such that
Gx =4ef DY Fx = 0 is structurally nonsingular with respect
to the highest-order derivatives D*(9)z; this algorithm also
provides a corresponding output set. By definition, problem
Fzx = 0 has index 0 if it uniquely determines the highest-
order derivatives D*(*)z with all p;(F) > 0, as continuous
functions of time ¢ and lower derivatives. If the same condition
holds with some 11, (F) = 0, it has index 1. These are only suf-
ficient conditions, as shown by the following index-1 problem,
which does not satisfy these criteria: t + 9y =1, x —y = 0.
It may thus be needed to remove unnecessary differentiations
resulting from Pantelides algorithm.
The index reduction procedure consists of the following
steps, for Fx = 0 structurally nonsingular:
1) Differentiation: Use Pantelides algorithm to obtain
a) a multi-index v(F)
b) Gx =qer F¥x = 0 with F¥ =g¢¢ DV(‘F).F
¢) an output set for Gx = 0 w.r.t. its highest-order
derivatives D*(9) g
2) Permutation: using (15), BLT partitioning Gz = 0 w.r.t.
unknowns D*(9) g yields
a) the static problem Hy = 0 with H = PF(Q and
y=Q"x
b) the differentiated problem H"*y = 0 with HF" =
PF¥Q, so that v(H) = Pv(F) and H is BLT
w.r.t. its highest-order derivatives DQT“(g)y
3) Result: after permutation, we obtain a problem, still
denoted by Gx = 0,
a) which is in BLT form, and such that, for each block

g with corresponding variables z for this block:

i) the equations have been sorted in descend-
ing order w.r.t. the number of differentiations:
vi(g) > valg) > ...

ii) the Jacobian Jg/0z evaluated at the current
point on the solution has full rank. (See the
paper for the singular case.)

4) Index reduction: replace by dummy ones the derivatives
pointed in “Result” (subsequent details are omitted).
Theorem 1: [12] The so obtained problem has index one. It
is equivalent to the original problem in that the undifferentiated
variables x coincide for both. ]
The execution scheme for the resulting problem is a replica
of Execution Scheme 1. It is illustrated on Figure 4.

III. INDEX OF DIFFERENCE ALGEBRAIC EQUATIONS

Difference Algebraic Equations (dAE) are the discrete time
counterpart of DAEs:

(z,2°) e C where CCD,xD, (16)

8Verbatim from [12] but unclear.

F=¥ (2, y,u)
Ct(x,y, u) zu .,
2 Y
y v = fly,z,u)
Fy
Fy
F3
——

Figure 4. Execution scheme for the result of index reduction, In this figure,
the diagram of the top illustrates Execution Scheme 1, with an additional
exogenous input u. C' z] (z,y,u) means that the static constraint C' involves
the variables (x,y,u) and is solved for x as unknown. Thus, z,u is fed
to the ODE, which is activated for one discretization step and returns the
next value for the solution, denoted by y®. Overall, this defines a DAE
problem Flzy] (z,y,u) with exogenous input u, whose solution is x,y. The
bottom diagram depicts the general cascaded architecture as derived from BLT
partitioning. It involves a chain of cascaded DAE problems F; of the generic
form shown on top diagram.

where D, is the domain of tuple of variables x and tuple x*
has the same domain as x.
Definition 3: A solution of dAE (16) is any sequence {z |
k € Z} satisfying
Vk e Z (xk,xk_H) eC

and (16) is solvable if solutions for it exist. O
Definition 3 expresses that

x® is the forward shifted version of x: x} = T4 a7
For convenience, we write in the sequel
C(x,*) (18)

instead of (16). Referring to (4), we define the kth difference
array equations associated to (18):

C(x,z®)
C*(x,z°®)
: =def Ci(x,2°% w) (19)
C.k(JU, 33.)
where w  =gqf (m'Q, . ,x’kH) (20)
and xokJrl =dof (xok)o

A value z is called consistent for (19) if there exists (v, w)
such that

Cr(z,v,w) 21



seen as an algebraic equation. Given a consistent value x
for (19), algebraic equation (21) will generally have a set of
solutions for (v, w). Writing wy, instead of w in (19), the chain
of sets Vi, =det {v | Jwy : Ck(z,v,wy)} is decreasing for set
inclusion. Having finite index for the considered dAE means
that this chain becomes a singleton for some finite value of k,
and then remains so.

Definition 4: Assume that dAE (16) is solvable. The differ-
ence index of this dAE, denoted by v, is the smallest index &
such that v is uniquely determined by the algebraic equation
(21) for any consistent value = for (19). ([l
That is, the map

x — Jw.C,,(z,0,w) (22)

defines v as a deterministic function of x. Since (19) is
equivalent to the original dAE, (22) determines x* and is,
therefore, an OdE (Ordinary Difference Equation), i.e., a tran-
sition system that can be directly executed. Mattson-Soderlin
method translates to dAE as well.

Index for dAE is conceptually simpler than DAE index. It
is, in turn, computationally more complicated because, unlike
the computation of %F, no linearization occurs as a result of
shifting equations forward.

In the sequel we establish a link between the differentiation
index for DAE and the difference index for dAE. This will be
useful for investigating hybrid DAE systems and is achieved by
making use of non-standard analysis, which we briefly recall
now.

IV. A SHORT PRIMER ON NON-STANDARD ANALYSIS

The background material of this section is used in proofs, so
the reader can skip it for a first reading. The text is borrowed
verbatim from [4].

A. Motivation and intuitive introduction

We begin with an intuitive introduction to the construction
of the non-standard reals. The goal is to augment RU {£oo}
by adding, to each x in the set, a set of elements that are
“infinitesimally close” to it. We will call the resulting set *R.
Another requirement is that all operations and relations defined
on R should extend to *R.

