# Reconciling "priors" \& "priors" without prejudice? (research report) 

Rémi Gribonval, Pierre Machart

## To cite this version:

Rémi Gribonval, Pierre Machart. Reconciling "priors" \& "priors" without prejudice? (research report). [Research Report] RR-8366, INRIA. 2013. <hal-00862925v2>

## HAL Id: hal-00862925

https://hal.inria.fr/hal-00862925v2
Submitted on 4 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Reconciling "priors" \& "priors" without prejudice?

Rémi Gribonval, Pierre Machart

## RESEARCH <br> REPORT <br> $\mathrm{N}^{\circ} 8366$ <br> September 2013 <br> Project-Team PANAMA

# Reconciling "priors" \& "priors" without prejudice? 

Rémi Gribonval, Pierre Machart<br>Project-Team PANAMA<br>Research Report n 8366 - September 2013 - 17 pages


#### Abstract

There are two major routes to address linear inverse problems. Whereas regularization-based approaches build estimators as solutions of penalized regression optimization problems, Bayesian estimators rely on the posterior distribution of the unknown, given some assumed family of priors. While these may seem radically different approaches, recent results have shown that, in the context of additive white Gaussian denoising, the Bayesian conditional mean estimator is always the solution of a penalized regression problem. The contribution of this paper is twofold. First, we extend the additive white Gaussian denoising results to general linear inverse problems with colored Gaussian noise. Second, we characterize conditions under which the penalty function associated to the conditional mean estimator can satisfy certain popular properties such as convexity, separability, and smoothness. This sheds light on some tradeoff between computational efficiency and estimation accuracy in sparse regularization, and draws some connections between Bayesian estimation and proximal optimization.


Key-words: linear inverse problems, Bayesian estimation, maximum a posteriori, conditional mean estimation, penalized least squares

```
RESEARCH CENTRE
RENNES - BRETAGNE ATLANTIQUE
Campus universitaire de Beaulieu
35042 Rennes Cedex
```


## Reconciling "priors" \& "priors" without prejudice?

Résumé : Il existe deux grandes familles de méthodes pour résoudre les problèmes linéaires inverses. Tandis que les approches faisant appel à la régularisation construisent des estimateurs comme solutions de problèmes de régularisation pénalisée, les estimateurs Bayésiens reposent sur une distribution postérieure de l'inconnue, étant donnée une famille supposée d'a priori. Bien que ces approchent puissent paraître radicalement différentes, des résultats récents ont montré, dans un contexte de débruitage additif Gaussien, que l'estimateur Bayésien d'espérance conditionnelle est toujours la solution d'un problème de régression pénalisée. Nous prã®)sentons deux contributions. D'une part, nous étendons le résultat valable pour le bruit additif gaussien aux problèmes linéaires inverses, plus généralement, avec un bruit Gaussien coloré. D'autre part, nous caractérisons les conditions sous lesquelles le terme de pénalité associé à l'estimateur d'espérance conditionnelle satisfait certaines propriétés désirables comme la convexité, la séparabilité ou la différentiabilité. Cela permet un éclairage nouveau sur certains compromis existant entre efficacité computationnelle et précision de l'estimation pour la régularisation parcimonieuse, et met à jour certaines connexions entre estimation Bayésienne et optimisation proximale.

Mots-clés : problèmes linéaires inverses, estimation Bayésienne, maximum a posteriori, estimateur d'espérance conditionnelle, moindres carrés pénalisés

## 1 Introduction

Let us consider a fairly general linear inverse problem, where one wants to estimate a parameter vector $z \in \mathbb{R}^{D}$, from a noisy observation $y \in \mathbb{R}^{n}$, such that $y=\boldsymbol{A} z+b$, where $\boldsymbol{A} \in \mathbb{R}^{n \times D}$ is sometimes referred to as the observation or design matrix, and $b \in \mathbb{R}^{n}$ represents an additive Gaussian noise with a distribution $P_{B} \sim \mathcal{N}(0, \boldsymbol{\Sigma})$. When $n<D$, it turns out to be an ill-posed problem. However, leveraging some prior knowledge or information, a profusion of schemes have been developed in order to provide an appropriate estimation of $z$. In this abundance, we will focus on two seemingly very different approaches.

### 1.1 Two families of approaches for linear inverse problems

On the one hand, Bayesian approaches are based on the assumption that $z$ and $b$ are drawn from probability distributions $P_{Z}$ and $P_{B}$ respectively. From that point, a straightforward way to estimate $z$ is to build, for instance, the Minimum Mean Squared Error (MMSE) estimator, sometimes referred to as Bayesian Least Squares, conditional expectation or conditional mean estimator, and defined as:

$$
\begin{equation*}
\psi_{\mathrm{MMSE}}(y):=\mathbb{E}(Z \mid Y=y) \tag{1}
\end{equation*}
$$

This estimator has the nice property of being optimal (in a least squares sense) but suffers from its explicit reliance on the prior distribution, which is usually unknown in practice. Moreover, its computation involves a tedious integral computation that generally cannot be done explicitly.

On the other hand, regularization-based approaches have been at the centre of a tremendous amount of work from a wide community of researchers in machine learning, signal processing, and more generally in applied mathematics. These approaches focus on building estimators (also called decoders) with no explicit reference to the prior distribution. Instead, these estimators are built as some optimal trade-off between a data fidelity term and some term promoting some regularity on the solution. Among these, we will focus on a particularly widely studied family of estimators $\psi$ that write in this form:

$$
\begin{equation*}
\psi(y):=\underset{z \in \mathbb{R}^{D}}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{A} z\|^{2}+\phi(z) . \tag{2}
\end{equation*}
$$

For instance, the specific choice $\phi(z)=\lambda\|z\|_{2}^{2}$ gives rise to a method often referred to as the ridge regression [1] while $\phi(z)=\lambda\|z\|_{1}$ gives rise to the famous Lasso [2].

The $\ell^{1}$ decoder associated to $\phi(z)=\lambda\|z\|_{1}$ has attracted a particular attention, for the associated optimization problem is convex, and generalizations to other "mixed" norms are being intensively studied [3, 4]. Several facts explain the popularity of such approaches: a) these penalties have well-understood geometric interpretations; b) they are known to be sparsity promoting (the minimizer has many zeroes); c) this can be exploited in active set methods for computational efficiency [5]; d) convexity offers a comfortable framework to ensure both a unique minimum and a rich toolbox of efficient and provably convergent optimization algorithms [6].

### 1.2 Do they really provide different estimators?

Regularization and Bayesian estimation seemingly yield radically different viewpoints on inverse problems. In fact, they are underpinned by distinct ways of defining signal models or "priors". The "regularization prior" is embodied by the penalty function $\phi(z)$ which promotes certain solutions, somehow carving an implicit signal model. In the Bayesian framework, the "Bayesian prior" is embodied by where the mass of the signal distribution $P_{Z}$ lies.

