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Abstract

In this dissertation, motivated by electric vehicle (EV) and drone application growth, we pro-

pose novel optimization problems and solution techniques for managing the operations at EV

and drone battery swap stations. In Chapter 2, we introduce a novel class of stochastic schedul-

ing allocation and inventory replenishment problems (SAIRP), which determines the recharging,

discharging, and replacement decisions at a swap station over time to maximize the expected to-

tal profit. We use Markov Decision Process (MDP) to model SAIRPs facing uncertain demands,

varying costs, and battery degradation. Considering battery degradation is crucial as it relaxes

the assumption that charging/discharging batteries do not deteriorate their quality (capacity). Be-

sides, it ensures customers receive high-quality batteries as we prevent recharging/discharging

and swapping when the average capacity of batteries is lower than a predefined threshold. Our

MDP has high complexity and dimensions regarding the state space, action space, and transi-

tion probabilities; therefore, we can not provide the optimal decision rules (exact solutions) for

SAIRPs of increasing size. Thus, we propose high-quality approximate solutions, heuristic and

reinforcement learning (RL) methods, for stochastic SAIRPs that provide near-optimal policies

for the stations.

In Chapter 3, we explore the structure and theoretical findings related to the optimal solu-

tion of SAIRP. Notably, we prove the monotonicity properties to develop fast and intelligent al-

gorithms to provide approximate solutions and overcome the curses of dimensionality. We show

the existence of monotone optimal decision rules when there is an upper bound on the number

of batteries replaced in each period. We demonstrate the monotone structure for the MDP value

function when considering the first, second, and both dimensions of the state. We utilize data

analytics and regression techniques to provide an intelligent initialization for our monotone ap-

proximate dynamic programming (ADP) algorithm. Finally, we provide insights from solving

realistic-sized SAIRPs.

In Chapter 4, we consider the problem of optimizing the distribution operations of a hub



using drones to deliver medical supplies to different geographic regions. Drones are an innova-

tive method with many benefits including low-contact delivery thereby reducing the spread of

pandemic and vaccine-preventable diseases. While we focus on medical supply delivery for this

work, it is applicable to drone delivery for many other applications, including food, postal items,

and e-commerce delivery. In this chapter, our goal is to address drone delivery challenges by op-

timizing the distribution operations at a drone hub that dispatch drones to different geographic lo-

cations generating stochastic demands for medical supplies. By considering different geographic

locations, we consider different classes of demand that require different flight ranges, which is di-

rectly related to the amount of charge held in a drone battery. We classify the stochastic demands

based on their distance from the drone hub, use a Markov decision process to model the prob-

lem, and perform computational tests using realistic data representing a prominent drone delivery

company. We solve the problem using a reinforcement learning method and show its high perfor-

mance compared with the exact solution found using dynamic programming. Finally, we analyze

the results and provide insights for managing the drone hub operations.



©2021 by Amin Asadi
All Rights Reserved



Acknowledgments

I would like to thank my advisor, Dr. Sarah Nurre Pinkley, for her guidance and support. I am ex-

tremely grateful to her for selecting me as her Ph.D. student, being flexible, challenging me, and

supporting me to conduct impactful research. My special thanks go to my TA supervisor, disser-

tation committee member, and role model, Dr. Kelly Sullivan. I have been incredibly fortunate

to work with him, who influenced my character and career in so many ways. I cannot be more

grateful for his strong belief in me, fairness, support during ups and downs, keeping me enthu-

siastic, and giving me just the right level of freedom. I am forever grateful for his outstanding

mentorship, endless personal and professional support.

I also would like to thank my other dissertation committee members, Dr. Shengfan Zhang

and Dr. Mohammad Marufuzzaman, for their vital contribution and guidance to this dissertation.

I want to thank all my committee members for their valuable time to support me during my job

search and every opportunity they have given me to fulfill my goals.

I would like to thank the faculty and staff of the Department of Industrial Engineering at

the University of Arkansas for their help and support in many ways. Specifically, I would like to

thank our department head, Dr. Edward Pohl, for his trust in me, giving me the opportunity to be

a successful instructor over two semesters, selecting me for IISE and INFORMS colloquiums,

and for his valuable time and support during my job search.

My special thanks go to to all my friends who have supported me and shaped my journey

in Arkansas. Especially, I express my sincere gratitude to Fereydoun Adbesh, Payam Parsa, Ay-

din Iranzad, Maryam Alimohammadi, Parham Pouldsanj, Sahar Taji, Samira Karimi, Ali Rahim-

pour, Ali Balapour, Ghazaleh Salehabadi, Imann and Salman Mosleh, and Maryam Amirvaghefi.

Finally, I want to say thank you from my heart to my parents, Zohreh and Gholamreza,

my sister, Elaheh, and my brother-in-law, Mehdi, who are the very first support of my life. My

last appreciation goes to my true friend and wife, Elham, for her immeasurable sacrifices and

unfailing love in absence of my family while I pursued this final degree.



Dedication

To Elham, Maman, and Baba.

I would like to dedicate this dissertation to my family for their tremendous support and

unconditional love throughout my life. I am certain that none of my success would have been

achieved without the sacrifices that my parents made. Time and again they have picked me up

and I hope someday I will pick them up too.

In memory of all victims of PS752 flight.



Contents

1 Introduction 1

Bibliography 5

2 A Stochastic Scheduling, Allocation, and Inventory Replenishment Problem for Battery

Swap Stations 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Modeling Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Average Capacity Approximation . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1.1 Disaggregated Markov Decision Process Model . . . . . . . . . 27

2.4.1.2 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . 35

2.4.2 Exact Solution Method: Backward Induction . . . . . . . . . . . . . . . . 37

2.4.2.1 Effect of the Problem Size . . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Approximate Solution Methods . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.3.1 Heuristic Benchmark Policy . . . . . . . . . . . . . . . . . . . 38

2.4.3.2 Reinforcement Learning Approach . . . . . . . . . . . . . . . . 43

2.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.2 Latin Hypercube Designed Experiment . . . . . . . . . . . . . . . . . . . 48

2.5.3 Performance of the Approximate Solution Methods . . . . . . . . . . . . . 56

2.5.3.1 Parameter Specifics for the Approximate Methods . . . . . . . . 57

2.5.3.2 Analysis of the Experimental Results . . . . . . . . . . . . . . . 60

2.6 Conclusions and Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Bibliography 67

3 A Monotone Approximate Dynamic Programming Approach for the Stochastic Schedul-

ing, Allocation, and Inventory Replenishment Problem: Applications to Drone and Elec-

tric Vehicle Battery Swap Stations 76

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4.1 Monotone Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.2 Monotone Value Function . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5.1 Exact Solution Method: Dynamic Programming . . . . . . . . . . . . . . 97

3.5.2 Approximate Dynamic Programming Solution Methods . . . . . . . . . . 98

3.5.2.1 Monotone ADP with Regression-Based Initialization . . . . . . 100

3.5.2.2 Stepsize Function . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.6.1 Explanation of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.6.2 Regression-Based Initialization . . . . . . . . . . . . . . . . . . . . . . . 107

3.6.3 Latin Hypercube Designed Experiments for Modest SAIRPs . . . . . . . . 108

3.6.4 Monotone ADP Results and Performance for Realistic-sized SAIRPs . . . 118

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 125

Appendices 132

3.A Monotonicity of the Second Dimension of the State . . . . . . . . . . . . . . . . . 132

3.B Monotonicity of Value Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

3.C Algorithmic and Experimental Parameter Settings . . . . . . . . . . . . . . . . . . 148



4 Drones for Medical Delivery Considering Different Demands Classes: A Markov Deci-

sion Process Approach for Managing Health Centers Dispatching Medical Products 149

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.3 Problem Description and Formulation . . . . . . . . . . . . . . . . . . . . . . . . 156

4.4 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.4.1 Backward Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.4.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.5.2 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.5.2.1 Comparing Results of BI and RL . . . . . . . . . . . . . . . . . 172

4.5.2.2 Analysis on the Number of Required Batteries . . . . . . . . . . 176

4.5.2.3 Demand Classification Contribution . . . . . . . . . . . . . . . 177

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Bibliography 181

5 Conclusions and Future Work 188



List of Figures

2.1 A depiction of the interaction between first- and second-level inventory for a
SAIRP in the context of an Economic Order Quantity problem. . . . . . . . . . . 7

2.2 Percentage change in the optimal expected total reward of the aggregated vs.
disaggregated MDP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Optimal policies of the aggregated versus disaggregated MDPs for Scenario 5
when realized demand equals the mean demand. . . . . . . . . . . . . . . . . . . 32

2.4 Optimal policies of the aggregated versus disaggregated MDPs for Scenario 35
when realized demand equals the mean demand. . . . . . . . . . . . . . . . . . . 33

2.5 Graphical representation of heuristic benchmark policy actions. . . . . . . . . . . 40

2.6 Power price fluctuation over one week. . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Mean demand over time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Action taken over time for a sample path of the optimal policy of Scenario 31
when realized demand equals the mean demand. . . . . . . . . . . . . . . . . . 52

