
Computational Protein Design: trying an Answer Set

Programming approach to solve the problem

Hugo Bazille, Jacques Nicolas

To cite this version:

Hugo Bazille, Jacques Nicolas. Computational Protein Design: trying an Answer Set Pro-
gramming approach to solve the problem. 10th Workshop on Constraint-Based Methods for
Bioinformatics (WCB’14), Sep 2014, Lyon, France. 2014. <hal-01063030>

HAL Id: hal-01063030

https://hal.inria.fr/hal-01063030

Submitted on 12 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Rennes 1

https://core.ac.uk/display/48186228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01063030


Computational Protein Design: trying an
Answer Set Programming approach to solve the

problem

Hugo Bazille, Jacques Nicolas

Inria centre de Rennes, Campus de Beaulieu, 35510 Rennes, France.

Abstract. Proteins are macromolecules made of a chain of amino-acids.
The combinatorial nature of the space of possible protein conformations
makes computer-aided protein study a major research field in bioinfor-
matics. The problem of computational protein design aims at finding the
best protein conformation to perform a given task. This problem can
be reduced to an optimization problem, looking for the minimum of an
energy function depending on the amino-acid interactions in the protein.
We have designed a model based on Answer Set Programming. The CPD
problem may be easily modeled as an ASP program but a practical imple-
mentation able to work on real-sized instances has never been published.
We have raised the main source of difficulty for current ASP solvers
and ran a series of benchmarks highlighting the importance of finding a
good upper bound estimation of the target minimum energy to reduce
the amount of combinatorial search. Our solution clearly outperforms
a direct ASP implementation without this estimation and has compa-
rable performances with respect to SAT-based approaches. It remains
less efficient that the recent approach by cost function networks of D.
Allouche & al., showing there exists still some place for improving the
optimization component in ASP with more dynamical strategies.

1 Introduction

Proteins are essential compounds of living organisms, implied in almost all struc-
tural, catalytic, sensory, and regulatory functions. Proteins are amino-acid se-
quences with many different functions, mostly determined by their three di-
mensional structure. The study of these structures is thus an important field in
biology with applications in various fields such as medicine, biotechnology, syn-
thetic biology... [25]. Computer-assisted study of proteins offers opportunities to
mimic the evolution and create new mutations or new structures in proteins [23].

The goal of computational protein design (CPD) is precisely to find among
a collection of proteins those that most likely target a function. It is sometimes
referred as the inverse folding problem: whereas protein folding is looking for
the 3D structure of a given sequence, protein design searches the amino-acid
sequences that would fold into a given 3D structure. As they are 20 possible
amino-acids for each position in a protein sequence, each of them accepting
several structural variants, the number of combinations to be tested is out of



range of any experimental approach, even for short sequences. Consequently, it
became a strategic simulation challenge and numerous works have demonstrated
the power of computer-aided protein design [1, 7, 11, 12, 16, 22]. Among the most
striking results of this approach, one can mention the production of antimalarial
drugs from the engineered bacteria E. coli [21] or the development of the most
efficient computationally designed enzyme for the Kemp elimination to date [26].

In CPD, choosing the best amino-acid sequences to perform some function is
formulated as an optimization problem. Even with the most recent advances in
CPD, techniques still need to be improved: many approximations are made in
order to make this problem solvable and more realistic models are needed. It is
also necessary to generate a limited collection of solutions close to the optimum
since, due to model approximations, the optimum of the combinatorial problem
is not always the best protein in practice.

This paper presents a specific approach to solve the CPD problem, Answer
Set Programming (ASP) [20]. This work is based on the previous results of [10],
with a number of enrichments. In order to evaluate this work, two comparison
studies were carried out: the first one quantifies the progress with respect to [10],
and the second one is a more demanding task addressing the most advanced
results in the domain [1, 2, 29]. The ASP model performances do not reach the
level of the best current approaches and a first discussion on the advantages and
drawbacks of the ASP approach for solving the CPD problem is provided.

We start by giving the biological background of this work and defining the
CPD problem with a fixed rigid backbone and discrete sets of possible rotamers
in proteins. Then, we give an overview of state of the art, with various techniques
and paradigms. Next, we recall basic ASP notions and give our encodings of
the CPD problem. Results are described in a last section, together with the
analysis of the different encodings. We conclude by different perspectives that
seem interesting to be studied in a future work.

2 The computational protein design problem (CPD)

The protein design problem is an optimization problem on the conformation
(geometrical structure) of a protein whose structure is partially known.

2.1 Elements of protein structure

Proteins are biological macromolecules made of several amino acids linked to-
gether by peptide bonds. There are mainly 20 different amino acids with a com-
mon organization illustrated in figure 1. The ’R’ represents the side-chain that
makes the amino acid unique. An amino acid in a polypeptide is also called a
residue. The sequence of carbon, oxygen and nitrogen atoms without the side
chain defines a 3D structure called backbone. The geometry of the protein is
relatively rigid and generally defined by three dihedral angles (ϕ, ψ and ω) for
each amino acid along the backbone. A dihedral angle is the angle between two

2



Fig. 1. Structure of an amino acid Fig. 2. Diihedral angles 2

planes defined by a sequence of four atoms. Furthermore, each side-chain has up
to four degrees of freedom: the dihedral angles χ (see an example figure 2).

