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Abstract

Let V =Rd be the Euclidean d-dimensional space, µ (resp λ) a probability measure on the linear
(resp affine) group G = GL(V ) (resp H = Aff(V )) and assume that µ is the projection of λ on G .
We study asymptotic properties of the iterated convolutions µn ∗δv (resp λn ∗δv ) if v ∈ V , i.e
asymptotics of the random walk on V defined by µ (resp λ), if the subsemigroup T ⊂ G (resp.
Σ⊂ H ) generated by the support of µ (resp λ) is “large”. We show spectral gap properties for the
convolution operator defined by µ on spaces of homogeneous functions of degree s ≥ 0 on V ,
which satisfy Hölder type conditions. As a consequence of our analysis we get precise asymptot-
ics for the potential kernel Σ∞

0 µk ∗δv , which imply its asymptotic homogeneity. Under natural
conditions the H-space V is a λ-boundary; then we use the above results and radial Fourier
Analysis on V \ {0} to show that the unique λ-stationary measure ρ on V is "homogeneous at
infinity" with respect to dilations v → t v (for t > 0), with a tail measure depending essentially of
µ and Σ. Our proofs are based on the simplicity of the dominant Lyapunov exponent for certain
products of Markov-dependent random matrices, on the use of renewal theorems for “tame”
Markov walks, and on the dynamical properties of a conditional λ-boundary dual to V .

Résumé

Soit V l’espace Euclidien de dimension d , µ (resp. λ) une probabilité sur le groupe linéaire

(resp.affine) G = GL(V ) (resp. H = Aff(V )) et supposons que µ soit la projection de λ sur G .

Nous étudions certaines propriétés asymptotiques des convolutions itérées de µ (resp. λ) appli-

quées à un vecteur non nul v ∈ V , c’est à dire de la marche aléatoire sur V définie par µ (resp.

λ), si le semigroupe T ⊂ G (resp. Σ ⊂ H ) engendré par le support de µ (resp. λ) est « grand ».

Nous montrons des propriétés d’isolation spectrale pour l’opérateur de convolution défini par

µ sur des espaces de fonctions homogènes de degré s ≥ 0 sur V , qui satisfont des conditions

du type de Hölder. Comme conséquence de notre analyse nous obtenons des asymptotiques

précises pour le noyau potentiel Σ∞
0 µk ∗ δv , qui impliquent son homogénéité à l’infini.Sous

des conditions naturelles, le H-espace V est une λ-frontière ; nous utilisons alors les résultats

précédents et l’analyse de Fourier radiale sur V \ {0} afin de montrer que l’unique mesure λ-

stationnaire est homogène à l’infini, par rapport aux dilatations v → t v ( pour t > 0),avec une

mesure de queue qui dépend essentiellement de µ et Σ. Nos preuves sont basÈes sur la sim-

plicité de l’exposant de Lyapunov dominant de certains produits de matrices en dépendance

markovienne, sur l’utilisation de théorèmes de renouvellement pour certaines marches marko-

viennes et sur les propriétés dynamiques d’une λ-frontière duale de V .

Key words and phrases: spectral gap, renewal theorem, Pareto asymptotics, random
matrices, affine random recursions.
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1 Introduction, statement of results

We consider the d-dimensional Euclidean space V = Rd , endowed with the natural
scalar product (x, y) →〈x, y〉, the associated norm x → |x|, the linear group G =GL(V ),
and the affine group H = Aff(V ). Let λ be a probability measure on H with projection µ

on G , such that suppλ has no fixed point in V . We denote by

T = [suppµ], (resp. Σ= [suppλ])

the closed subsemigroup of G (resp H) generated by suppµ (resp suppλ). Under natural
conditions, including negativity of the dominant Lyapunov exponent Lµ corresponding
to µ, for any v ∈ V , the sequence of iterated convolutions λn ∗δv converges weakly to
ρ; the probability measure ρ is the unique probability which solves the convolution
equation λ∗ρ = ρ, and suppρ is unbounded if [suppµ] contains an expanding element.
Then, an important property of ρ is the existence of α> 0 such that

∫
|x|s dρ(x) <∞ for

s <α and
∫
|x|s dρ(x) =∞ for s ≥α, if suppλ is compact. One of our main results below

(Theorem C) gives the α-homogeneity of ρ at infinity, i.e. Pareto’s asymptotics of ρ (see
[47], p. 74).

In general, for the asymptotic behaviour of λn ∗δv and the “shape at infinity” of ρ there
are four cases:

1. The “contractive” case where the elements of suppµ have norms less than 1, ρ
exists and is compactly supported.

2. The “expansive" case where Lµ > 0 and ρ does not exist.

3. The ‘critical” case where Lµ = 0 and ρ does not exist.

4. The “weakly contractive” case where Lµ < 0 andρ exists with unbounded support.

Heuristically, cases 3, 4, mentioned above, can be considered as transitions between
the cases 1, 2, which appear to be extreme cases. In this paper we are mainly interested
in case 4 and in the shape at infinity of ρ; in the corresponding analysis we use the
approach of [35], based on the associated linear random walk, we develop methods
and prove results which are of independent interest for products of random matrices.
An important tool here is the “Radon transform” of ρ, i.e. the function on V defined by

ρ̂(v)= ρ{x ∈V ;〈x, v〉 > 1},

which allow us to transfer the shape problem for ρ into an asymptotic problem for ρ̂.
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In [35] the shape problem was connected to the study of a Poisson equation on the G-
space V \{0} satisfied by ρ̂ and by a convolution operator associated withµ; the measure
λ was assumed to be supported on the positive matrices or to have a density on H . In
the first case an important result was the validity of Pareto’s asymptotics for the projec-
tion of ρ on the positive directions.We observe that special cases of the above problem
and various consequences of Pareto’s asymptotics have been considered in the litter-
ature (see for example [10], [20], [38]), especially if µ has a density on G , a condition
which implies spectral gap properties for the convolution operators associated to µ or
λ in suitable Hilbert spaces. In contrast,our basic hypothesis which involves only T

and Lµ, implies that the above operators satisfy Doeblin-Fortet inequalities (see [33]),
hence also spectral gap properties in spaces of Hölder functions. Here our main result,
partly contained in Theorem C below, describes the general case and the homogeneity
at infinity stated in the theorem gives new results even for d = 1 (see [20]) or for the
multidimensional situations considered in [35],[38].

We observe that, more generally, the homogeneous behaviour at infinity of certain in-
variant measures is of interest for various questions in Probability Theory and Mathem-
atical Physics (see [10], [11], [12], [13], [35], [47]) but also in some geometrical questions
such as dynamical excursions of geodesic flow and winding around cusps in hyperbolic
manifolds (see [1], [44], [49]), or analysis of the H-space (V ,ρ) as a λ-boundary and its
dynamical consequences (see [3], [16], [17], [30]).

Hence, following [35], we start with the linear situation i.e. the G-action on V \ {0} and
we consider a probability measure µ on G . As in [17] we assume that T satisfies the so-
called i-p condition (i-p for irreducibility and proximality), i.e. T is strongly irreductible
and contains at least one element with a unique simple dominant eigenvalue; if d = 1,
we assume furthermore that T is non arithmetic, i.e. T is not contained in a subgroup
of R∗ of the form {±an ;n ∈Z} for some a > 0. We observe that for d > 1 condition i-p is
satisfied by T if and only if it is satisfied by the algebraic subgroup Z c(T ),which is the
Zariski closure of T , hence condition i-p is satisfied if T is “large” (see [22], [45]). On the
other hand, the set of probability measures µ on G such that the associated semigroup
T satisfies condition i-p is open and dense in the weak topology hence µ is ’“generic”
if d > 1 and T satisfies i-p. Also, if d > 1, an essential aperiodicity consequence of con-
dition i-p is the density in R∗

+ of the multiplicative subgroup generated by moduli of
dominant eigenvalues of the elements of T (see [2], [25], [28]). We denote by |g | the
norm of g ∈G and we write

γ(g ) = sup(|g |, |g−1|), Iµ = {s ≥ 0 :
∫

|g |s dµ(g ) <∞},

we denote ]0, s∞[ the interior of the interval Iµ. For simplicity of exposition, and since
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linear maps commute with the symmetry v →−v , it is convenient to deal with the G-
factor space V̆ of V \ {0} by symmetry, instead of V \ {0} itself. We use the polar decom-
position

V̆ =Pd−1 ×R∗
+,

and the corresponding functional decompositions, where Pd−1 is the projective space
of V .

We consider the convolution action of µ on continuous functions on V \ {0} which are
homogeneous of degree s ≥ 0, i.e. functions f which satisfy f (t v)= |t |s f (v) (t ∈R). This
action reduces to the action of a certain positive operator P s on C (Pd−1), the space of
continuous functions on the projective space Pd−1. More precisely, if f (v) = |v |sϕ(v̄)
with ϕ ∈C (Pd−1), v̄ ∈Pd−1, then P sϕ is given by

P sϕ(x) =
∫

|g x|sϕ(g ·x)dµ(g ),

where x ∈ Pd−1, x → g · x denotes the projective action of g on x, and |g x| is the norm
of any vector g v with |v | = 1 and v̄ = x. Also for z = s + i t ∈ C, with s ∈ Iµ and t ∈ R,
we write P zϕ(x) =

∫
|g x|zϕ(g · x)dµ(g ). By duality P z acts also on measures on Pd−1

and for a measure ν we denote by P zν the new measure obtained from ν. The space of
endomorphisms of a Banach space B will be denoted by EndB . For ε > 0 let Hε(Pd−1)
be the space of ε-Hölder functions on Pd−1, with respect to a certain natural distance.
We denote by ℓs (resp ℓ) the s-homogeneous (resp. Haar) measure on R∗

+ and we write

ℓs(d t ) =
d t

t s+1 , ℓ(d t ) =
d t

t
, hs(v) = |v |s .

An s-homogeneous Radon measure η on V̆ =Pd−1 ×R∗
+ is written as η= π⊗ℓs where π

is a bounded measure on Pd−1. For s ∈ Iµ we define the function

k(s) = lim
n→∞

(∫
|g |s dµn(g )

)1/n

,

where µn is the n−th convolution power of µ on the group G and we observe that logk(s)
is a convex function on Iµ. A key tool in our analysis for d > 1 is the

Theorem. A. Assume d > 1 and the subsemigroup T ⊂ GL(V ) generated by suppµ sat-

isfies condition i-p. Then, for any s ∈ Iµ there exists a unique probability measure νs on

Pd−1, a unique positive continuous function e s ∈C (Pd−1) with νs (e s) = 1 such that

P sνs = k(s)νs ,P s e s = k(s)e s.
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For s ∈ Iµ, if
∫
|g |sγτ(g )dµ(g ) < ∞ for some τ > 0 and if ε > 0 is sufficiently small, the

action of P s on Hε(Pd−1) has a spectral gap:

P s = k(s)(νs ⊗e s +U s),

where the operator νs ⊗e s is the projection on Ce s defined by νs ,e s and U s is an operator

with spectral radius less than 1 which satisfies U s(νs ⊗e s) = (νs ⊗e s)U s = 0. Furthermore

the function k(s) is analytic, strictly convex on ]0, s∞[ and the function νs⊗e s from ]0, s∞[
to End Hε(Pd−1) is analytic. The spectral radius of P z is less than k(s) if s = Rez ∈ [0, s∞[
and t = Imz 6= 0.

We observe that, since condition i-p is open, the last property is robust under perturb-
ation of µ in the weak topology. If d = 1, k(s) is equal to

∫
|x|s dµ(x), hence k(s) is the

Mellin transform of µ (see [52]) and the above statements are also valid if T is non arith-
metic. However, the last property is not robust for d = 1.

If s = 0, P s reduces to the convolution operator by µ on Pd−1 and convergence to the
unique µ-stationary measure ν0 = ν was studied in [17] using proximality of the T -
action on Pd−1. In this case, spectral gap properties for P z , if Rez= s is small, were first
proved in [40] using the simplicity of the dominant µ-Lyapunov exponent (see [28]).
Limit theorems of Probability Theory for the product Sn = gn · · ·g1 of the random i.i.d.
matrices gk , distributed according to µ, are consequences of this result and of radial
Fourier analysis on V \ {0} used in combination with boundary theory (see[4], [6], [16],
[21], [29], [40]). Ifµhas a density with compact support, Theorem A is valid for any s ∈R.
In general and for d > 1, it turns out that the function k(s), as defined above, looses its
analyticity at some s1 < 0. For a recent detailed study of the operators P z (s =Rez small)
and their equicontinuous extensions in a geometrical setting which allows the algebraic
group Z c(T ) to be reductive and defined over a local field of any characteristic, we refer
to the forthcoming book [4]. We observe that condition i-p used here and s small imply
that the basic assumptions of ([4], chap 8) are satisfied. Also, for s > 0, the properties
described in the theorem were considered in [29]; they are basic ingredients for the
study of precise large deviations of Sn(ω)v ([41]).

The Radon measure νs ⊗ℓs on V̆ satisfies the convolution equation

µ∗ (νs ⊗ℓs ) = k(s)νs ⊗ℓs

and the support of νs is the unique T -minimal subset of Pd−1, the so-called limit set
Λ(T ) of T (see [2], [4], [23]). The function e s is an integral transform of the twisted µ-
eigenmeasure ∗νs . For s > 0 and σ a probability measure on Pd−1 not concentrated on
a proper subspace, |g |s is comparable to

∫
|g x|s dσ(x); the uniqueness properties of e s
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and νs are based on this geometrical fact. The proof of the spectral gap property de-
pends on the simplicity of the dominant Lyapunov exponent for the product of random
matrices Sn = gn · · ·g1 with respect to a natural shift-invariant Markov measure Qs on
Ω=GN, which is locally equivalent to the product measure Q0 =µ⊗N. A construction of
a kernel-valued martingale (based on ∗νs ) plays an essential role in the proof of simpli-
city and in the comparison of |Sn(ω)| with |Sn(ω)v |. For s = 0 this study corresponds to
[28].

In order to develop probabilistic consequences of Theorem A we endow Ω = GN with
the shift-invariant measure P = µ⊗N (resp Qs ). We know that if

∫
logγ(g )dµ(g ) (resp∫

|g |s logγ(g )dµ(g )) is finite the dominant Lyapunov exponent Lµ (resp Lµ(s)) of Sn =
gn · · ·g1 with respect to P (resp Qs ) exists and

Lµ = lim
n→∞

1

n

∫
log |Sn(ω)|dP(ω), Lµ(s) = lim

n→∞

1

n

∫
log |Sn(ω)|dQs (ω).

If s ∈]0, s∞[, k(s) has a continuous derivative k ′(s) and Lµ(s) = k′(s)
k(s) . By strict convexity

of logk(s), if lim
s→s∞

k(s)≥ 1 and s∞ > 0, we can define α> 0 by k(α) = 1.

We consider the potential kernel U on V̆ defined by U (v, ·) =
∞
Σ
0
µk ∗δv . Then we have

the following multidimensional extensions of the classical renewal theorems (see [15]),
which describes the asymptotic homogeneity of U (v, ·). We recall that for v ∈ V̆ and
A ⊂ V̆ , U (v, A) is the mean number of visits of Sn(ω)v to A for n ≥ 0.

Theorem. B. Assume T satisfies condition i-p,
∫

logγ(g )dµ(g ) <∞ and Lµ > 0. If d = 1
assume furthermore that µ is non-arithmetic. Then, for any v ∈ V̆ , U (v, ·) is a Radon

measure on V̆ and we have the vague convergence

lim
t→0+

U (t v, ·) =
1

Lµ
ν⊗ℓ,

where ν is the unique µ-stationary measure on Pd−1.

Theorem. B
α. Assume T satisfies condition i-p,

∫
logγ(g )dµ(g )<∞, Lµ < 0, s∞ > 0 and

there exists α > 0 with k(α) = 1,
∫
|g |α logγ(g )dµ(g ) < ∞. If d = 1 assume furthermore

that µ is non-arithmetic. Then for any v ∈Pd−1 we have the vague convergence on V̆

lim
t→0+

t−αU (t v, ·) =
eα(v)

Lµ(α)
να⊗ℓα.

Up to normalization the Radon measure να⊗ℓα is the unique α-homogeneous measure

which satisfies the harmonicity equation µ∗ (να⊗ℓα) = να⊗ℓα.
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For v ∈Pd−1, we consider the random variable M(v) = sup{|Sn v | ; n ∈N}. Then we have
the following matricial version of Cramér’s estimate in collective risk theory (see [15]).

Corollary. With the notations of Theorem Bα, for any u ∈Pd−1, we have the convergence

lim
t→∞

tαP{M(u) > t } = Aeα(u)> 0.

Theorems B, Bα are consequences of the arguments used in the proof of Theorem A
and of a renewal theorem for a class of Markov walks on R (see [36]). An essential role
is played by the law of large numbers for log |Sn v | under Qs (s = 0,α); the comparison of
|Sn | and |Sn v | follows from the finiteness of the limit of (log |Sn |− log |Sn v |). This is the
essential property used in [36], in a more general framework. For the sake of brevity,
we have formulated these theorems in the context of V̆ instead of V . Corresponding
statements where Pd−1 is replaced by the unit sphere Sd−1 are given in section 4. Also
the above weak convergence can be extended to a larger class of functions.

In [35], renewal theorems as above were obtained for non negative matrices, the exten-
sion of these results to the general case was an open problem and a partial solution was
given in [39]. Theorems B and Bα extend these results to a wider setting. In view of the
interpretation of U (v, ·) as a mean number of visits, Theorem B is a strong reinforcement
of the law of large numbers for Sn(ω)v , hence it can be used in some problems of dy-
namics for group actions on T -spaces. In this respect we observe that a specific version
of the asymptotic homogeneity of U stated in Theorem B has been of essential use in
[30] for the description of the T -minimal subsets of the action of a large subsemigroup
T ⊂ SL(d ,Z) of automorphisms of the torus Td .

On the other hand Theorem Bα gives a description of the fluctuations of a linear ran-
dom walk on V̆ with P-a.e. exponential convergence to zero, under condition i-p and
the existence in T of a matrix with spectral radius greater than one. These fluctuation
properties are responsible for the homogeneity at infinity of stationary measures for
affine random walks on V , that we discuss now.

Let λ be a probability measure on the affine group H of V , µ its projection on G and T ,
Σ as above. We assume that T satisfies condition i-p, and suppλ has no fixed point in V .
If d = 1 we assume that T is non-arithmetic. We consider the affine stochastic recursion
on V

Xn+1 = An+1 Xn +Bn+1, (R)

where (An ,Bn) are λ-distributed i.i.d random variables. From a heuristic point of view,
the corresponding affine random walk can be considered as a superposition of an ad-
ditive random walk on V governed by Bn and a multiplicative random walk on V \ {0}
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governed by An . Here, as it appears below in Theorem C, the non trivial multiplicat-
ive part An plays a dominant role, while the additive part Bn has a stabilizing effect
since λ has a unique stationary probability ρ on V and ρ is not supported on a point. If
E(log |An |)+E(log |Bn|) < ∞ and the dominant Lyapunov exponent Lµ for the product
A1 · · ·An is negative, then Rn = Σ

n−1
0 A1 · · · Ak Bk+1 converges λ⊗N − a.e. to R , the law

ρ of R is the unique λ-stationary measure on V , (V ,ρ) is a λ-boundary (see [17])and
suppρ = Λa(Σ) is the unique Σ-minimal subset of V . If T contains at least one matrix
with an expanding direction, then Λa(Σ) is unbounded and if Iµ = [0,∞[ there exists
α> 0 with k(α) = 1, hence we can inquire about the “shape at infinity” of ρ. According
to a conjecture of F. Spitzer the measure ρ should belong to the domain of attraction of
a stable law with index α if α ∈ [0,2[ or a Gaussian law if α ≥ 2. Here we prove a multi-
dimensional precise form of this conjecture, and more generally the α-homogeneity at
infinity of ρ, where we assume that µ satisfies the conditions of Theorem Bα, λ satisfies
moment conditions and suppλ has no fixed point in V . We denote by Λ̃(T ) the inverse
image of the limit set Λ(T ) in Sd−1 and by ν̃α the symmetric lifting of να to Sd−1. Then
our main result implies the following

Theorem. C. With the above notation we assume that T satisfies condition i-p, suppλ

has no fixed point in V , s∞ > 0, Lµ < 0 and α ∈]0, s∞[ satisfies k(α) = 1. If d = 1 we

assume also µ is non-arithmetic. Then, if E(|B |α+τ) <∞ and E(|A|αγτ(A)) <∞ for some

τ> 0, the unique λ-stationary measure ρ on V satisfies the following vague convergence

on V \ {0}
lim

t→0+
t−α(t ·ρ) =Cσα⊗ℓα,

where C > 0, σα is a probability measure on Λ̃(T ) and σα⊗ℓα is a µ-harmonic Radon

measure supported on R∗
Λ̃(T ). If T has no proper convex invariant cone in V , we have

σα = ν̃α. The above convergence is also valid on any Borel function f such that the set

of discontinuities of f is σα ⊗ ℓα-negligible and such that for some ε > 0 the function

|v |−α| log |v ||1+ε| f (v)| is bounded.

Briefly, we say that ρ satisfies Pareto’s asymptotics of index α (see [47], page 74). The
convergence in Theorem C can be considered as a Cramér type estimate for the ran-
dom variable R and was stated in [26].This statement gives the homogeneity at infinity
of ρ, hence the measure Cσα⊗ℓα defined by the theorem can be interpreted as the "tail
measure" of ρ. In the context of extreme value theory for the process Xn , the conver-
gence stated in the theorem implies that ρ has “multivariate regular variation” and this
property plays an essential role in the theory (see [19], [47]). If T has a proper convex
invariant cone, then Cσα can be decomposed as

Cσα =C+ν
α
++C−ν

α
−,
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where C+, C− ≥ 0 and να+⊗ℓα, να− ⊗ℓα are µ-harmonic extremal measures on V \ {0}.
In section 5 the discussion of positivity for C , C+, C− in terms of Λ(T ) and Λa(Σ) lead
us, via Radon transforms, to consider an associated linear random walk on the vector
space V ×R, which plays a dual role to the original λ-random walk Xn on V . The proof
of positivity for C depends on the use of Kac’s recurrence theorem for this dual random
walk. On the other hand, the proof of α-homogeneity of ρ at infinity follows from a
Choquet-Deny type property for the linear µ-random walk on V \ {0}. The spectral gap
property, stated in theorem A, plays an essential role in this study.

For d = 1, positivity of C = C+ +C− was proved in [20] using Levy’s symmetrisation
argument, positivity of C+ and C− was tackled in [26] by a complex analytic method
introduced in [11]. For d = 1 we have να+ = δ1, να− = δ−1 and the precise form of The-
orem C gives that the condition C+ = 0 is equivalent to suppρ ⊂]−∞,c] with c ∈ R. In
the Appendix we give an approach to part of Theorem C using tools familiar in Analytic
Number Theory like Wiener-Ikehara’s theorem and a lemma of E. Landau but also res-
ults for Radon transforms of positive measures which are only valid for α ∉ N (see [5],
[51]). However the discussion of positivity for C+, C− seems to be not possible using
only these analytical tools.

A natural question is the speed of convergence in Theorem C. For d = 1 see [20], if λ
has a density. For d > 1 and under condition i-p, this question is connected with the
possible uniform spectral gap for the operator P z of Theorem A,if z =α+ i t .

To go further we observe that Theorem C gives a natural construction for a large class
of probability measures in the domain of attraction of a stable law. Using also spec-
tral gaps and weak dependence properties of the process Xn , Theorem C allow us to
prove convergence to stable laws for normalized Birkhoff sums along the affine λ-walk
on V (see [18]) Furthermore if d = 1, and conditionally on regularity assumptions usual
in extreme value theory, such convergences were shown in [10]; hence the results of
[18] improve and extends the results of [10] in the case of GARCH processes (d ≥ 1). If
d > 1 the above convergence is robust under perturbation of λ in the weak topology.
These convergences to stable laws are connected with the study of random walk in a
random medium on the line or the strip (see [12]) if α< 2. On the other hand the study
of the extremal value behaviour of the process Xn can be fully developed on the basis
of Theorem C and on the above weak dependence properties of Xn ; in particular the
asymptotics of the extremes of |Xn | are given by Fréchet type laws with index α ([31]),
a result which extends the main result of [38] to the generic case. In a geometrical con-
text, as observed in [44] for excursions of geodesic flow around the cusps of the modular
surface, the famous Sullivan’s logarithm law is a simple consequence of Fréchet’s law
for the continuous fraction expansion of a real number uniformly distributed in [0,1].
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Here also a logarithm law is valid for the random walk Xn (see [31]). The arguments
developed in the proof of homogeneity at infinity for ρ can also be used in the study
of certain quasi-linear equations which occur in various domains related to branching
random walks in particular (see [20]), [42]). For example the description of the shape
at infinity of the fixed points of the multidimensional version of the “smoothing trans-
formation” considered in [13] in the context of infinite particle systems in interaction
depends on such arguments (see [9]). In an econometrical context, the stochastic recur-
sion (R) can be interpreted as a mechanism which, in the long run, produces debt or
wealth accumulation with a specific homogeneous structure at large values; hence,in
the natural setting of affine stochastic recursions, this mechanism “explains” the re-
markable power law asymptotic shape of wealth distribution empirically discovered by
the economist V. Pareto ([43]).

For information on the role of spectral gap properties in limit theorems for Probability
theory and Ergodic theory we refer to [1], [4], [6], [18], [21], [27], [28], [40]. For inform-
ation on products of random matrices we refer to [4], [6], [16], [24]. Theorem A (resp B,
Bα and C) is proved in sections 2,3 (resp 4 and 5).

We thank Ch.M. Goldie, I. Melbourne and D. Petritis for useful informations on stochastic
recursions and extreme value theory.We thanks also the referees for careful reading and
very useful sugestions.

2 Ergodic properties of transfer operators on projective

spaces

In this section we study the qualitative properties of transfer operators on Pd−1 or Sd−1.
As mentioned in the introduction one can find in [4] a detailed study of a general class
of transfer operators on flag manifolds with equicontinuity properties. Here, our trans-
fer operators depend on a complex parameter z which is typically large with Rez> 0.
Hence, for self-containment reasons in particular, we develop from scratch our study
on Pd−1 or Sd−1 for Rez= s ≥ 0. A first step is to reduce these transfer operators to
Markov operators (Theorems 2.6, 2.16) with equicontinuity properties.
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2.1 Notation and preliminary results

Let V =Rd be the Euclidean space endowed with the scalar product 〈x, y〉 =
∑d

1 xi yi and

the norm |x| =
(∑d

1 |xi |2
)1/2

, V̆ the factor space of V \ {0} by the finite group {±I d}. We
denote by Pd−1 (resp Sd−1), the projective space (resp unit sphere) of V and by v̄ (resp
ṽ) the projection of v ∈ V on Pd−1 (resp Sd−1). The linear group G = GL(V ) acts on V ,
V̆ by (g , v) → g v . If v ∈ V \ {0}, we write g · v = g v

|g v | and we observe that G acts on Sd−1

by (g , x) → g · x. We will also write the action of g ∈ G on x ∈ Pd−1 by g · x; we define
|g x| as |g x̃| if x ∈ Pd−1 and x̃ ∈Sd−1 has projection x ∈ Pd−1. Also, if x, y ∈ Pd−1, |〈x, y〉|
is defined as |〈x̃, ỹ〉| where x̃, ỹ ∈ Sd−1 have projections x, y . Corresponding notations
will be taken when convenient. For a subset A ⊂ Sd−1 the convex envelope Co(A) of A

is defined as the intersection with Sd−1 of the closed convex cone generated by A in V .
We denote by O(V ) the orthogonal group of V and by m the O(V )-invariant measure on
Pd−1. A positive measure η on Pd−1 will be said to be proper if η(U ) = 0 for every proper
projective subspace U 6= Pd−1.We denote by EndV the space of endomorphisms of the
vector space V .

Let P be a positive kernel on a Polish space E and let e be a positive function on E

which satisfies Pe = ke for some k > 0. Then we can define a Markov kernel Qe on E by
Doob’s relativisation procedure: Qeϕ= 1

ke
P (ϕe). This procedure will be used frequently

here. For a Polish G-space E we denote by M1(E ) the space of probability measures on
E . If ν ∈ M1(E ), and P is as above, ν will be said to be P-stationary if Pν = ν, i.e for
any Borel function ϕ, ν(Pϕ) = ν(ϕ). We will write C (E ) (resp Cb(E ) for the space of
continuous (resp bounded continuous) functions on E . If E is a locally compact G-
space, µ ∈ M1(G), and ρ is a Radon measure on E , we recall that the convolution µ∗ρ is
defined as a Radon measure by µ∗ρ =

∫
δg x dµ(g )dρ(x), where δy is the Dirac measure

at y ∈ E . A µ-stationary measure on E will be a probability measure ρ ∈ M1(E ) such that
µ∗ρ = ρ. In particular, if E =V or V̆ and µ ∈ M1(G) we will consider the Markov kernel
P on V (resp P̆ on V̆ ) defined by P (v, ·) = µ∗δv , (resp P̆ (v, ·) = µ∗δv ). On Pd−1 (resp
Sd−1) we will write P̄ (x, ·) =µ∗δx (resp P̃ (x, ·) =µ∗δx ).

If u is an endomorphism of V , we denote u∗ its adjoint map, i.e. 〈u∗x, y〉 = 〈x,u y〉 if
x, y ∈ V . If µ ∈ M1(G) we will write µ∗ for its push forward by the map g → g∗ and we
define the kernel ∗P on V by ∗P (v, .) = µ∗ ∗δv . For s ≥ 0 we denote ℓs (resp hs) the
s-homogeneous measure (resp function) on R∗

+ = {t ∈R ; t > 0} given by

ℓs(d t ) =
d t

t s+1
(resp hs(t ) = t s).

For s = 0 we write ℓ(d t ) = dt
t

.
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Using the polar decomposition V \ {0} = Sd−1 ×R∗
+ and the corresponding functional

decompositions on V \{0}, every s-homogeneous measure η (resp function ψ) on V \{0}
can be written as

η=π⊗ℓs (resp. ψ=ϕ⊗hs ),

where π (resp. ϕ) is a measure (resp. function) on Sd−1. Similar decompositions are
valid on V̆ = Pd−1 ×R∗

+. If g ∈ G , and η = π⊗ℓs (resp ψ = ϕ⊗hs) the directional com-
ponent of gη (resp. ψ◦ g ) is given by

ρs (g )(η) =
∫

|g x|sδg ·x dη(x), ρs (g )(ψ)(x) = |g x|sψ(g ·x).

The representations ρs and ρs extend to measures on G by the formulae

ρs (µ)(η) =
∫

|g x|sδg ·x dµ(g )dπ(x), ρs (µ)(ψ)(x) =
∫

|g x|sψ(g ·x)dµ(g ).

We will write, for ϕ∈C (Pd−1) (resp. ψ ∈C (Sd−1))

P sϕ= ρs (µ)(ϕ), (resp.P̃ sψ= ρs (µ)(ψ)), ∗P sϕ= ρs (µ∗)(ϕ), (resp.∗P̃
s
ψ= ρs (µ∗)(ψ)).

We endow Sd−1 (resp. Pd−1) with the distance δ̃ (resp. δ) defined by

δ̃(x, y) = |x − y | (resp. δ(x̄, ȳ) = inf{|x − y |; |x| = |y | = 1}).

For ε> 0, ϕ ∈C (Pd−1) (resp. ψ ∈C (Sd−1)), we denote

[ϕ]ε = sup
x 6=y

|ϕ(x)−ϕ(y)|
δε(x, y)

(resp. [ψ]ε = sup
x 6=y

|ψ(x)−ψ(y)|
δ̃ε(x, y)

),

|ϕ| = sup{|ϕ(x)|; x ∈Pd−1} (resp. |ψ| = sup{|ψ(x)|; x ∈Sd−1}),

and we write

Hε(Pd−1) = {ϕ ∈C (Pd−1); [ϕ]ε <∞}, (resp. Hε(Sd−1) = {ψ ∈C (Sd−1); [ψ]ε <∞}.

The set of positive integers will be denoted by N. We denote by µn the nth convolution
power of µ, i.e for ψ ∈Cb(G), µn(ψ) =

∫
ψ(gn · · ·g1)dµ⊗n(g1, · · · , gn).

Definition 2.1. If s ∈ [0,∞[ and µ ∈ M1(G), we denote

k(s)= kµ(s)= lim
n→∞

(∫
|g |s dµn(g )

)1/n

, Iµ = {s ≥ 0;kµ(s)<+∞}.
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We observe that the above limit exists, since by subadditivity of g → log |g |, the quant-
ity un(s) =

∫
|g |s dµn(g ) satisfies um+n(s) ≤ um(s)un(s). Also kµ(s) = infn∈N(un(s))1/n ,

which implies Iµ = {s ≥ 0;
∫
|g |s dµ(g ) < +∞}. Furthermore, Hölder inequality implies

that Iµ is an interval of the form [0, s∞[ or [0, s∞], and logkµ(s) is convex on Iµ. Also
kµ∗ = kµ since |g | = |g∗|. If µ and µ′ commute and c∈ [0,1], µ′′ = µ+ (1−c) µ′ then
kµ′′(s)= ckµ(s)+ (1−c) kµ′(s), if s ∈ Iµ∩ Iµ′ .

Definition 2.2. 1. An element g ∈ EndV is said to be proximal if g has a unique ei-
genvalue λg ∈R of maximum modulus and λg is simple.

2. A semigroup T ⊂ G is said to be strongly irreducible if no finite union of proper
subspaces is T -invariant.

Proximality of g means that we can write V =Rvg ⊕V <
g with g vg =λg vg , gV <

g ⊂V <
g and

the restriction of g to V <
g has spectral radius less than |λg |. In this case lim

n→+∞
g n ·x̄ = v̄g if

x ∉V <
g and we say that λg is the dominant eigenvalue of g . If E ⊂G we denote by E pr ox

the set of proximal elements of E .The closed subsemigroup (resp. group) generated by
E will be denoted [E ] (resp. 〈E〉). In particular we will consider below the case E = suppµ
where suppµ is the support of µ ∈ M1(G).

Definition 2.3. A semigroup T ⊂G is said to satisfy condition i-p if T is strongly irredu-
cible and T prox 6= ;.

As shown in ([22], [45]) this property of T is satisfied if it is satisfied by Z c(T ), the Zariski
closure of T . It can be proved that condition i-p is valid if and only if the connected
component of the closed subgroup Z c(T ) is locally the product of a similarity group
and a semi-simple real Lie group without compact factor which acts proximally and
irreducibly on Pd−1. In this sense T is “large”. For example, if T is a countable subgroup
of G which satisfies condition i-p then T contains a free subgroup with two generators.

We recall that in Cn , the Zariski closure of E ⊂Cn is the set of zeros of the set of polyno-
mials which vanish on E . The group G = GL(V ) can be considered as a Zariski-closed
subset of Rd2+1. If T is a semigroup, then Z c(T ) is a closed subgroup of G with a finite
number of connected components. If d = 1, condition i-p is always satisfied. Hence,
when using condition i-p, d > 1 will be understood.

Remark. The above definitions will be used below in the analysis of laws of large num-
bers and renewal theorems. A corresponding analysis has been developed in [35] for
the case of non-negative matrices. We observe that proximality of an element in G is
closely related to the Perron-Frobenius property for a positive matrix. If T is not irredu-
cible, we can consider the subspace V +(T ) generated by the dominant eigenvectors of
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the elements of T prox; then V +(T ) is T -invariant (see [21] p 120) and, if T + is the restric-
tion of T to V +(T ), then T + satisfies condition i-p. In that way our results below could
be used in reducible situations (see for example [9]).

Definition 2.4. Assume T is a subsemigroup of G which satisfies condition i-p. Then
the closure of the set {v̄g ; g ∈ T prox} will be called the limit set of T and will be denoted
Λ(T ).

We recall that for a semigroup T acting on a topological space E , a subset X ⊂ E is
said to be T -minimal if any orbit T y(y ∈ X ) is contained in X and dense in X . For the
minimality of Λ(T ) ⊂Pd−1, see [2], [23].

With these definitions we have the

Proposition 2.5. Assume T ⊂ G is a subsemigroup which satisfies condition i-p and

S ⊂ T generates T . Then TΛ(T ) = Λ(T ) and Λ(T ) is the unique T -minimal subset of

Pd−1. Ifµ ∈ M1(G) is such that T = [suppµ] satisfies i-p, there exists a uniqueµ-stationary

measure ν on Pd−1. Also suppν = Λ(T ) and ν is proper. Furthermore, if d > 1, the

subgroup of R∗
+ generated by the set {|λg |; g ∈ T prox} is dense in R∗

+. In particular, if

ϕ ∈ C (Λ(T )) satisfies for some t ∈ R, |e iθ| = 1 : ϕ(g · x) |g x|i t = e iθϕ(x) for any g ∈ S,

x ∈Λ(T ) then t = 0, e iθ = 1, ϕ= constant.

Remark. The first part of the above statement is essentially due to H. Furstenberg ([17],
Propositions 4.11, 7.4) . The second part is proved in ([28]. Proposition 3). For another
proof and extensions of this property see [2], [25]. This property plays an essential role
in the renewal theorems of section 4 as well as in section 5 for d > 1. In the context of
non negative matrices a modified form is also valid (see [9]); in ([35]), Theorem A) under
weaker conditions on T , its conclusion is assumed as an hypothesis. If d = 1, we will
need to assume it, i.e we will assume that T is non-arithmetic ; if T = [suppµ] satisfies
this condition, we say that µ is non-arithmetic.

