Pancreatic head cancer in patients with chronic pancreatitis
Aude Merdrignac, Laurent Sulpice, Michel Rayar, Tanguy Rohou, Emmanuel Quehen, Karim Boudjema, Bernard Meunier

To cite this version:

HAL Id: hal-01069610
https://hal.archives-ouvertes.fr/hal-01069610
Submitted on 8 Dec 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Original article

Cancer of the pancreatic head occurring on chronic pancreatitis: a diagnosis forever inaccurate

Aude Merdrignac, M.D. 1†, Laurent Sulpice, M.D.PhD 1,3†, Michel Rayar, M.D. 1, Tanguy Rohou, M.D. 2, Emmanuel Quéhen, M.D. 2, Karim Boudjema, M.D.PhD. 1,3 and Bernard Meunier, M.D. 1

Key words: Chronic pancreatitis, Adenocarcinoma, Pancreateicoduodenectomy.

Running title: Pancreatic adenocarcinoma on chronic pancreatitis.
ABSTRACT

Background: Chronic pancreatitis (CP) is a risk factor of pancreatic adenocarcinoma (PA). The discovery of a pancreatic head lesion in CP frequently leads to perform a pancreaticoduodenectomy (PD) which preceded by a Multidisciplinary Meeting (MM) discussion. The aim of this study was to evaluate the relevance between this indication of PD and the definitive pathological results.

Methods: Between 2000 and 2010, all patients with CP who underwent PD for suspicion of PA without any histological proof were retrospectively analyzed. The operative decision has always been taken in MM. The definitive pathological finding was retrospectively confronted with the MM’s decision, and patients were classified in two groups according to this concordance (group 1) or not (group2). Clinical and biological parameters were analyzed, preoperative imaging were reread, and confronted to pathological findings in order to identify predictive factors of malignant degeneration.

Results: During the study period, 18 patients with CP had PD with 5 (27.7%) patients who had PA histologically confirmed (group1) and 13 (72.3%) who had not (group2). The median age was 52.5 ±8.2 years (sex ratio 3.5). The main symptoms were: pain (94.4%) and weight loss (72.2%). There was no postoperative mortality and morbidity was 61.1% (n=11) with 27.7% (n=5) of major complication (clavien-dindo classification ≥3). There was no statistical difference in clinical and biological parameters between the two groups. The rereading of imaging data could not detected efficiently all patients with PA.

Conclusions: Our results confirm the difficulty encountered to detect malignant transformation in patients with CP before the surgery and therefore an elevated rate of unnecessary PD was found. A uniform imaging protocol is necessary to avoid PD as a less invasive treatment could be proposed.
ABBREVIATIONS

CP: chronic pancreatitis
CT: computed tomography
ERCP: endoscopic retrocholangiopancreatography
EUS: endoscopic ultrasound
FDG-PET: fluorodeoxyglucose positron emission tomography
MM: multidisciplinary meeting
MRCP: magnetic resonance cholangiopancreatography
PA: pancreatic adenocarcinoma
PD: pancreaticoduodenectomy
ROC: receiver operator curve
SD: standard derivation
INTRODUCTION

Chronic pancreatitis (CP) is a risk factor of pancreatic adenocarcinoma (PA), with a 5 and 10 years cumulative incidence in large cohort studies of 1.1% and 1.7% (1,2). The median 5-year survival rate after diagnosis of PA is 4-6% (all stages combined) (3,4), and surgery remains the only potential curative treatment (5), as current gemcitabine-based adjuvant chemotherapy protocols enable recurrence-free survival, reaching at best 23.5% and 16.5% at 3 and 5 years respectively (6).

The diagnosis of PA is relatively simple in pancreatic body or tail, but is still difficult within a hypertrophic calcified head remodeled by CP. Then, the diagnosis of PA is often made only by imaging findings without histological proof related to the difficulty of obtaining adequate biopsy tissue with endoscopic ultrasound (EUS) (7). Nevertheless, the prognosis of malignant degeneration is so poor that PD is mandatory.