2.9 Number of full batteries and average capacity for the optimal policy over time
for Scenario 31 when realized demand equals the mean demand. . . . . . . . . . 52

2.10 Demand and met demand for the optimal policy for scenario 31 when realized
demand equals the mean demand. . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.11 Number of full batteries and average capacity for the optimal policy for sce-
nario 22 when realized demand equals the mean demand. . . . . . . . . . . . . . 53

2.12 Number of full batteries and charging/discharging actions for the optimal pol-
icy over time for Scenario 35 when realized demand equals the mean demand. . . 54

2.13 Correlation between the three factors and the number of batteries replaced, the
optimal expected total reward, the amount of demand satisfied, and the number
of batteries charging under the optimal policy. . . . . . . . . . . . . . . . . . . . 55

3.1 Diagram outlining the timing of events for the SAIRP model. . . . . . . . . . . . 88

3.2 Power price fluctuations over December (realistic-sized SAIRP) and the week
of Dec. 12-18 (modest Size SAIRP), 2016 in the Capital Region, New York. . . . 106

3.3 Mean demand for swaps over time. . . . . . . . . . . . . . . . . . . . . . . . . . 107



3.4 An instance of the optimal values over states in two consecutive decision epochs 108

3.5 Expected total reward convergence of MADP and MADP-RB using different
Stepsize functions vs optimal expected reward. . . . . . . . . . . . . . . . . . . 115

3.6 Sample paths of average capacity over time horizon for three types of LHS sce-
nario when realized demand equals means demand. . . . . . . . . . . . . . . . . 121

3.7 Sample path of the policy for scenario 15 when realized demand equals mean
demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.8 Demand and met demand for scenario 15 based on the sample path when real-
ized demand equals mean demand. . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.1 An example of demand classification based on the distance between the loca-
tion of demand and the drone hub. . . . . . . . . . . . . . . . . . . . . . . . . . 157

4.2 An instance of state transition for a single battery. . . . . . . . . . . . . . . . . 159

4.3 Locations of hospitals (demand nodes), the swap station located in Zipline
drone hub, and airports in Rwanda. . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.4 Pattern of patients arrivals to a hospital over a day. . . . . . . . . . . . . . . . . 171

4.5 Expected total reward convergence of RL method. . . . . . . . . . . . . . . . . . 174

4.6 Sample paths of states (I, IV, VI), optimal policies (II, V, VII), and demands
(III, VI, IX) for ρ21 = 0.5,1,2 when the realized demand of either class equal
mean demand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.7 Sample paths of states, optimal policies, and demands for 54 drones, ρ21 = 0.5
when the realized demand of either class equal mean demand. . . . . . . . . . . 178

4.8 Average percentage of met demand for 500 sample paths when ρ21 = 0.5 using
different models and solution methods. . . . . . . . . . . . . . . . . . . . . . . . 179



List of Tables

2.1 Size of the state space for the aggregated and disaggregated-MDP models. . . . . 29

2.2 Example showing the size of the state space for the aggregated and disaggre-
gated MDP models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Differences in the simulation tracking each individual battery capacity as com-
pared to the average capacity progression calculated in the SAIRP model. . . . . 36

2.4 Notation used in the reinforcement learning algorithm. . . . . . . . . . . . . . . 44

2.5 Factors with associated low and high values for use in the Latin hypercube de-
signed experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Scenarios and results of the backward induction algorithm for the Latin hyper-
cube designed experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Parameters used for the heuristic benchmark policy. . . . . . . . . . . . . . . . . 57

2.8 Performance comparison of the approximate solution methods. . . . . . . . . . . 62

3.1 Notation used in the ADP algorithms. . . . . . . . . . . . . . . . . . . . . . . . 100

3.2 Time and memory used for different size of SAIRPs using memory intensive
and compute intensive methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.3 Factors with associated low and high values for use in the Latin hypercube de-
signed experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.4 Optimality gap (%) of MADP, MADP-M, MADP-RB, and MBI. . . . . . . . . . 113

3.5 Comparison between convergence over iterations using MADP and MADP-RB. . 116

3.6 Comparison between the average optimality gap of different approximate solu-
tion methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.7 Results of realistic-sized SAIRPs for the latin hypercube designed experiment. . 119

4.1 Notation used in the reinforcement learning algorithm. . . . . . . . . . . . . . . 166

4.2 The data associated with blood unit delivery using Zipline drones in Rwanda,
Africa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



4.3 The expected total reward and computational time of solving SA-MCD with
ρ21 = 0.5 and M = 15 using BI and RL. . . . . . . . . . . . . . . . . . . . . . . 173

4.4 Computational time, memory used, and average percentage of met demand over
time for 500 sample paths when ρ21 = 0.5 using BI and RL methods. . . . . . . 174

4.5 Average met demand and policies over time for 500 sample paths for different
values of ρ21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

4.6 Computational time, memory used, and average percentage of met demand over
time for 500 sample paths when ρ21 = 0.5 using the RL method. . . . . . . . . . 177



List of Published Papers

Chapter 2:
Asadi, A. and Nurre Pinkley, S., “A Stochastic Scheduling, Allocation, and Inventory Re-

plenishment Problem for Battery Swap Stations,” Transportation Research Part E: Logistics and
Transportation Review, 2021, Vol. 146, pp. 102212.

Chapter 3:
Asadi, A. and Nurre Pinkley, S., “A Monotone Approximate Dynamic Programming Ap-

proach for the Stochastic Scheduling, Allocation, and Inventory Replenishment Problem: Ap-
plications to Drone and Electric Vehicle Battery Swap Stations,” Transportation Science (under
revision) (2021).

Chapter 4:
Asadi, A. and Nurre Pinkley, S., “Drones for Medical Delivery Considering Different De-

mands Classes: A Markov Decision Process Approach for Managing Health Centers Dispatching
Medical Products,” European Journal of Operational Research (under review) (2021).



1. Introduction

Intelligent systems, including humans, organizations, and companies, cope with challenges to

make desirable decisions to survive and flourish in our uncertain world. Notably, over the past 80

years, researchers and scientists of various perspectives and backgrounds have provided solutions

for such challenges in different fields and applications. This research presents mathematical mod-

els and solution methods for making optimal/near-optimal decisions under uncertainty. Specifi-

cally, we focus on optimization problems for managing Electric vehicles (EV) and drones swap

stations. EVs and drones promise to transform transportation, delivery, and supply chain systems.

A swap station is an infrastructure or a physical location wherein we swap depleted batteries with

recharged batteries quickly and recharge batteries to be used in anticipation of demand. Swap

stations will play a vital role in the transformation as they can overcome EV and drone adoption

barriers, including long recharge times, limited drive/flight range, and battery degradation.

In Chapter 2, we introduce a novel class of stochastic scheduling allocation and inventory

replenishment problems (SAIRP) for managing internal operations in swap stations. In SAIRPs,

we aim to determine the recharging, discharging, and replacement decisions at a swap station

over time to maximize the expected total profit. The profitability of the swap stations is vital for

continuous operations and absorbing investment in the stations. SAIRPs incorporate the interac-

tion between two levels of inventory, battery charge and battery capacity, where recharging and

discharging a battery lead to battery capacity degradation, and the level of battery capacity re-

stricts the amount of stored charge inside a battery. This integration is crucial as it relaxes the

assumption that recharging/discharging batteries do not deteriorate their quality (capacity). Be-

sides, it ensures customers receive high-quality batteries as we prevented recharging/discharging

and swapping when the average capacity of batteries is lower than a predefined threshold.

We model the problem as a finite horizon Markov Decision Process (MDP) model to cap-

ture the non-stationary elements of battery swap stations over time, including mean battery swap

demand, recharging price, and discharging revenue. The state of the system is denoted by the

1



average capacity and the number of fully-charged batteries. To verify our choice of average ca-

pacity (aggregating the state space) over tracking individual battery capacities, we use a disaggre-

gated MDP model and a Monte Carlo Simulation and show the aggregation’s benefit in reducing

the problem size and complexity while not sacrificing the quality of the solutions. Despite the ag-

gregation, we show that our MDP still has high complexity and dimensions regarding the state

space, action space, and transition probabilities. Therefore, we can not provide the optimal deci-

sion rules (exact solutions) for SAIRPs of increasing size.

Thus, we propose two high-quality approximate solutions for stochastic SAIRPs that pro-

vide near-optimal policies for the stations. The first approximate solution method is a heuristic

benchmark policy that dynamically selects actions according to the values for input parameters

and the present decision epoch, which are discrete times in which we make decisions. The bench-

mark policy is a constructive heuristic algorithm that creates a solution dictating the action to take

when in each state and time. We empirically tested many rules that indicate when and how many

batteries are charged and replaced over time to design the heuristic benchmark policy. We also

leverage the heuristic policy to intelligently initialize the second approximate solution method, a

double pass with the heuristic policy initialization (DHPI) reinforcement learning (RL) method.

After intelligent initialization, the DHPI RL method determines the actions and updates the states

when moving forward in time and updates the value of the visited states stepping backward in

time over iterations before a stopping criterion is satisfied. As a result, we show that the DPHI

RL method can solve large-scale problems and overcome the curses of dimensionality.