2.2 Uniqueness of eigenfunctions and eigenmeasures on Pd−1

Here we consider s ∈ Iµ and the operator P s (resp ∗P s ) on C (Pd−1) defined by

P sϕ(x) =
∫

|g x|sϕ(g ·x)dµ(g ), (resp. ∗P sϕ(x) =
∫

|g x|sϕ(g ·x)dµ∗(g )).

For a measure ν on Pd−1, P sν is defined by duality against C (Pd−1). For z = s+ i t ∈C we
will also write P zϕ(x) =

∫
|g x|zϕ(g ·x)dµ(g ). Below we study existence and uniqueness
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for eigenfunctions or eigenmeasures of P s . We show equicontinuity properties of the
normalized iterates of P s and P̃ s .

Theorem 2.6. Assume µ ∈ M1(G) is such that the semigroup [suppµ] satisfies (i-p) and

let s ∈ Iµ. If d = 1 we assume that µ is non arithmetic. Then the equation P sϕ = k(s)ϕ
has a unique continuous solution ϕ= e s , up to normalization. The function e s is positive

and s̄ -Hölder with s̄ = inf(1, s).

Furthermore there exists a unique νs ∈ M1(Pd−1) such that P sνs is proportional to νs .

One has P sνs = k(s)νs and suppνs = Λ([suppµ]). If ∗νs ∈ M1(Pd−1) satisfies ∗P s (∗νs ) =
k(s)∗νs , and e s is normalized by νs (e s) = 1, one has p(s)e s(x) =

∫
|〈x, y〉|s d∗νs (y) where

p(s) =
∫
|〈x, y〉|s dνs (x)d∗νs (y).

The map s → νs (resp s → e s) is continuous in the weak topology (resp uniform topology)

and the function s → logk(s) is strictly convex.

The Markov operator Qs on Pd−1 defined by Qsϕ= 1
k(s)es P s (ϕe s) has a unique stationary

measure πs given by πs = e sνs and we have for any ϕ ∈C (Pd−1) the uniform convergence

of (Qs )nϕ towards πs(ϕ). If z = s+i t , t ∈R and Qz is defined by Qzϕ= 1
k(s)es P z (e sϕ),then

the equation Qzϕ= e iθϕ with ϕ ∈C (Pd−1), ϕ 6= 0 implies e iθ = 1, t = 0,ϕ= constant.

Remark. 1. If s = 0, then e s = 1, and νs = ν is the unique µ-stationary measure [17].
The fact that ν is proper is of essential use in [40], [6] and [28], for the study of
limit theorems.

2. In section 3 we will also construct a suitable kernel-valued martingale which al-
lows to prove that νs is proper (see Theorem 3.2), if s ∈ Iµ. We note that analyticity
of k(s) is proved in Corollary 3.20 below. Continuity of the derivative of k will be
essential in sections 3,4 and is proved in Theorem 3.10. If s = 0 the corresponding
martingale construction was done in [17].

3. By definition of P s and P̆ , the function (resp. measure) e s ⊗hs (resp. νs ⊗ℓs) satis-
fies the equation

P̆ (e s ⊗hs) = k(s)(e s ⊗hs), (resp. P̆ (νs ⊗ℓs) = k(s)νs ⊗ℓs)

The proof of the theorem depends of a proposition and the following lemmas improving
corresponding results for positive matrices in [35].

Lemma 2.7. Assume σ ∈ M1(Pd−1) is not supported by a hyperplane. Then, there exists

a constant cs (σ) > 0 such that, for any u in EndV
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∫
|ux|s dσ(x) ≥ cs (σ)|u|s .

Proof. Clearly it suffices to show the above inequality if |u| = 1. The fonction u →∫
|ux|s dσ(x) is continuous on EndV , hence its attains its infimum cs (σ) on the compact

subset of EndV defined by |u| = 1. If cs (σ) = 0, then for some u ∈ EndV with |u| = 1, we
have

∫
|ux|s dσ(x) = 0 hence, ux = 0, σ− a.e . In other words, suppσ ⊂ Ker(u), which

contradicts the hypothesis on σ. Hence cs (σ) > 0.

Lemma 2.8. If s ∈ Iµ there exists σ ∈ M1(Pd−1) such that P sσ = kσ for some k > 0. For

any such σ, we have k = k(s) and σ is not supported on a hyperplane. Furthermore for

every n ∈N ∫
|g |s dµn(g ) ≥ kn(s)≥ cs (σ)

∫
|g |s dµn(g ).

Proof. We consider the non-linear operator P̂ s on M1(Pd−1) defined by P̂ sσ = P sσ
(P sσ)(1) .

Since
∫
|g |s dµ(g ) <+∞, this operator is continuous in the weak topology. Since M1(Pd−1)

is compact and convex, Schauder-Tychonov theorem implies the existence of k > 0 and
σ ∈ M1(Pd−1) with P sσ= kσ, hence k = (P sσ)(1). For such a σ, the equation

kσ(ϕ) =
∫

ϕ(g ·x)|g x|s dµ(g )dσ(x)

implies that if x ∈ suppσ, then g ·x ∈ suppσ, µ-a.e.

Then for any g ∈ suppµ we have g · suppσ ⊂ suppσ. In particular the projective sub-
space H generated by suppσ satisfies [suppµ] · H = H . Since [suppµ] satisfies i-p, we
have H =Pd−1. Then Lemma 2.7 gives, for any g ,

∫
|g x|s dσ(x) ≥ cs (σ)|g |s .

The relation (P s )nσ = knσ implies kn =
∫
|g x|s dµn(g )dσ(x); hence, using Lemma 2.7

we get cs (σ)
∫
|g |s dµn(g )≤ kn ≤

∫
|g |s dµn(g ). It follows that

k = lim
n→+∞

(∫
|g |s dµn(g )

)1/n

= k(s).
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Assume e ∈C (Pd−1) is positive and satisfies P s e = k(s)e . Then we can define the Markov
kernel Qs

e and the cocycle θs
e by

Qs
eϕ(x) =

1

k(s)

∫
ϕ(g ·x)

e(g ·x)

e(x)
|g x|s dµ(g ), θs

e(x, g ) = |g x|s
e(g ·x)

e(x)
.

In view of the cocycle property of θs
e (x, g ) we can calculate the iterate (Qs

e )n by the

formula (Qs
e)nϕ(x) =

∫
ϕ(g · x)q s

e,n(x, g )dµn(g ) with q s
e,n(x, g ) = 1

kn (s)
e(g ·x)

e(x) |g x|s , and∫
q s

e,n(x)(g ) = 1. For s = 0 we have e = 1, Qs
e = P . Also we write q s

e,1 = q s
e .

Lemma 2.9. Assume e is as above, f ∈C (Pd−1) is real valued and satisfies Qs
e f ≤ f . Then,

on Λ([suppµ]), f is constant and equal to its infimum on Pd−1.

Proof. Let M− = {x ∈Pd−1; f (x) = inf { f (y); y ∈Pd−1}. The relation f (x) ≥
∫

q s
e (x, g ) f (g ·

x)dµ(g ) implies that if x ∈ M− then g · x ∈ M−,µ-a.e. Hence [suppµ] ·M− ⊂ M−. Since
Λ([suppµ]) is the unique [suppµ] -minimal subset of Pd−1, we get Λ([suppµ]) ⊂ M−, i.e.

f (x) = inf{ f (y); y ∈Pd−1}, if x ∈Λ([suppµ]).

Using Lemma 2.8, the existence of e ∈ C (Pd−1) with P s e = k(s)e is obtained by the fol-
lowing

Lemma 2.10. Assume σ ∈ M1(Pd−1) and k > 0 satisfy ∗P sσ = kσ. Then the function σ̂s

on Pd−1 defined by,

σ̂s(x) =
∫

|〈x, y〉|s dσ(y)

satisfies P sσ̂s = kσ̂s . Furthermore σ̂s is positive and Hölder of order s̄ = inf(1, s).

Proof. We have |g x|sσ̂s (g ·x) =
∫
|〈x, g∗ · y〉|s |g∗y |s dσ(y) and ∗P sσ= kσ; hence

P sσ̂s(x) = k

∫
|〈x, z〉|s dσ(z) = kσ̂s (x).

If σ̂s (x) = 0 for some x, then |〈x, y〉| = 0, σ-a.e.; hence

suppσ⊂ {y ∈Pd−1;〈x, y〉 = 0}.

This contradicts Lemma 2.8, since [suppµ] satisfies i-p. Hence σ̂s is positive.
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In order to show the Hölder property of σ̂s , we use the inequality |as −bs | ≤ ŝ|a −b|s̄
where a,b ∈ [0,1] ŝ = sup(s,1), s̄ = inf(s,1). Then

||〈x, y〉|s −|〈x′, y〉|s | ≤ ŝ|x −x′|s̄ |y |s̄ , |σ̂s (x)− σ̂s (x′)| ≤ ŝδs̄(x, x′).

Lemma 2.11. Let e be a positive and s̄-Hölder function on Pd−1 with s̄ = inf(s,1), s > 0.

There exists a constant bs > 0 such that for any (x, y) ∈Sd−1 ×Sd−1, g ∈G

||g x|s −|g y |s | ≤ (s +1)|g |s δ̃s̄ (x, y),

δ̃(g ·x, g · y) ≤ 2
|g |
|g x|

δ̃(x, y),

|θs
e (x, g )−θs

e (y, g ) ≤ bs |g |s δ̃s̄(x, y).

Proof. We use the inequality |as −bs | ≤ |a−b|s if a,b ≥ 0, s ≤ 1 to get

||g x|s −|g y |s | ≤ ||g x|− |g y ||s ≤ |g (x − y)|s ≤ |g |s |x − y |s .

Hence ||g x|s − |g y |s | ≤ |g |s δ̃s̄ (x, y). If s > 1, we use 1
s
|as − bs | ≤ sup(a,b)s−1|a − b| if

a,b ≥ 0. We get

||g x|s −|g y |s | ≤ s|g |s−1||g x|− |g y || ≤ s|g |s−1|g (x − y)| ≤ s|g |s |x − y |.

Hence the first inequality follows. Furthermore

δ̃(g ·x, g .y) =
∣∣∣∣

g x

|g x|
−

g y

|g y |

∣∣∣∣≤
|g (x − y)|

|g x|
+ |g y |

∣∣∣∣
1

|g x|
−

1

|g y |

∣∣∣∣≤ 2
|g ||x − y |

|g x|
.

Hence δ̃(g ·x, g · y) ≤ 2 |g |
|g x| δ̃(x, y). We write

|θs
e (x, g )−θs

e(y, g )| ≤ ||g x|s−|g y |s |
e(g ·x)

e(x)
+|g y |s

|e(g ·x)−e(g · y)|
e(x)

+|g y |s e(g ·y)

∣∣∣∣
1

e(x)
−

1

e(y)

∣∣∣∣ .

In view of the first inequality the first term satisfies the required bound. The last term
also satisfies it, since 1

e(x) is s̄- Hölder and |g y |s ≤ |g |s . For the second term we write :

|e(g ·x)−e(g · y)| ≤ [e]s̄ δ̃
s̄ (g ·x, g · y) ≤ 2s̄[e]s̄

( |g |
|g y |

)s̄

δ̃s̄ (x, y).

Hence this term is bounded by :

|e−1|2s̄ [e]s̄ δ̃
s̄(x, y)|g y |s−s̄ |g |s̄ ≤ 2s̄ |e−1|[e]s̄ |g |s δ̃s̄ (x, y).

The above inequalities imply the lemma.
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The following is well known (see for example [48] Theorem 6)

Lemma 2.12. Let X be a compact metric space, Q a Markov operator on X , which pre-

serves C (X ). Assume that all the Q-invariant continuous functions are constant and for

any ϕ ∈ C (X ), the sequence Qnϕ is equicontinuous. Then Q has a unique stationary

measure π, hence for any ϕ ∈C (X ) the sequence 1
n

n−1
Σ
0

Qkϕ converges uniformly to π(ϕ).

Furthermore if the equation Qψ= e iθψ, ψ ∈C (X ) implies e iθ = 1, then, for any ϕ ∈C (X ),

Qnϕ converges uniformly to π(ϕ).

Proposition 2.13. Let µ ∈ M1(G) and assume that the semigroup [suppµ] satisfies i −p.
Let s ∈ Iµ, s > 0 ε ∈]0, s̄] with s̄ = inf(1, s), e ∈ C (Pd−1) is positive, s̄-Hölder with P s e =
k(s)e. Then there exists as ≥ 0 such that for any n ∈ N and any ε-Hölder function ϕ on

Pd−1

[(Qs
e)nϕ]ε ≤ as |ϕ|+ρn,s (ε)[ϕ]ε,

where ρn,s(ε) = supx,y

∫
q s

e,n(x, g )δ
ε(g ·x,g ·y)
δε(x,y) dµn(g ) is bounded independently of n. In par-

ticular for any ψ ∈ C (Pd−1) the sequence (Qs
e)nψ is equicontinuous. Furthermore any

continuous Qs
e-invariant function is constant and Qs

e has a unique stationary measure

πs
e . If s = 0 and ϕ ∈C (Pd−1) we have the uniform convergence limn→∞ P

n
ϕ= ν(ϕ).

Proof. The definition of Qs
e gives for any ε-Hölder functionϕ, and qe,n as before Lemma

2.9,

|(Qs
e )nϕ(x)−(Qs

e )nϕ(y)| ≤ |ϕ|
∫

|q s
e,n(x, g )−q s

e,n(y, g )|dµn(g )+[ϕ]ε

∫
q s

e,n(y, g )δε(g ·x, g ·y)dµn (g ).

Lemma 2.11 shows that the first integral is dominated by bs

kn (s)δ
s̄(x, y)

∫
|g |s dµn(g ) and

Lemma 2.8 gives kn(s) ≥ cs

∫
|g |s dµn(g ). Hence, [(Qs

e )nϕ]ε ≤ as |ϕ| + ρn,s (ε)[ϕ]ε with
as = bs /cs . Lemma 2.11 allows to bound ρn,s (ε) as follows

δε(g ·x, g · y) ≤ 2ε |g |ε

|g x|ε
δε(x, y), ρn,s (ε) ≤

2ε

kn(s)
sup

x

∫
e(g ·x)

e(x)
|g x|s−ε|g |εdµn(g ).

We denote c = sup
g ,x

e(g ·x)

e(x)
<∞, hence using s ≥ ε, |g x|s−ε ≤ |g |s−ε we get

e(g ·x)

e(x)
|g x|s−ε|g |ε ≤ c|g |s , ρn,s (ε) ≤

c2ε

kn(s)

∫
|g |s dµn(g ) ≤ c

2ε

cs
.

Assume that ϕ ∈C (Pd−1) satisfies Qs
eϕ=ϕ and denote

M+ = {x ∈Pd−1;ϕ(x) = sup
y∈Pd−1

ϕ(y)}, M− = {x ∈Pd−1;ϕ(x) = inf
y∈Pd−1

ϕ(y)}.
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Then, as in the proof of Lemma 2.9, suppµ · M+ ⊂ M+, suppµ · M− ⊂ M−, hence by
minimality of Λ([suppµ]) we have Λ([suppµ]) ⊂ M+ ∩ M−. It follows M+ ∩ M− 6= φ,
ϕ =constant on Pd−1. If ψ ∈ C (Pd−1) is ε-Hölder the above inequality gives for any
x, y ∈Pd−1

|(Qs
e)nϕ(x)− (Qs

e )nϕ(y)| ≤ (as |ϕ|+ρn,s (ε))[ϕ]ε)δε(x, y).

Since ρn,s (ε) is bounded this shows that the sequence (Qs
e)nψ is equicontinuous. By

density this remains valid for any ψ ∈C (Pd−1).

Hence we can apply Lemma 2.12 to Q = Qs
e : there is a unique Qs

e-stationary measure.
If s = 0, we have ε = 0, hence the above inequality does not show the equicontinuity
of P

n
ϕ. In this case the equicontinuity follows from Theorem 3.2 in the next section;

we have for ε> 0 the convergence limn→∞
∫
δε(g · x, g · y)dµn(g ) = 0, which implies for

ϕ ∈ Hε(Pd−1),

|P n
ϕ)(x)−P

n
ϕ(y)| ≤ [ϕ]ε

∫
δε(g ·x, g · y)dµn(g ),

|P n
ϕ(x)−ν(ϕ)| ≤ [ϕ]ε

∫
δε(g ·x, g · y)dν(y)dµn (g ),

lim
n→∞

|P n
ϕ(x)−ν(ϕ)| = 0.

Remark. 1. If for some τ> 0 and s ∈ [0, s∞[,
∫
|g |sγτ(g )dµ(g ) <∞withγ(g )= sup(|g |, |g−1|)

then it is proved in section 3, Corollary 3.18 that limn→∞ρn,s (ε) = 0, henceρn,s (ε) <
1 for some n = n0. Hence (Qs

e)n0 satisfies a Doeblin-Fortet inequality (see [27]).

2. Let Q̃s
e be the Markov kernel on Sd−1 defined by Q̃s

eϕ = 1
k(s)e

P̃ s (ϕe) where e still

denotes the function on Sd−1 corresponding to e ∈C (Pd−1). Then the inequality
and its proof remain valid for Q̃s

e instead of Qs
e . In particular for any ψ ∈C (Sd−1)

the sequence (Q̃s
e )nψ is equicontinuous. This fact will be used in the next para-

graph.

Proof of Theorem 2.6: As in the proof of Lemma 2.8, we consider the non linear operator
∗P̂ s on M1(Pd−1) defined by ∗P̂ sσ=

∗P sσ
(∗P sσ)(1) . The same argument gives the existence of

k and σ ∈ M1(Pd−1) such that ∗P sσ= kσ, with k = (∗P sσ)(1) > 0. We consider only the
case d > 1.

Since [suppµ∗] = [suppµ]∗ satisfies i-p, Lemma 2.8 applied to µ∗ gives k = k(s) and σ is
not supported by a hyperplane. Then Lemma 2.10 implies that σ̂s(x) =

∫
|〈x, y〉|s dσ(y)

satisfies P sσ̂s = k(s)σ̂s and is positive, Hölder continuous of order s̄ = inf(1, s). Hence
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we can apply Proposition 2.13 with e = σ̂s ; then we get existence and uniqueness of
e sνs ∈ M1(Pd−1) with P s e s = k(s)e s, P sνs = k(s)νs ,νs (e s) = 1 and e s satisfies p(s)e s(x) =∫
|〈x, y〉|s d σ(y) where p(s) = νs (σ̂s). Also Qs =Qs

es has a unique stationary measure πs .

The uniqueness of νs ∈ M1(Pd−1) with P sνs = k(s)νs follows. Also σ = ∗νs by the same
proof.

Lemma 2.8 implies that if some η ∈ M1(Pd−1) satisfies P sη = kη, then k = k(s). Since
suppνs is [suppµ]-invariant and Λ([suppµ]) is minimal we get suppνs ⊃ Λ([suppµ]).
We can again use Schauder-Tychonoff theorem in order to constructσ′ ∈ M1(Pd−1) with
suppσ′ ⊂Λ([suppµ]),P sσ′ = kσ′. Since σ′ = νs , we get finally suppνs =Λ([suppµ]).

In order to show the continuity of s → νs , s → e s we observe that, from the above argu-
ment, νs is uniquely defined by P sνs = k(s)νs , νs ∈ M1(Pd−1). Also, by convexity, k(s)
is continuous. On the other hand, the uniform continuity of (x, s) → |g x|s and the fact
that |g x|s ≤ |g |s is bounded by the µ-integrable function sup(|g |s1 , |g |s2 ) on [s1, s2] ⊂ Iµ
implies the uniform continuity of P sϕ if ϕ is fixed. Then we consider a sequence sn ∈ Iµ,

s0 ∈ Iµ with lim
sn→s0

νsn = η ∈ M1(Pd−1). We have

P snνsn (ϕ) = νsn (P snϕ), lim
sn→s0

P snνsn (ϕ) = lim
sn→s0

k(sn)νsn (ϕ) = k(s0)η(ϕ).

Then the uniform continuity in (s, x) of P sϕ(x) implies P s0η = k(s0)η. The uniqueness
of νs0 implies νs0 = η, and the arbitrariness of sn gives the continuity of s → νs at s0. The
same property is true for the operator ∗P s and the measure ∗νs defined by ∗P s (∗νs ) =
k(s) (∗νs ), ∗νs ∈ M1(Pd−1). Lemma 2.10, implies p(s)e s(x) =

∫
|〈x, y〉|s d∗νs (y), and

since the set of functions x → |〈x, y〉|s (y ∈ Pd−1, s ∈ Iµ) is locally equicontinuous we
have lim

s→s0
|e s −e s0 | = 0.

In order to show the strict convexity of logk(s) we take s, t ∈ Iµ, p ∈ (0,1) and we observe
that from Hölder inequality, P ps+(1−p)t [(e s )p (e t )1−p ] ≤ kp (s)k1−p (t )(e s)p (e t )1−p . We de-
note f = (e s)p (e t )1−p and assume k(ps + (1-p)t ) = kp (s)k1−p (t ) for some s 6= t . Then

Lemma 2.9 can be used with e = eps+(1−p)t and Q
pq+(1−p)t
e ϕ= 1

k(ps+(1−p)t)e
P ps+(1−p)t (ϕe).

It gives on Λ([suppµ]) : f = ceps+(1−p)t for some constant c > 0.

Hence, on Λ([suppµ]) we have

P ps+(1−p)t [(e s)p (e t )1−p ] = kp (s)k(1−p)(t )(e s)p (e t )1−p .

This means that there is equality in the above Hölder inequality. It follows that, for some
positive function c(x) and any x in Λ([suppµ]), g ∈ suppµ

|g x|s
e s(g ·x)

e s(x)
= c(x)|g x|t

e t (g ·x)

e t (x)
.
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Integration with respect to µ gives: c(x) = k(s)
k(t) . Since s 6= t , we get, for some constant

c > 0 and ϕ ∈ C (Pd−1) positive, for any (x, g ) as above |g x| = c
ϕ(g ·x)
ϕ(x) . It follows, if g ∈

(suppµ)n and x ∈Λ([suppµ]), |g x| = cn ϕ(g ·x)
ϕ(x) . If g ∈ [suppµ]pr ox , we get |λg | ∈ cN. This

contradicts Proposition 2.5.

In order to show the convergence of (Qs)nϕ, since by Proposition 2.13 the family (Qs )nϕ

is equicontinuous, it suffices to show in view of Lemma 2.12 that the relation Qsϕ= e iθϕ

with ϕ ∈ C (Pd−1), |e iθ| = 1 implies e iθ = 1, ϕ =constant. Taking absolute values we get
|ϕ| ≤Qs |ϕ|. As in Lemma 2.9, we get that for any x in Λ([suppµ]), |ϕ(x)| = sup{|ϕ(y)|; y ∈
Pd−1}. Hence we can assume |ϕ(x)| = 1 on Λ([suppµ]). Now we can use the equation

e iθϕ(x) =
∫

q s (x, g )ϕ(g ·x)dµ(g ),

where q s(x, g ) = 1
k(s)

es (g ·x)
es (x) |g x|s , hence

∫
q s (x, g )dµ(g ) = 1. Strict convexity yields the

equality e iθϕ(x) =ϕ(g ·x), for any x ∈Λ([suppµ]), g ∈ suppµ.

We know, from Proposition 2.13 that P̄ nϕ converges uniformly to ν(ϕ) where ν is the
unique P̄-stationary measure on Pd−1. Furthermore, on Λ([suppµ]) we have P

n
ϕ =

e i nθϕ. The above convergence gives e iθ = 1, since ϕ 6= 0 on Λ([suppµ]). The fact that ϕ
is constant follows from Proposition 2.13.

In order to show the last assertion in case d > 1 we write Qzϕ(x) as

Qzϕ(x) =
∫

|g x|i t q s (x, g )ϕ(g ·x)dµ(g ).

We observe that the absolute value of the function Qzϕ is bounded by the function
Qs |ϕ|. Hence, from above, the equation Qzϕ = e iθϕ gives Qs |ϕ| ≥ |ϕ|, hence Qs |ϕ| =
|ϕ| and |ϕ| =cte. Then the equation Qzϕ = e iθϕ gives for any x and g ∈ suppµ, since∫

q s(x, g )dµ(g ) = 1 we have |g x|i t ϕ(g ·x)
ϕ(x) = e iθ, µ-a.e. This contradicts Proposition 2.5 if

t 6= 0. If t = 0,from above we have e iθ = 1, ϕ=constant . ä

2.3 Eigenfunctions, limit sets, and eigenmeasures on Sd−1

Here we study the operator P̃ s on Sd−1 defined by P̃ sϕ(x) =
∫
ϕ(g · x)|g x|sµ(d g ). We

show that there are 2 cases, depending on the existence of a [suppµ]-invariant proper
convex cone in V or not. We still denote by e s the function on Sd−1 lifted from e s ∈
C (Pd−1). We denote Q̃s the operator on Sd−1 defined by Q̃sϕ= 1

k(s)es P̃ s (ϕe s).
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We already know, using the remark which follows Proposition 2.13, that for s > 0 and
any given ϕ ∈C (Sd−1), the sequence (Q̃s )nϕ is equicontinuous. For any subsemigroup
T of G satisfying condition i-p, we denote by Λ̃(T ) the inverse image of Λ(T ) inSd−1. We
begin by considering the dynamics of T on Sd−1. For analogous results in more general
situations see [24]. We recall that a convex cone in V is said to be proper if it does not
contain a line.

Proposition 2.14. Assume T ⊂ G is a subsemigroup which satisfies condition i − p. If

d = 1, we assume that T is non-arithmetic. Then the action of T on Sd−1 has one or two

minimal sets whose union is Λ̃(T ) :

I There is no T -invariant proper convex cone in V and in that case, Λ̃(T ) is the unique

T -minimal subset of Sd−1.

II T preserves a closed proper convex cone C ⊂ V and then the action of T on Sd−1

has two and only two minimal subsets Λ+(T ), Λ−(T ) with Λ−(T ) =−Λ+(T ),Λ+(T ) ⊂
Sd−1 ∩ C . The convex cone generated by Λ+(T ) is proper and T -invariant.

The proof depends of the following lemma.

Lemma 2.15. Let Vi (1 ≤ i ≤ r ) be vector subspaces of V . If condition i-p is valid, then

there exists g ∈T prox such that the hyperplane V <
g does not contain any Vi (1 ≤ i ≤ r ).

Proof. The dual semigroup T ∗ of T satisfies also condition i-p hence we can also con-
sider its limit set Λ(T ∗) ⊂ P(V ∗). Let v̄(g∗) be the point of P(V ∗) corresponding to a
dominant eigenvector of g∗. Observe that the condition that an hyperplane contains Vi

defines a subspace of V ∗. If for any g∗ ∈ (T ∗)pr ox the hyperplane v̄(g∗) contains some
Vi then by density any x ∈ Λ(T ∗) contains some Vi . Then the T ∗-invariance of Λ(T ∗)
implies that T ∗ leaves invariant a finite union of subspaces of P(V ∗), which contradicts
condition i-p.

Proof of Proposition 2.14: Let x ∈ Λ̃(T ) and S = T · y . We observe that if y ∈ Sd−1, then
T · y contains x or −x, since the projection of T ·x in Pd−1 contains Λ(T ). Assume first
−x ∉ T ·x . If y ∈ T ·x , then T · y ⊂ S, hence x ∈ T · y . This shows the T -minimality
of S. The same argument shows that −y ∉ S, hence S ∩−S = φ. Since the projection
of S in Pd−1 is Λ(T ), we see that the projection of Sd−1 on Pd−1 gives a T -equivariant
homeomorphism of S on Λ(T ). Since −x ∉ S, there are two T -minimal sets, S and −S.
Since for any y ∈Sd−1, T · y contains S or −S, these sets are the unique minimal sets.
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Assume now −x ∈ T ·x, hence S =−S. Since the projection of S in Pd−1 is Λ(T ), we see
that S = Λ̃(T ).

Assume now that C is a T -invariant closed proper convex cone. Then C ∩Sd−1 is T -
invariant and closed, hence C∩Sd−1 ⊃Λ+(T ) or Λ−(T ) in the first situation, (−x ∉T ·x).
In the second situation C cannot exists, since C ∩Sd−1 would contain Λ̃(T ), which is
symmetric.

It remains to show that, in the first situation, there exists a T -invariant closed proper
convex cone. Let C be the convex cone generated by Λ+(T ) and let us show C ∩−C =
{0}. Assume C ∩−C 6= {0}; then we can find y1, . . . , yp ∈ C , z1, . . . , zq ∈ −C and convex

combinations y =
p

Σ
1
αi yi , z =

q

Σ
1
β j z j with y = z. Lemma 2.15 shows that there exists

g ∈ T prox such that yi (1 ≤ i ≤ p) and z j (1 ≤ j ≤ q) do not belong to V <
g . Hence, with

n ∈ 2N :

lim
n→+∞

g n y

|g n|
= lim

n→∞
Σ

p
1αi

g n yi

|g n yi |
|g n yi |
|g n |

=
(
Σ

p
1αi ui

)
vg ,

where ui = lim
n→∞

|g n yi |
|g n|

> 0 and vg ∈Λ+(T ) is the unique dominant eigenvector of g in

Λ+(T ). In the same way :

lim
n→∞

g nz

|g n|
= −

(
q

Σ
1
β j u′

j

)
vg ,

with u′
j
> 0. Since y = z we have a contradiction. Hence we have the required dicho-

tomy. The last assertion follows. ä

We denote by ν̃s the symmetric measure on Sd−1 with projection νs on Pd−1. In case II,
we denote by νs

+ (resp νs
−) the normalized restrictions of ν̃s to Λ+(T ) (resp Λ−(T )). For

a subset X ⊂Sd−1 we recall that Co(X ) is the convex envelope of X in Sd−1.

Theorem 2.16. Let µ ∈ M1(G), s ∈ Iµ and assume T = [suppµ] satisfies i − p. If d = 1
we assume that µ is non-arithmetic. Then for any ϕ ∈ C (Sd−1), x ∈ Sd−1, we have the

uniform convergence

lim
n→∞

1

n
Σ

n
1 (Q̃s )nϕ(x) = π̃s(x)(ϕ),

where, π̃s(x) ∈ M1(Sd−1) is supported on Λ̃(T ) and is Q̃s-stationary.

Furthermore there are 2 cases given by Proposition 2.14.

I Q̃s has a unique stationary measure π̃s with suppπ̃s = Λ̃(T ) and π̃s(x) = π̃s for any

x ∈ Sd−1. The Q̃s -invariant functions are constant. We have π̃s = e s ν̃s and P̃ s ν̃s =
k(s)ν̃s .
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II Q̃s has two and only two extremal stationary measures πs
+, πs

−. We have suppπs
+ =

Λ+(T ) and πs
− is symmetric of πs

+. If πs
+ = e sνs

+, then P̃ sνs
+ = k(s)νs

+. Also, there are 2

minimal Q̃s -invariant continuous functions ps
+, ps

− and we have

π̃s(x) = ps
+(x)πs

++ps
−(x)πs

−.

Furthermore ps
+(x) is equal to the entrance probability in the convex envelope Co(Λ+(T ))

for the Markov chain defined by Q̃s . In particular ps
+(x) = 1 (resp ps

+(x) = 0) if

x ∈Λ+(T ) (resp Λ−(T ).

If ∗νs
+ ∈ M1(Λ+(T ∗) satisfies ∗P̃ s ∗νs

+ = k(s)∗νs
+, we have for u ∈ Sd−1 and p(s) as

in Theorem 2.6, p(s)e s
+(u) =

∫
〈u,u′〉s

+d ∗νs
+(u′) with 〈u,u′〉+ = sup(0,〈u,u′〉) and

e s
+ = ps

+e s , (resp e s
− = ps

−e s) satisfies P̃ s e s
+ = k(s)e s

+ (resp P̃ s e s
− = k(s)e s

−).

The space of continuous Q̃s -invariant (resp P̃ s )-eigenfunctions is generated by ps
+

and ps
− (resp e s

+ and e s
−).

For s = 0 we will need the following lemma, which uses results of section 3.

Lemma 2.17. For u ∈ Sd−1,t > 0 we denote ∆
t
u = {y ∈ Pd−1 ; |〈u, y〉| < t }. Then, for any

ε, t > 0, x, y ∈Sd−1

lim sup
n→∞

∫
δ̃ε(g ·x, g · y)dµn(g ) ≤

2ε

tε
δ̃ε(x, y)+2εν(∆t

x ).

In particular, for any ϕ ∈ Hε(Sd−1) the sequence P̃ nϕ is equicontinuous.

Proof. We write
∫

δ̃ε(g ·x, g · y)dµn(g ) =
∫

1[1/t ,∞[(
|Sn |
|Sn x|

)δ̃ε(Sn ·x,Sn · y)dP(ω)

+
∫

1]0,1/t[(
|Sn|
|Sn x|

)δ̃ε(Sn ·x,Sn · y)dP(ω).

Using Lemma 2.11 we have δ̃ε(Sn ·x,Sn · y) ≤ (2 |Sn |
|Sn x| δ̃(x, y))ε.

On the other hand, using Theorem 3.2, we know that lim
n→∞

|Sn |
|Sn x|

=
1

|〈z∗(ω), x〉|
where

z∗(ω) ∈Pd−1 has law ν. Hence

lim sup
n→∞

∫
δ̃ε(g ·x, g · y)dµn(g ) ≤

2ε

tε
δ̃ε(x, y)+2εP{|〈z∗(ω), x〉| < t }

=
2ε

tε
δ̃ε(x, y)+2εν(∆t

x ).
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We have |P̃ nϕ(x)− P̃ nϕ(y)| ≤ [ϕ]ε
∫
δ̃ε(g · x, g · y)dµn(g ). From Theorem 3.2, we know

that ν is proper, hence lim
t→0

ν(∆t
x ) = 0. Then, for x fixed we use the above estimation of

lim sup
n→∞

∫
δ̃ε(g ·x, g ·y)dµn (g ) to choose t sufficiently small in order to get the continuity

of lim sup
n→∞

∫
δ̃ε(g ·x, g ·y)dµn (g ).This gives that |P̃ nϕ(x)−P̃ nϕ(y)| depends continuously

of y , hence the equicontinuity of the sequence P̃ nϕ.

Proof of Theorem 2.16. As observed in remark 2 after Proposition 2.13, if s > 0 for any
ϕ ∈ C (Sd−1) the set of functions {(Q̃s )nϕ; n ∈N} is equicontinuous. In view of Lemma
2.17, this is also valid if s = 0. Hence we can use here Lemma 2.12 . This gives the first
convergence. Since π̃s(x) is Q̃s-stationary, its projection on Pd−1 is equal to the unique
Qs -stationary measure πs , hence suppπ̃s(x) ⊂ Λ̃(T ). On the other hand suppπ̃s(x) is
closed and T -invariant, hence contains a T -minimal set.

In case I, Λ̃(T ) is the unique minimal set, hence suppπ̃s(x) = Λ̃(T ). Furthermore, if
ϕ ∈C (Sd−1) is Q̃s-invariant, the sets

M− = {x ; ϕ(x) = inf{ϕ(y); y ∈Pd−1}}, M+ = {x ; ϕ(x) = sup{ϕ(y); y ∈Pd−1}},

are closed and T -invariant, hence they contain minimal sets. Since Λ̃(T ) is the unique
minimal set, M+∩ M− ⊃ Λ̃(T ) 6=φ, hence ϕ is constant.

Then, using Proposition 2.13 and Lemma 2.12, we get that there exists a unique station-
ary measure π̃s . It follows that π̃s is symmetric with projectionπs onPd−1 and π̃s = e s ν̃s .

In case II, the restriction to the convex envelope Co(Λ+(T )) = Φ of the projection on
Pd−1 is a T -equivariant homeomorphism. If we denote by i+ its inverse, we get that
i+(πs ) is the unique Q̃s -stationary measure supported in Φ. Hence i+(πs ) = πs

+. Then
πs
+ and πs

− are extremal Q̃s -stationary measures.

Since the projection of π̃s (x) on Pd−1 is πs , we can write

π̃s(x) =
∫

(ps
+(x, y)δy +ps

−(x, y)δ−y )dπs(y) = ps
+(x)πs

++ps
−(x)πs

−,

where ps
+(x) = ps

+(x, .) and ps
−(x) = ps

−(x, .) are Borel functions of y ∈ Λ̃(T ) such that
ps
−(x)+ ps

−(x) = 1. Then ps
+(x)πs

+ is the restriction of π̃s (x) to Λ+(T ), hence is a Q̃s -
invariant measure. In view of the uniqueness of the stationary measure of Q̃s restricted
to Λ+(T ), we get that ps

+(x)πs
+ is proportional to πs

+, i.e. ps
+(x) is independent of y ,

πs
+-a.e. .
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Hence, the first assertion of the theorem implies that the only extremal Q̃s -stationary
measures are πs

+ and πs
−. The corresponding facts for νs

+ and νs
− follow. From the mean

ergodic theorem in C (Sd−1) and the equicontinuity property of (Qs)n we know that the

operator defined by lim
n→∞

1

n

n−1
Σ
0

(Q̃s )k is the projection on the space of Q̃s -invariant func-

tions and is equal to ps
+(x)πs

++ps
−(x)πs

−. The continuity and the extremality of the Q̃s -
invariant functions ps

+(x) and ps
−(x) follows. The corresponding facts for e s

+ and e s
−

follow as in the proof of Theorem 2.6.