A first idea is to represent such additional numbers as
convergent sequences of reals. For example, elements infinites-
imally close to the real number zero are the sequences u,, =
1/n, v, = 1/y/n and w, = 1/n?. Observe that the above
three sequences can be ordered: v, > u,, > w, > 0 where 0
denotes the constant zero sequence. Of course, infinitely large
elements (close to +00) can also be considered, e.g., sequences
Ty =N, Yp = /N, and z, = n>.

Unfortunately, this way of defining *R does not yield a total
order since two sequences converging to zero cannot always
be compared: if u,, and u/, are two such sequences, the three
sets {n | u, > ul}, {n|u, =u,}, and {n | u, < ul,} may
even all be infinitely large. The beautiful idea of Lindstrgm
is to enforce that exactly one of the above sets is important
and the other two can be neglected. This is achieved by fixing

once and for all a finitely additive positive measure ;. over the
set N of integers with the following properties:’

D w2V —{0,1};

2) pu(X) =0 whenever X is finite;

3) u(N)=1.
Now, once y is fixed, one can compare any two sequences:
for the above case, exactly one of the three sets must have
p-measure 1 and the others must have p-measure 0. Thus, say
that u > v/, u = o/, or u < W/, if p({n | up, > u} = 1),
p{n | un = up}) = 1, 0or p({n | un < up}) = 1,
respectively. Indeed, the same trick works for many other
relations and operations on non-standard real numbers, as we
shall see. We now proceed with a more formal presentation.

B. Construction of non-standard domains

For I an arbitrary set, a filter F over I is a family of subsets
of I such that:

1) the empty set does not belong to F,

2) P,Q € F implies PN Q € F, and

3) Pe Fand P C @ C I implies QQ € F.
Consequently, F cannot contain both a set P and its comple-
ment P¢. A filter that contains one of the two for any subset
P C I is called an ultra-filter. At this point we recall Zorn’s
lemma, known to be equivalent to the axiom of choice:

Lemma 1 (Zorn’s lemma): Any partially  ordered set
(X, <) such that any chain in X possesses an upper bound
has a maximal element.
A filter F over [ is an ultra-filter if and only if it is maximal
with respect to set inclusion. By Zorn’s lemma, any filter F
over I can be extended to an ultra-filter over I. Now, if [ is
infinite, the family of sets F = {P C I | P¢ is finite} is a free
filter, meaning it contains no finite set. It can thus be extended
to a free ultra-filter over I:

Lemma 2: Any infinite set has a free ultra-filter.
Every free ultra-filter F over I uniquely defines, by setting
uw(P) = 1if P € F and otherwise 0, a finitely additive
measure'? 1 : 27— {0, 1}, which satisfies

pu(I) =1 and, if P is finite, then u(P) = 0.

Now, fix an infinite set I and a finitely additive measure p over
I as above. Let X be a set and consider the Cartesian product
X! = (2;)ier. Define (z;) ~ (o) iff p{i € I | x; # 2} = 0.
Relation ~ is an equivalence relation whose equivalence
classes are denoted by [x;] and we define

*X =X/~ (23)

X is naturally embedded into *X by mapping every z € X
to the constant tuple such that x; = =z for every ¢ € I.
Any algebraic structure over X (group, ring, field) carries
over to *X by almost point-wise extension. In particular, if

9The existence of such a measure is non trivial and is explained later.

100bserve that, as a consequence, y cannot be sigma-additive (in contrast
to probability measures or Radon measures) in that it is not true that
w(U,, An) = >=,, #(An) holds for an infinite denumerable sequence A, of
pairwise disjoint subsets of N.



[z;] # 0, meaning that p{i | x; = 0} = 0 we can define
its inverse [z;]~! by taking y; = x;l ifx; 20 and y; =0
otherwise. This construction yields p{i | y;z; = 1} = 1,
whence [y;][z;] = 1 in *X. The existence of an inverse for
any non-zero element of a ring is indeed stated by the formula:
Vo (x =0V Jy (zy = 1)). More generally:

Lemma 3 (Transfer Principle): Every first order formula is
true over *X iff it is true over X.

C. Non-standard reals and integers

The above general construction can simply be applied to
X = R and I = N. The result is denoted *R; it is a field
according to the transfer principle. By the same principle, *R
is totally ordered by [u,] < [v,] iff p{n | v, > un} = 0.
We claim that, for any finite [z,] € *RR, there exists a unique
st([zn]), call it the standard part of [x,], such that

st([zn]) € R and  st([xyn]) = [24] - (24)

denotes the constant sequence equal to w. Since [x,,] is finite,
x exists and we only need to show that [z,,]—x is infinitesimal.
If not, then there exists y € R,y > 0 such that y < |z — [z,,)]],
that is, either = < [z,,] — [y] or & > [z,] + [y], which both
contradict the definition of x. The uniqueness of z is clear,
thus we can define st([x,]) = x. Infinite non-standard reals
have no standard part in R.

It is also of interest to apply the general construction (23)
to X = I = N, which results in the set *N of non-standard
natural numbers. The non-standard set *N differs from N by
the addition of infinite natural numbers, which are equivalence
classes of sequences of integers whose essential limit is +oc0.

To prove this, let z = sup{u € R | [u] < [z,]}, where [u]

D. Integrals and differential equations: the standardization
principle

Any sequence (g,) of functions g, : R — R point-wise
defines a function [g,] : *R — *R by setting

[9n]([zn]) = [gn(zn)]

A function *R — *RR so obtained is called internal. Properties
of and operations on ordinary functions extend point-wise to
internal functions of *R — *R. The non-standard version
of g: R — R is the internal function *¢ = [g,9,9,...]. The
same notions apply to sets. An internal set A = [4,,] is called
hyperfinite if u{n | A, finite} = 1; the cardinal |A| of A is
defined as [|A,|].
Now, consider an infinite number N € *N and the set

1 2 3 N -1
= —, =, =—=,...——1
T {0’N7N’N’ N’ }
By definition, if N = [N,,], then T = [T;,] with