The difficulty of this situation is to balance the risk of misdiagnosing a malignant transformation and the high morbidity (30-70%) associated with PD (8–10).

In our center, surgical indication is always discussed in Multidisciplinary Meeting (MM).

The main objective of this retrospective study was to analyze the degree of concordance between indications of PD for PA in CP without histological proof and the definitive pathological finding. Secondary objectives were to identify preoperative clinical and biological factors that could be predictive of malignant degeneration, and to evaluate radiological expertise in this situation.
PATIENTS AND METHODS

Patients

After approval by our institutional review board, all data of patients who underwent PD from January 2000 to December 2010 in our tertiary center of pancreatic surgery have been collected and retrospectively analyzed.

Inclusion criteria were the presence of both CP and a focal head pancreatic lesion (either at diagnosis of CP or during follow-up), suspected to be a PA without histological proof (e.g. EUS biopsies unrealizable or non-contributive). All indications of PD were established by MM with the participation of gastroenterologists, gastrointestinal surgeons and radiologists who reinterpreted patient’s imaging. The main criterion for decision process was based on imaging findings (contrast enhancement, presence of bulky lymph nodes and aspect of retroportal lamina). Thereby, patients diagnosed as PA based on preoperative histology were excluded.

The clinical and biological data collected preoperatively were: age, gender, smoking habits, alcohol intake, symptoms, duration between the diagnosis of CP and the suspicion of PA, and blood workup results (aminotransferases, total and conjugated bilirubin, alkaline phosphatases, C-reactive protein).

The preoperative imaging available was: endoscopic retrograde cholangiopancreatography (ERCP); upper gastrointestinal EUS; computed tomography (CT); magnetic resonance cholangiopancreatography (MRCP). FDG-PET scan was not used routinely in our center.

The postoperative data analyzed were: length of hospital stay, morbidity, mortality and pathological findings.

Definitions

Postoperative mortality was defined as death during the hospital stay or within 30 days after surgery. Postoperative morbidity was defined according to the Clavien-Dindo classification (11). Postoperative complications included: pancreatic fistula classified into three groups according to the International Study Group of Pancreatic Fistula (ISGPF) criteria (12), delayed gastric emptying
(DGE) classified according to the International Study Group of Pancreatic Surgery (ISGPS) criteria (13) but only with grade B and C retained for this study, as our center policy was to maintain the nasogastric tube until at least postoperative day-5, postpancreatectomy hemorrhage including intra- and extra luminal bleeding classified according to the ISGPS definition (14), and biliary fistula defined by biliary leakage in drains.

Endpoints

The main objective of our study was to analyze the degree of concordance between indications of PD for PA in CP without histological proof and the definitive pathological findings. Secondary objectives were to identify preoperative clinical and biological factors that could be predictive of malignant degeneration, and to evaluate radiological expertise in this situation.

Methods

The impact of the radiological expertise was measured by a secondary analysis of available imaging documents (presence or absence of PA) performed by 2 senior radiologists both specialized in abdominal imaging. The two radiologists were both blinded to the pathological data and the previous radiological reports. Expert status has been defined as an experience in abdominal imaging over 5 years. The preoperative imaging documents reviewed were CT, MRCP and ERCP. The radiologists paid a particular attention to pancreatic trophicity (head, body and tail), characteristics of main pancreatic and biliary ducts (size, regularity), characteristics of pancreatic head nodules (localization, size, aspect), aspect of retroportal lamina, presence of pancreatic calcifications and peripancreatic infiltration, pseudocyst or lymph nodes. Patients were divided into two groups according to pathological findings: group 1= CP + PA; group 2= CP alone. Univariate analysis was used to identify clinical and biological factors which are predictive of PA.

Statistical analysis
Quantitative data were expressed as median (m) ± standard deviation (SD) and compared with Student’s t test or the Mann-Whitney test as appropriate. Qualitative data were expressed as numbers and percentages in each group of patients and compared with Fisher’s exact test. When a significant difference was found between the two groups, a receiver operator curve (ROC) was plotted to identify a threshold value.