If we restrict the convergence of 1
n

n−1
Σ
0

(Q̃s )k (δx ) to x ∈ Φ, in view of the fact that the

restriction to Φ of the projection on Pd−1 is a homeomorphism onto its image, we get
ps
+(x) = 1, ps

−(x) = 0 if x ∈Φ.

Let us denote by τ the entrance time of Sn(ω) · x in Φ∪−Φ and by aEs
x the expectation

symbol associated with the Markov chain Sn(ω) ·x defined by Q̃s . Using theorem 2.6 we
get aEs

x (1Φ∪−Φ(Sτ · x)) = 1. Since ps
+(x) is a Q̃s -invariant function ps

+(Sn · x) is a martin-
gale, hence ps

+(x) = aEs
x (ps

+(Sτ · x)). Since ps
+(x) = 1 on Φ and ps

+(x) = 0 on −Φ we get
ps
+(x) = aEs

x (1Φ(Sτ ·x)), hence the stated interpretation for ps
+(x).

As in Lemma 2.10, we verify that the function ϕ(u) = p(s)
∫
〈u,u′〉s

+d∗νs
+(u′) on Sd−1

satisfies P̃ sϕ= k(s)ϕ, hence the function ϕ
es satisfies Q̃s( ϕ

es ) = ϕ
es . By duality, cases II for

µ and µ∗ are the same, hence there are two minimal T ∗-invariant subsets Λ+(T ∗) and
Λ−(T ∗) =−Λ+(T ∗). On the other hand, the set

Λ+(T ) = {u ∈Sd−1 : 〈u,u′〉 ≥ 0 for any u′ ∈Λ+(T ∗)}

is non trivial, closed, T -invariant and has non zero interior, hence Λ̂+(T ) contains either
Λ+(T ) or Λ−(T ) and has trivial intersection with one of then. We can assume Λ̂+(T ) ⊃
Λ+(T ). Then, for u ∈Λ+(T ) and any u′ ∈Λ+(T ∗), we have 〈u,u′〉+ = 〈u,u′〉, hence,

ϕ(u) = p(s)
∫

|〈u,u′〉|s d∗νs
+(u′) = e s(u),

i.e., ϕ
es = 1 on Λ+(T ). Also we have 〈u,u′〉+ = 0 for u ∈Λ−(T ), u′ ∈Λ+(T ∗). Since Q̃( ϕ

es ) =
ϕ
es ≥ 0 and ϕ

es = 1 on Λ+(T ), we conclude from above that ps
+ = ϕ

es , hence we get the last
formula and last assertions with e s

−(u) = p(s)
∫
〈u, x〉s

+d∗νs
−(x) = ps

−(u)e s(u). ä

From above we know that if s ≥ 0 and ϕ ∈C (Sd−1) the sequence (Q̃s )nϕ is equicontinu-
ous. Lemma 2.12 reduces the discussion of the behaviour of (Q̃s )nϕ to the existence of
eigenvalues z of Q̃s with |z| = 1. In this direction we have the following

Corollary 2.18. For s ∈ Iµ, the equation Q̃sϕ = e iθϕ with e iθ 6= 1, ϕ ∈ C (Sd−1) has a

non trivial solution only in case I. In that case e iθ = −1, ϕ is antisymmetric, satisfies

ϕ(g ·x) =−ϕ(x) on suppµ× Λ̃(T ) and is uniquely defined up to a coefficient.
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Proof. We observe that, since ϕ satisfies Q̃sϕ= e iθϕ, the function ϕ′ defined by ϕ′(x) =
ϕ(−x) satisfies also Q̃sϕ′ = e iθϕ′. Then ϕ+ϕ′ is symmetric and defines a function ϕ in

C (Pd−1) with Qs
−
ϕ= e iθ

−
ϕ. If e iθ 6= 1, Theorem 2.6 gives

−
ϕ= 0, i.e ϕ is antisymmetric.

Furthermore, in case II, the restriction of ϕ to Λ̃+(T ) satisfies the same equation and
the projection of Λ̃+(T ) on Λ(T ) is an equivariant homeomorphism. Then Theorem 2.6
gives a contradiction. Hence if ϕ ∈ C (Sd−1) satisfies Q̃sϕ = e iθϕ, then we are in case
I. Also, passing to absolute values as in the proof of Theorem 2.6 we get Q̃s |ϕ| = |ϕ|,
|ϕ| =cte. Furthermore by strict convexity we have on suppµ× Λ̃(T ), ϕ(g · x) = e iθϕ(x),
hence ϕ2(g · x) = e2iθϕ2(x). Since ϕ2 is symmetric and satisfies Q̃sϕ2 = e2iθϕ2, we get
e2iθ = 1, i.e e iθ = −1; in particular ϕ(g · x) = −ϕ(x) on suppµ× Λ̃(T ). If ϕ′ ∈ C (Sd−1)

satisfies also Q̃sϕ′ = −ϕ′, we get from above Q̃s ϕ
′

ϕ
= ϕ′

ϕ
, ϕ′

ϕ
(−x) = ϕ′

ϕ
(x), hence ϕ′ is pro-

portional to ϕ.

3 Laws of large numbers and spectral gaps

Here we develop section 2 in a quantitative direction. A martingale construction plays
an essential role in this study. The renewal theorems of section 4 are based on Theorem
3.2 below. Also the Doeblin-Fortet inequality in Corollary 3.21 is used in section 5 to
show the homogeneity at infinity of the stationary measure for an affine random walk
on V . Theorem A in the introduction follows directly from Corollaries 3.19, 3.20.

3.1 Notation

As in section 2, we assume that condition i-p is valid for the semigroup T = [suppµ]. If
d = 1 we assume that T = [suppµ] is non arithmetic. For s ∈ Iµ we consider the func-
tions q s and q s

n (n > 0) on Pd−1 ×G , defined by

q s (x, g ) =
1

k(s)

e s(g ·x)

e s(x)
|g x|s = q s

1(x, g ), q s
n(x, g ) =

1

kn(s)

e s(g ·x)

e s(x)
|g x|s ,

hence by the definition of e s we have
∫

q s
n(x, g ) dµn(g ) = 1.

We denote by Pd−1
2 the flag manifold of planes and by Pd−1

1,2 the manifold of contact

elements on Pd−1. Such a plane is defined up to normalisation by a 2-vector x∧y ∈∧2V

and we can assume |x ∧ y | = 1. We write g (x ∧ y) = g x ∧ g y . Also a contact element ξ
is defined by its origin x ∈ Pd−1 and a line through x. Hence we can write ξ = (x, x ∧ y)

30



where |x| = |x ∧ y | = 1. The following additive cocycles of the actions of G on Pd−1,
Pd−1

2 ,Pd−1
1,2 will play an essential role:

σ1(g , x) = log |g x|, σ2(g , x ∧ y) = log |g (x ∧ y)|, σ(g ,ξ)= log |g (x ∧ y)|−2 log |g x|.

In addition to the norm of g we will need to use the quantity

γ(g )= sup(|g |, |g−1|) ≥ 1.

Clearly, for any x ∈V , with |x| = 1, we have − log γ(g ) ≤ log |g x| ≤ log γ(g ).

For a finite sequence ω= (g1, g2, · · · , gn) we write

Sn(ω) = gn · · ·g1 ∈G , q s
n(x,ω) =

n
Π

k=1
q s (Sk−1 ·x, gk ).

We denote by Ωn the space of finite sequences ω= (g1, g2, · · · , gn) and we write Ω=GN.

We observe that θs(x, g ) = |g x|s es (g ·x)
es (x) satisfies the cocycle relation θs(x, g g ′) = θs (g ′ ·

x, g )θs (x, g ′), hence q s
n(x,ω) = 1

kn (s)θ
s (x,Sn(ω)).

Definition 3.1. We denote Qs
x ∈ M1(Ω) the limit of the projective system of probabil-

ity measures q s
k

(x, .)µ⊗k on Ωk . We write Qs =
∫
Qs

x dπs (x) where πs is the unique Qs -

stationary measure on Pd−1.

We recall that Theorem 2.6 implies that πs is not supported by an hyperplane.

The corresponding expectation symbol will be written Es
x and the shift on Ω will be

denoted by θ. We write also Es (ϕ) =
∫
Es

x (ϕ)dπs (x). The path space of the Markov chain
defined by Qs is a factor space of a

Ω = Pd−1 ×Ω, and the corresponding shift on a
Ω

will be written aθ with aθ(x,ω) = (g1(ω) ·x,θω). Hence (Pd−1 ×Ω, aθ) is a skew product
over (Ω,θ). The projection on Ω of the Markov measure aQs

x = δx ⊗Qs
x is Qs

x , hence
aQs =

∫
δx ⊗Qs

x dπs (x) projects on Qs . The uniqueness of the Qs -stationary measure πs

implies the ergodicity of the aθ-invariant measure aQs , hence Qs is also θ-invariant and
ergodic.

If s = 0, the random variables gk (ω) are i.i.d with law µ and Q◦ = P = µ⊗N. Here, under
condition i-p, we extend the results of [28] to the case s ≥ 0, in particular we construct
a suitable kernel-valued martingale with contraction properties as in [17]. This will
allow us to prove strong forms of the law of large numbers for Sn(ω) and to compare
the measures Qs

x when x varies. Then we can deduce the simplicity of the dominant
Lyapunov exponent of Sn(ω) under the θ-invariant probability Qs for s ≥ 0. Spectral
gap properties for twisted convolution operators on the projective space and on the
unit sphere will follow.
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3.2 A martingale and the equivalence of Qs
x to Qs

When convenient we identify x ∈ Pd−1 with one of its representatives x̃ in Sd−1. We re-
call that the Markov kernel ∗Qs is defined by ∗Qsϕ= 1

k(s)∗es
∗P s (ϕ∗e s) where ∗P sϕ(x) =∫

ϕ(g · x)|g x|s dµ∗(g ), ∗P s (∗e s) = k(s)(∗e s) and ∗Qs has a unique stationary measure
∗πs . Furthermore we have ∗πs = ∗e s∗νs where ∗νs ∈ M1(Pd−1) is the unique solution of
∗P s (∗νs ) = k(s)(∗νs ). We denote by m the unique rotation invariant probability meas-
ure on Pd−1.

Theorem 3.2. Let Ω′ ⊂Ω be the (shift-invariant) Borel subset of elementsω ∈Ω such that

S∗
n(ω).m converges to a Dirac measure δz∗(ω). Then g∗

1 · z∗(θω) = z∗(ω), Qs (Ω′) = 1, the

law of z∗(ω) under Qs is ∗πs and ∗πs is proper.

In particular if ω ∈Ω
′ and |〈x, z∗(ω)〉〈y, z∗(ω)〉| 6= 0, then

lim
n→∞

δ(Sn(ω) ·x,Sn (ω) · y) = 0.

If ω ∈Ω
′ and ξ= (x, x ∧ y) ∈Pd−1

1,2

lim
n→∞

|Sn(ω)x|
|Sn(ω)|

= |〈z∗(ω), x〉|, lim
n→∞

S∗
n ·m = δz∗(ω).

In particular, if 〈z∗(ω), x〉 6= 0 then lim
n→∞

σ(Sn ,ξ) =−∞.

Also, for any x ∈Pd−1 Qs
x is equivalent to Qs and

dQs
x

dQs
y

(ω) =
∣∣∣ 〈z∗(ω),x〉
〈z∗(ω),y〉

∣∣∣
s es (y)

es (x) .

The proof of Theorem 3.2 is based on the following lemmas, in particular on the study
of a kernel-valued martingale.

Lemma 3.3. Assume z∗ ∈ Pd−1 and un ∈G is a sequence such that limn→∞ u∗
n ·m = δz∗ .

Then, for any x, y ∈ Pd−1 with |〈z∗, x〉〈z∗, y〉| 6= 0 we have limn→∞δ(un · x,un · y) = 0. If

ξ= (x, x ∧ y) ∈Pd−1
1,2 and 〈z∗, x〉 6= 0 then

lim
n→∞

|un x|
|un |

= |〈z∗, x〉|, lim
n→∞

σ(un ,ξ) =−∞.

These convergences are uniform on any compact subset on which 〈z∗, x〉 do not vanish.

Proof. We denote by ei (1 ≤ i ≤ d) an orthonormal basis of V , by ēi the projection of ei

in Pd−1, by Ā+ the set of diagonal matrices a = diag(a1, a2, · · · , ad ) and a1 ≥ a2 ≥ ·· · ≥
ad > 0. We write un = kn ank ′

n with an ∈ Ā+, kn , k ′
n ∈O(d). Then, for x ∈Pd−1,

|un x|2 = |an k ′
n x|2 =Σ

d
1 (ai

n)2|〈k ′
n x,ei 〉|2.
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Also, u∗
n ·m = (k ′

n)−1an ·m converges to z∗ ∈Pd−1, which implies

lim
n→∞

an ·m = δe1 , lim
n→∞

(k ′
n)−1.ē1 = z∗.

In particular, if i > 1, we have ai
n = o(a1

n) and

lim
n→∞

|〈k ′
n x, e1〉| = |〈z∗, x〉| 6= 0.

It follows that |un x| ∼ a1
n |〈z∗, x〉|. Since |un| = a1

n , we get lim
n→∞

|un x|
|un |

= |〈z∗, x〉|, as asser-

ted. We get also, if |〈y, z∗〉| 6= 0, |un y | ∼ a1
n|〈z∗, y〉|.

On the exterior product space ∧2V there exists an O(d)-invariant scalar product such
that on any decomposable 2-vector x ∧ y :

|x ∧ y |2 = |x|2|y |2 −|〈x, y〉|2.

For x, y ∈ Pd−1 and corresponding x̃, ỹ ∈ Sd−1 we write |x ∧ y | = |x̃ ∧ ỹ |. Then on Pd−1,
there is an associated distance δ1 given by δ1(x, y) = |x∧y | and we have 1

2δ≤ δ1 ≤ δ. We

observe that δ1(un ·x,un · y) = |un x∧un y |
|un x| |un y | . Also

|un x ∧un y |2 = Σ
i> j

(ai
n a

j
n)2 |〈kn(x̃ ∧ ỹ),ei ∧e j 〉|2 ≤

d(d −1)

2
(a1

n a2
n |x̃ ∧ ỹ |)2.

It follows

δ1(un ·x, un · y) ≤
(

d(d −1)

2

)1/2 a1
n a2

n

|un x| |un y |
|x̃ ∧ ỹ |.

Since |un x| ∼ a1
n |〈z∗, x〉|, |un y | ∼ a1

n |〈z∗, y〉| and a2
n = o(a1

n),〈z∗, x〉〈z∗, y〉 6= 0, we get

lim
n→∞

δ1(un ·x, un · y) = 0.

It follows, for any x, y ∈ Pd−1, that limn→∞δ(un · x, un · y) = 0. Also, since a2
n = o(a1

n),
and 〈z∗, x〉 6= 0 we get limn→∞σ(un ,ξ) =−∞.

The above calculations imply the uniformities in the convergences.

Lemma 3.4. Assume νn ∈ M1(Pd−1) is a sequence such that νn is relatively compact in

variation, and each νn is proper. Let un ∈ G be a sequence such that u∗
n ·νn converges

weakly to δz∗ (z∗ ∈ Pd−1). Then for any proper ρ ∈ M1(Pd−1), u∗
n ·ρ converges weakly to

δz∗ .
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Proof. We can assume, in variation, limn→∞νn = ν0 where ν0 is proper. Also we can as-
sume, going to subsequences, that u∗

n converges to a quasi-projective map of the form
u∗, defined and continuous outside a projective subspace H ⊂ Pd−1. Let ϕ ∈ C (Pd−1)
and denote

In = (u∗
n ·νn )(ϕ)− (u∗ ·ν0)(ϕ) = (νn −ν0)(ϕ◦u∗

n)+ν0(ϕ◦u∗
n −ϕ◦u∗).

The first term is bounded by |ϕ| ‖νn −ν0‖, hence it converges to zero. Since ν0(H) = 0
and ϕ ◦u∗

n converges to ϕ ◦u∗ outside H , we can use dominated convergence for the
second term, lim

n→∞
ν0(ϕ ◦u∗

n −ϕ ◦u∗) = 0; hence lim
n→∞

In = 0. Then u∗
n ·νn converges to

u∗ ·ν0 weakly. In particular u∗ ·ν0 = δz∗ , hence u∗ · y = z∗, ν0-a.e. Since ν0(H) = 0, we
have u∗ · y = z∗ on Pd−1 \ H .

Since ρ is proper u∗ ·ρ = δz∗ , hence lim
n→∞

u∗
n ·ρ = δz∗ .

Lemma 3.5. For x, y ∈Pd−1 the total variation measure ofQs
x−Qs

y is bounded by Bδs̄(x, y)Qs .

Furthermore, there exists c(s) > 0 such that, for any x ∈Pd−1 we have Qs
x ≤ c(s) Qs .

Proof. We write q s
n(g ) =

∫
q s

n(x, g )dπs (x) and we observe that for any measurable ϕ

depending on the first n coordinates,

∫
ϕ(ω)dQs (ω) =

∫
q s

n(Sn(ω))ϕ(ω)dµ⊗n(ω).

Also, |(Qs
x −Qs

y )(ϕ)| ≤
∫
|q s

n(x,Sn)− q s
n(y,Sn)| |ϕ(ω)|dµ⊗n . Using Lemma 2.11 we have

for any g ∈G

|q s
n(x, g )−q s

n (y, g )| ≤ bs
|g |s

kn(s)
δs̄ (x, y).

Sinceπs is not supported by an hyperplane we can use Lemma 2.7, hence for some b > 0

q s
n(g )≥ b

|g |s

kn(s)
and |q s

n(x, g )−q s
n (y, g )| ≤

bs

b
q s

n(g )δs̄(x, y).

It follows:

|(Qs
x −Qs

y )(ϕ)| ≤
bs

b
δs̄ (x, y)

∫
|ϕ(ω)|dQs (ω),

hence the first conclusion with B = bs

b
.

Integrating with respect to πs we get, since δ(x, y) ≤
p

2, Qs
x ≤ (1+B(

p
2)s̄ )Qs hence the

second formula with c(s) = 1+B(
p

2)s̄ .
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Lemma 3.6. We consider the positive kernelκs
x from Pd−1 to Pd−1 given by κs

x = |〈x,·〉|s
es (x)

∗νs .

Then:
∫

g∗ ·κs
g ·x q s(x, g )dµ(g ) = κs

x , κs
x(1) =

1

e s(x)

∫
|〈x, y〉|s d∗νs (y) = p(s) ∈]0,1]

and x → κs
x is continuous in variation.

In particular S∗
n ·κs

Sn ·x is a bounded martingale with respect to Qs
x and the natural filtra-

tion.

Proof. We consider the s-homogeneous measure λs on V̆ defined by λs = ∗νs ⊗ℓs . By
definition of ∗νs ,

∫
g∗λs dµ(g ) = k(s)λs . Then the Radon measure λs

v defined by λs
v =

|〈v, ·〉|sλs satisfies
∫

g∗λs
g v dµ(g ) = k(s)λs

v . This can be written, by definition of κs
x and

q s (x, g ), ∫
g∗ ·κs

g ·x q s (x, g )dµ(g ) = κs
x .

The martingale property of S∗
n ·κs

Sn ·x follows.

Furthermore since p(s)e s(x) is equal to
∫
|〈x, y〉|s d ∗νs (y), Lemma 2.10 gives

κs
x(1) =

1

e s(x)

∫
|〈x, y〉|s d ∗νs (y) = p(s) ∈]0,1].

The continuity in variation of x → κs
x follows from the definition.

Lemma 3.7. Let ρ ∈ M1(Pd−1), H be the set of projective subspaces H of minimal di-

mension such that ρ(H) > 0. Then the subset of elements H ∈ H such that ρ(H) =
sup{ρ(L) ; L ∈ H } is finite and non void. Furthermore, there exists ερ > 0 such that for

any H ∈H :

ρ(H) = cρ or ρ(H) ≤ cρ−ερ ,

where cρ = sup{ρ(L) ; L ∈H }.

Proof. If H , H ′ ∈H , H 6= H ′, then dim H ∩H ′ < dim H , hence ρ(H ∩H ′) = 0. Then, for
any β > 0, the cardinality of the set of elements H ∈ H with ρ(H) ≥ β is bounded by
1
β . The first assertion follows. Assume the second assertion is false. Then there exists a

sequence Hn ∈ H with
cρ
2 < ρ(Hn) < cρ , lim

n→∞
ρ(Hn) = cρ , and ρ(Hn) 6= ρ(Hm) if n 6= m.

This contradicts the fact that the cardinality of the sequence Hn is at most 2
cρ

.
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Lemma 3.8. Assume that the Markovian kernel x → νx ∈ M1(Pd−1) is continuous in vari-

ation and satisfies

νx =
∫

q s (x, g )g∗ ·νg ·x dµ(g ) .

Let Hp,r the set of finite unions of r distinct subspaces of dimension p and let h be the

function h(x) = sup{νx (W ); W ∈Hp,r }. Then h is continuous and the set

{x : h(x) = sup{h(y), y ∈P
d−1}},

is closed and [suppµ]-invariant.

Proof. If W ∈Hp,r is fixed the function x → νx (W ) is continuous since |νx(W )−νy (W )| ≤
‖νx −νy‖. This implies |h(x)−h(y)| ≤ ‖νx −νy‖, hence the continuity of h.

We have for any W ∈Hp,r

νx (W ) =
∫

q s (x, g )νg ·x ((g∗)−1W )dµ(g ).

Hence: h(x) ≤
∫

q s (x, g )h(g · x)dµ(g ). Then, as in Lemma 2.9, X is [suppµ]-invariant
and closed.

Lemma 3.9. Let νx be as in Lemma 3.8. Then for any x ∈Pd−1, νx is proper.

Proof. We write πx = νx

νx (1) , denote by Hk the set of projective subspaces of dimension
k and

H =∪k≥0Hk , d(x) = inf{dimH ; H ∈H ,πx(H) > 0},

m(x) = sup{πx (H); H ∈H ,dimH = d(x)}, W (x) = {H ∈H ;πx (H) = m(x)}.

Lemma 3.7 implies that the set W (x) has finite cardinality n(x) > 0. Also we denote
p = inf{d(x); x ∈Pd−1}, hp (x) = sup{πx (H); H ∈Hp }.

Lemma 3.8 shows that hp (x) reaches its maximumβ on a closed [suppµ]-invariant sub-
set X ⊂ Pd−1. Hence on Λ([suppµ]) we have hp (x) = β = m(x). It follows d(x) = p on
Λ([suppµ]). The relation n(x)m(x) ≤ 1 implies n(x) ≤ 1

β on Λ([suppµ]).

Let r = sup{n(x); x ∈ Λ([suppµ])} and denote hp,r (x) = sup{πx (W );W ∈ Hp,r }. Then
Lemma 3.8 implies hp,r (x) = rβ on Λ([suppµ]). Since m(x) = β, this relation implies
n(x) = r on Λ([suppµ]). Let W (x) =∪{H ; H ∈W (x)} and let us show the local constancy
of the function W (x). Using Lemma 3.7 we get

β(x) = sup{πx (H); H ∈Hp , H ∉W (x)} <β.
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Let x ∈Λ([suppµ]), Ux = {y ;‖πy −πx‖ <β−β(x)} and Hy ∈Hp with πy (Hy ) =β. Then,

β−πx (Hy ) =πy (Hy )−πx (Hy ) ≤ ‖πy −πx‖ <β−β(x).

Hence πx (Hy ) > β(x) and, by definition of β(x) we get Hy ∈ W (x) for any y ∈Ux . Since
πx is continuous in variation, Ux is a neighbourbood of x, hence W (x) is locally con-
stant. Since Λ([suppµ]) is compact, W = ∪W (x)

x∈Λ([suppµ])
is a finite union of subspaces.

On the other hand, the relations

rβ=πx (W (x)) =
∫

q s (x, g )g∗ ·πg ·x (W (x))dµ(g ) , rβ≥ (g∗ ·πg ·x )(W (x))

imply that, for any x ∈Λ([suppµ]), rβ= g∗ ·πg ·x (W (x)) µ-a.e. By definition of W (g · x),
we get, (g∗)−1W (x) =W (g ·x) µ-a.e. Hence, for any g ∈ suppµ, (g∗)−1(W (x)) =W (g ·x).

The relation (g∗)−1(W )= ∪(g∗)−1

x∈Λ([suppµ])
(W (x)) = ∪W (g ·x)

x∈Λ([suppµ])
shows that W is [suppµ∗]-invariant.

Then condition i-p implies W = Pd−1, r = 1, p = d −1, d(x) = d −1,m(x) = 1 for any
x ∈Pd−1, hence the Lemma.

Proof of Theorem 3.2. We use the Markov kernel πs
x defined by πs

x = κs
x

νs
x (1) with κs

x given
in Lemma 3.6.

Then we have the harmonicity equation,

πs
x =

∫
q s (x, g )g∗ ·πs

g ·x dµ(g ),

and the continuity in variation of πs
x . The above equation implies that the sequence

of kernels S∗
n(ω) ·πs

Sn (ω)·x is a Qs
x -martingale with respect to the natural filtration on Ω.

Since for x ∈Pd−1, πs
x ∈ M1(Pd−1) we can apply the martingale convergence theorem.

Since, by Lemma 3.9, πs
x is proper and, by definition, x → πs

x is continuous in vari-
ation, we can use the same method as in [28] ; because of i-p condition, the martingale
S∗

n(ω).πs
Sn (ω)·x converges Qs

x -a.e to a Dirac measure. Then, using Lemma 3.4, S∗
n ·m con-

verges Qs
x -a.e. to a Dirac measure δz∗(ω). Then, from above, for any x ∈Pd−1,

Qs
x (Ω′) = 1 , z∗(Qs

x ) =πs
x .

Hence the law of z∗(ω) under Qs
x is πs

x . It follows, by integration,

Qs (Ω′) = 1 , z∗(Qs ) =
∫

z∗(Qs
x )dπs (x) =

∫
πs

x dπs(x).
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In view of the formulae for νs
x , πs

x and the relation πs = esνs

νs (es ) , we define ∗πs by z∗(Qs ) =
∗πs . Then Lemma 3.9 and the definition of πs

x give that ∗πs is proper. The relations:

lim
n→∞

δ(Sn(ω) · x, Sn(ω) · y) = 0, lim
n→∞

|Sn(ω)x|
|Sn(ω)|

= |〈z∗(ω), x〉|, lim
n→∞

σ(Sn ,ξ) = −∞, follow

from the geometrical Lemma 3.3, since S∗
n ·m converges to δz∗(ω).

Using Lemma 3.5 we know that Qs
x is absolutely continuous with respect to Qs . We

calculate
dQs

x

dQs (ω) as follows.

By definition of Qs
x and Qs ,

Es
x (

dQs
x

dQs
(ω)|g1, · · · , gn) =

q s
n(x,Sn(ω))∫

q s
n(y,Sn(ω))dπs (y)

.

Furthermore
q s

n(x,Sn(ω))

q s
n(y,Sn(ω))

=
|Sn(ω)x|s

|Sn(ω)y |s
e s(Sn(ω) ·x)

e s(Sn(ω) · y)

e s(y)

e s(x)
.

The martingale convergence theorem gives

dQs
x

dQs
(ω) = lim

n→∞

q s
n(x,Sn(ω))∫

q s
n(y,Sn(ω))dπs (y)

.

Using the relation lim
n→∞

|Sn(ω)x|
|Sn(ω)|

= |〈z(ω), x〉|, if ω ∈Ω
′, we get

lim
n→∞

q s
n(x,Sn (ω))

q s
n(y,Sn(ω))

=
∣∣∣∣
〈z∗(ω),〉
〈z∗(ω), y〉

∣∣∣∣
s e s(y)

e s (x)
.

Hence
dQs

x

dQs (ω) = |〈z∗(ω),x〉|s
es (x)

[∫ |〈z∗(ω),y〉|s
es (y) dπs(y)

]−1
. Since, from above πs is proper and the

Qs -law of z∗(ω) is πs , we have for any x ∈Pd−1, |〈z∗(ω), x〉| > 0, Qs -a.e

We conclude that Qs
x is equivalent to Qs because

dQs
x

dQs (ω) > 0, Qs -a.e. Also, using the
formulae above we have

dQs
x

dQs
y

(ω) =
∣∣∣∣
〈z∗(ω), x〉
〈z∗(ω), y〉

∣∣∣∣
s e s(y)

e s(x)
.

ä

3.3 The law of large numbers for log |Sn(ω)x| with respect to Qs

Here, by derivatives of a function ϕ at the boundaries of an interval [a,b] we will mean
finite half derivatives i.e. we write

ϕ′(a) =ϕ′(a+) ∈R , ϕ′(b) =ϕ′(b−) ∈R .
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Theorem 3.10. Letµ∈ M1(G), s ∈ Iµ. Assume [suppµ] satisfies condition i-p, and logγ(g )
is µ-integrable. Assume also that |g |s log γ(g ) is µ-integrable and write

Lµ(s) =
∫

log |g x|q s (x, g )dπs (x) dµ(g ).

Then, for any x ∈Pd−1, Qs -a.e, we have

lim
n→∞

1

n
log |Sn(ω)x| = lim

n→∞

1

n
log |Sn(ω)| = Lµ(s).

This convergence is valid in L1(Qs ) and in L1(Qs
x ) for any x ∈Pd−1. Furthermore k(t ) has

a continuous derivative on [0, s] and if t ∈ [0, s], x ∈Pd−1,

Lµ(t ) =
k ′(t )

k(t )
= lim

n→∞

1

nkn(t )

∫
|g x|t log |g x|dµn(g ) = lim

n→∞

1

n

∫
|g |t log |g |dµn(g )∫

|g |t dµn(g )
.

In particular if α> 0 satisfies k(α) = 1, then k ′(α) > 0.

Proof. We consider the function f (x,ω) on a
Ω defined by f (x,ω) = log |g1(ω)x|. If |x| =

1, we have − log |g−1| ≤ log |g x| ≤ log |g |, hence f (x,ω) is aQs-integrable. Moreover∫
f (x,ω)d aQ(x,ω) =

∫
q s(x, g ) log |g x|dνs (x)dµ(g ) = Lµ(s), and

n−1∑
0

( f ◦a θk)(x,ω) = log |Sn(ω)x|.

As mentioned above aQs is aθ-ergodic, hence we get using Birkhoff’s theorem,

lim
n→∞

1

n
log |Sn(ω)x| = Lµ(s), aQs -a.e.

On the other hand, we can apply the subadditive ergodic theorem to the sequence
log |Sn(ω)| and to the ergodic system (Ω,θ,Qs ).

This implies that there exists L(s) ∈ R such that, Qs -a.e. and in L1(Qs ), the sequence
1
n

log |Sn(ω)| converges to L(s). We know, using Theorem 3.2, that for fixed x and Qs -
a.e.,

lim
n→∞

|Sn(ω)x|
|Sn(ω)|

= |〈z∗(ω), x〉|,

and furthermore the law of z∗(ω) under Qs is proper. Hence, for fixed x we have

|〈z∗(ω), x〉| > 0, Qs -a.e.
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Then for fixed x ∈Pd−1 and Qs -a.e.

lim
n→∞

1

n
log |Sn(ω)x| = lim

n→∞

1

n
log |Sn(ω)| = Lµ(s).

Using Lemma 3.6, since Qs
x ≤ c(s) Qs , this convergence is also valid Qs

x -a.e. Hence by
definition of aQs , we have L(s) = Lµ(s). The first assertion follows.

In order to get the L1-convergences, we observe that Fatou’s Lemma gives

lim inf
n→∞

1

n

∫
log |Sn(ω)x|dQs (ω) ≥ Lµ(s).

On the other hand, the subadditive ergodic theorem gives

lim
n→∞

1

n

∫
log |Sn(ω)| dQ

s (ω) = L(s) = Lµ(s).

Since |Sn(ω)x| ≤ |Sn(ω)| if |x| = 1, these two relations imply, for every x ∈Pd−1,

lim
n→∞

1

n

∫
log |Sn(ω)x|dQs (ω) = Lµ(s).

Now we write

1

n
| log |Sn(ω)x|−L(s)| ≤

1

n
(log |Sn(ω)|− log |Sn(ω)x|)+

1

n
| log |Sn(ω)|−L(s)|.

From the above calculation, the integral of the first term converges to zero. The subad-
ditive ergodic theorem implies the same for the second term.

Hence lim
n→+∞

∫
| log |Sn(ω)x| −L(s)|dQs (ω) = 0. Since Qs

x ≤ c(s)Qs , this convergence is

also valid in L1(Qs
x ) for any fixed x. This gives the second assertion, in particular

Lµ(s) = lim
n→∞

1

n

∫
log |Sn(ω)x|dQs

x (ω) = lim
n→+∞

1

n
Es

x (log |Sn(ω)x|).

The above limit can be expressed as follows.

Let ϕ be a continuous function on Pd−1. Then Theorem 2.6 implies

lim
n→∞

Es
x (ϕ(Sn(ω) ·x)) = lim

n→∞
(Qs )nϕ(x) =πs (ϕ),

uniformly in x ∈Pd−1.
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Hence Lµ(s)πs(ϕ) = lim
n→∞

1

n
Es

x (ϕ(Sn(ω) ·x) log |Sn(ω)x|).

In particular with ϕ= 1
es and any x we have

e s(x)Lµ(s) = lim
n→∞

1

nkn(s)

∫
|g x|s log |g x|dµn(g ).

We denote vn(s)=
∫
|g x|s dµn(g ) and we observe that v ′

n(s) =
∫
|g x|s log |g x| dµn(g ).

Using Theorem 2.6, we get lim
n→∞

vn(s)

kn(s)e s(x)
=πs

(
1

e s

)
= 1.

Then the above formula for Lµ(s) reduces to Lµ(s) = lim
n→∞

1

n

v ′
n(s)

vn(s)
.

On the other-hand, 1
n

log vn(s) = 1
n

∫s
0

v ′
n (t)

vn (t) d t , lim
n→∞

1

n
log vn(s) = logk(s).

The convexity of log vn on [0, s] gives
v ′

n (0)
vn (0) ≤

v ′
n (t)

vn (t) ≤
v ′

n (s)
vn (s) .

Then the convergence of the sequences 1
n

v ′
n (0)

vn (0) and 1
n

v ′
n (s)

vn (s) implies that the sequence
1
n

v ′
n (t)

vn (t) is uniformly bounded on [0, s]. On the other hand, Hölder inequality implies the

µ-integrability of |g |t log |g | if t ∈ [0, s], and the bound:

∫
|g |t | log |g ||dµ(g ) ≤

(∫
| log |g ||dµ(g )

) s−t
s

(∫
|g |s | log |g ||dµ(g )

)t/s

.

Hence, as above, we have the convergence of 1
n

v ′
n (t)

vn (t) , to L(t ). Then dominated conver-

gence gives the convergence of 1
n

log vn(s) to logk(s) =
∫s

0 L(t )d t .

We have L(t ) =
∫

log |g x|q t (x, g )dµ(g )dπt (x), and the continuity of q s , πs given by The-
orem 2.6. Then the bound of

∫
|g |t | log |g ||dµ(g ) given above implies the continuity of

L(t ) on [0, s]. The integral expression of logk(s) in terms of L(t ) implies that k has a

derivative and k′(t)
k(t) = L(t ) if t ∈ [0, s]. This gives the first part of the last relation in the

theorem. In order to get the rest, we consider un(t ) =
∫
|g |t dµn(g ) and write for t ∈ [0, s]

u′
n(t )

un(t )
=

∫
|g |t log |g |dµn(g )∫

|g |t dµn(g )
.

The convergence of 1
n

logun(t ) to logk(t ) and the convexity of the functions logun(t ),
logk(t ) give for t ∈ [0, s],

k ′(t−)

k(t )
≤ lim inf

n→∞

1

n

u′
n(t )

un(t )
≤ lim sup

n→∞

u′
n(t )

un(t )
≤

k ′(t+)

k(t )
.
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Since if t ∈]0, s[, we have k ′(t−) = k ′(t+) = k ′(t ), we get lim
n→∞

1

n

u′
n(t )

un(t )
=

k ′(t )

k(t )
if t < s.

Furthermore, by continuity we have lim
n→∞

1

n

u′
n(s)

un(s)
=

k ′(s−)

k(s)
. Now the rest of the formula

follows from the expression of
u′

n (t)
un (t) given above. The relation Lµ(α) > 0 follows from the

formula Lµ(t ) = k′(t)
k(t) and the strict convexity of log k(t ).

3.4 Lyapunov exponents and spectral gaps

We begin with a more general situation than above. As special cases, it contains the
Markov chains on Pd−1 considered in section 2. In particular, simplicity of the domin-
ant Lyapunov exponent given by Theorem 3.17 below will be a simple consequence of
their special properties and of the general Proposition 3.11 below. For s = 0, this result
was shown in [28] under condition i-p. For the use of the Zariski closure as a tool to
show condition i-p see [22], [45]. We give corresponding notation.