12 N, —1
Tn: 077777 37 7]-
Np Np~ Ny Ny,

hence |T'| = [|T,|] = [Nn + 1] = N + 1. Now, consider an
internal function g = [g,,] and a hyperfinite set A = [A,,]. The

(25)

(26)

sum of g over A can be defined:

Z g(a) =def

acA

> gn(a)l

a€An,

If ¢ is as above, and f : R — R is a standard function, we
obtain

S () = [Z - @

teT teT, ="

f (tn)]

Now, f continuous implies Y, - f(tn) — fol f(t)dt, so,

1
/O f(t)dt = st <Z zlv*f(”) (28)

teT

Under the same assumptions, for any ¢ € [0, 1],

t
1
[ rwau=st| S L (29)
0 ueT u<lt
Now, consider the following ODE:

Assume (30) possesses a solution [0,1] © ¢ — x(¢) such that
the function ¢ — f(x(t),t) is continuous. Rewriting (30) in
its equivalent integral form x(t) = xo + fot f(z(u),u)du and
using (29) yields

x(t) = st | xo+ Z %*f(x(u),u)

weT u<lt

€1y

The substitution in (31) of @ = 1/N, which is positive
and infinitesimal, yields T' = {t, =nd | n=0,...,N}. The
expression in parentheses on the right hand side of (31) is the
piecewise-constant right-continuous function *x(¢),t € [0, 1]
such that, forn =1,..., N:

T(tn) = wltnr) +0x F(T(tnr),tns)

“r(to) = o (32)

By (31), the solutions z, of ODE (30), and *x, as computed
by algorithm (32), are related by = st(*x). Formula (32)
can be seen as a non-standard semantics for ODE (30); one
which depends on the choice of infinitesimal step parameter
0. Property (31), though, expresses the idea that all these non-
standard semantics are equivalent from the standard viewpoint
regardless of the choice made for 0. This fact is referred to
as the standardization principle.

V. INDEX REDUCTION AND NON-STANDARD SEMANTICS

In this section we use the nonstandard semantics of DAE
systems to relate the differentiation index and the difference
index of the nonstandard semantics of a DAE system.



A. Non-standard semantics of DAEs

As a time domain for our non-standard semantics we use
T = {kd|keZ}

where O is an infinitesimal time step and *Z is the set of
non-standard integers. Elements of T will be denoted by the
symbol 7. The non-standard semantics of a DAE is obtained
by applying the following substitution rules:

& “ S(z*—x)
i < x(z*?—22° +2)
@) o L (2% —32°2432° — 1) 33
53
z@® &
where 7° =gef T + 0, T2 =der Tre, and z°™ = (z*m71)°.
Applying this to the pendulum example (8) yields:
* = z+0Xu
u® = u+0xTzx
y* = y+9Ixv (34)
v = v+90x(Ty—g)
L2 = 22442

B. Index reduction in non-standard semantics

We now establish a link between index reduction for DAE
and index reduction for dAE. Return to the pendulum example.
Highest degree shifted variables are x°,u®,y®,v®,T. Corre-
sponding Jacobian is singular, thus the difference degree is
strictly positive. Forward shifting the last equation two times
yields:

x* = z+0xu (i1)

u* = u+0xTx (12)

y* = y+0Oxvw (31)

v = v+ 0x(Ty—g) (i2) (35)
L? = 22+ (4i7)

P = @R+ (i)

L2 — (5[7'2)2 + (y02)2 (’U

Substituting, in (iv,v), *® and y* by using (1) and (4i1), and
reorganizing the result yields:

z* = xz+0xu (1)

u* = u+0xTx (12)

y* = y+0Oxvw (11)

v = v+0x(Ty—g) (132) (36)
L? = (@*+0xu®)?2+(y*+0xv*)? (v)

L? = 22442 (iii)

L? = (z+0xu)?+(y+9xv)? (iv)

The first group of equations has structurally nonsingular
Jacobian with respect to z*®, u®, y*,v®, T, and is thus a dAE of
index 0. dAE system (34) has thus index 2. Finally, Mattson-
Soderlin dummyfication applies as well. And all of this extends
to general DAE. Informally speaking, we have the following
“equation”:

structurally

index(NS(DAE)) index(DAE)  (37)

where NS(DAE) denotes the non-standard interpretation of
DAE, seen as a dAE.

VI. HYBRID DAE
A. Mode dependent dynamics
The basic form for a hybrid DAE system is

Yier bi(z, &) x Fiy(z, &)
Zie[ bi(xv x )
where I is some finite index set, = denotes a n-tuple of
real variables, the F}’s are real-valued and smooth, and the
b;’s are smooth {0, 1}-valued functions representing boolean
predicates over the listed variables. The second equation
expresses that one and exactly one predicate must be valid
at any time. Thus set I indexes the different system modes.
The first equation specifies that, in mode i, DAE F; = 0 must
hold; observe that this is a fixpoint equation. Thus, b; is the
guard of mode ¢ and F; = 0 its dynamics.

Examples: We discuss here a few examples, showing the
flexibility of generic form (38):

L (38)

1) A first example of system of the form (38) is obtained
by considering a DAE system with unilateral constraint:

0 < F(z,z) (39)

where = and F' are as above. Then, (39) can be put in
the form (38) with two modes, where, for the first mode,
b(xz,&) = [0> F(x, )] is the boolean predicate express-
ing that unilateral constraint (39) is active, whereas in
the second mode with guard 1 — b, F'=0, expressing
that (x, ) is unconstrained when the inequality is strict
in (39).

2) So-called DAE systems with a complementarity condi-
tions are a second example:

U(z)>0 and V(2)>0 and U(z)V(z) =0
F(z,z)=0
Such systems are encountered, e.g., in electric circuits
with perfect diods. Some massaging can bring (40) to
the generic form (38).