The backbone structure is highly constrained (the 6 atoms implied in the
peptide bond CαC(O)NHCα form a plane). This paper assumes that its struc-
ture has no degree of flexibility. In contrast, side chains have different possible
conformations called rotamers. Whenever there is a degree of freedom, there is
an infinite number of possible rotamers, as the molecules can continuously rotate
around the axis. However, it is often sufficient to consider a representative finite
set of rotamers, which can be determined by a statistical analysis of the actual
conformations. For each amino acid, there are from 1 to 30 of most common
rotamers that are listed in public libraries. We have used the 2010 version [28]
of the Dunbrack backbone-dependent rotamer library [14].

2.2 Protein design through energy minimization

The aim of CPD is to find a protein that will perform a desired function. This
function depends on the backbone structure and on the rotamer configurations.
For a given backbone structure, the protein tends to adopt a global stable con-
figuration of minimal energy. Therefore, the practical goal of CPD is to find
a sequence of residues and a conformation that folds into a defined backbone
and minimizes the protein energy, which can be expressed as an optimization
problem. The computation of realistic energy functions is a whole topic by itself
and is not the subject of this paper. Energy values are part of the benchmark
data sets we have used and they are considered here as input facts. The energy
minimization depends only on the energy of interaction between rotamers or
between the backbone and rotamers. Large scale protein design uses pairwise
approximation: the energy function is supposed to be pairwise decomposable on
residues. Moreover, some design positions are chosen to be mutated. With ir the
rotamer at position i, E(ir) the energy of interaction between rotamer i and the
backbone, and E(ir, jr′) the energy of interaction between rotamers r at position
i and r′ at position j, the formula to minimize is:

E =
∑
i

E(ir) +
∑
i

∑
j,j<i

E(ir, jr′)

1
From http://www.protocolsupplements.com/Sports-Performance-Supplements/wp-content/uploads/2009/06/amino-acid-mcat1.png

2
From http://www.biomedcentral.com/content/figures/1471-2105-12-S14-S10-1-l.jpg

3



The energy functions E(ir) and E(ir, jr′) are based on empirical measures and
depend on many parameters such as van der Waals potentials, electrostatics,. . .

Protein design is a NP-hard problem [24] associated to a huge hypothesis
space. Indeed, a protein with m residues and a mean number of n rotamers
per amino acid gives rise to (20× n)m possible conformations. Using reasonable
parameters such as m = 100 and n = 10 leads to ≈ 10234 possible solutions.
Variants of this problem are also studied, such as protein design with continuous
rotamers or with backbone flexibility [11].

3 State of the art for CPD

In this section, we introduce a few state of the art algorithms to solve this prob-
lem. A first part introduces algorithms that are allowed to find approximations
of the best solution and are supposed to scale to larger proteins. A second part
introduces algorithms that are designed to find exactly the best solution.

3.1 CPD with approximations

Genetic algorithm based approaches have been tried on the CPD problem [27].
Each element of the population is a sequence of amino-acids with their rotamer
conformations. A cross-over operator is defined by exchanging amino-acids at
a position in two elements of the population. A mutation operator is defined
by introducing a new amino-acid at some position. The algorithm discards the
conformations of higher energy and a new population is generated by applying
operators on the remaining rotamers. This knowledge-poor approach was applied
early on CPD [13] but other stochastic methods are now preferred for this task.

Rosetta [19] is a large open source package that is the most representative of
this tendency. It uses the Dunbrack backbone-dependant library to reduce the
set of conformations and a Monte-Carlo based method to sample this space [12,
15]. It takes into account several factors to build a more precise energy function:
van der Waals potentials, electrostatics... Even if is not used as a solver, Rosetta
offers many functionalities and was useful in our first series of experiments to
compute the needed interaction energy values.

SCWRL4 [16] is a program used to solve a restriction of the protein de-
sign problem: side-chain positioning. In this problem, amino acids are fixed and
only the side-chain conformation is varying. This assumption greatly reduces
the search space. An interaction graph that represents the side-chain placement
problem is first created. The graph is decomposed into trees on which a branch-
and-bound search can be performed. A rotamer collision detection step reduces
the risk to produce physically impossible solutions. Most of the time, tree search
algorithms are looking for exact solutions.

3.2 Exact search algorithms

As the search space of the CPD problem can be seen as a decision tree, some
of the early methods to explore it have been based on graph traversal algo-

4



rithms such as A* [18]. The A* algorithm needs a heuristic function to per-
form the search. This function is calculated by adding in a first part the en-
ergy for all nodes already assigned and in a second part a suboptimal function
over unassigned nodes. For each of node ir, the suboptimal function is E(ir) +∑
js assigned

E(ir, js)+
∑
k unassignedminr′E(ir, kr′). The interested reader may

consult [11] to look at the current results achieved by such methods.
The problem of minimizing the total free energy of a protein conformation can

also be represented as an Integer Linear Program (ILP). Indeed, binary variables
qi(ri) can represent the presence of a rotamer at place i. The presence of exactly
one rotamer at each position is expressed by the formula

∑
ri
qi(ri) = 1. The

energy minimization is then represented by a minimization term

min
∑
i

∑
ri

qi(ri) E(ri) +
∑
j 6=i

∑
rj

Ei,j(ri, rj) qi(ri) qj(rj).

This approach is extended in [30] where only some variables have integer do-
mains (Mixed ILP Programming).

CPD can also be formulated as a satisfiability problem with minimization of
a formula. For each rotamer and each position, a boolean variable indicates if it is
chosen or not. This approach enables to use SAT solvers, and effective encodings
with improved branch and bounds algorithms are presented in [22]. Basically,
given a position i and a set of possible rotamers i1 . . . ir the problem of choosing
one rotamer can be encoded by formula Φi = (i1 ∨ . . . ∨ ir) ∧

∧
s6=s′ ¬(is ∧ i′s).