In Chapter 3, we focus on the theoretical findings regarding the monotonicity of the opti-

mal policy and value functions of SAIPRs that is motivated by exploiting efficient algorithms that

require less computational effort to find optimal policies and increase the ability to solve larger

problem instances (Puterman, 2005). In this chapter, we prove that the stochastic SAIRPs vio-

late the sufficient conditions for the optimality of a monotone policy in the second dimension of

the state. Then, we demonstrate the existence of a monotone non-increasing optimal policy in

the second dimension of the state when there is an upper bound on the number of batteries re-

2



placed in each period. Moreover, we prove that the MDP value function of the stochastic SAIRP

is monotonically non-decreasing in the first, second, and both dimensions of the state. By show-

ing these theoretical properties, we have a foundation for the development of efficient solution

methods. Exploiting the monotonicity of the value function, we use a monotone approximate dy-

namic programming algorithm proposed by Jiang and Powell (2015) and enhance it with adding a

regression-based initialization. We show the value of using monotonicity property and intelligent

regression-based initialization on the performance of the solution method using sets of designed

experiments for modest and realistic-sized SIARPs instances. Finally, we provide an extensive

analysis and derive insights from solving realistic-sized SAIRPs for managing operations in a

swap station.

In Chapter 4, we study medical supplies delivery using drones in the presence of uncer-

tainty. Drone delivery is an innovative, low-contact way to distribute essential medical supplies

such as blood units and vaccines to communities located in congested or remote areas where

roads and other transportation means are not viable options (Dhote and Limbourg, 2020). In our

setting, a swap station is located in a drone hub or dispatching center. Our goal is to optimize a

medical drone delivery system’s operation in the swap stations that consider drone delivery chal-

lenges, including limited flight range, long recharging times, and the need to dispatch drones to

different geographic locations generating stochastic demands for medical supplies. We classify

the demand based on the distance between the swap station and demand locations. We link the

level of charge inside batteries to demand classes such that the demand of each class can be sat-

isfied with batteries having the same or higher level of charge. We propose a stochastic schedul-

ing and allocation problem with multiple classes of demand (SA-MCD) model to find optimal

recharging actions that maximize the expected total weighted met demand. We use the Markov

decision process (MDP) to model the stochastic SA-MCD. It incorporates a multi-dimensional

state and action space and a complex, large transitions probability function, making SA-MSC

suffer from the curses of dimensionality as the problem size increases. We propose an RL method

with an exploration feature (ε-greedy policy) to make our RL method visit and update the value
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of more (both attractive and unattractive) states in the state space. We reduce the exploration rate

(increase the exploitation rate) to make the algorithm converge as it proceeds toward iterations.

In this chapter, we incorporate a case study influenced by Zipline, a drone delivery com-

pany that delivers blood and other medical supplies from a hub in Muhanga district, Rwanda. We

import the real data associated with the distance between locations, the population of districts,

flight regulations in Rwanda, and the Zipline drone configuration, including the speed, flight

range, and recharging time. We derive insights from solving SA-MCDs to manage the internal

distribution operations of the swap station using different sets of computational experiments. We

show the high performance of our RL method in terms of the optimality gap and average per-

centage of the met demand when an exact solution is available for comparison. We observe that

15 drones deployed by Zipline are not sufficient to satisfy 100% of the stochastic demand that

necessitates solving larger problem instances using our RL method. We explain the relationship

between the number of drones in the station and the amount of met demand using the exact and

approximate solution methods. We show the contribution of demand classification and using our

RL solution method, which outperforms the exact solutions derived from the model with no de-

mand classification. We provide extensive analysis on the impact of changing the parameter con-

trolled by the drone delivery company, which is the incentive of demand satisfaction from lower-

class demand using higher-level charged batteries.

4



Bibliography

Dhote, J. and Limbourg, S. (2020). Designing unmanned aerial vehicle networks for biologi-
cal material transportation – The case of Brussels. Computers and Industrial Engineering,
148:106652.

Jiang, D. R. and Powell, W. B. (2015). An approximate dynamic programming algorithm for
monotone value functions. Operations Research, 63(6):1489–1511.

Puterman, M. L. (2005). Markov decision processes: Discrete stochastic dynamic programming.
John Wiley & Sons, Hoboken, New Jersey, 1st edition.

5



2. A Stochastic Scheduling, Allocation, and Inventory Replenishment Problem for Battery

Swap Stations

Amin Asadi Sarah Nurre Pinkley

2.1 Introduction

Optimizing the operations at battery swap stations for electric vehicles (EVs) and drones enable

their pervasive adoption in many industries including transportation (Mutzabaugh, 2017), deliv-

ery (Weise, 2017; DHL Press Release, 2016), agriculture (Jensen, 2019), and disaster response

(Soergel, 2016). A battery swap station is a physical entity which enables the (autonomous) ex-

change of a EV or drone’s depleted battery for a full-charged battery (Widrick et al., 2018). This

exchange occurs within a few seconds which is a significant improvement over the at least hour-

long recharging wait time necessary at charging stations (Tesla, 2017). To enable the quick ex-

change, battery swap stations need to recharge previously swapped depleted batteries resulting

in fully-charged batteries available for future swap demand. However, we must consider the fun-

damental interaction where the recharging and use of battery charge is the direct cause of bat-

tery capacity degradation. Battery capacity limits the amount of battery charge held and battery

charge dictates the flying/driving time and distance. As the capacity degrades, the swap stations

must determine when to replace batteries to ensure a minimum service and performance level for

customers. Thus, optimizing the operations of a battery swap station is complex and must con-

sider this fundamental interaction when making recharging and replacement decisions over time.

Although operating battery swap stations is complex, they reduce many barriers inhibiting

EV and drone adoption. One specific barrier that is reduced is the wait time necessary for con-

ducting battery recharging at charging stations. The recharging done at charging stations is often

fast charging which is beneficial for reducing customer wait time but is harmful as it causes bat-

tery degradation (Rezvani et al., 2015; Saxena et al., 2015; Lacey et al., 2013; Shirk and Wishart,

2015). Battery degradation reduces battery capacity and in turn, the maximum amount of battery
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Figure 2.1: A depiction of the interaction between first- and second-level inventory for a SAIRP
in the context of an Economic Order Quantity problem.

charge stored. As swap stations are recharging batteries in anticipation of future demand, they

can use regular rate charging which causes less battery degradation. Less battery degradation re-

sults in fewer necessary costly battery replacements and a reduction in the environmental burden

from discarded batteries (Gardiner, 2017). Due to the centralized inventory of batteries at a swap

station, batteries can be discharged back to the grid using battery-to-grid (B2G) or vehicle-to-grid

(V2G) (Sioshansi and Denholm, 2010). B2G and V2G enable the discharged battery energy to

act as a supply point within a smart grid. When done at strategic times, the discharged energy can

aid with load balancing initiatives (Peng et al., 2012; Göransson et al., 2010; Wang et al., 2011)

and reducing the fluctuations from variable renewable energy sources (Dunn et al., 2011).

We consider the problem of determining the optimal charging, discharging, and replace-

ment actions at a swap station when explicitly considering battery degradation and uncertain

swap demand. To solve this problem, we introduce a novel stochastic scheduling, allocation, and

inventory replenishment problem (SAIRP). A stochastic SAIRP captures the interactions between

the states and actions of first-level battery charge inventory and second-level battery capacity in-

ventory. For first-level inventory, the swap station must determine when batteries are charged

and discharged. For second-level inventory, the swap station must determine when a battery is

discarded from inventory and replaced with a new full-charge and full-capacity battery. The key

interaction in SAIRPs is that the first-level charge and discharge actions cause the depletion of

second-level capacity inventory which leads to the need for battery replacement.

In Figure 2.1, we present a simplified SAIRP for one battery in the context of a traditional
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Economic Order Quantity (EOQ) model (Greene, 1997). This is a generic example in hopes to

demonstrate the mechanics of the problem of study. The orange lines represent first-level battery

charge inventory and the blue lines represent second-level battery capacity inventory. Focusing

on the orange lines, after each use or discharge (downward slope) the battery can be recharged

(upward slope) up to the capacity (blue line). The fundamental interaction between the two inte-

grated inventory levels is that battery capacity is depleted only when battery charge is used (either

in an EV or drone or through discharging) or recharged. When a battery is deemed to not have

sufficient capacity, it must be replaced. The stochastic SAIRPs we consider for swap stations are

significantly more complex than this simplified SAIRP. This complexity stems from the need to

schedule and allocate multiple batteries at the swap station simultaneously, our consideration of

an uncertain demand rate for swaps, and our inclusion of realistic varying charging costs over

time.

We propose a Markov Decision Process (MDP) to model the stochastic SAIRP. An MDP

is a Markov chain with reward associated with transitions and actions. Hence, to find the optimal

solution of an MDP, we must search for the policy that optimizes the expected total reward (Put-

erman, 2005; Powell, 2011). For a stochastic SAIRP, a policy is a set of decision rules dictating

the optimal charging, discharging, and replacement actions when in a given state and time. Al-

though a battery swap station will be continuously operating over time, an infinite horizon MDP

is not a suitable modeling approach for a problem with time-varying, nonstationary components.