3) A third example is
0 = (1-b)xF(x,y,z)+bxC(z,y)

b = 1py)

(40)

(41)

where P(y) holds true at the zero-crossings of some
smooth function ¢(y), i.e., at any instant when g crosses
zero from below, and C(z,y) = 0 yields a consistent
value for DAE F'(z,y,%&) = 0. In words, C(z,y) = 0
specifies the reset of DAE F(x,y,&) = 0 at the zero-
crossings of g. This example shows that, in some cases,

(38) specializes to systems that are not fixpoint.
Definition 1 must be adapted to define what a solution of
(38) is. Let B = {0,1} be the Boolean domain, represented
by the two values 0 and 1. Set S = R x N, equipped with
the lexicographic order defined by: (¢,k) < (t,k’) if and
only if, either ¢t < t/, or t = ¢’ and k < k’; elements of S
are denoted by the symbol s, or explicitly as pairs s = (¢, k)



whenever needed. Time set S defines the so-called super-dense
time, see [7], [8]. It allows defining solutions for (38) in which
finite (but possibly unbounded) cascades of mode changes can
occur.

Definition 5: Hybrid DAE (38) is solvable if there exists

a pair of functions (s,A\) — (®(s, ), B(s,A)), from S x A
into (R™ x BY) U {L}, where L is the undefined value and
A is some nonempty open set of R”, satisfying the following
conditions, where (3;,i€l denote the components of /3:

1) The function ¢t—3((¢,0),\) satisfies the constraint
Zi 6i((t7 0)7 )‘) = 1;

2) For each A € A, there exists an increasing sequence
T(\) = {tr(\) | k € Z} of instants of R such that
limg 100 ti(A) = £o0 and (P(s, ), B(s,\)) = L for
s = (t, k) with t € T(\) and k > 0. Write ¢, instead of
t1:(A) when no confusion results.

3) Regarding the mode ::

o The function t—3((¢,0),\) is constant over each
interval (tg,tx41] with b € B! the corresponding
value, and B((tg,ne, ), A) = b.

e For t € T(\), there exists some integer n; =
ng(A) > 0 such that 5((t,k),\) = L for k > n;
and k — B((t, k), \) varies in B for k < ny.

4) Regarding the state x:

o For each A € A and each open interval ({y,tx+1),
then t—®((¢,0),\) is a diffeomorphism from
(tg,tg+1) into R™, and, if B;((¢,0),A) = 1, then
F;(@((t,0), ), £&((t,0),A) = 0 holds for every
te (tk7tk+1)~

o For each A € A and each t€T'()\), then
- ¢)(<t7 0)7 /\) = hmt’<t,t’—>t (I)((tlv 0)’ /\)7
- @((t, nt), )\) = limt/>t7t/_>t q)((t/7 O), )\), and,

- for k>0, ®((t,k),\) is a consistent value for
F,=0if g;((t,k),\) = 1.

5) If s—(wxs,bs) satisfies conditions 3) regarding f
and 4) regarding = for some increasing sequence
T = {tx | k € Z} satisfying condition 2, then it holds
that (x5, bs) = (®(s, ), B(s,\)) for some A. O

Albert: We are missing the counterpart of statement 1) in
Definition 1. The difficulty lies in the need to account for the
jumps in trajectory when talking about diffeomorphisms. Need
to correct this.

Some comments are in order regarding Definition 5:

1) As for DAE systems, parameter A serves to represent the
choice of some initial condition (in fact, any consistent
value can be set at some time of the DAE; it may not
be the initial instant).

2) Mode changes can occur in cascades, indexed by the
second component k of s = (t,k). Cascades must be
finite but need not be bounded. Different cascades are
isolated.

3) The state dynamics is set by each mode following the
specification (38).

4) This condition expresses that A does capture all the non-
determinism.

Our definition of a solution for a hybrid DAE system general-
izes the classical definition for (ODE based) hybrid systems.
Observe that conditions for existence and/or uniqueness of
solutions are delicate, particularly so because we have ruled
out Zeno behaviors.

The theory of DAE differentiation index recalled in Sec-
tion II deeply relies on differentiability, so it does not apply
as such to (38). In contrast, the notion of difference index
for dAE does not require differentiability. To circumvent
the lack of differentiability of (38), we propose to move to
its non-standard semantics. As a matter of fact, the non-
standard semantics of a DAE hybrid system is simple and
clean defining.

B. Non-standard semantics of hybrid DAE
Using (33), the non-standard semantics of (38) is:

C[bi,Fi](x7 1'/) (42)
_ { 0="> icrbi(z,a") x Fi(z,2')
aef 1=3crbi(z,2')
where ! = w ie., ©' = :z: (;x (43)

In the following reasoning, concepts and notations of Sec-
tion IV are used.

Theorem 2: Assume that hybrid DAE (38) is solvable.
Then, every solution of (38) is the standardisation of some
solution of (42). O

Proof: Consider the standard hybrid DAE system (38)
and let (zs,bs),s = (t,k) € S, be a solution for it in
the sense of Definition 5. Then, let A\ be the parameter
representing its initial condition. We show that this solution is
the standardisation of some solution of hybrid dAE (42). Two
cases can occur, see condition2) of Definition 5:

Case 1: t € T()). Then, by condition 2) of Definition 5,
we can assume that s = (¢,0). Suppose that P(z(0)) = T
holds—the opposite case is handled similarly. We then have
F(x4,0),%t0) = 0. Pick T > 7 ~ t. We can thus
assume 7 = [t,] for some sequence ¢, of reals converging
to t. Hence, there exists an integer /N such that, for n>N,
tn & T(A) follows, and thus, if x(, o) is the z-component
of the solution of (38) at time (¢,,0), then it results that
P(x,,0)) = T. Therefore, setting z, = [z(, 0)], We get
P(z;) = P([ry,.0]) = [P(2@,,0)] = T. Similarly, since
F is smooth and the solution of F(x,%) = 0 is assumed to
be infinitely differentiable, we get F'(z(¢, ), %(,,0)) = 0 for
n>N, whence F(x,,a)) ~ 0 follows as well. For this case,
we thus proved the existence of a solution (z.,b,) for (42)
such that (Ji(t’o), b(t70)) = st(x-,br).