Then, a global formula can be established: Φ =
∧
i Φi. Clauses of the form

¬(is ∧ js′) derive from the computation of incompatible pairs of rotamers. In
practice, hierarchical decisions are made: first the amino acid is assigned, then
the dihedral angles (side chain). These programs are quite efficient, provided
they take into account only three possibilities by dihedral angle.

The most recent advance in solving the CPD problem proposes to model
it as a weighted constraint satisfaction problem [1, 2, 29], using cost function
networks. A Cost Function Network (CFN) is a pair (X,W ) where X is a set
of n variables and W is a set of cost functions. Each variable i ∈ X has a finite
domain Di of values. A value r ∈ Di is denoted ir. For a set of variables S ⊆ X,
DS denotes the cartesian product of the domains of the variables in S. A cost
function wS ∈ W , with scope S ⊆ X, is a function wS : DS → [0, k] where k
is a maximum integer cost used for forbidden assignments. There is a natural
correspondence between the formalism of CFN and the elements of CPD: each
variable i corresponds to a position to be redesigned and each value r in domain
Di corresponds to a possible rotamer r at position i. Furthermore, each unary
cost function w(ir) represents the energy of interaction rotamer-backbone, and
each binary cost function w(ir, jr′) represents the energy of interaction between
two rotamers. This approach has led to major improvements and it dramatically
outperforms previous works for exact results. It allows to solve big instances
with tens of positions and thousands of rotamers.

We have studied yet another framework, Answer Set Programming (ASP),
which has been tried only once to our knowledge, in a Master thesis [10], where

5



a direct translation of the problem specification has been tested, together with
several variants such a as a separated treatment of positive and negative energy
score values. The ASP solvers appeared to be able to solve only a very low num-
ber of residues. Since ASP has exhibited interesting performances in a number
of combinatorial optimization problems, we have tried to understand the reasons
of this relative failure. An earlier paper points to the difficulty of solving the re-
lated problem of protein folding on a lattice [5] but the ASP solvers have made
progress since then and the interest of CPD is to offer a combinatorial problem
where optimization plays a major role. We have emphasized the specific features
of the problem that make it difficult and looked at better encodings, achieving
clear progress with respect to the way its resolution could be improved.

4 Modeling CPD using Answer Set Programming (ASP)

4.1 A bit of syntax and the solver clingo4

Answer Set Programming (ASP) is a form of declarative logic programming us-
ing the the stable models semantics. It is a Boolean constraint solving framework
designed for Knowledge Representation and reasoning and for complex optimiza-
tion problems: solvers for ASP programs implement heuristics in order to solve
efficiently minimization queries over weighted atoms.

This document follows the current standard of ASP language1.
Given a set of atoms A, a normal logic program over A is a finite set of normal

rules (a0 is called the head and the rest is the body):
a0 : −a1; . . . ; am;not am+1; . . . ;not an, where ai ∈ A for all i, .
It is possible to use predicates of any arity and first order variables in ASP,

provided that these variables are defined over a finite domain. Each variable will
be replaced during a grounding phase by its possible values in the Herbrand
universe of the program, leading to a fully instantiated program.

It is possible to write integrity constraints, which are rules with no head:
: −a1; . . . am; not am+1; . . . not an.

A cardinality rule is of the form a0 : −l{a1; . . . ; am; not am+1; . . . ; not an}u
It allows to control the cardinality of sets of atoms, with lower bound l and
upper bound u. Similarly, a choice rule is of the form:
l{a1; . . . ; am}u : −am+1; . . . ; an; not an+1; . . . ; not ap,
meaning that if the body holds, at least l and at most u atoms of the head have
to hold. Such rules are expanded in a number of normal rules quadratic in m.

ASP systems include statements to express cost functions [8] and multi-
criteria optimization. With wi the weight of literal li and pi its priority level, the
minimize statement writes #minimize {w1@pi : l1 . . . ;wn@pn : ln}. The solver
minimizes the sum of the weighted literals, starting by the highest priority level.

The first ASP solvers were quite “monolithic”: first the grounding generated
a propositional program, then a solver computed its stable models. The solvers
use enhancements of the Davis-Putman-Logemann-Loveland (DPLL) algorithm,

1 https://www.mat.unical.it/aspcomp2013/ASPStandardization

6



analyzing and learning conflicts in case of failure to prune the search space. In the
recent versions of the ASP system clingo4, two scripting languages have been
integrated with ASP in a common environment in order to achieve complex
reasoning processes: Python and Lua [9]. On the declarative side, it becomes
possible to define procedures allowing to instantiate different logic programs
with different parameters (directive #program) and they may be grounded and
solved at any time using built in procedures ground() and solve(). External rules
(”i. e. ”volatile rules ”) may also be added/removed in a program (#external).

We have chosen clingo4 because it is one of the most efficient ASP solver to
date and because it offers large possibilities to adjust the solving strategy. The
user can easily design its program by incremental refinements or produce high
level interactive solvers. A client-server ASP solving process encoded in Python
is presented in [9]. Scripting has been used in our work to combine the search for
approximate solutions and local exploration. Since clingo4 is still evolving, this
kind of study can help its designers to improve the optimization component.

4.2 Algorithms and ASP models to solve the CPD

DEE pruning algorithms Like in every combinatorial problem, the main
issue in CPD is the very fast increase of the size of the search space with respect
to the size of the protein. The goal of Dead End Elimination (DEE ) algorithms is
to remove the choice of some residue at some place because it always gives worse
results than other residues at this place. They can also be extended to eliminate
pairs of residues, triplets... Numerous DEE algorithms are available that have
different complexities and efficiencies We have used two of them, simple split
and double Golstein, offering a good tradeoff with respect to these parameters.