Let X be a compact metric space, C (X , X ) the semigroup of continuous maps of X into
itself which is endowed with the topology of uniform convergence. We denote by g · x

the action of g ∈C (X , X ) on x ∈ X and we consider a closed subsemigroupΣof C (X , X ).
Let µ be a probability measure on Σ and let q(x, g ) be a continuous non negative func-
tion on X × suppµ such that

∫
q(x, g )dµ(g ) = 1. We will denote by (X , q ⊗µ,Σ) this set

of data and we will say that (X , q ⊗µ,Σ) is a Markov system on (X ,Σ). We write Ω=Σ
N,

we denote by Ωn the set of finite sequences of length n on Σ and for ω= (g1, g2, · · · , gn)

in Ωn , x ∈ X , we write qn(x,ω) =
n
Π
1

q(Sk−1 ·x, gk ) where Sn = gn · · ·g1, S0 = I d .

We define a probability measure Qn
x on Ωn by Qn

x = qn(x, ·)µ⊗n and we denote by Qx the
probability measure on Ω which is the projective limit of this system. If ν is a probability
measure on X we set Qν =

∫
Qx dν(x). We will consider the extended shift aθ on a

Ω =
X ×Ω which is defined by aθ(x,ω) = (g1 · x,θω), and also the Markov chain on X with
kernel Q defined by Qϕ(x) =

∫
ϕ(g · x)q(x, g )dµ(g ). Clearly, when endowed with the

corresponding shift, the space of paths of this Markov chain is a factor system of (X ×
Ω,a θ). If π is a Q-stationary measure on X , the measure Qπ on Ω is shift-invariant and
aQπ =

∫
δx ⊗Qx dπ(x) is aθ-invariant. In this situation we will say that (X , q⊗µ,Σ,π) is a

stationary Markov system. If π is Q-ergodic, then aQπ is aθ-ergodic and Qπ is θ-ergodic.
We will denote by Ex ,Eπ the corresponding expectations symbols.

In particular we will consider below Markov systems of the form (X , q ⊗µ,T ) where
Σ = T ⊂ GL(d ,R) (d > 1), and also extensions of them. We can extend the action of
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g ∈T to X ×Pd−1 by g (x, v)= (g ·x, g ·v) and define a new Markov chain with kernel Q1

by Q1ϕ(x, v) =
∫
ϕ(g ·x, g ·v)q(x, g )dµ(g ). Given a Q-stationary probability measure π,

we will denote by C1 the compact convex set of probability measures on X ×Pd−1 which
have projection π on X . The same considerations apply if Pd−1 is replaced by Pd−1

2 , the
manifold of 2-planes or Pd−1

1,2 , the manifold of contact elements in Pd−1. Then we define
similarly the kernels Q2,Q1,2 and the convex sets C2,C1,2.

Since Sn = gn · · ·g1 and the gk areQπ-stationary random variables whereQπ is θ-invariant
and ergodic, the Lyapunov exponents of the product Sn are well defined as soon as

∫
log |g1(ω)|dQπ(ω) and

∫
log |g−1

1 (ω)|dQπ(ω)

are finite (see [46]). In particular the two largest ones γ1 and γ2 are given by

γ1 = lim
n→∞

1

n

∫
log |Sn(ω)|dQπ(ω), γ1 +γ2 = lim

n→∞

1

n

∫
log |∧2 Sn(ω)|dQπ(ω).

In order to study the values of γ1,γ2 we need to consider the above Markov operators
Q1,Q2,Q1,2 and the convex sets C1,C2,C1,2 of corresponding stationary measures. We
denote q(g ) = sup

x∈Pd−1
|q(x, g )| and we assume

∫
logγ(g )q(g )dµ(g ) <∞. For η1 ∈ C1, we

will write I1(η1) =
∫
σ1(g , v)dη1(x, v)dµ(g ), and similarly with η2 ∈ C2,η1,2 ∈ C1,2 we

define I2(η2), I1,2(η1,2) where we use the cocycles σ1,σ2,σ defined at the beginming of
this section. The following result will be a basic tool in this subsection.

Proposition 3.11. With the above notation, let T be a closed subsemigroup of GL(d ,R),

(X , q⊗µ,T,π) a stationary and uniquely ergodic Markov system. Assume that S∗
n ·m con-

verges Qπ-a.e to a Dirac measure δz∗(ω) such that for any v ∈ Pd−1,〈v, z∗(ω)〉 6= 0 Qπ-a.e.

Assume that
∫

logγ(g )q(g )dµ(g ) is finite. Then we have γ2 −γ1 = sup{I1,2(η);η ∈C1,2} <

0, and the sequence 1
n

sup
x,v,v ′

Ex (log
δ(Sn(ω) ·v,Sn(ω) ·v ′)

δ(v, v ′)
) converges to γ2 −γ1 < 0.

The proof uses the same arguments as in [29]. The condition lim
n→∞

S∗
n ·m = δz∗(ω) is

satisfied in the examples of subsection 3.2 (see Theorem 3.2).

Lemma 3.12. Let mp be the natural SO(d)-invariant probability measure on the sub-

manifold of p-decomposable unit multivectors x = v1 ∧ v2 ∧ ·· · ∧ vp . Then there exists

c > 0 such that for any u ∈ EndV : 0 < log |∧p u|−
∫

log |(∧p u)(x)|dmp (x) ≤ c.

Proof. We write u in polar form u = kak ′ with k,k ′ ∈ SO(d), a = diag(a1, a2 · · · , ad ) and
a1 ≥ a2 ≥ ·· · ≥ ad > 0. We write also x = k ′′εp with k ′′ ∈ SO(d),εp = e1 ∧ e2 ∧ ·· · ∧ ep ,
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hence,
∫

log |∧p ux|dmp (x) =
∫

log |∧p ak ′k ′′εp |dm̃(k ′′) =
∫

log |∧p akεp |dm̃(k),

where m̃ is the normalized Haar measure on SO(d). Furthermore

|∧p akεp | ≥ 〈∧p akεp ,εp〉| = |∧p a||〈kεp ,εp〉|,∫
log |∧p ux|dmp (x) ≥ log |∧p u|+

∫
log |〈kεp ,εp〉|dm̃(k)

= log |∧p u|+
∫

log |〈x,εp 〉|dmp (x).

Hence it suffices to show the finiteness of the integral in the right hand side. But the set
of unit decomposable p-vectors is an algebraic submanifold of the unit sphere of ∧pV

and mp is its natural Riemannian measure. Since the map x → 〈x,εp〉2 is polynomial,
there exists q ∈N, c > 0 such that : ct q ≤ mp {x;〈x,εp 〉2 ≤ t } ≤ 1.

The push forward σ of mp by this map is an absolutely continuous probability measure
on [0,1] which satisfies σ(0, t )≥ ct q/2. Then

∫
log |〈x,εp〉|dmp (x) =

∫1

0
log t dσ(t ) >−∞,

since the integral
∫1

0 t q/2−1d t is finite for q > 0.

We recall from [37] the following

Lemma 3.13. Let (E ,θ,ν) be a dynamical system where ν is a θ-invariant probability

measure, f a ν-integrable function. If
n
Σ
1

f ◦θk converges ν-a.e to −∞, then one has ν( f ) <
0.

Lemma 3.14. Let E be a compact metric space, P a Markov kernel on E which preserves

the space of continuous functions on E , C (P ) the compact convex set of P-stationary

measures. Then, for every continuous function f on E , the sequence sup
x∈E

1

n

n
Σ
1

P k f (x) con-

verges to sup{η( f );η ∈ C (P )}. In particular, if for all η,η′ ∈ C (P ) we have η( f ) = η′( f ),

then we have the uniform convergence, lim
n→∞

1

n

n
Σ
1

P k f (x) = η( f ).
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Proof. Let J ⊂R be the set of cluster values of the sequences 1
n

n−1
Σ
0

(P k f )(xn) with xn ∈ E .

We will show that the convex envelope of J is equal to {η( f ) ; η ∈ C (P )}. If the se-

quence 1
nk

nk

Σ
0

(P i f )(xnk
) converges to c ∈R, we can consider the sequence of probability

measures ηk = 1
nk

nk−1
Σ
0

P iδxnk
and extract a convergent subsequence with limit η ∈C (P ).

Then, since f is continuous we have

η( f ) = lim
k→∞

1

nk

nk−1
Σ
0

(P i f )(xnk
) = c.

Conversely, ifη ∈C (P ) is ergodic, Birkhoff’s theorem applied to the sequence 1
n

n−1
Σ
0

(P i f )(x)

gives η-a.e,

lim
n→∞

1

n

n−1
Σ
0

(P i f )(x) = η( f ),

hence there exists x ∈ E such that η( f ) is the limit of 1
n

n−1
Σ
0

(P i f )(x). If η is not ergodic, η

is a barycenter of ergodic measures, hence η( f ) belongs to the convex envelope of J . In
view of the above, this shows the first claim. Since J is closed, the convex envelope of J

is a closed interval [a,b], hence b = lim
n→∞

1

n
sup
x∈E

n−1
Σ
0

(P i f )(x) = sup
η∈C (P)

η( f ).

Lemma 3.15. We have the formulae

γ1 = lim
n→∞

1

n
sup
x,v

∫
log |Sn(ω)v |dQx (ω) = sup

η∈C1

I1(η),

γ1 +γ2 = lim
n→∞

1

n
sup
x,v,v ′

∫
log |Sn(ω)v ∧Sn(ω)v ′|dQx (ω) = sup

η∈C2

I2(η).

Proof. We consider the Markov chain on X ×Pd−1 with kernel Q1 defined by

Q1ϕ(x, v) =
∫

ϕ(g ·x, g ·v)q(x, g )dµ(g ),

and the function ψ(x, v) =
∫
σ1(g , v)q(x, g )dµ(g ). We observe that

∫
σ1(Sn(ω), v)dQx (ω) =

n−1
Σ
0

Qk
1ψ(x, v),

and ψ is continuous since
∫

logγ(g )q(g )dµ(g ) < ∞. Also, since π is the unique Q-
stationary measure, any Q1-stationary measure has projection π on X . Then, using
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Lemma 3.14,we have

sup
η∈C1

I1(η) = lim
n→∞

1

n
sup
x,v

∫
σ1(Sn(ω), v)dQx (ω),

which gives the second part of the first formula. In order to show the first part we con-
sider η ∈C1 which is Q1-ergodic, the extended shift θ̃ on X ×Pd−1 ×Ω and the function
f (x, v,ω) =σ1(g1(ω), v). Then

θ̃(x, v,ω) = (g1 ·x, g1 ·v,θω) and σ1(Sn(ω), v) =
n−1
Σ
0

f ◦ θ̃k (x, v,ω).

Also, f (x, v,ω) is Q̂η-integrable where Q̃η =
∫
δ(x,v) ⊗Qx dη(x, v). Using the subadditive

ergodic theorem, we have

I1(η) =
1

n

∫
σ1(Sn(ω), v)dQx (ω)dη(x, v) ≤ lim

n→∞

1

n

∫
log |Sn(ω)|dQπ(ω) = γ1.

We show now that for some η ∈C1 we have γ1 = I1(η). Using Lemma 3.12, we know that

0≤ log |Sn(ω)|−
∫

log |Sn(ω)v |dm(v)≤ c,

hence, integrating with respect to Qπ, we have

0≤
∫

dm(v)
∫

(log |Sn(ω)|− log |Sn(ω)v |dQπ(ω) ≤ c.

Then the sequence of non negative functions hn(v) on Pd−1 given by

hn(v) =
1

n

∫
(log |Sn(ω)|− log |Sn(ω)v |)dQπ(ω)

satisfies 0 ≤ hn(v) ≤ c
n

with c given by Lemma 3.12, lim
n→∞

∫
hn(v)dm(v) = 0. It follows

that we can find a subsequence hn j
such that hn j

(v) converges to zero m-a.e, hence

γ1 = lim
j→∞

1

n j

∫
σ1(Sn j

(ω), v)dQπ(ω),m −a.e.,

in particular this convergence is valid for some v ∈ Pd−1. The sequence of probability

measures 1
n j

n j

Σ
1

Qk
1 (π⊗δv ) has a weakly convergent subsequence η j with a Q1-invariant

limit η. Furthermore, the function ψ considered above is continuous, hence

η(ψ) = lim
j→∞

1

n j

∫
σ1(Sn j

(ω)v)dQπ(ω) = γ1, γ1 = I1(η) = sup
η1∈C1

I1(η1).
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The same argument is valid for log |Sn(ω)(v ∧ v ′)| with m replaced by m2, hence the
second formula.

Lemma 3.16. For any η ∈C1, we have γ1 = I1(η) .

Proof. As in the proof of Lemma 3.15 we have I1(η) = lim
n→∞

1

n
σ1(Sn(ω), v), Qη-a.e., hence

the existence of v ∈Pd−1 such that Qπ -a.e.,

I1(η) = lim
n→∞

1

n
log |Sn(ω)v |.

Then, using Theorem 3.2 and Lemma 3.15 we get, Qπ-a.e.

lim
n→∞

1

n
log

|Sn(ω)v |
|Sn(ω)|

= lim
n→∞

1

n
log |〈z∗(ω), v〉| = 0,

since 〈z∗(ω), v〉 6= 0, Qπ-a.e. Hence I1(η) = lim
n→∞

1

n

∫
log |Sn(ω)|dQπ(ω) = γ1.

Proof of proposition 3.11 We have γ2−γ1 = (γ1+γ2)−2γ1, γ1 = I1(η1) for any η1 ∈C1 and
γ1 +γ2 = sup

η2∈C2

I2(η2). Using the theorem of Markov-Kakutani for the inverse image of

η2 ∈C2 in C1,2 we know that any η2 ∈C2 is the projection of some η1,2 ∈C1,2, hence γ1 +
γ2 = sup

η1,2∈C1,2

I2(η1,2). If η′1 is the projection of η1,2 on Pd−1, we have I1,2(η1,2) = I2(η1,2)−

2I1(η′1) and from Lemma 3.16, γ1 = I1(η′1). It follows γ2 −γ1 = sup
η1,2∈C1,2

I1,2(η1,2).

Since I1,2(η1,2) depends continuously of η1,2 and C1,2 is compact, in order to show that
γ2 − γ1 is negative it suffices to prove I1,2(η) < 0, for any η ∈ C1,2. We consider the
extended shift θ̃ on X ×Pd−1

1,2 ×Ω defined by θ̃(x,ξ,ω) = (g1 · x, g1.ξ,θω), the function

f (ξ,ω) = σ(g1,ξ) and the θ̃-invariant measure Q̃η =
∫
δ(x,ξ) ⊗Qx dη(x,ξ). Since S∗

n ·m

converges Qπ-a.e. to δz∗(ω), Lemma 3.3 implies lim
n→∞

σ(Sn(ω),ξ) = −∞, Qπ-a.e. if the

origine v of ξ satisfies 〈v, z∗(ω)〉 6= 0. By hypothesis, this condition is satisfied for any

ξ and Qπ-a.e., hence we have lim
n→∞

n
Σ
1

f ◦θk = −∞ Qπ-a.e. for any ξ. It follows that this

convergence is valid Q̃η-a.e., hence Lemma 3.13 gives η( f ) = I1,2(η) < 0. We consider

In = 1
n
Ex

(
log δ(Sn (ω)·v,Sn (ω)·v ′)

δ(v,v ′)

)
. With |v | = |v ′| = 1, δ1(v, v ′) = |v ∧v ′| we have

log
δ1(Sn(ω) ·v,Sn(ω) ·v ′)

δ1(v, v ′)
= log

|Sn(ω)v ∧Sn(ω)v ′|
|v ∧v ′|

− log |Sn(ω)v |− log |Sn(ω)v ′|.
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By Lemma 3.15, we have also

γ1 +γ2 = lim
n→∞

1

n
sup
x,v,v ′

Ex

(
log

|(Sn(ω)v ∧Sn(ω)v ′|
|v ∧v ′|

)
.

Furthermore, by Lemmas 3.14 and 3.16, we have the convergence of sup
x,v

1

n
Ex (log |Sn(ω)v |)

and inf
x,v

1

n
Ex (log |Sn(ω)v |) to I1(η) = γ1. The uniform convergence of 1

n
Ex (log |Sn(ω)v |) to

γ1 follows. Then the equivalence of δ1, δ implies that sup
x,v,v ′

1

n
In converges to γ2 −γ1. ä

With the notations of paragraph 3 above we have the following corollaries, for products
of random matrices.

Theorem 3.17. Assume d > 1, the closed subsemigroup T ⊂ GL(d ,R) satisfies condition

i-p, s ∈ Iµ and
∫
|g |s logγ(g )dµ(g ) is finite. Then the dominant Lyapunov exponent of

Sn(ω) is simple and

lim
n→∞

1

n
sup
x,v,v ′

Es
x

(
log

δ(Sn(ω) ·v,Sn (ω) ·v ′)

δ(v, v ′)

)
= Lµ,2(s)−Lµ,1(s) < 0,

where Lµ,1(s), Lµ,2(s) are the two highest Lyapunov exponents of Sn(ω) with respect to Qs .

In particular,

lim
n→∞

1

n
sup
v,v ′

Es

(
log

δ(Sn(ω) ·v,Sn(ω) ·v ′)

δ(v, v ′)

)
≤ Lµ,2(s)−Lµ,1(s)< 0.

Proof. In view of Theorems 3.2, 2.6, the conditions of Proposition 3.11 are satisfied by
X =Pd−1, q ⊗µ= q s ⊗µ, and π=πs . On the other hand we have Qs =

∫
Qs

x dπ(x), hence
the second formula.

We will use Theorem 3.17 to establish certain functional inequalities for the operators
Qs , Q̃s on Pd−1,Sd−1 defined in section 2 and acting on Hε(Pd−1) or Hε(Sd−1). Using
[34], spectral gap properties will follow. We will say that Q satisfies a “Doeblin-Fortet
inequality” on Hε(X ), where X is a compact metric space if we have for any ϕ ∈ Hε(X ),
[Qn0ϕ]ε ≤ ρ[ϕ]ε+D|ϕ| for some n0 ∈N where ρ < 1, D ≥ 0.

Corollary 3.18. For ε sufficiently small and s ∈ [0, s∞[, if
∫
|g |sγτ(g )dµ(g ) <∞ for some

τ> 0, then

lim
n→∞

(sup
x,y

Es (
δε(Sn ·x,Sn · y)

δε(x, y)
))1/n = ρ(ε) < 1.
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If k ′(s)> 0, then lim
n→∞

(sup
x

Es (
1

|Sn x|ε
))1/n < 1.

Proof. The proof of the first formula is based on Theorem 3.17 and is given below. The
proof of the second formula follows from a similar argument (see also [39], Theorem 1,
for s = 0).

We denote αn(x, y,ω) = log δ(Sn(ω)·x,Sn (ω)·y)
δ(x,y) and we observe that

eεαn ≤ 1+εαn +ε2α2
neε|αn |, |αn | ≤ 2 logγ(Sn).

Since t 2e |t | ≤ e3|t |, there exists ε0 > 0 such that for ε≤ ε0

α2
n eε|αn | ≤

1

ε2
0

e3ε0|αn | ≤
1

ε2
0

(γ(Sn))6ε0 .

We observe that In = 1
ε2

0
Es (γ6ε0 (Sn)) is finite for s < s∞ and ε0 sufficiently small (see the

proof of Corollary 3.20. below). It follows

Es (eεαn (x,y,ω)) ≤ 1+ε Es (αn(x, y,ω))+ε2In ,

sup
x,y

Es

(
δε(Sn ·x,Sn · y)

δε(x, y)

)
≤ 1+εsup

x,y
Es

(
log

δ(Sn ·x,Sn · y)

δε(x, y)

)
+ε2In .

Also the quantity ρn(ε) = sup
x,y

E
s

(
δε(Sn ·x,Sn · y)

δε(x, y)

)
satisfies ρm+n(ε) ≤ ρm(ε)ρn(ε), hence

we have ρ(ε) = lim
n→∞

ρn(ε)1/n = inf
n∈N

(ρn(ε))1/n . It follows that, in order to show ρ(ε) < 1,

for ε small it suffices to show ρn0 (ε) < 1 for some n0. To do that, we choose n0 such that

sup
x,y

E
s

(
log

δ(Sn0 ·x,Sn0 · y)

δ(x, y)

)
= c < 0 which is possible using Theorem 3.17, and we take

ε sufficiently small so that ε2In0 +εc < 0. Then we get ρn0 (ε) ≤ 1+ε2In0 +εc < 1.

Corollary 3.19. Let Hε(Pd−1) be the Banach space of ε-Hölder functions on Pd−1 with

the norm ϕ→ [ϕ]ε+ |ϕ| and assume 0 ≤ s < s∞,
∫
|g |sγτ(g )dµ(g ) for some τ > 0. Then

for ε sufficiently small the operator Qs (defined in Theorem 2.6) on Hε(Pd−1) satisfies the

following Doeblin-Fortet inequality [(Qs )n0ϕ]ε ≤ ρ′(ε)[ϕ]ε +B |ϕ|, where B ≥ 0 n0 ∈ N,

ρn0 (ε) < ρ′(ε) < 1.

In particular the operator P s admits the following spectral decomposition in Hε(Pd−1)

P s = k(s)(νs ⊗e s +U s),

where U s has spectral radius less than 1, and satisfies U s(νs ⊗e s) = (νs ⊗e s)U s = 0.
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Proof. From Lemma 3.5, we know that Qs
x ≤ c(s)Qs , hence, using Corollary 3.18, for n ≥

n0 sufficiently large and with ρ′(ε) ∈]ρn0 (ε),1[, we have sup
x,y

Es
x

(
δε(Sn ·x,Sn · y)

δε(x, y)

)
≤ ρ′(ε).

We can write

(Qs)nϕ(x)− (Qs )nϕ(y) = Es
x (ϕ(Sn ·x))−Es

y (ϕ(Sn · y))

= Es
x (ϕ(Sn ·x))−ϕ(Sn · y))+ (Es

x −Es
y )(ϕ(Sn · y)).

The first term in the right hand side is bounded by [ϕ]εδε(x, y)sup
x,y

Es
x

(
δε(Sn ·x,Sn · y)

δε(x, y)

)

i.e. by [ϕ]εδε(x, y)ρ′(ε). Using Lemma 3.5, we know that the second term is bounded by
B |ϕ|δs̄ (x, y). Hence with ε< s̄ we get the required inequality.

From Theorem 2.6 we know that Qs has a unique stationary measure πs and 1 is the
unique eigenvalue with modulus one. Then the above Doeblin-Fortet inequality im-
plies (see [33]) the relation Qs = πs ⊗ 1+V s where V s commutes with the projection
πs ⊗1 has spectral radius less then one and satisfies V s (πs ⊗1) = 0, hence the required
formula for P s .

Corollary 3.20. With the notation and hypothesis of Corollary 3.19, the following Doeblin-

Fortet inequality is valid, if z = s + i t , 0 ≤ s < s∞ :

[(Qz )n0ϕ]ε ≤ ρ′(ε)[ϕ]ε+ (B + An0 (ε)|t |ε)|ϕ|,

where 0 ≤ An0 (ε) <∞. For t 6= 0, the spectral radius of Qz is less than 1. Furthermore k(s)
and the projection νs ⊗e s are analytic on ]0, s∞[, and 1 is a simple eigenvalue of Qs .

Proof. By definition of Qz = Qs+i t we have (Qs+i t )nϕ(x) = Es
x (|Sn x|i tϕ(Sn · x)), hence

|(Qz )nϕ(x)− (Qz )nϕ(y)| is bounded by the expression

|(Es
x −E

s
y )(|Sn x|i tϕ(Sn ·x))+|Es

y (|Sn x|i tϕ(Sn ·x)−|Sn y |i tϕ(Sn · y))|.

Using Lemma 3.5 the first term is bounded by Bδε(x, y)Es (|ϕ|) i.e by B |ϕ|δε(x, y). The
second term is dominated by Es

y (|Sn x|i t −|Sn y |i t |)|ϕ|+Es
y (|ϕ(Sn ·x)−ϕ(Sn · y)|).

As in the proof of Corollary 3.19, for n ≥ n0 we write

Es
y (|ϕ(Sn ·x)−ϕ(Sn · y)|) ≤ [ϕ]εE

s
y (δε(Sn ·x,Sn · y))

≤ [ϕ]εδ
ε(x, y)sup

x,y
Es

y (
δε(Sn ·x,Sn · y)

δε(x, y)
) ≤ [ϕ]εδ

ε(x, y)ρ′(ε).
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On the other hand, using the relation ||u|i t−|v |i t | ≤ 2|t |ε| log |u|−log |v ||ε ≤ 2|t |ε sup( 1
|u| ,

1
|v | )

ε||u|−
|v ||ε, we get

|(|Sn x|i t −|Sn y |i t || ≤ 2|t |ε sup
|v |=1

1

|Sn v |ε
|Sn(x − y)|ε ≤ 2|t |ε sup

|v |=1

|Sn |ε

|Sn v |ε
δε(x, y).

Since |Sn v | ≥ |S−1
n |−1 we get Es

y (|Sn x|i t − |Sn y |i t )|) ≤ 2c(s)|t |εδε(x, y)Es (γ2ε(Sn)). Since

γ(Sm+n) ≤ γ(Sm)γ(Sn ◦θm) and Qs is shift-invariant, Es (γ2ε(Sn)) ≤ (Es (γ2ε(S1))n <∞.

Then for n fixed and ε sufficiently small the hypothesis implies that Es
y (|Sn x|i t −|Sn y |i t ))

is bounded by An(ε)|t |εδε(x, y). Finally, for n = n0,

[(Qz )n0ϕ]ε ≤ ρ′(ε)|ϕ]ε+ (B + An0 (ε)|t |ε)|ϕ|.

Then, using [33], one gets that the possible unimodular spectral values of Qz are eigen-
values. Using Theorem 2.6, if t 6= 0, one get that no such eigenvalue exists, hence the
spectral radius of Qz is less than 1.

In order to show the analyticity of k(s) and νs ⊗ e s on ]0, s∞[, we consider the operator
P z for z ∈C close to s. We begin by showing the holomorphy of P z for Re z ∈]0, s∞[. Let

γ be a loop contained in the strip Re z ∈
◦
Iµ and ϕ ∈ Hε(Pd−1). Then, since z → |g x|z is

holomorphic
∫

γ
P zϕ(x)d z =

∫

G×γ
ϕ(g ·x)|g x|z dµ(g )d z =

∫

G
ϕ(g ·x)dµ(g )

∫

γ
|g x|z d z = 0,

On the other hand, the spectral gap property of the operator P s implies that k(s) is a
simple pole of the function ζ→ (ζI −P s )−1, hence by functional calculus if γ is a small
circle of center k(s)∈C

k(s)νs ⊗e s =
1

2iπ

∫

γ
(ζI −P s )−1dζ.

Since P z depends continuously of z, the function (ζI −P z)−1 has a pole inside the small
disk defined by γ, if z is close to s. Then by perturbation theory P z has an isolated
spectral value k(z) close to k(s). The corresponding projection νz ⊗ez satisfies

k(z)νz ⊗ez =
1

2iπ

∫

γ
(ζI −P z)−1dζ.

This formula and the holomorphy of P z shows that k(z) and νz ⊗ ez are holomorphic
in a neighbourhood of s. The analyticity of k(s) and νs ⊗ e s follow. The fact that 1 is a
simple eigenvalue of Qs follows from Theorem 2.6.
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Corollary 3.21. Assume
∫
|g |sγτ(g )dµ(g ) < ∞ for some τ > 0. Then given ε > 0 suffi-

ciently small, for any ε0 > 0 there exists δ0 = δ0(ε0), n0 = n0(ε0) such that if x, y ∈ Sd−1

satisfy δ̃(x, y) ≤ δ0, then Es (δ̃ε(Sn0 ·x,Sn0 · y)) ≤ ε0δ̃
ε(x, y).

One has the following Doeblin-Fortet inequality on Hε(Sd−1) with D ≥ 0 andρ0 = ε0c(s) <
1, [(Q̃s )n0ϕ]ε ≤ ρ0[ϕ]ε+D|ϕ|, where c(s) satisfies Qs

x ≤ c(s)Qs . In particular the spectral

value 1 is isolated and the corresponding finite dimensional projector depends analytic-

ally on s ∈]0, s∞[.

In case I, the Q̃s -invariant functions are constant. In case II, the space of Q̃s-invariant

functions is generated by ps
+ and ps

−. If t 6= 0 the spectral radius of Q̃z is less than 1.

Furthermore, 1 is the unique unimodular eigenvalue of Q̃s except in case I, where −1 is

the unique non trivial possibility.

Proof. Assume ε is as in Corollary 3.18. We will use for any n ∈N and t > 0, the relation

E
s (δ̃ε(Sn ·x,Sn · y)) = E

s (δ̃ε(Sn ·x,Sn · y)1{γ(Sn )>t})+E
s (δ̃ε(Sn ·x,Sn · y)1{γ(Sn )≤t}).

In view of Corollary 3.18 we have for some n0, any x̄, ȳ ∈Pd−1 and given ε0 > 0, we have
Es (δε(Sn0 · x̄ ,Sn0 · ȳ)) ≤ ε0

2 δε(x̄, ȳ).

Using Lemma 2.11 we have, for x, y ∈Sd−1, δ̃(Sn0 ·x,Sn0 · y) ≤ 2γ2(Sn0 )δ̃(x, y), hence

Es (δ̃ε(Sn0 ·x,Sn0 · y)1{γ(Sn0 )>t}) ≤ 2Es(γ2ε(Sn0 )1{γ(Sn0 )>t}).

Since, as in the proof of Corollary 3.20, we have if ε is sufficiently small,Es (γ2ε(Sn0 )) <∞,
we can choose t0 > 0 so that Es (δ̃ε(Sn0 ·x,Sn0 ·y)1{γ(Sn0 )>t0}) ≤ ε0

2 δ̃ε(x, y). Then, on the set

{γ(Sn0 ) ≤ t0} we have δ̃(Sn0 ·x,Sn0 · y) ≤ 2γ2(Sn0 )δ̃(x, y) ≤ 2 t 2
0 δ̃(x, y).

We observe that, if δ̃(u, v)≤
p

2 with u, v ∈Sd−1, then δ(ū, v̄) = δ̃(u, v). Hence, if 2 t 2
0 δ̃(x, y) ≤p

2, we get δ̃(Sn0 · x,Sn0 · y) = δ(Sn0 · x̄,Sn0 · ȳ) on the set {γ(Sn0 ) ≤ t0}. It follows, if

δ̃(x, y) ≤
p

2
2t2

0
= δ0, Es (δ̃ε(Sn0 · x,Sn0 · y)1{γ(Sn0 )≤t0}) ≤ ε0

2 δ̃ε(x, y). Hence we get, if δ̃(x, y) ≤

δ0, Es (δ̃ε(Sn0 ·x,Sn0 · y)) ≤ ε0 δ̃ε(x, y).

Using Qs
x < c(s)Qs we obtain sup

δ̃(x,y)≤δ0

E
s
x (
δ̃ε(Sn0 ·x,Sn0 · y)

δ̃ε(x, y)
) ≤ c(s)ε0.

On the other hand, for ϕ ∈ Hε(Sd−1):

(Q̃s )nϕ(x)− (Q̃s )nϕ(y) = Es
x (ϕ(Sn ·x)−ϕ(Sn · y))+ (Es

x −E s
y )(ϕ(Sn · y)).
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In view of Lemma 3.5, the second term is bounded by B δ̃s̄ (x, y)|ϕ|. Then, for δ̃(x, y | ≤ δ0

we obtain, since ε≤ s̄,

|(Q̃s )n0ϕ(x)− (Q̃s )n0ϕ(y)| ≤ c(s)ε0[ϕ]εδ̃
ε(x, y)+B |ϕ|δ̃ε(x, y).

If δ̃(x, y) ≥ δ0 we have trivially Ẽx (|ϕ(Sn0 ·x)−ϕ(Sn0 · y)|) ≤ 2 c(s) δ̃
ε(x,y)
δε0

|ϕ| .

Finally, on Sd−1, [(Q̃s )n0ϕ]ε ≤ c(s)ε0[ϕ]ε+ (B +2 c(s)
δε0

)|ϕ|, hence the result with D = B +
2 c(s)

δε0
. The structure of the space of Q̃s -invariant functions is given by Theorem 2.16. It

follows from [33] that 1 is an isolated spectral value of Q̃s and the corresponding pro-
jection has finite rank. The same argument as in the proof of Corollary 3.20 gives the
analyticity of this projection. Doeblin-Fortet inequality implies that the possible unim-
odular spectral values of Q̃z are eigenvalues. Then, as in the end of proof of Theorem
2.7, one would have for some ϕ ∈ Hε(Sd−1), e iθ ∈C, and any g ∈ suppµ, |g x|i tϕ(g · x) =
e iθϕ(x). This would contradicts Proposition 2.5 if t 6= 0.

The last assertion is a direct consequence of Corollary 2.19.

Proof of Theorem A. The spectral decomposition P s = k(s)(νs ⊗e s +U s) is part of Corol-
lary 3.19. The analyticity of k(s) and νs ⊗ e s on ]0, s∞[ is stated in Corollary 3.20. The
strict convexity of logk(s) is stated in Theorem 2.6. The fact that the spectral radius of
P z is less than k(s) follows from the corresponding assertion for Qz in Corollary 3.20. ä

4 Renewal theorems for products of random matrices

It is well known that the potential theory for a random walk on R with positive drift
is closely related to renewal theory (see [15]). In this context, one basic result gives
the homogeneous behaviour at infinity of the potential measure; another basic result
gives the convergence (t →∞) of the entrance measure of the random walk into ]t ,∞[
towards a certain probability which has a density with respect to Lebesgue measure,
with a simple expression in terms of the associated ladder random walk. In this section
we extend these two results to linear random walks on the G-spaces V \ {0} =Sd−1 ×R∗

+
and V̆ = Pd−1 ×R∗

+. We denote by µ ∈ M1(GL(V )) the law of our random walk and we
identify R to R∗

+ via the exponential map. For the proofs we use the results of [36] which
give renewal theorems for a class of Markov walks on R, which satisfy the tameness
conditions explained below. An important observation of [35] is that, if µ is supported
on the positive matrices, these tameness conditions are satisfied. Here we assume that
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the semigroup [suppµ] satisfies condition i-p and we use the results of sections 2 and
3 to show that the tameness conditions of [36] are still valid in our generic situation.
Hence we extend the results of [35], [39] to the general case. This extension will play an
essential role in section 5.

4.1 The renewal theorem for a class of fibered Markov chains

We begin by summarizing, with a few changes and comments, the basic notations of
[36]. Let (S,δ) be a complete separable metric space, P (resp P ) a Markov kernel on
S×R (resp S) which preserves Cb(S×R) (resp Cb(S)). We assume that P commutes with
the translations (x, t ) → (x, t + a) on S ×R, and P is the factor kernel of P on S.If π is
a P-invariant probability measure, and ℓ is Lebesgue measure on R, we note that the
measure π⊗ℓ is P-invariant. We will say that P is a fibered Markov kernel and defines a
"fibered Markov chain over S". More generally,if P is a measurable kernel on S×Rwhich
satisfies the above commutation we will say that P is a measurable fibered kernel over
S.In this situation,if π⊗ℓ is a P-invariant measure, we will say that P is a measurable
fibered Markov kernel if P is positive and P1 = 1, π⊗ℓ-a.e. These measurable fibered
kernels will play an important role in subsection 4.3 below .In this section, from now on
we denote by P a Markov fibered kernel.In our applications,for Markov fibered kernels,
we will have S compact and S = Pd−1 or S ⊂ Sd−1, hence S ×R will be identified with a
cone in V̆ or V \ {0}. Here we consider paths on S ×R starting from (x,0) ∈ S × {0}. Such
a path can be written as (xn ,Vn)n∈N with V0 = 0, x0 = x, Vn −Vn−1 =Un (n ≥ 1).

The corresponding space of paths for a fibered Markov kernel P will be denoted a
Ω =

S×
∞
Π
1

(S×R), the Markov measure on a
Ω associated with P and starting from x ∈ S will be

denoted by aPx and the expectation symbol will be written aEx . The space of bounded
measurable functions on a measurable space Y will be denoted B(Y ). We observe that
the Markov kernel P on S×R is completely defined by the family of measures F (du|x, y)
(x, y ∈ S) where F (du|x, y) is the conditional law of V1 given x0 = x, x1 = y . Given a fixed
P-stationary probability π on S, the number

∫
uF (du|x, y)P (x,d y)dπ(x) with be called

the mean of P , if the corresponding integral
∫
|u|F (du|x, y)P (x,d y)dπ(x) is finite. In

that case, we say that P has a 1-moment.

If t ∈R+ we define the hitting time N (t ) of the interval ]t ,∞[ by :

N (t ) = inf{n ≥ 1 ; Vn > t }; (=+∞ if no such n exists).

On the event N (t ) < +∞ we take W (t ) = VN(t) − t , Z (t ) = xN(t) . If V1 has a lifetime
interpretation then W (t ) is the residual waiting time of the interval ]t ,∞[ (see [15]). In
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general the law of (Z (t ),W (t )) under Px is the hitting measure of S×]t ,∞[ starting from
(x,0). In particular, in analogy with [15], we define the "ladder kernel" H of P , starting
from (x, t ) ∈ S ×R, to be the law (possibly defective) of (xN(0), t +VN(0)) under aPx . In
analogy with [15], N (0) (resp VN(0)) is the first "ladder index" (resp "ladder height") of
P . By definition H is a measurable fibered kernel over S; it plays an important role in
the expression of various asymptotic quantities for P .

