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The behaviour of soap films pushed through tubes at large velocities, up to several m/s,

is investigated. The film shape deviates from its equilibrium configuration perpendicular

to the walls and gets curved downstream. A simple model relates the radius of curvature

of the film to the friction in the lubrication films touching the wall, and the scaling of

Bretherton (1961) holds up to surprisingly high velocities, at which the capillary and We-

ber numbers are no longer small parameters. The tube geometry is varied and accounted

for through the notion of hydraulic diametre. A limit of stability of the film, beyond

which the films burst or evolve unsteadily, is predicted, and captures quantitatively the

observations. The new questions raised by our results on the dissipation in soap films are

discussed, especially the role of Plateau borders and inertial effects.

1. Introduction

Aqueous foams are widely used in industry, in areas as diverse as ore flotation, oil

extraction, food and pharmaceutical production and blast noise reduction, to cite a few.

Many foam flows of practical interest are dominated by viscous friction because of high

velocity gradients, either in bulk, or localised close to confining boundaries. For instance,
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foams in porous media, used for enhanced oil recovery (Hirasaki & Lawson 1985) and soil

remediation (Chowdiah et al. 1998), often flow through narrow gaps as a train of soap

films, in contact with the confining walls through Plateau borders (PBs) where viscous

dissipation takes place and dictates the foam flow properties (Rossen & Gauglitz 1990;

Kornev et al. 1999). The influence of confinement is also paramount in microfluidics,

where foams are used in lab-on-a-chip applications (see Marmottant & Raven (2009) for

a review).

Foam flows dominated by viscous friction are also of fundamental interest: foam rheol-

ogy has received a considerable attention in recent years (Höhler & Cohen-Addad 2005),

but mostly at velocities small enough for the foam to remain in equilibrium configurations,

i.e. for structural equilibrium rules to apply. However, deviations from these equilibrium

rules have been recently evidenced (Drenckhan et al. 2005; Besson et al. 2008), due to

bubble/bubble or bubble/wall viscous friction. This calls for more studies of foam rheol-

ogy at high velocity gradients, where the structure is brought out of equilibrium because

of a high viscous resistance.

In this paper, we study the most elementary experiment of high-velocity foam rheology

in confined media: the fast flow of an isolated soap film pushed through a tube of constant

section. We especially quantify over a full range its shape deviation from the simple

equilibrium configuration, perpendicular to the confining walls. We extract a precise

experimental criterion for its rupture in terms of critical velocity.

2. Materials and methods

A glass tube was connected through flexible plastic tubes to a pressurised nitrogen bot-

tle, which supplies nitrogen through an electronic flow-rate controller (Brooks) (Fig. 1).

We have used three circular glass tubes, of inner diameters 3.6, 5.9 and 8.8 mm, and a
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Figure 1. Sketch of the experimental setup.

square one, of side 10.0 mm with rounded edges of radius of curvature lower than 1 mm.

The tube is tilted upwards with an angle of about 20◦ with respect to the horizontal, so

that the plastic tube to which it is connected is at lower level and can be used as soap

reservoir. Soap solution is injected by a syringe, directly through the open end of the

glass tube. When turned on, the gas flows into this reservoir, and creates soap films which

are subsequently pushed through the glass tube. Transient effects were also investigated

using films prepared first at low velocity, and then accelerated (Sec. 4.2). When starting

an experiment, we waited for the solution to wet entirely the glass walls, because of the

first soap injections and films. The wetting film remains intact during the whole experi-

ment: the signature of dewetting would be the nucleation and growth of dry patches and

an irregular behaviour of the films that was never observed.

The soap solution is a solution of SDS (Sigma-Aldrich) dissolved in a mixture of ultra-

pure water (Millipore) and of 10% wt glycerol (Sigma-Aldrich). The concentration of SDS

is 10 g/l, above the critical micellar concentration (cmc) of 2.3 g/l. Its bulk viscosity,

measured in a Couette rheometer (Anton Paar) is η = 1.2 mPa s. Its surface static and

dynamic properties were measured with a tensiometer (Teclis) by the rising bubble and

oscillating bubble method; the surface tension is σ = 36.8 ± 0.3 mN/m and the surface

modulus ES , defined as in Denkov et al. (2005), was below the noise level of 1 mN/m at

frequency 0.2 Hz. All solutions were used within a day from fabrication.
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The motion of a soap film is recorded with a high-speed camera (Photron APX-RS)

in the central zone of the glass tube, to avoid end effects. The main results, presented