Simple split eliminates a rotamer ir if ∃k, ∀v,∃it,

E(ir)−E(it)+(E(ir, kv)−E(it, kv))+
∑
j 6=k 6=i

minu[E(ir, ju)−E(it, ju)] > 0 (1)

If p is the number of positions and n the number of rotamers at some position, the
complexity of the algorithm is O(p2n3). The Double Goldstein DEE eliminates
a pair of rotamers (i1r1 , i2r2) if there exists a pair (i1t1 , i2t2) such that

(E(i1r1) + E(i2r2) + E(i1r1 , i2r2))− (E(i1t1) + E(i2t2) + E(i1t1 , i2t2))

+
∑

j 6=i1j 6=i2

minu(E(ir, ju)− E(it, ju)) > 0 (2)

The complexity of the algorithm is O(p3n5), a noticeable increase of complexity
that allows to eliminate a high number of pairs. In practice, this algorithm is
launched after the first one to decrease the value of n.

Search for exact results The basic ASP code for the CPD problem is in-
troduced as in [10] in order to serve as a reference point for the improvements

7



that are tested thereafter. The set of positions, of possible residues and pos-
sible rotamers at each position have been represented by the following facts :
position(Position in the protein).

possibleResidue(Position,Aminoacid).

possibleRotamer(Position,Aminoacid,Rotamer,EnergyB).

EnergyB is the interaction energy with the backbone. Then the interaction
energies between rotamers are tabulated from Rosetta or Osprey computations:
interEnergy(Pos1,AA1,Rot1,Pos2,AA2,Rot2,EnergyR).

Given these facts as input data, the CPD problem can be expressed in 3 rules.
For each position, one residue and one rotamer are chosen to be in the solution.
It is recorded in predicate residue(Pos,AA) and rotamer(Pos,AA,Rotamer).

Algorithm 1 Exact encoding

% Exactly one residue must be assigned to each position (a)

1{residue(Pos,Amin) : possibleResidue(Pos,Amin)}1 :- position(Pos).

% Exactly one rotamer must be assigned to each residue (b)

1{rotamer(Pos,Amin,Id) : possibleRotamer(Pos,Amin,Id,Energy)}1

:- residue(Pos,Amin), position(Pos).

% Minimize the sum of the energies (c)

#minimize{ EnergyB@1,Pos,Id:

rotamer(Pos,Amin,Id),possibleRotamer(Pos,Id,EnergyB) ;

EnergyR@1,Pos1,Pos2:

rotamer(Pos1,Amin1,Id1),rotamer(Pos2,Amin2,Id2),

interEnergy(Pos1,Amin1,Id1,Pos2,Amin2,Id2,EnergyR)}.

– Rule (a) chooses a residue among the possible residues at each position;
– Rule (b) chooses a rotamer among possible rotamers for each chosen residue.
– Rule (c) minimizes the sum of the recorded energies predicates. The weight

of each predicate is the value of its Energy parameter.

As for the SAT specification of CPD, a file containing the list of pruned
rotamer pairs computed by DEE algorithms before the search is added to this
program. An eliminated pair is taken into account by an integrity constraint:
:- rotamer(Pos1,Id1), rotamer(Pos2,Id2).

This short program computes exact results but is limited to very small in-
stances as runtime may quickly become too long. The optimization step is crucial
in CPD and we have studied the way it is managed by clingo to understand the
limitations and improve the code.

Transformation in an equivalent problem with better properties

Different minimization algorithms are implemented in the ASP solver (branch
and bound, unsatisfiable core...) but they all require positive values. This means

8



that programs are automatically rewritten to fulfill this constraint in order to
transform the minimization problem into an equivalent problem with only posi-
tive values and lower bound 0. This rewriting algorithm is quite simple: each time
there is a minimization statement of the form #minimize { V:p }., V < 0, the
solver transforms it in #minimize { -V: not p}. It appears that the transfor-
mation is far from being optimal in our problem. Let us consider a short example:

a;-4

b;0

c;-1

d;-2

3

0 -1

1

In this schema, it is possible to choose rotamer a
or b at position 1 and rotamer c or d at position
2. The minimal solution of this problem is the
pair (a, d), a configuration with total energy -6
(-4+-2+0). Solving this problem with (an adap-
tation of) the naive encoding given in section 4.2
leads to the good answer, but the optimization
value reached in the transformed system is 2.

In details, weights are added to the energy of the solution depending on the
following conditions: 4 if a is not chosen, 0 if b is chosen, 1 if c is not chosen, 2 if
d is not chosen 3 if the pair (a, c) is chosen, 0 if (a, d) is chosen, 1 if (b, c) is not
chosen, 1 if (b, d) is chosen. On this example, the final optimization value is not
too far from the lower bound 0. On real instances with many negative values it
is no more the case in general and since the choice of a rotamer entails that all
others are not chosen and it is difficult for the solver to find good lower bounds.