The MAP quid pro quo A quid pro quo between these distinct notions of priors has crystallized around the notion of maximum a posteriori (MAP) estimation, leading to a long lasting incomprehension between two worlds. In fact, a simple application of Bayes rule shows that under a Gaussian noise model $b \sim \mathcal{N}(0, \mathbf{I})$ and Bayesian prior $P_{Z}(z \in E)=\int_{E} p_{Z}(z) d z, E \subset \mathbb{R}^{N}$, MAP estimation ${ }^{1}$ yields the optimization problem (2) with regularization prior $\phi_{Z}(z):=-\log p_{Z}(z)$. By a trivial identification, the optimization problem (2) with regularization prior $\phi(z)$ is now routinely called "MAP with prior $\exp (-\phi(z))$ ". With the $\ell^{1}$ penalty, it is often called "MAP with a Laplacian prior". As an unfortunate consequence of an erroneous "reverse reading" of this fact, this identification has given rise to the erroneous but common myth that the optimization approach is particularly well adapted when the unknown is distributed as $\exp (-\phi(z))$. As a striking counter-example to this myth, it has recently been proved [7] that when $z$ is drawn i.i.d. Laplacian and $\boldsymbol{A} \in \mathbb{R}^{n \times D}$ is drawn from the Gaussian ensemble, the $\ell^{1}$ decoder - and indeed any sparse decoder - will be outperformed by the least squares decoder $\psi_{L S}(y):=\operatorname{pinv}(\boldsymbol{A}) y$, unless $n \gtrsim 0.15 D$.

In fact, [8] warns us that the MAP estimate is only one of the plural possible Bayesian interpretations of 22 , even though it certainly is the most straightforward one. Taking one step further to point out that erroneous conception, a deeper connection is dug, showing that in the more restricted context of (white) Gaussian denoising, for any prior, there exists a regularizer $\phi$ such that the MMSE estimator can be expressed as the solution of problem (22). This result essentially exhibits a regularization-oriented formulation for which two radically different interpretations can be made. It highlights the important following fact: the specific choice of a regularizer $\phi$ does not, alone, induce an implicit prior on the supposed distribution of the unknown; besides a prior $P_{Z}$, a Bayesian estimator also involves the choice of a loss function. For certain regularizers $\phi$, there can in fact exist (at least two) different priors $P_{Z}$ for which the optimization problem (2) yields the optimal Bayesian estimator, associated to (at least) two different losses (e.g.., the $0 / 1$ loss for the MAP, and the quadratic loss for the MMSE).

### 1.3 Main contributions

A first major contribution of that paper is to extend the aforementioned result [8] to a more general linear inverse problem setting. Our first main results can be introduced as follows:
Theorem (Flavour of the main result). For any non-degenerat ${ }^{2}$ prior $P_{Z}$, any non-degenerate covariance matrix $\boldsymbol{\Sigma}$ and any design matrix $\boldsymbol{A}$ with full rank, there exists a regularizer $\phi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}$ such that the MMSE estimator of $z \sim P_{Z}$ given the observation $y=\boldsymbol{A} z+b$ with $b \sim \mathcal{N}(0, \boldsymbol{\Sigma})$,

$$
\begin{equation*}
\psi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}(y):=\mathbb{E}(Z \mid Y=y), \tag{3}
\end{equation*}
$$

is a minimizer of $z \mapsto \frac{1}{2}\|y-\boldsymbol{A} z\|_{\boldsymbol{\Sigma}}^{2}+\phi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}(z)$.
In a nutshell, it states that for the considered inverse problem, for any prior on $z$, the MMSE estimate with Gaussian noise is also the solution of a regularization-formulated problem (though the converse is not true).

In addition to this result we further characterize properties of the penalty function $\phi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}(z)$ in the case where $\boldsymbol{A}$ is invertible, by showing that: a) it is convex if and only if the probability density function of the observation $y, p_{Y}(y)$ (often called the evidence), is log-concave; b) when $\boldsymbol{A}=\mathbf{I}$, it is a separable sum $\phi(z)=\sum_{i=1}^{n} \phi_{i}\left(z_{i}\right)$ where $z=\left(z_{1}, \ldots, z_{n}\right)$ if, and only if, the evidence

[^0]is multiplicatively separable: $p_{Y}(y)=\prod_{i=1}^{n} p_{Y_{i}}\left(y_{i}\right)$. Furthermore, we highlight and discuss some implications of these results in a worked example on Bernoulli-Gaussian priors. For instance, we showgauss that when the prior $P_{Z}$ is Bernoulli-Gaussian, the penalty $\phi$ is not convex when the signal-to-noise ratio (SNR) is higher than 10 dB and the sparsity level is higher than $10 \%$ (i.e. $\left.p_{Z}(z=0) \geq 0.1\right)$ but it is convex when the SNR is lower than 0 dB and the sparsity level is lower than $85 \%$.

### 1.4 Outline of the paper

In Section 2, we develop the main result of our paper, that we just introduced. To do so, we review an existing result from the literature and explicit the different steps that make it possible to generalize it to the linear inverse problem setting. In Section 3, we provide further results that shed some light on the connections between MMSE and regularization-oriented estimators. Namely, we introduce some commonly desired properties on the regularizing function such as separability and convexity and show how they relate to the priors in the Bayesian framework. Finally, in Section 4, we conclude and offer some perspectives of extension of the present work.

## 2 Main steps to the main result

We begin by a highlight of some intermediate results that build into steps towards our main theorem.

### 2.1 An existing result for white Gaussian denoising

As a starting point, let us recall the existing results in [8] (Lemma II. 1 and Theorem II.2) dealing with the additive white Gaussian denoising problem, $\boldsymbol{A}=\mathbf{I}, \boldsymbol{\Sigma}=\mathbf{I}$.

Theorem 1 (Reformulation of the main results of [8). For any non-degenerate prior $P_{Z}$, we have:

1. $\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}$ is one-to-one;
2. $\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}$ and its inverse are $C^{\infty}$;
3. $\forall y \in \mathbb{R}^{n}, \psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)$ is the unique global minimum and unique stationary point of

$$
\begin{equation*}
z \mapsto \frac{1}{2}\|y-\mathbf{I} z\|^{2}+\phi(z) \tag{4}
\end{equation*}
$$

with

$$
\phi(z)=\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}(z):= \begin{cases}-\frac{1}{2}\left\|\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}^{-1}(z)-z\right\|_{2}^{2}-\log p_{Y}\left[\psi_{M M S E}^{-1}(z)\right] ; & \text { for } z \in \operatorname{Im} \psi_{\mathbf{I}, \mathbf{I}, P_{Z}} \\ +\infty, & \text { for } x \notin \operatorname{Im} \psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\end{cases}
$$

4. The penalty function $\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}$ is $C^{\infty}$;
5. Any penalty function $\phi(z)$ such that $\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)$ is a stationary point of (4) satisfies $\phi(z)=$ $\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}(z)+C$ for some constant $C$ and all $z$.