in Sec. 4.1, have been obtained with a 2 cm long field of view (measured along the tube

axis). We checked that no significant variations of shape and velocity occur along this

trajectory: hence, the data in Sec. 4.1 concern steady film motions. Additionnal exper-

iments, discussed in Sec. 4.2, have been made on unsteady film motions, with a 15 cm

long field of view to investigate the long range stability of the films, especially for the

highest velocity values. Exemples of imaged soap films are displayed in Figs. 2 (circular

tube) and 3 (square tube). From each movie, we plot as a spatiotemporal diagram (z, t),

with z the streamwise axis and t the time, the evolution of the gray levels along the tube

centreline (Fig. 4a). The soap film appears as a dark band, which slope α yields the film

velocity v: v = dz/dt = cot α. The slope can be extracted with an accuracy better than

δα = 0.1◦, which gives the uncertainty on v: δv = δα/ sin2 α.

Above a given velocity of order 40 cm/s, the soap film shows a significant curvature

pointing downstream (Figs. 2b,c and 4b). To measure this curvature, we have performed

the following home-made contour detection procedure. First, we have thresholded and

binarised the images (Fig. 4c), then we have extracted the coordinates (ξ, z) of the points

located on the curved profile (ξ = 0 at the centre of the tube). This set of coordinates

was then fitted to the polynomial approximation of degree four of a circle of radius R:

−z = (ξ − ξ0)
2/2R +(ξ − ξ0)

4/8R3 and we extract R as the best fit parameter (Fig. 4d).

The offset ξ0 is required because, in some experiments, the soap film is not symmetric,

as in Fig. 2b where the top part of the film lags behind. All this procedure assumes a

constant curvature; we confirmed that this was a realistic assumption by checking the

close agreement between the whole experimental trace and the best fit, which also gives

a small relative uncertainty on the fitting parameter R (this uncertainty is represented
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Figure 2. Snapshots of soap films pushed from left to right through a tube of outer diameter

9.0 mm, at velocities (a) 0.37, (b) 0.64, (c) 1.81 and (d) 2.47 m/s. Films (a) and (b) were

observed to be stable, and films (c) and (d) displayed an unsteady behaviour: film (c) broke

down as shown in the three consecutive displayed frames (interframe 0.33 ms), whereas film (d)

tends to detach from its Plateau border (PB) through a long cylindrical neck, which eventually

leads to film bursting or pinch-off of a bubble (see Sec. 4.2). Notice the top-bottom asymmetry

of the PB, due to drainage [the direction of gravity is indicated in (a)], and, in (a) and (b), the

damped oscillations of the wetting film ahead of the PB in contrast with the monotonous profile

of the wetting film at the rear of the PB.

Figure 3. Snapshots of soap films pushed from left to right through a square tube of side

10.0 mm, (a) in tilted view, to get an impression of the whole shape, and (b) facing one of the

four sides: the front part of the shape is the trace of the central part of the film, and the back

part is the PB in contact with the imaged side. This is the view used to measure the radius of

curvature of the film. The superimposed notations are used in Sec. 3.
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Figure 4. (a) Example of a spatiotemporal diagram. The film is represented by a straight dark

band. To measure the film curvature, the raw image (b) is binarised (c), and (d) the coordinates

of the film contour are extracted (dotted curve) and fitted by a circle (dashed curve), also

superimposed in (b) with various notations used in the text.

by the vertical error bars in Fig. 5). Notice that the film curvature is not measurable

at lower velocities, because the curved profile is hidden by the thicker trace of the PB

(Fig. 2a).

3. Theory

3.1. Film deformation

We consider the steady motion of a soap film pushed at imposed velocity v through a

cylindrical tube of arbitrary shape, with a perimeter P and a cross-section S. The film

displays a curvature H because of the pressure drop ∆P associated to its motion, due to

the viscous friction in the liquid. After Laplace law, the two latter quantities are related

through: ∆P = 2σH, accounting for the fact that the soap films is bounded by two

gas/liquid interfaces. Hence, if the pressure on both sides of the film are equilibrated, the
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film has a constant curvature. Here, we assume that the surface tension is constant in the

transverse soap film (it needs not be in the PB; see Sec. 5.2). Following the assumption

of Cantat et al. (2004), we assume that the friction force of an elementary length dℓ

of PB, of normal unit vector pointing downstream n′ (Fig. 3), is proportional to its

projected length across the tube, dℓ n′ · ez, and to the friction force f(v) per unit PB

length; therefore, the total friction force experienced by the soap film is Pf(v). Hence,

the steady motion of the soap film obeys the equation: 2σSH = Pf(v).

