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Abstract 

 

The objective of the present work is to correlate the evolution of membrane characteristics 

due to contact with hypochlorite used as cleaning agent to its selectivity towards model 

solutes. Accelerated ageing experiments were performed by soaking the membrane at ambient 

temperature in hypochlorite solutions. The total free chlorine concentration of these solutions 

was fixed at 350 ppm and the pH at 8. The model solute selected was T500 Dextran. The 

experimental results demonstrated that hypochlorite induced membrane degradation, on one 

hand modified the solutes-membrane interactions increasing irreversible fouling and, on the 

other hand, lowered the selectivity. These results have been correlated to the modification of 

the pore size distribution following a protocol in which fouling did not affect membrane 

characterization. The most probable scenario of distribution evolution over degradation 

process was an increase of the pore radius of the initial population, accompanied by a 

decrease in their number, coupled with the appearance of defects, whose radius increased with 

the progress of the degradation. 
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1. Introduction 
 

 

To get rid of reversible and irreversible membrane fouling and ensure proper operation, 

drinking water production by ultrafiltration (UF) involves back-washing and chemical 

cleaning. A wide range of cleaning agents is used onsite: hydrochloric acid, sodium hydroxide 

and oxidants such as hydrogen peroxide (H2O2) and sodium hypochlorite (NaClO). The latter 

one remains so far the most common choice due to its availability, reasonable price and 

antibacterial/oxidizing properties [1]. Depending on the characteristics of the water treated, 

operators may use NaClO solutions with a total free chlorine (TFC) concentration ranging 

from 2 to 20 ppm for a maximum duration of 5 min for back-washing and with a [TFC] from 

20 to 400 ppm for a maximum duration of 2 h for chemical cleaning. Frequencies may reach, 

for back-washing and chemical cleaning respectively, 1 per 6 h and 1 per month of membrane 

operation. As major water treatment facilities appear to be subjected to membrane failure and 

integrity loss on a quite regular basis [2], the impact of industrial washing on membrane 

properties has recently become a key issue.   

Ultrafiltration processes commonly use polyacrylonitrile (PAN), polyvinyl chloride-

polyacrylonitrile (PVC/PAN) copolymers, polysulfone (PSf), polyethersulfone (PES), 

polyvinylidene fluoride (PVDF), aromatic polyamide (PA) or cellulose acetate (CA) as 

membrane materials [3]. Among them, PES exhibiting good chemical resistance, mechanical 

properties and thermal stability appears as a first-choice polymeric material for UF membrane 

formulation. However this polymer being quite hydrophobic, the addition of a more 

hydrophilic polymer such as poly(N-vinylpyrrolidone) (PVP) in the dope has then become a 

standard method to increase water permeability and lower the membrane propensity to 

fouling. 

The studies concerning the role played by sodium hypochlorite on PES Ultrafiltration 

membranes [4-13] mainly focus on changes in the macromolecular chemical composition, 

hydrophilic character, permeability and mechanical properties. However, the impact of 

NaClO on membrane selectivity by means of tracer’s retention measurements (and selectivity 

curve determination) has not been thoroughly investigated and understood. The few available 

publications concerning the effects of the cleaning agent NaClO on retention properties of 

PES UF membranes [4, 5, 9, 12, 13] only mention the observed retention without taking into 

account the evolution of permeability, consequently ignoring the impact of concentration 

polarization and possible fouling on the final retention results. In addition, in most cases, 

proteins are used as tracers even though they are known to have greater interaction with the 

membrane material compared to polymeric ones.  

In 1995, Wienk et al. [4] first reported an increase of pure water flux through PES/PVP 

membranes attributed to PVP degradation and leaching during membrane immersion in a 

4000 ppm NaClO solution under stirring. Moreover these authors showed that, despite an 

increase in water permeability, NaClO treated PES/PVP membrane exhibited high (90%) and 

unchanged retention for bovine serum albumin, suggesting that the overall pore structure 

experienced minimal changes. Later on, Qin et al. [5] confirmed the permeability increase 

observed by Wienk et al. and showed an alteration of retention properties of PES/PVP 

membranes soaked in NaClO solutions. Retention of PVP 24 kDa by the membrane decreased 

after NaClO treatment although the retention of BSA 66 kDa was unchanged. The authors 

suggested that the small pores involved in the retention of PVP 24 kDa were greater after 

NaClO contact while the large pores involved in BSA retention were similar. They then 

concluded that the membrane pore size distribution became narrower after the hypochlorite 

treatment, without providing any quantitative analysis of these changes.  
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More recently, various authors reported an alteration of the mechanical properties of 

PES/PVP systems attributed by the authors not to PVP but to PES chain scissions [7, 9-13]. 

Arkhangelsky et al. [9] and Levitski et al. [13] went further in the study of the impact of 

hypochlorite cleaning on membrane selectivity. They measured observed membrane retention 

of BSA, viruses, Dextrans and polyethylene glycols (PEG) of different molecular weights. 

They first showed that a NaClO treated PES membrane exhibited an increased tendency to 

fouling with rising hypochlorite concentration. In term of selectivity evolution, they obtained 

contradictory results after NaClO treatment: an increase in BSA, Dextrans and PEG 

molecules retention and a significant reduction in viral retention. When the transfer of viruses 

was linked to enlargement of membrane pores size, the results with protein and soluble 

polymers were ascribed to an important adsorption on the modified membrane surface making 

it impossible the determination of the pore size distribution like this has been done by the 

authors on virgin membrane [9]. The authors concluded that pore size enlargement due to PES 

chain scission is not detrimental to membrane retention (especially towards proteins) which is 

governed by a higher membrane propensity to adsorption. Even if Yadav and Morison [12] 

proposed the same degradation mechanism leading to chain scission of the PES polymer, their 

results were contradictory to the ones of Levitski et al. [13] in terms of consequences on 

membrane selectivity. Yadav and Morison [12] agreed that PES scission alters proteins/PES 

interaction leading to a higher adsorption and a lower flux, but for them localized chain 

scission leads to “pitting” of PES exposing larger pores and as a consequence increasing 

protein transfer. 

 

Although these works clearly demonstrate that hypochlorite sodium treatment modifies 

membrane performances, there are still contradictory conclusions on pore size distribution 

evolution and its consequence on membrane selectivity. In the domain of hemodialysis using 

PSf hollow fiber membranes, the study conducted by Wolff and Zydney [14] has to be 

mentioned. These authors focalized their work on changes in membrane pore size due to 

bleach exposure of PSf/PVP hemodialysis membranes and provided the first quantitative 

analysis of the effect of bleach on transport properties of this type of hollow fiber. Similar 

study on ultrafiltration PES membrane is not yet available. 