One needs some technical definitions concerning direct Riemann integrability, aperi-
odicity of the Markov chain defined by P on S ×R, and the possibility of comparing
aPx , aPy in a weak sense for different points x, y in S. We add some comments as fol-
lows.

Given a fibered Markov chain on S ×R, we denote

C0 =φ,Ck = {x ∈ S ; aPx {
Vm

m
>

1

k
∀m ≥ k} ≥

1

2
} for k ≥ 1.

Definition 4.1. A Borel function ϕ ∈ B(S ×R) is said to be d .R .i (for directly Riemann
integrable) if

∞∑
0

+∞∑

ℓ=−∞
(k +1)sup{|ϕ(x, t )| ; x ∈Ck+1 \Ck , ℓ≤ t ≤ ℓ+1} <+∞ ,

and for every fixed x ∈ S and any β > 0, the function t → ϕ(x, t ) is Riemann integrable
on [−β,β].

In our setting below we will have Ck = S for some k > 0 and for some ε > 0, any x ∈ S

and m sufficiently large aPx (Vm

m
≥ ε) ≥ 1

2 . Then the following stronger form of the above
definition will be used.

Definition 4.2. The function ϕ ∈ B(S ×R) is said to be boundedly Riemann integrable

(b.R .i ) if the following holds:
ℓ=∞
Σ

ℓ=−∞
sup{|ϕ(x, t )|; x ∈ S, t ∈ [ℓ,ℓ+1[}<∞, and for any fixed

x ∈ S, any β> 0, the function t →ϕ(x, t ) is Riemann integrable on [−β,β].

Remark. Definition 4.2 corresponds to sup{|ϕ(x, t )|; x ∈ S} directly Riemann integrable
in the sense of [15]. If Ck = S for some k ∈N, then clearly condition b.R .i implies con-
dition d .R .i

The following definitions will help us to express the appropriate tameness conditions
for (P,π), where π is a P-stationary probability.
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Definition 4.3. The kernel P , the space (S,δ) and the measure π ∈ M1(S) being as above
we consider a point (ζ,λ, y) ∈ R× [0,1]×S and we say that (P,π) has distortion (ζ,λ) at
y if for any ε> 0, there exists A ∈ B(S) with π(A) > 0 and m1,m2 ∈N, such that for any
x ∈ A, aPx {δ(xm1 , y)+δ(xm2 , y) < ε, |Vm1 −Vm2 −ζ| <λ} > 0.

For any f ∈B(a
Ω), ε> 0 we write

f ε(x0, x1, · · · , v1 · · · ) = limsup
n→∞

{ f (y0, y1, · · · , w1, · · · ) ;δ(xi , yi )+|vi −wi | < ε if i ≤ n}.

Definition 4.4. We will say that the kernel P on S ×R is non-expanding if for each fixed
x ∈ S, ε> 0, there exists r0 = r0(x,ε) such that for all real valued f ∈B(a

Ω) and for all y

with δ(x, y) < r0, one has

aPy ( f ) ≤ aPx ( f ε)+ε| f |, aPx ( f ) ≤ aPy ( f ε)+ε| f |.

This condition of non expansion says that, in probability, if x, y ∈ S are close then the
paths along the fibered Markov chain starting from x,y and defined by P remain close.

One can see that, if ϕ ∈ Cb(S ×R) is uniformly continuous, then the condition of non
expansion for P implies that the set of functions {P nϕ ; n ∈ N} is uniformly equicon-
tinuous.

We denote by I.1–I.4 the following conditions, where π denotes a given P-stationary
probability on S,

• I.1. For every open set O in S with π(O) > 0, and aPx -a.e., for each x ∈ S, we have

aPx {xn ∈O for some n} = 1.

• I.2. P has a 1-moment and for all x ∈ S, aPx-a.e. we have

lim
n→∞

Vn

n
= L =

∫
uF (du|x, y)P (x,d y)dπ(x) > 0.

• I.3. There exists a sequence (ζi )i≥1 ⊂ R such that the group generated by ζi is
dense in R and such that for any i ≥ 1 and λ ∈ [0,1], there exists y = y(i ,λ) ∈ S

such that (P,π) has distortion (ζi ,λ) at y .

• I.4. The kernel P on S ×R is non-expanding.
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Condition I.1 means that for any x ∈ S the trajectories of P visit any non π-negligible
open set with probability one. It implies that continuous P-invariant functions are con-
stant on S. Condition I.3 guarantees that there is no r > 0 such that, with probability
one, the values of Vn −Vm(n,m ∈N) are of the form k(n,m)r with k(n,m) ∈Z.

One can see that conditions I.1 and I.4 imply that P admits the unique invariant prob-
ability π and that for ϕ ∈Cb(S), the set {P

n
ϕ ; n ∈N} is equicontinuous. We will denote

ℓ+ = 1[0,∞[ℓ where ℓ is Lebesgue measure on R. For a bounded measure θ on S ×R,
we will write θ its projection on S. We recall that the Radon transform of a bounded
measure on R is defined by θ̂(t ) = θ(]t ,∞[) if t ∈R.

The ladder kernel H can be written as

H((y, t ), ·) =
∫

(δz ⊗H z
y ∗δt )H(y,d z),

where H z
y is the conditional law of VN(0) given xN(0) = z, starting from y ∈ S. Condition

I.2 implies that for any y ∈ S, H(((y, t ), ·) is a probability.

Then, the following extension of the classical renewal theorem is proved in [36].

Theorem 4.5. Assume conditions I.1-I.4 are satisfied for the fibered Markov kernel P .

Then there exists a positive measure χ on S ×R+ absolutely continuous with respect to

π⊗ℓ+ such that for any x ∈ S and ϕ ∈Cb(S×]0,∞[),

lim
t→∞

aExϕ(Z (t ),W (t )) =
1

L

∫
ϕ(z, s)1[s,∞[(t )aPy {xN(0) ∈ d z,VN(0) ∈ d t }dχ(y)d s =χ(ϕ),

i.e. χ= 1
L

∫
(δz ⊗ Ĥ z

yℓ+)H(y,d z)dχ(y).

Moreover, if ϕ ∈Cb(S ×R) is d .R .i , then, for any x ∈ S,

lim
t→∞

aEx(
∞∑
0
ϕ(xn ,Vn − t )) =

1

L

∫
ϕ(y, s)dπ(y)d s,

lim
t→−∞

∞∑
0

P kϕ(x, t ) =
1

L
(π⊗ℓ)(ϕ).

Furthermoreχ is an invariant measure for the measurable Markov chain on S with kernel

H(y,d z) = aPy (xN(0) ∈ d z) and
∫
Ey (N (0))dχ(y) <∞,

∫
Ey (VN(0))dχ(y) <∞, where χ is

absolutely continuous with respect to π.

Remark. 1. If S is compact, condition I.1 is a consequence of uniqueness of the P-
stationary measure π. This follows from the law of large numbers for Markov
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chains with a unique stationary measure [8]: for any continuous function with

0 ≤ f ≤ 1, π( f ) > 0 we have aPx -a.e. for all x ∈ S, lim
n→∞

1

n

n−1∑
0

f (Xk) = π( f ) > 0. This

implies condition I.1.

2. The construction ofχ in [36] is based on Kac’s recurrence theorem and implies the
absolute continuity of χ with respect to π, hence the measure χ is independent
on x and absolutely continuous with respect to π⊗ℓ.

4.2 Tameness conditions I.1–I.4 are valid for linear random walks

We verify conditions I.1–I.4 in four related situations. As in ([35], Proposition 1) the ba-
sic property used for the validity of I.1, I.2, I.4 is the fact that for a product Sn of random
matrices, under condition i-p the lengths of colum vectors of Sn are comparable to the
norm of Sn (see Theorem 3.2). We observe that this property plays also an important
role in the general context of [4] (see Theorem 6.9). The aperiodicity property in con-
dition I.3 is verified below using the properties of dominant eigenvalues of elements of
T (see Proposition 2.5). Here R is identified with R∗

+ via the map t → e t . If d > 1 we use
condition i-p. If d = 1 we use non arithmeticity of µ.

The first (and simpler) situation corresponds to S = Pd−1, S ×R∗
+ = V̆ , P (v, ·) = µ∗δv

where P is the operator on V̆ denoted P̆ in section 2. Also we write on Pd−1,P (x, ·) =
µ∗δx if x ∈ Pd−1. We will begin the verifications by this case and show how to modify
the arguments in the other cases corresponding to s = α or S ⊂ Sd−1 ⊂ V \ {0}. In the
case, of V \ {0}, S is a compact subset of Sd−1 and P (resp P ) will be the restriction to
S×R∗

+ (resp S) of the kernel already denoted P (resp P̃ ) in section 2. Since, for any t ∈R∗
+

and g ∈ G , we have g (t v) = t g (v), the kernels P and P̆ define fibered Markov chains
on S ×R∗

+. As shown at the end of section 2, (Theorem 2.16) we need to consider two
cases for P̃ , depending of the fact that P preserves a proper convex cone (case II) or not
(case I). In case I (resp II) we will have S = Sd−1 (resp S = Co(Λ+([suppµ]). With these
choices, there exists a unique P̃-stationary measure on S, as follows from Theorem 2.16.
In paragraph 5 below we state the detailed results for V \ {0}. We denote by α ∈ Iµ the

positive number (if it exists) such that k(α) = 1, where k(s)= lim
n→∞

(
∫

|g |s dµn(g ))1/n .

We know from section 2, that for any s ∈ Iµ, there are two Markov kernels Qs on Pd−1

and Q̃s on Sd−1, naturally associated with the operator P s considered in section 2. We
are here mainly interested in the cases s =α and s = 0, with Q0 = P and Q̃0 = P̃ , but we
observe that our considerations are valid for any s ∈ Iµ.
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We denote by aQs
x the natural Markov measure on the path space a

Ω associated with µ

and s ≥ 0. If s = 0 we use the notation aPx . In our linear situations we have aPx = δx ⊗P,
aQs

x = δx ⊗Qs
x where Qs

x is defined in section 3. We write Vk = log |Sk x|, xk = Sk · x and
we denote by ∆x the map from Ω=GN to a

Ω given by (g1, g2, · · · ) → (x, x1,V1, x2,V2, · · · ).
Clearly aQα

x (resp aPx) is the push-forward of Qα
x (resp P) by ∆x , hence we can translate

the results of section 3 in the new setting.

The validity of condition I.1, in all cases, is a direct consequence of the remark following
Theorem 4.5, since by Theorem 2.6 and Theorem 2.16 the kernels P̄ , Qα, P̃ , Q̃α have
unique stationary measures on S.

In order to verify I.2 we begin by S = Pd−1, S ×R∗
+ = V̆ , P (x, .) = µ∗δx , P̆ (v, .) = µ∗δv .

Then F (A|x, y) = µ{g ∈ G , log |g x| ∈ A, g · x = y} for any Borel set A ⊂ R, and π = ν with
µ∗ν = ν. We observe that | log |g x|| ≤ logγ(g ) if |x| = 1 and γ(g ) = sup(|g |, |g−1|). The
finiteness of

∫
|u|F (du|x, y)P̄ (x,d y)dπ(x) follows since logγ(g ) is µ-integrable. Also∫

uF (du|x, y)P̄ (x,d y)dπ(x) =
∫

log |g x|dµ(g )dν(x) = Lµ. Then the relation aPx =∆x (P)
and Theorem 3.10 imply, for every x ∈Pd−1 (case s = 0), and P−a.e.:

Lµ = lim
n→∞

1

n
log |Sn x| =

∫
log |g x|dµ(g )dν(x).

Except for Lµ > 0, this is condition I.2 in the first case. If S ⊂Sd−1 is as above, the result
is the same, since the involved quantities depend only on |g x| with x ∈Pd−1, and P̃ has
a unique stationary measure on S.

In the cases of Qα and Q̃α it suffices also to consider the case S =Pd−1. The 1-moment
condition in I.2 follows from

∫
|g |α| logγ(g )|dµ(g ) <+∞. The convergence part follows

from Theorem 3.10 with

Lµ(α) =
∫

qα(x, g ) log |g x|dπα(x)dµ(g ) =
k ′(α)

k(α)
> 0.

We show I.3 as follows. If d > 1, since the semigroup T = ∪
n≥0

(suppµ)n satisfies (i-p), we

know using Proposition 2.5 that the set ∆=
{
log |λh | ; h ∈ T prox

}
is dense in R. The same

is true of 2∆= {logλh2 ; h ∈ T prox}.

If d = 1, the same properties follow from the non arithmeticity of µ.

We take for ζi (i ∈ N) a dense countable subset of 2∆. Let ζi = logλg ∈ 2∆, with λg >
0, g = h2, h = u1 · · ·un , ui ∈ suppµ (1 ≤ i ≤ n) and y = y(ζi ,λ) = v̄g ∈ Pd−1 = S. We
observe that, if ε is sufficiently small and Bε = {x ∈ Pd−1;δ(x, v̄g ) ≤ ε}, then g ·Bε ⊂ Bε′ ,
with ε′ < ε and g as above, Also, λ > 0 being fixed, and ε sufficiently small, we have
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| logλg − log |g x|| < λ if x ∈ Bε. These relations remain valid for g ′ instead of g if g ′ is
sufficiently close to g . Then we have for x ∈ Bε, and S2n = g ∈ (suppµ)2n as above,

aPx {δ(S2n .x, v̄g ) < ε, | log |S2n x|− logλg | <λ} > 0.

With ζi = logλg , y = v̄g , A = Bε, τ= 0, m1 = 0, m2 = 2n, this implies condition I.3 for the
probability aPx =∆x (P).

The definition of Qα
x shows its equivalence to P on the σ-algebra of the sets depending

of the first n coordinates. Then the relation aQα
x =∆x (Qα

x ) implies with g as above

aQα
x {δ(S2n .x, v̄g ) < ε, | log |S2n x|− logλg | <λ} > 0.

Hence condition I.3 is valid for aQα
x also. If we consider Sd−1 instead of Pd−1, i.e.

S = Sd−1 or S = Co(Λ+([suppµ])), and the metric δ̃ on S, the above geometrical argu-
ment remains valid with g = h2, y = ṽg ∈Λ+ ([suppµ]) in the second case, λg > 0 and ε

sufficient small. This shows I.3 in this setting.

Condition I.4 follows from the proof of Proposition 1 of [35]. The proof of the corres-
ponding part of this proposition is a consequence of the condition,

aPx {∃C > 0 with |Sn x| ≥C |Sn| for all n} = 1,

for all x ∈ S, which implies that |Sn x| and |Sn y | are comparable if x and y are close.

For the proof of the above condition, we observe that if x ∈ S and s ∈ Iµ, in particular if
s = 0 or α, this condition has been proved in the stronger form

lim
n→∞

|Sn x|
|Sn |

= |〈z∗(ω), x〉| > 0 Qs
x -a.e.,

in Theorem 3.2, hence condition I.4 is valid in all the cases under consideration.

4.3 Direct Riemann integrability

In case of the spaces S = Pd−1 or S ⊂ Sd−1 considered above, under condition i-p for
[suppµ], the d .R .i condition takes the simple form given by Lemma ?? below, in multi-
plicative notation.

We assume now that the hypothesis of Theorem 3.10 is satisfied, we use the correspond-
ing notations, and Ck is as in Definition 4.1 .

Lemma 4.6. For k large we have Ck = S.
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Proof. We consider the case S =Pd−1. Using Theorem 3.10 for s = 0, we get for any fixed
x

lim
n→+∞

log |Sn(ω)x|
n

= Lµ, P−a.e..

We observe that for any x, y ∈Sd−1, ‖Sn y |− |Sn x‖ ≤ |Sn |δ̃(x, y) ≤ 2|Sn|. It follows
∣∣∣∣
|Sn y |
|Sn x|

−1

∣∣∣∣≤ 2
|Sn|
|Sn x|

,
∣∣log |Sn y |− log |Sn x|

∣∣≤ 2
|Sn |
|Sn x|

.

Using Theorem 3.2, we get that the sequence |Sn |
|Sn x| converges P−a.e. to 1

|〈z∗(ω),x〉| < ∞,

hence the sequence 1
n

|Sn |
|Sn x| converges P−a.e. to zero. It follows that 1

n
log |Sn x|− 2

n
|Sn |
|Sn x|

converges P-a.e. to Lµ.

Hence there exists m0 > 0 such that P{ 1
n

log |Sn x|− 2
n

|Sn |
|Sn x| >

1
2 Lµ for all n ≥ m0} ≥ 1/2.

In view of the inequality 1
n

log |Sn y | ≥ 1
n

log |Sn x| − 2
n

|Sn |
|Sn x| , we have for any y ∈ Sd−1,

P{ 1
n

log |Sn y | > Lµ/2 for all n ≥ m0} > 1
2 . This implies Ck = Pd−1,Ck+1 \ Ck = φ if 1

k
≤

inf
(

1
m0

,
Lµ

2

)
.

If s =α, the argument is the same with P replaced by Qα and the relation Qα
x ≤ c(α)Qα

is used as follows.

Qα{
1

n
log |Sn y | > Lµ(α)/2 for all n ≥ m0} > 1−

1

2c(α)
.

Since Qα
y ≤ c(α)Qα, this gives for any y ∈Pd−1,

Qα
y {

1

n
log |Sn y | > Lµ(α)/2 for all n ≥ m0} >

1

2
.

Then also Ck =Pd−1 for 1
k
≤ inf

(
1

m0
,

Lµ(α)
2

)
. Hence we conclude as above.

4.4 The renewal theorems for linear random walks

We consider V̆ = Pd−1 ×R∗
+ V \ {0} = Sd−1 ×R∗

+, and we study the asymptotics of the
potential kernels of the corresponding random walks defined by µ. We denote

V̆1 = {v ∈ V̆ ; |v | > 1}, V1 = {v ∈V ; |v | > 1},

and we consider also the entrance measures H̆ (v, .) or H(v, .) of Sn v in V̆1 or V1, start-
ing from v . Since conditions I are valid, their behaviour for v small are given by The-
orem 4.5, and we will state them below. We denote by Λ̆([suppµ]) the inverse image of
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Λ([suppµ]) in V̆ . Also we denote

Λ̆1([suppµ]) = {v ∈ V̆ ; v̄ ∈Λ([suppµ]), |v | ≥ 1},

Λ1([suppµ]) = {v ∈V ; v̄ ∈Λ([suppµ]), |v | ≥ 1}.

As shown below these closed sets support the limits (v → 0) of H̆(v, .) and H(v, ·). The
function e s (resp measure νs ) defined in Theorem 2.2 plays an essential role for s = 0, α
in the following theorems.

The results will take two forms according as Lµ > 0 or Lµ < 0.

Theorem 4.7. Assume µ ∈ M1(G) is such that the semigroup [suppµ] satisfies condition

i-p if d > 1 or µ is non arithmetic if d = 1, logγ(g ) is µ-integrable and

Lµ = lim
n→∞

1

n

∫
log |g |dµn(g ) > 0.

Then if v ∈ V̆ ,
∞∑
0
µk ∗δv is a Radon measure on V̆ such that on Cc(V̆ ) we have the vague

convergence,

lim
v→0

∞∑
0
µk ∗δv =

1

Lµ
ν⊗ℓ,

where ν ∈ M1(Λ([suppµ])) is the unique P̄-invariant measure on Pd−1. This convergence

is valid on any bounded continuous function f which satisfy on V̆ ,

+∞∑
−∞

sup{| f (v)| ; 2ℓ ≤ |v | ≤ 2ℓ+1} <∞.

Furthermore the ladder kernel H̆ satisfies the following weak convergence,

lim
v→0

H̆ (v, ·) = χ̆ ∈ M1(Λ̆1([suppµ])),

where χ̆ is defined by this convergence and is absolutely continuous with respect to ν⊗ℓ

Proof. In view of the verifications of conditions I in subsections 2, 3 and of Lemma
4.6, this is a direct consequence of Theorem 4.5 applied in the case S = Pd−1, S ×R∗

+ =
V̆ \ {0}.

If Lµ < 0 the following gives the asymptotic behaviour (v → 0) of the potential measure
∞∑
0
µk∗δv ; this asymptotics allow us to obtain a Cramér estimate for the random variable

M(v) = sup{|Sn v | ;n ≥ 1}.

62



Theorem 4.8. Assume that µ ∈ M1(G) is such that [suppµ] satisfies i-p, if d > 1 or µ is non

arithmetic if d = 1. Assume Lµ < 0,α > 0 exists with k(α) = 1,
∫
|g |α logγ(g )dµ(g ) <∞

and write

Lµ(α) = lim
n→∞

1

n

∫
|g |α log |g |dµn(g ) =

k ′(α)

k(α)
.

Then Lµ(α) > 0 and for any u ∈Pd−1, we have the vague convergence in V̆ ,

lim
t→0

t−α
∞
Σ
0
µk ∗δtu =

eα(u)

Lµ(α)
να⊗ℓα,

where να ∈ M1(Pd−1) (resp eα ∈C (Pd−1), να(eα) = 1) is the unique solution of the equa-

tion Pανα = να (resp Pαeα = eα) and να has support Λ([suppµ]).

Furthermore, on Cb(V̆1) and for any u ∈Pd−1 ⊂ V̆ , the ladder kernel H̆(tu, ·) satisfies the

vague convergence,

lim
t→0

t−αH̆(tu, ·) = eα(u)χ̆α,

where χ̆α, defined by this convergence, is a positive measure supported on Λ̆1([suppµ])
and is absolutely continuous with respect to να⊗ℓα.

In particular, for A = χ̆α(V̆1) > 0 and any u ∈Pd−1, lim
t→∞

tαP{M(u) > t } = Aeα(u).

The first convergence is valid on any continuous function f which satisfies

+∞∑
−∞

2−ℓα sup{| f (v)| ; 2ℓ ≤ |v | ≤ 2ℓ+1} <∞.

Proof. We observe that the function eα⊗hα on V̆ satisfies P̆ (eα⊗hα) = eα⊗hα, hence
we can consider the associated Markov operator Q̆α on V̆ defined by

Q̆α( f ) =
1

eα⊗hα
P̆ ( f eα⊗hα).

Then the potential kernel of Q̆α is given by
∞∑
0

(Q̆α)k( f ) =
1

eα⊗hα

∞∑
0

P̆ k ( f eα⊗hα).

Clearly Q̆α commutes with dilations, hence defines a fibered Markov kernel on V̆ .

Also the mean of Q̆α is Lµ(α) > 0. Then, taking f = ϕ
eα⊗hα , since conditions I are valid,

the result follows from Theorem 4.5. Cramér’s estimation for P{sup |Snu| > t ; n ∈ N}
follows with A = χ̆α(V̆1) > 0.

Proofs of Theorems B, Bα and Corollary. These results are simple consequences of The-
orems 4.7, 4.8. ä
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4.5 Renewal theorems on V \ {0}

Here we extend Theorems 4.7 et 4.8 to the natural setting of V \ {0}. We note that for
d = 1, we have V \ {0} = R∗, then the results reduce to the classical renewal theorems
([15]).

Theorem 4.9. Assume µ is as in Theorem 4.7. Then there are 2 cases as in Theorem 2.16,

• Case I: No proper convex cone in V is suppµ-invariant. Then, in vague topology,

lim
v→0

∞∑
0
µk ∗δv =

1

Lµ
ν̃⊗ℓ,

where ν̃ is the unique µ-stationary measure on Sd−1.

• Case II: Some proper convex cone in V is suppµ-invariant. Then, for any u ∈Sd−1,

in vague topology,

lim
t→0+

∞∑
0
µk ∗δtu =

1

Lµ
(p+(u)ν+⊗ℓ+p−(u)ν−⊗ℓ),

where ν+ is the unique µ-stationary measure on Λ+([suppµ]), ν− is symmetric of

ν+, p+(u) is the entrance probability of Sn ·u in Co(Λ+([suppµ])), p−(u) = 1−
p+(u).

In the two cases these convergences are also valid on any bounded continuous functions

f on V \ {0} such that
+∞∑
−∞

sup{| f (v)| ; 2ℓ ≤ |v | < 2ℓ+1} <∞.

In addition, for any u ∈Sd−1, in weak topology,

lim
t→0+

H(tu, ·) =χu ∈ M1(Λ1([suppµ]),

whereχu is defined by this convergence and is absolutely continuous with respect to ν̃⊗ℓ.

• In case I, χu =χ is independent on u.

• In case II, with Λ1,+([suppµ]) = {v ∈V ; ṽ ∈Λ+([suppµ]), |v | ≥ 1} we have

χu = p+(u)χ++p−(u)χ−,

where χ1,+ ∈ M1(Λ+(suppµ)), and χ− is symmetric of χ+.
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Proof. In case I, the proof is the same as for Theorem 4.7 with S =Sd−1 instead of Pd−1.
In case II, we take S = Co(Λ+([suppµ]) and we observe that S ×R∗

+ is a suppµ-invariant
convex cone with non zero interior to which, as in the proof of Theorem 4.7, we can
apply Theorem 4.5 .

If u ∈ S (resp u ∈−S) we have

lim
t→0+

∞∑
0
µk ∗δtu =

1

Lµ
(ν+⊗ℓ), (resp. lim

t→0+

∞∑
0
µk ∗δtu =

1

Lµ
(ν−⊗ℓ)).

If u ∈ V \ {0}, we denote by p+(u,d v) (resp p−(u,d v)) the entrance measure of Sn ·u in
the cone Φ= S ×R∗

+ (resp −Φ). Clearly the mass of p+(u,d v) is p+(u), and p+(u,d v) is
supported on Φ.

We denote also by U (v, ·) =
∞∑
0
µk ∗δv the potential kernel of the linear random walk

Sn(ω)v starting from v in V \ {0}. Then, for any ϕ ∈Cc(Φ∪−Φ),

U (tu,ϕ)=
∫

U (v,ϕ)(p+(tu,d v)+p−(tu,d v)).

Clearly the kernel p+(x,d v) commutes with the scaling x → t x (t > 0). Then it follows
from above that, on Cc (Φ∪−Φ) :

lim
t→0+

U (tu, .) =
1

Lµ
(p+(u)ν+⊗ℓ+p−(u)ν−⊗ℓ).

If ϕ ∈Cc(V \ {0}) vanishes on Φ∪−Φ, Theorem 4.7 implies lim
t→0+

U (tu,ϕ) = 0.

Finally we have lim
t→0+

∞∑
0
µk ∗δtu =

1

Lµ
(p+(u)ν+⊗ℓ+p−(u)ν−⊗ℓ). The existence of χu

follows from the first formula in Theorem 4.5 . In particular the right hand side of this
formula is independent on u ∈ S. Hence, in case I, χu is independent on u. In case
II, we use S = Co(Λ+([suppµ])) and we argue as above in order to obtain the formula
χu = p+(u)χ+ + p−(u)χ− where χ+ = χu for u ∈ Co(Λ+([suppµ]) and χ− = χu for u ∈
Co(Λ−([suppµ])).

We have also the following analogue of Theorem 4.8. The proof is a combination of the
arguments in the proofs of Theorems 4.8 and 4.7.

Theorem 4.10. Assume µ and α are as in Theorem 4.8. Then for any u ∈ Sd−1 we have

the vague convergence : lim
t→0+

t−α
∞∑
0
µk ∗δtu =

eα(u)

Lµ(α)
ν̃αu ⊗ℓα, where ν̃αu ∈ M1(Λ̃(T )) is P̃α-

invariant. There are 2 cases like in Theorem 4.9.
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• Case I: ν̃αu = ν̃α has support Λ̃(T ),

• Case II: ν̃αu = pα
+(u)να+ + pα

−(u)να−, where pα
+(u) (resp pα

−(u)) denotes the entrance

probability under Qα
u of Sn ·u in the convex envelope of Λ+(T ) (resp Λ−(T )).

The above convergences are valid on any continuous function f which satisfies

ℓ=+∞∑

ℓ=−∞
2−ℓα sup{| f (v)| ; 2ℓ ≤ |v | ≤ 2ℓ+1} <∞.

Furthermore, on Cb(V1) for any u ∈Sd−1, we have the vague convergence,

lim
t→0+

t−αH(tu, .) = eα(u) (pα
+(u)χα

−+pα
−(u)χα

+),

where χα
+,χα

− are defined by this convergence and are absolutely continuous with respect

to ν̃α⊗ℓ.

In case I, χα
+ =χα

− =χα is a positive measure supported on Λ1([suppµ]). In case II, χα
+ is a

positive measure supported on Λ+([suppµ]) and χα
− is symmetric of χα

+.

4.6 On the asymptotics of k(s) (s →∞)

For the existence of α> 0 such that k(α) = 1, we have the following sufficient condition
where we denote by r (g ) the spectral radius of g ∈G .

Proposition 4.11. Let µ ∈ M1(G) and assume that k(s) = lim
n→∞

(
∫
|g |s dµn(g ))1/n is finite

for any s > 0. For any p ∈N and g ∈ (suppµ)p we have

lim
s→∞

logk(s)

s
≥ p−1 log r (g ).

In particular if some g ∈ [suppµ] satisfies r (g ) > 1, then k(s) > 1 for s sufficiently large.

The proof is based on the following elementary lemma which we state without proof.

Lemma 4.12. Let g ∈ G. Then for any ε > 0 there exists c(ε) > 0 and a neighbourhood

V (ε) of g such for any sequence gk ∈V (ε) one has |gn · · ·g1| ≥ c(ε) r n(g )(1−ε)n .

Proof of Proposition 4.11. The convexity of log k(s) implies that lim
s→∞

log k(s)
s

exists. Let

g ∈ suppµ, hence given ε> 0 these exists a neighbourhood V (ε) of g as in Lemma 4.12
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such that µ(V (ε)) =C (ε) > 0. From the lemma we have,

k(s) = lim
n→∞

(
∫

|gn · · ·g1|s dP(ω))1/n

≥ lim
n→∞

(cs (ε)r ns (g )(1−ε)nsC n(ε))1/n = r s (g )(1−ε)sC (ε).

Hence log k(s)
s

≥ log(1−ε)+ log r (g )+ log C (ε)
s

, therefore lim
s→∞

log k(s)
s

≥ log r (g ).

We observe that if µ is replaced by µp , then k(s) is replaced by kp (s). Hence for g ∈
(suppµ)p we have from above the required inequality. If g ∈ [suppµ] then we can as-

sume g ∈ (suppµ)p for some p ∈N; since r (g )> 1, we have log r (g ) > 0, hence lim
s→∞

log k(s)
s

>
0. ä

5 The tails of an affine stochastic recursion

5.1 Notation and main result

Let H be the affine group of the d-dimensional Euclidean space, i.e. the set of maps f of
V into itself of the form f (x) = g x+b where g ∈GL(V ) =G ,b ∈V . Let λ be a probability
measure on H , µ its projection on G . We denote by Σ (resp T ) the closed subsemigroup
of H (resp G) generated by suppλ (resp suppµ). We consider the affine random walk on
V =Rd defined by λ, i.e. the Markov chain on V described by the stochastic recursion,

X x
n+1 = An+1 X x

n +Bn+1, X x
0 = x ∈V ,

where (An ,Bn) are H-valued i.i.d random variables with law λ. We denote Ω̂= HN and
we endow Ω̂ with the shift θ̂ and the product measure P̂=λ⊗N; by abuse of notation the
expectation symbol with respect to P̂ will be denoted by E. We have

X x
n = An · · ·A1x +

n∑
1

An · · · Ak+1Bk .

We are interested in the case where Rn =
n∑
1

A1 · · ·Ak−1Bk converges P̂-a.e. to a random

variable R and X x
n converges in law to R . We observe that X x

n − An · · · A1x and Rn have
the same law. In that case we have

R =
∞∑
0

A1 · · · Ak Bk+1,
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hence the random variable R satisfies the equation

R = AR ◦ θ̂+B , (S)

and the law ρ of R satisfies the convolution equation ρ = λ∗ρ =
∫

hρdλ(h). Also, if
R is unbounded, we will be interested in the tail of R in direction u, i.e. the asymp-
totics t →∞ of P̂{〈R ,u〉 > t } (resp P̂{|〈R ,u〉| > t }), where u ∈ Sd−1 (resp u ∈ Pd−1). We
are mainly interested in the "shape at infinity" of ρ i.e. the asymptotics (t → 0+) of the
measure t ·ρ where t ·ρ is the push-forward of ρ by the dilation v → t v in V (t > 0).
It turns out that this "shape at infinity" depends essentially of the semigroups T and
Σ defined above. A basic role will be played by the top Lyapunov exponent Lµ of the
product of random matrices Sn = An · · · A1, and µ will be assumed to satisfy

∫
logγ(g )dµ(g )<∞ where γ(g )= sup(|g |, |g−1|).

The main hypothesis will be on µ, which is always assumed to satisfy Lµ < 0 and con-
dition i-p of section 2 if d > 1, or µ non arithmetic if d = 1. We recall that the function

k(s) is defined on the interval Iµ ⊂ [0,∞[ by k(s) = lim
n→∞

(
∫

|g |s dµn(g ))1/n and logk(s) is

strictly convex (see Theorem 2.6). It is natural to assume that suppλ has no fixed point
in V since otherwise the affine recursion reduces to a linear recursion. We denote by
∆a(Σ) the set of fixed attractive points of the elements of Σ, i.e. fixed points h+ ∈ V of
elements h = (g ,b) ∈Σ such that lim

n→∞
|g n |1/n < 1. For v ∈V \ {0} we denote

H+
v = {x ∈V ;〈v, x〉 > 1},

and for a bounded measure ξ on V we consider its Radon transform ξ̂, i.e. the function
on V \ {0} defined by

ξ̂(v) = ξ(H+
v ) with H+

v = {x ∈V ;〈x, v〉 > 1}.

We also write u = t v with u ∈Sd−1, t > 0 and ξ̂(u, t ) = ξ̂( u
t

). In particular, the directional

tails of ξ are described by the function ξ̂(v) (v → 0). We start with the basic

Proposition 5.1. Assume Lµ < 0 and E(log |B |) < ∞. Then Rn converges P̂−a.e to R =
∞∑
1

A1 · · · Ak−1Bk , and for any x ∈V , X x
n converges in law to R. For all β ∈ Iµ with k(β) < 1

and E(|B |β) <∞, we have E(|R|β) <∞.

The law ρ of R is the unique λ-stationary measure on V . The closure ∆a (Σ) = Λa(Σ) is

the unique Σ-minimal subset in V and is equal to suppρ. If the semigroup T contains an

element g with lim
n→∞

|g n |1/n > 1 and T has no fixed point then suppρ is unbounded.
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If T satisfies condition i-p and suppλ has no fixed point in V , then ρ (W ) = 0 for any

affine subspace W .

Proof. Under the conditions Lµ < 0 and E(log |B |) < ∞ the P̂-a.e. convergence of Rn

to R is well known as well as the moment condition E(|R|β) < ∞ if k(β) < 1 and β ∈
Iµ (see for example [7]). We complete the argument by observing that, since Lµ < 0,
we have lim

n→∞
|An · · · A1x| = 0 hence, since X x

n − An · · · A1x has the same law as Rn , the

convergence in law of X x
n to R for any x follows. In particular, if x ∈ V is distributed

according to ξ ∈ M1(V ), the law of X x
n is λn ∗ ξ =

∫
λn ∗δx dξ(x), hence has limit ρ at

n =∞. If ξ is λ-stationary, we have λn ∗ξ= ξ, hence ξ= ρ.

Since Lµ < 0, there exists h = (g ,b) ∈ Σ, such that |g | < 1, hence lim
n→∞

|g n|1/n < 1. If h =

(g ,b) ∈ Σ satisfies lim
n→∞

|g n|1/n < 1, then I − g is invertible, hence the unique fixed point

h+ of h satisfies (I−g )h+ = b, and for any x ∈V , hn x−h+ = g n(x−h+), hence lim
n→∞

hn x =
h+. Taking x in suppρ we get h+ ∈ suppρ, since suppρ is h-invariant. Furthermore, for
any x ∈V and h′ ∈ Σ we have lim

n→∞
h′hn x = h′(h+) and h′hn ∈ Σ satisfies lim

n→∞
|g ′g n| = 0,

hence the unique fixed point xn of h′hn satisfies lim
n→∞

xn = h′(h+). Then ∆a(Σ) =Λa(Σ)

is a Σ-invariant non trivial, closed subset of suppρ.

On the other hand, for x ∈ ∆a(Σ) we have lim
n→∞

λn ∗δx = ρ, (λn ∗δx )(Λa(Σ)) = 1 for all

n hence ρ (Λa(Σ) = 1, i.e Λa(Σ) = suppρ. The Σ-minimality of Λa(Σ) follows from the
fact that, for any x ∈V and h = (g ,b) with |g | < 1, one has lim

t→∞
hn x = h+ ∈Λa(Σ) hence

Σx ⊃Λa(Σ). This implies also the uniqueness of the Σ-minimal set.

Observe that, if suppρ is bounded, then the convex envelope Co(suppρ) is a compact
subset of V . Also any h ∈ Σ preserves suppρ and Co(suppρ). Then Markov-Kakutani
theorem implies that the affine map h has a fixed point h0 in Co(suppρ). If h = (g ,b) ∈Σ

satisfies lim
n→∞

|g n |1/n > 1 we have :

(I − g )h0 = b and hn x −h0 = g n(x −h0),

hence if x 6= h0, we have lim
n→∞

|hn x| =∞. Then suppρ is unbounded since if x ∈ suppρ 6=
δh0 the point hn x belongs to suppρ.

