
Refinement and Difference for Probabilistic Automata

Benoit Delahaye, Uli Fahrenberg, Kim G. Larsen, Axel Legay

To cite this version:

Benoit Delahaye, Uli Fahrenberg, Kim G. Larsen, Axel Legay. Refinement and Difference for
Probabilistic Automata. Logical Methods in Computer Science, Logical Methods in Computer
Science Association, 2014, pp.LMCS-2013-936. <hal-01010866>

HAL Id: hal-01010866

https://hal.archives-ouvertes.fr/hal-01010866

Submitted on 20 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Rennes 1

https://core.ac.uk/display/48188005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01010866

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA

BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

Université de Nantes, France

Inria / IRISA Rennes, France

Aalborg University, Denmark

Inria / IRISA Rennes, France

Abstract. This paper studies a difference operator for stochastic systems whose specifica-
tions are represented by Abstract Probabilistic Automata (APAs). In the case refinement
fails between two specifications, the target of this operator is to produce a specification
APA that represents all witness PAs of this failure. Our contribution is an algorithm that
permits to approximate the difference of two deterministic APAs with arbitrary precision.
Our technique relies on new quantitative notions of distances between APAs used to assess
convergence of the approximations, as well as on an in-depth inspection of the refinement
relation for APAs. The procedure is effective and not more complex than refinement
checking.

1. Introduction

Probabilistic automata as promoted by Segala and Lynch [43] are a widely-used formalism for
modeling systems with probabilistic behavior. These include randomized security and com-
munication protocols, distributed systems, biological processes and many other applications.
Probabilistic model checking [5,29,47] is then used to analyze and verify the behavior of such
systems. Given the prevalence of applications of such systems, probabilistic model checking
is a field of great interest. However, and similarly to the situation for non-probabilistic model
checking, probabilistic model checking suffers from state space explosion, which hinders its
applicability considerably.

One generally successful technique for combating state space explosion is the use of
compositional techniques, where a (probabilistic) system is model checked by verifying
its components one by one. This compositionality can be obtained by decomposition,
that is, to check whether a given system satisfies a property, the system is automatically

2012 ACM Subject Classification: Mathematics of computing—Markov processes; Theory of computation—
Probabilistic computation.

Key words and phrases: Probabilistic automaton, difference, distance, specification theory.
This is an extended version of the paper [17] which has been presented at the 10th International Conference

on Quantitative Evaluation of SysTems (QEST 2013) in Buenos Aires, Argentina. Compared to [17], and in
addition to a number of small changes and improvements, proofs of the main statements and a new section
on counter-example generation have been added to the paper.

LOGICAL METHODS
IN COMPUTER SCIENCE DOI:10.2168/LMCS-???

c© Benoît Delahaye, Uli Fahrenberg, Kim G. Larsen, and Axel Legay
Creative Commons

1

ar
X

iv
:1

21
2.

42
88

v2
 [

cs
.L

O
]

 2
4

M
ay

 2
01

4

2 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

decomposed into components which are then verified. Several attempts at such automatic
decomposition techniques have been made [13,34], but in general, this approach has not been
very successful [12].

As an alternative to the standard model checking approaches using logical specifications,
e.g. LTL, MITL or PCTL [3,26,39], automata-based specification theories have been proposed,
such as Input/Output Automata [37], Interface Automata [14], and Modal Specifications [8,35,
40]. These support composition at specification level ; hence a model which naturally consists
of a composition of several components can be verified by model checking each component
on its own, against its own specification. The overall model will then automatically satisfy
the composition of the component specifications. Remark that this solves the decomposition
problem mentioned above: instead of trying to automatically decompose a system for
verification, specification theories make it possible to verify the system without constructing
it in the first place.

Moreover, specification theories naturally support stepwise refinement of specifications,
i.e. iterative implementation of specifications, and quotient, i.e. the synthesis of missing
component specifications given an overall specification and a partial implementation. Hence
they allow both logical and compositional reasoning at the same time, which makes them
well-suited for compositional verification.

For probabilistic systems, such automata-based specification theories have been first
introduced in [31], in the form of Interval Markov Chains. The focus there is only on
refinement however; to be able to consider also composition and conjunction, we have in [10]
proposed Constraint Markov Chains (CMCs) as a natural generalization which uses general
constraints instead of intervals for next-state probabilities.

In [18], we have extended this specification theory to probabilistic automata, which
combine stochastic and non-deterministic behaviors. These Abstract Probabilistic Automata

(APA) combine modal specifications and CMCs. Our specification theory using APA should
be viewed as an alternative to classical PCTL [26], probabilistic I/O automata [38] and
stochastic extensions of CSP [27]. Like these, its purpose is model checking of probabilistic
properties, but unlike the alternatives, APA support compositionality at specification level.

In the context of refinement of specifications, it is important that informative debugging
information is given in case refinement fails. More concretely, given APAs N1, N2 for which
N1 does not refine N2, we would like to know why refinement fails, and if possible, where in
the state spaces of N1 and N2 there is a problem. We hence need to be able to compare APAs
at the semantic level, i.e. to capture the difference between their sets of implementations and
to relate it to structural differences of the APAs. This is what we attempt in this paper:
given two APAs N1 and N2, to generate another APA N such that the set of implementations
of N is the differences between the sets of implementations of N1 and of N2.

As a second contribution, we introduce a notion of distance between APAs which measures
how far away one APA is from refining a second one. This distance, adapted from our work
in [8,23], is accumulating and discounted, so that differences between APAs accumulate along
executions, but in a way so that differences further in the future are discounted, i.e. have
less influence on the result than had they occurred earlier.

Both difference and distances are important tools to compare APAs which are not in
refinement. During an iterative development process, one usually wishes to successively
replace specifications by more refined ones, but due to external circumstances such as, for
example, cost of implementation, it may happen that a specification needs to be replaced
by one which is not a refinement of the old one. This is especially important when models

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 3

incorporate quantitative information, such as for APAs; the reason for the failed refinement
might simply be some changes in probability constraints, for example due to measurement
updates. In this case, it is important to assess precisely how much the new specification
differs from the old one. Both the distance between the new and old specifications, as well
as their precise difference, can aid in this assessment.

Unfortunately, because APAs are finite-state structures, the difference between two
APAs cannot always itself be represented by an APA. Instead of extending the formalism, we
propose to approximate the difference for a subclass of APAs. We introduce both over- and
under-approximations of the difference of two deterministic APAs. We construct a sequence
of under-approximations which converges to the exact difference, hence eventually capturing
all PAs in [[N1]] \ [[N2]], and a fixed over-approximation which may capture also PAs which
are not in the exact difference, but whose distance to the exact difference is zero: hence any
superfluous PAs which are captured by the over-approximation are infinitesimally close to the
real difference. Taken together, these approximations hence solve the problem of assessing
the precise difference between deterministic APAs in case of failing refinement.

For completeness, we show as a last contribution how our algorithms can be refined into
a procedure that computes a single counter-example to a failed refinement.

We restrict ourselves to the subclass of deterministic APAs, as it permits syntactic
reasoning to decide and compute refinement. Indeed, for deterministic APAs, syntactic
refinement coincides with semantic refinement [18], hence allowing for efficient procedures.
Note that although the class of APAs we consider is called “deterministic”, it still offers
non-determinism in the sense that one can choose between different actions in a given state.

Related work. This paper embeds into a series of articles on APA as a specification
theory [17–21]. In [18] we introduce deterministic APA, generalizing earlier work on interval-
based abstractions of probabilistic systems [24, 31, 32], and define notions of refinement,
logical composition, and structural composition. We also introduce a notion of compositional

abstraction for APA. In [19] we extend this setting to non-deterministic APA and give a
notion of (over-approximating) determinization. In [21] we introduce the tool APAC which
implements most of these operations and hence can be used for compositional design and
verification of probabilistic systems.

The journal paper [20] sums up and streamlines the contributions of [18, 19, 21]. One
interesting detail in the theory of APA is that there are several types of syntactic refinement of
APA. In [20], these are called strong refinement, weak refinement, and weak weak refinement,
respectively; all are motivated by similar notions for CMCs [10]. For deterministic APAs,
these refinements agree, and they also coincide with thorough refinement (i.e. inclusion
of implementation sets). The distance and difference we introduce in the present paper
complement the refinement and abstraction from [20], in the sense that our distance between
APAs is a quantitative generalization of APA refinement, and our difference structurally
characterizes refinement failure.

Compositional abstraction of APA is also considered in [44], but with the additional
feature that transitions with the same action (i.e. non-deterministic choices) can be combined
into so-called multi-transitions. The refinement in [44] is thus even weaker than the weak
weak refinement of [20]; for deterministic APA however, they agree.

Differences between automata-based specifications have not been considered much in
the literature. [41] develops a notion of pseudo-merge between modal specifications which
keeps track of inconsistencies between specifications; here, the inconsistent states can be

4 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

seen as a form of difference. Distances between probabilistic systems have been introduced
in [15, 22,46] and other works, and distances between modal specifications in [6–8]; here, we
combine these notions to introduce distances between APAs.

The originality of our present work is the ability to measure how far away one probabilistic
specification is from being a refinement of another, using distances and our new difference
operator. Both are important in assessing precisely how much one APA differs from another.

Acknowledgment. The authors wish to thank Joost-Pieter Katoen for interesting discus-
sions and insightful comments on the subject of this work, and a number of anonymous
referees for useful comments and improvements.

2. Background

Let Dist(S) denote the set of all discrete probability distributions over a finite set S and
B2 = {⊤,⊥}.

Definition 1. A probabilistic automaton (PA) [43] is a tuple (S,A,L,AP, V, s0), where
S is a finite set of states with the initial state s0 ∈ S, A is a finite set of actions, L:
S × A × Dist(S) → B2 is a (two-valued) transition function, AP is a finite set of atomic
propositions and V : S → 2AP is a state-labeling function.

Consider a state s, an action a, and a probability distribution µ. The value of L(s, a, µ) is
set to ⊤ in case there exists a transition from s under action a to a distribution µ on successor
states. In other cases, we have L(s, a, µ) = ⊥. We now introduce Abstract Probabilistic
Automata (APA) [18], that is a specification theory for PAs. For a finite set S, we let C(S)
denote the set of constraints over discrete probability distributions on S. Each element
ϕ ∈ C(S) describes a set of distributions: Sat(ϕ) ⊆ Dist(S). Let B3 = {⊤, ?,⊥}. APAs are
formally defined as follows.

Definition 2. An APA [18] is a tuple (S,A,L,AP, V, S0), where S is a finite set of states,
S0 ⊆ S is a set of initial states, A is a finite set of actions, and AP is a finite set of atomic
propositions. L : S ×A× C(S) → B3 is a three-valued distribution-constraint function, and

V : S→22
AP

maps each state in S to a set of admissible labelings.

APAs play the role of specifications in our framework. An APA transition abstracts
transitions of certain unknown PAs, called its implementations. Given a state s, an action a,
and a constraint ϕ, the value of L(s, a, ϕ) gives the modality of the transition. More precisely,
the value ⊤ means that transitions under a must exist in the PA to some distribution in
Sat(ϕ); ? means that these transitions are allowed to exist; ⊥ means that such transitions
must not exist. We will sometimes view L as a partial function, with the convention that a
lack of value for a given argument is equivalent to the ⊥ value. The function V labels each
state with a subset of the power set of AP , which models a disjunctive choice of possible
combinations of atomic propositions.

We say that an APA N = (S,A,L,AP, V, S0) is in Single Valuation Normal Form (SVNF)
if the valuation function V assigns at most one valuation to all states, i.e. ∀s ∈ S, |V (s)| ≤ 1.
From [18], we know that every APA can be turned into an APA in SVNF with the same
set of implementations. An APA is deterministic [18] if (1) there is at most one outgoing
transition for each action in all states, (2) two states with overlapping atomic propositions
can never be reached with the same transition, and (3) there is only one initial state.

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 5

Note that every PA is an APA in SVNF where all constraints represent a single distri-
bution. As a consequence, all the definitions we present for APAs in the following can be
directly extended to PAs.

Let N = (S,A,L,AP, V, {s0}) be an APA in SVNF and let v ⊆ AP . Given a state s ∈ S
and an action a ∈ A, we will use the notation succs,a(v) to represent the set of potential
a-successors of s that have v as their valuation. Formally, succs,a(v) = {s′ ∈ S | V (s′) =
{v}, ∃ϕ ∈ C(S), µ ∈ Sat(ϕ) : L(s, a, ϕ) 6= ⊥, µ(s′) > 0}. When clear from the context, we
may use succs,a(s

′) instead of succs,a(V (s′)). Remark that when N is deterministic, we have
|succs,a(v)| ≤ 1 for all s, a, v.

3. Refinement and Distances between APAs

We recall the notion of refinement between APAs. Roughly speaking, refinement guarantees
that if A1 refines A2, then the set of implementations of A1 is included in the one of A2.

Definition 3. Let S and S′ be non-empty sets and µ ∈ Dist(S), µ′ ∈ Dist(S′). We say that
µ is simulated by µ′ with respect to a relation R ⊆ S × S′ and a correspondence function

δ : S → (S′ → [0, 1]) [18] if

(1) for all s ∈ S with µ(s) > 0, δ(s) is a distribution on S′,
(2) for all s′ ∈ S′,

∑
s∈S µ(s) · δ(s)(s′) = µ′(s′), and

(3) whenever δ(s)(s′) > 0, then (s, s′) ∈ R.

We write µ ⋐
δ
R µ′ if µ is simulated by µ′ with respect to R and δ, µ ⋐R µ′ if there exists

δ with µ ⋐
δ
R µ′, and µ ⋐

δ µ′ for µ ⋐
δ
S×S′ µ′.

Definition 4. Let N1 = (S1, A, L1, AP, V1, S
1
0) and N2 = (S2, A, L2, AP, V2, S

2
0) be APAs.

A relation R ⊆ S1 × S2 is a refinement relation [18] if, for all (s1, s2) ∈ R, we have
V1(s1) ⊆ V2(s2) and

(1) ∀a ∈ A, ∀ϕ2 ∈ C(S2), if L2(s2, a, ϕ2) = ⊤, then ∃ϕ1 ∈ C(S1) : L1(s1, a, ϕ1) = ⊤ and
∀µ1 ∈ Sat(ϕ1), ∃µ2 ∈ Sat(ϕ2) such that µ1 ⋐R µ2,

(2) ∀a ∈ A, ∀ϕ1 ∈ C(S1), if L1(s1, a, ϕ1) 6= ⊥, then ∃ϕ2 ∈ C(S2) such that L2(s2, a, ϕ2) 6=
⊥ and ∀µ1 ∈ Sat(ϕ1), ∃µ2 ∈ Sat(ϕ2) such that µ1 ⋐R µ2.

We say that N1 refines N2, denoted N1 � N2, if there exists a refinement relation such
that ∀s10 ∈ S1

0 : ∃s20 ∈ S2
0 : (s10, s

2
0) ∈ R. Since any PA P is also an APA, we say that P

satisfies N (or equivalently P implements N), denoted P |= N , if P � N . In the following,
a refinement relation between a PA and an APA is called a satisfaction relation. In [18], it
is shown that for deterministic APAs N1, N2, we have N1 � N2 ⇐⇒ [[N1]] ⊆ [[N2]], where
[[Ni]] denotes the set of implementations of APA Ni. Hence for deterministic APAs, the
difference [[N1]]\[[N2]] is non-empty iff N1 6� N2. This equivalence breaks for non-deterministic
APAs [18], whence we develop our theory only for deterministic APAs.

