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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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A Best-Offset Prefetcher

Pierre Michaud
Inria

pierre.michaud@inria.fr

The Best-Offset (BO) prefetcher submitted to the DPC2
contest prefetches one line into the level-two (L2) cache on
every cache miss or hit on a prefetched line. The prefetch
line address is generated by adding an offset to the demand
access address. The BO prefetcher tries to find automatically
an offset value that yields timely prefetches with the highest
possible coverage and accuracy. It evaluates an offset value by
maintaining a table of recent requests addresses and by search-
ing these addresses to determine whether the line currently
requested would have been prefetched in time with that offset.

The paper is organized as follows. Section 1 presents
offset prefetching. Section 2 describes the proposed
BO prefetcher. Section 3 describes a prefetch throttling
mechanism (somewhat specific to DPC2) for dealing with
situations where prefetch hurts performance. Section 4
mentions related prefetchers. Finally, Section 5 presents a few
simulation results.

1 Offset prefetching
The BO prefetcher is an offset prefetcher, like the Sandbox1

prefetcher [11]. Offset prefetching superficially resembles
stride prefetching and stream prefetching, but is a more
aggressive prefetching method.

Offset prefetching is a generalization of next-line prefetch-
ing [11]. A next-line L2 prefetcher works as follows: when a
cache line of address X is requested by the level-1 (L1) cache,
a next-line prefetcher prefetches the line of address X+1 into
the L2 cache2. The accuracy of next-line prefetching can
be improved with a prefetch bit stored along with each L2
line. The prefetch bit is set if the line has been prefetched but
not yet requested by the L1 cache. It is reset if and when the
line is requested by the L1 cache. A prefetch request for line
X+1 is issued only if line X misses in the L2 cache, or if the
prefetch bit of line X is set (prefetched hit) [15].

Offset prefetching generalizes next-line prefetching: for
every line X requested by the L1 cache which is a L2 miss or

1The BO prefetcher is nevertheless different from the Sandbox prefetcher,
there is no sandbox in it (cf. Section 4).

2The address of a line is the address of the first byte in that line divided
by the line size in bytes.

a prefetched hit, prefetch line X+O into the L2 cache, where
O is a non-null offset value [11].

The optimal offset may not be the same for all programs.
It may also vary as the program behavior changes. We
present in Section 2 a new method for finding the best offset
automatically.

Offset prefetching exploits a form of spatio-temporal
address correlation. The remainder of this section provides
a few examples of such correlations. The following examples
assume 64 byte lines, as in the DPC2 simulator. For conve-
nience, lines requested by the L1 cache in a memory region
are represented with a bit vector, adjacent bits representing
adjacent lines. The bit value tells whether the line is accessed
(“1”) or not (“0”). We ignore the impact of page boundaries
and consider only the steady state on long access streams.

1.1 Example 1: sequential stream
Consider the following sequential stream:

111111111111111111...

That is, the lines accessed are X, X+1, X+2, and so on.
A next-line prefetcher yields 100% prefetch coverage and
accuracy on this example. However, issuing a prefetch for
X+1 just after the access to X might be too late to cover the
full latency of fetching X+1 from the last-level cache (LLC) or
from memory, leading to a late prefetch. Late prefetches may
accelerate the execution3, but not as much as timely prefetches.
An offset prefetcher yields 100% prefetch coverage and
accuracy on sequential streams, like a next-line prefetcher,
but can deliver timely prefetches if the offset is large enough.

Another factor that may degrade prefetch coverage is
scrambling, i.e., the fact that the chronological order of
memory accesses may not match the program order exactly
[6]. Some scrambling at the L2 cache may be caused by
out-of-order scheduling of instructions and/or L1 miss
requests. Some scrambling at the L2 may also happen if
there is an L1 prefetcher (which is not the case in the DPC2

3Thanks to the L2 MSHR. The L2 MSHR is a fully associative structure
holding all the pending L2 miss and prefetch requests. If there is already
a pending prefetch request for a missing L2 line, the miss request is dropped
and the prefetch request is promoted to demand request [16].
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simulator). If the offset is large enough, an offset prefetcher
is more robust against scrambling than a next-line prefetcher.

1.2 Example 2: strided stream
Consider a load instruction accessing an array with a

constant stride of +96 bytes. With 64-byte cache lines, the
bit vector of accessed lines is

110110110110110110...