To bypass this issue, the problem is transformed such that minimization
is carried over positive values only and the solver can estimate a much better
lower bound. This issue may be stated as a constraint satisfaction problem and
we apply a technique imported from this field, constraint propagation, to reduce
the set of possible values. This is achieved by looking for two local consistency
properties, soft arc consistency, which is propagating energy constraints on pairs
of rotamers, and soft node consistency, which is propagating energy constraints
on a single rotamer with the backbone. The principle is used in the cost function
network approach [4, 17] where it appeared to be a major source of efficiency in
solving the CPD problem. The idea is the following one: for each position i, let
Ni,1, . . . , Ni,r be the interaction energy of rotamers i1, . . . , ir with the backbone,
and let Ni = minjNi,j . Then, the energy Ni may be considered as a fixed cost
E∅ associated to any choice in the position and it is only necessary to search for
the minimization on the energies Ni,1 − Ni, . . . , Ni,r − Ni that are all positive.
A similar process can be done for the energies of interaction between rotamers
(see also the hierarchical approach below).

In the previous example, the minimum energy of interaction with the back-
bone is -4 at position 1 and -2 at position 2. Thus any choice over positions 1
and 2 includes a fixed cost of interaction with the backbone equal to -4+-2= -6,
which is the best possible lower bound in this case, and the cost of a, b, c and d
may be respectively replaced by 0, 4, 1 and 0 for the minimization.

In terms of the ASP program, this means that all predicates
possibleRotamer(Pos,AA,Rotamer,Energy). will be changed in
possibleRotamer(Pos,AA,Rotamer,Energy −MinEnergy at Pos).

9



It is a bit more complex since the energies of interaction between rotamers
have also to be transformed. For instance in the previous problem, the minimum
energy of interaction between rotamers once b has been chosen is -1 and thus
the interaction energy -1 may be added as a fixed cost for the choice of b.

Add a hierarchy to the encoding
In a branch and bound search, the sooner a cut can be made, the better it is.

We propose to cluster rotamers with similar properties at some position in order
to be able to do more cuts sooner. Fortunately, there is a natural way to achieve
this clustering in constant time: regroup the rotamers by amino-acid since they
share in general similar interaction energies.

Let i be a position of an amino-acid A with rotamers iA1
. . . iAr

, having ener-
gies of interaction with the backbone E(A1) . . . E(Ar). IfN = min E(A1) . . . E(Ar).
Then energy E′(A) = N is associated to the choice of A and energies E′(A1) =
E(A1) − N . . . E′(Ar) = E(Ar) − N to the choice of iA1 . . . iAr . It allows to
replace r cuts at the rotamer level by a single cut at the amino-acid level.
The same principle may be applied for pairs of rotamers. For amino-acid A
at position i with conformations r and B at j with conformations r′,one defines
(iA, jB) = argminr,r′E(ir, jr′). Then energies E(ir, jr′) are replaced by energies
E′(iA, jB) and E′(ir, jr′) = E(ir, jr′)− E(iA, jB).

Algorithms 2 and 3 correspond to a sample of transformation steps de-
scribed previously to get an equivalent program, adapted for the hierarchical
encoding. Algorithm 4 gives an overview of the whole process. The lower bound
is iteratively improved as much as possible for every position. Its complexity
is O(p2n3) (with p the number of positions and n the number of rotamers by
position), the same complexity that most used DEE algorithms. More on arc
consistency enforcing algorithms may be found in [3].

Algorithm 2 Energy transfer from rotamers to a residue.

E ← min E(Ar)
for all rotamers Ar at position i do

E(iAr )← E(iAr )− E
end for
E(iA)← E

4.3 Enumeration of ε-solutions

As we work on an abstraction of a biological problem, some approximations are
made and solutions of the optimization problem may not be solutions of the CPD
problem. Thus solutions close to the optimum are interesting too. In order to
produce a set of good solutions with a fixed divergence from the global minimum
solution, we assume the minimum value Ebest has been produced and restart the
algorithm with a modified DEE pruning including a parameter ε in the right

10



Algorithm 3 Energy transfer from pairs to rotamers.

for all position j do
E ← min E(iAr , jBr′ )

for all rotamers Br′ at position j do
E(iAr , jBr′ )← E(iAr , jBr′ )− E

end for
E(iAr )← E(iAr ) + E

end for

Algorithm 4 Enforcing consistency

for all position i do
for all amino-acid A at position i do

for all position j 6= i do
for all amino-acid B at position j do

for all rotamers Ar at position i do . from residue to rotamers(j,B)
E(iAr )← E(iAr ) + E(iA)

end for
E(iA)← 0

end for
for all rotamer r′ at position j do

for all rotamers Br′ at position j do . from rotamer to pairs(j,r′,i)
E(iAr , jBr′ )← E(iAr , jBr′ ) + E(iAr )

end for
E(iAr )← 0

end for
end for
for all rotamer Ar at position i do

Energy transfer from pairs to rotamer(i,Ar)
end for
Energy transfer from rotamers to residue(i,A)
for all position j 6= i do

for all rotamer Br′ at position j do
Energy transfer from pairs to rotamer(j,Br)

end for
for all amino-acid B at position j do

Energy transfer from rotamers to residue(j,B)
end for

end for
E ← min E(iA)
for all amino-acids A at position i do . from residues to the lower bound

E(iA)← E(iA)− E
end for
E∅ ← E∅ + E

end for
end for

11



members of the equations in 4.2. It is also possible to adapt DEE algorithms to
discard rotamer ir if a lower bound of the energy Elower(ir) when ir is chosen
is greater than Ebest + ε. The cost of obtaining lower bounds increases when the
required precision increases. A possible lower bound is

Elower(ir) = E(ir)+
∑
j 6=i

minr′ [E(jr′)+E(ir, jr′)]+
∑
j 6=i

∑
k>j,k 6=i

minr′,r”[E(kr”, jr′)]

Computing this lower bound for all rotamers at all possible place has com-
plexity O(n3p3) with n the number of rotamers and p the number of positions.
Similar criteria to eliminate pairs of rotamers have complexity O(n5p4). After
pruning the search space, the search itself can be launched. An ASP program
doing this task may be constituted of the program Exact encoding with an ad-
ditional rule stating that the sum of energies must not be greater than Ebest+ε. A
2% variation of Ebest may increase the number of solutions to several thousands.