### 2.2 Non-white noise

Suppose now that $B \in \mathbb{R}^{n}$ is a centred non-degenerate normal Gaussian variable with a (positive definite) covariance matrix $\boldsymbol{\Sigma}$. Using a standard noise whitening technique, it follows that $\boldsymbol{\Sigma}^{-1 / 2} B \sim \mathcal{N}(0, \mathbf{I})$. This makes our denoising problem equivalent to $y_{\boldsymbol{\Sigma}}=z_{\boldsymbol{\Sigma}}+b_{\boldsymbol{\Sigma}}$, with $y_{\boldsymbol{\Sigma}}:=\boldsymbol{\Sigma}^{-1 / 2} y, z_{\boldsymbol{\Sigma}}:=\boldsymbol{\Sigma}^{-1 / 2} z$ and $b_{\boldsymbol{\Sigma}}:=\boldsymbol{\Sigma}^{-1 / 2} b$, which is drawn from a Gaussian distribution with an identity covariance matrix. Finally, let $\|\cdot\|_{\boldsymbol{\Sigma}}$ be the norm induced by the scalar product $\langle x, y\rangle_{\boldsymbol{\Sigma}}:=\left\langle x, \boldsymbol{\Sigma}^{-1} y\right\rangle$.
Corollary 1 (non-white Gaussian noise). For any non-degenerate prior $P_{Z}$, any non-degenerate $\boldsymbol{\Sigma}, Y=Z+B$, we have:

1. $\psi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}$ is one-to-one.
2. $\psi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}$ and its inverse are $C^{\infty}$.
3. $\forall y \in \mathbb{R}^{n}, \psi_{\mathbf{I}, \mathbf{\Sigma}, P_{Z}}(y)$ is the unique global minimum and stationary point of

$$
z \mapsto \frac{1}{2}\|y-\mathbf{I} z\|_{\boldsymbol{\Sigma}}^{2}+\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(z) .
$$

with $\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(z):=\phi_{\mathbf{I}, \mathbf{I}, P_{\boldsymbol{\Sigma}^{-1 / 2}}}\left(\boldsymbol{\Sigma}^{-1 / 2} z\right)$
4. $\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}$ is $C^{\infty}$.

As in the white noise case, up to an additive constant, $\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}$ is the only penalty with the above properties.
Proof. First, we introduce a simple lemma that is pivotal throughout each step of this section.
Lemma 1. For any function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and any $\boldsymbol{M} \in \mathbb{R}^{n \times p}$, we have:

$$
\boldsymbol{M} \underset{v \in \mathbb{R}^{p}}{\operatorname{argmin}} f(\boldsymbol{M} v)=\underset{u \in \operatorname{range}(\boldsymbol{M}) \subseteq \mathbb{R}^{n}}{\operatorname{argmin}} f(u) .
$$

Now, the linearity of the (conditional) expectation makes it possible to write

$$
\begin{aligned}
\boldsymbol{\Sigma}^{-1 / 2} \mathbb{E}(Z \mid Y=y) & =\mathbb{E}\left(\boldsymbol{\Sigma}^{-1 / 2} Z \mid \boldsymbol{\Sigma}^{-1 / 2} Y=\boldsymbol{\Sigma}^{-1 / 2} y\right) \\
\Leftrightarrow \boldsymbol{\Sigma}^{-1 / 2} \psi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(y) & =\psi_{\mathbf{I}, \mathbf{I}, P_{\boldsymbol{\Sigma}^{-1 / 2} Z}}\left(\boldsymbol{\Sigma}^{-1 / 2} y\right) .
\end{aligned}
$$

Using Theorem 1, it follows that:

$$
\psi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(y)=\boldsymbol{\Sigma}^{1 / 2} \psi_{\mathbf{I}, \mathbf{I}, P_{\boldsymbol{\Sigma}^{-1 / 2}}}\left(\boldsymbol{\Sigma}^{-1 / 2} y\right)
$$

From this property and Theorem 1, it is clear that $\psi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}$ is one-to-one, $C^{\infty}$, as well as its inverse. Now, using Lemma 1 with $\boldsymbol{M}=\boldsymbol{\Sigma}^{1 / 2}$, we get:

$$
\begin{aligned}
\psi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(y) & =\boldsymbol{\Sigma}^{1 / 2} \underset{z^{\prime} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\frac{1}{2}\left\|\boldsymbol{\Sigma}^{-1 / 2} y-z^{\prime}\right\|^{2}+\phi_{\mathbf{I}, \mathbf{I}, P_{\boldsymbol{\Sigma}^{-1 / 2}}}\left(z^{\prime}\right)\right\} \\
& =\underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\frac{1}{2}\left\|\boldsymbol{\Sigma}^{-1 / 2} y-\boldsymbol{\Sigma}^{-1 / 2} z\right\|^{2}+\phi_{\mathbf{I}, \mathbf{I}, P_{\boldsymbol{\Sigma}^{-1 / 2}}}\left(\boldsymbol{\Sigma}^{-1 / 2} z\right)\right\} \\
& =\underset{z \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\frac{1}{2}\|y-z\|_{\boldsymbol{\Sigma}}^{2}+\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(z)\right\},
\end{aligned}
$$

with $\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(z):=\phi_{\mathbf{I}, \mathbf{I}, P_{\boldsymbol{\Sigma}^{-1 / 2} Z}}\left(\boldsymbol{\Sigma}^{-1 / 2} z\right)$. This definition also makes it clear that $\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}$ is $C^{\infty}$, and that this minimizer is unique (and is the only stationary point).

### 2.3 A simple under-determined problem

As a step towards handling the more generic linear inverse problem $y=\boldsymbol{A} z+b$, we will investigate the particular case where $\boldsymbol{A}=\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right]$. For the sake of readability, for any two (column) vectors $u, v$, let us denote $[u ; v]$ the concatenated (column) vector. First and foremost let us decompose the MMSE estimator into two parts, composed of the first $n$ and last $(D-n)$ components :

$$
\psi_{\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}], \boldsymbol{\Sigma}, P_{Z} \\
& (y):=\left[\psi_{1}(y) ; \psi_{2}(y)\right]
\end{array}\right] .\left[\begin{array}{l}
\end{array}\right]}
$$

Corollary 2 (simple under-determined problem). For any non-degenerate prior $P_{Z}$, any nondegenerate $\boldsymbol{\Sigma}$, we have:

1. $\psi_{1}(y)=\psi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(y)$ is one-to-one and $C^{\infty}$. Its inverse and $\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}$ are also $C^{\infty}$;
2. $\psi_{2}(y)=\left(p_{B} \star g\right)(y) /\left(p_{B} \star P_{Z}\right)(y)$ (with $\left.g\left(z_{1}\right):=\mathbb{E}\left(Z_{2} \mid Z_{1}=z_{1}\right) p\left(z_{1}\right)\right)$ is $C^{\infty}$;
3. $\psi_{\left[\begin{array}{l}\mathbf{I} \\ \mathbf{o}\end{array}\right], \boldsymbol{\Sigma}, P_{Z}}$ is injective.