A next-line prefetcher can only prefetch every other accessed
line. A delta correlation prefetcher observing L1 miss requests
(such as AC/DC [9]) would work perfectly here, as the
sequence of line strides is periodic (1,2,1,2,...). But a simple
offset prefetcher with a multiple of 3 as offset yields 100%
coverage and accuracy on this example.

Offset prefetching can (in theory) deliver 100% coverage
and accuracy on any periodic sequence of line strides, by
setting the offset equal to the sum of the strides in a period,
or equal to a multiple of that number.

1.3 Example 3: interleaved streams
Consider two interleaved streams S1 and S2 accessing

different memory regions and having different behaviors:

S1: 101010101010101010...

S2: 110110110110110110...

Stream S1 alone can be prefetched perfectly with a multiple
of 2 as offset. Stream S2 alone can be prefetched perfectly
with a multiple of 3 as offset. Both streams can be prefetched
perfectly with a multiple of 6 as offset.

2 The BO prefetcher
A full-fledged offset prefetcher should have a mechanism

for finding automatically the best offset value for each
application. Otherwise, if we had to choose a single fixed
offset for all applications, the best offset value would probably
be 1. That is, the resulting prefetcher would be a next-line
prefetcher. The offset could be set by using hints from the
programmer or, as we propose here, with a hardware solution.

We store in a Recent Requests (RR) table the base
address of each recent prefetch, that is, the address of the
demand access that generated the prefetch. Precisely, when a
prefetched line Y is entered into the L2 cache (even if that line
was demand-accessed after the prefetch request was issued),
we write address Y −O into the RR table, where O is the
prefetch offset, i.e., the offset currently used for prefetching.

We consider a list of possible offsets. This list is fixed at
design time. We associate a score with every offset in the
list. On every L2 miss or prefetched hit for a line address
X, we test the nth offset On from the list by searching if the
line address X −On is in the RR table. If address X −On
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Figure 1: The BO prefetcher
is in the RR table, this means that line X would likely have
been prefetched successfully with offset On, and the score
for offset On is incremented. The next L2 access tests offset
On+1 and so on. A round corresponds to a number of accesses
equal to the offset list size. Immediately after a round is fin-
ished (i.e., all the offsets have been tested once), n is reset
and a new round starts. The prefetcher counts the number
of rounds. A learning phase finishes at the end of a round
when either of the two following events happens first: one
of the scores equals SCORE MAX, or the number of rounds
equals ROUND MAX. In our DPC2 submission, we set
SCORE MAX=31 and ROUND MAX=100. At the end of
a learning phase, we search the best offset, i.e., the offset with
the highest score. This best offset will be the prefetch offset
during the next phase. Then, the scores and the round counter
are reset, and a new phase starts. The offsets are continuously
evaluated, the prefetch offset tracking the program behavior.

Figure 1 shows a sketch of the proposed prefetcher. The
remainder of this section provides a detailed description.

2.1 Recent Requests (RR) table
Several different implementations are possible for the RR

table. We propose to implement it like the tag array of a
2-way skewed-associative cache [13]. There are two banks,
indexed through different hashing functions. Unlike in a
skewed-associative cache, we write the line address in both
banks. It is not necessary to write the full line address, a
partial tag is enough. In our DPC2 submission, each of the
two banks has 64 entries, and each entry holds a 12-bit tag.

A hit in the RR table happens when there is a tag match
in any of the two banks. A write and a read could happen
during the same cycle. In our DPC2 submission, we assume
that the RR table is dual-ported. However in a real processor,
dual-porting is not necessary. The bandwidth requirement of
the RR table is much less than one read and one write every
clock cycle. A little buffering should solve conflicts easily.
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2.2 List of offsets
Because DPC2 prefetching is limited by 4KB-page bound-

aries, we only consider offsets less than 64. Considering both
positive and negative offsets, there are up to 126 possible
offsets. However in practice, the list needs not contain all the
offsets in an interval. From our experiments with the SPEC
benchmarks, considering only offsets of the form 2i×3 j×5k,
with i, j,k≥ 0, seems to work well in practice. This rule of
thumb is particularly useful when the page size is greater than
4KB, as there is some benefit in considering large offsets.

In our DPC2 submission, the list contains 46 offsets (23
positive, 23 negative). The offset list is hard coded in a ROM.
Each score is coded on 5 bits.