In our experiments, close to the centre of the tubes, the film shows a constant radius of

curvature R; therefore, H = 2/R. Let further b = 4S/P be the hydraulic diametre of the

tube; for a circular tube of radius a, b = 2a, and for a square tube of side c, b = c. Thus,

we have the simple prediction that R/b should be independent from the tube geometry:

R

b
=

σ

f(v)
. (3.1)

3.2. Limit of steady film deformation

The above discussion assumed the existence of a steady shape of the soap film into

motion. This clearly fails at high velocity, because the curvature of the film becomes too

high for the film to meet the tube.

This idea is easy to quantify for a circular tube of radius a. A transverse film in steady

motion meets then the wall tube with a constant angle ϕ, obeying sinϕ = a/R (Fig. 4b),

and f(v) = 2σ sinϕ after (3.1). Hence, the minimal radius of curvature is simply:

Rcircle
min = a =

b

2
, (3.2)

and f(v) cannot exceed 2σ.

For a square tube, the film shape should be of constant curvature and compatible with

the local viscous friction on the boundary. Let z = ζ(x, y) be the equation of the film in

the square domain 0 ≤ x, y ≤ a. We consider an elementary portion of a PB in contact
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with a wall, say at y = 0, of length dℓ and of projected length dx (Fig. 3). This portion

of PB meets the upstream and downstream wetting films, which tensions cancel out, and

the transverse film, which two gas/liquid interfaces exert a tension in its locally tangential

direction t along the length dℓ. Furthermore, it experiences a viscous force −f(v) dx ez.

Hence, the force balance along ez on the portion of PB writes: −fvdx + 2σ dℓ t · ez = 0.

Moreover, t = n ∧ t′, where n = (−ζxex − ζyey + ez)/
√

1 + ζ2
x + ζ2

y is the normal

unit vector of the transverse film, and t′ = (ex + ζxez)/
√

1 + ζ2
x is the tangential unit

vector along the portion of PB. Hence, t · ez = ζy/
√

(1 + ζ2
x)(1 + ζ2

x + ζ2
y ). Given that

dx/dℓ = 1/
√

1 + ζ2
x, the force balance gives the condition:

f(v)

2σ
=

ζy
√

1 + ζ2
x + ζ2

y

= cos γ, (3.3)

which is analogous to a capillary surface meeting a wall at prescribed contact angle

γ = π/2 − ϕ, studied by Concus & Finn (1969). They predicted that in a wedge of

interior angle 2δ, there exists no bounded surface if γ + δ < π/2. In our case, the square

tube has four corners with an angle δ = π/4, hence the condition of existence of a shape

of a transverse film in steady motion writes simply: ϕ ≤ π/4 or, after (3.3), f(v)/σ ≤
√

2.

Hence, after (3.1), the minimal radius of curvature is:

Rsquare
min =

c√
2

=
b√
2
. (3.4)

When the friction law f(v) is known, inserting Rmin in (3.1) yields a prediction of the

maximal velocity of a stable soap film.

3.3. Friction law

Several investigations have studied the viscous friction associated to the motion of a

soap film. In a seminal paper, Bretherton (1961) has proposed a theoretical expression

for the friction associated to the motion of an infinitely long bubble in a tube, in the

limit where inertia is negligible with respect to viscous and capillary effects, and where
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the capillary number Ca = ηv/σ, comparing viscous and capillary effects, is small. In

that case, viscous friction comes from the transition zone matching the flat wetting film

between the bubble and the wall, and the bubble tip. The length of the transition zone,

and the thickness of the wetting film h∞, are slaved to the radius of the bubble tip, i. e.

the tube radius, but this cancels out in the expression of f(v):

f(v) = 4.70βσCa2/3, (3.5)

The factor β depends on the boundary condition at the gas/liquid interface: for a free

shear boundary condition (mobile interfaces), β = 1, whereas for a no-slip boundary

condition (rigid interfaces), β = 21/3 ≃ 1.26 (Appendix A). Hirasaki & Lawson (1985)

later extended this result to the case of soap films, showing that the relevant length

becomes the PB radius, although this does not alter the expression of f(v). This idea

was also used by Denkov et al. (2005) to predict the viscous dissipation associated to the

flow of foams against a wall. Finally, combining (3.1) and (3.5), we get the prediction for

the radius of curvature of the film:

R =
b

4.70βCa2/3
. (3.6)

We will compare our data to this formula in Sec. 4, before discussing its underlying

limitations in Sec. 5, notably the possible role of the PB size and of inertial effects.