Moreover, let $h: \mathbb{R}^{(D-n)} \times \mathbb{R}^{(D-n)} \mapsto \mathbb{R}^{+}$be any function such that $h\left(x_{1}, x_{2}\right)=0 \Rightarrow x_{1}=x_{2}$,
3. $\forall y \in \mathbb{R}^{n}, \psi_{[\mathbf{I} \quad \mathbf{0}], \boldsymbol{\Sigma}, P_{Z}}(y)$ is the unique global minimum and stationary point of

$$
z \mapsto \frac{1}{2}\left\|y-\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] z\right\|_{\boldsymbol{\Sigma}}^{2}+\phi_{\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}], \boldsymbol{\Sigma}, P_{Z}
\end{array}(z) .\right.}
$$

with $\phi_{\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}], \boldsymbol{\Sigma}, P_{Z}\end{array}\right.}(z):=\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}\left(z_{1}\right)+h\left(z_{2}, \psi_{2} \circ \psi_{1}^{-1}\left(z_{1}\right)\right)$ and $z=\left[z_{1} ; z_{2}\right]$.
4. $\phi_{\left[\begin{array}{l}\mathbf{I} \\ \mathbf{0}], \boldsymbol{\Sigma}, P_{Z}\end{array}\right.}$ is $C^{\infty}$ if and only if $h$ is.

Proof. The expression of $\psi_{2}(y)$ is obtained by Bayes rule in the integral defining the conditional expectation. The smoothing effect of convolution with the Gaussian $p_{B}(b)$ implies the $C^{\infty}$ nature of $\psi_{2}$. Let $Z_{1}=\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right] Z$. Using again the linearity of the expectation, we have:

$$
\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \psi_{\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \boldsymbol{\Sigma}, P_{Z}}(y)=\mathbb{E}\left(\left.\left[\begin{array}{ll}
\mathbf{l} & \mathbf{0}
\end{array}\right] Z \right\rvert\, Y=y\right)=\mathbb{E}\left(Z_{1} \mid Y=y\right)=\psi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(y)
$$

Hence, $\psi_{1}(y)=\psi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}(y)$.
Given the properties of $h$, we have:

$$
\psi_{2}(y)=\underset{z_{2} \in \mathbb{R}^{(D-n)}}{\operatorname{argmin}} h\left(z_{2}, \psi_{2} \circ \psi_{1}^{-1}\left(\psi_{1}(y)\right)\right) .
$$

It follows that:

$$
\left.\psi_{[\mathbf{I}} \mathbf{0}\right], \boldsymbol{\Sigma}, P_{Z}(y)=\underset{z=\left[z_{1} ; z_{2}\right] \in \mathbb{R}^{D}}{\operatorname{argmin}} \frac{1}{2}\left\|y-z_{1}\right\|_{\boldsymbol{\Sigma}}^{2}+\phi_{\mathbf{I}, \boldsymbol{\Sigma}, P_{Z}}\left(z_{1}\right)+h\left(z_{2}, \psi_{2} \circ \psi_{1}^{-1}\left(z_{1}\right)\right)
$$

From the definitions of $\left.\psi_{[\mathbf{I}}^{\mathbf{I}} \mathbf{0}\right], \boldsymbol{\Sigma}, P_{Z}$ and $h$, it is clear, using Corollary 1 that $\left.\psi_{[\mathbf{I}} \quad \mathbf{0}\right], \boldsymbol{\Sigma}, P_{Z}$ is injective, is the unique minimizer and stationary point, and that $\left.\phi_{[\mathbf{I}} \quad \mathbf{0}\right], \boldsymbol{\Sigma}, P_{Z}$ is $C^{\infty}$ if and only if $h$ is.

### 2.4 Inverse Problem

We are now equipped to generalize our result to an arbitrary full rank matrix $\boldsymbol{A}$. Using the Singular Value Decomposition, $\boldsymbol{A}$ can be factored as:

$$
\boldsymbol{A}=\boldsymbol{U}\left[\begin{array}{ll}
\boldsymbol{\Delta} & \mathbf{0}
\end{array}\right] \boldsymbol{V}^{\top}=\tilde{\boldsymbol{U}}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \boldsymbol{V}^{\top}, \text { with } \tilde{\boldsymbol{U}}=\boldsymbol{U} \boldsymbol{\Delta}
$$

Our problem is now equivalent to $y^{\prime}:=\tilde{\boldsymbol{U}}^{-1} y=\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}\end{array}\right] \boldsymbol{V}^{\top} z+\tilde{\boldsymbol{U}}^{-1} b=: z^{\prime}+b^{\prime}$.
Let $\tilde{\boldsymbol{\Sigma}}=\tilde{\boldsymbol{U}}^{-1} \boldsymbol{\Sigma} \tilde{\boldsymbol{U}}^{-\top}$. Note that $B^{\prime} \sim \mathcal{N}(0, \tilde{\boldsymbol{\Sigma}})$.

Theorem 2 (Main result). Let $h: \mathbb{R}^{(D-n)} \times \mathbb{R}^{(D-n)} \mapsto \mathbb{R}^{+}$be any function such that $h\left(x_{1}, x_{2}\right)=$ $0 \Rightarrow x_{1}=x_{2}$. For any non-degenerate prior $P_{Z}$, any non-degenerate $\boldsymbol{\Sigma}$ and $\boldsymbol{A}$, we have:

1. $\psi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}$ is injective.
2. $\forall y \in \mathbb{R}^{n}, \psi_{\left[\begin{array}{ll}\mathbf{I} & \mathbf{0}], \boldsymbol{\Sigma}, P_{Z}\end{array}\right.}(y)$ is the unique global minimum and stationary point of $z \mapsto \frac{1}{2}\|y-\boldsymbol{A} z\|_{\boldsymbol{\Sigma}}^{2}+\phi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}^{h}(z)$, with $\phi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}^{h}(z):=\phi_{\left[\begin{array}{ll}\mathbf{I} & 0\end{array}\right], \tilde{\boldsymbol{\Sigma}}, P_{\boldsymbol{V}^{\top} Z}}\left(\boldsymbol{V}^{\top} z\right)$.
3. $\phi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}$ is $C^{\infty}$ if and only if $h$ is.

Proof. First note that:

$$
\begin{aligned}
\boldsymbol{V}^{\top} \psi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}(y) & =\boldsymbol{V}^{\top} \mathbb{E}(Z \mid Y=y) \\
& =\mathbb{E}\left(Z^{\prime} \mid Y^{\prime}=y^{\prime}\right) \\
& =\psi_{\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \tilde{\boldsymbol{\Sigma}}, P_{Z^{\prime}}} \\
& =\underset{z^{\prime}}{\operatorname{argmin}} \frac{1}{2}\left\|\boldsymbol{U}^{\top} y-\left[\begin{array}{ll}
\mathbf{I} & 0
\end{array}\right] z^{\prime}\right\|_{\tilde{\boldsymbol{\Sigma}}}^{2}+\phi_{\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right], \tilde{\boldsymbol{\Sigma}}, P_{\boldsymbol{V}^{\top}{ }_{Z}}}\left(z^{\prime}\right),
\end{aligned}
$$

using Corollary 2. Now, using Lemma 1. we have:

$$
\begin{aligned}
& \psi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}(y)=\underset{z}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{U}^{\top}\left(\begin{array}{ll}
\left.y-\boldsymbol{U}\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}
\end{array}\right] \boldsymbol{V}^{\top}\right) \|_{\tilde{\boldsymbol{\Sigma}}}^{2}+\phi_{\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}], \tilde{\boldsymbol{\Sigma}}, P_{\boldsymbol{V}^{\top} z}
\end{array}\right.}\left(\boldsymbol{V}^{\top} z\right), ~\left(\begin{array}{ll} 
\\
\end{array}\right]
\end{array}\right. \\
& =\underset{z}{\operatorname{argmin}} \frac{1}{2}\|y-\boldsymbol{A} z\|_{\boldsymbol{\Sigma}}^{2}+\phi_{\left[\begin{array}{ll}
\mathbf{I} & \mathbf{0}], \tilde{\boldsymbol{\Sigma}}, P_{\boldsymbol{V}^{\top} z}
\end{array}\right.}\left(\boldsymbol{V}^{\top} z\right)
\end{aligned}
$$