Let W = {Wi ; i ∈ I } be the set of affine subspaces of minimal dimension with ρ(Wi ) > 0.
Since dim(Wi ∩W j ) < dimWi if i 6= j , we have ρ(Wi ∩W j ) = 0, hence

∑

i∈I

ρ(Wi ) ≤ 1. It

follows that, for any ε > 0, the set {W j ; j ∈ I and ρ(W j ) ≥ ε} has cardinality at most 1
ε ,

hence ρ(Wi ) reachs its maximum on a finite set {W j ; j ∈ J ⊂ I } of affine subspaces.
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Then the stationarity equation λ∗ρ = ρ gives on such a subspace W j ,

ρ(W j ) =
∫

ρ(h−1W j )dλ(h).

Since ρ(h−1W j ) ≤ ρ(W j ) we get, for any h ∈ suppλ, j ∈ J ,

ρ(h−1W j ) = ρ(W j ), i .e h−1W j =Wi ,

for some i ∈ J .

In other words the set {W j ; j ∈ J } is suppλ-invariant. If dimW j > 0, one gets that the

set of directions W j ( j ∈ J ) is a suppµ-invariant finite set of subspaces of V , which con-
tradicts condition i-p for the semigroup T . Hence each W j ( j ∈ J ) is reduced to a point
w j . Then the barycenter of the finite set {w j ; j ∈ J } is invariant under suppλ, which
contradicts the hypothesis. Hence ρ(W ) = 0 for any affine subspace W .

In order to state the main result of this section we consider the compactification V ∪
Sd−1
∞ , and the natural projection of Sd−1

∞ on the unit sphere Sd−1. We denote by Λ̃
∞(T )

(resp Λ
∞
+ (T ), Λ∞

− (T )) the inverse image of Λ̃(T ) (resp Λ+(T ), Λ−(T )) in Sd−1
∞ (see sec-

tion 2, paragraph 3). The closure Λa(Σ) of Λa(Σ) in the compact space V ∪Sd−1
∞ is T -

invariant hence Λa(Σ)∩Sd−1
∞ =Λ

∞
a (Σ), which is non void if suppρ =Λa(Σ) is unboun-

ded and is a closed T -invariant subset of Sd−1
∞ .

Then Proposition 2.14 applied to Λ
∞
a (Σ) ⊂ Sd−1

∞ gives the following trichotomy, since
condition i-p is satisfied by T

• case I: T has no invariant proper convex cone and Λ
∞
a (Σ) ⊃ Λ̃

∞(T ),

• case II’: T has an invariant proper convex cone and Λ
∞
a (Σ) ⊃ Λ̃

∞(T ),

• case II”: T has an invariant proper convex cone and Λ
∞
a (Σ) contains only one of

the sets Λ∞
+ (T ),Λ∞

− (T ), say Λ
∞
+ (T ), hence Λ

∞
a (Σ)∩Λ

∞
− (T ) =;.

We assume α ∈]0, s∞[ exists with k(α) = 1 (see Proposition 4.11 for a sufficient condi-
tion). As in Theorem 4.10, we consider the P̃α-invariant measures ν̃α,να+,να−.

The following implies Theorem C of section I and describes the asymptotics of the prob-
ability measure t ·ρ when t → 0+: ρ has a Pareto distribution of index α ([47], p.74).

Theorem 5.2. With the above notation assume Lµ < 0, Σ has no fixed point in V , T satis-

fies condition i-p, there existsα∈]0, s∞[ such that k(α)= 1 and E(|B |α+ε) <∞, E(|A|αγε(A)) <
∞ for some ε> 0. If d = 1 assume also that µ is non arithmetic.
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Then suppρ is unbounded and we have the following vague convergence on V \ {0}

lim
t→0+

t−α(t ·ρ) =Λ=C (σα⊗ℓα)

where C > 0, σα ∈ M1(Λ̃(T )) are defined by the above formula and the measure Λ =
C (σα⊗ℓα) satisfies µ∗Λ=Λ.

In case I, we have σα = ν̃α.

In case II’, there exist C+,C− > 0 with Cσα =C+ν
α
++C−ν

α
−,

In case II”, σα = να+ .

In case I the Radon measure ν̃α⊗ℓα on V \ {0} is a minimal µ-harmonic measure, and Λ

is symmetric.

In cases II, να+⊗ℓα and να−⊗ℓα are minimal µ-harmonic measures on V \ {0}.

Theorem 5.2 is proved in several steps, using the function ρ̂ on V ,

ρ̂(v) = P̂{〈R , v〉 > 1}.

A first step, based on the renewal theorems of section 4, shows the existence of the direc-
tional tails (see Corollary 5.8) i.e. existence of the limit lim

t→∞
tαρ̂(t−1u). A second step is

to study the positivity of these tails (see Proposition 5.9). It is based on Kac’s recurrence
theorem (see [50]) for an associated random walk on a dual H-homogeneous space of
V (see Lemma 5.13); this recurrence property allow us to express ρ̂ as a potential of a
non negative function on V ×R (see Lemma 5.12), to which a weak renewal theorem can
be applied (see Proposition 5.14). The action of H on affine hyperplanes of V leads us,
via Radon transforms, to consider the natural linear representation of H in the vector
space V ×R. The corresponding linear λ-random walk is studied in paragraph 3 below.
Finally the homogeneity at infinity of ρ follows from a Choquet-Deny type result (see
Theorem 5.17).

5.2 Asymptotics of directional tails

We apply Theorem 4.10 to µ∗-potentials of suitable functions; we pass, using the map
η → η̂, from the convolution equation λ∗ρ = ρ to a Poisson type equation on V \ {0}
which involvesµ∗ and ρ̂ and we note that tα(t−1·ρ)(H+

u ) = tαρ̂(u, t ). The corresponding
convergences will play an essential role in the proof of Theorem 5.2. We denote by ρ1

the law of R −B and we consider the signed measure ρ0 = ρ−ρ1, hence ρ0(V ) = 0. Also
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we show that ρ0 is "small at infinity", and we define C ,C+,C−,σα. With the hypothesis
of Theorem 5.2, we denote by ∗ν̃αu the positive kernel on Sd−1 given by Theorem 4.10
and associated with µ∗.

Proposition 5.3. One has the equations on V \ {0},

ρ =
∞
Σ
0
µk ∗ (ρ−ρ1), ρ̂(v) =

∞
Σ
0

((µ∗)k ∗δv )(ρ̂− ρ̂1).

For u ∈ Sd−1, the function t → tα−1ρ̂0(u, t ) is Riemann-integrable in generalized sense

on ]0,∞[ and, one has with rα(u) =
∫∞

0 tα−1ρ̂0(u, t )d t, p(α) =
∫
|〈x, y〉|αdνα(x)dανα(y)

lim
t→∞

tαρ̂(u, t ) =
∗eα(u)

Lµ(α)
∗ν̃αu (rα) =C (σα⊗ℓα)(H+

u ),

where C = 2
∗ν̃α(rα)α
Lµ(α)p(α) ≥ 0 and σα ∈ M1(Λ̃(T )) are defined by the above convergence and

σα⊗ℓα satisfies µ∗ (σα⊗ℓα) =σα⊗ℓα.

Furthermore suppρ is unbounded and,

• In case I: σα = ν̃α,

• In case II: ∗ν̃αu (rα)σα = 1
2 (∗να+(rα)να++∗να−(rα)να−) where ∗να+(rα) ≥ 0, ∗να−(rα) ≥ 0.

The proof will follow from a series of lemmas.

We start with the following simple Tauberian lemma.

Lemma 5.4. For a non negative and non increasing function f on R∗
+ and s ≥ 0, we

denote, f s (t ) = 1
t

∫t
0 xs f (x)d x. Then the condition lim

t→∞
f s(t ) = c implies lim

t→∞
t s f (t ) = c.

Proof. Let b be a positive real number with b > 1 and let us observe that, since f is non
increasing

1

t

∫bt

t
xs f (x)d x ≤ f (t )

1

t

∫bt

t
xs d x =

t s

s +1
(bs+1 −1) f (t ).

It follows
bs+1 −1

s +1
t s f (t ) ≥ b f s (bt )− f s(t ).

Then the hypothesis gives :

lim inf
t→∞

bs+1 −1

s +1
t s f (t ) ≥ (b −1)c.
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Using the relation lim
b→1

bs+1 −1

(s +1)(b −1)
= 1 we get lim inf

t→∞
(t s f (t )) ≥ c. An analogous argu-

ment gives lim sup
t→∞

(t s f (t )) ≤ c. It follows lim
t→∞

t s f (t ) = c.

We will use below the multiplicative structure of the group R∗
+ =]0,∞[, and we recall

that Haar measure ℓ on the multiplicative group R∗
+ is given by dt

t
.

Lemma 5.5. Assume that the V -valued random variable R satisfies equation (S), and

E(|B |α+δ) <∞, with δ> 0. For u ∈Sd−1 and t , x > 0 we write rα(u, t ) = 1
t

∫t
0 xαρ̂0(u, x)d x.

Then |rα(u, t )| ≤ 2 tα

α+1 . For δ′ small there exists C (δ′) > 0 such that if t ≥ 1, |rα(u, t )| ≤
C (δ′)t−δ

′
. In particular the function rα(u, t ) is b.R .i on Sd−1 ×R∗

+.

Proof. Since ρ0 is the difference of the laws of R and R −B we have by definition of
ρ̂0, |ρ̂0(u, t )| ≤ 2, hence |rα(u, t )| ≤ 2 tα

α+1 . Also ρ̂0(u, x) = r1(u, x)− r2(u, x) where,

r1(u, x) = P̂{x −〈B ,u〉 < 〈R −B ,u〉 ≤ x},

r2(u, x) = P̂{x < 〈R −B ,u〉 ≤ x −〈B ,u〉}.

Furthermore rα= rα
1 −rα

2 with rα
1 (u, t ) = 1

t

∫t
0 xαr1(u, x)d x and rα

2 (u, t ) = 1
t

∫t
0 xαr2(u, x)d x.

In order to estimate rα
1 , we choose ε ∈]0,1[ with ε > α

α+δ and write, for t ≥ 2, rα
1 (u, t ) ≤

1
t

∫t
2 xαP̂{< B ,u >≥ xε}d x + 1

t

∫t
2 xαP̂{x −xε < 〈R −B ,u〉 ≤ x}d x + 2α+1

(α+1)t
.

Then Markov’s inequality gives P̂{〈B ,u〉 ≥ xε} ≤ x−(α+δ)εE(|B |α+δ).

Hence the first term I ε1 (t ) in the above inequality satisfies

I ε1 (t ) ≤ E(|B |α+δ)
1

t

∫t

2
xα−ε(α+δ)d x ≤ E(|B |α+δ)tα−ε(α+δ).

For t − tε ≥ 2, the second term I ε2 (t ) satisfies

I ε2(t ) ≤
1

t

∫t

2
xα

P̂{< R −B ,u >> x −xε}d x −
1

t

∫t−tε

2
xα

P̂{〈R −B ,u〉 > x}d x.

In the second integral above we use the change of variables x → x −xε and we get

I ε2 (t ) ≤
1

t

∫t

2
[xα− (x −xε)α(1−ε xε−1)]P̂{< R −B ,u >> x −xε}d x +

k0(ε)

t
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with 0 < k0(ε) <∞.

We observe that there exists k1(ε) <∞ such that for any x ≥ 2,

xα− (x −xε)α(1−ε xε−1) ≤ k1(ε)xα+ε−1.

For any β ∈]0,α[, Proposition 5.1 implies that E(|R|β) <∞. Also R satisfies equation (S)
and A, R ◦ θ̂ are independent. Hence Markov’s inequality gives

P̂{〈R −B ,u〉x} ≤ x−βE(|A|β)E(|R|β) ≤ k2(β)x−β with k2(β) <∞.

It follows that for any t with t − tε > 2

I ε2 (t ) ≤
k0(ε)

t
+k1(ε)k2(β)

1

t

∫t

2

xα+ε−1

(x −xε)β
d x ≤ k3(ε,β)tα−β+ε−1 .

It remains to choose δ,ε,β in order to obtain α+ε−1−β< 0. We take δ so small that
δ(α+δ)−1 <α and ε= (α+δ/p)(α+δ)−1 with p ∈N, p ≥ 2, hence ε ∈]α(α+δ)−1,1[. Also
α+ε−1 =α−δ(1−1/p)(α+δ)−1 > 0.

We take γ ∈]0,1[ and β=α−γδ(1−1/p)(α+δ)−1 so that

α+ε−1−β= (γ−1)δ(1−1/p)(α+δ)−1.

With p = 2, γ= 1/2 we getα+ε−1−β=−δ/4(α+δ)−1. We writeδ′=inf (δ/4(α+δ)−1,δ/2).

Hence, there exists k3 <∞ and δ′ > 0 such that for t ≥ 1, rα
1 (u, t ) ≤ k3t−δ

′
.

The same argument is valid for rα
2 , hence for some δ′ > 0 and t ≥ 1, we have rα(u, t ) ≤

C (δ′)t−δ
′
, with C (δ′) <∞. Furthermore, for t ∈]0,1] we have |rα(u, t )| ≤ 2 tα

α+1 , hence the

function rα(u, t ) is b.R .i . on Sd−1 ×R∗
+.

Lemma 5.6. We denote by r the finite measure on R∗
+ defined by r (d x) = 1]0,1[(x)xαd x

and we write ρ0 = ρ−ρ1. Then the function hα on V \ {0} defined by

hα(v) = |v |−α(r ∗ ρ̂0)(v) =
1

t

∫t

0
xαρ̂0(ṽ , x)d x

,

is b.R .i and one has (δu ⊗ℓα)(r ∗ ρ̂0) =
∫∞

0 tα−1ρ̂0(u, t )d t = rα(u) where t → tα−1ρ̂0(u, t )
is Riemann-integrable on ]0,∞[ in generalised sense.
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Proof. By definition

hα(v)= |v |−α(r ∗ ρ̂0)(v) = tα(r ∗ ρ̂0)(
u

t
) =

1

t

∫t

0
yαρ̂0(

u

y
)d y = rα(u, t ),

(δu ⊗ℓα)(r ∗ ρ̂0) =
∫∞

0
tα−1 d t

tα+1

∫t

0
yαρ̂0(

u

y
)d y = lim

T→∞

∫T

0

d t

t 2

∫t

0
yαρ̂0(

u

y
)d y.

Lemma 5.5 implies that hα(v) is b.R.i and has limit 0 at |v | =∞. Integration by parts in
the above formula gives
∫T

0
dt
t2

∫t
0 yαρ̂0( u

y
)d y =− 1

T

∫T
0 yαρ̂0( u

y
)d y+

∫T
0 tα−1ρ̂0( u

t
)d t =−rα(u,T )+

∫T
0 tα−1ρ̂0( u

t
)d t .

Since, using Lemma 5.5, lim
T→∞

rα(u,T ) = 0, it follows that
∫T

0 tα−1ρ̂0( u
t

)d t has a finite

limit at T =∞, hence t → tα−1ρ̂0( u
t

) is Riemann-integrable on R∗
+ in generalised sense

and, for u ∈Sd−1,

(δu ⊗ℓα)(r ∗ ρ̂0) =
∫∞

0
tα−1ρ̂0(

u

t
)d t = rα(u).

Lemma 5.7. If lim
s→s∞

k(s) > 1, then suppρ is unbounded.

Proof. In order to show that suppρ is unbounded, in view of Proposition 5.1, it suffices
to show that there exists g ∈ T with lim

n→∞
|g n|1/n > 1. If not, then the trace Tr g of g is

bounded by d on T . On the other hand, condition i-p implies the irreducibility of the
action of T on V ⊗C, as shown now. Let W ⊂V ⊗C be a proper T -invariant subspace of
V ⊗C and W its complex conjugate. Then W ∩W and W +W are complexified subspaces
of subpaces of V which are also T -invariant. Using irreducibility of T we get W ∩W =
{0}, W +W =V ⊗C hence V ⊗C=W ⊕W . Let g ∈T prox and v ∈V \{0} with g v =λg v and

write v = w + w̄ with w ∈ W , hence since W ,W are g -invariant g w = λg w , g w̄ = λg w̄ .

Since λg is a simple eigenvalue we get w = w̄ i.e W ∩W 6= {0} which gives a contradiction
with condition i-p, hence T acts irreducibly on V ⊗C. Then Burnside’s density theorem
implies that EndV⊗C) is generated as an algebra by T , i.e. there exists a base gi ∈ T

(i = 1, .,d 2) of End V. Then the linear forms u → Tr (ugi ) (i = 1, .,d 2) form a basis of the
dual space of End V. In particular, for some constant c > 0 we have for any g ∈ T , |g | ≤

c
d2

Σ
i=1

|Tr (g gi )| ≤ cd 3. Then for any n ∈N, and s > 0,
∫
|g |s dµn(g )≤ cd 3s , k(s) ≤ 1.

Proof of Proposition 5.3 If u = t v with u ∈ Sd−1, t > 0 the function ρ̂(v) = P̂{〈R ,u〉 > t }
is bounded, right continuous and non increasing. Since equation (S) can be written as
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R −B = AR ◦ θ̂ and A,R ◦ θ̂ are independant we have ρ1 = µ∗ρ, ρ−µ∗ρ = ρ−ρ1 = ρ0.
Furthermore,

ρ =
n
Σ
0
µk ∗ρ0 +µn+1 ∗ρ, ρ̂(v) =

n
Σ
0

((µ∗)k ∗δv )(ρ̂0)+ ((µ∗)n+1 ∗δv )(ρ̂).

Also if r− denote the push-forward of r by x → x−1 then r−∗ρ =
n
Σ
0
µk ∗(r−∗ρ0)+µn+1∗

(r−∗ρ).

Since Lµ < 0 the subadditive ergodic theorem applied to log |Sn(ω)| gives the conver-
gence of Sn(ω)v to 0. In particular, for ξ ∈ M1(V ), the sequence µn ∗ξ converges in law
to δ0, hence lim

n→∞
�µn ∗ξ(v) = (µ∗)n ∗δv (ξ̂) = 0.

From the above convergence on V ,we have

ρ−δ0 =
∞
Σ
0
µk ∗ρ0, ρ̂(v)=

∞
Σ
0

((µ∗)k ∗δv )(ρ̂0).

But, by Proposition 5.1, ρ({0}) = 0, hence the stated vague convergence of
∞
Σ
0
µk ∗ρ0.

Since the sequence (µn+1∗(r−∗ρ))(ψ) converges to zero for any bounded Borel function

ψ on V such that lim
v→0

ψ(v) = 0, we have on such functions : r− ∗ρ =
∞
Σ
0

(µ∗)k ∗ (r− ∗ρ0).

We observe that, for any bounded measure ξ, we have (µk ∗ ξ̂)(v) = ((µ∗)k ∗δv )(ξ̂) and
�r−∗ξ = r ∗ ξ̂. It follows from the above equality that the potential

∞
Σ
0

((µ∗)k ∗δv )(r ∗ ρ̂0)

is finite and equal to (r ∗ ρ̂)(v).

We have observed in Lemma 5.6 that the function v → |v |−α(r ∗ ρ̂0)(v) is b.R.i, hence
the renewal Theorem 4.10 applied to µ∗ and to the function r ∗ ρ̂0 gives for u ∈Sd−1,

lim
t→∞

tα(r ∗ ρ̂)(u, t ) =
∗eα(u)

Lµ(α)
(∗ν̃αu ⊗ℓα)(r ∗ ρ̂0).

Since for fixed u, ρ̂(u, x) = P̂{〈R ,u〉 > x} is non increasing, Lemma 5.4 gives

lim
t→∞

tαρ̂(u, t ) =
∗eα(u)

Lµ(α)
∗ν̃αu (rα).

In particular, we have ∗ν̃αu (rα) ≥ 0. In case I this gives ∗ν̃α(rα) ≥ 0 since ∗ν̃αu = ∗ν̃α.

In case II, taking u ∈ Λ+(T ∗) and using ∗pα
+(u) = 1, this gives ∗να+(rα) ≥ 0. Also, in the

same way ∗να−(rα) ≥ 0. Furthermore, in case II, using Theorem 4.10,

∗ν̃αu (rα) = ∗pα
+(u)∗να+(rα)+∗pα

−(u)∗να−(rα).
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If ∗ν̃α(rα) > 0, in case II we can define a probability measure σα on Λ̃(T ) by

∗ν̃α(rα)σα =
1

2
(∗να+(rα)να++∗να−(rα)να−),

while in case I , σα = ν̃α. If ∗ν̃α(rα) = 0, we have also ∗να+(rα) = ∗να−(rα) = 0, hence we
can leave σα with projection να on Pd−1 undefined in the above formulae. In any case
σα⊗ℓα is µ-harmonic.

We get another expression for the above limit, by using the formulae for ∗eα(u), ∗pα
+(u),

∗pα
−(u), p(α) of section 2 paragraph 3, for case II as follows (see Theorem 2.16), with

p(α) =
∫

|〈x, y〉|αdνα(x)d∗να(y),

∗eα(u)∗pα
+(u)p(α) =

∫
〈u,u′〉α+dνα+(u′) =α(να+⊗ℓα)(H+

u ).

From above, we get

∗eα(u)∗ν̃αu (rα) =
α

p(α)
((∗να+(rα)να++∗ να−(rα)να−)⊗ℓα)(H+

u ).

Hence, with C = 2
∗ν̃α(rα)α
Lµ(α)p(α) , σα as above and C+ =

∗ν̃α+(rα)α
Lµ(α)p(α) , C− =

∗ν̃α−(rα)α
Lµ(α)p(α) ,

lim
t→∞

tαρ̂(u, t ) =C (σα⊗ℓα)(H+
u ),Cσα =C+ν

α
++C−ν

α
−.

In case I we get the corresponding formula. The fact that suppρ is unbounded follows
from Lemma 5.7, since k ′(α) > 0 and k(α) = 1. ä

Corollary 5.8. For any v ∈V \ {0}, we have

lim
t→∞

tαP̂{|〈R , v〉| > t } =C
p(α)

α
(∗eα⊗hα)(v),

with p(α) =
∫
|〈x, y〉|αdνα(x)d∗να(y) and C = 2

∗ν̃α(rα)α
Lµ(α)p(α) ≥ 0. In particular, there exists

b > 0 such that P̂{|R| > t } ≤ bt−α.

Proof. By definition of ∗ν̃αu and since ∗pα
+(u) = ∗pα

−(−u) we have, 1
2 (∗ναu +∗ να−u) = ∗ν̃α.

Hence, using Proposition 5.3,

lim
t→∞

tαP̂{|〈R ,u〉 > t } = 2
∗eα(u)

Lµ(α)
∗ν̃α(rα) =C

p(α)

α
∗eα(u).
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The formula in the corollary follows by α-homogeneity, since it is valid for |v | = 1.

We take a base ui ∈ V (1 ≤ i ≤ d) and write |R| ≤
d
Σ

i=1
|〈R ,ui 〉| . For t large: P̂{|R| > t } ≤

d
Σ

i=1
P̂{|〈R ,ui 〉| > t ≤ (C ′+ε)t−αb′α d

Σ
i=1

∗eα(ui ), with ε> 0, C ′ =C
p(α)
α

, hence the result.

5.3 A dual Markov walk and the positivity of directional tails

The following proposition will play an essential role in the discussion of positivity for
C+,C− and C as defined in Proposition 5.3. We denote by Λ

∗
a(Σ) the set of elements u in

Sd−1 such that the projection of Λa(Σ) on the half line R+u is unbounded. Here, instead
of the vector space V used in paragraph 2, duality in the context of Radon transforms
lead us to consider a λ-random walk on the larger vector space V ×R and to use ideas of
[36], for the analysis of corresponding measurable fibered kernels (see subsection 4.1).
However, the continuity hypotheses of [36] are not in general satisfied by these kernels.

Proposition 5.9. With the hypothesis of Theorem 5.2 if M ⊂ Sd−1 is T ∗-minimal and

Λ
∗
a(Σ) ⊃ M, then for any u ∈ M,

C (u)= lim
t→∞

tαP̂{〈R ,u〉 > t } = lim
t→∞

tαρ̂(u, t ) > 0.

In particular with the above notations, we have C > 0.

We observe that Rn =
n−1
Σ
0

A1 · · · Ak Bk+1 satisfies the relation 〈Rn+1, v〉 = 〈Rn , v〉+〈Bn+1,S ′
n v〉

where S ′
n = (A1 · · · An)∗. Also h = (g ,b) ∈ H acts on E = (V \ {0})×R according to the for-

mula h(v,r ) = (g∗v,r +〈b, v〉), hence the pair,

(S ′
n v,r +〈Rn , v〉)= (vn ,rn),

is a random walk on the right homogeneous H-space E . Actually, V ×R is a vector
space and the above formula for h(v,r ) defines a right linear representation of H in
V ×R which leaves invariant E ⊂ V ×R. In particular, using the radial R∗

+−fibration of
this vector space, we see that the radial projection (v,r ) → (u, p) with v = |v |u, r = p|v |
defines an H-equivariant projection from E to Sd−1 ×R, hence (S ′

n v,r+ < Rn , v >) is
also a R∗

+-fibered Markov chain over Sd−1 ×R. Then we can write

E = (Sd−1 ×R)×R
∗
+ ⊂V ×R.
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The action of h = (g ,b) on Sd−1 ×R is given by h(u, p)= (g∗ ·u,hu p) with

hu p =
1

|g∗u|
(p +〈b,u〉).

The proof of Proposition 5.9 is based on the relation 〈R , v〉 = lim
n→∞

< Rn , v > and on the

dynamics of the random walk (vn ,rn) = (S ′
n v,r+ < Rn , v >) on V ×R. We denote by

∗P̂ its corresponding fibered Markov kernel and we study an associated ladder process
(xτn ,Wτn ), defined below. In terms of this process we can give a new expression for
ρ̂(v) = P̂{〈R ,u〉 > t } as a potential of a non negative function on E . Then we can use a
weak renewal theorem for (xτn ,Wτn ) and obtain Proposition 5.9.

We will consider successively the two components un = vn

|vn | , pn = rn

|vn | and finally the

fibered Markov chain (vn ,rn) above Sd−1 ×R.

Let M be a T ∗-minimal subset ofSd−1, hence (see section 2, paragraphe 3), M =Λ+(T ∗)
(or Λ−(T ∗)) in cases II, or M =Λ(T ) in case I.

The following says that Λ∗
a(Σ) is "large".

Lemma 5.10. In cases I or II’ : Λ∗
a(Σ) =Sd−1. In case II” : Λ∗

a(Σ) ⊃Λ+(T ∗).

Proof. Let Λ∞
a (Σ) = Λa(Σ)∩Sd−1

∞ and u ∈ Sd−1, u′
∞ ∈Λ

∞
a (Σ) corresponds to u′ ∈ Sd−1.

If 〈u′,u〉 > 0, then u ∈ Λ
∗
a(Σ). Hence the complement of Λ∗

a(Σ) in Sd−1 is contained in
the set {u ∈ Sd−1; 〈u,u′〉 ≤ 0 ∀u′

∞ ∈ Λ
∞
a (Σ)}. From the discussion at the beginning of

this section we know that Λ∞
a (Σ) 6= φ is T -invariant and closed, hence contains Λ̃∞(T )

in cases I, II’ or only Λ
∞
+ (T ) in case II” with Λ

∞
− (T )∩Λ

∞
a (Σ) =φ.

Since Λ̃
∞(T ) is symmetric and condition i-p is valid, it follows Λ

∗
a(Σ) = Sd−1 in cases

I, II’. In case II”, we know from the end of proof of Theorem 2.16 that the complement
of Λ∗

a(Σ) is contained in Λ̂+(T ∗) = {u ∈ Sd−1 ; ∀u′ ∈Λ+(T ),〈u,u′〉 > 0}. Since Λ+(T ∗)∩
−Λ̂+(T ∗) =φ, we get Λ+(T ∗) ⊂Λ

∗
a(Σ).

The random walk (vn ,rn) = (S ′
n v,r +〈Rn , v〉) has H-equivariant projection S ′

n v on V \
{0}, the kernel ∗P̂ has projection ∗P already defined in section 2, hence the positive
homogeneous function ∗eα⊗hα, lifted to E , satisfies ∗P̂ (∗eα⊗hα) = ∗eα⊗hα, and we
can consider the new relativized fibered Markov kernel ∗P̂α on E . If (u, p) ∈ M ×R, the
projection xn = (un , pn) of (vn ,rn) on M ×R depends on the kernel ∗Q̂α given by

∗Q̂αϕ(u, p) =
∫

ϕ(g∗ ·u,hu p)∗qα(u, g )dλ(h)
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where ∗qα corresponds to qα as in section 3. The important fact for the proof of Pro-
position 5.9 is that ∗Q̂

α
has a stationary probabilityκ withκ(M×[t ,∞[) > 0 for any t > 0,

such that p is not "too large" with respect to κ.

For the analysis of ∗Q̂α we consider on Ω̂ the projective limit ∗Q̂α
u of the system ∗qα

n (u, ·)λ⊗n

(n ∈ N) and, by abuse of notation, the corresponding expectation will be written Eαu .
Given a ∗Q̃α-stationary measure π̃α

M
, we write ∗Q̂α =

∫
δu ⊗∗Q̂α

u d π̃α
M

(u) and we denote

by Eα the corresponding expectation symbol. We denote by θ̂# the map of M ×HZ into
itself defined by θ̂#(u,ω̂) = (g∗

1 ·u, θ̂ω̂) where θ̂ is the bilateral shift on HZ, and ∗Q̂α

will again denote the natural θ̂#-invariant measure on M × HZ. Also we extend S ′
n(ω)

as a G-valued Z-cocycle. If η is a probability measure on X = M ×R, the associated
Markov measure on a

Ω̂= X × Ω̂, is denoted by ∗Q̂α
η , and the extended shift by a θ̂ where

a θ̂(x,ω̂) = (h1x, θ̂ω̂). Also if η is ∗Q̂α-stationary we will consider the bilateral associ-
ated system (Ω#, a θ̂,η#) where Ω

# = X ×HZ, a θ̂ is the bilateral shift and η# is the unique
a θ̂-invariant measure with projection ∗Q̂α

η on X × Ω̂.

Lemma 5.11. Let M be a T ∗-minimal subset of Sd−1, πα
M

the unique ∗Q̃α-stationary

measure on M. With the above notations, we consider the Markov chain xn = (un , pn),

on X = M ×R given by

un+1 = g∗
n+1.un , pn+1 =

pn +〈bn+1,un〉
|g∗

n+1un|
, p0 = p, u0 = u,

where (gn ,bn) is distributed according to ∗Q̂α
u . Then, for any p ∈R, xn converges in ∗Q̂α-

law to the unique ∗Q̂α-stationary measureκ, the projection of κ on M is πα
M

, κ(M×{p}) =
0 and

∫
|p|εdκ(u, p) <∞ for ε small. We have κ# −a.e,

lim sup
n→∞

|S ′
nu||pn | =∞, lim

n→∞
|S ′

−nu||p−n | = 0.

If Λ∗
a(Σ) ⊃ M, then κ(M×]t ,∞[) > 0 for any t > 0 and limsup

n→∞
|S ′

nu|pn =∞, ∗Q̂α
κ −a.e.

Proof. If will be convenient to use the functions a(g ,u),b(h,u) defined by hup = a(g ,u)p+
b(h,u), and the random variables ak ,bk (k ∈ Z) defined by ak (ω̂,u) = a(gk ,S ′

k−1 ·u),
bk (ω̂,u) = b(hk ,S ′

k−1 · u). Then we can express the action of hn · · ·h1 ∈ H on X as,

un = S ′
n ·u, y

p
n (u) = (hn · · ·h1)u p, where

y
p
n (u)= a(S ′

n ,u)p + y◦
n(u) and y◦

n(u)=Σ
n
1 an

k+1(u)bk (u),

with an
k

(u) = a(gn · · ·gk ,S ′
k−1 ·u). The random variables ak ,bk are ∗Q̂α-stationary and

y◦
n has the same law as p◦

n(ω̂,u) =
n−1
Σ
0

a−1 · · ·a−k b−k−1.
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We estimate Eα(|p◦
n |ε) for 0 < ε < τ and ε small, where p◦

n(ω̂,u) =
n−1
Σ
0

a−1 · · ·a−k b−k−1.

Since (ak · · ·a1)(ω,u) = a(S ′
k

(ω),u) we get Eα(|a−1 · · ·a−k |ε) = Eα(|S ′
k

u|−ε). Hence Corol-

lary 3.18 gives lim
k→∞

(Eα(|a−1 · · ·a−k |ε))1/k < 1 since k ′(α) > 0 and E(|A|α+τ) <∞. Also for

ε small,

E
α(|bk |ε) = E

α(|
〈B1,u〉
|g∗u|

|ε) ≤ E
α(|B1|εγε(A)) <∞,

using ∗Q̂α-stationarity, Hölder inequality and the condition E(|B1|α+τ)+E(|A1|α+τ) <∞.

Since for 0< ε< 1 |p◦
n(ω̂,u)|ε ≤

n−1
Σ
◦

|a−1 · · ·a−k |ε|b−k−1|ε, we get that Eα(|p◦
n |ε) is bounded.

The ∗Q̂α-a.e. convergence of the partial sum p◦
n(ω̂,u) to p(ω̂,u)=

∞
Σ
0

a−1 · · ·a−k b−k−1 and

the finiteness of Eα(|p|ε) follows. By definition, p(ω̂,u) satisfies the functional equation
p ◦a θ̂ = ap+b where p and (a,b) are independent. It follows that the probability meas-
ure κ on M ×R given by the formula

κ=
∫

δu ⊗δp(ω̂,u)d
∗Q̂α(ω̂,u)

is ∗Q̂α-invariant.

As observed above, the ∗Q̂α-laws of y◦
n and p◦

n are the same. Since the product of π̃α
M

with the law of y◦
n is (∗Q̂α)n (πα

M
⊗δ0) we have in weak topology : lim

n→∞
(∗Q̂α)n (πα

M
⊗δ0) =

κ.

Since |y p
n (ω̂,u)− y

p ′

n (ω̂,u)| = a(S ′
n(ω),u)|p −p ′| and a(S ′

n(ω),u) = |S ′
nu|−1 converges

∗ Q̂
α
u -a.e to zero, we get the convergence of (∗Q̂α)n (πα

M⊗δp ) toκ, for any p. On the other
hand, if η′ is a ∗Q̂α-stationary measure on M ×R, its projection on M is ∗Q̃α-stationary,
hence equal to πα

M
, since M is T ∗-minimal. Then, from above (|∗Q̂α)nη′ converges to κ,

hence η′ = κ. The ∗Q̂α-ergodicity of κ implies the a θ̂-ergodicity of ∗Q̂α
κ and κ#.

If Λ∗
a(Σ) ⊃ M assume κ (M×]t ,∞[) = 0, for some t > 0, i.e. the ∗Q̂α-invariant set suppκ

is contained in M×]−∞, t ]. Then, for any (u, p) ∈ suppκ we have p +〈Rn ,u〉 ≤ t |S ′
nu|

∗Q̂α
u -a.e., i.e. p +〈Rn ,u〉 ≤ t |S ′

nu| ∗qα
n (u, ·)λ⊗n -a.e. for any n ∈ N and for some p ∈ R,

t , u ∈ M . It follows p +〈Rn ,u〉 ≤ |S ′
nu|, λ⊗n-a.e. and since lim

n→∞
|S ′

nu| = 0, lim
n→∞

Rn = R ,

P-a.e., we have 〈R ,u〉 ≤ −p, P̂-a.e. . This implies that the support of the projection of ρ
on Ru is bounded in direction u; since by Proposition 5.1 we have suppρ = Λa(Σ) this
contradicts the condition Λ

∗
a(Σ) ⊃ M . Hence κ(M×]t ,∞[) > 0 for any t > 0.

Furthermore, arguments as in the proof of Proposition 5.1, using that suppλ has no
fixed point in V , show κ(M × {p}) = 0 for any p ∈ R. From Theorem 3.10 we know
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that lim
n→∞

1

n
log |S ′

nu| = Lµ(α) > 0, ∗Qα
u -a.e. .Furthermore, since κ is ∗Q̂α-ergodic and

κ(M × {0}) = 0 we have limsup
n→∞

|pn | > 0, Q̂α
κ-a.e.. Then we get limsup

n→∞
|S ′

nu| |pn | = ∞,

∗Q̂α
κ-a.e. If Λ∗

a(Σ) ⊃ M , from above we have κ(M×]0,∞[> 0, and again using ergodicity,
limsup

n→∞
pn > 0. Since lim

n→∞
|S ′

nu| = ∞ ∗Q̂α
u − a.e, it follows limsup

n→∞
|S ′

nu|pn = ∞, ∗Q̂α
κ-

a.e. Using Theorem 3.2, we have also, for any u ∈ M and ∗Q̂α
u -a.e.: lim

n→∞

1

n
log |S ′

−nu| =

−Lµ(α) < 0. The condition
∫
|p|εdκ(u, p) <∞ implies limsup

n→∞

log |pn |
|n|

≤ 0,κ#-a.e. Then

we get, lim
n→∞

|S ′
−nu||p−n | = 0,κ#-a.e.

