
Scaling KNN Computation over Large Graphs on a PC

Nitin Chiluka, Anne-Marie Kermarrec, Javier Olivares

To cite this version:

Nitin Chiluka, Anne-Marie Kermarrec, Javier Olivares. Scaling KNN Computa-
tion over Large Graphs on a PC. Middleware 2014, Dec 2014, Bourdeaux, France.
<10.1145/2678508.2678513>. <hal-01095557>

HAL Id: hal-01095557

https://hal.inria.fr/hal-01095557

Submitted on 18 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Rennes 1

https://core.ac.uk/display/48181227?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01095557

Scaling KNN Computation over Large Graphs on a PC

Nitin Chiluka
INRIA Rennes, France

nitin.chiluka@inria.fr

Anne-Marie Kermarrec
INRIA Rennes, France

anne-
marie.kermarrec@inria.fr

Javier Olivares
INRIA Rennes, France

javier.olivares@inria.fr

ABSTRACT

This paper proposes a novel approach to compute K-Nearest
Neighbors (KNN) algorithm on a large set of users by lever-
aging disk and memory efficiently on a commodity PC. The
system is designed to minimize random accesses to disk as
well as the amount of data loaded/unloaded from/to disk so
as to better utilize the computational power, thus improving
the algorithmic efficiency.

Categories and Subject Descriptors

E.1 [Data]: Data Structures—Graphs and Networks; I.5.3
[Computing Methodologies]: Clustering—Algorithms, Sim-

ilarity measures

General Terms

Algorithms, Design, Performance

Keywords

K-nearest neighbors, Dynamic Graphs

1. INTRODUCTION
Frameworks such as GraphChi [2] and X-Stream [3] are

increasingly gaining attention for their ability to perform
scalable computation on large graphs by leveraging disk and
memory on a single commodity PC. These frameworks rely
on the graph structure to remain the same for the entire pe-
riod of computation of various algorithms such as PageRank
and triangle counting. As a consequence, these frameworks
are not applicable to algorithms that require the graph struc-
ture to change during their computation. In this work, we
focus on one such algorithm – K-Nearest Neighbors (KNN)
– which is widely used in recommender systems [1].

The KNN computation proceeds in iterations, as follows.
At each iteration t, computing KNN of a user i requires a
similarity comparison of its profile with each of the profiles
of all its neighbors and neighbors’ neighbors, and then the
top-K most similar users from this neighborhood constitute
the new KNN of user i for the next iteration t+ 1.

We model the collection of KNN of each user by a directed
graphG(t) where each (user) vertex has at most K-outdegree

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
Middleware’14: Demos and Poster, Dec 08 - December 12 2014, Bordeaux,
France
Copyright 2014 ACM 978-1-4503-3220-0/14/12
http://dx.doi.org/10.1145/2678508.2678513 ...$15.00.

neighbors. KNN computation changes the graph from G(t)
to G(t+ 1), requiring the removal of edges to former neigh-
bors and the addition of edges to new neighbors. Such fea-
tures are not supported in either GraphChi or X-Stream.
In addition to G(t), we have a set of user profiles P (t) at
iteration t, which can also change over time to P (t+ 1).

Our goal in this work is to design a system that can com-
pute KNN of each user efficiently in a memory constrained
machine, considering that user profiles change over time.

2. SYSTEM DESIGN
Given the system constraints of a commodity PC with

limited memory, our system aims to scale KNN for a large
number of users whose profiles change over time by lever-
aging memory and disk in an efficient manner. The main
rationale of our approach is to minimize random accesses to
disk as well as the amount of data loaded/unloaded from/to
disk. We note that inefficient accesses of disk leads to poor
utility in terms of computational power, thus affecting the
algorithmic efficiency of KNN computation.

Our approach to computing KNN at each iteration t pro-
ceeds in five phases, as shown in Figure 1. Firstly, the KNN
graph G(t) is partitioned in m partitions such that the disk
and memory operations in the future phases are minimized.
Secondly, we build a hash table to hold all the unique tu-
ples (s, d) where s is a user and d is either a neighbor or
a neighbor’s neighbor of s. Thirdly, we create a partition
interaction graph which helps in deciding the order in which
partitions are loaded and unloaded so as to calculate the
similarity between users in tuples generated in the previous
phase efficiently. We develop some heuristics to minimize
the number of operations performed to complete the pro-
cess. Fourthly, we generate each user’s top-K most similar
neighbors from its set of neighbors and neighbors’ neighbors,
thus resulting overall in the new KNN graph G(t + 1). Fi-
nally, all the changes in the user profiles during this iteration
t are lazily updated to P (t+ 1) for the next iteration.

2.1 KNN Iteration
The first phase of our approach performs KNN graph

partitioning such that only a few small pieces of the graph
as well as related data structures can be stored in memory
at any given point in time while the rest are stored on disk
which can be accessed efficiently later. The input of this
phase is a directed KNN graph G(t) at iteration t which
could be at any stage in the computation: initial, interme-
diate, or near-convergence.