The other properties come naturally from those of Corollary 2
Remark 1. If $\boldsymbol{A}$ is invertible (hence square), $\psi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}$ is one-to-one. It is also $C^{\infty}$, as well as its inverse and $\phi_{\boldsymbol{A}, \boldsymbol{\Sigma}, P_{Z}}$.

## 3 Connections between the MMSE and regularization-based estimators

Equipped with the results from the previous sections, we can now have a clearer idea about how MMSE estimators, and those produced by a regularization-based approach relate to each other. This is the object of the present section.

### 3.1 Obvious connections

Some simple observations of the main theorem can already shed some light on those connections. First, for any prior, and as long as $\boldsymbol{A}$ is invertible, we have shown that there exists a corresponding regularizing term (which is unique up to an additive constant). This simply means that the set of MMSE estimators in linear inverse problems with Gaussian noise is a subset of the set of estimators that can be produced by a regularization approach with a quadratic data-fitting term.

Second, since the corresponding penalty is necessarily smooth, it is in fact only a strict subset of such regularization estimators. In other words, for some regularizers, there cannot be any interpretation in terms of an MMSE estimator. For instance, as pinpointed by [8, all the
non- $C^{\infty}$ regularizers belong to that category. Among them, all the sparsity-inducing regularizers (the $\ell^{1}$ norm, among others) fall into this scope. This means that when it comes to solving a linear inverse problem (with an invertible $\boldsymbol{A}$ ) under Gaussian noise, sparsity inducing penalties are necessarily suboptimal (in a mean squared error sense).

### 3.2 Relating desired computational properties to the evidence

Let us now focus on the MMSE estimators (which also can be written as regularization-based estimators). As reported in the introduction, one of the reasons explaining the success of the optimization-based approaches is that one can have a better control on the computational efficiency on the algorithms via some appealing properties of the functional to minimize. An interesting question then is: can we relate these properties of the regularizer to the Bayesian priors, when interpreting the solution as an MMSE estimate?

For instance, when the regularizer is separable, one may easily rely on coordinate descent algorithms [9]. Here is a more formal definition:
Definition 1 (Separability). A vector-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is separable if there exists a set of functions $f_{1}, \ldots, f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x \in \mathbb{R}^{n}, f(x)=\left(f_{i}\left(x_{i}\right)\right)_{i=1}^{n}$.

A scalar-valued function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is additively separable (resp. multiplicatively separable) if there exists a set of functions $g_{1}, \ldots, g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ such that $\forall x \in \mathbb{R}^{n}, g(x)=\sum_{i=1}^{n} g_{i}\left(x_{i}\right)$ (resp. $\left.g(x)=\prod_{i=1}^{n} g_{i}\left(x_{i}\right)\right)$.

Especially when working with high-dimensional data, coordinate descent algorithms have proven to be very efficient and have been extensively used for machine learning [10, (11].

Even more evidently, when solving optimization problems, dealing with convex functions ensures that many algorithms will provably converge to the global minimizer [6]. As a consequence, it would be interesting to be able to characterize the set of priors for which the MMSE estimate can be expressed as a minimizer of a convex function.

The following lemma precisely addresses these issues. For the sake of simplicity and readability, we focus on the specific case where $\boldsymbol{A}=\mathbf{I}$ and $\boldsymbol{\Sigma}=\mathbf{I}$.

Lemma 2 (Convexity and Separability). For any non-degenerate prior $P_{Z}$, Theorem 1 says that $\forall y \in \mathbb{R}^{n}, \psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)$ is the unique global minimum and stationary point of $z \mapsto \frac{1}{2}\|y-\overline{\mathbf{I}} z\|^{2}+$ $\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}(z)$. Moreover, the following results hold:

1. $\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}$ is convex if and only if $p_{Y}(y):=p_{B} \star P_{Z}(y)$ is log-concave,
2. $\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}$ is additively separable if and only if $p_{Y}(y)$ is multiplicatively separable.

Proof of Lemma 园. From Lemma II. 1 in [8, the Jacobian matrix $J\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y)$ is positive definite hence invertible. Derivating $\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)\right]$ from its definition in Theorem 1 , we get:

$$
\begin{aligned}
J\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y) & \nabla \phi_{\mathbf{I}, \mathbf{I}, P_{Z}}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)\right] \\
& =\nabla\left[-\frac{1}{2}\left\|y-\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)\right\|_{2}^{2}-\log p_{Y}(y)\right] \\
& =-\left(\mathbf{I}_{n}-J\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y)\right)\left(y-\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)\right)-\nabla \log p_{Y}(y) \\
& =\left(\mathbf{I}_{n}-J\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y)\right) \nabla \log p_{Y}(y)-\nabla \log p_{Y}(y) \\
& =-J\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y) \nabla \log p_{Y}(y)
\end{aligned}
$$

Then:

$$
\nabla \phi_{\mathbf{I}, \mathbf{I}, P_{Z}}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)\right]=-\nabla \log p_{Y}(y)
$$

Derivating this expression once more, we get:

$$
J\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y) \nabla^{2} \phi_{\mathbf{I}, \mathbf{I}, P_{Z}}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)\right]=-\nabla^{2} \log p_{Y}(y) .
$$

Hence:

$$
\nabla^{2} \phi_{\mathbf{I}, \mathbf{I}, P_{Z}}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)\right]=-J^{-1}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y) \nabla^{2} \log p_{Y}(y) .
$$

As $\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}$ is one-to-one, $\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}$ is convex if and only if $\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right]$ is. It also follows that:

$$
\begin{aligned}
\phi_{\mathbf{I}, \mathbf{I}, P_{Z}} \text { convex } & \Leftrightarrow \nabla^{2} \phi_{\mathbf{I}, \mathbf{I}, P_{Z}}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}(y)\right] \succcurlyeq 0 \\
& \Leftrightarrow-J^{-1}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y) \nabla^{2} \log p_{Y}(y) \succcurlyeq 0
\end{aligned}
$$