5 Results

Benchmarks have been run on two different datasets: the first one is extracted
from [10], which contained initially 120 instances. They are based on 12 instances
of 10 proteins , considering 10, 12, 15 and 17 positions and three different amino-
acid sets (fixed, only hydrophobic or all aminoacids). We retained the 40 most
difficult problems. It serves to compare the progress made between [10] and our
own work. The second dataset is extracted from [1] and contains 47 instances.
It allows us to compare our results to the last advances in the domain. The
solver clingo4 has been run with default parameters. Trying dfferent solver op-
tions for clasp (particularly for the choice of heuristics) has shown no significant
improvement. All runs have been performed on a Intel Xeon W3520 quad-core,
2.66 GHz. All reported times are in seconds.

5.1 DEE

The efficiency of DEE algorithms has been evaluated on the first dataset. Results
are presented in table 1 (columns 4 to 7). For each instance, we perform 3
successive runs of Goldstein DEE (a fast algorithm) that allows to run then 5
times Simple Split (a complex algorithm) on a highly reduced dat set. Note that
more runs can be necessary to reach a fix point but it would not further improve
the total search time. Several facts are interesting here:

– First, except for very small instances, the percentage of eliminations de-
creases with the size of the instance, as shown in figure 3. The same phe-
nomena applies for the elimination of pairs . This may be explained by the
fact that there is a “forall” in the elimination criterion increasing the strin-
gency of the criterion with the number of possibilities.

12



Protein Size AA # Rotamers # Rotamers Discarded pairs DEE time Time in Time in
clusters before after [10] our work

1BE9
17

All 2547 1720 270811 2919 ! -
Hydro 529 130 1903 3.2 - 0.66

15
All 2063 1023 122977 1063 ! 155

Hydro 435 56 270 1.3 1.719 0.05

1I92
17

All 2648 1728 288332 3262 ! -
Hydro 593 186 4318 6.0 - 1.26

15
All 2055 816 86194 806 ! 1174

Hydro 455 93 1042 2.1 - 0.10

1MFG
17

All 2608 1798 299418 3145 ! -
Hydro 560 188 3717 5.3 - 0.51

15
All 1972 854 106835 759 ! 336

Hydro 410 74 485 1.3 679 0.07

1N7F
17

All 2548 1525 211868 2473 ! -
Hydro 544 136 1811 4.2 - 0.21

15
All 1934 648 59369 477 ! 15.6

Hydro 402 57 202 1.2 66 0.047

1QAU
17

All 2643 1776 288165 1598 ! -
Hydro 562 196 4177 6.2 - 0.73

15
All 2023 895 101761 1228 ! 98

Hydro 421 97 1021 1.8 2295 0.10

1RZX
17

All 2722 1748 257158 3398 ! -
Hydro 554 167 3044 4.5 - 0.37

15
All 2121 941 94310 883 ! 906

Hydro 404 56 205 1.1 36 0.05

1TP3
17

All 2582 1732 282007 3145 ! -
Hydro 536 142 2253 3.8 - 0.19

15
All 2142 1037 135604 1057 ! 403

Hydro 447 63 409 1.7 463 0.054

2EGN
17

All 2548 1570 240733 2478 ! -
Hydro 546 150 2516 3.7 - 0.32

15
All 2005 804 78377 573 ! 1038

Hydro 413 75 655 1.4 280 0.039

2FNE
17

All 2736 1909 325100 3927 ! -
Hydro 577 197 4639 6.1 - 0.49

15
All 2144 1060 132397 1158 ! 154

Hydro 438 98 1093 1.7 4976 0.10

2GZV
17

All 2934 1991 348785 5243 ! -
Hydro 613 189 3823 7.5 - 0.62

15
All 2247 1122 132910 1340 ! 1242

Hydro 456 87 696 2.1 - 0.09

Table 1. Results of algorithms performed on the first series of instances

13



– The second fact is that elimination takes a long time on larger instances: due
to the cubic complexity it is not possible to launch the double Goldstein DEE
on largest instances in a reasonable time. However, even if double Goldstein
cannot be applied, simple split DEE discards many pairs (see column 6).

Fig. 3. Bigger the instances are, smaller the ratio of eliminated rotamers or pairs is

5.2 Exact searches

The first series of results illustrates the progress made over [10] (columns 8 and
9 of table 1). A time limit has been set to 3 hours. A “-” denotes a problem that
could not been solved due to time limit and a “!” denotes a problem that could
not been solved due to insufficient memory. Many more instances have be solved,
and none crashes because of memory. The difficult problems occur around 1800
rotamers instead of 100 in the previous approach. With the preprocessing we
have implemented, the ASP solver is able to infer a good lower bound and it
dramatically reduces the search space. Note that the simple idea consisting of
reducing the energy computation to a spatial neighborhood of residues does not
work in practice to break the complexity.

The second series of instances is taken from [1] and has been built using
Osprey2.0 [6]. These instances are far more complex, as they deal with several
tens of positions to be redesigned and use a different library of rotamers that
cannot be easily eliminated by DEE. Then, the threshold for instances that can
not be solved is lower.