The present work is mainly focused on the alterations of filtration properties, i.e. permeability 

and selectivity, caused by the contact between PES/PVP UF membranes and sodium 

hypochlorite. In this context, we aim to obtain retention as an intrinsic characteristic of 

pristine and aged membranes while tracking the changes in permeability.  

In a former work [15, 16] the role of sodium hypochlorite exposure conditions, especially the 

solution pH, on membrane characteristics has been investigated through a series of 

accelerated ageing experiments. The membrane was a commercially available PES/PVP 

hollow fiber widely used for drinking water production, the molecular weight cut-off provided 

by the manufacturer being 150 kDa. Monitoring the hydraulic permeability, mechanical 

properties and chemical structure evolutions showed, on multiple scales, strong indications of 

the membrane chemical degradation (increase in water permeability, decrease in elongation at 

break). It was confirmed that hypochlorite exposure induces PVP radical degradation 

(involving PVP chain scissions) and dislodgement from the PES matrix, leading to an 

increase of the pure water permeability and to an embrittlement of the membrane. Advanced 

chemical analysis brought direct evidence of PES oxidation, occurring only within the first 40 

µm of the membrane thickness, where PVP is present. It was then shown that the presence of 

PVP and / or PVP degradation products is a required condition for PES oxidation to occur. 

Finally it was shown that the pH range 7-8, corresponding to the maximum radical HO° 

concentration in solution, corresponds to the most severe modification in the membrane 

mechanical properties and permeability. 
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The objective of the present work was to correlate the evolution of membrane characteristics 

to its selectivity for model solutes. Accelerated ageing experiments were performed (as in 

previous works [15, 16]) by soaking the membrane at ambient temperature in hypochlorite 

solutions at a total free chlorine concentration of 350 ppm and pH 8. The model solute 

selected was a polydisperse Dextran, which is classically used to determine membrane 

molecular weight cut-off. Conditions minimizing fouling during membrane characterization 

were searched in order to reach intrinsic membrane selectivity. The experimental results 

obtained with Dextrans have been used to propose scenario of pore size distribution 

modification. The most probable scenario of distribution evolution over degradation process 

was then investigated. 

 

 

2. Theory 

 

 
The permeability and the selectivity of a membrane both depend of the pore size distribution 

in the selective skin. Charge effects can also affect selectivity but this phenomenon will be 

considered negligible in this paper as tracers used are neutral. 

In the case of steric retention of a spherical solute, it is possible to estimate the retention rate 

by the membrane Rm using the Ferry law, through considerations based on the solvent and the 

solute flow in a cylindrical pore the radius of which is rp:  

 

�� � �� � �� � �	
�
� �

��
�

     (1) 

 

In this equation Rhyd represents the hydrodynamic radius of the solute in solution. This radius 

can be linked to the hydrodynamic volume of a polymer random coil in solution using the 

following equation [17]:�
 

���� � � ���������������
�
�� � � � � � (2)�

with: 

� � the intrinsic viscosity of the solution (m
3
 g

-1
) 

� � ! the molar mass of the polymer (g mol
-1

) 

� "# the Avogadro number (6.022.10
23 

mol
-1

) 

� $ the factor shape equal to the ratio of the radius of the equivalent sphere and the 

radius of gyration of the polymer molecule (taken equal to 1). 

 

In the case of Dextrans, an empirical relation can be used to calculate the intrinsic viscosity 

knowing the Dextran molecule molar mass if this belongs to the range from 40 000 g mol
-1

 to 

2 000 000 g mol
-1

 [18]:           

 

�� � %&' ( �)*+ !,&-.�     (3) 

 

We can also estimate the flow rate Q at the temperature 20°C through a single cylindrical, 

straight pore of radius rp and length l according the Hagen-Poiseuille law [19]: 
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with: 

� TMP  the transmembrane pressure (Pa)  

� µ20  the dynamic viscosity of the fluid at a temperature of 20°C (Pa s). 

 

In the literature, several authors have demonstrated that a log-normal law generally provides a 

good representation of the pore size distribution for ultrafiltration membranes [20, 21]. In this 

work, we choose a discrete log-normal law that defines the probability to find a pore radius in 

a class of radius [22]. The pore radius follows a geometric progression: ri = β ri+1, with β = 

1.025. This leads to the number of pores of radius ri per membrane unit area: 

 

7�89� � �:;<
=������> �?@A ��� B� C

DE��>�*DE���:;<�
�

�F�� �89   (5) 

 

with: 

� GHI�J  the total number of pores per unit area   

� 8HI�J the radius of the pores with the largest population (maximum of the log-

normal function)  

� � the geometric standard deviation of the log-normal function  

� �89 the actual gap between two consecutive classes of pores (�89 � �89KB � 89) 
 

The combination of Eqs (4) and (5) leads to the following expression for the membrane 

permeability (at 20°C): 
 

  

 
LM
345 � N

0�1 � B
0�1 �O P�89�9 � B

0�1 �O /�89��7�89� �9 O ��
+�345�69 �7�89��89�  (6) 

 

Finally, the membrane retention can be obtained by the sum of the retentions calculated for 

each class of pore size (Eq 1) balanced by their respective flux density J(ri), all being 

normalized by the total flux density J: 

�� � B
NO P�89�9 �� � C� � �	
�

�> F
��� � B

N O
��Q��>���>2�B*�B*R	
�;> �

4�
4

+�345�69    (7) 

 

 

3. Experimental 

 

 

3.1 Membranes 
 

The membranes used in this study are commercially available hollow fibers extracted from a 

new UF module (HYDRACAP 60, LD HYDRANAUTICS Membrane), widely used for drinking 

water production. Those hollow fibers present an asymmetric geometry with an inner 

selective layer, an internal diameter of 0.8 mm and an external diameter of 1.3 mm (Fig. 1). 
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Manufacturer datasheet specifies a molecular weight cut-off (MWCO) of 150 kDa, a 

maximum operating trans-membrane pressure (TMP) of 1.4 bar and a maximum chlorine 

exposure of 200,000 ppm h (200 g h L
-1

) ([TFC] of the NaClO soaking solution multiplied by 

the sample-NaClO exposure time). The membrane material is claimed to be a “hydrophilized” 

PES. As previously shown [16] the additive used for the membrane surface hydrophilization 

has been identified by ATR-IR to be PVP.�

 

 

Figure 1: Cross-section SEM image of a cryo-fractured pristine membrane 

 

After extraction from the module, the hollow fibers were stored in a 1 g L
-1

 sodium 

metabisulfite (Na2O5S2 – Technical grade 85 %, Sigma-Aldrich, USA) solution at 5 °C to 

avoid bacterial proliferation. Prior to using, membrane samples were soaked in a large volume 

of ultra-pure water for at least 1 h to remove sodium metabisulfite.  