As $J\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y)=\mathbf{I}_{n}+\nabla^{2} \log p_{Y}(y)$, the matrices $\nabla^{2} \log p_{Y}(y), J\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y)$, and $J^{-1}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y)$ are simultaneously diagonalisable. It follows that the matrices $J^{-1}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y)$ and $\nabla^{2} \log p_{Y}(y)$ commute. Now, as $J\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y)$ is positive definite, we have:

$$
-J^{-1}\left[\psi_{\mathbf{I}, \mathbf{I}, P_{Z}}\right](y) \nabla^{2} \log p_{Y}(y) \succcurlyeq 0 \Leftrightarrow \nabla^{2} \log p_{Y}(y) \preccurlyeq 0 .
$$

It follows that $\phi_{\mathbf{I}, \mathbf{I}, P_{Z}}$ is convex if and only if $p_{Y}(y):=p_{B} \star P_{X}(y)$ is log-concave.
By its definition (II.3) in [8], it is clear that:

$$
\phi_{\mathbf{I}, \mathbf{I}, P_{Z}} \text { is additively separable } \Leftrightarrow \psi_{\mathbf{I}, \mathbf{I}, P_{Z}} \text { is separable. }
$$

Using now equation (II.2) in [8], we have:

$$
\begin{aligned}
\psi_{\mathbf{I}, \mathbf{I}, P_{Z}} \text { is separable } & \Leftrightarrow \nabla \log p_{Y} \text { is separable } \\
& \Leftrightarrow \log p_{Y} \text { is additively separable } \\
& \Leftrightarrow p_{Y} \text { is multiplicatively separable. }
\end{aligned}
$$

Remark 2. This lemma focuses on the specific case where $\boldsymbol{A}=\mathbf{I}$ and a white Gaussian noise. However, considering the transformations induced by a shift to an arbitrary invertible matrix $\boldsymbol{A}$ and to an arbitrary non-degenerate covariance matrix $\boldsymbol{\Sigma}$, which are depicted throughout Section 2, it is easy to see that the result on convexity carries to this more general setting. An analogous (but more complicated) result could be also derived regarding separability. We leave that part to the interested reader.

These results provide a precise characterization of conditions on the Bayesian priors so that the MMSE estimator can be expressed as minimizer of a convex or separable function. Interestingly, those conditions are expressed in terms of the probability distribution function ( $p d f$ in short) of the observations $p_{Y}$, which is sometimes referred to as the evidence. The fact that the evidence plays a key role in Bayesian estimation has been observed in many contexts, see for example [12. Given that we assume that the noise is Gaussian, its pdf $p_{B}$ always is log-concave. Thanks to a simple property of the convolution of log-concave functions, it is sufficient that the prior on the signal $p_{Z}$ is log-concave to ensure that $p_{Y}$ also is. However, it is not a necessary condition. This means that there are some priors $p_{X}$ that are not log-concave such that the associated MMSE estimator can still be expressed as the minimizer of a functional with a convex regularizer.

From this result, one may also draw an interesting negative result. If the distribution of the observation $y$ is not log-concave, then, the MMSE estimate cannot be expressed as the solution of a convex regularization-oriented formulation. This means that, with a quadratic data-fitting term, a convex approach to signal estimation cannot be optimal (in a mean squared error sense).

### 3.3 Worked example : the Bernoulli-Gaussian model

The Bernoulli-Gaussian prior corresponds to the specific case of a mixture of two 1-D Gaussians:

$$
p_{X}(x):=p \frac{1}{2 \pi \sigma_{0}} e^{-\frac{x^{2}}{2 \sigma_{0}^{2}}}+(1-p) \frac{1}{2 \pi \sigma_{1}} e^{-\frac{x^{2}}{2 \sigma_{1}^{2}}}
$$

where $\sigma_{0}^{2} \rightarrow 0$. This prior is often used as marginal distribution to model high-dimensional sparse data, as the value $z=0$ is drawn with a probability $p>0$. Naturally, in the limit where $\sigma_{0}^{2}$ tends to zero (i.e. $\alpha$ tends to zero), this prior is not log-concave for any $p>0$. Without loss of generality, let us consider a unit energy signal (i.e. $\sigma_{1}^{2}=\frac{1}{1-p}$ ). As described in [8] (section III), when a Gaussian noise (with a variance $\sigma^{2}$ ) is added to the mixture, the evidence $p_{Y}$ of the observed data remains a mixture of Gaussians.

The study of the log-concavity of the evidence $p_{Y}$ hence falls into the scope of the analysis of the log-concavity of a mixture of two Gaussians, developed in Appendix A In a nutshell, this analysis shows that a high level of noise reduces the gap between the variances of the two Gaussians of the mixture. As a consequence, for any fixed value of the sparsity level $p$, there exists a level of noise above which the evidence $p_{Y}$ becomes log-concave.

Using Lemma 3 (in Appendix A) we obtain the following figure depicting the maximal signal-to-noise ratio $(\mathrm{SNR})$ (i.e. $\left.-20 \log _{10}(\sigma)\right)$ ensuring that the evidence $p_{Y}$ is log-concave, as a function of the sparsity level $p$.


Figure 1: A plot of the maximal SNR so that $p_{Y}$ is log-concave (hence $\phi$ is convex)
We notice that when $p \rightarrow 0$ (i.e., the signal is not sparse), the maximal SNR goes to $+\infty$. This means that for any level of noise, the evidence (which becomes a simple Gaussian) becomes log-concave. On the other hand, when $p \rightarrow 1$ (i.e. the signal is very sparse), the maximal SNR goes to $-\infty$. Moreover, the curve is monotonically decreasing with $p$. In other words, the higher the sparsity level, the lower the SNR (hence the higher the noise level) needs to be to ensure that the evidence $p_{Y}$ is log-concave. Furthermore, one can note that even for a relatively low level of sparsity, say 0.1 , the evidence $p_{Y}$ cannot be log-concave unless the SNR is smaller than 9 dB . As a consequence, when using penalized least-squares methods with a convex regularizing term, the
resulting estimator cannot be optimal (in a mean squared error sense) unless the observations are very noisy, which basically means that the performances will be poor anyway.

## 4 Prospects

In this paper we have extended a result, stating that in the context of a linear inverse problem with a Gaussian noise, for any Bayesian prior, there exists a regularizer $\phi$ such that the MMSE estimator can be expressed as the solution of regularized regression problem (2). This result already is a generalization of an existing result in [8. However, we think it could be extended with regards to many aspects. For instance, our proof of the result naturally builds on elementary bricks that combine in a way that is imposed by the definition of the linear inverse problem. However, by developing more bricks and combining them in different ways, it may be possible to derive analogous results for a variety of other problems.

Moreover, in the situation where $\boldsymbol{A}$ is not invertible (i.e. the problem is under-determined), there is a large set of admissible regularizers (i.e. up to the choice of a function $h$ in Corollary 2 ). This additional degree of freedom might be leveraged in order to provide some additional desirable properties, from an optimization perspective, for instance.

Also, our result relies heavily on the choice of a quadratic loss for the data-fitting term and on a Gaussian model for the noise. Naturally, investigating other choices (e.g. logistic or hinge loss, Poisson noise, to name a few) is a question of interest. But a careful study of the proofs in 8 suggests that there is a peculiar connection between the Gaussian noise model on the one hand and the quadratic loss on the other hand. However, further investigations should be conducted to get a deeper understanding on how these really interplay on a higher level.