Thus, we use a finite horizon MDP due to the nonstationary elements for this problem including

the time-varying mean arrival of swap demand and the time-varying charging costs. In the MDP

model, we represent the state using two dimensions where the first dimension represents the num-

ber of fully charged batteries at the swap station and the second dimension represents average

capacity of all batteries at the swap station. In this design, we assume that a battery is either fully

charged or depleted. Furthermore, to reduce the curses of dimensionality, we model the aggregate

average capacity of batteries at the swap station rather than each battery individually. Using both

a disaggregated MDP which models each battery’s individual capacity and a Monte Carlo simula-
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tion, we show that aggregating capacity has significant advantages in terms of computational time

without sacrificing precision. We represent the action space using two dimensions where the first

dimension represents the number of batteries selected for charging (positive value) or discharging

(negative value) and the second dimension represents the number of batteries replaced.

For each discrete time, denoted a decision epoch, we seek to determine the optimal action

for each state that maximizes the expected total reward. We calculate the expected total reward

as the expected swap station profit equal to revenue minus cost. The swap station earns revenue

from capacity-dependent swap revenue and discharging batteries back to the grid, and incurs

costs from charging and replacing batteries. We use backward induction to identify the optimal

policy comprised of decisions rules which indicate the optimal actions to take when each state

and time. As our problem suffers from the curses of dimensionality, backward induction is not

an effective method for determining optimal policies for realistic-sized problem instances. As

is common with the broader stochastic optimization community, we use approximate solution

methods to solve our complex problem. First, we propose a heuristic benchmark policy, similar

to a constructive heuristic (Schneider and Kirkpatrick, 2006), which is a rule/algorithm used to

generate a policy in a matter of seconds. We first propose the general outline of the benchmark

policy and then discuss how specific parameter values were used for our computational experi-

ments. Second, we propose a reinforcement learning approach with heuristic benchmark policy

initialization. Reinforcement learning (RL) is a common approach to solve the large-scale prob-

lems suffering from the curses of dimensionality (Powell, 2011; Sutton and Barto, 2018). Our

RL method benefits from smart initialization through feeding the value and policies generated by

evaluating the heuristic benchmark method for simulated sample paths. Furthermore, in our RL

method, we use a double pass updating procedure to update the visited states in the forward pass

and update the values in the backward pass (see (Powell, 2011) for more information on double

pass).

Using the MDP model of the stochastic SAIRP, we perform extensive computational ex-

periments. We perform a Latin hypercube designed experiment to identify the optimal policies
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for a swap station with different characteristics. We solve each instance of the designed exper-

iment using our three solution approaches: backward induction (BI), our heuristic benchmark

policy, and our reinforcement learning approach with heuristic benchmark policy initialization.

For each of the instances, we analyze the results to deduce insights about the optimal charging,

discharging, and replacement policies and the performance of the different solution methods. Ex-

perimentally, we show that the solutions generated by the benchmark policy are near-optimal

with regards to the expected total reward and amount of demand met. Moreover, the proposed re-

inforcement learning result indicates even better performance in terms of the optimality gap. It

can also project the value and policy for large-sized instances of the problem.

The main contributions of this research are as follows: (i) we are the first to introduce a

stochastic scheduling, allocation, and inventory replenishment problem (SAIRP) that links the

actions for first-level (battery charge) inventory to the level and needed actions for second-level

(battery capacity) inventory; (ii) we develop a two-dimensional MDP model which determines

the optimal first-level inventory charge and discharge actions and second-level capacity replace-

ment actions at a swap station that faces multiple stochastic, nonstationary swap demand levels,

nonstationary charging costs, nonstationary discharging revenues, and capacity dependent swap

revenue; (iii) we validate the modeling choice of using average capacity as opposed to each indi-

vidual battery capacity using a disaggregated MDP and Monte Carlo simulation; (iv) we propose

a competitive heuristic benchmark that overcomes the curses of dimensionality; (v) we propose a

reinforcement learning approach with heuristic benchmark policy initialization capable of gener-

ating high-performance solutions for different sizes of SAIRPs; and (vi) we deduce insights from

the results of a Latin hypercube designed experiment which uses backward induction, the bench-

mark policy, and the reinforcement learning approach to solve many instances of a stochastic

SAIRP.

The remainder of this chapter is organized as follows. In Section 2.2, we summarize rele-

vant literature on the use of optimization approaches for EV and drone applications. In Section

2.3, we present a two-dimensional Markov Decision Process to model a stochastic scheduling,
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allocation, and inventory replenishment problem. In Section 2.4, we validate our modeling as-

sumptions and outline our solution methodology. We present the results of a designed experiment

in Section 2.5 which we use to deduce insights about swap station management. We conclude

this chapter with a summary of the contributions and outline future research directions in Section

2.6.

2.2 Background

Swap stations have many benefits including reducing the wait time necessary for customers, re-

ducing battery degradation (equivalently battery waste), and enabling B2G or V2G. With the

growth in EVs, drones, and other battery operated devices, there is an increased interest in the

potential of battery swap stations. Swap stations are not the only viable option for overcoming

barriers to EV and drone adoption. There is an extensive body of literature that examines the

use of battery charging stations (e.g., (Liu, 2017; Chen et al., 2018; Schroeder and Traber, 2012;

Sathaye and Kelley, 2013)). We proceed by discussing relevant literature for the application areas

of EV and drone swap stations with particular focus on works using optimization techniques.

Researchers have examined EV and drone battery swap stations from many different per-

spectives. First, we review the research most similar to this work which examines optimizing

the internal operations of an EV or drone battery swap station faced with uncertainty. Widrick

et al. (2018) propose an MDP model to determine the optimal number of batteries to charge and

discharge over time when considering the uncertain arrival of battery swaps. Although, we con-

sider similar charging and discharging decisions, our work is distinctly different from Widrick

et al. (2018) as we explicitly consider battery capacity degradation. The consideration of bat-

tery capacity adds significant complexity and necessitates a two-dimensional MDP to capture

the necessary state and actions with regard to capacity. Worley and Klabjan (2011) also consider

the internal operations when faced with uncertain demand but consider the optimal purchasing

and charging over time to minimize total cost. The decision regarding purchasing batteries has

similarities to battery replacement; however, we clarify that SAIRPs consider a static number of
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batteries at the swap station, do not explicitly consider the decision regarding how many batter-

ies to purchase prior to opening the swap station, and instead consider the timing and amount of

batteries replaced while the swap station is operating. Schneider et al. (2018) consider short-term

charging decisions at a swap station coupled with long-term decisions regarding the number of

batteries to purchase and the number of charging bays to consider at the swap station. Schneider

et al. (2018) do use the term battery capacity, however they consider capacity as the number of

charging bays (i.e., number of batteries that can be charged at one time) which is distinctly differ-

ent from SAIRP capacity representing the maximum amount of charge a battery can hold. To the

best of our knowledge, we are the first to consider optimizing the internal operations of a battery

swap station when faced with uncertain swap demand and battery degradation.

Other researchers seek to optimize the internal operations of an EV or drone battery swap

station but ignore uncertainty. Nurre et al. (2014) use a mixed integer programming formulation

to determine the number of batteries to charge, discharge, and swap over time. They propose

load balancing policies to encourage charging and discharging at desirable times. Recently, re-

searchers have examined the idea of battery degradation in a deterministic setting. Kwizera and

Nurre (2018) consider a deterministic two-level integrated inventory problem for a drone battery

swap station where battery degradation limits the maximum drone fly time which in turn limits

the jobs able to be completed from the swap station without replacement. Similarly, Park et al.

(2017) propose a deterministic model to determine the battery charging schedule and assignment

of jobs to minimize battery degradation. Rather than considering the entire set of decisions at

once, they solve two subproblems, one which determines the battery charging schedule and an-

other which determines the assignment of batteries to jobs.

There are other studies which examine swap stations without focusing on the internal op-

erations. For example, Adler et al. (2016) developed an integer programming model to determine

the optimal locations for swap stations. Shavarani et al. (2018) use a facility location model to

determine the number and locations of swap stations for a drone delivery problem. When con-

sidering the interaction between the power grid and swap stations, Pan et al. (2010) propose a
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two-stage stochastic model to locate swap stations. Likewise, Gao et al. (2012) measure the ef-

fectiveness of a battery swap station for increasing the reliability of the power system working

with wind power. Others examine routing drones through one or many stations to minimize total

travel distance (Kim et al., 2013; Kim and Moon, 2019).