 

 

3.2 Solutions and analytical method 
 

All aqueous solutions were prepared using deionized ultrapure water (� = 18.2 M� cm) 

generated by a PURELAB Maxima system (ELGA LabWater’s, UK). 

 

The selected tracer is T 500 Dextran (Pharmacosmos), a polydisperse polysaccharide covering 

a broad molar mass range from 25 kg mol
-1

 to more than 4000 kg mol
-1

. The feed Dextran 

solution was prepared at the concentration of 1 g L
-1

. Retentate and permeate samples 

collected during filtration tests were analyzed by gel permeation chromatography using a 

column OHpak SB-805 HQ (Shodex) coupled with a refractive index detector. To prevent 

bacterial growth, as these samples have been stored in the fridge before analysis, sodium 

azide (Aldrich) was added at a concentration of 0.1 g L
-1

 in the feed Dextran solution. 

 

Hypochlorite solutions used for the ageing experiments were obtained by dilution of a 

commercial NaClO reagent (NaClO 9.8 wt% – La Croix, FR). Concentrated sulfuric acid 

(H2SO4 – Analytical grade 95 %, VWR PROLABO, FR) was added to the hypochlorite ageing 

solutions to adjust the pH at a value of 8. 

 

 

3.3 Ageing protocol 

 
Ageing experiments were performed by soaking the membranes at ambient temperature (20 ± 

2°C) in an hypochlorite solution at a total free chlorine concentration ([TFC]) of 350 ppm (mg 

L
-1

). Exposure times investigated in the present paper were 2, 4 and 24 h corresponding to 

hypochlorite doses of 700, 1400 and 8400 ppm h respectively.  

 

[TFC] was monitored using DPD method (method which employs N,N-Dimethyl-p-

phenylenediamine-EPA-approved method 4500 CI G) previously described [16]. Since [TFC] 

and pH were found to be decreasing with time, constant [TFC] (± 30 ppm) and pH (± 0.2) 

were maintained by adjustment of the soaking solutions as often as necessary for the 24h 

exposure time experiment.  
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After each ageing experiment, samples were soaked in a large volume of ultra-pure water for 

2 h and stored in a 1 g L
-1

 Na2O5S2 solution at 5 °C for further analysis. 

 

 

3.4 Membrane Characterization 
 

3.4.1 Filtration performance 
 

Membrane water permeability and tracers retention were determined using a cross flow 

filtration set up as schematically described in figure 2. The solutions (pure water or Dextran 

solution) were introduced in a 20 L glass tank in which the temperature was maintained at 20 

± 2 °C. The solution was forced to permeate from the inside to the outside of a module 

comprising 15 fibers of 220 ± 5 mm length. The total membrane surface area was then 

8.3 ± 0.2 10
-3

 m
2
. Before use, each module was compacted with ultra-pure water at maximal 

pressure of 1.4 bar until permeation flux stabilization (40-60 min). In all experiments, the 

hydrodynamic conditions correspond to laminar flow with nevertheless quite a high Reynolds 

number Re around 1800 in order to minimize concentration polarization during Dextran 

filtration. 

 
 

Figure 2: Experimental set-up  

 

Permeability measurements  

 

The pure water flux JT was measured with pristine and hypochlorite aged membrane at 

various transmembrane pressures ranging from 0.5 to 1.4 bar. The flux density JT was 

corrected back to J20 using the empirical Arrhenius law, whenever necessary:   

 

P�, �� P0 � �S�45 �� � P0�?@A� C
T5
�0 � T5

�U��F     (8) 

With:  

� JT   permeate flux density at temperature T (L h
-1

 m
-2

 or m
3
 s

-1
 m

-2
) 

� J20  permeate flux density at temperature 20°C (L h
-1

 m
-2

 or m
3
 s

-1
 m

-2
) 

� µT dynamic viscosity of the fluid at temperature T (Pa s) 

� E0  activation energy of the fluid (15 675 J mol
-1

 for water) 

� R  universal gas constant (8.314 J mol
-1

 K
-1

) 

 

 

Using the Darcy law, the pure water permeability 
LM
345 (in L h

-1
 m

-2
 bar

-1
) was then taken as the 

slope of the linear regression between TMP and J20 values. 

The accuracy on the value of  
LM
345 was estimated around 8 %. 

 

Solutes retention  

 

For Dextran filtration tests, the desired TMP was adjusted in the range 0.4-0.6 bar (0.4, 0.5, 

0.55 and 0.6 bar). Retentate and permeate were recycled in the feed tank to maintain a 

constant volume (and tracer concentration). For each TMP, once the flux reached 

stabilization, permeate and retentate samples were collected for subsequent chromatography 
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analysis. From a comparison between the elution curves for the retentate and the permeate, we 

calculated for each Dextran fraction α the observed retention coefficient Rα,obs defined by the 

relationship: 

 

�VWIXY � �� � Z[W
Z[W;� @ �))       (9) 

Where  

� Cα,p  the concentration of Dextran fraction α in the permeate (g L
-1

) 

� Cα,r  the concentration of Dextran fraction α in the retentate (g L
-1

) 

To eliminate the contribution of the concentration polarization on retention, for each Dextran 

fraction, the term ln(1-Rα,obs)/Rα,obs was plotted versus flux J20 and extrapolated to zero flux in 

order to reach the membrane retention Rα,m according to the film relationship [23]: 

     \] �B*�[W:^_�[W:^_ � � \] �B*�[W`�[W` � a N45
bcd    (10)  

 

With kBL the mass transfer coefficient in the boundary layer (m s
-1

). 

 

Each intrinsic rejection curve (Rm versus Dextran molar mass MDext or hydrodynamic radius 

Rhyd) has been determined using a micro-module comprising 15 fibers of 220 +/- 5 mm length. 