To show a convergence theorem about our difference construction in Sect. 4.3 below, we
need a relaxed notion of refinement which takes into account that APAs are a quantitative

formalism. Indeed, refinement as of Def. 4 is a purely qualitative relation; if both N2 6� N1

and N3 6� N1, then there are no criteria to compare N2 and N3 with respect to N1, saying
which one is the closest to N1. We provide such a relaxed notion by generalizing refinement
to a discounted distance which provides precisely such criteria. In Sect. 4.3, we will show
how those distances can be used to show that increasingly precise difference approximations
between APAs converge to the real difference.

6 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

In order to simplify notation, the definitions presented below are dedicated to APAs
in SVNF. They can however be easily extended to account for general APAs. The next
definition shows how a distance between states is lifted to a distance between constraints.

Definition 5. Let d : S1 × S2 → R
+ and ϕ1 ∈ C(S1), ϕ2 ∈ C(S2) be constraints in N1 and

N2. Define the distance DN1,N2
between ϕ1 and ϕ2 as follows:

DN1,N2
(ϕ1, ϕ2, d) = sup

µ1∈Sat(ϕ1)
inf

µ2∈Sat(ϕ2)
inf

δ:µ1⋐
δµ2

∑

(s1,s2)∈S1×S2

µ1(s1)δ(s1)(s2)d(s1, s2)

Note the analogy of this definition to the one of the Hausdorff distance between (closed)
subsets of a metric space: Any distribution µ1 in Sat(ϕ1) is sought matched with a distribution
µ2 in Sat(ϕ2) which mimics it as closely as possible, where the quality of a match is measured
by existence of a correspondence function δ which minimizes the distance between points
reached from s1 and s2 weighted by their probability.

For the definition of d below, we say that states s1 ∈ S1, s2 ∈ S2 are not compatible if

(1) V1(s1) 6= V2(s2),
(2) there exists a ∈ A and ϕ1 ∈ C(S1) such that L1(s1, a, ϕ1) 6= ⊥ and for all ϕ2 ∈

C(S2), L2(s2, a, ϕ2) = ⊥, or
(3) there exists a ∈ A and ϕ2 ∈ C(S2) such that L2(s2, a, ϕ2) = ⊤ and for all ϕ1 ∈

C(S1), L1(s1, a, ϕ1) 6= ⊤.

For compatible states, their distance is similar to the accumulating branching distance on
modal transition systems as introduced in [8,23], adapted to our formalism. In the rest of the
paper, the real constant 0 < λ < 1 represents a discount factor. Formally, d : S1×S2 → [0, 1]
is the least fixed point to the following system of equations:

d(s1, s2) =





1 if s1 is not compatible with s2

max





max
a,ϕ1:L1(s1,a,ϕ1) 6=⊥

min
ϕ2:L2(s2,a,ϕ2) 6=⊥

λDN1,N2
(ϕ1, ϕ2, d)

max
a,ϕ2:L2(s2,a,ϕ2)=⊤

min
ϕ1:L1(s1,a,ϕ1)=⊤

λDN1,N2
(ϕ1, ϕ2, d)

otherwise
(3.1)

Since the above system of linear equations defines a contraction, the existence and uniqueness
of its least fixed point is ensured, cf. [36]. The intuition here is that d(s1, s2) compares not
only the probability constraints at s1 and s2, but also (recursively) the constraints at all
states reachable from s1 and s2, weighted by their probability. Each step is discounted by λ,
hence steps further in the future contribute less to the distance.

The above definition intuitively extends to PAs, which allows us to propose the two
following notions of distance:

Definition 6. Let N1 = (S1, A, L1, AP, V1, S
1
0) and N2 = (S2, A, L2, AP, V2, S

2
0) be APAs

in SVNF. The syntactic and thorough distances between N1 and N2 are defined as follows:

• syntactic distance: d(N1, N2) = maxs1
0
∈S1

0

(
mins2

0
∈S2

0

d(s10, s
2
0)
)
.

• thorough distance: dt(N1, N2) = supP1∈[[N1]]

(
infP2∈[[N2]] d(P1, P2)

)
.

Note that the notion of thorough distance defined above intuitively extends to sets of
PAs: given two sets of PAs S1, S2, we have dt(S1, S2) = supP1∈S1

(
infP2∈S2 d(P1, P2)

)
.

We also remark that N1 � N2 implies d(N1, N2) = 0. It can be shown, cf. [45], that
both d and dt are asymmetric pseudometrics (or hemimetrics), i.e. satisfying d(N1, N1) = 0
and d(N1, N2) + d(N2, N3) ≥ d(N1, N3) for all APAs N1, N2, N3 (and similarly for dt). The

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 7

fact that they are only pseudometrics, i.e. that d(N1, N2) = 0 does not imply N1 = N2, will
play a role in our convergence arguments later.

The following proposition shows that the thorough distance is bounded above by the
syntactic distance. Hence we can bound distances between (sets of) implementations by the
syntactic distance between their specifications.

Proposition 1. For all APAs N1 and N2 in SVNF, it holds that dt(N1, N2) ≤ d(N1, N2).

Proof. For a distribution µ1 and a constraint ϕ2, we denote by

RD(µ1, ϕ2) := {δ : µ1 ⋐
δ µ2 | µ2 ∈ Sat(ϕ2)}

the set of all correspondence functions between µ1 and distributions satisfying ϕ2.
If d(N1, N2) = 1, we have nothing to prove. Otherwise, write Ni = (Si, A, Li, AP, Vi, S

i
0)

for i = 1, 2, and let P1 = (S′
1, A, L

′
1, AP, V

′
1 , S̄

1
0) ∈ [[N1]] and η > 0; we need to expose

P2 ∈ [[N2]] for which d(P1, P2) ≤ d(N1, N2) + η. Note that by the triangle inequality,
d(P1, N2) ≤ d(P1, N1) + d(N1, N2) ≤ d(N1, N2). Define P2 = (S2, A, L

′
2, AP, V2, S

2
0), with

L′
2 given as follows:

For all s′1 ∈ S′
1, a ∈ A, µ1 ∈ Dist(S′

1) for which L′
1(s

′
1, a, µ1) = ⊤ and for all s2 ∈ S2,

ε < 1 with ε := d(s′1, s2) < 1: We must have ϕ2 ∈ Dist(S2) such that L2(s2, a, ϕ2) 6= ⊥ and

inf
δ∈RD(µ1,ϕ2)

∑

(t′
1
,t2)∈S′

1
×S2

µ1(t
′
1)δ(t

′
1, t2)d(t

′
1, t2) ≤ λ−1ε ,

so there must exist a correspondence function δ ∈ RD(µ1, ϕ2) for which
∑

(t′
1
,t2)∈S′

1
×S2

µ1(t
′
1)δ(t

′
1, t2)d(t

′
1, t2) ≤ λ−1ε+ λ−1η.

We let µ2(s) =
∑

s′
1
∈S1

µ1(s
′
1)δ(s

′
1, s) and set L′

2(s2, a, µ2) = ⊤ in P2.

Similarly, for all s2 ∈ S2, a ∈ A, ϕ2 ∈ C(S2) for which L2(s2, a, ϕ2) = ⊤ and for all
s′1 ∈ S′

1 with ε := d(s′1, s2) < 1: We must have µ1 ∈ Dist(S′
1) for which L′

1(s
′
1, a, µ1) = ⊤

and
inf

δ∈RD(µ1,ϕ2)

∑

(t′
1
,t2)∈S′

1
×S2

µ1(t
′
1)δ(t

′
1, t2)d(t

′
1, t2) ≤ λ−1ε ,

so there is δ ∈ RD(µ1, ϕ2) with
∑

(t′
1
,t2)∈S′

1
×S2

µ1(t
′
1)δ(t

′
1, t2)d(t

′
1, t2) ≤ λ−1ε+ λ−1η.

Let again µ2(s) =
∑

s′
1
∈S1

µ1(s
′
1)δ(s

′
1, s), and set L′

2(s2, a, µ2) = ⊤ in P2.

It is easy to see that P2 ∈ [[N2]]: by construction of P2, the identity relation {(s2, s2) |
s2 ∈ S2} provides a refinement P2 � N2. To show that d(P1, P2) ≤ d(N1, N2) + η, we define
a function d′ : S′

1 × S2 → [0, 1] by d′(s′1, s2) = d(s′1, s2) + η and show that d′ is a pre-fixed

8 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

1 2

{{α}} {{β}}a, ϕ1,⊤

(µ(1) = 1) ∨ (µ(2) = 1)
µ ∈ Sat(ϕ1) ⇐⇒

(a) APA N1

A B

{{α}} {{γ}}a, ϕ2,⊤ µ ∈ Sat(ϕ2) ⇐⇒
(µ(A) = 1) ∨ (µ(B) = 1)

(b) APA N2

Figure 1. APAs N1 and N2 such that [[N1]] \ [[N2]] cannot be represented
using a finite-state APA.

point to (3.1). Indeed, for s′1 and s2 compatible, we have

d′(s′1, s2) = d(s′1, s2) + η

= max





max
a,µ1:L′

1
(s′

1
,a,µ1)=⊤

min
ϕ2:L2(s2,a,ϕ2) 6=⊥

λDP1,N2
(µ1, ϕ2, d) + η

max
a,ϕ2:L2(s2,a,ϕ2)=⊤

min
µ1:L′

1
(s′

1
,a,µ1)=⊤

λDP1,N2
(µ1, ϕ2, d) + η

= max





max
a,µ1:L′

1
(s′

1
,a,µ1)=⊤

min
µ2:L′

2
(s2,a,µ2)=⊤

λDP1,P2
(µ1, µ2, d) + η

max
a,µ2:L′

2
(s2,a,µ2)=⊤

min
µ1:L′

1
(s′

1
,a,µ1)=⊤

λDP1,P2
(µ1, µ2, d) + η ,

due to the construction of P2 and the fact that the supµ1∈Sat(µ1) is trivial in the formula for

DP1,N2
(µ1, ϕ2, d),

≥ max





max
a,µ1:L′

1
(s′

1
,a,µ1)=⊤

min
µ2:L′

2
(s2,a,µ2)=⊤

λDP1,P2
(µ1, µ2, d

′)

max
a,µ2:L′

2
(s2,a,µ2)=⊤

min
µ1:L′

1
(s′

1
,a,µ1)=⊤

λDP1,P2
(µ1, µ2, d

′) ,

where the last inequality is a consequence of

λDP1,P2
(µ1, µ2, d

′) = λ
∑

t′
1
,t2

µ1(t
′
1)δ(t

′
1, t2)(d(t

′
1, t2) + η)

= λ
∑

t′
1
,t2

µ1(t
′
1)δ(t

′
1, t2)d(t

′
1, t2) + λη.

4. Difference Operators for Deterministic APAs

The difference N1 \N2 of two APAs N1, N2 is meant to be a syntactic representation of all

counterexamples, i.e. all PAs P for which P ∈ [[N1]] but P /∈ [[N2]].
We first observe that such a set may not be representable by an APA. Consider the

APAs N1 and N2 given in Figures 1a and 1b, where α 6= β 6= γ. Note that both N1 and N2

are deterministic and in SVNF. Consider the difference of their sets of implementations. It
is easy to see that this set contains all PAs that can finitely loop on valuation α and then
move into a state with valuation β. Since there is no bound on the number of steps spent in
the loop, there is no finite-state APA that can represent this set of implementations.

By the above example, there is no hope of finding a general construction that permits to
represent the exact difference of two APAs as an APA. In the rest of this section, we thus

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 9

propose to approximate it using APAs. We first introduce some notations and then propose
constructions for over-approximating and under-approximating the exact difference.

4.1. Notation. Let Ni = (Si, A, Li, AP, Vi, {s
i
0}), i = 1, 2, be deterministic APAs in SVNF.

Because N1 and N2 are deterministic, we know that the difference [[N1]] \ [[N2]] is non-
empty if and only if N1 6� N2. So let us assume that N1 6� N2, and let R be a maximal
refinement relation between N1 and N2. Since N1 6� N2, we know that (s10, s

2
0) 6∈ R. Given

(s1, s2) ∈ S1 × S2, we can distinguish between the following cases:

(1) (s1, s2) ∈ R,
(2) V1(s1) 6= V2(s2), or
(3) (s1, s2) 6∈ R and V1(s1) = V2(s2), and

(a) there exists e ∈ A and ϕ1 ∈ C(S1) such that L1(s1, e, ϕ1) = ⊤
and ∀ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) = ⊥,

s2

ϕ1

s1

e,⊤
e

(b) there exists e ∈ A and ϕ1 ∈ C(S1) such that L1(s1, e, ϕ1) = ?
and ∀ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) = ⊥,

s2

ϕ1

s1

e, ?
e

(c) there exists e ∈ A and ϕ1 ∈ C(S1) such that L1(s1, e, ϕ1) ≥ ?
and ∃ϕ2 ∈ C(S2) : L2(s2, e, ϕ2) = ?, ∃µ ∈ Sat(ϕ1) such that
∀µ′ ∈ Sat(ϕ2) : µ 6⋐R µ′,

ϕ2

s2

ϕ1

s1

6=

e, {?,⊤}
e, ?

(d) there exists e ∈ A and ϕ2 ∈ C(S2) such that L2(s2, e, ϕ2) = ⊤
and ∀ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = ⊥,

ϕ2

s2s1

e
e,⊤

(e) there exists e ∈ A and ϕ2 ∈ C(S2) such that L2(s2, e, ϕ2) = ⊤
and ∃ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = ?,

ϕ2

s2

ϕ1

s1

e, ?
e,⊤

(f) there exists e ∈ A and ϕ2 ∈ C(S2) such that L2(s2, e, ϕ2) = ⊤,
∃ϕ1 ∈ C(S1) : L1(s1, e, ϕ1) = ⊤ and ∃µ ∈ Sat(ϕ1) such that
∀µ′ ∈ Sat(ϕ2) : µ 6⋐R µ′.

s2s1

ϕ1 ϕ26=

e,⊤
e,⊤

Remark that because of the determinism and SVNF of APAs N1 and N2, cases 1, 2
and 3 cannot happen at the same time. Moreover, although the cases in 3 can happen
simultaneously, they cannot be “triggered” by the same action. In order to keep track of
these “concurrent” situations, we define the following sets.

Given a pair of states (s1, s2), let Ba(s1, s2) be the set of actions in A such that case
3.a above holds. If there is no such action, then Ba(s1, s2) = ∅. Similarly, we define
Bb(s1, s2), Bc(s1, s2), Bd(s1, s2), Be(s1, s2) and Bf (s1, s2) to be the sets of actions such that
case 3.b, c, d, e and 3.f holds, respectively. Given a set X ⊆ {a, b, c, d, e, f}, let BX(s1, s2) =
∪x∈XBx(s1, s2). In addition, let B(s1, s2) = B{a,b,c,d,e,f}(s1, s2).

10 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

4.2. Over-Approximating Difference. We now propose a construction \∗ that over-
approximates the difference between deterministic APAs in SVNF in the following sense:
given two such APAs N1 = (S1, A, L1, AP, V1, {s

1
0}) and N2 = (S2, A, L2, AP, V2, {s

2
0}) such

that N1 6� N2, we have [[N1]] \ [[N2]] ⊆ [[N1 \
∗ N2]]. We first observe that if V1(s

1
0) 6= V2(s

2
0),

i.e. (s10, s
2
0) in case 2, then [[N1]] ∩ [[N2]] = ∅. In such case, we define N1 \∗ N2 as N1.

Otherwise, we build on the reasons for which refinement fails between N1 and N2. Note that
the assumption that N1 6� N2 implies that the pair (s10, s

2
0) can never be in any refinement

relation, hence in case 1. We first give an informal intuition of how the construction works
and then define it formally.