A p value <0.05 was considered statistically significant. Statistical analysis was carried out by MATLAB version 7.11 (MathWorks Inc. Natick, Massachusetts).
RESULTS

A total of 314 patients underwent PD during the study period, including 18 (7.5%) patients with suspected PA on CP without preoperative histological confirmation.

Clinical, biological and imaging findings

The median age was 52.5 ±8.2 years. The sex ratio was 3.5. The median duration of follow-up for CP before suspicion of PA was 9.5 months. The underlying cause of CP was alcohol (n=12, 66.6%), cryptogenic (n=4, 22.2%) and genetic disease (n=2, 11.1%).

The clinical signs were pain (n=17, 94.4%), weight loss (n=13, 72.2%), jaundice (n=8, 44.4%), asthenia (n=3, 16.6%), and glycemic disorder (n=1, 5.55%) (Table 1). Median levels of preoperative tumor biomarkers were 2.9 (range 1.7-6.9) and 13 (range 3-2056) for CEA and CA19.9, respectively. As these data were only available for 10 patients of the study population, we could not test them in the statistical analysis.

The preoperative imaging analyzed were abdominal CT for 16 patients (88.8%), upper gastrointestinal EUS for 12 (66.6%), MRCP for 7 (38.8%) and ERCP for 5 (27.77%).

The mean head nodule size (only available for 14 patients) was 1.8 ± 0.4 centimeters (range 1.2-2.5).

The EUS was particularly helpful in 10 cases: i) confirmed the presence of nodular lesions seen at CT scan or MRCP in 5 cases; ii) identified small nodular lesions in pancreatic head (not seen by CT scan or MRCP) in 4 cases; iii) found 1 lymph node not seen with CT-scan in 1 case.

The MRCP and ERCP were valuable in detecting main bile duct abnormalities. Indeed, ERCP identified: 2 irregularity and 3 strictures (complete in 1 case, and partial in 2 cases) of the main bile duct while MRCP identified 5 strictures (2 complete and 3 partial).

Postoperative morbidity

Postoperative complications are detailed in Table 2 and presented according to the Clavien classification in Table 3. There was no patient’s death. The overall morbidity was 61.1% including 27.7% (n=5) patients with a major complication (Clavien ≥3). These complications required
surgical reintervention for 4 patients (22.22%): 1 for hemorrhage, 1 for biliary, 1 for pancreatic fistula and 1 for both hemorrhage and biliary fistula. These 4 patients belonged to group 2. Gastrojejunal anastomosis bleeding occurred in another patient from group 2 who was treated endoscopically.

Pathology results
The histological examination confirmed the presence of PA in 5 (27.7%) of the 18 patients.

Predictive factors
Univariate analysis revealed only one difference between the two groups: total bilirubin level was higher in group 1 (375 vs. 37 µmol/l) without statistical significance (p= 0.05) (Table 1). The threshold determined from the ROC curve (Fig. 1) was 355 µmol/l which gave 75 % sensibility and 100 % specificity.

Impact of the radiological expertise
Only 14 patients (10 in group 1 and 4 in group 2) had available imaging for second radiological reading which could not detect all the patients with PA. The first radiologist concluded for presence of malignant lesions in 2 (14.3%) patients who actually had PA, 10 (71.4%) patients with benign lesions and could not conclude for 2 (14.3%) patients. The second radiologist concluded for presence of malignant lesions in 5 (35.7%) patients, including 3 who actually had PA, benign lesions in 7 (50%) patients and could not conclude for 2 (14.3%) patients.
DISCUSSION

Chronic pancreatitis is an independent risk factor for pancreatic adenocarcinoma. The cumulative risk of PA is 1.8% and 4% at 10 and 20 years respectively (15). To date, no guidelines have yet been published regarding the imaging follow-up(16,17), nevertheless this turning point in the evolution of CP justified to establish a radiological monitoring. The diagnosis of head localized PA is a serious challenge in patients with CP. This difficult situation represents 5.7% of the whole PD performed during the study period.