Intrinsic rejection curves reflect then the mean response of 15 individual fibers. Regarding the 

reproducibility of the results, for pristine and 8400 ppm.h aged membranes (24 h soaking), 2 

distinct modules have been tested and exhibited very consistent results 

 

 

3.4.2. Bubble point measurement 
 

The protocol consists of pressurizing, using synthetic compressed air, the lumens of 

submerged membranes in high purity water at 20°C, up to the observation of the formation of 

the first bubble of gas on the outer surface of the membrane. A minimum of 10 different 

measurements was conducted. The pressures of appearance of the first bubble (Pb) reported in 

this paper correspond to averaged values calculated from these 10 tests. The accuracy of the 

measured pressures was estimated to 2% for pristine membrane and 11% for aged samples. 

From these pressures, it is possible to calculate the radius of the largest pore rmax from the 

Young-Laplace equation describing the capillary pressure in a tube:�
8�ef � ��g�hij��k�

1^       (11) 

With: 

� l  Surface tension of water at 20 °C (0.0728 N m
-1

) 

� m Contact angle between a water drop and the membrane surface (rad). 

 

 

3.4.3. Hydrophilic / hydrophobic character 
 

The captive bubble method was used to evaluate the hydrophilic character of the internal 

surface of membrane samples (skin surface) before and after ageing. The samples were first 
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cut and glued on a microscope slide then immersed in the measuring cell filled with water. Air 

bubbles, with a fixed diameter, were formed using a micro-syringe and deposited on the skin 

surface of the membrane. The contact angle m was measured on the images recorded using a 

goniometer DGD Fast/60, GBX. For each condition analyzed, a minimum of 4 measurements 

were performed and averaged. The accuracy of the measured contact angle was estimated to 

7%. 

 

This method is more appropriate than the sessile drop method in the case of porous material; 

in these conditions, the membrane surface is in a wet state as in the case of water filtration: 

hydrophilic polymer chains at the membrane surface are then in contact of water. The 

measurement is then more realistic than the measurement performed on a dried membrane.  

 

 

3.4.4. Zeta potential  

 
Tangential streaming current measurements were performed through the lumen of both 

pristine and aged hollow fibers by means of a SurPASS electrokinetic analyzer (Anton Paar 

GmbH, Austria). Each measurement was carried out with a single fiber (5 cm in length) 

inserted in a sample holder designed for hollow fiber membranes. 

Prior to measurements a millimolar KCl solution whose pH was adjusted at 5.50+/- 0.05 was 

circulated along the membrane for ca. 2h to allow equilibration of the system. The solution 

flow was created by a pair of syringe pumps, which enabled to reverse the flow direction 

periodically. After equilibration, the streaming current was measured by means of a pair of 

large-area Ag/AgCl electrodes (10 cm
2
) and recorded for increasing pressure differences up to 

300 mbar. Using electrodes with a large surface area and alternating the direction of solution 

flow limits the electrode polarization during streaming current measurements. 

As shown in Figure 1, the membrane structure is asymmetric with the central part of the fiber 

having pores of several micrometers in diameter. Consequently, a non negligible part of the 

experimental streaming current is likely to flow through the porous structure of the fiber, and 

not only through the lumen of the fiber [24]. In other words, both the pore surface and the 

lumen surface contribute to the value of streaming current experimentally accessible. 

Although it is possible to separate the two contributions for flat membrane samples (see [25] 

and [26]) and thus determining the zeta potential of the top surface and that of the pore 

surface, this cannot be achieved with hollow fibers because of the inability of varying the 

cross section of the streaming channel [24]. Nonetheless, measuring the overall streaming 

current flowing through the membrane remains an efficient way to give evidence of surface 

modifications of different membrane samples. 

The tangential streaming current was measured with pristine and on aged membranes soaked 

2 and 24 h in NaClO (350 ppm, pH 8). All experiments were performed at room temperature 

(20 ± 2 °C). Each measurement was repeated three times. 

 

 

3.4.5 Membrane morphology 

 

SEM images of pristine and aged membranes were recorded using a HITACHI Tabletop 

Microscope TM-1000 or a JEOL JSM 6700F Field emission gun-SEM, depending on the 

expected magnification. Prior to analysis, the membrane samples were dried in a vacuum 

oven at 40°C for 24h and coated with a 5 nm silver layer.  
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Two types of images were analyzed: the cross section of samples fractured in liquid nitrogen 

and the internal skin of membrane samples previously cut open using a scalpel. To obtain an 

accurate representation of membrane morphology, a set of at least 6 images was recorded for 

each condition investigated. 

 

4. Results and discussion 

 

 

4.1 Membrane surface characterization 
 

We report in Figure 3 the pH dependence of the streaming current coefficient (i.e. the slope of 

the straight line obtained when measuring streaming current at various pressure differences) 

for both pristine and aged membranes. Aged membranes appeared to be more negatively 

charged than pristine membranes, whatever the pH.  

In a previous study it was confirmed thanks to a multiscale analysis, that hypochlorite 

exposure induces PVP radical degradation and dislodgment from the PES matrix [15, 16, 27]. 

In this work [15], atomic percentages obtained by XPS analysis of the active layer of pristine 

and hypochlorite treated membranes at pH 8 showed a small increase of oxygen in NaClO 

treated membrane which can be ascribed to the formation of small amounts of COOH 

(carboxylic acid)/COO
-
 (carboxylate groups) resulting from hydrolysis and ring opening of 

PVP [4, 27]. Moreover, results obtained by Pruhlo et al. [27] suggest that in the conditions 

investigated the only degradation undergone by PES results from oxidation of the aromatic 

ring to form an ortho-substituted phenol [27] with no chain scission.   

As a consequence, the increase in the negative charge density of aged membranes shown in 

Figure 3 (more negative streaming current coefficients) is likely to result from the presence of 

carboxylic acid groups formed during PVP degradation.  These results are in good agreement 

with the ones of Wolff and Zydney [14] who observed an increase of the negative charge on 

hypochlorite treated PSf/PVP membrane surface and attributed this increase to the formation 

of COO
�
 groups resulting from PVP ring opening. Arkhangelsky et al. [9] also reported a 

negative charge density on the surface of PES/PVP flat membranes accentuated by the contact 

with NaClO but these authors ascribed the increase in the negative charge density of aged 

membranes to the partial scission of the Ph-S bond in PES and formation of charged PhSO3
�
 

groups. �

 

Figure 3: Streaming current coefficient (Is / ∆P) of pristine and aged membranes as a function 

of pH. 

 

 
Contact angle measurements by using captive bubble method were conducted on the inner 

surfaces of pristine and aged membranes. Similar values in the order of 75 ± 5 ° were 

obtained for all samples. 