In our construction, states in N1 \
∗ N2 will be elements of S1 × (S2 ∪ {⊥})× (A ∪ {ε}).

Our objective is to ensure that any implementation of our constructed APA will satisfy N1

and not N2. In (s1, s2, e), states s1 and s2 keep track of executions of N1 and N2. Action
e is the action of N1 that will be used to break satisfaction with respect to N2, i.e. the
action that will be the cause for which any implementation of (s1, s2, e) cannot satisfy N2.
Since satisfaction is defined recursively, the breaking is not necessarily immediate and can
be postponed to successors. ⊥ is used to represent states that can only be reached after
breaking the satisfaction relation to N2. In these states, we do not need to keep track of the
corresponding execution in N2, thus only focus on satisfying N1. States of the form (s1, s2, ε)
with s2 6= ⊥ are states where the satisfaction is broken by a distribution that does not match
constraints in N2 (cases 3.c and 3.f). In order to invalidate these constraints, we still need to
keep track of the corresponding execution in N2, hence the use of ε instead of ⊥.

The transitions in our construction will match the different cases shown in the previous
section, ensuring that in each state, either the relation is broken immediately or reported
to at least one successor. Since there can be several ways of breaking the relation in state
(s10, s

2
0), each corresponding to an action e ∈ B(s10, s

2
0), the APA N1 \

∗N2 will have one initial
state for each of them. Formally, if (s10, s

2
0) is in case 3, we define the over-approximation of

the difference of N1 and N2 as follows.

Definition 7. Let N1 \
∗ N2 = (S,A,L,AP, V, S0), where S = S1 × (S2 ∪ {⊥})× (A ∪ {ε}),

V (s1, s2, a) = V (s1) for all s2 and a, S0 = {(s10, s
2
0, f) | f ∈ B(s10, s

2
0)}, and L is defined by:

• If s2 = ⊥ or e = ε or (s1, s2) in case 1 or 2, then for all a ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e), a, ϕ

⊥) = L1(s1, a, ϕ), with ϕ⊥ defined below.
For all other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) = ⊥.

• Else, we have (s1, s2) in case 3 and B(s1, s2) 6= ∅ by construction. The definition of
L is given in Table 1, with the constraints ϕ⊥ and ϕB

12 defined hereafter.

Given ϕ ∈ C(S1), ϕ
⊥ ∈ C(S) is defined as follows: µ ∈ Sat(ϕ⊥) iff ∀s1 ∈ S1, ∀s2 6=

⊥, ∀b 6= ε, µ(s1, s2, b) = 0 and the distribution (µ ↓1: s1 7→ µ(s1,⊥, ε)) is in Sat(ϕ).
Given a state (s1, s2, e) ∈ S with s2 6= ⊥ and e 6= ε and two constraints ϕ1 ∈ C(S1),

ϕ2 ∈ C(S2) such that L1(s1, e, ϕ1) 6= ⊥ and L2(s2, e, ϕ2) 6= ⊥, the constraint ϕB
12 ∈ C(S) is

defined as follows: µ ∈ Sat(ϕB
12) iff

(1) for all (s′1, s
′
2, c) ∈ S, we have µ(s′1, s

′
2, c) > 0 ⇒ s′2 = ⊥ if succs2,e(s

′
1) = ∅ and

s′2 = succs2,e(s
′
1) otherwise, and c ∈ B(s′1, s

′
2) ∪ {ε},

(2) the distribution µ1 : s
′
1 7→

∑
c∈A∪{ε},s′

2
∈S2∪{⊥} µ(s

′
1, s

′
2, c) satisfies ϕ1, and

(3) one of the following holds:
(a) there exists (s′1,⊥, c) such that µ(s′1,⊥, c) > 0,
(b) the distribution µ2 : s

′
2 7→

∑
c∈A∪{ε},s′

1
∈S1

µ(s′1, s
′
2, c) does not satisfy ϕ2, or

(c) there exists s′1 ∈ S1, s
′
2 ∈ S2 and c 6= ε such that µ(s′1, s

′
2, c) > 0.

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 11

Table 1. Definition of the transition function L in N1 \
∗ N2.

e ∈ N1, N2 N1 \
∗ N2 Formal Definition of L

Ba(s1, s2)

s2

ϕ1

s1

e,⊤
e

ϕ⊥
1

e,⊤

(s1, s2, e) For all a 6= e ∈ A and ϕ ∈ C(S1) such that
L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e), a, ϕ

⊥) = L1(s1, a, ϕ).
In addition, let L((s1, s2, e), e, ϕ

⊥
1) = ⊤. For all other

b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) = ⊥.Bb(s1, s2)

s2

ϕ1

s1

e, ?
e

Bd(s1, s2)
ϕ2

s2s1

e
e,⊤ e

(s1, s2, e) For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) 6=
⊥, let L((s1, s2, e), a, ϕ

⊥) = L1(s1, a, ϕ). For all other
b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) = ⊥.

Be(s1, s2)
ϕ2

s2

ϕ1

s1

e, ?
e,⊤

ϕB
12

e, ?

(s1, s2, e)
For all a 6= e ∈ A and ϕ ∈ C(S1) such that
L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e), a, ϕ

⊥) = L1(s1, a, ϕ).
In addition, let L((s1, s2, e), e, ϕ

B
12) = ?. For all other

b ∈ A and ϕ ∈ C(S), let L((s1, s2, e), b, ϕ) = ⊥.

Bc(s1, s2)
ϕ2

s2

ϕ1

s1

6=

e, {?,⊤}
e, ?

(s1, s2, e)

ϕB
12

e,⊤

ϕ⊥
1

e, {?,⊤}

For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) 6=
⊥ (including e and ϕ1), let L((s1, s2, e), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e), e, ϕ

B
12) =

⊤. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e), b, ϕ) = ⊥.

Bf (s1, s2)

s2s1

ϕ1 ϕ26=

e,⊤
e,⊤

Informally, distributions in ϕB
12 must (1) follow the corresponding execution is N1 and N2 if

possible, (2) satisfy ϕ1 and (3), (a) reach a state in N1 that cannot be matched in N2, (b)
break the constraint ϕ2, or (c) report breaking the relation to at least one successor state.

The following theorem shows that N1 \
∗ N2 is, as intended, an over-approximation of

the difference of N1 and N2 in terms of sets of implementations.

Theorem 2. For all deterministic APAs N1 and N2 in SVNF such that N1 6� N2, we have
[[N1]] \ [[N2]] ⊆ [[N1 \

∗ N2]].

Proof. Let N1 = (S1, A, L1, AP, V1, {s
1
0}) and N2 = (S2, A, L2, AP, V2, {s

2
0}) be deterministic

APAs in SVNF such that N1 6� N2. Let R be the maximal refinement relation between N1

and N2. Let P = (SP , A, LP , AP, VP , s
P
0) be a PA such that P |= N1 and P 6|= N2. We

prove that P |= N1 \
∗ N2. Let R1 ⊆ SP × S1 be the relation witnessing P |= N1 and let R2

be the maximal satisfaction relation in SP × S2. By construction, (sP0 , s2) /∈ R2.
If V1(s

1
0) 6= V2(s

2
0), then by construction N1\

∗N2 = N1 and thus P |= N1\
∗N2. Else, we

have (s10, s
2
0) in case 3, thus N1 \

∗ N2 = (S,A,L,AP, V, S0) is defined as in Section 4.2. By
construction, we also have (sP0 , s

2
0) in case 3, thus there must exist f ∈ B(sP0 , s

2
0). Remark

that by construction, we must have B(sP0 , s
2
0) ⊆ B(s10, s

2
0). We will prove that P |= N1\

∗N2.

Define the following relation R\ ⊆ SP × S:

pR\(s1, s2, e) ⇐⇒





(pR1 s1) and (s2 = ⊥) and (e = ε)
or (pR1 s1) and (p, s2) in case 1 or 2 and and (e = ε)
or (pR1 s1) and (p, s2) in case 3 and (e ∈ B(p, s2))

12 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

We now prove that R\ is a satisfaction relation. Let (p, (s1, s2, e)) ∈ R\.

If s2 = ⊥ or e = ε, then since pR1 s1, R
\ satisfies the axioms of a satisfaction relation

by construction. Else we have s2 ∈ S2 and e 6= ε, thus, by definition of R\, we know that
(p, s2) is in case 3.

• By construction, we have VP (p) ∈ V1(s1) = V ((s1, s2, e)).
• Let a ∈ A and µP ∈ Dist(SP) such that LP (p, a, µP) = ⊤. There are several cases.

– If a 6= e, then since pR1 s1, there exists ϕ1 ∈ C(S1) such that L1(s1, a, ϕ1) 6= ⊥
and there exists µ1 ∈ Sat(ϕ1) such that µP ⋐R\ µ1. By construction, we

have L((s1, s2, e), a, ϕ
⊥
1) 6= ⊥ and there obviously exists µ ∈ Sat(ϕ⊥

1) such that
µP ⋐R\ µ.

– If a = e ∈ Ba(p, s2), then, as above, there exists a constraint ϕ ∈ C(S) such
that L((s1, s2, e), a, ϕ) 6= ⊥ and there exists µ ∈ Sat(ϕ) such that µP ⋐R\ µ.
Remark that Ba(s1, s2) ⊆ Ba(p, s2) ⊆ Ba(s1, s2) ∪Bb(s1, s2).

– Else, we necessarily have a = e ∈ Bc(p, s2) ∪ Bf (p, s2). Remark that, by
construction, Bc(p, s2) ⊆ Bc(s1, s2) and Bf (p, s2) ⊆ Bf (s1, s2). Since pR1 s1,
there exists ϕ1 ∈ C(S1) such that L1(s1, e, ϕ1) 6= ⊥ and there exists µ1 ∈
Sat(ϕ1) and a correspondence function δ1 : SP → (S1 → [0, 1]) such that

µP ⋐
δ1
R1

µ1.

Moreover, by construction of N1\
∗N2, we know that the constraint ϕB

12 such that
µ ∈ Sat(ϕB

12) iff. (1) for all (s′1, s
′
2, c) ∈ S, we have µ(s′1, s

′
2, c) > 0 ⇒ s′2 = ⊥

if succs2,e(s
′
1) = ∅ and s′2 = succs2,e(s

′
1) otherwise, and c ∈ B(s′1, s

′
2) ∪ {ε}, (2)

the distribution µ1 : s′1 7→
∑

c∈A∪{ε},s′
2
∈S2∪{⊥} µ(s

′
1, s

′
2, c) satisfies ϕ1, and (3)

either (b) the distribution µ2 : s
′
2 7→

∑
c∈A∪{ε},s′

1
∈S1

µ(s′1, s
′
2, c) does not satisfy

ϕ2, or (c) there exists s′1 ∈ S1, s
′
2 ∈ S2 and c 6= ε such that µ(s′1, s

′
2, c) > 0 is

such that L((s1, s2, e), e, ϕ
B
12) = ⊤.

We now prove that there exists µ ∈ Sat(ϕB
12) such that µP ⋐R\ µ. Consider

the function δ\ : SP → (S → [0, 1]) defined as follows: Let p′ ∈ SP such that
µP (p

′) > 0 and let s′1 = succs1,e(p
′), which exists by R1.

∗ If succs2,e(p
′) = ∅, then δ\(p′)(s′1,⊥, ε) = 1.

∗ Else, let s′2 = succs2,e(p
′). Then,

· if (p′, s′2) ∈ R2, then δ\(p′)(s′1, s
′
2, ε) = 1.

· Else, (p′, s′2) is in case 3 and B(p′, s′2) 6= ∅. In this case, let c ∈
B(p′, s′2) and define δ\(p′, (s′1, s

′
2, c)) = 1. For all other c′ ∈ B(p′, s′2),

define δ\(p′, (s′1, s
′
2, c)) = 0.

Remark that for all p′ ∈ SP such that µP (p
′) > 0, there exists a unique s′ ∈ S′

such that δ\(p′)(s′) = 1. Thus δ\ is a correspondence function.

We now prove that µ = µP δ
\ ∈ Sat(ϕB

12).
(1) Let (s′1, s

′
2, c) ∈ S such that µ(s′1, s

′
2, c) > 0. By construction, there

exists p′ ∈ SP such that µP (p
′) > 0 and δ\(p′)(s′1, s

′
2, c) > 0. Moreover,

c ∈ B(s′1, s
′
2) ∪ {ε}, and s′2 = ⊥ if succs2,e(s

′
1) = ∅ and s′2 = succs2,e(s

′
1)

otherwise.
(2) Consider the distribution µ′

1 : s′1 7→
∑

c∈A∪{ε},s′
2
∈S2∪{⊥} µ(s

′
1, s

′
2, c). By

determinism (See Lemma 28 in [10]), we have that δ1(p
′)(s′1) = 1 ⇐⇒

s′1 = (succ)s1,e(p
′). As a consequence, we have that µ′

1 = µ1 ∈ Sat(ϕ1).

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 13

(3) Assume that for all p′ ∈ SP such that µP (p
′) > 0, we have succs2,e(p

′) 6= ∅
(the other case being trivial). Consider the distribution µ2 : s′2 7→∑

c∈A∪{ε},s′
1
∈S1

µ(s′1, s
′
2, c) and let δ2 : SP → (S2 → [0, 1]) be such that

δ2(p
′)(s′2) = 1 ⇐⇒ s′2 = succs2,e(p

′). By construction, δ2 is a correspon-
dence function and µ2 = µP δ2. Since e ∈ Bc(p, s2) ∪ Bf (p, s2), we have

that µP 6⋐R2
µ2. If µ2 /∈ Sat(ϕ2), then we have µ ∈ Sat(ϕB

12). Else, there
must exist p′ ∈ SP and s′2 ∈ S2 such that µP (p

′) > 0, δ2(p
′)(s′2) > 0 and

(p′, s′2) /∈ R2. As a consequence, (p′, s′2) is in case 3 and there exists c 6= ε

such that δ\(p′)(s′1, s
′
2, c) > 0, thus µ(s′1, s

′
2, c) > 0. As a consequence,

µ ∈ Sat(ϕB
12).

We thus conclude that there exists µ ∈ Sat(ϕB
12) such that µP ⋐R\ µ.

Finally, in all cases, there exists ϕ ∈ C(S) such that L((s1, s2, e), a, ϕ) 6= ⊥ and
there exists µ ∈ Sat(ϕ) such that µP ⋐R\ µ.

• Let a ∈ A and ϕ ∈ C(S) such that L((s1, s2, e), a, ϕ) = ⊤. As above, there are
several cases.

– If a 6= e, then, by construction of N1 \
∗ N2, there must exists ϕ1 ∈ C(S1) such

that L1(s1, a, ϕ1) = ⊤. The rest of the proof is then as above.
– If a = e ∈ Ba(p, s2), then there exists µP ∈ Dist(SP) such that LP (p, e, µP) =

⊤. The rest of the proof is then as above. Recall that Ba(s1, s2) ⊆ Ba(p, s2) ⊆
Ba(s1, s2) ∪Bb(s1, s2).

– Else, we necessarily have a = e ∈ Bc(p, s2) ∪ Bf (p, s2). Recall that, by con-
struction, Bc(p, s2) ⊆ Bc(s1, s2) and Bf (p, s2) ⊆ Bf (s1, s2). Thus, there ex-
ists µP ∈ Dist(SP) and ϕ2 ∈ C(S2) such that L2(s2, e, ϕ2) 6= ⊥ and ∀µ2 ∈
Sat(ϕ2), µP 6⋐R2

µ2. Since e ∈ Bc(s1, s2) ∪ Bf (s1, s2), there also exist ϕ1 ∈
C(S1) such that L1(s1, e, ϕ1) 6= ⊥. By determinism, ϕ1 and ϕ2 are unique. The
rest of the proof follows as above.