Case 2: t € T'(\), meaning that one or more successive
mode changes occur at ¢, so that the super-dense instants for
consideration are (t,0), (t,1),...,(t,n¢())), on which b x)
alternate in B. Suppose b(; gy = T, whence ;o) is a consis-
tent value for /' = 0. By condition 3 of Definition 5, we also
have b(;, oy = T for ¢,, any increasing sequence converging to ¢
and n>N. Consider T > 7 = [t,,], we have st(7) = t. Setting
Tr =def [T(¢,,0)] yields a consistent value for F(z,z') = 0



and complementing it with b, = T extends the solution of
(42) at the considered 7. We further extend this solution for the
subsequent non-standard instants 740, . .., 7+n;0 as follows.
First, observe that 7+0 =~ ... &~ 7+n;0 ~ t. Then, we simply
extend the solution of (42) by setting br1ro = b k) and
Trykd = T(tk), Where (T(yxy, b k) is the given (standard)
solution of (38). This proves the theorem. [ |

C. Non-standard hybrid DAE index

In this section we study the difference index of dAE (42).
Accordingly, using (43) we regard F' as a function of the
pair (x, z*). To simplify the notations, when no confusion can
result, we write I for short instead of F'(x,x®) and similarly
for F' and P. With this convention, we have

Chx py (@, & w)

v

[0 =) x Fr () @
1= Dier bs* (z,a')
where
w o= (22, 2"
and the difference array of dAE (42) is
C[bi7Fi] (x’ v, w)
Chi (T v, w)
Cr,ips, 7 (T, 0,w)  =qef . (45)

C[‘bkF] (z,v,w)

At this point, we would like to relate the difference index
of (42) to the indexes of the F;’s (by (37) we can either
consider the differential index, or the difference index of the
corresponding nonstandard semantics). Unfortunately, we have
a problem near instants where the mode changes. Consider for
example an instant 7 such that b; ; = 1 whereas b; 19 =
... =bjryro = 1 for some j7#i. This causes the arrays of F;
and F} to get mixed in (45), at that instant. At such an instant
7 we thus have

E(vavrawr)
F? (27,07, w7)
Ck,[bi,Fi](ﬂUnUnwr) =

Fj.k(x,,—,’().,—, w‘l’)

This observation leads to introducing the following family of
arrays:

70
)

Al =det (46)

Fihy

where ' = {F; | i € i}, k is a nonnegative integer, and
¢:{0...k} — I is a map. The following results follows from
the above observation:

Theorem 3: Let v4 be the difference index of dAE (42).
Then, vy < v4(F), where v4(F) is the smallest index k such
that, for any consistent x and any /,

the map = — 3w.Af (x,v,w) = 0 uniquely defines v. (47)

O
The following theorem is central:
Theorem 4: Assume that hybrid DAE (38) is solvable and
the length of cascades of mode changes is bounded by some
finite integer K. Then:

va(F) < 2x I’?EaIXI/D(Fi) +K -1 (48)
where vp (F;) is the differentiation index of DAE F; = 0. O

Proof: Due to the assumption, two successive cascades of
mode changes must be separated by intervals of time of pos-
itive duration where the mode does not change. Accordingly,
the worst k£ for (47) to hold is depicted on Figure 5. Time

) cascade of )
mode i mode changes ~ mode j

++++++H++++++H+HHHHHH—

Figure 5. The worst k£ for (47) to hold

progresses from left to right. The current instant is the first
one shown. The system stays in mode ¢ too short a duration
for v being uniquely defined by the array associated to F; = O:
this causes the “max;c; vp(F;)—1” contribution to the bound
(48). Then we have a cascade of maximal length K. And,
finally, a long enough interval is spent in mode j for v being
uniquele determined by the array associated to F; = 0, giving
another “max;c; vp(F;)” contribution to the bound. [ |

VII. PRACTICAL ALGORITHMS
A. Implementing index reduction for hybrid DAE systems

Based on the previous analysis we propose the following
approach for index reduction of hybrid DAE systems:
(a) Inside a mode: perform index reduction for the DAE
system in force in this mode.
(b) At a cascade of mode changes: switch to the nonstandard
semantics and compute on-the-fly the dAE index reduc-
tion following Section VI-C.
The handling of mode changes (task (b) above) remains to be
developed, with algorithms of acceptable complexity. In the
remainder of this section we develop tools for mode-dependent
index reduction in task (a) above.

B. The guarded Pantelides graph

For his algorithm [10], Pantelides introduces a graphical
method for finding the differentiation index, i.e., solving
equation (6). The method consists in pivoting. To prepare for

this we introduce the graphical statement
E —[|— (othervar | outvar) (49)

where F denotes an equation, and
o othervar U outvar is the set of variables involved in F;



o outvar is the set of variables that are among the candidate
outputs for F, and

o set othervar collects other variables, i.e., those variables
which cannot serve as an output for F.

Abstraction (49) is coarse in that it does not take into account
the actual numerical coefficients involved in the different
constraints—strictly speaking, singularity is a numerical prop-
erty, not a graphical one.

Now, in our hybrid systems involving DAE, DAE systems
are mode-dependent, see Sections VI-C and VII-A. Based
on the analysis developed in Section VI-C, for each mode
we must develop a Pantelides search. We will reuse the
ideas behind clock-and-dependency calculus of Signal [5] by
introducing guarded Pantelides graphs whose branches have
the form

E —{guard|— (othervar | outvar) (50)
meaning that (49) if and only if guard is true. Guarded
branches of the form (50) avoid enumerating the different
modes and fold the different Pantelides algorithms into a single
“guarded-Pantelides”.