14



Protein Positions # Rotamers ASP(s) Toulbar2(s) Cplex(s) maxhs

2TRX 11 410 0.4 0.1 2.6 4086

1HZ5 12 427 0.3 0.1 7.6 5695

1PGB 11 438 2.7 0.1 3.6 5209

1MJC 28 440 151 0.1 4.1 3698

1UBI 13 498 209 0.2 139 -

1CSK 30 508 2030 0.1 9.6 -

1SHF 30 527 - 0.1 8.6 -

2PCY 18 598 2589 0.2 26.9 -

1SHG 28 613 366 0.2 39.4 -

1NXB 24 625 - 0.2 17 -

1FNA 38 887 - 0.5 121 -

1CSP 30 1026 146 0.84 1264 -

1BK2 24 1089 6.8 0.65 125 -

1LZ1 59 1202 - 1.5 1084 -

1FYN 23 2110 - 2.8 3136 -

1CM1 17 2242 - 3.3 473 -

Table 2. Comparison with the most recent tools in CPD

The solver Toulbar2 presented in [1] has by far the best performances. In-
stances (not in this table) that could not be solved with it could not be solved
with other solvers. We wanted to compare ASP with Protsat2 [22], but the repos-
itory is empty and we could not reach the authors. Then, we compared to maxhs,
another core-based SAT-solver, also used in benchmarks in [1]. Maxhs is not very
effective: many instances could not be solved. The most interesting comparison
is with Cplex, a sophisticated solver for ILP. On some instances, our ASP-based
solver outperforms Cplex, however on larger instances, Cplex takes the lead. It
means that something in our approach makes it less scalable.

5.3 Enumeration of neighboring solutions

We ran solvable instances from the first series characterized by 17 positions
to be redesigned and between 500 and 700 rotamers. For each instance, we
have enumerated the solutions for ε ranging from 500 to 4500 with step 500.
It represents about 0.5 to 8% of the free energy for these instances.

Figure 4 represents the number of solutions and time needed to produce
them. They grow exponentially with ε. The main fact is that it is easy to get a
big set of candidate proteins in small time if the optimal solution is easily found.
On larger instances, the search for a set of proteins becomes hard to solve.

5.4 Explaining the differences

The first problem is the search for a lower bound. Our transformation algorithms
are not the best possible ones: on big instances, the lower bound is far from the

2 http://sourceforge.net/projects/protsat/

15



Fig. 4. Number of solutions and solving time depending on ε

optimal solution unlike in Toulbar2 that solves many instances in less than a
second since almost all rotamers are eliminated at first stages of the search.
More sophisticated lower bound estimation are needed.

The ASP solver clingo4 chosen for this study had the advantage of propos-
ing primitives to access the grounding and solving phases through a dedicated
API. It is no more a black box but it still remains a ”grey” box in the version
we used (4.3.0): even if the user can parameterize a lot of features (optimiza-
tion strategy, policy of restart. . . ), enforcing some procedure such as node and
arc consistencies each time a choice is made was not possible. Systems such as
Toulbar are relatively slow in exploring the search space, but they offer a better
preprocessing and the possibility to interact more accurately with the solver.

Finally, it would require more work to study the influence of built-in ASP
configurations on the search (frumpy, handy, crafty...).

6 Conclusion

The goal of this study was to evaluate the potential of ASP in solving the CPD
problem. Our work lies in the scope of exact searches and can be compared to
many different techniques: ILP, 01QP, MMRF, A* searches, CFN . . . We have
chosen for the benchmarks some of the most recent and best approaches, which
inspired our own work. We have established a first milestone on the subject, and
are confident that it can still be largely improved.

Trying to reach performances of CFN is an interesting challenge, and may mo-
bilize different competences. We also studied different approaches and proposed
different techniques to quickly get approximated results that could be redirected
as new constraints in the solver. Refining the use of ASP solver heuristics and
improving the search for lower and upper bounds are the main perspectives of
this research. We can also pinpoint that in practice, due to the approximations
and the choice of energy function, the most stable structure may slightly differ
from the computed optimum.The extension to neighboring solutions can be eas-
ily implemented in ASP by launching another solve process with an extended
search after the search of the optimal solution, but this strategy suffers from

16



the disadvantages of exact search: the search for a lower bound is worse than in
many other approaches and then the search time grows much faster.

Among other variants, it may also be interesting to study the modeling of
the CPD problem with a flexible backbone in ASP. On this problem, the best
results are given by software such as Osprey. The most difficult challenge for
ASP would be to solve the CPD problem with a continuous space of rotamers.

A great interest in trying different approaches to solve problems such as CPD
may lead to new general ideas to solve difficult problems and to ameliorate solvers
by merging the best ideas of each approach. As an interesting by-product of this
work, we have identified some current limitations of the clingo’s minimization
process and this should help improving the optimization part in the solver.

Acknowledgments

Authors would like to thank I. Lynce and F. Gouveia at INESC-ID Lisboa and T.
Schiex, S. Barbe and D. Allouche at INRA Toulouse for having made this study
possible with their own work and having kindly provided their benchmarks. We
also thank the reviewers for their constructive suggestions.

References

1. D. Allouche and al. Computational protein design as an optimization problem.
Artif. Intel., 2014.

2. D. Allouche, S. Traoré, I. André, S. de Givry, G. Katsirelos, S. Barbe, and T. Schiex.
Computational protein design as a cost function network optimization problem.
Proceedings of the 18th Int. Conf. on Principles and Practice of Constraint Pro-
gramming, pages 840–849, 2012.

3. C. Bessière, J.C. Régin, R. H.C. Yap, and Y. Zhang. An optimal coarse-grained
arc consistency algorithm. Artif. Intel., 165(2):165 – 185, 2005.