In parallel to the examination of swap stations among researchers, several companies have

implemented swap stations or are developing technology to enable drone or EV battery swap. For

example, the Chinese automobile manufacturer, NIO, has 18 operational swap stations and aims

to increase the number of swap stations to 1100 by 2020 (Lambert, 2018). Furthermore, com-

panies with a fleet of vehicles, such as BJEV, found the idea of swap stations viable. By 2017,

BJEV established more than 100 swap stations for its electric cabs and aims to expand to over

100 cities in China. They plan to build 3000 swapping stations by 2020 (Fusheng, 2019). Addi-

tionally, there are many companies using drone swap stations and examining the physical me-

chanics of a drone swap station (Markoff, 2016; AIROBOTICS, 2020; McNabb, 2017; Popper,

2016).

Our work can be interpreted as discrete-time sequential decision-making for managing

inventory and replacing equipment in the presence of uncertainty in the system. There is a rich

literature of using MDP models for inventory management problems under uncertainty. For ex-

ample, Rong (2012) solves an MDP model with dynamic programming to derive the optimum or-

der point and quantity for a single product, multi-stage inventory system. Cheng and Sethi (1999)

propose an MDP model for an inventory management problem where consumer demand can be

affected by the promotions offered by the company. Ahiska et al. (2013) utilize an MDP model to

find the structure of optimal policies for purchase and inventory control problems in a stochastic

environment. Moreover, MDPs have been widely used to model equipment replacement prob-

lems. Venkatesan (1984) provides the foundation for a single-product, single-equipment production-

inventory MDP system. It determines the optimal policies for static and dynamic system condi-

tions, where it is assumed that products can be replaced instantaneously. Nair (1995) finds the

optimal decision concerning investment in new equipment/technology wherein several sequen-
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tial technologies may appear with different associated costs and revenue in each decision epoch.

Chan and Asgarpoor (2006) look for the optimum maintenance policy for a component where

both random failure and failures due to deterioration exist. Abeygunawardane et al. (2013) use an

MDP to optimize a maintenance program considering product aging. Besides inventory manage-

ment and equipment replacement, MDPs are broadly used for modeling problems dealing with

electric vehicle and drone applications. For instance, Iversen et al. (2014) propose an MDP based

algorithm to solve the problem of finding the optimal charging policies of EV batteries when in-

corporating uncertainty in human driving behaviors. Al-Sabban et al. (2013) used an MDP to

find the optimal flight path between a predefined origin and destination for drones empowered by

wind energy that is uncertain in terms of magnitude and direction. Similarly, Baek et al. (2013)

aim to find the optimal grid-based movement policy for drones. Fu et al. (2015) used an MDP

model for managing the navigation of drones on 2-D planes such that no collisions happen in the

drone flight route. Widrick et al. (2018) developed an inventory control MDP for a swap station

that only considers battery charge.

Our work can be viewed as a dynamic inventory and allocation problem. This problem

has been well studied, including fundamental research (Scarf, 1960; Karlin, 1960; Peterson and

Silver, 1979) but also research examining how to approximate the optimal policy. There are dif-

ferent approaches to approximate optimal policies including myopic policies, look-ahead policies

(known as rolling horizon procedure, receding horizon procedure, and model predictive control

in different communities), policy function approximations, and value function approximations

(Powell, 2011). We proceed by presenting examples of optimal policy approximation for dy-

namic inventory management problems. Federgruen and Zipkin (1984) approximate a dynamic

ordering allocation problem with stochastic demand, lead time, and backorder by reducing the

multiple-location inventory problem to a single-location inventory problem. Somarin et al. (2017)

formulate a dynamic inventory allocation problem as an MDP and propose a heuristic method

to find near-optimal policies using value function approximations. Fu et al. (2019) used a model

predictive control (look-ahead policy) to find optimal solutions in a supply chain wherein the sup-
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pliers are interacting to meet demands. Similarly, Hai et al. (2011) apply model predictive control

to optimize the cost of handling dynamic inventory management in a supply chain context. Tang

et al. (2015) aim to find a look-ahead control policy for a conveyor-serviced production station

wherein parts and demands randomly arrive in the system. For further study, we refer the reader

to the works of (Bookbinder and H’ng, 1986; Anupindi et al., 1996; Cheevaprawatdomrong and

Smith, 2004) to see the application of the rolling horizon method to handle dynamic inventory

problems.

To solve large-scale inventory and allocation problems, researchers use various approaches

of reinforcement learning (RL) and approximate dynamic programming (ADP), including a

one-step temporal difference (TD) (Roy et al., 1997), case-based myopic RL (Jiang and Sheng,

2009), dual heuristic programming (Shervais et al., 2003), Q-Learning (Chaharsooghi et al.,

2008), SARSA and simulation-based ADPs (Katanyukul et al., 2011). In our RL method, we use

a look-up table for the value function approximation which is a common approach (see (Jiang

and Sheng, 2009; Kwon et al., 2008)). We use a double pass procedure, forward pass in time

to determine the actions and update the states and backward pass in time to update the value of

the visited states. The backward pass idea is similar to the backpropagation method for training

multi-layer Artificial Neural Networks (ANN). We refer the reader to (Williams, 1988; Paul Wer-

bos, 1989; Gullapalli, 1990) for further study about backpropagation in RL and ANN.

We are the first to consider the impact of battery degradation when operating a battery

swap station under uncertainty. Excluding battery capacity does lead to a simpler model; how-

ever, it fails to include an important realistic aspect that influences decision making at a battery

swap station. One common way to measure battery degradation, or alternatively battery capacity,

is through cycle counts. One cycle equates to one use/discharge and one charge. Thus, a battery

life span can be estimated using the number of cycles. We acknowledge that there are many fac-

tors which influence battery degradation, such as temperature and depth of discharge (Plett, 2011;

Abe et al., 2012; Ribbernick et al., 2015; Dubarry et al., 2011). We assume that a battery sitting

in inventory experiences no degradation. Further, we use a linear degradation factor in accor-
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dance with previous research (Lacey et al., 2013; Ribbernick et al., 2015; Wood et al., 2011). We

proceed by providing the MDP model for stochastic SAIRPs which explicitly considers battery

degradation.

2.3 Problem Statement

In this section, we model the scheduling, allocation, and inventory replenishment problem (SAIRP)

as a Markov Decision Process (MDP) considering time-varying costs from charging batteries,

costs from replacing capacity-depleted batteries, time-varying revenue from discharging to the

power grid, and capacity-dependent revenue from swapping batteries to meet stochastic demand

over time. Importantly, the SAIRP MDP incorporates the interactions between first-level battery

charge inventory and second-level battery capacity inventory. The problem experiences uncer-

tainty from the uncertain arrival of swap demand over time which we model based on a known

distribution and time-varying mean. Due to the dynamic and time-varying characteristics of the

problem, we present the following finite horizon MDP which seeks to maximize the expected to-

tal reward when determining the optimal number of batteries to charge, discharge, and replace

over time. In Section 2.4, we outline how we find optimal policies using backward induction and

near-optimal policies using a heuristic benchmark policy for our MDP.

Decision Epochs: The set T = {1, . . . ,N−1}, N < ∞ represents the discrete points in time

when decisions are made.

States: The state of system is dynamic and varies over time. The state has two dimensions,

st = (s1
t ,s

2
t ) ∈ S = (S1 × S2), for all decision epochs t ∈ T . The first dimension, s1

t ∈ S1 =

{0,1, . . . ,M}, indicates the total number of full batteries at decision epoch t, where M denotes the

total number of batteries at the swap station. The second dimension, s2
t ∈ S2 = {0,ε,2ε, . . . ,1},

indicates the average capacity of all batteries at the swap station represented as a percentage

rounded to the nearest ε. In our model, we set a threshold, θ, which equals the lowest acceptable

average battery capacity so as to ensure customer satisfaction. We do not allow batteries with

an average capacity below θ to be replaced, charged, discharged, or swapped, as we assume the
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swap station is not operational when the average capacity drops below θ. If the average capacity

is below θ, we model the average capacity as equal to 0 thereby representing all average capaci-

ties below θ. As no actions can be taken once the average capacity is in state 0, we note that 0 is

an absorbing state. Instead, if the swap stations wants to maintain operations, then it must take

the appropriate actions prior to having the capacity drop below θ to ensure customers are always

guaranteed a battery with sufficient capacity (i.e., range, flight time). Contrarily, we could model

the situation where swap stations may only replace batteries if the average capacity is below θ.

However, this would require an expanded state space which includes all possible average capacity

values just below θ that the system could feasibly transition to. Further, such a design could be

equivalently represented by the presented SAIRP MDP model with the appropriately selected θ

value representing end of battery life or lowest acceptable battery capacity level. As follows, S2 is

more precisely represented as S2 = {0,θ,θ+ ε,θ+2ε, . . . ,1}.

It is important to include battery capacity to ensure the model takes a step towards better

representing reality in order to best inform battery swap station operations. However, including

each individual battery capacity into a model (i.e., disaggregate modeling) is computationally

insurmountable for solution methods. We will demonstrate in Section 2.4.1 that using the av-

erage capacity (i.e., aggregate modeling) does not significantly shift the optimal policy as com-

pared to the small case of the disaggregated model that is solvable. We also show that the optimal

expected total reward does not dramatically change between the disaggregated and aggregated

model for the majority of cases.