C. A simple circuit

Referring to Figure 6, we consider the simple example
consisting of a the second vertical branch of the circuit shown,
consisting of a perfect diod followed by a capacitor:

Dq 0 < 1

D2 0 2 u

D5 0 = D
C 1 = Cv

This circuit has two modes, characterized by the conditions
1> 0 and u < 0, respectively—we rule out the trivial mode
0 = u = 4. We study this simple circuit by using the theory
developed in Section VI.
1) Mode-dependent index: We begin with index analysis
while the system being in each different mode:
mode © > 0: (51) boils down to

Dy : 0 < 14
D2 0 = wu
c i = Cv

(52)

We interpret the derivative operator v’ as in (43), namely:

L[]
, v® —v

0

By doing so, (52) abstracts as

Dy i > 01— ( |u
¢ (@

which has index 0 (it is an ODE system).

)
) (53)

mode v < 0: (51) boils down to

D1 0 = 4
Dy, : 0 < u (54)
cC : i = CV

which abstracts as
Dy —u<0}—( |i)
¢ =)
which again has index O (it is an ODE system), but is singular
in that it does not determine w.

2) Handling the mode changes: It remains to perform index
reduction at the mode changes, from ¢ > 0 to u < 0 and vice-
versa. For the first one, the following non-standard difference
array is considered:

(55)

D, 0 < 1

D2 0 = u

C i = Cv

D 0 — (56)
D 0 > u

ce it = CW)*

Eliminating v*? in (56) amounts to discarding the last equation
of this array, which uniquely determines the next values v* and
1* for use as reset values in the next mode u < 0. Observe that
this array does not determine u at all, which is consistent with
the analysis of mode v < 0. The latter result can be found by
replacing array (56) by its graph abstraction

Dy —i > 0— (|u)

C - (i]v*)
Dy —u* < 0} (]i*) 7
C* - (i*[v*?)

Array (56) provides the consistent reset conditions for the new
mode.

D. The Elmgvist-Mattson circuit example'!

In this section we use the material introduced in Sec-
tion VII-B. We analyze the RLDC circuit involving two
parallel ideal diods shown in Figure 6. To avoid notational
problems with symbols i,j we use x’ to mean z, etc. We
show in Figure 6 both the DAE system and the corresponding
non-standard semantics using shift operator (43), which we
repeat for the sake of readability of the example:

, -z
x =def P

1) Mode-dependent index: We begin with the index analy-
sis for each given mode. The Pantelides abstraction is shown
on Figure 7, left, where D~ refers to the saturated form of
unilateral constraint D. We now perform index and causality
analysis. We first consider the L and C' systems. In all modes
of the system, they require the j’s and v’s to be their respective
outputs; this in turn force the same signals to be inputs in
other equations—we use this color coding in the sequel while

Private communication by H. Elmqvist and S.E. Mattson.



L1 L2
000000 a 2 000000
wl 1 Tul UQT 12 w2
\ \

R —

Ky : 0= ji1+j2+1i1+i2
) T + wi
Kirchhof laws Ko = wui+v1
Ks = u2+v2
Ky = z2t+ w2
Resistors { g; 2 i g;;;
_ -/
Inductors (L) { é; z; ; é;j;
_ ’
Capacitors { g; 2 ; g;;z
Dy 0 < u1
D» 0 > wu
Ideal Diods Py 2 am
Ds 0 > uy
Dg 0 = idou2

Figure 6. The RLDC circuit: diagram and equations.

K1 —[J- (1J1,52,91,12) K1 —[J- (lJ1,32,91,12)
Koy —[]— (|z1,w1,u1,v1) Koy —[]— (|z1,w1,u1,v1)
K3 —[— (|u1,v1,u2,v2) K3 —[]— (|u1,v1,u2,v2)
Ky —[I— (Juz,v2, 22, w2) Ky —[|= (Juz, v, z2,w2)
R1 —[J- (|z1,41) R1 —[J- (|z1,41)

Ry —[]— (| ®2,j2) Ry —[]— (| ®2,52)

Ly —{}— (w1]37) Ly —{}— (w1]37)

Ly ~{]- (w2]33) Ly —{J— (w2]33)

C1 —[I— (i1 ]v?) C1 —[— (i1 |v})

Cy |- (iz|v3) Co —[]— (iz|v3)

DT —{0<u1]— (]d1) DT —0<u1]— ([i1)

Dy ] (|u1) Dy ] (|u1)
F:[0<u1}/\[0<i1] F:[0<u1}/\[0<i1]
Dy —{0<uz]— (]i2) Dy —{0<uz]— (]i2)

Dy —{0<iz]— (|u2)
F=[0<u2] A0 <ig]

Left: abstraction. Right: first stage of causality synthesis.

Dy —{0<iz]— (|u2)
F=[0<u2] A0 <ig]

Figure 7.

performing causality synthesis, which consists in picking in
a consistent way exactly one variable in each set outvar. We
proceed by successive steps. In a first step we focus on the L’s
and C”s and then on the R’s. The result is shown on Figure 7,
right.

At this point we are stuck and we must analyze the
different modes separately. We first investigate the mode
[0 < u1] A [0 < i2]. So we remove the branches whose guard
is violated and remove the trivial guards of the remaining
branches. Then we propagate backward the status of output.
For completeness we recall the guard for this mode. The result
is shown in Figure 8, left. A consistent causality results since
every equation determines exactly one output and all variables

K1 —[J= (|j1,72,%1,12) Ky —{l= (141, 42,11, 82)
Ky —{]= (lz1,w1,u1,v1) Ky —{]= (|o1, w1, u1,v1)
K3 == (u1,v1,u2,v2) Kz —{]= (|u1,v1,u2,v2)
Ky —[l= (Ju2,v2,x2,w2) 4 —= (u2,v2, 22, w2)
Ry —[l= (|=1,41) Ry —[l= (|=1,41)
Ry —[|= (|22, 72) Ry —[l= ([22,52)
Ly == (w1]47) Ly —[|= (w1 |5}
Ly —fJ— (w2]j3) L2 —{- 'LU2|JQ)
C1 = (i1 ]v) == (@1 ]v1)
Ca —{l— (iz]v3) Cz = (i2]v3)
DT = (]i1) D7 —{= (fu)
Dy —l= (lu2) Dy —[l—= (l42)

Figure 8. Left column: mode [0 < u1] A [0 < i2];

notation —[]— (.|.) stands for —[0 < u3 A0 < i2]— (.].).