Thus, in all cases, there exists µP ∈ Dist(SP) such that LP (p, a, µP) = ⊤ and
there exists µ ∈ Sat(ϕ) such that µP ⋐R\ µ.

Finally, R\ is a satisfaction relation. Moreover, we have sP0 R1 s
1
0, (sP0 , s

2
0) in case 3

and f ∈ B(sP0 , s
2
0) by construction, thus sP0 R\(s10, s

2
0, f) ∈ S0. We thus conclude that

P |= N1 \
∗ N2.

The reverse inclusion unfortunately does not hold. Intuitively, as explained in the
construction of the constraint ϕB

12 above, one can postpone the breaking of the satisfaction
relation for N2 to the next state (condition (3.c)). This assumption is necessary in order to
produce an APA representing all counterexamples. However, when there are cycles in the
execution of N1 \

∗ N2, then we may postpone forever, thus allowing for implementations
that will ultimately satisfy N2. This is illustrated in the following example.

Example 1. Consider the APAs N1 and N2 given in Fig. 1. Their over-approximating
difference N1 \

∗ N2 is given in Fig. 2a. One can see that the PA P in Fig. 2b satisfies both
N1 \

∗ N2 and N2.

We will later see in Corollary 7 that even though N1 \∗ N2 may be capturing too
many counterexamples, the distance between N1 \

∗ N2 and the real set of counterexamples
[[N1]]\ [[N2]] is zero. This means that the two sets are infinitesimally close to each other, so in
this sense, and with respect to this distance, N1 \

∗ N2 is a best possible over-approximation.

14 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

1, A, a

2,⊥, ε1,⊥, ε 1, A, ε

{{α}}

{{α}} {{α}}

{{β}}

a, ϕ⊥
1 ,⊤

a, ϕB
12,⊤

a, ϕ⊥
1 ,⊤a, ϕ⊥

1 ,⊤

µ ∈ Sat(ϕB
12) ⇐⇒ (µ(1, A, a) + µ(1, A, ε) = 1) ∧ (µ(1, A, a) > 0)

∨(µ(2,⊥, ε) = 1)

(a) N1 \
∗
N2

Ω {α}

a, 1

(b) P

Figure 2. Over-approximating difference N1\
∗N2 of APAs N1 and N2 from

Figure 1 and PA P such that P |= N1 \
∗ N2 and P |= N2.

4.3. Under-Approximating Difference. We now propose a construction that instead
under-estimates the difference between APAs. This construction resembles the over-approx-
imation presented in the previous section, the main difference being that in the under-
approximation, states are indexed with integers which represent the maximal depth of the
unfolding of counterexamples. The construction is as follows.

Let N1 = (S1, A, L1, AP, V1, {s
1
0}) and N2 = (S2, A, L2, AP, V2, {s

2
0}) be two determin-

istic APAs in SVNF such that N1 6� N2. Let K ∈ N be the parameter of our construction.
As in Section 4.2, if V1(s

1
0) 6= V2(s

2
0), i.e. (s10, s

2
0) in case 2, then [[N1]] ∩ [[N2]] = ∅. In this

case, we define N1 \
K N2 as N1. Otherwise, the under-approximation is defined as follows.

Definition 8. Let N1\
KN2 = (S,A,L,AP, V, SK

0), where S = S1×(S2∪{⊥})×(A∪{ε})×
{1, . . . ,K}, V (s1, s2, a, k) = V (s1) for all s2, a, k < K, SK

0 = {(s10, s
2
0, f,K) | f ∈ B(s10, s

2
0)},

and L is defined by:

• If s2 = ⊥ or e = ε or (s1, s2) in case 1 or 2, then for all a ∈ A and ϕ ∈ C(S1)
such that L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e, k), a, ϕ

⊥) = L1(s1, a, ϕ), with ϕ⊥ defined
below. For all other b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.

• Else we have (s1, s2) in case 3 and B(s1, s2) 6= ∅ by construction. The definition of

L is given in Table 2. The constraints ϕ⊥ and ϕB,k
12 are defined hereafter.

Given a constraint ϕ ∈ C(S1), the constraint ϕ⊥ ∈ C(S) is defined as follows: µ ∈
Sat(ϕ⊥) iff ∀s1 ∈ S1, ∀s2 6= ⊥, ∀b 6= ε, ∀k 6= 1, µ(s1, s2, b, k) = 0 and the distribution
(µ ↓1: s1 7→ µ(s1,⊥, ε, 1)) is in Sat(ϕ).

Given a state (s1, s2, e, k) ∈ S with s2 6= ⊥ and e 6= ε and two constraints ϕ1 ∈ C(S1)

and ϕ2 ∈ C(S2) such that L1(s1, e, ϕ1) 6= ⊥ and L2(s2, e, ϕ2) 6= ⊥, the constraint ϕB,k
12 ∈

C(S) is defined as follows: µ ∈ Sat(ϕB,k
12) iff

(1) for all (s′1, s
′
2, c, k

′) ∈ S, if µ(s′1, s
′
2, c, k

′) > 0, then c ∈ B(s′1, s
′
2) ∪ {ε} and either

succs2,e(s
′
1) = ∅, s′2 = ⊥ and k′ = 1, or s′2 = succs2,e(s

′
1),

(2) the distribution µ1 : s
′
1 7→

∑
c∈A∪{ε},s′

2
∈S2∪{⊥},k′≥1 µ(s

′
1, s

′
2, c, k

′) satisfies ϕ1, and

(3) one of the following holds:
(a) there exists (s′1,⊥, c, 1) such that µ(s′1,⊥, c, 1) > 0,
(b) the distribution µ2 : s

′
2 7→

∑
c∈A∪{ε},s′

1
∈S1,k′≥1 µ(s

′
1, s

′
2, c, k

′) does not satisfy ϕ2, or

(c) k 6= 1 and there exists s′1 ∈ S1, s
′
2 ∈ S2, c 6= ε and k′ < k such that µ(s′1, s

′
2, c, k

′) > 0.

The construction is illustrated in Figure 3.

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 15

Table 2. Definition of the transition function L in N1 \
K N2.

e ∈ N1, N2 N1 \
K N2 Formal Definition of L

Ba(s1, s2)

s2

ϕ1

s1

e,⊤
e

ϕ⊥
1

e,⊤

(s1, s2, e, k)
For all a 6= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e, k), a, ϕ

⊥) =
L1(s1, a, ϕ). In addition, let L((s1, s2, e, k), e, ϕ

⊥
1) =

⊤. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e, k), b, ϕ) = ⊥.

Bb(s1, s2)

s2

ϕ1

s1

e, ?
e

Bd(s1, s2)
ϕ2

s2s1

e
e,⊤ e

(s1, s2, e, k) For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) 6= ⊥,
let L((s1, s2, e, k), a, ϕ

⊥) = L1(s1, a, ϕ). For all other
b ∈ A and ϕ ∈ C(S), let L((s1, s2, e, k), b, ϕ) = ⊥.

Be(s1, s2)
ϕ2

s2

ϕ1

s1

e, ?
e,⊤

ϕB,k
12

e, ?

(s1, s2, e, k)

For all a 6= e ∈ A and ϕ ∈ C(S1) such
that L1(s1, a, ϕ) 6= ⊥, let L((s1, s2, e, k), a, ϕ

⊥) =

L1(s1, a, ϕ). In addition, let L((s1, s2, e, k), e, ϕ
B,k
12) =

?. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e, k), b, ϕ) = ⊥.

Bc(s1, s2)
ϕ2

s2

ϕ1

s1

6=

e, {?,⊤}
e, ?

(s1, s2, e, k)

ϕB,k
12

e,⊤

ϕ⊥
1

e, {?,⊤}

For all a ∈ A and ϕ ∈ C(S1) such that L1(s1, a, ϕ) 6=
⊥ (including e and ϕ1), let L((s1, s2, e, k), a, ϕ

⊥) =

L1(s1, a, ϕ). In addition, let L((s1, s2, e, k), e, ϕ
B,k
12) =

⊤. For all other b ∈ A and ϕ ∈ C(S), let
L((s1, s2, e, k), b, ϕ) = ⊥.

Bf (s1, s2)

s2s1

ϕ1 ϕ26=

e,⊤
e,⊤

{{α}}

{{α}}

{{β}}

a, ϕ⊥
1 ,⊤

a, ϕ⊥
1 ,⊤

1, A, a, 1

1,⊥, ε, 1 2,⊥, ε, 1

a, ϕB,1
12 ,⊤

µ ∈ Sat(ϕB,1
12) ⇐⇒ (µ(2,⊥, ε, 1) = 1)

(a) N1 \
1
N2

1, A, a, 2 1, A, a, 1{{α}}

{{α}} {{α}}

{{β}}

a, ϕ⊥
1 ,⊤

a, ϕ⊥
1 ,⊤a, ϕ⊥

1 ,⊤
1, A, ε, 12,⊥, ε, 11,⊥, ε, 1

a, ϕ⊥
1 ,⊤
a, ϕB,1

12 ,⊤

{{α}}

a, ϕB,2
12 ,⊤

µ ∈ Sat(ϕB,2
12) ⇐⇒ (µ(1, A, a, 2) + µ(1, A, a, 1) + µ(1, A, ε, 1) = 1)

∧(µ(1, A, a, 1) > 0)
∨(µ(2,⊥, ε, 1) = 1)

µ ∈ Sat(ϕB,1
12) ⇐⇒ (µ(2,⊥, ε) = 1)

(b) N1 \
2
N2

Figure 3. Under-approximations at level 1 and 2 of the difference of APAs
N1 and N2 from Figure 1.

4.4. Properties. We already saw in Theorem 2 that N1\
∗N2 is a correct over-approximation

of the difference of N1 by N2 in terms of sets of implementations. The next theorem shows
that, similarly, all N1 \

K N2 are correct under-approximations. Moreover, increasing the
value of K improves the level of approximation, and eventually all PAs in [[N1]] \ [[N2]] are
caught. (Hence in a set-theoretic sense, limK→∞[[N1 \

K N2]] = [[N1]] \ [[N2]].)

16 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

Theorem 3. For all deterministic APAs N1 and N2 in SVNF such that N1 6� N2:

(1) for all K ∈ N, we have N1 \
K N2 � N1 \

K+1 N2,
(2) for all K ∈ N, [[N1 \

K N2]] ⊆ [[N1]] \ [[N2]], and
(3) for all PA P ∈ [[N1]] \ [[N2]], there exists K ∈ N such that P ∈ [[N1 \

K N2]].

Note that item 3 implies that for all PA P ∈ [[N1]] \ [[N2]], there is a finite specification
capturing [[N1]]\ [[N2]] “up to” P . The proof of the theorem is similar to the one of Theorem 2
(if somewhat more complicated) and available in appendix.

Using our distance defined in Section 3, we can make the above convergence result more
precise. We first need a lemma comparing N1 \

K1 N2 with N1 \
K2 N2 for K1 ≤ K2.

Lemma 4. Let N1 = (S1, A, L1, AP, V1, {s
1
0}) and N2 = (S2, A, L2, AP, V2, {s

2
0}) be two

deterministic APAs in SVNF such that N1 6� N2. Let 1 ≤ K1 ≤ K2 be integers. Then
d(N1 \

K2 N2, N1 \
K1 N2) ≤ λK1 .

Proof. Let N1 \
Ki N2 = N i = (Si, A, Li, AP, V i, T i

0). We first remark that for all (s1, s2, e) ∈
S1× (S2∪⊥)× (A∪ε) and for all k ≤ K1, the distance between the states (s1, s2, e, k)

1 ∈ S1

and (s1, s2, e, k)
2 ∈ S2 is 0. Indeed, if k is the same in both states, then they are identical

by construction.
We now prove by induction on 1 ≤ k1 ≤ K1 and k1 ≤ k2 ≤ K2 that

d((s1, s2, e, k2)
2, (s1, s2, e, k1)

1) ≤ λk1 :

• Base case: k1 = 1. By construction, t1 = (s1, s2, e, k1)
1 and t2 = (s1, s2, e, k2)

2

have the same outgoing transitions. The only distinction is in the constraints ϕB,1
12

and ϕB,k2
12 when e ∈ B{c,e,f}(s1, s2). Thus, t1 and t2 are compatible, and

d(t2, t1) = max





max
a,ϕ′:L2(t2,a,ϕ′) 6=⊥

min
ϕ:L1(t1,a,ϕ) 6=⊥

λDN2,N1(ϕ′, ϕ, d)

max
a,ϕ:L1(t1,a,ϕ)=⊤

min
ϕ′:L2(t2,a,ϕ′)=⊤

λDN2,N1(ϕ′, ϕ, d)

Moreover, we know by construction that DN2,N1(ϕ′, ϕ, d) ≤ 1 for all ϕ′ and ϕ. As a

consequence, d(t2, t1) ≤ λ = λk1 .
• Induction. Let t1 = (s1, s2, e, k1)

1 and t2 = (s1, s2, e, k2)
2, with 1 < k1 ≤ k2.

Again, if e /∈ Bc(s1, s2) ∪ Be(s1, s2) ∪ Bf (s1, s2), then t1 and t2 are identical by
construction and the result holds. Otherwise, the pair of constraints for which the

distance is maximal will be constraints ϕB,k1
12 ∈ C(S1) and ϕB,k2

12 ∈ C(S2). Assume

that d((s1, s2, e, k
′
2)

2, (s1, s2, e, k
′
1)

1) ≤ λk′
1 for all k′1 < k1 and k′1 ≤ k′2 ≤ K2. By

definition, we have

DN2,N1(ϕB,k2
12 , ϕB,k1

12 , d) =

sup
µ2∈Sat(ϕ

B,k2
12

)

inf
δ∈RD(µ2,ϕ

B,k1
12

)

∑

t′
2
,t′
1
∈S2×S1

µ2(t
′
2)δ(t

′
2, t

′
1)d(t

′
2, t

′
1)

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 17

Consider the function δ : S2 × S1 → [0, 1] such that

δ((s′1, s
′
2, f, k

′
2), (s

′′
1, s

′′
2, f

′, k′1)) =





1 if s′1 = s′′1 ∧ s′2 = s′′2 ∧ f ′ = f

∧ k′1 = k′2 ∧ k′2 < k1

1 if s′1 = s′′1 ∧ s′2 = s′′2 ∧ f ′ = f

∧ k′1 = k1 − 1 ∧ k1 ≤ k′2
0 otherwise

Let µ2 ∈ Sat(ϕB,k2
12). One can verify that δ ∈ RD(µ2, ϕ

B,k1
12) as follows:

(1) Let t′2 = (s′1, s
′
2, f, k

′
2) be such that µ2(t

′
2) > 0. By definition, we always have∑

t′
1
∈S1 δ(t′2, t

′
1) = 1.

(2) δ preserves all the conditions for satisfying ϕB,k2
12 . In particular, all states t′2 =

(s′1, s
′
2, f, k

′
2)

2 such that k′2 < k2 are redistributed to states (s′1, s
′
2, f, k

′
1)

1 with
k′1 < k1. As a consequence, the distribution µ1 : t′1 7→

∑
t′
2
∈S2 µ2(t

′
2)δ(t

′
2, t

′
1)

satisfies ϕB,k1
12 .