Considering PVP dislodgment from the PES matrix, we could expect a decrease in 

hydrophilicity of the membrane surface. The unmodified contact angle obtained in this study 

contradicts this assumption. One possible explanation is the partial ionization of the 

membrane surface due to PVP/PES degradation as demonstrated by streaming current 

measurements (Fig 3). This formation of charged compounds increases the hydrophilic 

character of the membrane material compensating PVP dislodgment. Evolution of contact 
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angle on aged membrane was also studied by Arkhangelsky et al. [9] by using the sessile drop 

method. These authors observed a noticeable decrease in contact angle that they ascribed not 

only to the formation of ionizable groups but also to the formation of bigger pores responsible 

of spreading out of the drop by capillary. In this case it is very difficult to conclude to an 

increase in NaClO treated membrane surface hydrophilicity. The use of the captive bubble 

method in the present study allowed to avoid measurement artifact due to the porosity 

evolution.  

 

 

4.2 Pristine and aged membrane selectivity curves  

 
To obtain the membrane retention Rm for each Dextran fraction, filtrations of the T500 

Dextran solution were carried out for different TMP: 0.4, 0.5, 0.55 and 0.6 bar. The 

calculation of Rm is feasible for new and submerged membranes up to 24 h in NaClO. For 

longer soaking durations and thus more advanced degradation (results not reported in this 

paper), the TMP increase leads to a major fouling during Dextran filtration and the calculation 

of Rm by the use of film law is not applicable anymore.  

 

 

Figure 4: selectivity curve of pristine and aged membrane samples 

 

 
The calculation of Rm for given molar masses of Dextran allows the selectivity curve Rm 

=f(MDext) (Fig 4) to be obtained, which can be considered as characteristic of the membrane 

porous structure. The Molecular Weight Cut-Off (MWCO) was determined at 90% retention. 

MWCO obtained are: 

� 300 kg.mol
-1

 (Rhyd = 17.94 nm) for pristine membrane 

� 500 kg.mol
-1

 (Rhyd = 22.84 nm) for aged membrane soaked 2 h in NaClO (350 ppm, 

pH 8) 

� 1 100 kg mol
-1

 (Rhyd = 33.18 nm) for aged membrane soaked 4 h in NaClO (350 ppm, 

pH 8) 

In the case of a soaking duration of 24 h, the cutoff threshold was not reached in the range of 

molar masses studied. 

 

In parallel, we measured for each module (pristine and aged ones) the pure water permeability 
no
345 at 3 different stages: on virgin membrane, on membrane after filtration of the T500 

Dextran solution and after back-washing with ultrapure water (15 min - TMP = 1.0 bar). The 

results are reported in figure 5. �

Figure 5: pure water permeability of pristine and aged membrane samples, before and after 

Dextran filtration test and after back-washing with ultrapure water 

 

Permeability values obtained on membranes before Dextran filtration show that contact with 

hypochlorite 350 ppm pH 8 induced a gradual increase in water transfer through the 

membrane. For more advanced degradation (longer soaking duration: 144 h, not shown), 

water permeability is about twice the initial pure water permeability [15, 16]. It has been 

shown in previous work that hypochlorite exposure induces PVP radical degradation and 
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dislodgment from the PES matrix, leading not only to an increase of the pure water 

permeability but also to an embrittlement of the membrane [16]. 

 

Values obtained after Dextran filtration showed that, regardless of the progress of the 

membranes degradation, permeability decreased by comparison to the initial one and that 

fouling responsible for this decrease was hydraulically irreversible (no permeability recovery 

after back-washing). The loss of permeability induced by the filtration of T500 Dextran was 

of 12% for pristine membranes, between 21% and 31% for membranes soaked in NaClO for 2 

h to 24 h; about 45% was reached for longer soaking (144 h; results not shown). These values 

reflect a fouling amplified for prolonged immersions. According to our protocol (based on the 

AFNOR standard [28]), permeability losses can reach 30 % while still being reliable and 

fouling effect on selectivity considered as not significant. The determination of Rm was then 

considered reliable with our method for soaking times in NaClO ranging from 0 to 24h.  

 

The origin of this increasing propensity to fouling could be ascribed to chemical changes of 

the membrane surface, mainly membrane hydrophobic character increase; but also to 

structural modifications of membrane selective skin; both induced by PVP dislodgment. 

 

This increase in membrane fouling after exposure to NaClO has been already underlined by 

several authors [9, 12 and 13]. Arkhangelsky et al. [9] and Levitsky et al. [13] showed that a 

NaClO treated PES membrane exhibited an enhanced tendency to fouling with rising 

hypochlorite concentration leading to an increase in BSA, Dextrans and PEG molecules 

retention in spite of an enlargement of membrane pores size. They suggested that the 

increased hydrophilicity of membrane surface induced by ionizable groups formation 

enhanced the adsorption of these molecules. This point is questionable if we admit that 

hydrophobic solutes such as certain proteins less adsorb on hydrophilic surface. Levitsky et al. 

[13] concluded that permeation tests (water permeability and tracers retention) being 

influenced by hydrophilicity, the interpretation of the results is subjective and the previously 

reported enlargement of pore size (i.e. [14]) is an artifact related to the employed pore size 

tests. 

In order to ensure a proper membrane selectivity characterization, one can agree that it is 

necessary to develop test protocol that enables the minimization of fouling during the tracer’s 

filtration. In this purpose the choice of Dextran as tracer molecule has been already evaluated. 

Wolff and Zydney [14] validated their characterization protocol using Dextrans by performing 

two series of experiments. They first characterized a PSf/PVP membrane after exposure to 

bleach for 0.5 h, and after subsequent incremental treatment for total bleach exposures of 1, 5 

and 14 h.  In the second series, experiments were preformed with a single continuous 14h 

exposure to hypochlorite. The authors obtained after 14 h exposure in both cases identical 

data, indicating that intermediate Dextran filtration in the first series had no effect on 

membrane selectivity. 

In the present study, it can be noticed that the AFNOR standard [28], recommending a 

maximum permeability loss of 30% during filtration of a tracer solution, was respected in the 

case of soaking duration shorter or equal to 24 hours. In these treatment conditions and 

following the proposed protocol we then considered that Dextran membrane retention Rm 

provided us a satisfactory characterization of the intrinsic selectivity of the membrane in 

normal conditions of use. 