Right column: mode [0 < u2] A [0 < i1];

notation —{]— (.]|.) stands for —[0 < uz A0 < i1]— (.|.).

are listed as the output of some equation (the system is closed).
In addition, the state of every ODE is an output of that ODE.
This system is index 1 and regular. It obeys the execution
scheme of Figure 4. The symmetric mode [0 < ug] A [0 < #1]
is handled similarly, see Figure 8, right.

We next investigate the mode [0 < i1] A [0 < ig], see
Figure 9, left. No consistent causality can be found here. This

K1 —[— (1J1,42,%1,12)
e (L1, i2) o )
== (Jz1, wi,u1,01) K3 [ (Jus, vt us,v3)
—[= (lu1,v1,u2,v2) Ky —[|— (| u2,v2,x2,w2)
7[} (luz,v2, 2, w2) Ry —[— (1,41
R1 —[= (lz1,J1) Ry —[— (|22, J2)
Ry —[]— (| z2,352) L1 —{— (w1 |77 )
Ly~ (wi}) Ly - (w2 ]73)
Ly —{l= (w2]73) Cy —— (i1 ] 1,-2)
C1 - (i1 |v9) Co —l— (iz|v2)
Cy - (i | v3) D5 —[- (Ju)
Dy = (Jw) DE* —[ (|u3)
Dy - (Ju2) DF [~ (Ju2)
D5 - (Ju3)
Figure 9. Left: the mode [0 < 1] A [0 < 42].

Right: shifting some equations forward

reflects that the system is not index 1. Thus index reduction
must be applied. Shifting forward equations Kz, D5, Dg
yields the system shown on Figure 9, right. At this point we
change the status of v{,uf,u$ and replace them by dummy
static variables ¥, u1, ue. The result is shown on Figure 10,
left. This is a regular index 1 system in Mattson-Soderlin
form. It is equivalent to the original system in the considered
mode. Its standard DAE counterpart is obtained by replacing
backward shifting by differentiation and the dummy variables
are 01, U1, Ua, see the right column of Figure 10. Observe that
we have kept the causality that results from applying the rules
of nonstandard semantics in constructing the sets outvar and
othervar. As a result, the equation defining 77 has v} in its
right hand side. This is acceptable here because we have an
expression for v} that can be substituted for this derivative.
Comment 3: Can the above be generalized? g
The symmetric mode [0 < wu3] A [0 < wug] raises similar



K1 = (1j1,72,41,12) io = —i1 — j1 — jo
Ko —[I— (|z1,wi,u1,v1) w1 = —x1 4 u1 + v1
Ks [ (Ju1vr, uz, va) S
K{; 7[}7“&178171}57&2) 61:761“1’&24’1)%
Ky 7[}7 (|u2>v27127u’2) wo = —T2 + uz + v2
Ry 7[}7 (|I1:j1) 1 = R1j1

Ry —[J— (|z2,j2) ®2 = Rajo

Ll 7[]7 (w17 ‘]I) Llji = wq

Ly —{l— (w2]33) Lajl = wa

Cr —[= (li1,91,v1) i1 = C171

Cy —{]— (iz|v3) Covly = ig

Dy —I= (|u1) up =0

Dy * —— (lu) u; =0

Dy - (Ju2) a2 = 0

DF* - (|u2) u2 =0

Figure 10. Left: introducing dummy variables in mode 0 < i1 A 0 < i2;
notation —[]— (.|.) stands for —[0 < i1 A O <i2]— (.].).
Right: corresponding DAE system.

difficulties, we report it in Figure 11.

Ky —l= (141, 42,71, 82)
K? = (71,191,142, 53)
Ko ~{]= (|=1,w1,u1,v1)
Kz —{]— (|u1,v1,u2,v2)
Ka —[]— (|u2,v2, 2, w2)
{ Ry —{|— (|=1,51)
Ra - (| z2172)
{ L1 —= (lwi,j1,51)
Ly —[]— (wz2j3)
{ C1 == (ir|o])
Cy —I= (i2|v3
D - (i)
Dr® - (Ju)
D [~ (|i2)
Dy® - (Ji2)
Figure 11. The symmetric mode [0 < u1] A [0 < u2];
notation —[]— (.|.) stands for —[0 < u1 A0 < uz]— (.].).

2) Handling mode changes: Here we use again the analysis
developed in Section VI-C. For our example, cascades of mode
changes have length one. Albert: Too complex an example to
investigate the mode changes.

3) The whole model: The whole abstract model is summa-
rized in Figure 12, left. Each equation in this model indicates
the mode predicate in which it holds. For each such mode
predicate, the corresponding line indicates, on the right, the
corresponding standard static or ODE equation. In each mode
the system has Mattson-Soderlin form.

VIII. HINTS FOR A HYBRID SYSTEM LANGUAGE AND
COMPILER

In this section we formulate hints for the design a DAE
hybrid system language and its compilation scheme.