Our analysis showed that most of these decisions were incorrect. Indeed, the pathological examinations of the surgical specimens revealed that 72.3% of these patients were PA free whereas it reach 5-9% without underlying CP (18,19). These inappropriate decisions had major consequences since the postoperative morbidity was 61.1 % (including 27.7% Clavien ≥3) for these patients. Similar rates have been previously reported (20).

This hard decision-making process is hampered by the lack of informative clinical and biological data, as there are no specific signs differentiating PA and CP progression. In fact, our results showed no significant difference between our two groups in terms of clinical presentation as previously described (18,21). However, our results revealed higher levels of total bilirubin in the patients from group 2 at the limit of statistical significance (p=0.05).

In addition, there is no consensus on tumor markers assay (22,23). CA 19-9 would be the most sensitive marker but it can be valueless in context of cholestasis (24). To improve sensibility, some studies have proposed to associate K-ras gene mutation searching in the circulating DNA. The presence of this mutation, combined with an elevated CA19-9, would be associated with 95% sensibility (25,26).

However, in clinical practice, radiological and EUS findings provides the key to diagnosis. For healthy pancreas, abdominal CT scan with IV contrast is the gold standard examination, both for diagnosis and disease spread (27). EUS is more sensitive, especially for small sized tumors, and also allows biopsy taking (28). However, in the context of CP, the sensibility of EUS is only 54-
74% (29,30). Nowadays, new EUS techniques associating enhanced contrast or elastography showed promising results but still need prospective studies to be validated (31,32).

Because of the presence of parenchymatous calcifications and pancreatic head hypertrophy in CP, imaging interpretation is limited (33). In order to improve the sensibility of radiological explorations, specific magnetic resonance sequences (T1-weighted echo-gradient with gadolinium injection, T2-weighted turbo-spin echo) have been developed (34). Similarly, the response to secretin has been used to highlight diminished exocrine function due to apparently tumor-related stricture of the main pancreatic canal (35,36). Recently, diffusion magnetic resonance imaging has been tested in this indication and has shown significantly lower coefficients of diffusion in patients with PA (37). Small series have shown the potential usefulness of fluorodeoxyglucose positron emission tomography (FDG-PET) in this context with 83-86% sensibility (38, 39).

Finally, due to the lack of imaging explorations specificity, Gerstenmaeir et al. proposed an evidence-based decision-making algorithm applying the statistical probabilities of pre- and post-exam malignancy described in the literature (40). The algorithm starts with an abdominal CT followed by an MRCP if positive. No further exploration is necessary if both the CT and the MRCP are negative; a follow-up with a regular abdominal CT can be proposed. In case of positive MRCP, EUS is performed, followed by FDG-PET if it is negative.

In our study, the rereading of images could not detect all the patients with PA although the radiologists had more time for interpretation and were free from the pressure of the MM. Nevertheless, the main limitation is that our study period is extended (10 years) and that all the different types of imaging were not available for all patients (explaining the lack of uniformly imaging protocol). The heterogeneity of the imaging protocols could explain the high number of false positive. Today, we perform in addition of systematic biomarkers assays (CA19.9 and CEA), the systematic realization of FDG-PET, diffusion MRI in order to improve the decision of MM.

We expected to find a successful attitude that will limit the number of unnecessary PD, and eventually propose to these symptomatic patients an appropriate endoscopic or other surgical
treatment (i.e. Frey or Beger procedure) which are associated with lower morbidity (10-30% and 20-40% for the Frey and Beger procedure, respectively) (41,42) and improved long-term quality of life (43).

In summary, our results were in line with the literature and confirmed the difficulty encountered to establish an accurate diagnosis of PA in CP. Consequently, the doubt about diagnosis leads to an over-indication of PD during the MM. This study confirms the necessity of a uniform validated imaging protocol to improve the decision making process in MM.
REFERENCES

27. McNulty NJ, Francis IR, Platt JF, Cohan RH, Korobkin M, Gebremariam A. Multi–Detector Row Helical CT of the Pancreas: Effect of Contrast-enhanced Multiphasic Imaging on