As a consequence, for all µ2 ∈ Sat(ϕB,k2
12), we have

inf
δ∈RD(µ2,ϕ

B,k1
12

)

∑

t′
2
,t′
1
∈S2×S1

µ2(t
′
2)δ(t

′
2, t

′
1)d(t

′
2, t

′
1)

≤
∑

(s′
1
,s′

2
,f,k′

2
)∈S2

k′
2
<k1

µ2(s
′
1, s

′
2, f, k

′
2)d((s

′
1, s

′
2, f, k

′
2)

2, (s′1, s
′
2, f, k

′
2)

1)

+
∑

(s′
1
,s′

2
,f,k′

2
)∈S2

k1≤k′
2

µ2(s
′
1, s

′
2, f, k

′
2)d((s

′
1, s

′
2, f, k

′
2)

2, (s′1, s
′
2, f, k1 − 1)1)

≤
∑

(s′
1
,s′

2
,f,k′

2
)∈S2

k1≤k′
2

µ2(s
′
1, s

′
2, f, k

′
2)d((s

′
1, s

′
2, f, k

′
2)

2, (s′1, s
′
2, f, k1 − 1)1)

≤
∑

(s′
1
,s′

2
,f,k′

2
)∈S2

k1≤k′
2

µ2(s
′
1, s

′
2, f, k

′
2)λ

k1−1 ≤ λk1−1

(the next-to-last step by induction).

Since this is true for all µ2 ∈ Sat(ϕB,k2
12), we have DN2,N1(ϕB,k2

12 , ϕB,k1
12 , d) ≤ λk1−1.

Finally, we have d(t2, t1) ≤ λλk1−1 = λk, which proves the induction.

For any state t20 = (s10, s
2
0, e,K2) ∈ T 2

0 , there exists a state t10 = (s10, s
2
0, e,K1) ∈ T 1

0 such
that d(t20, t

1
0) ≤ λK1 . As a consequence, we have d(N1 \

K2 N2, N1 \
K1 N2) ≤ λK1 .

The next proposition then shows that the speed of convergence is exponential in K;
hence in practice, K will typically not need to be very large.

Proposition 5. Let N1 and N2 be two deterministic APAs in SVNF such that N1 6� N2,
and let K ∈ N. Then dt([[N1]] \ [[N2]], [[N1 \

K N2]]) ≤ λK(1− λ)−1.

18 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

Proof. By Lemma 4, we know that d(N1 \
L+1 N2, N1 \

L N2) ≤ λL for each L, hence also
dt([[N1 \L+1 N2]], [[N1 \L N2]]) ≤ λL for each L by Proposition 1. Applying the triangle
inequality and continuity of dt, we see that

dt([[N1]] \ [[N2]], [[N1 \
K N2]]) ≤ dt([[N1]] \ [[N2]], [[N1 \

K+1 N2]])

+ dt([[N1 \
K+1 N2]], [[N1 \

K N2]])

≤ lim
i→∞

dt([[N1]] \ [[N2]], [[N1 \
K+i N2]])

+
∞∑

i=0

dt([[N1 \
K+i+1 N2]], [[N1 \

K+i N2]])

≤
∞∑

i=0

λK+i =
λK

1− λ

For the actual application on hand however, the particular accumulating distance d we
have introduced in Section 3 may have limited interest, especially considering that one has
to fix a discounting factor for actually calculating it. What is more interesting are results
of a topological nature which abstract away from the particular distance used and apply to
all distances which are topologically equivalent to d. The results we present below are of this
nature.

It can be shown, cf. [45], that accumulating distances for different choices of λ are
topologically equivalent (indeed, even Lipschitz equivalent), hence the particular choice of
discounting factor is not important. Also some other system distances are Lipschitz equiva-
lent to the accumulating one, in particular the so-called point-wise and maximum-lead ones,
see again [45].

Theorem 6. Let N1 and N2 be two deterministic APAs in SVNF such that N1 6� N2.

(1) The sequence (N1 \K N2)K∈N converges in the distance d, and limK→∞ d(N1 \∗

N2, N1 \
K N2) = 0.

(2) The sequence ([[N1 \
K N2]])K∈N converges in the distance dt, and limK→∞ dt([[N1]] \

[[N2]], [[N1 \
K N2]]) = 0.

Proof. Let N1 = (S1, A, L1, AP, V1, {s
1
0}) and N2 = (S2, A, L2, AP, V2, {s

2
0}) be two deter-

ministic APAs in SVNF such that N1 6� N2.

1. The proof of the convergence of both sequences (N1 \
K N2)K and ([[N1 \

K N2]])K is done
as follows. Let ε > 0. Since λ < 1, there exists K ∈ N such that λK < ε. As a consequence,
by Lemma 4, we have that for all K ≤ K1 ≤ K2,

d(N1 \
K2 N2, N1 \

K1 N2) ≤ λK1 ≤ λK < ε.

The sequence (N1 \
K N2)K is thus bi-Cauchy (i.e. both forward-Cauchy and backwards-

Cauchy) in the sense of [9]. Hence, because of Proposition 1, the sequence (of sets of PA)
([[N1 \

K N2]])K is also bi-Cauchy. The other two items show that they converge.

2. Theorem 3 shows that the sequence ([[N1\
KN2]])K converges in a set-theoretic sense (as a

direct limit), and that limK→∞[[N1\
KN2]] = [[N1]]\[[N2]]. Hence dt([[N1]]\[[N2]], limK→∞[[N1\

K

N2]]) = 0, and by continuity of dt, limK→∞ dt([[N1]] \ [[N2]], [[N1 \
K N2]]) = 0.

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 19

3. Finally, we prove that limK→∞ d(N1 \
∗ N2, N1 \

K N2) = 0. This proof is very similar to
the proof of Lemma 4 above: we can show that the distance between N1 \

∗N2 and N1 \
K N2

is bounded as follows:
d(N1 \

∗ N2, N1 \
K N2) ≤ λK

Let N1\
KN2 = NK = (SK , A, LK , AP, V K , TK

0), N1\
∗N2 = N∗ = (S∗, A, L∗, AP, V ∗, T ∗

0).
We start by proving by induction on 1 ≤ k ≤ K that for all (s1, s2, e) ∈ S1×(S2∪⊥)×(A∪ε),
we have d((s1, s2, e)

∗, (s1, s2, e, k)) ≤ λk. The only difference with the proof of Lemma 4 is
in the choice of the function δ : S∗ × SK → [0, 1] in the induction part. Here, we choose δ
as follows:

δ((s′1, s
′
2, f), (s

′′
1, s

′′
2, f

′, k′)) =

{
1 if s′1 = s′′1 ∧ s′2 = s′′2 ∧ f ′ = f ∧ k′ = k − 1

0 otherwise

The rest of the proof is identical, and we obtain that for all 1 ≤ k ≤ K and for all
(s1, s2, e) ∈ S1 × (S2 ∪⊥)× (A ∪ ε), we have d((s1, s2, e)

∗, (s1, s2, e, k)) ≤ λk. In particular,
this is also true for initial states. As a consequence, for all states t∗0 = (s20, s

1
0, e) ∈ T ∗

0 ,
there exists a state tK0 = (s10, s

2
0, e,K) ∈ TK

0 such that d(t∗0, t
K
0) ≤ λK , hence we have

d(N1 \
∗ N2, N1 \

K N2) ≤ λK , so that limK→∞ d(N1 \
∗ N2, N1 \

K N2) = 0.

Recall that as d and dt are not metrics, but only (asymmetric) pseudometrics (i.e. hemi-
metrics), the above sequences may have more than one limit; hence the particular formu-
lation. The theorem’s statements are topological, as they only allude to convergence of
sequences and distance 0; topologically equivalent distances obey precisely the property of
having the same convergence behavior and the same kernel, cf. [1].

The next corollary, which is easily proven from the above theorem by noticing that its
first part implies that also limK→∞ dt([[N1\

∗N2]], [[N1\
KN2]]) = 0, shows what we mentioned

already at the end of Section 4.2: with respect to the distance d, N1 \
∗ N2 is a best possible

over-approximation of [[N1]] \ [[N2]].

Corollary 7. Let N1 and N2 be two deterministic APAs in SVNF such that N1 6� N2.
Then dt([[N1 \

∗ N2]], [[N1]] \ [[N2]]) = 0.

Again, as dt is not a metric, the distance being zero does not imply that the sets
[[N1 \

∗N2]] and [[N1]] \ [[N2]] are equal; it merely means that they are indistinguishable by the
distance dt, or infinitesimally close to each other.

5. Counter-Example Generation

Here we show how some techniques similar to the ones we have introduced can be used to
generate one counterexample to a failed refinement N1 6� N2. Note that when we compute
the approximating differences N1 \

∗ N2 and N1 \
K N2, we are in principle generating (ap-

proximations to) the set of all counterexamples, hence what we do in Section 4 is much
more general than what we will present below. Generating only one counterexample may
still be interesting however, as it is somewhat easier than computing the differences N1\

∗N2,
N1 \

K N2 and is all that is needed in a CEGAR approach.
First remark that Definition 4 can be trivially turned into an algorithm for checking

refinement. Let N1 = (S1, A, L1, AP, V1, {s
1
0}) and N2 = (S2, A, L2, AP, V2, {s

2
0}) be two

deterministic APAs in SVNF. Consider the initial relation R0 = S1 × S2. Compute Rk+1

by removing all pairs of states not satisfying Definition 4 for Rk. The sequence (Rn)n∈N
is then strictly decreasing and converges to a fixed point within a finite number of steps

20 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

K ≤ |S1 × S2|. This fixed point RK coincides with the maximal refinement relation R
between N1 and N2. Let the index of this fixed point be denoted with Ind(R) = K; hence
IndR(s1, s2) = min(max({k | (s1, s2) ∈ Rk}),K).

We now observe that if a pair of states (s1, s2) is removed from the relation R by case 3,
then we need to keep track of the actions that lead to this removal in order to use them in
our counterexample. Whenever a pair of states is in cases 3.a, 3.b, 3.d or 3.e, we have that
IndR(s1, s2) = 0 and the counterexample can be easily produced by allowing or disallowing
the corresponding transitions from N1 and N2. Cases 3.c and 3.f play a different role: due
to the fact that they exploit distributions, they are the only cases in which refinement can
be broken by using its recursive axiom. In these cases, producing a counterexample can be
done in two ways: either by using a distribution that does not satisfy the constraints in N2

(if such a distribution exists, then IndR(s1, s2) = 0), or by using a distribution that reaches
a pair of states (s′1, s

′
2) /∈ R. When 0 < IndR(s1, s2) < Ind(R), only the latter is possible.

This recursive construction has disadvantages: it allows us to produce loops that may lead
to incorrect counterexamples. In order to prevent these loops, we propose to use only those
distributions that decrease the value of Ind in this particular case. The set Break(s1, s2)
defined hereafter allows us to distinguish the actions for which the value of Ind decreases,
hence ensuring (by Lemma 8 below) the correctness of our counterexample construction.
Let (s1, s2) ∈ S1 × S2 be such that V1(s1) = V2(s2) and IndR(s1, s2) = k < Ind(R). We
define

Break(s1, s2) = {a ∈ A | a ∈ Ba,b,d,e(s1, s2), or

∃ϕ1 ∈ C(S1), ϕ2 ∈ C(S2), µ1 ∈ Sat(ϕ1) :

L1(s1, a, ϕ1) 6= ⊥, L2(s2, a, ϕ2) 6= ⊥, ∀µ2 ∈ Sat(ϕ2) : µ1 6⋐Rk
µ2}

Remark that the conditions for Break above are exactly the conditions for removing a
pair of states (s1, s2) at step k of the algorithm for computing R defined above. Under the
assumption that V1(s1) ⊆ V2(s2) and IndR(s1, s2) = k < Ind(R), we can be sure that the
set Break(s1, s2) is not empty. Moreover, we have the following lemma.

Lemma 8. For all pairs of states (s1, s2) in case 3 and for all actions e ∈ (Bc(s1, s2) ∪
Bf (s1, s2))∩Break(s1, s2), there exist constraints ϕ1 and ϕ2 such that L1(s1, e, ϕ1) 6= ⊥ and
L2(s2, e, ϕ2) 6= ⊥ and a distribution µ1 ∈ Sat(ϕ1) such that

(1) ∃s′1 ∈ S1 such that µ1(s
′
1) > 0 and succs2,e(s

′
1) = ∅,

(2) µ2
1 :

(
s′2 7→

∑
{s′

1
∈S1|s′2=succs2,e(s

′
1
)} µ1(s

′
1)
)
/∈ Sat(ϕ2), or

(3) ∃s′1 ∈ S1, s
′
2 ∈ S2 such that µ1(s

′
1) > 0, s′2 = succs2,e(s

′
1) and IndR(s

′
1, s

′
2) <

IndR(s1, s2).

Proof. Let R be the maximal refinement relation between N1 and N2 and let (s1, s2) ∈
S1 × S2 such that (s1, s2) is in case 3, i.e. (s1, s2) /∈ R and V1(s1) = V2(s2). Let e ∈ A such
that e ∈ (Bc(s1, s2) ∪Bf (s1, s2)) ∩ Break(s1, s2).

Since e ∈ Bc(s1, s2) ∪ Bf (s1, s2), there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) such that
either L2(s2, e, ϕ2) = ⊤ and L1(s1, e, ϕ1) = ⊤ or L2(s2, e, ϕ2) = ? and L1(s1, e, ϕ1) 6= ⊥. As
a consequence, since e ∈ Break(s1, s2), we have that

∃µ1 ∈ Sat(ϕ1), ∀µ2 ∈ Sat(ϕ2), µ1 6⋐Rk
µ2. (5.1)

Let K be the smallest index such that RK = R. By construction, we know that
IndR(s1, s2) = k < K, i.e. (s1, s2) ∈ Rk and (s1, s2) /∈ Rk+1. Consider the distribution µ1

given by (5.1) above. We have that ∀µ2 ∈ Sat(ϕ2) : ∀ corresp. δ : µ1 6⋐δ
Rk

µ2. Consider the

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 21

Table 3. Definition of the transition function L in P .

e ∈ N1, N2 P Formal Definition of L

Ba(s1, s2)

s2

ϕ1

s1

e,⊤
e

µ⊥
1

e

(s1, s2)

Let ϕ1 ∈ C(S1) such that L1(s1, e, ϕ1) 6= ⊥ and let
µ1 be an arbitrary distribution in Sat(ϕ1). Define
L((s1, s2), e, µ

⊥
1) = ⊤.

Bb(s1, s2)

s2

ϕ1

s1

e, ?
e

Bd(s1, s2)
ϕ2

s2s1

e
e,⊤

e

(s1, s2)

For all µ ∈ Dist(S), let L((s1, s2), e, µ) = ⊥.

Be(s1, s2)
ϕ2

s2

ϕ1

s1

e, ?
e,⊤

Bc(s1, s2)
ϕ2

s2

ϕ1

s1

6=

e, {?,⊤}
e, ? (s1, s2)

e

µ̂1

6⋐R ϕ2

Let ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) such that
L1(s1, e, ϕ1) 6= ⊥ and L2(s2, e, ϕ2) 6= ⊥.

• If e ∈ Break(s1, s2), then let µ1 be the distribu-
tion given in Lemma 8.

• Else, let µ1 be an arbitrary distribution in
Sat(ϕ1) such that ∀µ2 ∈ Sat(ϕ2), µ1 6⋐R µ2.

In both cases, let L((s1, s2), e, µ̂1) = ⊤.

Bf (s1, s2)

s2s1

ϕ1 ϕ26=

e,⊤
e,⊤

function δ such that δ(s′1, s
′
2) = 1 if s′2 = succs2,e(s

′
1) and 0 otherwise. There are several

cases.