 

 

4.3 Pore size distribution of pristine membrane 
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The parameters of the initial log-normal pore size distribution leading to calculated 

permeability and selectivity were first determined as close as possible of the experimental 

results. 

 

SEM observations of the inner surface of the pristine membrane do not provide evidence of 

apparent pore size exceeding 40 nm in radius (Fig 6). It should be noted that the pores are 

aligned and relatively close to each other (i.e. the distance between two adjoining pores is less 

than one pore diameter). 

 

 

Figure 6: SEM image of the inner surface of the pristine membrane 

 

 

Moreover, bubble point measurements were carried out on membrane samples presenting an 

internal surface of approximately 10
-3

 m
2 

to estimate the size of the biggest pores of the 

selective skin. The resulting pressures were:  

-for pristine membranes: Pb = 3.90 ± 0.09 bar. 

-for aged membranes (24 h): Pb = 2.84 ± 0.32 bar. 

Considering that at least one bubble was observed at these pressures on each membrane 

sample tested, we assumed that the number of big pores was equal or higher to 1000 per m
2
 of 

membrane. 

 

As already mentioned, these tests have been completed with contact angle measurements on 

inner surface of pristine and aged membranes. Similar values in the order of 75 ± 5 ° were 

collected for all samples. This allows us to estimate rmax by using Eq. 11 to approximately 97 

nm for the pristine membrane and 133 ± 15 nm for the aged ones.  

 

Concerning the thickness (l) of the membrane selective skin, no characterization technique 

enables to precisely determine it. We will therefore set this parameter to an arbitrary value of 

0.1 µm, which corresponds to an order of magnitude commonly consider for asymmetric UF 

membrane.  

 

For an estimation of the pore size distribution of pristine membranes, we have therefore 

selected for the two parameters 8HI�J  (maximum of the log-normal function) and �  

(geometric standard deviation of the function) values meeting the following conditions: 8HI�J 
< 40 nm, according SEM observations, and 8�ef  < 100 nm, with 8�ef  defined as the 

maximum value of 89 for which 7�89� > 1000 pores m
-2

.  

Fitting of  8HI�J  and ��   were conducted by minimizing the sum of the square of the 

differences between the experimental data points and the predicted values of Rm (at specific 

values of Rhyd ranging from 10 nm to 40 nm), while the fitting of GHI�J  was done by 

minimizing the square of the difference between the experimental and the calculated 

permeability. It was thus possible to obtain the following parameters of the log-normal 

distribution, corresponding to the best correlation between calculated and experimental 

pristine membrane properties:  8HI�J = 17.5 nm,   � = 0.25,   GHI�J = 2.81 10
12

 pores m
-2

 

 

This distribution leads to a calculated permeability of 623 L h
-1

 m
-2

 bar
-1

, which has to be 

compared to the experimental value of 628 ± 50 L h
-1

 m
-2

 bar
-1

 (deduced from an average of at 

least 10 measurements). Concerning the membrane selectivity, calculated membrane retention 

coefficients depicted in figure 7,a are very similar to those obtained experimentally. Figure 
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7,b also offers a representation of n(r) the discontinuous distribution of the number of pores 

and of J(r) the flow density relative to each pore size class. Such a distribution of pore sizes 

shows a 8�ef of 96 nm (not visible on figure 7, b).  

 

 

Figure 7: (a) Calculated and experimental selectivity curves for pristine membrane and (b) 

n(r) the discontinuous distribution of the number of pores and J(r) the flow density relative to 

each pore size class 

 

 

4.4 Scenarios of pore size distribution evolution of aged membranes 
 

As mentioned in the introduction, a previous study conducted by Pellegrin et al. [16] showed 

that hypochlorite exposure induces radical degradation of PVP (involving PVP chain 

scissions) and its dislodgement from the PES matrix, leading to an increase in the pure water 

permeability and to the embrittlement of the PES/PVP membrane. A direct relationship 

between the changes in permeability and in the PVP ATR-FTIR band intensity was 

established. For the early stages of the degradation, results showed that the decrease in PVP 

ATR-FTIR band corresponds to an increase in permeability, meaning that the PVP removal 

from the membrane material leads to an increase of the accessible porosity in the active layer. 

As the degradation was more advanced, beyond around 50 h exposure in NaClO 350 ppm at 

pH 8, the permeability reached a plateau. The assumption was made that beyond a given 

hypochlorite dose, the degradation and dislodgment of the majority of the PVP accessible 

within the selective layer (within a thickness of 10-100 nm) has occurred.  

 

Several scenarios of evolution of the membrane selective layer thickness and pore size 

distribution have been considered to explain the changes observed in selectivity and 

permeability. Among the scenarios investigated, we have considered separately or 

simultaneously the decrease of the selective layer thickness (i.e. decrease of the pore length), 

the shift of the initial pore size distribution (i.e. increase of pore radius induced by erosion) 

and the formation of a second population of pores of larger sizes (appearance of defects) with 

or without modification of the initial pore size distribution.  

The results showed that the decrease of the pore length has almost no influence on the 

calculated selectivity and permeability. This is obvious when considering the equations 6 and 

7. Equation 6 shows that a pore radius change (to the power 4) will have much greater impact 

on the calculated permeability than a pore length modification (to the power -1). Equation 7 

shows that, 1/J being proportional to the membrane selective layer thickness; by 

simplification the pore length does not appear in the calculation of the retention.  

When we considered that ageing leads to the formation of a second population of pores of 

larger sizes without modification of the initial pore size distribution, the calculated retention 

was only modified for high molecular weight tracers without effect on small ones, which was 

not consistent with experimental results. 

Among the scenarios investigated, the two scenarios reported here below are the only ones 

allowing to reach a satisfactory correlation between calculated and experimental transfer 

properties. 

 

Given that membrane degradation hypochlorite induced mainly resulted in a gradual 

dislodgement and departure of PVP from the PES matrix, and assuming that PVP is 

homogeneously distributed in the structure of the selective skin, we first considered that the 
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radius of each pore class increased during ageing. To model this scenario, we assumed that, 

throughout the degradation:  

� The radius of all pores increased to the same extent e resulting from the pore wall 

degradation.  

� GHI�J and �  (the parameters of the log-normal distribution of the pristine membrane) 

remain unchanged. 

� The active layer thickness of the membrane remains unchanged. 