<table>
<thead>
<tr>
<th></th>
<th>All patients</th>
<th>Group 1</th>
<th>Group 2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>18</td>
<td>5 (27.8%)</td>
<td>13 (72.2%)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>52.5 +/-8.2</td>
<td>55 +/-4.3</td>
<td>51 +/-9.3</td>
<td>0.45</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>14 (77.7%)</td>
<td>5 (100%)</td>
<td>9 (69.2%)</td>
<td>0.27</td>
</tr>
<tr>
<td>Female</td>
<td>4 (22.2%)</td>
<td>0</td>
<td>4 (30.8%)</td>
<td></td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>17 (94.4%)</td>
<td>4 (80%)</td>
<td>13 (100%)</td>
<td>0.27</td>
</tr>
<tr>
<td>Weight loss</td>
<td>13 (72.2%)</td>
<td>4 (80%)</td>
<td>9 (69.2%)</td>
<td>1</td>
</tr>
<tr>
<td>Jaundice</td>
<td>8 (44.4%)</td>
<td>3 (60%)</td>
<td>5 (38.5%)</td>
<td>0.60</td>
</tr>
<tr>
<td>Asthenia</td>
<td>3 (16.6%)</td>
<td>2 (40%)</td>
<td>1 (7.7%)</td>
<td>0.17</td>
</tr>
<tr>
<td>Loss of glycemic control</td>
<td>1 (5.5%)</td>
<td>1 (20%)</td>
<td>0</td>
<td>0.27</td>
</tr>
<tr>
<td>Weight loss (% of body mass)</td>
<td>5.19</td>
<td>6.94</td>
<td>4.58</td>
<td>0.29</td>
</tr>
<tr>
<td>Smoking</td>
<td>16 (88.8%)</td>
<td>4 (80%)</td>
<td>12 (92.3%)</td>
<td>0.49</td>
</tr>
<tr>
<td>Alcohol intake</td>
<td>13 (72.2%)</td>
<td>2 (40%)</td>
<td>11 (84.6%)</td>
<td>0.09</td>
</tr>
<tr>
<td>Time from diagnosis of CP and surgery (months)</td>
<td>9.5</td>
<td>3</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Blood tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASAT (UI/l)</td>
<td>50</td>
<td>77</td>
<td>47.5</td>
<td>0.62</td>
</tr>
<tr>
<td>ALAT (UI/l)</td>
<td>83</td>
<td>106</td>
<td>76.5</td>
<td>0.59</td>
</tr>
<tr>
<td>GGT (UI/l)</td>
<td>329.5</td>
<td>382</td>
<td>324</td>
<td>0.51</td>
</tr>
<tr>
<td>Alkaline phosphatases (UI/l)</td>
<td>539</td>
<td>1510</td>
<td>525</td>
<td>0.23</td>
</tr>
<tr>
<td>Total bilirubin (µmol/l)</td>
<td>43</td>
<td>375</td>
<td>37</td>
<td>0.05</td>
</tr>
<tr>
<td>Conjugated bilirubin (µmol/l)</td>
<td>18</td>
<td>214.5</td>
<td>15</td>
<td>0.18</td>
</tr>
<tr>
<td>C-reactive protein (mg/l)</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Table 1: Preoperative clinical and biological data in the two groups of patients expressed as number, percentage and median +/- SD (group 1=CP+PA, group 2=CP); significance: p <0.05.
<table>
<thead>
<tr>
<th></th>
<th>All patients</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed gastric emptying (at least grade B)</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Lymphorrhea</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ascitis</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Transfusion</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Wall abscess</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Functional obstruction</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Pancreatic fistula</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Biliary fistula</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Revision surgery</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Length of hospital stay (days)</td>
<td>20.2+/-15.8</td>
<td>20.8+/-12.4</td>
<td>20 +/-17.4</td>
</tr>
</tbody>
</table>

Table 2: Postoperative complications and duration of hospital stay (median ±SD).
Table 3: Distribution of complications in the two groups according to the Clavien-Dindo classification.

<table>
<thead>
<tr>
<th>Grade of Clavien-Dindo classification</th>
<th>All patients</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>11 (61.1%)</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>
Figure 1: ROC of the total bilirubin rate for diagnosis of PA.
Figure 1