4. Experiments

4.1. Film deformation

We first plot for each circular tube R as a function on v, and we fit the data by a power

law (inset of Fig. 5). We obtain exponents of −0.64±0.08, −0.71±0.04 and −0.71±0.04

for tubes of respective radius 3.6, 5.9 and 8.8 mm, all compatible with −2/3. Next, fitting

each series by a law A/v2/3, and plotting the best fit parameter A as a function of a for
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Figure 5. Plot of log R/b as a function of log v (expressed in m/s), for circular tubes

of inner diameters 3.6 (◦), 5.9 (�) and 8.8 mm (♦), and for the square tube of side

10.0 mm (×). The three points with the symbol � were obtained in unsteady situations,

see Sec. 4.2. The plain line represents the best linear fit through all data; its equation is

log R/a = (−0.69 ± 0.03) log v − 0.131 ± 0.008. The dashed (dotted) line represents the the-

oretical limit of stability for soap films in circular (square) tubes. Inset: plot of log R (in mm)

as a function of log v, and its best linear fit, for the tube of diameter 8.8 mm.

the three tubes, we have checked that the data follow a linear law A ∝ a within 6% (data

not shown). Hence, we can plot R/2a as a function of v for all tubes (Fig. 5). The data

collapse on a single curve, which best fit by a power law yields an exponent −0.65±0.04.

Therefore, the scaling R ∝ a/v2/3 predicted by (3.6) is experimentally verified, up to a

velocity of 2.0 m/s, corresponding to a capillary number of 0.07.

Although somewhat more dispersed, the data for the square tube also follow a power
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law with an exponent −0.67 ± 0.10 compatible with −2/3. According to Eq. (3.1), we

rescale R by the square side c, and we plot R/c as a function of v in the same plot as

the data for circular tubes (Fig. 5). All data collapse on the same master curve, showing

that the hydraulic diameter is indeed the relevant geometrical length to compare tubes of

different cross-sectional shapes. This master curve is a power law of exponent −0.69±0.03,

again compatible with an exponent −2/3.

Concerning the prefactor, the best fit of the data with a power law of exponent −2/3

gives Rv2/3/b = 0.74 ± 0.02 m2/3, whereas inserting the measured solution properties

in the prediction (3.6) gives Rv2/3/b = 2.08 m2/3 for β = 1 (mobile interfaces), and

1.66 m2/3 for β = 21/3 (rigid interfaces).

4.2. Unsteady behaviour and rupture of the soap films

We now test the predictions of the minimal radius of curvature given by (3.2) and (3.4).

The agreement with the most curved films that we were able to detect is excellent,

within 2% for the square and 6% for the circular tubes (Fig. 5). No steady films have

been recorded at higher velocity: they broke before entering the camera field of view.

To go beyond the limit of stability, we produced films at low velocity and accelerated

them afterwards, typically 10 cm before they enter the field of view. With this procedure,

when the gas flux is suddenly increased, the film is accelerated faster than the PBs, thus

becomes much drier. Many films burst during this transient stage (Fig. 2c), but not

all. With this procedure, few points have been obtained above the theoretical velocity

limit on Fig. 5. They are still compatible with the friction law curve and their radius of

curvature are then smaller than the theoretical predictions. As depicted on Fig. 2d, a long

cylindrical neck is then present at the rear of the film. In order to evaluate the stability

of these surprising shapes, we recorded images with a larger field of view (15 cm). These

shape appeared to be unsteady. Several scenarii have been observed: breakage after few
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centimeters; evolution towards the half sphere when the velocity is very close to the

critical velocity; pinch-off of the neck into a separate bubble in some cases, that does not

touch the wall anymore.

In contrast, we also checked that the shape recorded at velocity below the critical

velocity does not change during the 15 cm long trajectory.

5. Discussion

5.1. The weak influence of the Plateau border size

We have hitherto disregarded the role of the PB size, which does not appear in Eq. (3.6)

with which our measurements have been interpreted. However, we have observed in many

cases (e.g. Fig. 2b) that the soap films are not symmetric. The top part of the PB, which

is also the driest because of drainage, lags often significantly behind the bottom part,

hence experiences more friction.