 

The equations presented earlier, allowing the calculation of the permeability and intrinsic 

retention, then become: 

 LM
345 � O ��

+�345�69 �7�89���89 a p��     (12) 

   

and   �� � B
N O

��Q��>����>KJ�2�B*�B*R	
��;>q<��
4�
4

+�345�69     (13) 

 

As shown in figure 8, by varying the thickness e, we thus obtained calculated values of Rm, 

corresponding to the different levels of degradation (2, 4 and 24h) for which we were able to 

obtain the experimental intrinsic selectivity curve of the membrane (section 4.2). We 

identified the following changes in pore radius as a function of hypochlorite exposure time: 

 

� NaClO 350 ppm, pH 8 – 2 h: p��= 8 nm 

� NaClO 350 ppm, pH 8 – 4 h: p��= 18 nm 

� NaClO 350 ppm, pH 8 – 24 h: p���= 44 nm. 

 

The pore size distributions corresponding to calculated retention for the various membrane 

samples were obtained by keeping GHI�J  and �  constant and modifying only the radius 

parameter. The theoretical permeabilities deduced from such changes in pore radii are 

reported in table 1. Obviously the pore size distribution is shifted to the higher size. Although 

this scenario of the evolution of the pore size distribution allows us to satisfactorily model the 

evolutions of Rm, theoretical permeabilities are not consistent with the values obtained 

experimentally as shown in Table 1.�

 

 

Figure 8 Selectivity curves of pristine and aged membranes (NaClO 350 ppm, pH 8), 

comparison between experimental results and calculated ones using a pore size distribution in 

which ageing induced an increase in pore radius (first scenario). 

 

 

The first scenario, based on the sole shifting of the pore-size distribution towards wider pore 

radii, therefore fails to provide a sound explanation to the observed modifications of the 

membrane performance after exposure to hypochlorite.  

It is worth mentioning, however, that the approach considered in the present work to calculate 

the membrane permeability (Eq 6) only takes into account the hydraulic resistance of the 

membrane skin layer and disregards the hydraulic resistance of the support, the latter being 

assumed very low. Due to membrane skin degradation and the subsequent increase of its 

hydraulic permeability, the hydraulic resistance of the support could become non negligible 

during degradation as compared to the one of the degraded selective skin.  
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Table 1: experimental and calculated permeabilities 
LM
345 of pristine and aged membranes 

according the first scenario 

 

The second scenario investigated involves the formation of a second population of pores in 

membrane skin structure of larger sizes called “defects”. In the same way as for the initial 

pore size distribution, the size of these defects are assumed to be represented by a log-normal 

distribution 7��8� , with the parameters �8�JrJst , ��  and G�JrJst  . During the degradation 

process, we assume that the departure of the PVP causes an enlargement of the initially 

present pores, with “fusion” of some of them, leading to the outbreak of a new population of 

pores of larger radius (defects). We used here the word “fusion” to name the phenomenon 

corresponding to the disappearance of the wall between two adjoining pores following 

polymer degradation. This assumption is consistent with the distance between two pores 

which is less than one pore diameter (less than 40 nm) and the extent of the pore radius 

increase e considered (between 8 and 44 nm). Moreover, we assume that the new population 

of pores cannot be the own pores of the support layer which turns up due to PVP dislodgment 

as the skin layer remains substantially denser than the membrane bulk, which presents a 

spongy structure with macro-voids (observed by cross-section SEM imaging not shown here). 

 

The assumption of the “fusion” of some pores during ageing leads to a decrease in the total 

number of pores of the initial distribution Npore. We represent this phenomenon by a shift of 

the maximum of the initial distribution to larger pores (increase of�8HI�J), accompanied by a 

reduction of Npore, keeping � constant. The latter assumption is consistent with the fact that 

the decrease in Npore is quite negligible by comparison to the initial total number of pores. 

Iterative steps were employed to adjust 7�8� and 7��8� parameters in order to obtain the best 

agreement between calculated and experimental membrane retentions and permeabilities. 

Tables 2 and 3 and figures 9 and 10 show the results obtained according this scenario. 

 

 

Table 2 – Parameters of the log-normal pore size distributions of pristine and aged 

membranes according to the second scenario 

 

 

 

Table 3 – experimental and calculated permeabilities  
LM
345 of pristine and aged membranes 

according to the second scenario�

 

 
Figure 9: Selectivity curves of pristine and aged membranes (NaClO 350 ppm, pH 8), 

comparison between experimental results and calculated ones according to the second 

scenario.�

 

 
Figure 10: a) n(r) the discontinuous distribution of the number of pores and of defects and b) 

J(r) the flow density relative to each pore size class for pristine and aged membrane samples 

according the second scenario 
�
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The reported results demonstrated that the second scenario led to a good agreement between 

experimental and calculated values for both retentions and permeabilities of aged membranes 

after different exposure times to sodium hypochlorite.  

 

The evolutions of the membrane transfer properties over its hypochlorite-induced ageing 

could then be modeled by increasing the pore radius of the initial population, accompanied by 

a decrease in their number, and coupled with the appearance of defects, whose radius 

increases with the progress of the degradation. The relevance of a scenario involving the 

emergence of a defects population of larger sizes than those of the initial pore distribution was 

also supported by surface analyses. In a previous work, Prulho [29] has performed a 2D 

mapping by ATR - IRTF of the inner surface of the membranes used in the present paper. 

This study showed a heterogeneous surface distribution of PVP with areas at high PVP 

concentration reaching several tens of µm
2
 (Fig 11). The dislodgment of the PVP in these 

areas could reasonably lead to the formation of defects. The SEM image of the pristine 

membrane (Fig 6) also shows that some pores are very close each other and so could merge 

easily from the membrane degradation. 

 
�

Figure 11: 2D mapping by ATR - IRTF of the inner surface of pristine membrane showing 

the amide band intensity of PVP (from Prulho [29]) 

�

 

5. Conclusion 

 

 
In this work PES/PVP membranes underwent a static accelerated ageing protocol, by 

exposure to a 350 ppm NaClO solution at pH 8 for several hours, ranging from 2 h to 24 h. 

This study demonstrated that chemical and structural changes of the selective skin of 

membranes during their exposure to sodium hypochlorite greatly affected membrane filtration 

performance, perceived by changes in both permeability and selectivity properties compared 

to pristine membrane results.  

In the conditions investigated in this work, aged membranes had permeability values up to 1.6 

times greater than the pristine membrane.  