Actions: The action of the system is dynamically selected such that it optimizes the cur-

rent and expected contributions. We define a two-dimensional action for each decision epoch

t, at = (a1
t ,a

2
t ) ∈ (A1× A2). Because the actions are not fixed a priori, we must select the ac-

tion at for each st from the action space. The first dimension of the action, a1
t ∈ A1

t = {max

(−s1
t ,−Φ), . . . ,0, . . . , min(M− s1

t − a2
t ,Φ)} indicates the total number of batteries to charge or

discharge during epoch t. We define Φ to represent the number of plug-ins available for charging

and discharging at the station. When a1
t is negative it indicates to discharge batteries and when a1

t
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is positive it indicates to charge. We can discharge up to the minimum of the number of plug-ins

and the number of full batteries. We can charge up to the minimum of the number of plug-ins and

the number of depleted batteries. For clarity, we further define a1
t as follows:

a1+
t =

 a1
t if a1

t ≥ 0,

0 otherwise,
(2.1)

a1−
t =

 |a
1
t | if a1

t < 0,

0 otherwise.
(2.2)

The second dimension of the action, a2
t ∈ A2

t = {0, . . . ,M− s1
t }, is the total number of bat-

teries replaced. We assume that only depleted batteries can be replaced during epoch t and enter

the system at t + 1 fully charged. We assume that during each epoch, simultaneous charging and

discharging will not occur because it can be equivalently represented as solely charging or dis-

charging. Additionally, we assume that all plug-ins are capable of both charging and discharging

and it takes one decision epoch to make a depleted battery full or vice versa. We sequence the

observations and actions during an epoch in the following order. At the start of epoch t, the state

of the system st = (s1
t ,s

2
t ) is known. First, a2

t batteries are selected to be replaced, followed by

choosing a1
t batteries to charge/discharge. Then, the s1

t − a1−
t full batteries remaining in inven-

tory are used to satisfy demand. At the conclusion of epoch t, the replaced batteries arrive fully

charged with full capacity, the charged batteries become fully charged, the discharged batteries

become depleted, and the swapped batteries become depleted. The set of feasible actions depend

on the current state at time t, st , thus, we define Ast to indicate the feasible set of actions that can

be taken when in state st at time t. With this design, we set assumptions describing how and when

an action may be selected, including the timing of the charging/discharging and replacement be-

tween two consecutive decision epochs. However, these assumptions do not prescribe which ac-

tion should be taken when in each state and time. Instead, we seek to find optimal policies which

prescribe how many batteries to charge/discharge and replace for every st . Therefore, our model
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should not be mistaken with the Markov reward process in which the actions are fixed.

Transition probabilities: The state of the system transitions based on probabilities due to

the uncertain arrival of battery exchanges. Thus, the number of full batteries at the swap station

and the average battery capacity dynamically changes based on the combination of the realized

demand and the optimal action. We define Dt as the random variable representing demand for

battery exchanges in period t; thus, the met demand in time t equals min{Dt ,s1
t −a1−

t } where a1−
t

is the number of batteries which are not available due to discharging. The first dimension of the

state of the system, or equivalently the number of full batteries, dynamically transitions over time

according to Equation (2.3).

s1
t+1 = s1

t +a2
t +a1+

t −a1−
t −min{Dt ,s1

t −a1−
t }. (2.3)

We note, this first dimension transition occurs only if s2
t ≥ θ which forces the swap station

to only operate if they ensure batteries have sufficient capacity (equivalently a service level). To

calculate the transition of the second dimension of the state, representing the average capacity,

we define δC to equal the degradation in capacity for one cycle which we fully attribute to the

charging and discharging actions. We define function, g2(s1
t ,s

2
t ,a

1
t ,a

2
t ), to represent the transition

from one decision epoch to the next for the second dimension of the system in Equation (2.4).

g2(s1
t ,s

2
t ,a

1
t ,a

2
t ) = s2

t+1 = round
(

1
M

[
(s2

t −δ
C)(a1+

t +a1−
t )+a2

t + s2
t (M−a1+

t −a1−
t −a2

t )
])

.

(2.4)

Equation (2.4) consists of three terms divided by the total number of batteries thereby

dynamically calculating the change in average capacity over time. The first term captures the

change in average capacity when batteries are both charged and discharged. The second term

adds 1 multiplied by the number of batteries replaced arriving at full capacity. Lastly, the third

term captures the batteries which are not charged, discharged, or replaced and remain in inven-

tory at the same capacity value. This supports our assumption that all batteries swapped at time
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t have a capacity equal to the average capacity of batteries at the swap station. In this design, we

assume that customers use the swap station frequently enough such that the average capacities of

batteries internal and external to the swap station are similar. We discretize the possible average

capacities in increments of ε and thus, our use of round() indicates a traditional rounding func-

tion to the nearest ε.

In our model, we define absorbing state 0 ∈ S2 for batteries with average capacity below θ.

To ensure the absorbing property, we define the only feasible action for st = (s1
t ,0), for any s1

t as

at = (0,0) thereby preventing charging, discharging, replacement, swapping, and transition out of

this state. In this design, the swap station can no longer operate if the average battery capacity is

below θ. Thus, if the swap station wants to continue operating it would need to replace batteries

before allowing the average battery capacity to drop below θ. As a result, the transition for the

second dimension of the state space is precisely presented in accordance with Equation (2.5).

f 2(s1
t ,s

2
t ,a

1
t ,a

2
t ) = s2

t+1 =

 g2(s1
t ,s

2
t ,a

1
t ,a

2
t ) if g2(s1

t ,s
2
t ,a

1
t ,a

2
t )≥ θ,

0 otherwise.
(2.5)

We denote the probability of transitioning to state j = ( j1, j2) at time t + 1 when at time t

the system is in state st = (s1
t ,s

2
t ) when action at = (a1

t ,a
2
t ) is taken as follows:

20



p( j|st ,at) =



ps1
t +a2

t +a1+
t −a1−

t − j1 if j2 = f 2(s1
t ,s

2
t ,a

1
t ,a

2
t ),

and a2
t +a1+

t < j1 ≤

s1
t +a2

t +a1+
t −a1−

t ,

qs1
t +a2

t +a1+
t −a1−

t − j1 if j2 = f 2(s1
t ,s

2
t ,a

1
t ,a

2
t ),

and j1 = a2
t +a1+

t ,

0 otherwise,

(2.6)

where p j = P(Dt = j) and qu = ∑
∞
j=u p j = P(Dt ≥ u). As defined in Equation (2.3), the number

of batteries swapped in epoch t equals s1
t + a2

t + a1+
t − a1−

t − j1, where j1 equates to s1
t+1. If no

batteries are swapped in epoch t, the number of fully charged batteries at the conclusion of epoch

t and start of epoch t + 1 equals s1
t + a2

t + a1+
t − a1−

t . Alternatively, if all available fully-charged

batteries are swapped in epoch t, the number of fully charged batteries at the conclusion of epoch

t and start of epoch t +1 equals a2
t +a1+

t due to the batteries charged and replaced in epoch t.

The transition probability equals P(Dt = s1
t + a2

t + a1+
t − a1−

t − j1) when the demand

for swaps is less than the number of batteries available for swapping and the average capac-

ity satisfies Equation (2.5). Alternatively, if the demand for swaps is greater than or equal to

the current inventory and Equation (2.5) is satisfied, the transition probability equals P(Dt ≥

s1
t + a2

t + a1+
t − a1−

t − j1). The transition probability equals zero if j1 is less than the number of

batteries that arrive fully charged at the end of epoch t, a2
t + a1+

t , j1 is greater than the maximum

number of fully charged batteries, s1
t +a2

t +a1+
t −a1−, or j2 does not satisfy Equation (2.5).

Reward: We seek to maximize the expected total reward. We calculate the immediate re-

ward, rt(st ,at ,st+1), for epoch t when the system is in state st = (s1
t ,s

2
t ) and action at = (a1

t ,a
2
t ) is

taken and the state transitions to st+1 = (s1
t+1,s

2
t+1) depending on the realized uncertainty of the
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system. We can dynamically calculate the profit earned using Equation (2.7). Specifically,

rt(st ,at ,st+1) = ρs2
t
(s1

t + a2
t + a1+

t − a1−
t − s1

t+1) − Kta1+
t + Jta1−

t − Lta2
t , (2.7)

where min{Dt ,s1
t −a1−

t }= s1
t +a2

t +a1+
t −a1−

t − s1
t+1 equals the number of batteries swapped, Kt

is the cost per battery charged during epoch t, Jt is the revenue earned per battery discharged dur-

ing t, Lt is the cost per battery replaced during epoch t, and ρs2
t

is the capacity-dependent revenue

per battery swapped. We define ρs2
t

to represent the realized swap revenue that the stations earns

which is at least as large as the cost to charge a battery. This definition ensures swapping batteries

is profitable which is necessary for continuously operating a swap station. Further, we define ρs2
t

such that it is larger when batteries with higher average capacity are swapped and lower when the

average capacity is near θ. Specifically,

ρs2
t
= β

(
1+

s2
t −θ

1−θ

)
=

β(1+ s2
t −2θ)

1−θ
, (2.8)

where β is set to ensure the swap revenue is never lower than the cost to recharge a battery. This

is analogous to having a manufacturer of a product ensure that the revenue earned from selling

the product is at least equal to the cost of production. In this context, β should be set to cover the

cost of production (battery recharging) plus the profit margin per product (battery swapped). Oth-

erwise, if β is less than the cost of production, the manufacturer (swap station) is not profitable

or sustainable. We also set the swap revenue to be capacity dependent. Specifically, when the av-

erage capacity of batteries in the swap station is at the lowest operational level, i.e., s2
t = θ, then

ρs2
t
= β or just higher than the cost to charge a battery. When the average capacity equals 1, then

ρs2
t
= 2β wherein this revenue captures a higher level of customer satisfaction due to swapping

higher quality batteries. Ultimately, the swap revenue is in [β,2β] depending on how the average

battery capacity, s2
t , varies between θ and 1.