For the analysis of ∗P̂α, ρ̂ we consider the optional time τ on X × Ω̂ given for p 6= 0 by:
τ= inf{n > 0 ; p−1〈Rn ,u〉 > 0}, τ=∞ if p−1〈Rn,u〉 ≤ 0 for every n.

We observe that τ is independent on p as long as p > 0 or p < 0. By definition of pn :

p +〈Rn ,u〉 = pn|S ′
nu|, p−1pn |S ′

nu| = 1+p−1〈Rn,u〉.

We note that (un , pn) is the radial projection of (vn ,rn) on Sd−1 ×R ⊂ V ×R while the
projection (0,rn) of (vn ,rn) on {0}×R satisfies rn = r (p−1pn |S ′

nu|). In (u, p,r ) coordin-
ates on the set {r 6= 0}, the process (vn ,rn) can be written as (xn ,rn), and for any t > 0 the
dilation (v,r ) → t (v,r ) reduces to (x,r ) → (x, tr ). Since κ(M ×{0}) = 0, ∗P̂ is also a meas-
urable Markov fibered kernel above Sd−1 ×R∗ (see subsection 4.1). This measurable
setting will be useful below.Also,

τ= inf{n > 0 ; p−1pn|S ′
nu| > 1}, τ=∞ if p−1pn |S ′

nu| ≤ 1, for every n.

In particular p−1pτ > 0 where the notation pτ is used if τ is finite. Also we define σn =
τ ◦ (aθ̂)σn−1 and σ0 = 0, τn =

n
Σ
1
σk , so that τ can be seen as the first ladder index and

p−1pτ|S ′
τu| as the first ladder height of the R∗-valued measurable Z-cocycle ,

Wn(u, p,ω̂) = p−1pn|S ′
nu|

over the dynamical system (Ω#, a θ̂,κ#), which is well defined since κ(M × {0}) = 0. The
random times τn can be seen as the successive times of increase for r−1rk = p−1pk |S ′

k
u|

along the random walk (vn ,rn). On the other hand, by Poincaré recurrence theorem we
have κ#-a.e, limsup

n→∞
p−1pn ≥ 1. Since lim

n→∞
|S ′

nu| = ∞,then τ, τn are finite ∗Q̂α
κ-a.e and

we have p−1pτn > 0.
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With the above notation the λ-random walk (vn ,rn) on E ⊂V ×R can be written as

un+1 = g∗
n+1.un , pn+1 =

pn +〈bn+1,un〉
|g∗

n+1un|
, rn+1 = rn|g∗

n+1un|pn+1p−1
n .

We denote X = M ×R and X+ = M×]0,∞[⊂ X , hence x ∈ X+ implies xτ ∈ X+ if τ <∞.
We consider also the submarkovian stopped operator ∗P̂τ on V \ {0}×R. In (u, p,r )
coordinates on the set {r 6= 0} with x = (u, p) the associated process at time n starting
at (x,r ) ∈ X+×R∗

+ is (xτn ,r |S ′
τn

u|pτn p−1), hence the restriction of ∗P̂τ to X+×R∗
+ is well

defined and is a measurable fibered kernel on X+×R∗
+ ⊂ E . This restriction will be again

denoted by ∗Pτ. Since ∗P̂ (∗eα⊗hα) = ∗eα⊗hα and τ is finite ∗Qα
κ-a.e. , the kernel ∗P̂τ

α

given by :
∗P̂τ

αϕ= (∗eα⊗hα)−1P̂τ(∗eα⊗hαϕ),

is also a measurable Markov fibered kernel on X ×R∗
+ which satisfies ∗P̂τ

α1 = 1, κ⊗ℓ a.e.

The following lemma expresses the function ρ̂(p−1v) = P̂{p−1〈R ,u〉 > t } =ψ(v, p) on E

as a ∗P̂τ-potential of a non negative function on E .

Lemma 5.12. With t v = u ∈Sd−1, t > 0 and p 6= 0, we write

τ= inf{n > 0; p−1〈Rn,u〉 > 0},τ=∞ if p−1〈R ,u〉 ≤ 0 for any n ∈N,

ψ(v, p) = P̂{p−1〈R ,u〉 > t }, ψτ(v, p) = P̂{t < p−1〈R ,u〉 ≤ t + p−1〈Rτ,u〉;τ < ∞}, where

Rτ =
τ−1
Σ
0

A1 · · · Ak Bk+1, ψα = (∗eα⊗hα)−1ψ, ψα
τ = (∗eα⊗hα)−1ψτ. Then,

ψ=
∞∑
0

(∗P̂τ)kψτ, ψα =
∞∑
0

(∗P̂τ
α)kψα

τ .

Proof. We write 〈R − Rn, v〉 = 〈Rn ,S ′
n v〉, where Rn =

∞
Σ
n

An · · · Ak Bk+1 hence if τ < ∞ :

〈R−Rτ, v〉 = 〈Rτ,S ′
τv〉. By definition of τ, since p−1〈R ,u〉 > t > 0 and the convergence of

Rn to R imply τ<∞, we have

ψτ(v, p) =ψ(v, p)− P̂{〈R −Rτ,u〉p−1 > t ; τ<∞}.

On the other hand, since p−1pτ > 0,

P̂{〈R −Rτ,u〉p−1 > t ; τ<∞} = P̂{〈Rτ,uτ〉p−1 >
t

|S ′
τu|

; τ<∞} = ∗P̂τψ(v, p).
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It follows ψτ =ψ−∗P̂τψ, ψ=
n−1
Σ
0

(∗P̂τ)kψτ+∗P̂τnψ with

∗P̂τnψ(v, p) = P̂{t |S ′
τn

u|−1 < p−1〈Rτn ,uτn 〉 ; τn <∞}.

For (x,ω̂) ∈ M × Ω̂ we have either τn(x,ω̂) = ∞ for some n hence ∗Pτnψ = (∗Pτ)kψ =
0 or lim

n→∞
τn(x,ω̂) = ∞. In the second case, lim

n→∞
|S ′

τn
u|−1 = ∞, P̂− a.e. and, since Rτn

converges P̂−a.e to R , we have lim
n→∞

∗P̂τnψ= 0, ψ=
∞
Σ
0

(∗P̂τ)kψτ. The last relation follows

from the definitions of ψα
τ and ∗P̂τ

α, since ψα
τ is non negative.

Remark. The function ψ satisfies the basic property of potentials for ∗P̂τ,

∗P̂
τ
ψ≤ψ, lim

n→∞
(∗P̂

τ
)n ψ= 0.

This property is a key for understanding non triviality of the Cramer-type estimate for
ψ. It is also valid for other natural functions such as ψ defined by

ψ(v, p) = P̂{sup
n≥1

|Wn | > t }.

Let τ be as above and Λ
∗
a(Σ) ⊃ M , hence using Lemma 5.11 we have κ(X+) > 0. Let

∗Q̂α,τ(x, .) be the law of xτ under ∗Q̂α
x . Since τ<∞,∗Q̂

α
κ-a.e. , this kernel is a measurable

Markov kernel with respect to κ on X+, hence ∗Q̂
α,τ

is not κ-ergodic in general and it
is natural to consider the first return time to X+ as well as the corresponding induced
Markov operator ∗Q̂α

+ on X+. Following the idea of ([36], Lemma 2) we interpret the
ladder index τ as a first return time to a subset of Ω#, we construct a stationary measure
for ∗Q̂α,τ on X+, and we show the finiteness of the corresponding expectation of τ.

Lemma 5.13. Assume Λ∗
a(Σ) ⊃ M and write

τ= inf{n > 0 ; p−1pn|S ′
nu| > 1} = inf{n > 0 ; p−1〈Rn,u〉 > 0},

τ=∞ if p−1pn|S ′
nu| ≤ 1 for any n ∈N.

Then the stopped operator ∗Q̂α,τ preserves X+ and admits a stationary ergodic probab-

ility κτ on X+ which is absolutely continuous with respect to κ. The integral Eα0 (τ) =∫
Eαu (τ)dκτ(u, p) is finite.

With γα
τ = Lµ(α)Eα0 (τ) we have lim

n→∞

1

n
log(|S ′

τn
u|

pτn

p
) = γα

τ ∈]0,∞[,∗Q̂α
κτ-a.e. . In partic-

ular Wτ = log(pτp−1|S ′
τu|) has finite expectation with respect to ∗Q̂α

κτ .
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Proof. Since Λ
∗
a(Σ) ⊃ M , Lemma 5.11 givesκ(X+) > 0. In order to deal only with positive

values of the R∗-valued Z-cocycle Wn(u, p,ω̂) = |S ′
nu|pn p−1 under ∗Q̂

α
κ , it is convenient

to consider the two sided Markov chain xnk
(k ∈Z, x◦ ∈ X+) induced on X+ by xn , hence

n1 is the first return time of xn to X+ and n1 ≤ τ since p−1pτ > 0. We note that the nor-
malized restriction κ+ of κ is a stationary ergodic measure for xnk

. Also the relativized
Markov kernel ∗P̂α on E = X ×R∗

+ induces a fibered measurable Markov kernel ∗P̂α,+
on X+×R∗

+ with projection ∗Q̂α
+ on X+, which satisfies ∗Pα,+(κ+⊗ ℓ) = κ+⊗ ℓ. Since

p−1pnk
> 0,in(u,p,r) coordinates, the corresponding bilateral Markov chain can be writ-

ten as (xnk
,rnk

) with rnk
= r p−1 pnk

|S ′
nk

u|. We denote by Ω
#
+ the subset of Ω# defined

by the conditions x ∈ X+, xn ∈ X+ infinitely often for n > 0 and n < 0, by κ#
+ the normal-

ized restriction of κ# to Ω
#
+ and by a θ̂+ the induced shift. Also let Ω#

0 be the subset of
Ω

#
+ defined by the conditions x ∈ X+, sup

k>0
(pn−k

p−1 |S ′
n−k

u|) < 1. From Lemma 5.11, we

know that κ#
+-a.e. , limn→∞ |S ′

−n u| p−n p−1 = 0, hence limk→∞ |S ′
n−k

u| pn−k
p−1 = 0 and

|S ′
n−k

u|pn−k
p−1 > 0.

Then the index −ν0 ≤ 0 of the strict last maximum of the sequence pn−k
p−1 |S ′

n−k
u| =

V−k (k ≥ 0) is finite κ#
+-a.e. . We have Ω

#
0 = {ν0 = 0} and, using Lemma 5.11, lim

k→∞
V−k = 0.

It follows,using the (a θ̂+)-invariance of κ#
+,

1 =
∞
Σ

k=0
κ#
+{ν0 = k} ≤

∞
Σ

k=0
κ#
+{V−k > sup

j<−k

V j } =
∞
Σ

j=0
κ#
+{V0 > sup

j<0
V j } =

∞
Σ

j=0
q,

where q = κ#
+(Ω#

0), hence κ#(Ω#
0) > 0. Furthermore if ω# ∈Ω

#
0,using the positivity of Vk

and an observation of [36],we see that τ(ω#) is the first return time of (a θ̂)n(ω#) to Ω
#
0;

hence a θ̂τ is the transformation on Ω
#
0 induced by a θ̂ or a θ̂+ on Ω

#
0 and τn(ω#) is the

sequence of return times to Ω
#
0. This allow us to proceed as in ([36] Lemma 2) with the

R∗-valued Z-cocycle |S ′
nu| pn p−1. Since κ# is a θ̂-invariant and κ#(Ω#

0) > 0 we can apply
Kac’s recurrence theorem to Ω

#
0, a θ̂τ and Ω

# (see [50]), hence the normalized restriction
κ#

0 of κ# to Ω
#
0 is a θ̂τ-ergodic and stationary, the return time τ has finite expectation

Eα0 (τ) and lim
n→∞

τn

n
= Eα0 (τ), κ#

0-a.e. . Since κ#
0 is absolutely continuous with respect to

κ#, Theorem 3.10 gives

lim
n→∞

1

n
log |S ′

τn
u| = ( lim

n→∞

1

τn
log |S ′

τn
u|)( lim

n→∞

τn

n
) = Eα0 (τ)Lµ(α) = γα

τ > 0,κ#
0 −a.e..

Using Birkhoff’s theorem for the non-negative increments of W a
τn

= log(
pτn

p
|S ′

τn
u|) and

a θ̂τ, we get the κ#
0-a.e. convergence of 1

n
W a

τn
. Since κ#

0 is a θ̂τ-invariant,the sequence

85



1
n

log
pτn

p
converges to zero in κ#

0-measure, hence using the κ#
0 − a.e. convergence of

1
n

log |S ′
τn

u|, we get the κ#
0-a.e. convergence of 1

n
W a

τn
to γα

τ . In particular Eα0 (W a
τ ) = γα

τ ∈
]0,∞[.

In order to relate κ#
0 and the kernel ∗Q̂α,τ we consider the Markov kernel adjoint to

∗Q̂α
+(x, ·) with respect to κ+, and we denote by ∗Q̂α

− ⊗ δx the corresponding Markov
measure on HZ− × X+ with Z− = −N∪ {0}. Also we write ∗Q̂α

x = δx ⊗ ∗Q̂α
+ where ∗Q̂α

+
is supported on HN and κ#

+ =
∫∗Q̂α

−⊗δx ⊗∗Q̂α
+dκ+(x), in particular

κ#(Ω#
0)κ#

0 =
∫

(1
Ω

#
0
)∗Q̂α

−⊗δx ⊗∗Q̂α
+dκ+(x)

with Ω
#
0 = Ω

−
0 × HN and Ω

−
0 ⊂ HZ− × X+. We denote by κτ the projection of κ#

0 on X+,
hence κτ has density u(x) given by κ#(Ω#

0)u(x) = (∗Q̂α
−⊗δx )(Ω−

0 ) with respect to κ+. It
follows that the projection of κ#

0 on X+× Ω̂ can be expressed as

∫
u(x)δx ⊗∗Q̂α

+dκ+(x) =
∫

δx ⊗∗Q̂α
+dκτ(x) = ∗Q̂α

κτ .

Since κ#
0 is invariant and ergodic with respect to the bilateral shift a θ̂τ, the same is valid

for ∗Q̂α
κτ with respect to the associated unilateral shift a θ̂τ. Since the kernel x → ∗Q̂α

x

commutes with a θ̂τ and ∗Q̂α,τ, the ∗Q̂α,τ-invariance and ergodicity of κτ follows. Also
we have Eα0 (τ) =

∫
Eαx (τ)dκτ(x) and the above convergences are valid ∗Q̂α

κτ-a.e. .

Remark. If S = X+, P = ∗P̂α,+, π = κ+,and in the corresponding measurable setting,
the measure κτ is closely connected with the measure χ of Theorem 4.5 . The meas-
ure κτ can be caracterized as the unique ∗Q̂

α,τ
-stationary measure which is absolutely

continuous with respect to κ+. However, in contrast to [36], the function log |p| is not
known to be κ-integrable, but we know that lim

n→∞
|S ′

−nu|p−n p−1 = 0.

The following weak renewal theorem for a general fibered Markov chain will allow us to
control potentials of the measurable fibered Markov kernel ∗P̂

τ
α on X+×R∗

+ . We recall
some notation of section 4 as follows.

Let (S,π) be a complete separable metric space, where π is a probability measure. We
consider a general measurable Markov chain on S ×R with kernel P , we assume that
P commutes with the R-translations and we denote Lebesgue measure on R by ℓ . We
assume that the measure π⊗ℓ is P-invariant. Here, in contrast to section 4, our setting
is the measurable one;in particular the symbol sup means essential supremum. We
write a path of the corresponding Markov chain as (xn ,Vn) where xn ∈ S and Vn ∈ R,
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we denote by aPx the Markov measure on the paths starting from x ∈ S and we write
aPπ =

∫
aPx dπ(x), aEx for the corresponding expectation symbol. In this context the

following weak analogue of the renewal Theorem 4.5 holds.

Proposition 5.14. With the above notation and hypotheses, assume that ψ is a com-

pactly supported bounded non negative measurable function on S ×R, the potential

Uψ=
∞
Σ
0

P kψ is essentially bounded on S × [−c,c] for any c > 0 and we have for any ε> 0

lim
n→∞

aPπ{|
Vn

n
−γ| > ε} = 0,

with γ> 0. Then we have

lim
t→∞

1

t

∫0

−t
d s

∫

S
Uψ(x, s)dπ(x) =

1

γ
(π⊗ℓ)(ψ).

Furthermore if ψ is a non negative measurable function on S ×R and lim
t→−∞

Uψ(x, t ) = 0,

π-a.e. . then ψ= 0, π⊗ℓ-a.e. .

If ψ is a measurable function on S ×R which satisfies:

|ψ|b =
ℓ=∞∑

ℓ=−∞
sup{|ψ(x, s)| ; x ∈ S, s ∈ [ℓ,ℓ+1[} <∞,

then the above convergence is also valid.

Proof. We observe that the maximum principle implies |Uψ|= sup
x,t

|Uψ|(x, t ) <∞, since

Uψ is essentially locally bounded. For ε > 0, t > 0 we denote n1 = n1(t ) = [ 1
γεt ], n2 =

n2(t ) = [ 1
γ (1+ε)t ] where [t ] denotes integer part of t > 0.We write:

∞
Σ
0

P kψ=Uψ,
n−1
Σ
0

P kψ=

Unψ,
∞
Σ

n+1
P kψ = U nψ,

m
Σ
n

P kψ = U m
n ψ, I (t ) = 1

t

∫0
−t d s

∫
S(Uψ)(x, s)dπ(x) =

3
Σ
1

Ik (t )− I4(t )

where

I1(t ) =
1

t

∫

S
dπ(x)

∫∞

−∞
U

n2
n1
ψ(x, s)d s, I2(t ) =

1

t

∫

S
dπ(x)

∫0

−t
Un1ψ(x, s)d s,

I3(t ) =
1

t

∫

S
dπ(x)

∫0

−t
U n2ψ(x, s)d s, I4(t ) =

1

t

∫

S
dπ(x)

∫

R\[−t ,0]
U

n2
n1
ψ(x, s)d s.

We estimate each term Ik (t ) separately. We have, since the measure π⊗ℓ is P-invariant,

I1(t ) = n2−n1+1
t

(π⊗ℓ)(ψ), hence lim
t→∞

I1(t ) =
1

γ
(π⊗ℓ)(ψ).
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Furthermore,

|I4(t )| ≤
|ψ|

t
(n2 −n1 +1) sup

n1≤n≤n2

∫

S
(aPx {Vn ≤ a}+ aPx{Vn ≥ t −a})dπ(x).

Since n−1Vn converges to γ > 0 in probability, the above integral has limit zero, hence
lim

t→∞
I4(t ) = 0.

We have also |I2(t )| ≤ ε
γ
π⊗ℓ(ψ).

In order to estimate I3(t ) we denote, for n ∈N and s > 0, ρs
n = inf{k ≥ n ; −a ≤Vn−s ≤ a},

where ψ is supported on [−a, a], and we use the interpretation of U nψ as the expected
number of visits to ψ after time n :

U nψ(x, s) ≤ |Uψ|aPx{ρs
n <∞}.

Taking n = [ (1+ε)t
γ

] = n2 we get

I3(t ) ≤ |Uψ|
∫

S

a
Px {Vk − t ≤ a, for some k ≥ [

(1+ε)t

γ
]}dπ(x).

Since Vn

n
converges to γ> 0 in probability, we get lim

t→∞
I3(t ) = 0.

Since ε is arbitrary we get finally, lim
t→∞

I (t ) =
1

γ
(π⊗ℓ)(ψ).

The second conclusion follows by restriction and truncation of ψ on S × [−a, a].

For the proof of the last assertion we observe that for anyℓ∈Z, ∆= |U 1S×[0,1]| = |U 1S×[ℓ,ℓ+1[| <

∞. Writing ψ=
ℓ=∞
Σ

ℓ=−∞
ψ1S×[ℓ,ℓ+1[ we get |Uψ| ≤∆|ψ|b .

The quantity ψ→|ψ|b is a norm on the space H of measurable functions on S×R such
that |ψ|b <∞. Since the set of essentially bounded functions supported on S × [−c,c]
for some c > 0 is dense in H and ψ→ (π⊗ℓ)(ψ) is a continuous functional on H , the
above relation extends by density to any ψ ∈H .

Proof of Proposition 5.9. Assume that for some u ∈ M , C (u) = lim
t→∞

tαP̂{〈R ,u〉 > t } =
0. For p > 0, with the notations of Lemma 5.12, this means lim

t→∞
ψα(v, p) = 0. Using

Proposition 5.3 we know that this implies lim
t→∞

ψα(u, p) = 0 for any u = t v ∈ M (t > 0).

Also, using Lemma 5.13, we have, since Λ
∗
a(Σ) ⊃ M ,

lim
n→∞

1

n
log(|S ′

τn
u|

pτn

p
) = γα

τ > 0,∗Q̂α
κτ −a.e.
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Since the canonical Markov measure associated with κτ and ∗Q̂α,τ is a push-forward
of ∗Q̂α

κτ , this convergence is also valid with respect to this canonical Markov meas-
ure. Then, using Lemma 5.12 and ψα

τ ≥ 0, we can apply Proposition 5.14 with Vn =
log(p−1pτn )|S ′

τn
u|, γ = γα

τ > 0, S = X+, to the measurable Markov kernel P = ∗P̂τ
α on

X+×R∗
+, to the potential

∞
Σ
0

(∗P̂τ
α)kψα

τ of the non negative function ψα
τ ≤ (∗eα⊗hα)−1 and

to the ∗Q̂α,τ-stationary measure π= κτ; we get ψα
τ = 0, κτ⊗ℓ-a.e., hence

P̂{t < p−1〈R ,u〉 ≤ t +p−1〈Rτ,u〉,τ<∞}= 0.

Since p−1〈Rτ,u〉 > 0, this gives p−1〈R ,u〉 ≤ 0 κτ⊗ P̂− a.e. on {τ < ∞}, in particular for
some (u, p) ∈ X+, we have p−1〈R ,u〉 ≤ 0 i.e. 〈R ,u〉 ≤ 0, P̂-a.e. on {τ < ∞}. But, since
Λ

∗(Σ) ⊃ M , for any u ∈ M the set {〈R ,u〉 > 0 ; τ <∞} = {〈R ,u〉 > 0} is not P̂-negligible,
hence the required contradiction. Since, using Proposition 5.3, we have C (u) =C (σα⊗
ℓα)(H+

u ) it follows C > 0. ä

Remark. The proof of Proposition 5.9 given above uses the R∗-valued multiplicative
cocycle Wn . The interpretation of the ladder index τ as a first return time to a subset of
Ω

# depends on the reduction of Wn to a positively valued cocycle; hence the use of the
seemingly artificial inducing procedure on X+×R∗, as was done above.

5.4 A Choquet-Deny type property

Here, as in section 4, we consider a fibered Markov chain on S ×R, but we reinforce the
hypothesis on the Markov kernel P , using spectral gap properties instead of equicon-
tinuity properties. Hence S is a compact metric space, P commutes with R-translations
and acts continuously on Cb(S×R). We define for t ∈R, the Fourier operator P i t on C (S)
by

P i tϕ(x) = P (ϕ⊗e i t ·)(x,0).

For t = 0 the operator P i t = P 0 is equal to P , the factor operator on S defined by P . We
assume that for each t ∈ R, P i t preserves the space Hε(S) of ε-Hölder functions and is
a bounded operator therein. Moreover we assume that P ·i t (t ∈ R), and P satisfies the
following condition D.

A weaker Choquet-Deny type result under a similar condition was shown in ([30], Pro-
position 3.5). The stronger form given here allow us to deal with polynomially bounded
P-harmonic measures and is needed for the proof of the homogeneity at infinity of ρ in
Theorem 5.2.Condition D is as follows
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1. For any t ∈R, one can find n0 ∈N, ρ(t ) ∈ [0,1[ and C (t ) > 0 for which

[(P i t )n0ϕ]ε ≤ ρ(t )[ϕ]ε+C (t )|ϕ|.

2. For any t ∈R, the equation P i tϕ= e iθϕ, ϕ ∈ Hε(S), ϕ 6= 0 has only the trivial solu-
tion e iθ = 1, t = 0, ϕ=constant.

3. For some τ> 1 sup{
∫
|a|τP (x,0),d(y, a) ; x ∈ S} <∞.

Conditions 1,2 above imply that P has a unique stationary measure π and the spectrum
of P in Hε(S) is of the form {1}∪∆ where ∆ is a compact subset of the open unit disk (see
[33] ). They imply also that, for any t 6= 0, the spectral radius of P i t is less than one.

With the notations of section 4, condition 3 above will allow us to estimate aE(|Vn |p ) for
p ≤ δ and to show the continuity of t →|P i t |.

The following is a simple consequence of conditions 1,2,3 above.

Lemma 5.15. With the above notation, let I ⊂R be a compact subset of R\{0}. Then there

exists D > 0 and σ ∈ [0,1[ such that for any n ∈N, sup
t∈I

|(P i t )n| ≤ Dσn .

Proof. Conditions 1 and 2 for P i t (t 6= 0) imply that the spectral radius rt of P i t satisfies
rt < 1. Hence there exists Ct > 0 such that for any n ∈ N,|(P i t )n | ≤ Ct ( 1

2 +
rt

2 )n . On the
other hand t →|P i t | is continuous as the following calculation shows. For a, t , t ′ ∈R,δ′ ∈
[0,1], we have |e i at −e i at ′ | ≤ 2|a|δ′ |t − t ′|δ′ hence we have

|P i tϕ(x)−P i t ′ϕ(x)| ≤ 2|ϕ| |t − t ′|δ
′
∫

|a|δ
′
P ((x,0),d(y, a)),

|P i t −P i t ′ | ≤ 2Mδ′|t − t ′|δ
′
.

For each t ∈ I we fix nt ∈ N such that |(P i t )nt | ≤ 1
3 . Then the above continuity of P i t ,

hence of (P i t )nt , gives that for t ′ sufficiently chose to t , |(P i t ′ )| ≤ 1
2 . Using compactness

of I we find n1, · · ·nk such that one of the inequalities |(P i t )n j | ≤ 1
2 (1 ≤ j ≤ k) is valid at

any given point of I . Then, since |P i t | ≤ 1 with n0 = n1 · · ·nk we get |P i t )n0 | ≤ 1
2 . Using

Euclidean division of n by n0, we get the required inequality. ä

We are interested in the action of P n on functions on S ×R which are of the form u ⊗ f

where u ∈ C (S), f ∈ L1(R) and we are interested also in P-harmonic Radon measures
which satisfy boundedness conditions. In some proofs, since Hε(S) is dense in C (S), it
will be convenient to assume u ∈ Hε(S).
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Definition 5.16. We say that the Radon measure θ on S×R is translation-bounded if for
any compact subset K of S ×R, any a ∈ R, there exists C (K ) > 0 such that |θ(a +K )| ≤
C (K ) where a +K is the compact subset of S ×R obtained from K using translation by
a ∈R.

We are led to consider a positive function ω on Rd which satisfies ω(x + y) ≤ω(x)ω(y).
For example, if p ≥ 0, such a function ωp is defined by ωp (a) = (1 + |a|)p . We de-
note L1

ω(R) = { f ∈ L1(R); ω f ∈ L1(R)} and we observe that f → ‖ω f ‖1 = ‖ f ‖1,ω is a
norm under which L1

ω(R) is a Banach algebra. The dual space of L1
ω(R) is the space

L∞ω (R) of measurable functions g such that gω−1 ∈ L∞(R) and the duality is given by
〈g , f 〉 =

∫
g (a) f (a)d a. The Fourier transform f̂ of f ∈ L1

ω(R) is well defined by f̂ (t ) =∫
f (a)e i ta d a. We denote by J c the ideal of L1(R) which consists of functions f ∈ L1(R)

such that f̂ has a compact support not containing 0 and we write J c
ω = L1

ω(R)∩ J c . Also
we denote by L1

0(R) the ideal of L1(R) defined by the condition f̂ (0) = 0. It is well known
that J c is dense in L1

0(R), hence for ω = ωp the ideal J c
ω2 is dense in L1

ω(R) (see [32] p.
187).

Theorem 5.17. With the above notation, assume that the family P i t (t ∈R) satisfies con-

ditions D and let ω = ωp with p < δ. Then for any f ∈ L1
ω(R)∩ J c , u ∈ C (S), we have the

convergence

lim
n→∞

sup
x∈S

‖P n(u ⊗ f )(x, ·)‖1,ω = 0.

If θ is a P-harmonic Radon measure which is translation-bounded, then θ is propor-

tional to π⊗ℓ. In particular π⊗ℓ is a minimal P-harmonic Radon measure.

The proof follows from the above considerations and the following lemmas.

Lemma 5.18. Assume πn is a sequence of bounded measures on R, ω is a positive Borel

function on R such that for any x, y ∈ R, ω(x + y) ≤ ω(x)ω(y) and assume that the total

variation measures |πn| of πn satisfy sup{|πn |(ω) ; n ∈N} <∞. Let f ∈ L1
ω(R)∩L2(R) and

assume An ,Bn are sequences of Borel subsets of R such that, with A′
n =R\ An , B ′

n =R\Bn ,

1. lim
n→∞

|πn|(ω)‖ f 1B ′
n
‖1,ω = 0,

2. lim
n→∞

|πn|(ω1A′
n

) = 0,

3. lim
n→∞

‖πn ∗ f ‖2 ‖ω21An+Bn‖
1/2
1 = 0.

Then we have lim
n→∞

‖πn ∗ f ‖1,ω = 0. Furthermore, if the measures πn depend of a para-

meter λ and if the convergences in 1–3 are uniform in λ, then the convergence of ‖πn ∗
f ‖1,ω is also uniform in λ.
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Proof. Let η,η′ be two bounded measures on R and let A,B be Borel subsets with com-
plements A′,B ′ in R. Observe that, since 0≤ω(x + y) ≤ω(x)ω(y),

ω(x + y) ≤ω(x + y)1A+B (x + y)+ (ω1A)(x)(ω1B ′ )(y)+ (ω1A′)(x)ω(y).

It follows

|(η∗η′)|(ω) ≤ |η∗η′|(ω1A+B )+|η|(ω)| |η′|(ω1B ′)+|η|(ω1A′)|η′|(ω).

Then we take η=πn , η′ = f (a)d a, A = An , B = Bn and we get

‖πn ∗ f ‖1,ω ≤
∫

|πn ∗ f |(a)|ω1An+Bn |(a)d a+|πn |(ω1An )‖ f 1B ′
n
‖1,ω+|πn |(ω1A′

n
)‖ f ‖1,ω.

Conditions 1, 2 imply that the two last terms in the above inequality have limits zero.
Using condition 3 and Schwarz inequality we see that the first term has also limit zero.
If πn depends of a parameterλ, the uniformity of the convergence of ‖πn∗ f ‖1,ω follows
directly from the bound for ‖πn ∗ f ‖1,ω given above.

The following lemma is an easy consequence of condition 3 on the Markov kernel P and
of Hölder inequality.

Lemma 5.19. For any p ∈ [1,δ], there exists Cp > 0 such that sup
x

aEx ((|Vn |)p ) ≤Cp np . In

particular, for any L > 0, sup
x,n

aPx {|Vn | > nL} ≤ Cp

Lp .

We leave to the reader the proof of the well known first inequality. The second one
follows from Markov’s inequality.

For a Radon measure θ on S ×R and b ∈ R, we denote by θ ∗δb the Radon measure
defined by (θ∗δb)(ϕ) =

∫
ϕ(x, a +b)dθ(x, a); for ϕ ∈ Cc(S ×R), θ translation-bounded

we write |θ|ϕ = sup{|θ∗δb(ϕ)|; b ∈ R}. For such measures and any bounded measure r

on R, θ∗ r is well defined by (θ∗ r )(ϕ) =
∫

(θ∗δb)(ϕ)dr (b) and we have |θ∗ r |ϕ ≤ |r |θϕ
where |r | is the total variation of r . In particular, f ∈ L1(R) can be identified with the
measure r f = f (a)d a, we can define θ ∗ f = θ ∗ r f and if fn ∈ L1(R) converges in L1-
norm to f ∈ L1(R), then θ ∗ fn converges to θ∗ f in the vague topology. On the other
hand, if r has compact support and θ is a Radon measure on R, θ∗r is well defined as a
Radon measure.

Lemma 5.20. With the above notation, assume that θ is a translation-bounded non neg-

ative Radon measure on S ×R. Let r be a non negative continuous function on R with

compact support containing 0. Then for p > 1, there exists a non negative bounded meas-

ure θ on S such that θ∗ r ≤ (1S ⊗ωp )(θ⊗ℓ).

92



Proof. For simplicity of notation, assume r > 0 on [0,1]. We denote by θk ∗δk the re-
striction of θ to S× [k,k +1[ (k ∈Z) and we write θ = Σ

k∈Z
θk ∗δk with supp θk ⊂ S× [0,1].

We observe that, since θ is translation-bounded, the mass of θk is bounded for k ∈ Z,
hence

.
θ = Σ

k∈Z
(1+|k|)−pθk is a bounded measure supported on S×[0,1]. We have clearly

θk ≤ (1+|k|)p
.
θ,θ ≤

.
θ∗ Σ

k∈Z
(1+|k|)pδk ,θ∗ r ≤

.
θ∗(r ∗ Σ

k∈Z
(1+|k|)pδk ).

But, by definition of ωp and since suppr is compact, we have r ∗ Σ
k∈Z

(1+|k|)pδk ≤ cωp

for some c > 0 and it follows, θ ∗ r ≤ c
.
θ∗ωp . We desintegrate the bounded meas-

ure
.
θ as

.
θ =

∫
δx ⊗

.
θx d θ̃(x) where θ̃ is the projection of

.
θ on S and

.
θx is a probab-

ility measure. Hence
.
θ∗ωp =

∫
δx ⊗ (

.
θx ∗ωp )d θ̃(x). But, since

.
θx is supported on

[0,1], we have
.
θx ∗ωp ≤ 2p

.
θx([0,1])ωp . Hence

.
θ ≤ 2p (1S ⊗ωp )(θ̃⊗ℓ) and finally θ∗ r ≤

2p c(1S ⊗ωp )(θ̃⊗ℓ)= (1S ⊗ωp )(θ⊗ℓ) with θ = 2p cθ̃.

Proof of Theorem 5.17. We fix p ∈ [1,δ[, ω=ωp ,u ∈ Hε(S), u ≥ 0 and for x ∈ S, we define
the positive measure πx

n on R by πx
n(ϕ) = P n(u⊗ϕ)(x,0) where ϕ is a non negative Borel

function on R. We observe that πx
n(1) ≤ |u|, and for f ∈Cb(R)∩L1(R), we have

P n(u ⊗ f )(x, a) =πx
n( f ∗δa ) = (πx

n ∗ f ∗)(a),

where f ∗(a) = f (−a). It follows ‖P n(u ⊗ f )(x, ·)‖1 ≤ |u| ‖ f ‖1 and also for f ∈ L1
ω(R),

‖P n(u ⊗ f )(x, ·)‖1,ω ≤ ‖ f ‖1,ω sup{πx
n(ω) ; x ∈ S}. From condition 3, since p < δ we have

pi x
n (ω) ≤ |u| a

Ex (1+|Vn |)p ≤ 2pCp np

where we have used Lemma 5.19 in order to bound aEx (1+|Vn |)p .

We fix δ > 1, we denote Bn = {a ∈ R ; |a| ≤ n1+δ}, An = {a ∈ R ; |a| ≤ nc+1} with c > 0
to be defined later and we verify the conditions 1–3 of Lemma 5.18 for πn = πx

n , uni-
formly in x ∈ S for f ∈ L1

ω2 (R). Since f ω2 ∈ L1(R), Markov’s inequality gives ‖ f 1B ′
n
‖1,ω ≤

‖ f ‖1,ω2 n−p(1+δ). Then, using the bound of πx
n(ω) given above,

πx
n(ω)‖ f 1B ′

n
‖1,ω ≤ 2pCp n−pδ‖ f ‖1,ω2 .

Hence condition 1 of lemma 5.18 is satisfied.
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We write πx
n(ω1A′

n
) ≤ |u|aEx (ω(Vn)1A′

n
(Vn)) and use Hölder inequality for p ′ > 1, 1

q ′ =
1− 1

p ′ and p ′p < δ:

πx
n(ω1A′

n
) ≤C ′2p npP{|Vn | ≥ nc+1})1/q ′

≤C ′′ np−cp/q ′
,

where we have used the fact that sup
x

aEx (|U1|pp ′
) <∞ for pp ′ < δ and Lemma 5.19. If

we take c > q ′ = p ′

p ′−1 , we see that lim
n→∞

πx
n (ω1A′

n
) = 0 uniformly, hence condition 2 is

satisfied.

In order to verify condition 3 we observe that π̂x
n(t ) = (P i t )nu(x). For f ∈ J c ⊂ L2(R) we

denote Y = supp f̂ ⊂ R \ {0} and we know from Lemma 5.17, that there exist D > 0 and
σ ∈ [0,1[ such that for any t ∈ Y , n ∈N: |(P i t )n | ≤ Dσn . From Plancherel formula, we get

‖πx
n ∗ f ‖2 = (

∫
|π̂x

n(t )|2| f̂ (t )|2d t )1/2 ≤ ‖ f ‖2|u|sup
t∈Y

|(P i t )n| ≤ D|u|σn‖ f ‖2.