Finally, we have stated a number of negative results regarding the non-optimality of sparse decoders or of convex formulations for handling observations drawn from a distribution that is not log-concave. It would be interesting to develop a metric in the estimators space in order to quantify, for instance, how "far" one arbitrary estimator is from an optimal one, or, in other words, what is the intrinsic cost of convex relaxations.

## Acknowledgements

This work was supported in part by the European Research Council, PLEASE project (ERC-StG-2011-277906).

## References

[1] Arthur E. Hoerl and Robert W. Kennard. Ridge regression: applications to nonorthogonal problems. Technometrics, 12(1):69-82, 1970.
[2] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1):267-288, 1996.
[3] Matthieu Kowalski. Sparse regression using mixed norms. Applied and Computational Harmonic Analysis, 27(3):303-324, 2009.
[4] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optmization with sparsity-inducing penalties. Foundations and Trends in Machine Learning, 4(1):1-106, 2012.
[5] Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. Active set algorithm for structured sparsity-inducing norms. In OPT 2009: 2nd NIPS Workshop on Optimization for Machine Learning, 2009.
[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[7] Rémi Gribonval, Volkan Cevher, and Mike Davies, E. Compressible Distributions for Highdimensional Statistics. IEEE Transactions on Information Theory, 2012.
[8] Rémi Gribonval. Should penalized least squares regression be interpreted as maximum a posteriori estimation? IEEE Transactions on Signal Processing, 59(5):2405-2410, 2011.
[9] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. Core discussion papers, Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, 2010.
[10] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. Sathiya Keerthi, and S. Sundararajan. A dual coordinate descent method for large-scale linear svm. In Proceedings of the 25th International Conference on Machine Learning, pages 408-415, 2008.
[11] Pierre Machart, Thomas Peel, Liva Ralaivola, Sandrine Anthoine, and Hervé Glotin. Stochastic low-rank kernel learning for regression. In 28th International Conference on Machine Learning, 2011.
[12] Martin Raphan and Eero P. Simoncelli. Learning to be bayesian without supervision. In in Adv. Neural Information Processing Systems (NIPS*06. MIT Press, 2007.

## A Conditions for the log-concavity of a 1-D mixture of two Gaussians

In this section, we study the conditions under which a mixture of two (centered) 1-D Gaussians is log-concave. Let $g_{\sigma^{2}}(x)$ denote the pdf a (zero-centered) 1-D Gaussian, with variance $\sigma$ :

$$
g_{\sigma^{2}}(x):=\frac{1}{2 \pi \sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

Given some weight parameter $p$ and two variances $\sigma_{0}^{2}$ and $\sigma_{1}^{2}$, the pdf of a mixture of two Gaussians writes:

$$
\pi_{0}(x):=p g_{\sigma_{0}^{2}}(x)+(1-p) g_{\sigma_{1}^{2}}(x)
$$

If $\sigma_{0}=\sigma_{1}$, we get a mixture of two identical Gaussian, hence a single Gaussian, which is always log-concave. Without loss of generality, let us now assume that $\sigma_{0}<\sigma_{1}$ and let $\alpha:=\frac{\sigma_{0}^{2}}{\sigma_{1}^{2}}<1$. The conditions under which the mixture $\pi_{0}(x)$ is log-concave write as follows:

Lemma 3. The weighted mixture of two Gaussians $\pi_{0}$ is log-concave if and only if the weight parameter $p$ is such that:

$$
\begin{gathered}
p \leq \tilde{p}(\alpha):=\frac{\sqrt{\alpha}}{\tilde{\theta}(\alpha)+\sqrt{\alpha}} \text {, with: } \\
\tilde{\theta}(\alpha):=\sup _{|x|>\frac{1}{1-\sqrt{\alpha}}} \frac{e^{\frac{(1-\alpha) x^{2}}{2}}}{2 \alpha}\left[-\sqrt{\left(\alpha+1-(\alpha-1)^{2} x^{2}\right)^{2}-4 \alpha}+\left((\alpha-1)^{2} x^{2}-\alpha-1\right)\right] .
\end{gathered}
$$

There does not seem to be a closed-form expression for $\tilde{\theta}(\alpha)$. However, it is possible use numerical simulations to plot $\tilde{p}(\alpha)$ in Figure 2 As a reminder, $p$ is the weight associated to the smaller variance Gaussian. As a consequence, Figure 2 shows that the mixture of two Gaussians is log-concave for a larger range of values of the parameter $\alpha$ when the weight $p$ of the smaller variance Gaussian is small. Moreover, we can see that the higher the gap between the two variances $\sigma_{0}^{2}$ and $\sigma_{1}^{2}$ (i.e. when $\alpha$ goes to 0 ), the lower the weight $p$ on the small-varianced Gaussian has to be, in order to enforce the log-concavity of the mixture $\pi_{0}$.


Figure 2: A plot of $\tilde{p}(\alpha)$ from Lemma 3. The upper left area, with small $\alpha$ and large $p$, corresponds to what is typically considered as a sparse model. One can observe that it corresponds to a mixture $\pi_{0}$ that is not log-concave (hence a non-convex penalty $\phi$ ).

Proof. The log-concavity of the mixture $\pi_{0}(x)$ does not depend on any normalization or stretching factor. Let $\theta:=\frac{1-p}{p} \frac{\sigma_{0}}{\sigma_{1}}$ and $g(x):=e^{-\frac{x^{2}}{2}}$. It follows that:

$$
\begin{aligned}
\pi_{0} \text { is log-concave } & \Leftrightarrow g(x)+\theta[g(x)]^{\alpha}=: \pi(x) \text { is log-concave } \\
& \Leftrightarrow \forall x, \pi^{\prime}(x)^{2}-\pi^{\prime \prime}(x) \pi(x) \geq 0
\end{aligned}
$$

Noticing that $g^{\prime}(x)=-x g(x)$, it follows that:

$$
\begin{gathered}
\pi^{\prime}(x)=-x\left[g(x)+\theta \alpha[g(x)]^{\alpha}\right] \\
\pi^{\prime \prime}(x)=\left(x^{2}-1\right) g(x)+\theta \alpha\left(\alpha x^{2}-1\right)[g(x)]^{\alpha}
\end{gathered}
$$

With some mild abuse of notation, we will now denote $\pi(x)$ and $g(x)$ by $\pi$ and $g$. Hence,

$$
\begin{aligned}
\pi^{\prime 2}-\pi^{\prime \prime} \pi & =x^{2}\left(g+\theta \alpha g^{\alpha}\right)^{2}-\left[\left(x^{2}-1\right) g+\theta \alpha\left(\alpha x^{2}-1\right) g^{\alpha}\right]\left[g+\theta g^{\alpha}\right] \\
& =\alpha g^{2 \alpha} \theta^{2}+\left[\alpha+1-(\alpha-1)^{2} x^{2}\right] g^{\alpha+1} \theta+g^{2}:=P_{\theta}(x)
\end{aligned}
$$