• If there exists s′1 ∈ S1 such that µ1(s
′
1) > 0 and succs2,e(s

′
1) = ∅, then the lemma is

proven.
• Else, δ is a correspondence function. Since ∀µ2 ∈ Sat(ϕ2), µ1 6⋐Rk

µ2, we know that
either (1) µ2 : s

′
2 7→

∑
s′
1
∈S1

µ1(s
′
1)δ(s

′
1, s

′
2) does not satisfy ϕ2, or (2) there exists s′1

and s′2 such that µ1(s
′
1) > 0, δ(s′1, s

′
2) > 0 and (s′1, s

′
2) /∈ Rk.

(1) Assume that µ2 : s
′
2 7→

∑
s′
1
∈S1

µ1(s
′
1)δ(s

′
1, s

′
2) does not satisfy ϕ2. Remark that

the function µ2
1 from Lemma 8 is equal to µ2 defined above. As a consequence,

µ2
1 /∈ ϕ2.

(2) Otherwise, assume that there exists s′1 and s′2 such that µ1(s
′
1) > 0, δ(s′1, s

′
2) > 0

and (s′1, s
′
2) /∈ Rk. Since (s′1, s

′
2) /∈ Rk, we have that IndR(s

′
1, s

′
2) < k. As a

consequence, there exists s′1 ∈ S1, s
′
2 ∈ S2 such that µ1(s

′
1) > 0, s′2 = succs2,e(s

′
1)

and IndR(s
′
1, s

′
2) < IndR(s1, s2).

In other words, the above lemma ensures that a pair (s′1, s
′
2) such that IndR(s

′
1, s

′
2) = 0

can be reached within a bounded number of transitions for all pairs of states (s1, s2) in
case 3. As explained above, this is a prerequisite for the correctness of the counterexample
construction defined hereafter.

We now propose a construction to build counterexamples. Let N1 = (S1, A, L1, AP, V1, {s
1
0})

and N2 = (S2, A, L2, AP, V2, {s
2
0}) be deterministic APAs in SVNF such that N1 6� N2. Let

R be the maximal refinement relation between N1 and N2.

22 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

Definition 9. The counterexample P = (S,A,L,AP, V, s0) is computed as follows:

• S = S1 × (S2 ∪ {⊥}), s0 = (s10, s
2
0),

• V (s1, s2) = v ∈ 2AP such that V1(s1) = {v} for all (s1, s2) ∈ S, and
• L is defined as follows. Let (s1, s2) ∈ S.

– If (s1, s2) in case 1 or 2 or s2 = ⊥, then for all a ∈ A and ϕ1 ∈ C(S1) such
that L1(s1, a, ϕ1) = ⊤, let µ1 be an arbitrary distribution in Sat(ϕ1) and let
L((s1, s2), a, µ

⊥
1) = ⊤ with µ⊥

1 ∈ Dist(S) such that µ⊥
1 (s

′
1, s

′
2) = µ1(s

′
1) if

s′2 = ⊥ and 0 otherwise.
– Else, (s1, s2) is in case 3 and B(s1, s2) 6= ∅. For all a ∈ A \ B(s1, s2) and

ϕ1 ∈ C(S1) such that L1(s1, a, ϕ1) = ⊤, let µ1 be an arbitrary distribution in
Sat(ϕ1) and let L((s1, s2), a, µ

⊥
1) = ⊤, with µ⊥

1 defined as above.
In addition, for all e ∈ B(s1, s2), let L((s1, s2), e, .) be defined as in Table 3. In
the table, given constraints ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) such that L1(s1, e, ϕ1) 6=
⊥ and L2(s2, e, ϕ2) 6= ⊥, and a distribution µ1 ∈ Sat(ϕ1), the distribution
µ̂1 ∈ Dist(S) is defined as follows: µ̂1(s

′
1, s

′
2) = µ1(s1) if s′2 = succs2,e(s

′
1) or

succs2,e(s
′
1) = ∅ and s′2 = ⊥, and 0 otherwise.

Theorem 9. The counterexample PA P defined above is such that P |= N1 and P 6|= N2.

The proof of the theorem is similar to the one of Theorem 2 and available in appendix.

6. Conclusion

We have in this paper added an important aspect to the specification theory of Abstract
Probabilistic Automata, in that we have shown how to exhaustively characterize the dif-

ference between two deterministic specifications. In a stepwise refinement methodology,
difference is an important tool to gauge refinement failures.

We have also introduced a notion of discounted distance between specifications which
can be used as another measure for how far one specification is from being a refinement of an-
other. Using this distance, we were able to show that our sequence of under-approximations
converges, semantically, to the real difference of sets of implementations, and that our over-
approximation is infinitesimally close to the real difference.

There are many different ways to measure distances between implementations and spec-
ifications, allowing to put the focus on either transient or steady-state behavior. In this
paper we have chosen one specific discounted distance, placing the focus on transient be-
havior. Apart from the fact that this can indeed be a useful distance in practice, we remark
that the convergence results about our under- and over-approximations are topological in
nature and hence apply with respect to all distances which are topologically equivalent to
the specific one used here, typically discounted distances. Although the results presented
in the paper do not hold in general for the accumulating (undiscounted) distance, there are
other notions of distances that are more relevant for steady-state behavior, e.g. limit-average.
Whether our results hold in this setting remains future work.

We also remark that we have shown that it is not more difficult to compute the difference
of two APAs than to check for their refinement. Hence if a refinement failure is detected
(for example by using the methods in the APAC tool [21]), it is not difficult to also compute
the difference for assessing the reason for refinement failure. For the class of APAs with
polynomial constraints, which is the one implemented in APAC, refinement checking can be

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 23

done in time quadratic in the number of states and doubly-exponential in the number of
constraints [20]; in APAC, the Z3 solver [16] is used for operations on constraints.

One limitation of our approach is the use of deterministic APAs. Even though deter-
ministic specifications are generally considered to suffice from a modeling point of view [35],
non-determinism may be introduced for example when composing specifications. Indeed,
our constructions themselves introduce non-determinism: for deterministic APAs N1, N2,
both N1 \

∗ N2 and N1 \
K N2 may be non-deterministic. Hence it is of interest to extend

our approach to non-deterministic specifications. The problem here is, however, that for
non-deterministic specifications, the relation between refinement and inclusion of sets of
implementations N1 � N2 ⇐⇒ [[N1]] ⊆ [[N2]] breaks: we may well have N1 6� N2 but
[[N1]] ⊆ [[N2]], cf. [18]. So the technique we have used in this paper to compute differences
will not work for non-deterministic APAs, and techniques based on thorough refinement will
have to be used.

As a last note, we wish to compare our approach of difference between APA specifications
with the use of counterexamples in probabilistic model checking. Counterexample generation
is studied in a number of papers [2,4,11,25,28,30,33,42,48,49], typically with the purpose of
embedding it into a procedure of counterexample guided abstraction refinement (CEGAR).
The focus typically is on generation of one particular counterexample to refinement, which
can then be used to adapt the abstraction accordingly.

In contrast, although we propose a construction for building single counter-examples, our
main focus is on computing APA difference, i.e. generating a representation of all counterex-

amples. Our goal is not to refine abstractions at system level, using counterexamples, but to
assess specifications. This is, then, the reason why we want to compute all counterexamples
instead of only one. Our work is hence supplementary and orthogonal to the CEGAR-type
use of counterexamples: CEGAR procedures can be used also to refine APA specifications,
but only our difference can assess the precise distinction between specifications.

References

[1] Charalambos D. Aliprantis and Kim C. Border. Infinite Dimensional Analysis: A Hitchhiker’s Guide.
Springer, 3rd edition, 2007.

[2] Husain Aljazzar and Stefan Leue. Directed explicit state-space search in the generation of counterexamples
for stochastic model checking. IEEE Trans. Software Eng., 36(1):37–60, 2010.

[3] Rajeev Alur, Tomás Feder, and Thomas A. Henzinger. The benefits of relaxing punctuality. J. ACM,
43(1):116–146, 1996.

[4] Miguel E. Andrés, Pedro R. D’Argenio, and Peter van Rossum. Significant diagnostic counterexamples
in probabilistic model checking. In Hana Chockler and Alan J. Hu, editors, HVC, volume 5394 of Lecture
Notes Comput. Sci., pages 129–148. Springer, 2008.

[5] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.
[6] Sebastian S. Bauer, Uli Fahrenberg, Line Juhl, Kim G. Larsen, Axel Legay, and Claus Thrane. Quanti-

tative refinement for weighted modal transition systems. In Filip Murlak and Piotr Sankowski, editors,
MFCS, volume 6907 of Lecture Notes Comput. Sci., pages 60–71. Springer, 2011.

[7] Sebastian S. Bauer, Uli Fahrenberg, Line Juhl, Kim G. Larsen, Axel Legay, and Claus Thrane. Weighted
modal transition systems. Formal Methods in System Design, 42(2):193–220, 2013.

[8] Sebastian S. Bauer, Uli Fahrenberg, Axel Legay, and Claus Thrane. General quantitative specification
theories with modalities. In Edward A. Hirsch, Juhani Karhumäki, Arto Lepistö, and Michail Prilutskii,
editors, CSR, volume 7353 of Lecture Notes Comput. Sci., pages 18–30. Springer, 2012.

[9] Marcello M. Bonsangue, Franck van Breugel, and Jan J. M. M. Rutten. Generalized metric spaces:
Completion, topology, and powerdomains via the Yoneda embedding. Theor. Comput. Sci., 193(1-2):1–51,
1998.

24 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

[10] Benoît Caillaud, Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej
Wąsowski. Constraint Markov chains. Theor. Comput. Sci., 412(34):4373–4404, 2011.

[11] Rohit Chadha and Mahesh Viswanathan. A counterexample-guided abstraction-refinement framework
for Markov decision processes. ACM Trans. Comput. Log., 12(1):1, 2010.

[12] Jamieson M. Cobleigh, George S. Avrunin, and Lori A. Clarke. Breaking up is hard to do: An evaluation
of automated assume-guarantee reasoning. ACM Trans. Softw. Eng. Methodol., 17(2), 2008.

[13] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S. Pasareanu. Learning assumptions for
compositional verification. In Hubert Garavel and John Hatcliff, editors, TACAS, volume 2619 of Lecture
Notes Comput. Sci., pages 331–346. Springer, 2003.

[14] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC / SIGSOFT FSE, pages 109–120.
ACM, 2001.

[15] Luca de Alfaro, Rupak Majumdar, Vishwanath Raman, and Mariëlle Stoelinga. Game relations and
metrics. In LICS, pages 99–108. IEEE Computer Society, 2007.

[16] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, TACAS, volume 4963 of Lecture Notes Comput. Sci., pages 337–340. Springer,
2008.

[17] Benoît Delahaye, Uli Fahrenberg, Kim G. Larsen, and Axel Legay. Refinement and difference for
probabilistic automata. In Kaustubh R. Joshi, Markus Siegle, Mariëlle Stoelinga, and Pedro R. D’Argenio,
editors, QEST, volume 8054 of Lecture Notes Comput. Sci., pages 22–38. Springer, 2013.

[18] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, Falak Sher, and
Andrzej Wąsowski. Abstract probabilistic automata. In VMCAI, volume 6538 of Lecture Notes Comput.
Sci., pages 324–339. Springer, 2011.

[19] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, Falak Sher, and
Andrzej Wąsowski. New results on abstract probabilistic automata. In Benoît Caillaud, Josep Carmona,
and Kunihiko Hiraishi, editors, ACSD, pages 118–127. IEEE, 2011.

[20] Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, Falak Sher, and
Andrzej Wąsowski. Abstract probabilistic automata. Inf. Comp., 232:66–116, 2013.

[21] Benoît Delahaye, Kim G. Larsen, Axel Legay, Mikkel L. Pedersen, and Andrzej Wąsowski. APAC: A
tool for reasoning about abstract probabilistic automata. In QEST, pages 151–152. IEEE, 2011.

[22] Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for labelled
Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

[23] Uli Fahrenberg, Axel Legay, and Claus Thrane. The quantitative linear-time–branching-time spectrum.
In Supratik Chakraborty and Amit Kumar, editors, FSTTCS, volume 13 of LIPIcs, pages 103–114.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[24] Harald Fecher, Martin Leucker, and Verena Wolf. Don’t know in probabilistic systems. In SPIN, volume
3925 of Lecture Notes Comput. Sci., pages 71–88. Springer, 2006.

[25] Tingting Han, Joost-Pieter Katoen, and Berteun Damman. Counterexample generation in probabilistic
model checking. IEEE Trans. Software Eng., 35(2):241–257, 2009.

[26] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Formal Asp. Comput.,
6(5):512–535, 1994.

[27] Holger Hermanns, Ulrich Herzog, and Joost-Pieter Katoen. Process algebra for performance evaluation.
Theor. Comput. Sci., 274(1-2):43–87, 2002.

[28] Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabilistic CEGAR. In Aarti Gupta and Sharad
Malik, editors, CAV, volume 5123 of Lecture Notes Comput. Sci., pages 162–175. Springer, 2008.

[29] Andrew Hinton, Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: A tool for automatic
verification of probabilistic systems. In TACAS, volume 3920 of Lecture Notes Comput. Sci., pages
441–444. Springer, 2006.

[30] Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter Katoen, and Bernd Becker.
Hierarchical counterexamples for discrete-time Markov chains. In Tevfik Bultan and Pao-Ann Hsiung,
editors, ATVA, volume 6996 of Lecture Notes Comput. Sci., pages 443–452. Springer, 2011.

[31] Bengt Jonsson and Kim G. Larsen. Specification and refinement of probabilistic processes. In LICS,
pages 266–277. IEEE, 1991.

[32] Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf. Three-valued abstraction for
continuous-time Markov chains. In CAV, volume 4590 of Lecture Notes Comput. Sci., pages 311–324.
Springer, 2007.

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 25

[33] Anvesh Komuravelli, Corina S. Pasareanu, and Edmund M. Clarke. Assume-guarantee abstraction
refinement for probabilistic systems. In P. Madhusudan and Sanjit A. Seshia, editors, CAV, volume 7358
of Lecture Notes Comput. Sci., pages 310–326. Springer, 2012.

[34] Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu. Assume-guarantee verification
for probabilistic systems. In TACAS, volume 6015 of Lecture Notes Comput. Sci., pages 23–37. Springer,
2010.

[35] Kim G. Larsen. Modal specifications. In Joseph Sifakis, editor, Automatic Verification Methods for Finite
State Systems, volume 407 of Lecture Notes Comput. Sci., pages 232–246. Springer, 1989.

[36] Kim G. Larsen, Uli Fahrenberg, and Claus Thrane. Metrics for weighted transition systems: Axiomati-
zation and complexity. Theor. Comput. Sci., 412(28):3358–3369, 2011.

[37] Nancy Lynch and Mark R. Tuttle. An introduction to Input/Output automata. CWI, 2(3), 1989.
[38] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[39] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer, 1992.
[40] Jean-Baptiste Raclet. Quotient de spécifications pour la réutilisation de composants. PhD thesis, Univer-

sité de Rennes I, December 2007. (In French).
[41] Mathieu Sassolas, Marsha Chechik, and Sebastián Uchitel. Exploring inconsistencies between modal

transition systems. Software and System Modeling, 10(1):117–142, 2011.
[42] Matthias Schmalz, Daniele Varacca, and Hagen Völzer. Counterexamples in probabilistic LTL model

checking for Markov chains. In Mario Bravetti and Gianluigi Zavattaro, editors, CONCUR, volume 5710
of Lecture Notes Comput. Sci., pages 587–602. Springer, 2009.