In the terminal time period only swapping occurs which means the per battery swap rev-

enue does not change because the battery capacity only changes when recharging, discharging, or
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replacement occurs. Further, only batteries that are full at the start of the terminal time period can

be swapped; therefore the dynamics of how charging/discharging costs change are not considered

in this terminal time period. Hence, we calculate the terminal reward, rN(sN), as the revenue from

swapping fully-charged batteries provided the average capacity meets or exceeds the threshold

capacity as given in Equation (2.9),

rN(sN) =

 ρs2
N

s1
N if s2

N ≥ θ,

0 otherwise,
(2.9)

where the first condition is when the threshold is met or exceeded and 0 otherwise. The termi-

nal reward is exactly the value function for the terminal time period, uN(sN). By combining the

probability transition function and the immediate reward, we are able to express the immediate

expected reward function as

rt(st ,at) = γ ∑
st+1∈S

[
pt(st+1|st ,at)

(
ρs2

t
(s1

t +a2
t +a1+

t −a1−
t − s1

t+1)

)]
−Kta1+

t +Jta1−
t −Lta2

t ,

(2.10)

where γ represents the discount factor. As will be described in Section 2.5, we examine short time

horizons (e.g., one week) in which any changes in currency are not significant. Thus, we assume

γ = 1. We denote the state and time dependent decision rules, dt(st) : st → Ast , to indicate which

action at ∈ Ast to select when in state st at decision epoch t ∈ T with certainty. Our decision rules

only depend on the current state and prescribe a single, specific action, thus, we consider deter-

ministic Markovian decision rules (Puterman, 2005). We denote a policy π as a sequence of deci-

sion rules (dπ
1 (s1),dπ

2 (s2), . . . ,dπ
N−1(sN−1)) for all decision epochs. The expected total reward of

policy π when the system begins in state s1 is denoted υπ
N(s1) and equals

υ
π
N(s1) = Eπ

s1

[
N−1

∑
t=1

rt(st ,at)+ rN(sN)

]
. (2.11)

We seek to find a policy π∗ with the maximum expected total reward. The optimal value
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function, u∗t (st), is defined as the maximum expected total reward over all policies from decision

epoch t to N when in state st at time t. We use the backward induction algorithm, a dynamic pro-

gramming technique, to determine the optimal value functions for our stochastic problem using

optimality equations, or Bellman equations. With the backward induction algorithm, we use the

derived optimal values to find the optimal policies. We define the optimality equations in Equa-

tion (2.12) for t = 1, . . . ,N−1 and st ∈ S.

ut(st) = max
at∈Ast

{
rt(st ,at)+ ∑

j∈S
pt( j|st ,at)ut+1( j)

}
. (2.12)

For t = N, we define uN(sN) = rN(sN) as defined in Equation (2.9). Then moving backward in

time, we let t = N−1 and calculate

uN−1(sN−1) = rN−1(sN−1,aN−1)+ ∑
j∈S

pN−1( j|sN−1,aN−1)uN( j) (2.13)

for all sN−1. This calculation is possible because we calculate the immediate expected reward

using Equation (2.10) and add this to the product of the conditional probability (from Equation

(2.6)) and the value function just calculated (uN(sN)). The uN−1(sN−1) value gives us the ex-

pected value of being in state sN−1 from time N − 1 to the end of the time horizon when action

aN−1 is taken. As we do not want to implement any action and instead want to select the action

that results in the highest value, we calculate Equations (2.12) and (2.14) for t = N − 1, which

determines the maximum value and associated action, respectively.

A∗st ,t = arg maxat∈Ast

{
rt(st ,at)+ ∑

j∈S
pt( j|st ,at)ut+1( j)

}
. (2.14)

Then, we move backward and let t = N − 2 and continue this process until we reach decision

epoch t = 1. As Backward Induction is a known optimal algorithm (Puterman, 2005), the solution

to Equation (2.12) at t = 1 gives the optimal expected total reward for the time horizon of the

problem. Thus, we emphasize that we must use optimization to determine the optimal policies
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which prescribe optimal actions. After determining these optimal actions, we can calculate the

optimal expected total reward.

2.3.1 Modeling Assumptions

In this section, we present a summary of modeling assumptions.

1. A battery is either fully charged or depleted.

2. A battery sitting in inventory experiences no degradation.

3. Degradation occurs through charge/discharge cycles, and the battery degradation per cycle,

δC, is linear.

4. The swap station is not operational when the average capacity drops below the threshold.

5. Only depleted batteries can be replaced during epoch t and enter the system at t + 1 fully

charged.

6. During each epoch, simultaneous charging and discharging will not occur.

7. The average capacities of batteries internal and external to the swap station are similar.

8. The station can swap all remaining fully charged batteries at the end of the time horizon if

the average battery capacity is above the threshold.

2.4 Solution Methodology

In this section, we outline our solution methodology in regards to modeling assumptions and de-

termining optimal or near-optimal policies. We model the stochastic SAIRP as an MDP and ap-

ply three solution approaches. The first solution approach is backward induction (BI), a standard

solution method which is an exact algorithm guaranteeing that an optimal policy is found (Puter-

man, 2005). However, because the stochastic SAIRP is a large, complex problem, our model suf-

fers from the curses of dimensionality and thus, BI is not computationally capable of finding op-
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timal policies without running into memory errors. Thus, as is common with large problems, we

heuristically solve the problem using two different solution methods. First, we propose a heuristic

benchmark policy that quickly determines heuristic policies for the MDP. Next, we use a rein-

forcement learning approach to find near-optimal policies through an iterative process that learns

and updates the present value approximations through a double pass algorithm. In the forward

pass, the states are visited based on the present visited state, the realized uncertainty from sam-

ples of the stochastic demand distribution, and the taken action that maximizes the summation

of the immediate reward (present contribution) and the expected contribution of the visited state

in the future. The algorithm updates the visited states’ rewards using the present observed value

and previous approximation available for the visited states in the backward pass. All methods in-

corporate uncertainty and do not have perfect information. Our problem belongs to the class of

stochastic problems where exogenous information, (i.e., the amount of swap demand over time

for our problem) is unknown but follows a known probability distribution (Powell, 2011). First,

we validate our modeling assumption where we use the average capacity of all batteries in the

swap station as opposed to each individual battery capacity. Next, we describe the exact solution

method, benchmark solution method, and the reinforcement learning approach for determining

the expected total reward and policy.

2.4.1 Average Capacity Approximation

Due to the curses of dimensionality, we represent the capacity of batteries by using an approx-

imation of the average capacity. To verify that our progression of average capacity over time is

close to the true average capacity of batteries in the swap station, we use two validation methods.

First, we create a disaggregated MDP model with a (M +1)-sized state vector which captures the

capacity of each individual battery. Second, we perform a Monte Carlo simulation and track the

individual and average battery capacity values. For both methods, we compare the optimal ex-

pected total reward and sample paths of the optimal policy. From the results of the two methods,

we are able to validate our assumption of using the average capacity as opposed to each individ-
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ual battery capacity.

2.4.1.1 Disaggregated Markov Decision Process Model

In this section, we introduce a disaggregated-MDP model by capturing the capacity of each indi-

vidual battery. We compare the results of the disaggregated-MDP model to the two-dimensional

MDP model presented in Section 2.3. We denote the MDP model presented in Section 2.3, which

has a two-dimensional state vector, as the aggregated-MDP. We then developed an MDP with an

(M + 1)-sized state vector where the first element represents the number of full batteries and the

remaining M elements correspond to the individual battery capacity values. We denote this sec-

ond MDP model as the disaggregated-MDP. Specifically, the state vector of the disaggregated-

MDP is st = (s1
t ,~s

2
t ), where~s 2

t is a vector of size M corresponding to the capacity of each indi-

vidual battery.