On the other hand, ‖ω21An+Bn‖1 is bounded by a polynomial in n. Since σ < 1, condi-
tion 3 is satisfied. Hence, Lemma 5.18 gives: lim

n→∞
‖πx

n ∗ f ‖1,ω = 0 uniformly. By density,

the same relation is valid for all f ∈ L1
ω(R).

Now, let us choose p ∈]1,δ[ and ω=ωp . Since θ is translation-bounded we can assume
θ to be non negative and translation-bounded. Then Lemma 5.20 gives for any r as
in the lemma,θ∗ r ≤ (1S ⊗ω)(θ⊗ℓ). Taking r = rn as an approximate identity we have
θ = lim

n→∞
θ∗ rn in the weak sense. Hence we can assume θ ≤ (1S ⊗ω)(θ⊗ℓ) where θ is a

bounded measure on S. Let f ∈ L1
ω(R)∩ J c (R), u ∈ Hε(S) be as above, hence f ,u satisfy

for every n ∈N the following relations

θ(u ⊗ f ) = (P nθ)(u ⊗ f ) = θ(P n(u ⊗ f )) =
∫

P n(u ⊗ f )(x, a)dθ(x, a),

|θ(u ⊗ f )| ≤
∫

dθ(x)
∫

|P n(u ⊗ f )(x, a)|ω(a)d a ≤ ‖θ‖sup
x

‖P n(u ⊗ f )(x, ·)‖1,ω.

From the first part of the proof we get θ(u ⊗ f ) = 0 for any u ∈ Hε(S), f ∈ J c
ω = L1

ω(R)∩
J c . This relation remains valid for f in the ideal I c

ω of L1
ω(R) generated by J c

ω. Using
regularisation on Fourier transforms we see that the closure in L1(R) of J c

ω contains J c ,
hence the unique Fourier exponential which vanishes on I c

ω is 1. Then using classical
Fourier Analysis (see [32] p.187) we get that I c

ω is dense in L1
0(R). As observed above,

since θ is translation-bounded, this implies θ(u⊗ f ) = 0 for any f ∈ L1
0(R). Since Hε(S) is

dense in C (S), we get that θ is invariant by R-translation. Then we have θ = θ⊗ℓ where
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θ is a positive measure on S which satisfies P θ = θ. Using parts 1,2 of condition D, this
implies that θ is proportional to π, hence θ is proportional to π⊗ℓ.

For the final assertion we observe that, if θ is a P-harmonic positive Radon measure
with θ ≤ c π⊗ℓ, for some c > 0, then θ is translation bounded. Hence as above, θ is
proportional to π⊗ℓ. ä

5.5 Homogeneity at infinity of the stationary measure

For the proof of Theorem 5.2 we prepare the following propositions and lemmas. If
α ∉ N, it follows from [5] that Theorem 5.2 is a consequence of Propositions 5.3 and
5.9. If α ∈ N, as follows from [51], the situation is different in general. More precisely,
as shown in ([5], p 706), if η ∈ M1(V ) is suitably choosen and α ∈ N, convergence of
t−α(t ·η) (t → 0+) on the sets H+

v for every v ∈V does not imply vague convergence.

Here, we will need to use the Choquet-Deny type results of paragraph 4. We start with
an improvment of Corollary 5.8.

Proposition 5.21. For any u ∈Sd−1, lim
t→∞

tα P̂{|〈R ,u〉| > t } =C
p(α)

α
∗eα(u) > 0 .

In cases I, for any u ∈Sd−1 : lim
t→∞

tα P̂{〈R ,u〉 > t } =
1

2
C

p(α)

α
∗eα(u) > 0 .

In case II, for any u ∈Λ+(T ∗), if Λa(Σ) ⊃Λ
∞
+ (T ): lim

t→∞
tα P̂{〈R ,u〉 > t } =

p(α)

α
C+

∗eα(u) >
0.

Proof. This a trivial consequence of Proposition 5.3, Corollary 5.8, Proposition 5.9 and
Lemma 5.10.

The following is a corollary of the proof of Proposition 5.9 and of Proposition 5.21.

Corollary 5.22. With the above notation we write

γα
τ = Lµ(α)Eα0 (τ),ψα

τ (v, p) = P̂{t < p−1〈R ,u〉 ≤ t +p−1〈Rτ,u〉 , τ<∞}∗eα(u)−1tα

and we denote by κτ the ∗Q̂
α,τ

-stationary measure on X+, given by Lemma 5.12. Then, if

Λa(Σ) ⊃Λ
∞
+ (T ) we have

C+ ≥
α

p(α)γα
τ

∫

]0,∞[×X+
ψα

τ (v, p)t−1dκτ(u, p)d t > 0.
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Proof. With the notation of Lemma 5.12, we have ψα =
∞
Σ
0

(∗P̂τ
α)kψα

τ where ∗P̂τ
α is a

fibered Markov kernel on X+×R∗
+ which satisfies the conditions of Proposition 5.14 and

ψα
τ is bounded by (∗eα⊗hα)−1. Hence, as in the proof of the proposition, if ψα

τ is a Borel

function with compact support, bounded byψα
τ ,then lim

t→∞
ψα(v, p) ≥ limsup

t→∞

∞
Σ
0

∗P̂τ
αψ

α
τ (v, p),

and, using Proposition 5.21, since lim
t→∞

ψα(v, p) is constant on X+,we get

lim
t→∞

ψα(v, p) ≥
1

γα
τ

∫

]0,∞[×X+
ψ

α
τ (v ′, p)dκτ(u′, p)

d t

t
.

Hence, approximating from below ψα
τ by ψ

α
τ , we have

lim
t→∞

ψα(v, p) ≥
1

γα
τ

∫

]0,∞[×X+
ψα

τ (v ′, p)
d t

t
dκτ(u′, p),

C (u)= lim
t→∞

tαP̂{〈R ,u〉 > t } = ∗eα(u) lim
t→∞

ψα(v, p),

C (u)≥
∗eα(u)

γα
τ

∫

]0,∞[×X+
ψα

τ (v ′, p)t−1d tdκτ(u′, p).

The final formula follows from Proposition 5.21.

Remark. We observe that, if d = 1, and A,B are positive, a formula of this type for C =
C+, with equality, is given in [14]. We don’t know if such an equality is valid in our
setting.

Lemma 5.23. For any compact subset K of V \ {0}, there exists a constant C (K ) > 0 such

that sup
t>0

t−α(t ·ρ)(K ) ≤C (K ). In particular the family ρt = t−α(t ·ρ) is relatively compact

for the topology of vague convergence and any cluster value η of the family ρt satisfies

sup
t>0

t−α(t ·η)(K ) ≤C (K ). Hence sup
t>0

t · ((eα⊗hα)η)(K ) ≤C ′(K ) with C ′(K ) > 0.

Proof. For someδ> 0 we have K ⊂ {x ∈V ; |x| > δ}, hence using Corollary 5.8, t−αP{|R| >
δ
t

} ≤ b
δα =C (K ). The relative compactness of the family ρt follows. Also,

(t tn)−α(t tn ·ρ)(K ) ≤C (K ), t−α(t ·η)(K ) = lim
n→∞

(t tn)−α(t tn ·ρ)(K ) ≤C (K ).

Hence supt>0 t−α(t ·η)(K ) ≤ C (K ). Since eα⊗hα is α-homogeneous we have t · ((eα⊗
hα)η) = (eα⊗hα)(t−α(t ·η)). With CK = sup

v∈K
(eα⊗hα)(v), we get

t · ((eα⊗hα)η)(K ) ≤CK t−α(t ·η)(K ) ≤CK C (K ) =C ′(K ).
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Lemma 5.24. Assume η is the vague limit of t−αn (tn ·ρ) (tn → 0+). Then η is µ-harmonic,

i.e µ∗η= η.

Proof. Let ϕ be ε-Hölder continuous on V with compact support contained in the set
{x ∈ V ; |x| ≥ δ} with δ > 0, and let us show lim

t→0+
t−αIt (ϕ) = 0 where It (ϕ) = (t · ρ −

t .(µ∗ρ))(ϕ). By definition It (ϕ) = E(ϕ(tR)−ϕ(t A1Roθ̂)) with ϕ(tR) = 0 if |tR| < δ and
ϕ(t A1Roθ̂) = 0 if |t A1Roθ̂| < δ. Hence, It (ϕ) ≤ [ϕ]εtεE(|B1|ε1{|tR|>δ} +|B1|ε1{t |A1Roθ̂|>δ}).

We write
I 1

t = tε−αE(|B1|ε1{|tR|>δ

I 2
t = tε−αE(|B1|ε1{t |A1Roθ̂|>δ}) and we estimate I 1

t , I 2
t as follows. We have I 1

t ≤ δε−αE(|B1|ε|R|α−ε1{|tR|>δ}|.
Since |R|α−ε ≤ c(|A1Roθ̂|α−ε+|B1|α−ε), using independence of Roθ̂ and |B1|ε|A1|α−ε, we
get

E (|B1|ε|R|α−ε) ≤ c E (|B1|α)+c E (|A1|α−ε|B1|ε) E (|R|α−ε.

Using Hölder inequality we get E(|A1|α−ε|B1|ε) <∞. Also using Proposition 5.1, we get
E(|R|α−ε) <∞. It follows that |B1|ε|R|α−ε1{|tR|>δ} is bounded by the integrable function
|B1|ε|R|α−ε. Then by dominated convergence, lim

t→0
I 1

t = 0. In the same way we have

I 2
t ≤ δε−αE(|B1|ε|A1Roθ̂|α−ε1{t |A1Roθ̂|>δ}.

Also, using independence and Hölder inequality, we have

E (|B1|ε|A1Roθ̂|α−ε) ≤ E(|B1|ε|A1|α−ε)E(|R|α−ε) <∞.

Then by dominated convergence lim
t→0+

I 2
t = 0. Hence lim

t→0+
t−αIt (ϕ) = 0. By definition

of η we have, for any g ∈ G , {limtn→0+ t−αn (tn · (gρ)(ϕ) = (gη)(ϕ). Furthermore we have
|ϕ(x)| ≤ |ϕ|1{x ∈V ; |x| ≥ δ} and,

|(gη)(ϕ)| ≤ |ϕ|η{x ∈V ; |g x| ≥ δ} ≤ |ϕ| lim
n→∞

t−αn P{|R| >
δ

|g |tn
}.

Using Corollary 5.8 we get |(gη)(ϕ)| ≤ b
δα |ϕ||g |

α.

Since
∫
|g |αdµ(g )<∞ and for any g ∈G , lim

tn→0+
t−αn (tn ·(gρ)(ϕ) = gη(ϕ), we have by dom-

inated convergence lim
tn→0+

t−αn (tn ·(µ∗ρ)(ϕ) = (µ∗η)(ϕ). Then the property lim
t→0+

t−αIt = 0

implies (µ∗η)(ϕ) = η(ϕ), hence µ∗η= η.
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Lemma 5.25. Assume η and σ⊗ℓα are µ-harmonic Radon measures on V \ {0} with σ ∈
M1(Sd−1). Assume also that for any v ∈ V \ {0}, η(H+

v ) = (σ⊗ℓα)(H+
v ). Then we have

η=σ⊗ℓα.

Proof. As in the proof of Corollary 5.8, we observe that the condition η(H+
v ) = (σ⊗

ℓα)(H+
v ) implies for any δ> 0,

sup
t>0

t−α(t ·η){x ∈V ; |x| > δ} <∞.

Hence, as in Lemma 5.25, for any compact K ⊂V \ {0}, with ηα = (eα⊗hα)η, we have

sup
t>0

t−α(t ·η)(K ) ≤C (K ), sup
t>0

(t ·ηα)(K ) ≤C ′(K ).

It follows that ηα is dilation-bounded.

We recall that P (resp P̆ ) is the convolution operator by µ on V \ {0} (resp V̆ ), hence
P̆ (σ⊗ℓα) =σ⊗ℓα and P̆ (eα⊗hα) = eα⊗hα. We denote by Q̆α the Markov operator on
V̆ deduced from P̆ by Doob’s relativisation with respect to eα⊗hα. On the other hand,
the projection σ⊗ℓα (resp η̆) of σ⊗ℓα (resp η) on V̆ satisfies

µ∗ (σ⊗ℓα) =σ⊗ℓα (resp µ∗ η̆= η̆), hence Q̆α(eασ⊗ℓ) = eασ⊗ℓ, Q̆α(η̆α) = η̆α.

We observe that the fibered Markov operator Q̆α satisfies condition D of subsection 5.4,
in view of Corollary 3.20 and of the moment condition on A.

Then Theorem 2.6 implies σ = να. Also, in view of Corollary 3.20 for s = α and the
above observations, we can apply the second part of Theorem 5.17 to η̆α with P = Q̆α,
hence η̆α is proportional to πα⊗ℓ, i.e. η̆ is proportional to να⊗ℓα. Since σ = να and
η(H+

v ) = (σ⊗ℓα)(H+
v ) we get η̆= να⊗ℓα.

We denote for v ∈ Sd−1, λv = |〈v, ·〉ασ⊗ ℓα, ηv = |〈v, ·〉|αη. Since σ⊗ ℓα and η are µ-
harmonic, we have

∫
gλg∗v dµ(g ) = λv ,

∫
gηg∗v dµ(g ) = ηv . The projections λ̆v and η̆v

on V̆ satisfy the same equation, hence are equal. As in section 3, we get that the se-
quences of Radon measures g1 · · ·gnλg∗

n ···g∗
1 v and g1 · · ·gnηg∗

n ···g∗
1 v are vaguely bounded

∗Qα
v -martingales. On V̆ we get, using Theorem 3.2, for some z(ω) ∈Pd−1 and ∗Qα

v −a.e.

lim
n→∞

g1 · · ·gnλ̆g∗
n ···g∗

1 v = lim
n→∞

g1 · · ·gnη̆g∗
n ···g∗

1 v = δz(ω) ⊗ℓ.

Let z+(ω) and z−(ω) be opposite points on Sd−1 with projection z(ω) on Pd−1. The
martingale convergence on V \{0} gives that g1 · · ·gnλg∗

n ···g∗
1 v (resp g1 · · ·gnηg∗

n ···g∗
1 v ) con-

verges vaguely to p(ω)δz+(ω) + q(ω)δz−(ω) (resp p ′(ω)δz+(ω) + q ′(ω)δz−(ω)) with p(ω) +
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q(ω) = p ′(ω)+q ′(ω) = 1. The condition η(H+
v ) = (σ⊗ℓα)(H+

v ) implies in the limit:

p(ωδz+(ω) +q(ω)δz−(ω) = p ′(ω)δz+(ω) +q ′(ω)δz−(ω).

Hence, taking expectations we get η=σ⊗ℓα.

Proof of theorem 5.2. The convergence of ρt = t−α(t ·ρ) to C (σα⊗ℓα) on the sets H+
v

and the positivity properties of C ,C+,C− follows from Corollary 5.21. For the vague
convergence of ρt we observe that Lemma 5.25 gives the vague compactness of ρt . If
η = lim

tn→0+
t−αn (tn ·ρ), Lemma 5.24 gives the µ-harmonicity of η. Since η(H+

v ) = C (σα⊗

ℓα)(H+
v ), Lemma 5.25 gives Λ = C (σα⊗ℓα) = η, hence the vague convergence of ρt to

Λ. The detailed form of Λ follows from Proposition 5.3.

For the final minimality assertions one uses the second part of Theorem 5.17 and we
replace η by (eα⊗hα)η. We verify condition D for Q̃α or operators associated with Q̃α

as follows. Part 1 of condition D follows directly from Corollary 3.21. In case I, Q̃α

satisfies part 2 of condition D by Corollary 3.21, 1 is a simple eigenvalue of Q̃α and, if θ
is positive Radon measure with µ∗θ= θ, θ ≤ ν̃α⊗ℓα, hence θ is proportional to ν̃α⊗ℓα.
In case II, one restricts Q̃α to the convex cone generated to Λ+(T ), so as to achieve the
simplicity of 1 as an eigenvalue of Q̃α and the absence of other unimodular eigenvalue.
Then Corollary 3.21 shows that part 2 of condition D is satisfied for the corresponding
operator, hence the above argument is also valid for να+ ⊗ ℓα. Part 3 of condition D

follows from the moment conditions assumed on λ.

Remark. In general supp(σα⊗ℓα)∩Sd−1
∞ is smaller thanΛ

∞
a (Σ) and suppσα has a fractal

structure.

In the context of extreme value theory for the process Xn , the convergence stated in the
theorem plays a basic role and implies that ρ has multivariate regular variation.

Actually, using the properties of Λ, [5] gives also the weak convergence for any α (resp
α ∉ 2N) in case II” (resp case I).

This is valid too for α ∉ 2N if C+ =C− in case II’, for example if the law of B1 is symmetric
(see [38]).

For the last assertion in Theorem C we need the following.

Proposition 5.26. Let Bε,α be the set of locally bounded Borel functions on V \ {0} such

that the set of discontinuities of f is Λ-negligible and for ε> 0,

K f (ε) = sup{|v |−α| log v |1+ε| f (v)| ; v 6= 0} <∞.
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Then for any f ∈Bε,α lim
t→0+

t−α(t ·ρ)( f ) =Λ( f ).

The proof depends of two lemmas in which we will use the norm ‖v‖ = sup
1≤i≤d

|〈x,ei 〉|

instead of |v | where ei (1≤ i ≤ d) is a basis of V . Also for δ> 0 and 0< δ1 < δ2 we write

Bδ = {v ∈V ; ‖v‖≤ δ},Bδ1,δ2 = Bδ2 \ Bδ1 ,B ′
δ
=V \ Bδ.

Lemma 5.27. For any f ∈Bε,α, 0< δ1 < δ2,

limt→0+ t−α(t ·ρ)( f 1Bδ1,δ2
) =Λ( f 1Bδ1,δ2

).

Proof. From the fact that να gives measure zero to any projective subspace and the ho-
mogeneity of Λ=σα⊗ℓα, we know that Λ gives measure zero to any affine hyperplane,
hence the boundary of Bη1,η2 is Λ-negligible. Then the proof follows from the vague
convergence of t−α(t ·ρ) to Λ and the hypothesis of Λ-negligibility of the discontinuity
set of f .

Lemma 5.28. There exists C > 0 such that for any f ∈Bε,α, t > 0 and δ2 > e,

|t−α(t ·ρ)( f 1Bδ2
)| ≤C K f (ε)| logδ2|−ε.

Furthermore there exists C (ε) > 0 such that for any f ∈Bε,α, t > 0, δ1 < e−1

|t−α(t ·ρ)( f 1Bδ1
)| ≤C (ε)K f (ε)| logδ1|−ε.

Proof. Let ϕε(x) be the function on R+ \ {1} given by ϕε(x) = xα| log x|−1−ε. For x ≥ e

we have ϕ′
ε(x) ≤ α xα−1| log x|−1−ε. We denote Ft (x) = P̂(|tR| > x) and we observe that,

using Proposition 5.1, the non increasing function Ft is continuous. We have

|t−α(t ·ρ)( f 1B ′
δ2

)| ≤ t−αK f (ε)
∫∞

δ2

ϕε(x)dFt (x).

Integrating by parts, we get

|t−α(t ·ρ)( f 1B ′
δ2

)| ≤ t−αK f (ε)[ϕε(x)Ft (x)]∞δ2
+ t−αK f (ε)

∫∞

δ2

ϕ′
ε(x)Ft (x)d x.

From Corollary 5.7 we know that, for some C > 0, Ft (x) ≤ C tαx−α. Then, using the
above estimation of ϕ′

ε(x), we get

|t−α(t ·ρ)( f 1B ′
δ2

)| ≤C Kε( f )
∫∞

δ2

α

| log x|1+ε
d x

x
≤C Kε( f )| logδ2|−ε.

The proof of the second assertion follows the same lines and uses the estimation of
|ϕ′

ε(x)| by (α+1+ε)xα−1| log x|−1−ε for x ≤ e−1.
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Proof of proposition 5.26. For δ≥ e and with D > 0 we have
∫

B ′
δ
ϕε(‖v‖)dΛ(v)≤ D

∫∞
δ

xα

(log x)1+ε
dx

xα+1 =
D

| logδ|ε hence lim
δ→∞

∫

B ′
δ

ϕε(‖v‖)dΛ(v)= 0. Also for δ< 1,

∫

B ′
δ

ϕε(‖v‖)dΛ(v)≤ D

∫δ

0

xα

| log x|1+ε
d x

xα+1 =
D

| logδ|ε
,

hence lim
δ→∞

∫

Bδ

ϕε(‖v‖)dΛ(v)= 0.

Then the Proposition follows from the lemmas. ä

Proof of Theorem C. Except for the last assertion, Theorem C is a direct consequence of
Theorem 5.2. The last assertion is the content of Proposition 5.26. ä

A An analytic approach to tail-homogeneity

Under the hypothesis of compact support for λ and density for µ, an analytic proof of
tail-homogeneity of ρ is given below. The full hypothesis is only used in the study of
positivity properties of C ,C+,C−, hence we split the presentation into two parts accord-
ing to the hypothesis at hand on λ. Also the argument gives analytic expressions for
C ,C+,C−. We recall Wiener-Ikehara’s theorem (see[52], p.233). Assume A(x) is non neg-
ative, increasing on [1,∞[, f (s)=

∫∞
1 x−s−1 A(x)d x is finite for s > 1, f extends as a func-

tion f̃ meromorphic in an open set D ⊃ {0 < Rez ≤α} and f̃ has only a possible unique
simple pole at z =α, with lim

s→α−
(α− s) f (s) = A; then one has lim

x→∞
x−1 A(x) = A. The use

of this result (see Lemma A.1 below)will give the tail-homogeneity of ρ. On the other
hand, if β denotes the convergence abcissa of the Mellin transform f (s) =

∫∞
0 xs dν(x),

a lemma of E. Landau (see [52] p. 58) says that f cannot be extended holomorphically
to a neighbourhood of β. This will allow us to show A > 0.

Lemma A.1. Let ν be a probability on [1,∞[, α> 0 such that f (x) =
∫∞

1 xs dν(x) is finite

for s <α, f (s) extends to an open set D ⊃ {0 <Rez≤α} as a meromorphic function f̃ which

has a simple pole at z =α with residue A > 0. Then one has lim
x→∞

xαν(x,∞) =α−1 A.

Proof. We write A(x) =
∫x

1 tαν(t ,∞)d t for x ≥ 1 and we observe that the finiteness of
f (s) for s <α implies lim

x→∞
xα−εν(x,∞) = 0 for ε> 0.

Integrating by parts we have for s > 1
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∫∞

1
x−s−1 A(x)d x = s−1

∫∞

1
xα−sν(x,∞)d x = s−1(α− s +1)−1

∫∞

1
xα−s+1dν(x).

Since A(x) ≥ 0 is increasing, we can use Wiener-Ikehara’s theorem: lim
x→∞

x−1 A(x) =α−1 A.

Then one can apply the Tauberian Lemma 5.4 to the decreasing function ν(x,∞) and
gets lim

x→∞
xαν(x,∞) =α−1 A.

The connection with the spectral gap properties in section 3 depends on the following.
The hypothesis is as in Corollary 3.21.

Lemma A.2. There exists an open set D ⊂C which contains the set {Rez ∈]0,α]} such that

(I − P̃ z )−1 is meromorphic in D with a unique simple pole at z =α. We have

In case I, lim
z→α

(α− z)(I − P̃ z )−1 = k ′(α)−1(ν̃α⊗eα).

In cases II, lim
z→α

(α− z)(I − P̃ z )−1 = k ′(α)−1(να+⊗eα
++να−⊗eα

−).

Proof. We restrict to case I, since the proof is similar in cases II. The operator P̃ z on
Hε(Sd−1) where z = s + i t , is defined by the formula P̃ zϕ(x) =

∫
|g x|zϕ(g · x)dµ(g ) and

1
k(s) P̃ z is conjugate to the operator Q̃z considered in Corollary 3.21. From this corollary

we deduce that Q̃α satisfies a Doeblin-Fortet condition and r (P̃α+i t ) = r (Q̃α+i t ) < 1 if
t 6= 0. On the other hand the function z → P̃ z is holomorphic in the set {0 < Rez < s∞}
since for any loopγ in this set we have

∫
γ P̃ zd z =

∫
ϕ(g ·x)dµ(g )

∫
γ |g x|z d z = 0. It follows

that there exists ε> 0 such that for |z −α| < ε there exists a holomorphic function k(z)
such that k(z) is a simple dominant eigenvalue of P̃ z with k(z) = 1+k ′(α)(z−α)+◦(z−α).
Since k ′(α) 6= 0, we have k(z) 6= 1 for z 6= α and |z −α| small. Also for |z −α| small, we
have in case I the decomposition P̃ z = k(z)ν̃z ⊗ez +U (z) where ν̃z ⊗ez is a projector on
the line Cez , U (z) satisfies U (z)(ν̃z ⊗ ez) = (ν̃z ⊗ ez)U (z) = 0, r (U (z)) < 1, and ν̃z ⊗ ez ,
U (z) depend holomorphically on z. We consider also the projection pz = I −ν̃z ⊗ez and
we write I − P̃ z = (1−k(z))(ν̃z ⊗ez)+pz (I −U (z)). Hence, for |z −α| small

(I − P̃ z )−1 = (1−k(z))−1(ν̃z ⊗ez)+pz (I −U (z))−1.

In particular, lim
z→α

(α− z)(I − P̃ z )−1 = k ′(α)−1(ν̃α⊗ eα), and (I − P̃ z )−1 is meromorphic in

a disk B0 centered at α with radius ε′ ≤ ε, with unique pole at z = α. For z = α+ i t

with |t | ≥ ε′, we get from above that there exists a disk Bt centered at α+ i t such that
r (P̃ z ) < 1 for z ∈Bt , hence (I −P̃ z)−1 is a bounded operator depending holomorphically
on z for z ∈ Bt . If Rez ∈]0,α[, then r (P̃ z ) ≤ r (P̃ s ) < 1 hence (I − P̃ z ) is invertible and the
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function z → (I − P̃ z )−1 is holomorphic in the domain {0 < Rez <α}. Then the open set
D = (∪

t
Bt )U {Rez ∈]0,α[}, where t = 0 or |t | ≥ ε′ satisfies the conditions of the lemma,

hence the formula for lim
z→α

(α− z)(I − P̃ z )−1 is valid.

We denote, for u ∈Sd−1 and Rez = s <α,

f̄z(u) = E(〈R ,u〉z
+) , d̄z(u) = E(〈R ,u〉z

+−〈R −B ,u〉z
+).

Proposition A.3. With the notation and hypothesis of Theorem 5.2, we have the conver-

gence :

lim
t→0+

t−α(t ·ρ)(H+
u ) =C (σα⊗ℓα)(H+

u ) =C (u)=α−1 lim
s→α−

(α− s) f̄s(u),

where C ≥ 0 and σα ∈ M1(Λ̃(T )) satisfies µ∗ (σα⊗ℓα) =σα⊗ℓα.

In case I , σα is symmetric, suppσα = Λ̃(T ) and C (u)= (αk ′(α))−1∗ν̃α(d̄α)∗eα(u).

In cases II, C (u)= (αk ′(α))−1[∗να+(d̄α)∗eα+(u)+∗να
−(d̄α)∗eα

−(u)].

Proof. We write equation (S) of section 5 in the form: R −B = AR ◦ θ̂.

For any v ∈V \ {0}, Rez = s ∈ [0,α[ we define

fz(v) = E(〈R , v〉z
+), f 1

z (v)= E(〈R −B , v〉z
+).

Then equation (S) implies: 〈R −B , v〉+ = 〈R ◦ θ̂, A∗v〉+, hence ∗P fz = f 1
z , (I − ∗P ) fz =

fz− f 1
z = dz with dz(v) = E(〈R , v〉z

+−〈R−B , v〉z
+). We write a continuous z-homogeneous

function f on V \ {0} as f = f̄ ⊗hz with f̄ ∈C (Sd−1), and we recall that, as in section 2,
∗P f = ∗P̃

z
f̄ ⊗hz . Then, since fz and dz are z-homogeneous and continuous, equation

(S) gives, (I −∗P̃
z

) f̄z = d̄z .

For u ∈Sd−1 and ε(z) = |z|1[1,s∞[(s), ε′(z) = 1[0,1](s), d̄z(u) is dominated by

E(〈R ,u〉z
+−〈R −B ,u〉z

+)| ≤ ε′(z)E(|B |s )+ε(z)E(|B |(|B |+〈R ,u〉+)s−1).

Hence using Hölder inequality and the moment hypothesis we get that for u fixed, d̄z(u)
is a holomorphic function in the domain Rez ∈]0,α+δ[. On the other hand, Lemma
A.2 for µ∗ implies that the operator-valued function (I − ∗P̃

z
)−1 is meromorphic in an

open set D which contains the set {Rez ∈]0,α]}, with unique simple pole at α ∈ D. The
above estimation of d̄z (u) shows that the same meromorphy property is valid for f̄z =
(I −∗P̃

z
)−1d̄z . If we denote by ρu the law of 〈R ,u〉+, we have f̄s(u) =

∫
xs dρu(x), hence
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f̄s(u) is the Mellin transform of the positive measure ρu . Then we can apply Lemma A.1
to f̄s(u), ρu and obtain the tail of ρu in the form: lim

t→∞
tαρu(t ,∞)= lim

s→α−
α−1(α− s) f̄s (u).

Hence using Lemma A.2 we have

In case I, lim
s→α−

(α− s) f̄s (u) =
1

k ′(α)
∗ν̃α(d̄α)∗eα(u).

In case II, lim
s→α−

(α− s) f̄s (u) =
1

k ′(α)
[∗να+(d̄α)∗eα

+(u)+∗να−(d̄α)∗eα
−(u)].

Using the expressions of ∗eα(u),∗eα
+(u),∗eα

−(u) given by Theorem 2.16 we obtain in the
two cases,

lim
s→α−

(α− s) f̄s (u)=αC (σα⊗ℓα)(H+
u ) =αC (u),

with certain constants C ≥ 0, C (u)≥ 0, a certain σα ∈ M1(Sd−1) which satisfies

µ∗ (σα⊗ℓα) =σα⊗ℓα.

In case I, we see that σα is symmetric and suppσα = Λ̃(T ).

In cases II, the detailed expression ofσα shows that Cσα=C+σ
α
++C−σ

α
− where suppσα

+ =
Λ+(T ), suppσα

− =Λ−(T ). As a result we have lim
t→∞

tαρu(t ,∞) = C (σα⊗ℓα)(H+
u ) = C (u).

Proposition A.4. With the notation and hypothesis of Proposition A.3, assume futher-

more that suppλ is compact and µ has a density on G. Then C > 0. In cases II, we have

C (u)> 0 if u ∈Λ+(T ∗).

Proof. Assume C = 0 and observe that Proposition A.3 gives C (u)= 0 for any u ∈ Λ̃(T ∗).
The equation (I −∗P̃

s
) f̄s = d̄s which occurs in the proof of Proposition A.3 gives by in-

tegration against ∗ν̃s , since ∗P̃
s
(∗ν̃s ) = k(s)(∗ν̃s ),

(1−k(s))∗ν̃s ( f̄s) = ∗ν̃s (d̄s ) (s <α).

Here, the estimation of d̄z in the proof of Proposition A.3 gives the analyticity of ∗ν̃z (d̄z )
in an open set containing ]0,α+δ[ where ν̃z is defined in the proof of Lemma A.2 by
perturbation. Since C (u)= 0, the function f̃z considered in the proof of Proposition A.3
is meromorphic with no pole at α, hence Landau’s lemma mentioned above gives that
the convergence abcissa of

∫
xs dρu(x) is larger than α and f̄s(u) <∞ if 0< s <α+δ.

Now we consider the case s ≥ α+δ. We observe that in case I, the density hypothesis
on µ implies that supp∗ν̃s = supp∗ν̃=Sd−1 and the compactness hypothesis of suppλ
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implies that ∗P̃ z defines a compact operator on C (Sd−1). Let ∆ ⊂ {Rez > 0} be the set
where I −∗P̃ z is not invertible and observe that, since r (∗P̃ z ) < 1 if Rez ∈]0,α[, we have
∆∩ {0 < Rez < α} = φ. Since the function z → ∗P̃ z is holomorphic, the extension of
Riesz-Schauder theory given in [34] implies that∆ is discrete without any accumulation
point and (I − ∗P̃ z )−1 is meromorphic in the domain {0 < Rez}, with possible poles in
∆ only. The same property is valid for the function f̃z = (I − ∗P̃ z)−1(d̃z) in any domain
D ⊂ {Rez > 0} where d̃z extends d̄s holomorphically. We define

β= sup{s > 0 ; E(〈R ,u〉s
+) <∞ for u ∈Sd−1},

hence from above, β≥α+δ, and we show below β=∞. Assume β<∞ and let us show
lim

s→β−

∗ν̃s ( f̄s ) <∞. We observe that f̄z (resp d̄z ) is well defined and holomorphic in the

domain {0 < Rez < β} (resp D = {0 < Rez < β+1}, because suppλ is compact and the
estimation of d̄z given in the proof of Proposition A.3. Hence the function z → f̃z =
(I − ∗P̃ z )−1 (d̄z ) is a meromorphic extension of f̄z to D. It follows that ∗ν̃z ( f̃z ) extends
meromorphically ∗ν̃s ( f̄s ) to a possibly smaller domain D ′ ⊂ D which contains ]0,β+
1[. Also the equation (1−k(s)) ∗ν̃s ( f̄s ) = ∗ν̃s (d̄s) extends meromorphically to D ′, with
k(z),∗ν̃z defined as in the proof of Lemma A.2. Here, since suppµ is compact we have
s∞ = ∞. Since k(s) > 1 for s > α and d̃z is holomorphic in D ′, the function ∗ν̃z ( f̃z ) =
(1−k(z))−1∗ν̃z (d̃z ) is holomorphic in a domain which contains the interval [α+δ,β+1[,
hence lim

s→β−

∗ν̃s ( f̄s ) <∞. On the other hand, the meromorphy of f̃z = (I −∗P̃ z )−1(d̃z ) in

D implies

f̃z =
m
Σ
1
ϕ j (β− z)− j +ψz with ψz ,ϕ j ∈C (Sd−1),ϕm = lim

s→β−
(β− s)m f̄s .

Since fs (u) ≥ 0, we have ϕm(u) ≥ 0. Also,

∗ν̃β(ϕm) = lim
s→β−

∗ν̃s (ϕm) = lim
s→β−

(β− s)m∗ν̃s ( f̄s).

From above we know that this limit is zero, hence ∗ν̃β(ϕm) = 0. Since ϕm is non neg-
ative we get ϕm(u) = 0 ∗ν̃β − a.e and the continuity of ϕm implies ϕm(u) = 0 for u ∈
supp∗ν̃β =Sd−1. By induction we get ϕ j = 0 for any j ≥ 1, hence the function z → f̃z is
holomorphic in a domain Dε which contains ]0,β+ε[ for some ε> 0 depending on the
possible poles of (I −∗P̃ z )−1(d̃z ), in R∗

+.

Then, as above, Landau’s lemma gives that f̄s(u) is finite for s < β+ ε and u ∈ Sd−1.
Hence E(〈R ,u〉s

+) is finite for u ∈Sd−1, s <β+ε and this gives the required contradiction.
Then we have for s > 0: (1−k(s))∗ν̃s ( f̄s) = ∗ν̃s (d̄s). We observe also that (I −∗P̃ z )−1(d̄z )
is well defined and holomorphic in a domain which contains ]0,∞[.
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It follows for s > 0: (k(s)∗ν̃s ( f̄s ))1/s = (∗ν̃s ( f̄ 1
s ))1/s . Since f̄ 1

s (u) = E(〈R −B ,u〉s
+) we have

for s > 1,

∗ν̃s ( f̄ 1
s ))1/s ≤ E(|B |s )1/s + (∗ν̃s ( f̄s ))1/s , (k(s)1/s −1)(∗ν̃s ( f̄s )1/s ≤ E(|B |s )1/s .

Since λ has compact support we have lim
s→∞

E(|B |s )1/s = d < ∞; also Proposition 4.11

gives lim
s→∞

k(s)1/s = c > 1. Hence lim
s→∞

(∗ν̃s ( f̄s))1/s ≤ (c −1)−1d <∞.

By definition of f̄s it follows sup{〈R ,u〉+; (ω,u) ∈ Ω̂×Λ̃(T ∗)} <∞; using Lemma 5.10, this
contradicts the fact that 〈R ,u〉+ is unbounded on Ω̂× Λ̂(T ∗).

In cases II, the above argument can easily be modified, ∗ν̃s replaced by ∗νs
+ and Sd−1

by supp∗ν+. Then we get that 〈R ,u〉+ is bounded on Ω̂×Λ+(T ∗), which contradicts
Lemma 5.10.

Remark. If suppλ is compact and µ has a density, Corollary 3.21 and the use of [34],
allow us to avoid the use of the renewal theorem of section 4 and of Kac’s formula in
the proof of Theorem 5.2. Furthermore, if α ∉ N, Theorem 5.2 then follows from the
properties of Radon transforms of positive Radon measures (see [5]). However, in the
general case one needs to use Lemma 5.13 and Proposition 5.9. On the other hand, the
density assumption on µ is not necessary for the validity of Proposition A.4 as follows
from Theorem 5.2.
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