[43] Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes. In Bengt
Jonsson and Joachim Parrow, editors, CONCUR, volume 836 of Lecture Notes Comput. Sci., pages
481–496. Springer, 1994.

[44] Falak Sher and Joost-Pieter Katoen. Compositional abstraction techniques for probabilistic automata.
In Jos C. M. Baeten, Thomas Ball, and Frank S. de Boer, editors, IFIP TCS, volume 7604 of Lecture
Notes Comput. Sci., pages 325–341. Springer, 2012.

[45] Claus Thrane, Uli Fahrenberg, and Kim G. Larsen. Quantitative analysis of weighted transition systems.
J. Logic Algeb. Prog., 79(7):689–703, 2010.

[46] Franck van Breugel, Michael W. Mislove, Joël Ouaknine, and James Worrell. An intrinsic characterization
of approximate probabilistic bisimilarity. In Andrew D. Gordon, editor, FoSSaCS, volume 2620 of Lecture
Notes Comput. Sci., pages 200–215. Springer, 2003.

[47] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In FOCS, pages
327–338. IEEE, 1985.

[48] Ralf Wimmer, Bettina Braitling, and Bernd Becker. Counterexample generation for discrete-time Markov
chains using bounded model checking. In Neil D. Jones and Markus Müller-Olm, editors, VMCAI,
volume 5403 of Lecture Notes Comput. Sci., pages 366–380. Springer, 2009.

[49] Ralf Wimmer, Nils Jansen, Erika Ábrahám, Bernd Becker, and Joost-Pieter Katoen. Minimal critical
subsystems for discrete-time Markov models. In Cormac Flanagan and Barbara König, editors, TACAS,
volume 7214 of Lecture Notes Comput. Sci., pages 299–314. Springer, 2012.

26 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

Appendix: Proof of Theorem 3

Proof of Theorem 3. For the first claim, consider the relation R ⊆ (S1 × (S2 ∪ {⊥}) ×
(A ∪ {ε}) × {1, . . . ,K}) × (S1 × (S2 ∪ {⊥}) × (A ∪ {ε}) × {1, . . . ,K + 1}) such that R =
{((s10, s

2
0, e,K), (s10, s

2
0, e,K + 1)) | e ∈ B(s10, s

2
0)} ∪ Rid, where Rid denotes the identity

relation. One can verify that, by construction, R is a refinement relation witnessing N1 \
K

N2 � N1 \
K+1 N2.

Let N1 = (S1, A, L1, AP, V1, {s
1
0}) and N2 = (S2, A, L2, AP, V2, {s

2
0}) be deterministic

APAs in single valuation normal form such that N1 6� N2. Let R be the maximal refinement
relation between N1 and N2.

1. We first prove that for all K ∈ N, [[N1 \
K N2]] ⊆ [[N1]] \ [[N2]]. If V1(s

1
0) 6= V2(s

2
0), then for

all K ∈ N, we have N1 \
K N2 = N1 and the result holds.

Otherwise, assume that (s10, s
2
0) is in case 3 and let K ∈ N. We have N1 \K N2 =

(S,A,L,AP, V, SK
0) defined as in Section 4.3. Let P = (SP , A, LP , AP, VP , s

P
0) be a PA

such that P |= N1 \
K N2. Let R\ ⊆ SP × S be the associated satisfaction relation and let

f ∈ B(s10, s
2
0) be such that sP0 R\(s10, s

2
0, f,K). We show that P |= N1 and P 6|= N2.

We start by proving that P |= N1. Consider the relation R1 ⊆ SP × S1 such that

pR1 s1 ⇐⇒ ∃s2 ∈ (S2 ∪{⊥}), ∃e ∈ (A∪{ε}), ∃n ≤ K s.t. pR\(s1, s2, e, n). We prove that

R1 is a satisfaction relation. Let p, s1, s2, e, n such that pR1 s1 and pR\(s1, s2, e, n).

• By construction, we have VP (p) ∈ V ((s1, s2, e, n)) = V1(s1).

• Let a ∈ A and µP ∈ Dist(SP) be such that LP (p, a, µP) = ⊤. By R\, there exists
ϕ ∈ C(S) such that L((s1, s2, e, n), a, ϕ) 6= ⊥ and there exists µ ∈ Sat(ϕ) such that
µP ⋐R\ µ.

If s2 = ⊥ or e = ε or a 6= e, then by construction of N1 \K N2, there exists
ϕ1 ∈ C(S1) such that ϕ = ϕ⊥

1 and L1(s1, a, ϕ1) 6= ⊥. As a consequence, the
distribution µ ↓1: s

′
1 7→ µ(s′1,⊥, ε, 1) is in Sat(ϕ1) and it follows that µP ⋐R1

µ ↓1.
Otherwise, assume that s2 ∈ S2, e ∈ A and a = e. There are several cases.
– If e ∈ Ba(s1, s2) ∪ Bb(s1, s2), then by construction of N1 \

K N2, there exists
ϕ1 ∈ C(S1) such that L1(s1, e, ϕ1) 6= ⊥ and ϕ = ϕ⊥

1 . As above, we thus have
µP ⋐R1

µ ↓1.
– Else, if e ∈ Be(s1, s2), then there exists ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) such

that L1(s1, e, ϕ1) =? and L2(s2, e, ϕ2) = ⊤. Moreover, ϕ is of the form ϕB
12,

and µ′ ∈ Sat(ϕB
12) implies that the distribution µ′

1 such that µ′
1 : s′1 7→∑

c∈A∪{ε},s′
2
∈S2∪{⊥},k′≥1 µ(s

′
1, s

′
2, c, k

′) satisfies ϕ1. Thus, the distribution µ1 :

s′1 7→
∑

c∈A∪{ε},s′
2
∈S2∪{⊥},k′≥1 µ(s

′
1, s

′
2, c, k

′) satisfies ϕ1. Let δ1 : SP → (S1 →

[0, 1]) be such that δ1(p
′)(s′1) = 1 if µP (p

′) > 0 and s′1 = succs1,e(p
′) and 0 other-

wise. By construction, δ1 is a correspondence function and we have µP δ1 = µ1.
Thus there exists µ1 ∈ Sat(ϕ1) such that µP ⋐R1

µ1.
– Finally, if e ∈ Bc(s1, s2) ∪ Bf (s1, s2), then there exists ϕ1 ∈ C(S1) such that

L(s1, e, ϕ1) 6= ⊥, and either ϕ = ϕ⊥
1 or ϕ = ϕB

12 as in the case above. In both
cases, as proven before, there exists µ1 ∈ Sat(ϕ1) such that µP ⋐R1

µ1.
• Let a ∈ A and ϕ1 ∈ C(S1) such that L1(s1, a, ϕ1) = ⊤.

If s2 = ⊥ or e = ε or a 6= e, then by construction of N1 \
K N2, the constraint ϕ⊥

1

is such that L((s1, s2, e, n), a, ϕ
⊥
1) = ⊤. As a consequence, there exists a distribution

µP ∈ Dist(SP) such that LP (p, a, µP) = ⊤ and there exists µ ∈ Sat(ϕ⊥
1) such

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 27

that µP ⋐R\ µ. Moreover, by construction of ϕ⊥
1 , the distribution µ ↓1: s′1 7→

µ(s′1,⊥, ε, 1) is in Sat(ϕ1) and it follows that µP ⋐R1
µ ↓1.

Otherwise, assume that s2 ∈ S2, e ∈ A and a = e. Since L1(s1, a, ϕ1) = ⊤, (s1, s2)
can only be in cases 3.a, 3.c or 3.f . As a consequence, e ∈ Ba(s1, s2) ∪ Bc(s1, s2) ∪
Bf (s1, s2). By construction, in all of these cases, we have L((s1, s2, e, n), a, ϕ

⊥
1) = ⊤.

Thus, there exists a distribution µP ∈ Dist(SP) such that LP (p, a, µP) = ⊤ and
there exists µ ∈ Sat(ϕ⊥

1) such that µP ⋐R\ µ. As above, it follows that µP ⋐R1
µ ↓1.

Finally, R1 is a satisfaction relation. Moreover, by hypothesis, we have sP0 R\(s10, s
2
0, f,K),

thus sP0 R1 s
1
0 and P |= N1.

We now prove that P 6|= N2. Assume the contrary and let R2 ⊆ SP ×S2 be the smallest
satisfaction relation witnessing P |= N2 (i.e. containing only reachable states). We prove
the following by induction on the value of n, for 1 ≤ n ≤ K: ∀p ∈ SP , s2 ∈ S2, if there
exists s1 ∈ S1 and e ∈ A such that pR\(s1, s2, e, n), then (p, s2) /∈ R2.

• Base Case (n = 1). Let p, s1, s2, e such that pR\(s1, s2, e, 1). If e ∈ Ba(s1, s2) ∪
Bb(s1, s2) ∪ Bd(s1, s2), then by construction there is an e transition in either P
or N2 that cannot be matched by the other. Thus (p, s2) /∈ R2. The same is
verified if e ∈ Be(s1, s2) and there is no distribution µP ∈ Dist(SP) such that
LP (p, e, µP) = ⊤.

Otherwise, e ∈ Be(s1, s2)∪Bc(s1, s2)∪Bf (s1, s2) and there exists µP ∈ Dist(SP)
such that LP (p, e, µP) = ⊤. Let ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) be the corresponding

constraints in N1 and N2. Consider the corresponding constraint ϕB,1
12 ∈ C(S). By

R\, there exists µ ∈ Sat(ϕB,1
12) such that µP ⋐R\ µ. By construction of ϕB,1

12 , we
know that either (3.a) there exists (s′1,⊥, ε, 1) such that µ(s′1,⊥, ε, 1) > 0 or (3.b)
the distribution µ2 : s′2 7→

∑
c∈A∪{ε},s′

1
∈S1,k′≥1 µ(s

′
1, s

′
2, c, k

′) does not satisfy ϕ2.

If there exists (s′1,⊥, ε, 1) such that µ(s′1,⊥, ε, 1) > 0, then there exists p′ ∈ SP

such that µP (p
′) > 0 and succs2,e(p

′) = ∅. Thus there cannot exists µ′
2 ∈ Sat(ϕ2)

such that µP ⋐R2
µ′
2. Otherwise, by determinism of N2, we know that the only

possible correspondence function for µP and R2 is δ2 : SP → (S2 → [0, 1]) such
that δ2(p

′)(s′2) = 1 if s′2 = succs2,e(p
′) and 0 otherwise. By construction, we have

µP δ2 = µ2 and thus there is no distribution µ′
2 ∈ Sat(ϕ2) such that µP ⋐R2

µ′
2.

Consequently, (p, s2) /∈ R2.
• Induction. Let 1 < n ≤ K and assume that for all k < n, for all p′ ∈ SP , s

′
2 ∈

S2, whenever there exists s′1 ∈ S1 and e ∈ A such that p′R\(s′1, s
′
2, e, k), we have

(p′, s′2) /∈ R2. Let p, s1, s2, e such that pR\(s1, s2, e, n). If e ∈ Ba(s1, s2)∪Bb(s1, s2)∪
Bd(s1, s2), then by construction there is an e transition in either P or N2 that cannot
be matched by the other. Thus (p, s2) /∈ R2. The same is verified if e ∈ Be(s1, s2)
and there is no distribution µP ∈ Dist(SP) such that LP (p, e, µP) = ⊤. Else,
e ∈ Be(s1, s2) ∪ Bc(s1, s2) ∪ Bf (s1, s2) and there exists µP ∈ Dist(SP) such that
LP (p, e, µP) = ⊤. Let ϕ1 ∈ C(S1) and ϕ2 ∈ C(S2) be the corresponding constraints
in N1 and N2.

Consider the corresponding constraint ϕB,n
12 ∈ C(S). By R\, there exists µ ∈

Sat(ϕB,n
12) such that µP ⋐R\ µ. By construction of ϕB,n

12 , we know that either
(3.a) there exists (s′1,⊥, c, 1) such that µ(s′1,⊥, c, 1) > 0 or (3.b) the distribution
µ2 : s

′
2 7→

∑
c∈A∪{ε},s′

1
∈S1,k′≥1 µ(s

′
1, s

′
2, c, k

′) does not satisfy ϕ2, or (3.c) there exists

s′1 ∈ S1, s′2 ∈ S2, c 6= ε and k < n such that µ(s′1, s
′
2, c, k) > 0. If case (3.a) or

28 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

(3.b) holds, then as in the base case, there is no distribution µ′
2 ∈ Sat(ϕ2) such

that µP ⋐R2
µ′
2. Otherwise, if (3.c) holds, then there exists p′ ∈ SP such that

µP (p
′) > 0 and p′R\(s′1, s

′
2, c, k). By induction, we thus know that (p′, s′2) /∈ R2 and

by construction and determinism of N2, we have that succs2,e(p
′) = {s′2}. Thus there

is no distribution µ′
2 ∈ Sat(ϕ2) such that µP ⋐R2

µ′
2. Consequently, (p, s2) /∈ R2.

By hypothesis, we have sP0 R\(s10, s
2
0, f,K). As a consequence, we have that (sP0 , s

2
0) /∈

R2, implying that P 6|= N2.

2. We now prove that for all PA P ∈ [[N1]] \ [[N2]], there exists K ∈ N such that P ∈
[[N1 \

K N2]]. If V1(s
1
0) 6= V2(s

2
0), then for all K ∈ N, we have N1 \

K N2 = N1 and the result
holds.

Otherwise, assume that (s10, s
2
0) is in case 3. Let P = (SP , A, LP , AP, VP , s

P
0) be a PA

such that P |= N1 and P 6|= N2. Let R1 be the satisfaction relation witnessing P |= N1 and
R2 be the maximal satisfaction relation between P and N2. Assume that R2 is computed as
described in Section 5. Let IndR2

be the associated index function and let K be the minimal
index such that R2K = R2. We show that P |= N1\

KN2. Let N1\
KN2 = (S,A,L,AP, V, S0)

be defined as in Section 4.3.
Let R\ ⊆ SP × S2 be the relation such that

pR\(s1, s2, e, k) ⇐⇒





(pR1 s1) and (s2 = ⊥) and (e = ε) and (k = 1)

or

{
(pR1 s1) and (p, s2) in case 1 or 2 and (e = ε)

and (k = 1)

or

{
(pR1 s1) and (p, s2) in case 3 and (e ∈ Break(p, s2))

and (k = IndR2
(p, s2) + 1)

Remark that whenever (p, s2) is in case 3, we know that IndR2
(p, s2) < K, thus IndR2

(p, s2)+
1 ≤ K.

We prove that R\ is a satisfaction relation. Let pR\(s1, s2, e, k). If s2 = ⊥ or e = ε,

then since pR1 s1, R
\ satisfies the axioms of a satisfaction relation by construction.

Else we have s2 ∈ S2 and e 6= ε, thus, by definition of R\, we know that (p, s2) is in
case 3. The rest of the proof is almost identical to the proof of Theorem 2. In the following,
we report to this proof and only highlight the differences.

• By construction, we have VP (p) ∈ V1(s1) = V ((s1, s2, e, k)).
• Let a ∈ A and µP ∈ Dist(SP) such that LP (p, a, µP) = ⊤. There are several cases.

– If a 6= e, or a = e ∈ Ba(p, s2), the proof is identical to the proof of Theorem 2.
– Else, we necessarily have a = e ∈ Bc(p, s2) ∪ Bf (p, s2). Remark that, by

construction, Bc(p, s2) ⊆ Bc(s1, s2) and Bf (p, s2) ⊆ Bf (s1, s2). Since pR1 s1,
there exists ϕ1 ∈ C(S1) such that L1(s1, e, ϕ1) 6= ⊥ and there exists µ1 ∈
Sat(ϕ1) and a correspondence function δ1 : SP → (S1 → [0, 1]) such that

µP ⋐
δ1
R1

µ1.