In parallel, the transfer of soluble polymers (Dextran) across the membrane increased 

substantially with the increase of hypochlorite exposure time, reflecting a rapid alteration of 

the selectivity of the membrane during hypochlorite soaking at pH 8. Changes in pure water 

permeability were also investigated by comparing the initial values with the ones achieved 

after retention tests and after a backwashing procedure. It has been shown that the water flux 

after Dextran filtration decreased by comparison to the initial one with a loss all the more 

important that the degradation was advanced. The fouling inducing this permeability decrease 

was hydraulically irreversible as no permeability recovery was obtained after backwashing. 

The membrane material was then more sensitive to fouling after ageing, even towards soluble 

polymers like neutral Dextrans, well-known for their negligible interactions with this type of 

membrane material. In this context, operating conditions and procedure minimizing fouling 

during membrane characterization were sought in order to reach intrinsic membrane 

selectivity. Membrane retention was then successfully calculated for pristine and aged 

samples using the film model in the cases of soaking duration shorter or equal to 24 hours in 

NaClO 350 ppm pH8. 
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A numerical study was implemented to propose a scenario of the evolution of the pore size 

distribution leading to the permeability and retention values obtained experimentally on aged 

membranes. The initial pore size distribution of pristine membrane was assimilated to a 

monomodal lognormal distribution. The most probable scenario of distribution evolution over 

degradation process was then an increase of the pore radius of the initial population, 

accompanied by a decrease in their number, coupled with the appearance of defects, whose 

radius increased with the progress of the degradation. It was assumed that the appearance of 

theses defects partially originated from the “fusion” of initially present pores. 
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Figure captions 
 

Figure 1: Cross-section SEM image of a cryo-fractured pristine membrane 

 

Figure 2: Experimental set-up  

Figure 3: Streaming current coefficient (Is / ∆P) of pristine and aged membranes as a function 

of pH. 

 

Figure 4: selectivity curve of pristine and aged membrane samples 

 

Figure 5: pure water permeability of pristine and aged membrane samples, before and after 

Dextran filtration test and after back-washing with ultrapure water 

 

Figure 6: SEM image of the inner surface of the pristine membrane 

 

Figure 7: (a) Calculated and experimental selectivity curves for pristine membrane and (b) 

n(r) the discontinuous distribution of the number of pores and J(r) the flow density relative to 

each pore size class 

 

Figure 8: Selectivity curves of pristine and aged membranes (NaClO 350 ppm, pH 8), 

comparison between experimental results and calculated ones using a pore size distribution in 

which ageing induced an increase in pore radius (first scenario). 

 

Figure 9: Selectivity curves of pristine and aged membranes (NaClO 350 ppm, pH 8), 

comparison between experimental results and calculated ones according to the second 

scenario 

 

Figure 10: a) n(r) the discontinuous distribution of the number of pores and of defects and b) 

J(r) the flow density relative to each pore size class for pristine and aged membrane samples 

according the second scenario 

 

Figure 11: 2D mapping by ATR - IRTF of the inner surface of pristine membrane showing 

the amide band intensity of PVP (from Prulho [29]) 

 

 

 

Table captions 

 

Table 1: experimental and calculated permeabilities 
LM
345  of pristine and aged membranes 

according the first scenario 

 

Table 2: Parameters of the log-normal pore size distributions of pristine and aged membranes 

according to the second scenario 

 

Table 3: experimental and calculated permeabilities 
LM
345  of pristine and aged membranes 

according to the second scenario. 
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Table 1: experimental and calculated permeabilities 
LM
345 of pristine and aged membranes 

according the first scenario 

 

 

 

 

 
 

LM
345 (L h

-1
 m

-2
 bar

-1
) 

 
Pristine 

membrane  

NaOCl 350 ppm  

pH 8 – 2 h 

NaOCl 350 ppm  

pH 8 – 4 h 

NaOCl 350 ppm  

pH 8 – 24 h 

Experimental values 628 705 846 1 002 

Calculated values 623 2 435 9 169 110 307 
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�

�

�
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Table 2 – Parameters of the log-normal pore size distributions of pristine and aged 

membranes according to the second scenario 
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 Pristine membrane 
NaOCl 350 ppm  

pH 8 – 2 h 

NaOCl 350 ppm  

pH 8 – 4 h 

NaOCl 350 ppm  

pH 8 – 24 h 

 pore size distribution 

8HI�J (nm) 17.5 19 21 25 

� 0.25 0.25 0.25 0.25 

GHI�J 2.81 10
12

 1.98 10
12

 1.13 10
12

 0.14 10
12

 

 defect size distribution 

8�JrJst (nm) - 40 48 66 

��  - 0.1 0.12 0.15 

G�JrJst - 3.90 10
10

 4.20 10
10

 3.00 10
10

 

 

 
�

�

�

�

�

�

Table 3 – experimental and calculated permeabilities 
LM
345 of pristine and aged membranes 

according to the second scenario 
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345 (L h

-1
 m

-2
 bar

-1
) 

 
Pristine 

membrane 

NaOCl 350 ppm  

pH 8 – 2 h 

NaOCl 350 ppm  

pH 8 – 4 h 

NaOCl 350 ppm  

pH 8 – 24 h 

Experimental values 628 705 846 1 002 

Calculated values 623 764 877 1 105 
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Figure 1: Cross-section SEM image of a cryo-fractured pristine membrane 
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Figure 2: Experimental set-up  
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Figure 3: Streaming current coefficient (Is / DP) of pristine and aged membranes as a function 

of pH. 
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Figure 4: selectivity curve of pristine and aged membrane samples 
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Figure 5: pure water permeability of pristine and aged membrane samples, before and after 

Dextran filtration test and after back-washing with ultrapure water 
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Figure 6: SEM image of the inner surface of the pristine membrane 
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Figure 7: (a) Calculated and experimental selectivity curves for pristine membrane and (b) 

n(r) the discontinuous distribution of the number of pores and J(r) the flow density relative to 

each pore size class 
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Figure 8 Selectivity curves of pristine and aged membranes (NaOCl 350 ppm, pH 8), 

comparison between experimental results and calculated ones using a pore size distribution in 

which ageing induced an increase in pore radius (first scenario). 
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Figure 9: Selectivity curves of pristine and aged membranes (NaOCl 350 ppm, pH 8), 

comparison between experimental results and calculated ones according to the second 

scenario. 
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Figure 10: a) n(r) the discontinuous distribution of the number of pores and of defects and b) 

J(r) the flow density relative to each pore size class for pristine and aged membrane samples 

according the second scenario 
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Figure 11: 2D mapping by ATR - IRTF of the inner surface of pristine membrane showing 

the amide band intensity of PVP (from Prulho [29]) 
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