4. Martin Cooper and Thomas Schiex. Arc consistency for soft constraints. Artif.
Intel., 154(12):199 – 227, 2004.

5. Agostino Dovier, Andrea Formisano, and Enrico Pontelli. A comparison of clp (fd)
and asp solutions to np-complete problems. In Proc of International Conference on
Logic Programming, volume 3668, pages 67–82. Springer Berlin Heidelberg, 2005.

6. P. Gainza, KE. Roberts, I. Georgiev, RH. Lilien, DA. Keedy, CY. Chen, F. Reza,
AC. Anderson, DC. Richardson, JS. Richardson, et al. Osprey: protein design with
ensembles, flexibility, and provable algorithms. Methods Enzymol., 523:87, 2013.

7. Pablo Gainza, Kyle E. Roberts, and Bruce Randall Donald. Protein design using
continuous rotamers. PLoS Computational Biology, 8(1), 2012.

8. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. On
the implementation of weight constraint rules in conflict-driven asp solvers. In
Logic Programming, pages 250–264. Springer, 2009.

9. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Clingo= asp+ control: Preliminary report. arXiv preprint arXiv:1405.3694, 2014.

10. Joao Filipe Rosado Gouvela. Protein design using answer set programming. Master
Dissertation Instituto superior tecnico Lisboa, 2012.

17



11. Mark A. Hallen, Daniel A. Keedy, and Bruce R. Donald. Dead-end elimination
with perturbations (deeper): A provable protein design algorithm with continuous
sidechain and backbone flexibility. Proteins: Structure, Function, and Bioinfor-
matics, 81(1):18–39, 2013.

12. Xiangqian Hu, Hao Hu, David N. Beratan, and Weitao Yang. A gradient-directed
monte carlo approach for protein design. Journal of Computational Chemistry,
31(11):2164–2168, 2010.

13. David T Jones. De novo protein design using pairwise potentials and a genetic
algorithm. Protein Science, 3(4):567–574, 1994.

14. Dunbrack RL. Jr and Karplus M. Backbone-dependent rotamer library for proteins
application to side-chain prediction. J. Mol. Biol., 230(2):543 – 574, 1993.

15. Kristian W. Kaufmann, Gordon H. Lemmon, Samuel L. DeLuca, Jonathan H.
Sheehan, and Jens Meiler. Practically useful: What the rosetta protein modeling
suite can do for you. Biochemistry, 49(14):2987–2998, 2010.

16. GG. Krivov, MV. Shapovalov, and RL. Dunbrack. Improved prediction of protein
side-chain conformations with scwrl4. Proteins: Struct., Funct., Bioinf., 77(4):778–
795, 2009.

17. Javier Larrosa and Thomas Schiex. Solving weighted {CSP} by maintaining arc
consistency. Artif. Intel., 159(12):1 – 26, 2004.

18. Andrew R Leach, Andrew P Lemon, et al. Exploring the conformational space
of protein side chains using dead-end elimination and the A* algorithm. Proteins
Structure Function and Genetics, 33(2):227–239, 1998.

19. A. Leaver-Fay, M. Tyka, S. M. Lewis, O. F. Lange, et al. Chapter 19 - rosetta3:
An object-oriented software suite for the simulation and design of macromolecules.
In Michael L. Johnson and Ludwig Brand, editors, Computer Methods, Part C,
volume 487 of Methods in Enzymology, pages 545 – 574. Academic Press, 2011.

20. Vladimir Lifschitz. What is answer set programming? pages 1594–1597, 2008.
21. Vincent JJ Martin, Douglas J Pitera, Sydnor T Withers, Jack D Newman, and

Jay D Keasling. Engineering a mevalonate pathway in escherichia coli for produc-
tion of terpenoids. Nature biotechnology, 21(7):796–802, 2003.

22. Noah Ollikainen, Ellen Sentovich, Carlos Coelho, Andreas Kuehlmann, and Tanja
Kortemme. Sat-based protein design. In ICCAD, pages 128–135. IEEE, 2009.

23. S. Peisajovich and D. Tawfik. Protein engineers turned evolutionists. Nature
methods, 4(12):991–994, 2007.

24. Niles A. Pierce and Erik Winfree. Protein design is np-hard. Protein Engineering,
15(10):779–782, 2002.

25. Jürgen Pleiss. Protein design in metabolic engineering and synthetic biology. Cur-
rent opinion in biotechnology, 22(5):611–617, 2011.

26. HK. Privett, G. Kiss, TM. Lee, R. Blomberg, RA. Chica, LM. Thomas, D. Hilvert,
KN. Houk, and SL. Mayo. Iterative approach to computational enzyme design.
Proc. Natl. Acad. Sci. U. S. A., 109(10):3790–3795, 2012.

27. Luis P.B. Scott, Jorge Chahine, and Jos R. Ruggiero. Using genetic algorithm to
design protein sequence. Appl.Math.Comput., 200(1):1 – 9, 2008.

28. Maxim V. Shapovalov and Roland L. Dunbrack Jr. A smoothed backbone-
dependent rotamer library for proteins derived from adaptive kernel density es-
timates and regressions. Structure, 19(6):844 – 858, 2011.

29. S. Traoré, D. Allouche, I. André, S. de Givry, G. Katsirelos, T. Schiex, and S. Barbe.
A new framework for computational protein design through cost function network
optimization. Bioinformatics, 29(17):2129–36, 2013.

30. Yushan Zhu. Mixed-integer linear programming algorithm for a computational
protein design problem. Ind. Eng. Chem. Res., 46(3):839–845, 2007.

18