Moreover, by construction of N1 \
K N2, we know that the constraint ϕB,k

12 is

such that L((s1, s2, e, k), e, ϕ
B,k
12) = ⊤.

We now prove that there exists µ ∈ Sat(ϕB,k
12) such that µP ⋐R\ µ. Consider

the function δ : SP → (S → [0, 1]) defined as follows: Let p′ ∈ SP such that
µP (p

′) > 0 and let s′1 = succs1,e(p
′), which exists by R1.

∗ If succs2,e(p
′) = ∅, then δ(p′)(s′1,⊥, ε, 1) = 1.

∗ Else, let s′2 = succs2,e(p
′). Then,

· if (p′, s′2) ∈ R2, then δ(p′)(s′1, s
′
2, ε, 1) = 1.

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 29

· Else, (p′, s′2) is in case 3 and Break(p′, s′2) 6= ∅. In this case, let
c ∈ Break(p′, s′2) and define δ(p′, (s′1, s

′
2, c, IndR2

(p′, s′2) + 1)) = 1.
For all other c′ ∈ A and 1 ≤ k′ ≤ K, define δ(p′, (s′1, s

′
2, c

′, k′)) = 0.
Remark that for all p′ ∈ SP such that µP (p

′) > 0, there exists a unique s′ ∈ S′

such that δ(p′)(s′) = 1. Thus δ is a correspondence function.

We now prove that µ = µP δ ∈ Sat(ϕB,k
12).

(1) Let (s′1, s
′
2, c, k

′) ∈ S such that µ(s′1, s
′
2, c, k

′) > 0. By construction, there
exists p′ ∈ SP such that µP (p

′) > 0 and δ(p′)(s′1, s
′
2, c, k

′) > 0. Moreover,
c ∈ B(s′1, s

′
2) ∪ {ε}, s′2 = ⊥ if succs2,e(s

′
1) = ∅ and s′2 = succs2,e(s

′
1)

otherwise.
(2) Consider the distribution µ′

1 : s
′
1 7→

∑
c∈A∪{ε},s′

2
∈S2∪{⊥},k′≥1 µ(s

′
1, s

′
2, c, k

′).

By determinism (See Lemma 28 in [10]), we have that δ1(p
′)(s′1) = 1 ⇐⇒

s′1 = (succ)s1,e(p
′). As a consequence, we have that µ′

1 = µδ1 = µ1 ∈
Sat(ϕ1).

(3) Depending on k, there are 2 cases.
∗ If k > 1, assume that for all p′ ∈ SP such that µP (p

′) > 0, we have
succs2,e(p

′) 6= ∅ (the other case being trivial). Since c ∈ (Bc(p, s2) ∪

Bf (p, s2)) ∩ Break(p, s2) by R\, we can apply Lemma 8. As a con-
sequence, either (2) µ2

1 :
(
s′2 7→

∑
p′∈P |s′

2
=succs2,e(p

′) µP (p
′)
)

does

not satisfy ϕ2, or (3) there exists p′ ∈ SP and s′2 ∈ S2 such that
µP (p

′) > 0, s′2 = succs2,e(p
′) and IndR2

(p′, s′2) < IndR2
(p, s2).

In the first case (2), consider the distribution µ2 defined as follows:

µ2 : s
′
2 7→

∑

c∈A∪{ε},s′
1
∈S1,k′≥1

µ(s′1, s
′
2, c, k

′).

We have the following: for all s′2 ∈ S2,

µ2(s
′
2) =

∑

c∈A∪{ε},s′
1
∈S1,k′≥1

µ(s′1, s
′
2, c, k

′)

=
∑

c∈A∪{ε},s′
1
∈S1,k′≥1

∑

p′∈SP

µP (p
′)δ(p′)((s′1, s

′
2, c, k

′))

=
∑

p′∈SP

µP (p
′)

∑

c∈A∪{ε},s′
1
∈S1,k′≥1

δ(p′)((s′1, s
′
2, c, k

′))

=
∑

p′∈SP |s′
2
=succs2,e(p

′)

µP (p
′)δ(p′)((succs1,e(p

′), s′2, c,

IndR2
(p′, s′2)))

for c ∈ Break(p′, s′2) fixed as above

=
∑

p′∈SP |s′
2
=succs2,e(p

′)

µP (p
′) = µ2

1(s
′
2)

As a consequence, µ2 /∈ Sat(ϕ2) and µ ∈ Sat(ϕB,k
12).

In the second case (3), we have δ(p′)((s′1, s
′
2, c, k

′)) > 0 for s′1 =
succs1,e(p

′), c ∈ Break(p′, s′2) fixed above, and k′ = IndR2
(p′, s′2)+1 <

IndR2
(p, s2)+1 = k. As a consequence, we thus have µ(s′1, s

′
2, c, k

′) >

0 for k′ < k and c 6= ε, thus µ ∈ Sat(ϕB,k
12).

30 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

∗ On the other hand, if k = 1, then IndR2
(p, s2) = 0 and either (1)

there exists p′ ∈ SP such that µP (p
′) > 0 and succs2,e(p

′) = ∅, or
(2) the distribution µ2

1 :
(
s′2 7→

∑
p′∈P |s′

2
=succs2,e(p

′) µP (p
′)
)
/∈ ϕ2. In

both cases, as above, we can prove that µ ∈ Sat(ϕ12B,k.

In both cases, we have µ ∈ Sat(ϕB,k
12).

We thus conclude that there exists µ ∈ Sat(ϕB,k
12) such that µP ⋐R\ µ.

• Let a ∈ A and ϕ ∈ C(S) such that L((s1, s2, e), a, ϕ) = ⊤. As in the proof of
Theorem 2, there are several cases that all boil down to the same arguments as
above.

Finally, R\ is a satisfaction relation: Let c ∈ BreakR2
(sP0 , s

2
0) and consider the relation

R\′ = R\ ∪{(sP0 , (s
1
0, s

2
0, c,K))}. Due to the fact that K ≥ IndR2

(sP0 , s
2
0), one can verify

that the pair (sP0 , (s
1
0, s

2
0, c,K)) also satisfies the axioms of a satisfaction relation. The

proof is identical to the one presented above. As a consequence, R\′ is also a satisfaction

relation. Moreover, we now have that (sP0 , (s
1
0, s

2
0, c,K)) ∈ R\′, with (s10, s

2
0, c,K) ∈ S0, thus

P |= N1 \
K N2.

Appendix: Proof of Theorem 9

Proof of Theorem 9. Let N1 = (S1, A, L1, AP, V1, {s
1
0}) and N2 = (S2, A, L2, AP, V2, {s

2
0})

be deterministic APAs in SVNF such that N1 6� N2. Let P = (S,A,L,AP, V, s0) be the
counterexample defined as above. We prove that P |= N1 and P 6|= N2.

P |= N1. Consider the relation Rs ⊆ S × S1 such that (s1, s2)Rs s
′
1 iff s1 = s′1. We prove

that Rs is a satisfaction relation. Let t = (s1, s2) ∈ S and consider (t, s1) ∈ Rs.

• By construction, we have V (s1, s2) ⊆ V1(s1).
• Let a ∈ A and ϕ1 ∈ C(S1 such that L1(s1, a, ϕ1) = ⊤. There are several cases.

– If (s1, s2) in case 1 or 2 or s2 = ⊥, then by construction there exists µ⊥
1 ∈

Dist(S) such that L((s1, s2), a, µ
⊥
1) = ⊤. By construction, we have that there

exists µ1 ∈ Sat(ϕ1) such that µ⊥
1 ⋐Rs µ1.

– Else, (s1, s2) is in case 3 and B(s1, s2) 6= ∅. If a /∈ B(s1, s2), the result follows
as above. Else, either a ∈ Ba(s1, s2) ∪ Bb(s1, s2) and the result follows again
by construction, or a ∈ Bc(s1, s2) ∪ Bf (s1, s2). In this case, there exists a
distribution µ̂1 ∈ Dist(S) such that L((s1, s2), a, µ̂1) = ⊤. By construction, µ̂1

is defined as follows:

µ̂1(s
′
1, s

′
2) =





µ1(s1) if s′2 = succs2,e(s
′
1)

or succs2,e(s
′
1) = ∅ and s′2 = ⊥

0 otherwise
,

where µ1 is either the distribution given by Lemma 8 if a ∈ Break(s1, s2) or
an arbitrary distribution in Sat(ϕ1). In both cases, µ1 ∈ Sat(ϕ1). Consider
the function δ : S × S1 → [0, 1] such that δ((s′1, s

′
2), s

′′
1) = 1 if s′1 = s′′1 and 0

otherwise. Using standard techniques, on can verify that δ is a correspondence
function and that µ̂1 ⋐Rs µ1.

• Let a ∈ A and µ ∈ Dist(S) such that L((s1, s2), a, µ) = ⊤. By construction of P ,
there must exists ϕ1 ∈ C(S1) such that L1(s1, a, ϕ1) 6= ⊥ and µ is either of the form
µ⊥
1 or µ̂1 for some µ1 ∈ Sat(ϕ1). As above, we can prove that in all cases, µ ⋐Rs µ1.

REFINEMENT AND DIFFERENCE FOR PROBABILISTIC AUTOMATA 31

Finally Rs is a satisfaction relation. Moreover, we have ((s10, s
2
0), s

1
0) ∈ Rs, thus P |= N1.

P 6|= N2. Let Rs ⊆ S × S2 be the maximal satisfaction relation between P and N2, and
assume that Rs is not empty. Let R ⊆ S1×S2 be the maximal refinement relation between
N1 and N2 and let K be the smallest index such that RK = R. We prove that for all
(s1, s2) ∈ S1 × S2, if IndR(s1, s2) < K, then ((s1, s2), s2) /∈ Rs. The proof is done by
induction on k = IndR(s1, s2). Let (s1, s2) ∈ S1 × S2.

• Base case. If IndR(s1, s2) = 0, then there are several cases.
– If (s1, s2) in case 2, i.e. V1(s1) 6= V2(s2). In this case, we know that V ((s1, s2)) ∈

V1(s1). Thus, by SVNF of N1 and N2, we have that V ((s1, s2)) /∈ V2(s2) and
((s1, s2), s2) /∈ Rs.

– Else, if (s1, s2) in cases 3.a or 3.b, then there exists a ∈ A and µ⊥
1 ∈ Dist(S)

such that L((s1, s2), a, µ
⊥
1) = ⊤ and ∀ϕ2 ∈ C(S2), we have L2(s2, a, ϕ2) = ⊥.

As a consequence, ((s1, s2), s2) /∈ Rs.
– Else, if (s1, s2) in cases 3.d or 3.d, then there exists a ∈ A and ϕ2 ∈ C(S2) such

that L2(s2, a, ϕ2) = ⊤ and for all µ ∈ Dist(S), we have L((s1, s2), a, µ) = ⊥.
As a consequence, ((s1, s2), s2) /∈ Rs.

– Finally, if (s1, s2) in cases 3.c or 3.f , there exists e ∈ (Bc(s1, s2)∪Bf (s1, s2))∩
Break(s1, s2). By Lemma 8, there exists constraints ϕ1 and ϕ2 such that
L1(s1, e, ϕ1) 6= ⊥ and L2(s2, e, ϕ2) 6= ⊥ and a distribution µ1 ∈ Sat(ϕ1) such
that either

(I) ∃s′1 ∈ S1 such that µ1(s
′
1) > 0 and succs2,e(s

′
1) = ∅,

(II) µ2
1 :

(
s′2 7→

∑
{s′

1
∈S1|s′2=succs2,e(s

′
1
)} µ1(s

′
1)
)
/∈ Sat(ϕ2), or

(III) ∃s′1 ∈ S1, s
′
2 ∈ S2 such that µ1(s

′
1) > 0, s′2 = succs2,e(s

′
1) and IndR(s

′
1, s

′
2) <

IndR(s1, s2).
By construction, we have that L((s1, s2), e, µ̂1) = ⊤ for µ1 given above. Since
IndR(s1, s2) = 0, case (III) above is not possible. From cases (I) and (II), we can
deduce that for all µ2 ∈ Sat(ϕ2), we have µ̂1 6⋐Rs µ2. Moreover, by determinism
of N2, ϕ2 is the only constraint such that L2(s2, e, ϕ2) 6= ⊥. As a consequence,
((s1, s2), s2) /∈ Rs.

• Inductive step. Let 0 < k < K and assume that for all k′ < k and for all (s′1, s2) ∈
§1 × S2, if IndR(s1, s2) = k′, then ((s1, s2), s2) /∈ Rs. Assume that IndR(s1, s2) = k.
There are two cases.

– If (s1, s2) in cases 2, 3.a, 3.b, 3.d or 3.d, the same reasoning applies as for the
base case. We thus deduce that ((s1, s2), s2) /∈ Rs.

– Otherwise, if (s1, s2) in cases 3.c or 3.f , then, as above, there exists e ∈
(Bc(s1, s2) ∪ Bf (s1, s2)) ∩ Break(s1, s2). By Lemma 8, there exists constraints
ϕ1 and ϕ2 such that L1(s1, e, ϕ1) 6= ⊥ and L2(s2, e, ϕ2) 6= ⊥ and a distribution
µ1 ∈ Sat(ϕ1) such that either

(I) ∃s′1 ∈ S1 such that µ1(s
′
1) > 0 and succs2,e(s

′
1) = ∅,

(II) µ2
1 :

(
s′2 7→

∑
{s′

1
∈S1|s′2=succs2,e(s

′
1
)} µ1(s

′
1)
)
/∈ Sat(ϕ2), or

(III) ∃s′1 ∈ S1, s
′
2 ∈ S2 such that µ1(s

′
1) > 0, s′2 = succs2,e(s

′
1) and IndR(s

′
1, s

′
2) <

IndR(s1, s2).
By construction, we have that L((s1, s2), e, µ̂1) = ⊤ for µ1 given above. As
above, if cases (I) or (II) apply, then we can deduce that ((s1, s2), s2) /∈ Rs.
If case (III) applies, then there exists (s′1, s

′
2) ∈ S such that µ̂1(s

′
1, s

′
2) > 0,

32 BENOÎT DELAHAYE, ULI FAHRENBERG, KIM G. LARSEN, AND AXEL LEGAY

s′2 = succs2,e(s
′
1) and IndR(s

′
1, s

′
2) < IndR(s1, s2). Since s′2 = succs2,e(s

′
1),

then, by determinism of N2, all correspondence functions δ will be such that
δ((s′1, s

′
2), s

′
2) = 1. However, we have that IndR(s

′
1, s

′
2) < k, thus by induction

((s′1, s
′
2), s

′
2) /∈ Rs. As a consequence, we have that for all µ2 ∈ Sat(ϕ2), we

have µ̂1 6⋐Rs µ2. We can thus deduce that ((s1, s2), s2) /∈ Rs.
Finally, we know that IndR(s

1
0, s

2
0) < k. As a consequence, we have ((s10, s

2
0), s

2
0) /∈

Rs and thus P 6|= N2.

	1. Introduction
	Related work
	Acknowledgment

	2. Background
	3. Refinement and Distances between APAs
	4. Difference Operators for Deterministic APAs
	4.1. Notation
	4.2. Over-Approximating Difference
	4.3. Under-Approximating Difference
	4.4. Properties

	5. Counter-Example Generation
	6. Conclusion
	References
	Appendix: Proof of Theorem 3
	Appendix: Proof of Theorem 9