A. Have the right primitives

The language may be rich, but it should be built on
top of a small number of primitive statements, for which
a precise semantics should be developed. Richer constructs
should inherit their semantics by macro expansion—this does

K1 —[iAL]= (|1, 2,11, 02) J1=—j2 —i1 —i2
—[U1 A I2]— (] 41,52, %1,12) ig = —i1 — j1 — J2
—[I1 AU2]— (| J1,J2,11,142) i1 = —i2 — j1 — J2
Kl U1 AUsl= (141,42, 71, 2) J1=—j2—i1— 12
—[U1 AU} (171,711,172, 43) J1=—jgh —i1— 12

(U1 ANU2)— (|21, w1,u1,v1) w1 =—21+u1+v1

KQ —[= =
—[U1 A Uz]l— (|21, w1, u1,v1) u] = —v1 + 21 + w1
—[I1 AU2]— (|u1,v1,uz2,v2) ug = —v2 +u1 +v1
[Ul/\Uz]f (\ul,vl,ug,vz) U = —v2 +uy + v
—U1 A I2]— (|u1,v1,u2,v2) up = —v1 +u2 + v

K3 —[I1 A I2}— (|u1,v1,u2,v2) v = —u1 +uz +v2

Kg 7[11 /\12]7 (|a1,ﬁ1,ﬂz,v5) 1 = —U1 +i22+v’2

Ky —[|— (|u2,v2,z2,w2) wo = —x2 + uz + v2

Ry —|— (|=1,51) z1 = Rij1

Ry —[J— (|z2,j2) T2 = Raja

Ly —[=(U1 AU2)}= (w1]57) Liji = w1

L1 —[U1 ANU2)— (|w1,J1,51) =Li1j1

Ly —{]= (w2]j3) Lajy = w2

C1 (I A I2)]— (i1 |1)I) Clvi =1

Ch 7[[1/\[2]7 (‘7;1,51,1)1) i1 = C101

Oz —[J— (i2 |v3) Crvy =iz

DE Ui (i) =0

DT U] (]41) i1 =0

Dy —[h]— (Jw) up =

D3 * —[I]— (]u) U =0

F=UiAN1

Dy U2} (]i2) i3 =0

Dy —[U2]— (]i2) i2=0

Dg —[I2]— (|u2) uz =0

Dz * —[I2]— (|u2) Uz =0

F=Us A I2

Figure 12. Left: the whole model; I; denotes the guard 7; > 0 and we use
a similar convention for I, Uy, Us.
Right: for each mode the corresponding standard equation.

not mean that macro expansion must be part of the compilation
process.

The basic primitive statement is (38), which can be refor-
mulated as

on P(z): F(x,&) =0 (58)
As we have seen in Section VI-A, (58) specializes to a number

of useful constructs:

(a) mode changes due to zero-crossings, followed by resets;
(b) unilateral constraints;
(c) complementarity conditions.

This suggests that modes are defined by boolean predicates
over system states and variables and events are defined as
changes in mode configuration. Considerations of numerical
quality, however, mitigate this option as predicates take their
values in the boolean domain, which prevents from assessing
the risk of seing an event soon. Higher-level constructs to
express modes such as (a)-(c) above, are preferred from this
point of view.

Nevertheless, events should be mode changes and easily
identifiable from the syntax. This disciplin will make it easier
to develop Discrete/Continuous typing.



B. Make Discrete/Continuous typing easy
The language should make it easy to separate between

« the duty of the DAE/ODE continuous-time solver(s), and
o the duty of the event-based discrete coordinator.'?

In our previous work and the Zelus prototype [6], typing
was about Discrete/Continuous (D/C). By decree, we decided
that discrete events could only result from zero-crossings, i.e.,
some real-valued signal of type C crossing zero upward.'3
Such zero-crossings could only be created by using a particular
statement of the Zelus language. With this disciplin, D/C typ-
ing became feasible and even relatively simple. Any periodic
clock could be seen as a macro on top of former primitive
statements, where a tick occurs at certain level-crossings of the
C signal “time”, solution of t = 1—bypasses are, of course,
highly desirable for efficiency issues but their semantics should
be that of the above macro expansion.

As seen from the introductory discussion of Section I-C,
however, not all events should be deferred to the discrete
coordinator. It is therefore highly advisable to offer different
statements for declaring

« mode changes that remain local to the (sub)system in

consideration and are supported by DAE/ODE solvers;

« mode changes that serve to synchronize the reset of other

subsystems, and, thus, need to be visible outside the
(sub)system in consideration.

C. Have Pantelides graphs in the language

Guarded Pantelides graphs were extensively used in the
Elmgqvist-Mattson example of Section VII-D. Such graphs are
useful in many respects:

o They can be used to implement index reduction;
o They support causality analysis and synthesis.

Hence, they are instrumental in deriving all possible schedul-
ing of the atomic actions performed by the modeler at run
time. Concurrency may be exhibited in this way and used to
run multiple solvers, therefore avoiding unwanted coupling,
see the introductory discussion of Section I-A.

An important remark is that guarded Pantelides graphs
are constraints in some abstract domain represented by the
two statuses {candidate_output, cannot_be_output}. Viewing
Pantelides graphs as contraints pave the way toward compo-
sitional techniques for index reduction and causality synthesis
in hybrid DAE systems. This technique was not used in the
example of Section VII-D and remains to be developed.

D. Develop a nonstandard semantics

It is advisable to develop a nonstandard semantics for the
language. DAE systems, as we know, require smoothness
conditions for them to behave properly and possess solutions in
the sense of Definition 1. This becomes worse for hybrid DAE
systems, since, in addition, Zeno/nonZeno issues come into
play. For this reason, the tradition has been in the modeling

12We think of it as a slightly adapted synchronous language engine.
13See the discussion on page 391, section 6 of [4] regarding this definition
of “discrete”.

and simulation community, that no attention is paid by the
tool regarding smoothness conditions—they are under the
responsibility of the engineer developing the model.

Computer scientists know the benefit of being able to
reject “spurious programs”, whatever they be. The lenghty and
verbose warnings returned by Simulink are a good example
of an attempt to do this. We believe that the use of the
nonstandard semantics allows to sort out between two kinds
of spuriousness, namely:

e Vicious mix and wild combination of Discrete and
Continuous signals and operators—these should be pre-
ferrably detected at compile time;

o Lack of needed smoothness, excessive stiffness, near-
Zeno condition—these cannot be handled by the compiler
and must be addressed using a proper understanding of
the physics.
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