To quantify this possible influence of the PB size, we have extracted for the experiments

with the circular tube of diameter 5.9 mm the two angles, ϕtop and ϕbottom, with which

the soap film meets the top and bottom part of the tube. This gives a ratio on the friction

force per unit PB length: f(v)top/f(v)bottom = sinϕtop/ sin ϕbottom. For all experiments

but one, we have checked that log |f(v)top/f(v)bottom| remains below 0.1, which is the

order of magnitude of the scatter of the data points with respect to the master curve in

Fig. 5.

Therefore, the PB size is a correction to the main variation of the radius of curvature,

with the velocity, that can be neglected in a first approach. In the absence of a theoretical

prediction, it may be possible to include its role using empirical laws such as the one

proposed by Raufaste et al. (2009).
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5.2. Boundary condition: rigid or mobile interfaces?

SDS is known to be very mobile at an air/water interface and to exchange quickly with the

solution bulk in case of area variation. Nevertheless, the expansion rate in our experiment

scales like v/ℓ ∼ v/rCa1/3, with ℓ the length of the transition domain, and reaches 105 s−1

for the highest velocities. At such a high rate, concentration gradients can appear, which

effect is to impede surface area variations, through Marangoni stress. The boundary

condition to be used is thus not obvious. A local conservation of the interface area, as

used by Denkov et al. (2005) for finite size bubbles, imposes that the whole wetting film

interface moves at the film velocity v and is thus unacceptable : in our geometry, the total

interface area decreases downstream and increases upstream. In Appendix A, we allow

the wetting film interface to move with the wall, as a rigid interface. The area variation

is assumed to occur on larger length scale and smaller time scale in the moving film or

in the PB interfaces and to be without influence on f(v). The viscous force for a rigid

interface is 1.26 times larger than for a mobile interface, but it is still lower than our

experimental result.

5.3. Contribution of the Plateau border to the viscous force

In Bretherton’s classical result, the friction force is localised in the transition zone be-

tween the wetting film and an external infinite reservoir. Here, on the contrary, the PB

has a finite size r. Recirculations, with velocities larger than the film velocity have been

observed in the PB, when tiny bubbles were trapped there; they have also been predicted

in numerical simulations (Saugey et al. 2006). This induces extra velocity gradients, es-

timated in Appendix B, showing that the contribution of the PB to the viscous force

should be of the same order than the contribution of the transition domains. We show

that this additional contribution scales as the Bretherton term, which could explain why

the scaling f(v) ∼ σCa2/3 still holds in our experiments.
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5.4. Absence of inertial correction

Inertial effects can be estimated using the Weber number W = ρv2r/σ, with r ∼ 10−4 m

the PB characteristic size and ρ = 103 kg/m3 the solution density. For our velocity range,

W varies between 0.04 and 25: inertial effects should then be visible and even dominant

in that velocity range. The viscous force scaling in Ca2/3, signature of the visco-capillary

regime, is therefore somewhat unexpected in this regime. Actually, the friction force

scales as f(v) ∼ ηℓv/h∞. Quéré & de Ryck (1998) have considered the deviations of

h∞ and ℓ from the visco-capillary scaling as inertia becomes significant, see Eq. (3.20)

in their article. However, the scaling ℓ/h∞ ∼ Ca−1/3 remains whatever the value of W .

Hence, since inertia modifies ℓ and h∞ likewise, the scaling f(v) ∼ σCa2/3 is unaffected

by the inertial corrections, as observed experimentally here.

6. Concluding remarks

Our results show that the limit of stability of soap films pushed through tubes obeys

simple theoretical predictions, which match the experiments with an excellent precision.

Once the friction law is known, this gives a quantitative criterion on the maximal velocity

of a foam flow in a confined geometry.

Concerning the viscous friction between the soap film and the wall, the scaling proposed

by Bretherton (1961) was shown to hold beyond its expected range of validity, at rather

high capillary and Weber numbers. In the frame of the long-standing debate on the

boundary condition and the role of surfactants (Ratulowski & Chang 1990; Shen et al.