To determine the conditions under which this quantity is positive, we now study $P_{\theta}(x)$ as a second-order polynomial in $\theta$. Denote $\Delta(x)$ the discriminant of $P_{\theta}(x)$ :

$$
\Delta(x)=g^{2 \alpha+2}\left(\left(\alpha+1-(\alpha-1)^{2} x^{2}\right)^{2}-4 \alpha\right)
$$

Since $\alpha<1$, the study of its sign is as follows:

$$
\begin{aligned}
\Delta(x) \geq 0 & \Leftrightarrow\left(\alpha+1-(\alpha-1)^{2} x^{2}\right)^{2}-4 \alpha \geq 0 \\
& \Leftrightarrow(\alpha-1)^{4} x^{4}-2(\alpha+1)(\alpha-1)^{2} x^{2}+(\alpha+1)^{2}-4 \alpha \geq 0 \\
& \Leftrightarrow(\alpha-1)^{2} x^{4}-2(\alpha+1) x^{2}+1 \geq 0 \\
& \Leftrightarrow\left(x^{2}-\frac{1}{(\sqrt{\alpha}+1)^{2}}\right)\left(x^{2}-\frac{1}{(\sqrt{\alpha}-1)^{2}}\right) \geq 0 \\
& \Leftrightarrow\left(x-\frac{1}{1+\sqrt{\alpha}}\right)\left(x+\frac{1}{1+\sqrt{\alpha}}\right)\left(x-\frac{1}{1-\sqrt{\alpha}}\right)\left(x+\frac{1}{1-\sqrt{\alpha}}\right) \geq 0
\end{aligned}
$$

This gives the following sign table for $\Delta(x)$ :

| $\|x\|$ | 0 |  | $\frac{1}{1+\sqrt{\alpha}}$ |  | $\frac{1}{1-\sqrt{\alpha}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta(x)$ |  | + | 0 | - | 0 | $+\infty$ |

When $\Delta(x) \leq 0$ (i.e. $|x| \in\left[\frac{1}{1+\sqrt{\alpha}}, \frac{1}{1-\sqrt{\alpha}}\right]$ ), it follows that: $\forall \theta, P_{\theta}(x) \geq 0$. To find which values of $\theta$ are compatible with the non-negativity of $P_{\theta}(x)$ for all $x$, we thus need to concentrate on values of $x$ such that $\Delta(x)<0$, i.e., $|x| \notin\left[\frac{1}{1+\sqrt{\alpha}}, \frac{1}{1-\sqrt{\alpha}}\right]$.

First, for small values of $x$, we have:

$$
|x|<\frac{1}{1+\sqrt{\alpha}} \Leftrightarrow \alpha+1-(\alpha-1)^{2} x^{2}>2 \sqrt{\alpha}>0
$$

As a direct consequence, for $|x|<\frac{1}{1+\sqrt{\alpha}}, P_{\theta}(x)>0$, hence we only need to concentrate on the case where $|x|>\frac{1}{1-\sqrt{\alpha}}$. For such values, the polynomial (in $\theta$ ) $P_{\theta}(x)$ has two roots $\theta_{1}(x)$ and $\theta_{2}(x)$, such that $P_{\theta}(x) \leq 0 \Leftrightarrow \theta \in\left[\theta_{1}(x), \theta_{2}(x)\right]$. These write:

$$
\theta_{1 / 2}(x)=\frac{g^{1-\alpha}}{2 \alpha}\left[ \pm \sqrt{\left(\alpha+1-(\alpha-1)^{2} x^{2}\right)^{2}-4 \alpha}-\left(\alpha+1-(\alpha-1)^{2} x^{2}\right)\right]
$$

This defines forbidden values (for $\theta$ ) for the mixture to have a log-concave pdf:

$$
\begin{aligned}
\forall|x|>\frac{1}{1-\sqrt{\alpha}}, P_{\theta}(x) \geq 0 & \left.\Leftrightarrow \forall|x|>\frac{1}{1-\sqrt{\alpha}}, \theta \notin\right] \theta_{1}(x), \theta_{2}(x)[ \\
& \Leftrightarrow \theta \notin] \inf _{|x|>\frac{1}{1-\sqrt{\alpha}}} \theta_{1}(x), \sup _{|x|>\frac{1}{1-\sqrt{\alpha}}} \theta_{2}(x)
\end{aligned}
$$

As $\lim _{x \rightarrow \infty} \theta_{1}(x)=0$, and summing it up, we get that $\forall x, P_{\theta}(x) \geq 0$ (i.e. $\pi$ is log-concave) if and only if $\theta \geq \sup _{|x|>\frac{1}{1-\sqrt{\alpha}}} \theta_{2}(x)=: \tilde{\theta}(\alpha)$. There does not seem to be a closed-form expression for $\tilde{\theta}(\alpha)$. However, numerical simulations allow us to plot this limit value for $\theta$ as a function of $\alpha$ in Figure A.


Figure 3: A plot of $\tilde{\theta}(\alpha)$ from Lemma 3
Given its definition, for a given value of $\alpha$, each value of $\theta=\frac{1-p}{p} \sqrt{\alpha}$ is associated to a certain weight parameter $p=\frac{\sqrt{\alpha}}{\theta+\sqrt{\alpha}}$. As a consequence, the following holds:

$$
\begin{aligned}
\pi_{0} \text { is log-concave } & \Leftrightarrow \theta \geq \tilde{\theta}(\alpha) \\
& \Leftrightarrow p \leq \tilde{p}(\alpha):=\frac{\sqrt{\alpha}}{\tilde{\theta}(\alpha)+\sqrt{\alpha}}
\end{aligned}
$$

## Contents

1 Introduction ..... 3
1.1 Two families of approaches for linear inverse problems ..... 3
1.2 Do they really provide different estimators? ..... 3
1.3 Main contributions ..... 4
1.4 Outline of the paper ..... 5
2 Main steps to the main result ..... 5
2.1 An existing result for white Gaussian denoising ..... 5
2.2 Non-white noise ..... 6
2.3 A simple under-determined problem ..... 7
2.4 Inverse Problem ..... 7
3 Connections between the MMSE and regularization-based estimators ..... 8
3.1 Obvious connections ..... 8
3.2 Relating desired computational properties to the evidence ..... 9
3.3 Worked example : the Bernoulli-Gaussian model ..... 11
4 Prospects ..... 12
A Conditions for the log-concavity of a 1-D mixture of two Gaussians ..... 13

RESEARCH CENTRE
RENNES - BRETAGNE ATLANTIQUE
Campus universitaire de Beaulieu 35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105-78153 Le Chesnay Cedex
inria.fr


[^0]:    ${ }^{1}$ which is the Bayesian optimal estimator in a $0 / 1$ loss sense, for discrete signals.
    ${ }^{2}$ We only need to assume that $Z$ does not intrinsically live almost surely in a lower dimensional hyperplane. The results easily generalize to this degenerate situation by considering appropriate projections of $y$ and $z$. Similar remarks are in order for the non-degeneracy assumptions on $\boldsymbol{\Sigma}$ and $\boldsymbol{A}$.