2.3 Delay Queue
In an initial implementation of the BO prefetcher, both

banks of the RR table were written simultaneously when a
prefetched line is inserted into the L2 cache. The rationale
for updating the RR table at L2 fill time is to find an offset
that yields timely prefetches whenever possible. However, we
later found that striving for timeliness is not always optimal.
There are cases where a small offset gives late prefetches but
greater coverage and accuracy.

We propose an imperfect solution to this problem4: a delay
queue. Instead of writing simultaneously in both banks of
the RR table at L2 fill time, we only write in the “right” bank.
When a prefetch request X+O is issued, the base address X is
enqueued into the delay queue. The delay queue holds address
X for a fixed time. After this time has elapsed, address X is
dequeued and is written into the “left” bank of the RR table.

We choose the delay value between the latency of an LLC
hit and that of an LLC miss. In our DPC2 submission, the
delay queue has 15 entries and a delay of 60 cycles. Each
entry holds 18 address bits for writing the “left” bank of the
RR table, one valid bit, and a 12-bit time value for knowing
when to dequeue5, for a total of 18+1+12=31 bits per entry.

3 Prefetch throttling
For some applications, prefetching may hurt performance,

in particular by polluting the L2 and LLC or by wasting
memory bandwidth. Several approaches are possible for
solving this problem in hardware:

Conservative prefetching. Issue a prefetch request only
when it is likely to be useful. In particular, this approach is
used in stride prefetchers [1, 3, 10, 14].

4This is a topic for future research.
5The DPC2 prefetcher can modify its state only at cycles corresponding

to L2 accesses, which is an artificial constraint. In a real processor, time
values are not necessary. A delay of 60 cycles can be implemented just by
moving a token in a 15-entry circular shift register every 4 cycles. Only the
queue entry which has the token can be read or written.

Prefetch throttling. Adjust prefetch aggressiveness dy-
namically [2, 5, 16, 18], e.g., by monitoring certain events
(prefetch accuracy, cache pollution,...), possibly disabling the
prefetcher when it hurts performance [2, 9]. Prefetch throt-
tling is good both for worst-case performance and energy
consumption.

Try to make useless prefetches harmless. Request sched-
ulers should prioritize miss requests over prefetch requests
[8, 9]. To deal with cache pollution, we should either use
prefetch buffers [7] or implement a prefetch-aware cache in-
sertion policy [8, 16, 17, 12].

Conservative prefetching does not apply in our case, offset
prefetching being an aggressive prefetching method. Imple-
menting an efficient offset prefetcher requires combining
prefetch throttling and prefetch-aware request schedulers and
cache insertion policies. However, the DPC2 contest allows to
modify neither the request schedulers nor the cache insertion
policy. So we only have a prefetch throttling mechanism,
described thereafter. Our throttling mechanism is somewhat
specific to the DPC2 simulator.

The DPC2 prefetcher can only observe what happens at the
L2 cache. In particular, there is no way to directly measure
LLC pollution and memory traffic. We use two knobs for
throttling prefetches: dropping prefetch requests when the
MSHR occupancy exceeds a threshold6, or turning prefetch
off completely. We monitor two quantities for controlling
these knobs: the best score, and the LLC access rate.

3.1 Turning prefetch off and on
At the end of a learning phase, we not only find the best

offset, we also know its score. In particular, if the best score
is less than SCORE MAX, it provides an estimate for the
prefetch accuracy of the best offset. If the best score is less
than or equal to a fixed value BAD SCORE, we turn prefetch
off during the next phase.

While prefetch is off, best-offset learning must continue so
that prefetch can be turned on if the program behavior changes
and the score exceeds BAD SCORE. Hence when prefetch
is off, every line that is inserted into the L2 has its address
inserted simultaneously into the “right” bank of the RR table,
and every L2 miss address is pushed into the delay queue.

In our DPC2 submission, we set BAD SCORE=1 for the
1MB LLC and BAD SCORE=10 for the 256KB LLC.

3.2 MSHR threshold
The DPC2 contest does not allow to modify request

schedulers. In particular, useless prefetches may hurt
performance by wasting memory bandwidth. To mitigate this
problem, we decrease the MSHR threshold when we detect

6as done in some example prefetchers provided with the DPC2 simulation
infrastructure.
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that memory bandwidth is close to saturation. Because the
DPC2 prefetcher cannot monitor bandwidth usage directly,
we use an approximate method: we estimate the LLC access
rate, and we use it as a proxy for memory bandwidth usage.