We divide G(t) into m partitions, each of which corre-
sponds to a fixed number of users n

m
where n is the number

Figure 1: 5 phases: input G(t), 1) KNN graph parti-
tioning, 2)Hash Table, 3)PI graph, 4)KNN compu-
tation, 5)Updating profiles

of users in G(t). A partition Ri is composed of a subset
Vi of

n

m
users, both the in-edges and out-edges of the users

Vi, and the profiles of these users. The criteria for parti-
tioning G(t) is that the total sum of the (unique) source
vertices N in

i of in-edges and the (unique) destination ver-
tices Nout

i of out-edges in each partition i is minimized:
min

∑m

i=1
(N in

i +Nout
i). Such a partitioning mechanism en-

ables a greater extent of data locality in the fourth phase.
For efficient access of neighbors’ neighbors, we sort the in-

edges {(s, v) ∈ Ri} and the out-edges {(v, d) ∈ Ri}, where
v ∈ Vi and vertices s and d belong to any of the m partitions,
by the vertex id v in their respective lists. One can now read
the files of in-edge and out-edge lists sequentially to generate
tuples (s, d) which are essentially neighbors’ neighbors, since
the vertex v acts as a bridge between s and d.

The second phase of our approach is the creation and pop-
ulation of a hash table H. We use a hash table to avoid
generating duplicate tuples which can occur due to cycles
(e.g., vertices a, b and c have edges to each other) or paths
with same start and end vertices but with a different bridge
vertex (e.g., vertex a has out-edges to vertices b and c each
of which in turn have out-edges to vertex d).

H is populated with unique tuples (s, d) representing neigh-
bors’ neighbors from the first phase as well as directed edges
from the graph G(t). Once H has all the tuples, the system
has to compare the profiles of all tuples {(s, d) ∈ H} to
calculate the similarity values. Since each tuple’s s and d

could belong to different partitions, accessing their profiles
from respective partitions in an arbitrary fashion can lead
to poor performance due to various random accesses to disk
as well as loading/unloading of partitions from/to disk.

The third phase is the creation and traversal of the parti-
tion interaction (PI) graph which helps in deciding the
order in which all the tuples’ similarity scores are computed.
In the PI graph, each node represents a partition Ri from
the first phase, and a directed edge (Ri, Rj) represents all
the tuples {(s, d) ∈ H} such that s ∈ Ri and d ∈ Rj . In
our memory constrained environment, we load the profiles
of at most two partitions Ri and Rj at any point in order to
compute the similarity scores of all the tuples {(a, b)} such
that vertices a and b belong to either of Ri and Rj . We note
that when all the edges in the PI graph are parsed, it means
that the similarity scores of all the corresponding tuples in
H have been computed.

We describe a few heuristics to decide the order in which
the PI graph is parsed. The sequential heuristic loads the
partition starting from number 1, processes all its edges in
the PI graph, removes this partition from further consider-
ation, and continues with next partition number 2, and so
on until all edges and nodes are parsed. The degree-based

Table 1: # Load/unload operations using PI graph.
Datasets Nodes Edges Seq. High-Low Low-High

Wiki-Vote 7115 100762 211856 204706 202290
Gen. Rel. 5241 14484 34506 32220 31256
High Ener. 12006 118489 252754 242132 240872
AstroPhy. 18771 198050 420442 400050 401770
E-mail 36692 183831 399604 382928 379312
Gnutella 26518 65369 157040 144072 132710

heuristic has two versions depending on the order for the
next edge executed. The first version starts processing ver-
tices with the highest degree, choosing the next edge to be
processed according to the degree of the destination vertex
from highest to lowest degrees. The other version of this
algorithm also starts processing vertices with the highest
degree, but the next edge is selected on the criteria from
lowest to highest degrees of the destination vertices.

Table 1 presents a preliminary evaluation of these heuris-
tics on various datasets. If the PI graph structure were to
resemble these networks, we observe that our simple degree-
based heuristics typically have 5-15% fewer partition load/unload
operations than the sequential one, suggesting scope for im-
provement with better heuristics.

The fourth phase performsKNN computation using the
PI graph and the profiles P (t) to generate G(t + 1) which
is the new KNN graph for the next iteration. First, the
PI graph is parsed in the order based on one of the above
heuristics such that the profiles of at most two partitions
Ri and Rj are loaded into memory at a time. Next, each
tuple (s, d) where s ∈ Ri and d ∈ Rj is read sequentially,
and then a similarity score sim(s, d) is computed based on
their profiles. When the similarity scores for all tuples in
each partition are computed, one can generate the K-most
similar neighbors for each user, resulting in G(t+ 1).

Finally, the fifth phase is responsible for updating user
profiles from P (t) to P (t+ 1). Throughout the iteration t,
any changes in the profiles of the users are stored in a queue
q but not incorporated into P (t). In this phase, the queue
is read to update the profiles to P (t + 1). After complet-
ing this phase, the system returns to the first phase of the
next iteration t+1, while the queue is ready for new profile
updates to store.

Future Work. We plan to evaluate our approach using
different graph sizes, amounts of memory, HDD and SSD,
and multiple threads by measuring execution times as well
as throughput from the disk IO operations. Furthermore,
we aim to develop more heuristics for the PI graph traversal
which consider the amount of time consumed for both parti-
tion load/unload operations and the similarity computation
for tuples given two partitions.

Acknowledgments. This work was partially funded by
Conicyt/Beca Doctorado en el Extranjero Folio 72140173
and Google Focused Award Web Alter-Ego.

3. REFERENCES
[1] W. Dong, C. Moses, and K. Li. Efficient k-nearest

neighbor graph construction for generic similarity
measures. In WWW, 2011.

[2] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In OSDI,
2012.

[3] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
edge-centric graph processing using streaming
partitions. In SOSP, 2013.