2002; Denkov et al. 2005), this calls for further investigations on the viscous dissipation

associated with the motion of bubbles, films and foams close to walls. In this context, we

are currently studying the role of surface viscoelasticity on soap film and foam flows in

confined geometries.
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Appendix A. Friction law: mobile versus rigid interfaces

Here we compute the contribution to f of the two transition domains between the

PB and the wetting film, upstream (top sign in the equations when the symbols ± or

∓ appear) and downstream (bottom sign in the equations). We use the frame of the

steady film in which the wall moves at velocity v. Both contributions f± are determined

independently and in both cases we orient the x axis towards the thin wetting film. The

velocity v is thus positive for the upstream interface and negative for the downstream

interface. The lubrication equation allows to determine the velocity field as a function

of the interface profile h(x): u(x, y) = (σ/η)
(

λhy − 1
2
y2

)

∂3h/∂x3 + v, with λ = 1 if the

tangential stress is vanishing at the interface and λ = 1/2 if the interface moves at the

wall velocity v. The governing equation for the interface profile is, with Ca = η|v|/σ

and β = 2/(3λ − 1), ±3βCa(h∞ − h) = h3∂3h/∂x3. Using the rescaling h = Hh∞ and

x = Xh∞/(3βCa)1/3 with h∞ the wetting film thickness we get H ′′′H3 = ±(1−H), with

boundary conditions H(∞) = 1, H ′(∞) = 0 and H ′′(∞) = 0, where the prime denotes

derivation with respect to X. Finally, the contribution to the viscous force is given by

f± = η
∫ ∞

−∞
∂u/∂y(y = 0)dx that can be expressed as a function of the unknown solution

H±(X) and of the various parameters involved in the rescaling. We obtain:

f± = λσ(3βCa)2/3

∫ ∞

−∞

H±′′′
H±dX. (A 1)

Finally the contribution f± of the two transition domains verifies f±(λ)/f±(1) = λβ2/3

which gives f±(rigid)/f±(mobile) = f±(1/2)/f±(1) = 21/3 ≃ 1.26. This ratio is twice

smaller than the thickening factor h∞(rigid)/h∞(mobile) = 42/3 shown by Ratulowski

& Chang (1990) and Shen et al. (2002). Actually, the wetting film thickness is determined

from the matching condition 1/r = ∂2h/∂x2(−∞), which gives h∞ = RH ′′(−∞)(3βCa)2/3.
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Figure 6. Sketch of a Plateau border.

Hence, h∞ and f scale differently on λ and β, whence their different ratios between the

mobile and rigid limits.

Appendix B. Contribution of the Plateau border to the friction

In addition to the contribution f± of the transition domains, the PB itself has a non-

negligible contribution fPB to the total viscous force per unit length. For a film flowing

at velocity v in a tube of radius a, with a PB of typical size r, this contribution scales

like fPB ∼ ηrvPB/r ∼ ηvPB.

vPB can either be governed by the wall motion, which implies vPB ∼ v, or by a

pressure gradient due to the fore-aft asymmetry of the PB (Fig. 6), which implies vPB ∼

(P+ − P−)r/η. We compare both terms hereafter. The pressures are determined from

the geometrical constraints governing the PB shape (see Fig. 6). Using the Laplace laws

P±
g − P± = σ/r±, P+

g − P−
g = 4σ sin φ/a and the geometrical relation r±(1∓ sinφ) = r,

we get P+ − P− ∼ (P+
g − P−

g )(1 + a/2r) ∼ a(P+
g − P−

g )/2r. With f = a(P+
g − P−

g )/2

we get finally fPB/f ∼ 1. The dissipation in the PB is thus not negligible in comparison

with that in the transition region, and has the same scaling. From fPB ∼ ηvPB we

deduce CaPB ∼ Ca2/3, or vPB/v ∼ Ca−1/3 > 1. The velocity in the PB is thus mainly

governed by pressure effects and not only by the boundary velocity.
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Quéré, D. & de Ryck, A. 1998 Le mouillage dynamique des fibres. Ann. Phys. Fr. 23, 1–149.

Raspet, R. & Griffiths, S. K. 1983 The reduction of blast noise with aqueous foams. J.

Acoust. Soc. Am. 74, 1757–1763.

Ratulowski, J. & Chang, H. C. 1990 Marangoni effects of trace impurities on the motion of

long gas bubbles in capillaries. J. Fluid Mech. 210, 303–328.

Raufaste, C., Foulon, A. & Dollet, B. 2009 Dissipation in quasi-two-dimensional flowing

foams. Phys. Fluids 21, 053102.



18 B. Dollet and I. Cantat

Rossen, W. R. & Gauglitz, P. A. 1990 Percolation theory of creation and mobilization of

foams in porous media. AIChE J. 36, 1176–1188.

Saugey, A., Drenckhan, W. & Weaire, D. 2006 Wall slip of bubbles in foams. Phys. Fluids

18, 053101.

Shen, A. Q., Gleason, B., McKinley, G. H. & Stone, H. A. 2002 Fiber coating with

surfactant solutions. Phys. Fluids 14, 4055–4068.