The LLC access rate is estimated as follows. We compute
the time difference ∆t in cycles between the current LLC
access (L2 miss or prefetch request) and the previous one, and
we use two up-down saturating counters: a gauge counter,
and a rate counter. The rate counter gives an estimate of the
average time between consecutive LLC accesses. We update
the gauge on every LLC access:

gauge←gauge+∆t−rate

If the gauge reaches its upper limit we increment the rate,
if the gauge reaches its lower limit we decrement the rate,
otherwise we leave the rate unchanged.

We set the MSHR threshold depending on the rate counter
value and on the best score. If the best score is above a
fixed value LOW SCORE, or if the LLC rate is greater than
a fixed value 2×BW, we set the MSHR threshold to 12
(i.e., the prefetch request is dropped if the current MSHR
occupancy is ≥12). Otherwise, if the LLC rate is less than
BW, we set the MSHR threshold to 2. Otherwise (LLC rate
between BW and 2×BW), we set the MSHR threshold to
2+10×(rate−BW)/BW.

In our DPC submission, LOW SCORE=20 and BW=64
for the low bandwidth configuration and BW=16 for the other
configurations.

4 Related prefetchers
To the best of our knowledge, the prefetchers most similar

to the BO prefetcher are the ROT (right-on-time) prefetcher
[4] and the Sandbox prefetcher [11].

The ROT prefetcher is a stream prefetcher where each
stream may have a different stride [4]. In order to achieve
prefetch timeliness, the prefetch distance is increased
automatically upon detecting late prefetches. The ROT
prefetcher detects streams by associating a score with every
stride in a list of stride candidates. The method for updating
scores is somewhat similar to the method we use in the BO
prefetcher to find the best offset. The ROT prefetcher discards
strides with a low score.

The Sandbox prefetcher is the only other offset prefetcher
that we are aware of [11]. To test an offset, the Sandbox
prefetcher does fake prefetches with that offset by setting
corresponding bits in a Bloom filter. If a subsequent demand
request hits on these bits, the fake prefetch is deemed
successful. Prefetch timeliness is not taken into account,
unlike in the BO prefetcher. The Sandbox prefetcher can
issue prefetches for several different offsets simultaneously
if their accuracy is above a threshold, while the BO prefetcher
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Figure 2: Fixed offset vs. adaptive offset (BOP)
uses a single prefetch offset for a period of time.

5 Some simulation results
Figure 2 shows a few experimental results obtained with the

DPC2 simulator on some prefetch-friendly execution samples
from the SPEC CPU2006 benchmarks7, assuming configu-
ration 1 of the DPC2 contest (1MB LLC, 12.8 GB/s memory
bandwidth). We compare the best-offset prefetcher (BOP) de-
scribed in the previous sections with fixed-offset prefetchers,

7A sample is not necessarily representative of the whole benchmark.
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where we vary the fixed offset8 from +1 to +40. The y-axis
gives the speedup over a baseline with prefetching disabled.

The first example in Figure 2 (437.leslie3d) is typical of
sequential streams. Here, a fixed offset of +1 is suboptimal,
giving late prefetches. The optimal fixed offset is +3. For
offsets beyond 3, the speedup decreases gently, which is an
effect of 4KB-page boundaries. Here, the BO prefetcher
outperforms the best fixed offset, being able to exploit varying
program behaviors.

The second example in Figure 2 (433.milc) corresponds
to streams with a non-unit stride, with speedup peaking at a
fixed offset of 32. Here the BO prefetcher produces the same
speedup as the best fixed offset.

The last example in Figure 2 (434.zeusmp) illustrates
the impact of the delay queue. The dashed horizontal line
represents the speedup of the BO prefetcher but without the
delay queue, i.e., both banks of the RR table are written when
a prefetched line is inserted into the L2. While on the first two
examples the delay queue makes little difference, it increases
performance on 434.zeusmp. Here, the optimal fixed offset
is +1. However, the speedup falls rapidly as the fixed offset
grows. The descent is steeper than what a long sequential
stream would produce (cf. 437.leslie3d). This steep descent
is due to very short sequential streams [5]. Without the delay
queue, the BO prefetcher selects an offset large enough
for prefetches to be timely, which substantially degrades
coverage and accuracy. The delay queue, with its delay less
than the L3 miss latency, allows the BO prefetcher to select
a smaller offset. However, this example also shows that the
delay queue is an imperfect solution, the BO prefetcher being
outperformed by next-line prefetching.
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