The action spaces are identical for both the aggregated and disaggregated MDPs. Specifi-

cally, the action space is two-dimensional, where the first and second dimensions denote the num-

ber of batteries to charge/discharge and replace, respectively. Specifically, the action space A =

(A1×A2), where A1
t = {max (−s1

t ,−Φ), . . . ,0, . . . , min(M−s1
t −a2

t ,Φ)} and A2
t = {0, . . . ,M−s1

t }

for time t. The two dimensions of these action spaces depend on Φ,s1
t ,M, and a2

t . Φ and M repre-

sent the number of plug-ins and number of batteries at the swap station and thus, are the same for

both MDPs. The first dimension of the state space is the same for both models; thus, s1
t impacts

the action space identically for both models. The action a2
t represents how many batteries are re-

placed at time t, which is the same for both models. However, we acknowledge that it is possible

for the aggregated and disaggregated MDPs to have different optimal policies even with identical

action spaces because of the differences in the state space and probability transition.

For a given action, Equations (2.3) and (2.5) govern how, in the aggregated-MDP, the state

transitions for the first and second dimensions, respectively. However, for the disaggregated-

MDP, we must determine how a given action changes individual battery capacity values. There-

fore, we must set assumptions to equate a determined number of batteries that are charged (or
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discharged), replaced, and swapped to actions and changes to the capacity of individual batter-

ies. We reiterate that the action spaces for the disaggregated and aggregated MDPs are identical.

Thus, as a result, we must translate a given action indicating the total number of batteries that are

charged, discharged, and replaced at one time and translate this to individual batteries for the dis-

aggregated MDP. Such assumptions are not necessary for the aggregated MDP because we model

batteries as an aggregated average capacity. We emphasize that these assumptions do not fix the

policy, but provide instructions on how an action impacts the individual battery capacity values.

Even with these assumptions, we must still use optimization to determine which action should be

taken when in each state and time. We summarize these assumptions as follows.

1. We replace the a2
t batteries with lowest capacity. This rule corresponds with our intuition

that a swap station would want to keep batteries with higher capacity and replace those

with lowest capacity.

2. We charge/discharge the a1
t batteries with highest capacity. This rule also corresponds with

our intuition that the swap station wants to cycle through its inventory. If a battery has

not been used recently at the station (has higher capacity), it is next in line to be charged/

discharged. Further, this results in more battery use before any battery must be replaced.

3. After batteries are replaced, charged, and discharged, the remaining highest capacity batter-

ies are swapped to meet as much demand as possible. This rule results in higher immediate

revenue at the swap station from higher capacity swaps and hopefully higher customer sat-

isfaction.

To be transparent, these assumptions are necessary for the disaggregated-MDP with a

(M + 1)-sized state vector. In the (M + 1)-sized problem, we do not track the individual charge

status (full/depleted) of each battery and instead track the number of full batteries. If we did track

the charge and capacity of each battery, we would need to create a 2M-sized state vector. While

the MDP model with a 2M-sized state vector is more realistic, it severely runs into the curses of

dimensionality. Furthermore, a more realistic model would capture individual charge/discharge
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Table 2.1: Size of the state space for the aggregated and disaggregated-MDP models.

Model State Space Size

Aggregated-MDP (M+1)(1−θ

ε
+2)

Disaggregated-MDP (M+1)(1−θ

ε
+2)M

and replacement actions for each battery which would result in a 2M-sized action vector. As we

run into the curses of dimensionality for the disaggregated-MDP, we leave for future work the

investigation into a more realistic MDP with 2M-sized state and action vectors.

However, our key point is that aggregation does not dramatically change the optimal pol-

icy and optimal expected total reward. Furthermore, aggregation allows for the benefit of solv-

ing much larger instances as it reduces the curses of dimensionality. Thus, when considering the

trade-off between the difference in expected total reward vs. the ability to solve larger problems,

we believe the aggregated model is a promising approach.

We proceed by showing that there is no remarkable difference between the aggregated-

MDP and disaggregated-MDP models with respect to the optimal expected total rewards (objec-

tive function values) and sample paths of the optimal policies.

A policy is a set of decision rules indicating which action from the action space should

be selected when in each state and time. Thus, it is possible to derive an identical policy with

both models. However, it is more likely to derive different optimal policies for the two models

due to the difference in the rewards. Specifically, in the aggregated model reward calculation we

use the average capacity instead of individual batteries capacity. However, in the disaggregated

model, we calculate the reward based on individual battery capacity values. As a result, there

could be differences in the reward and resulting optimal policy. To illustrate this, consider that

we have six batteries (4 full and 2 empty) and the capacity of batteries equal 0.9, 0.92, 0.94, 0.96,

0.98, and 1, which results in an average battery capacity of 0.95. If we swap one battery in the

aggregated model, the revenue earned for this swap is calculated based on the average capacity,

0.95. Contrarily, in the disaggregated model, the revenue earned for this swap is calculated based

on the highest battery capacity, 1. Thus, this can introduce slight differences in the reward due to
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Table 2.2: Example showing the size of the state space for the aggregated and disaggregated
MDP models.

M = 2 M = 5
Model ε = 0.001,θ = 0.8 ε = 0.001,θ = 0.8

Aggregated-MDP 606 1212
Disaggregated-MDP 16766 1.008∗1012

the revenue earned per swap.

Because of the size of the problem, we are not computationally capable of solving the

disaggregated-MDP with M = 2 batteries and capacity increment ε = 0.001 on a high perfor-

mance computer, due to memory issues. In Table 2.1, we present the size of the state space for

the aggregated and disaggregated MDPs. For the disaggregated-MDP, the size of the state space

and transition probabilities is exponential in M (the number of batteries) which limits its appli-

cability. In Table 2.2, we show the size of the state space for the aggregated and disaggregated

MDP models when M = 2 and M = 5, to show the significance of the increase in the size of the

state space for a small increase in the number of batteries.

We now demonstrate that the performance of the two models is comparable and thus, vali-

dates our use of the aggregated-MDP. For our computational tests, we are able to solve the disag-

gregated MDP with M = 2 and ε = 0.01. It is worthwhile to mention that we utilized 417GB of

memory and 7 hours on three shared memory nodes each with quad Xeon octo-core 2.4 GHz E5-

4640 processors to solve cases with M = 2 and ε = 0.01. However, increasing M by one unit to

M = 3 requires at least 1.6TB of memory, which is beyond our available computational resources.

We proceed by presenting the results for M = 2 and ε = 0.01 which show promise, but are limited

due to the computational demands of the disaggregated-MDP.

Using the 40 scenarios of the Latin hypercube designed experiment described in Section

2.5.2, we computationally compare the results of the aggregated vs. disaggregated MDP models.

As the capacity precision of the disaggregated MDP is ε = 0.01, we round all δC values for all 40

scenarios to the nearest multiple of ε = 0.01. We let the expected total reward of the aggregated
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and disaggregated MDPs equal υ
π1
N (s1) and υ

π2
N (s1), respectively. We calculate the percentage

difference in the expected total reward of each scenario using Equation (2.15). The percentage

difference informs the relative change between the objective function values (expected total re-

wards) of the two MDPs models.

% change in the expected total reward =
υ

π2
N (s1)−υ

π1
N (s1)

υ
π1
N (s1)

∗100%. (2.15)

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40
Scenario Number

 %
 C

ha
ng

e 
in

 O
pt

im
al

 E
xp

ec
te

d 
R

ew
ar

d

Figure 2.2: Percentage change in the optimal expected total reward of the aggregated vs. disag-
gregated MDP models.

In Figure 2.2, we present the percentage change in the expected total reward of each sce-

nario. This figure demonstrates that 60% of the scenarios have lower than 5% deviation in the

optimal expected total reward. The average change is 11.93%, which is consistent with generally

accepted optimality gaps for approximate methods (e.g., (Zhou et al., 2020a; Novas et al., 2020;

Cook and Lodree, 2017; Zhou et al., 2020b; Pérez Rivera and Mes, 2017; Luo et al., 2016)), and

the maximum change is 31.8%.

Taking this one step further, we do not solely rely on the expected total reward (equivalent

to objective function value) to compare the two models. As the actions of the model equate to the

operations the swap station will take on a day-to-day, hour-by-hour basis, we believe comparing

these actions between the disaggregated and aggregated model is necessary. Hence, we also ex-

amine the optimal policy (equivalent to solution) and illustrate how the optimal policies of the
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two models have small differences.

In Figures 2.3 and 2.4, we depict the sample path of the optimal policy for two scenar-

ios when the realized demand equals the mean demand. Figure 2.3 corresponds to Scenario 5,

which resulted in 1.7% change in expected total reward, and Figure 2.4 corresponds to Scenario

35, which resulted in the largest change in expected total reward, 31.8%.
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Figure 2.3: Optimal policies of the aggregated versus disaggregated MDPs for Scenario 5 when
realized demand equals the mean demand.

In Figure 2.3, we observe that no replacement occurs for either MDP model. Further, both

models do not indicate to discharge any batteries. We do observe that when batteries are charged

does change slightly between the two policies. Not obvious from the figure is the total number

of batteries charged over the entire time horizon for the aggregated and disaggregated models

are 41 and 40, respectively. Not only are the total number of batteries charged very close, but the

timing is consistent. In 124 out of 167 decision epochs, the charging actions are the same for both
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models.
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Figure 2.4: Optimal policies of the aggregated versus disaggregated MDPs for Scenario 35 when
realized demand equals the mean demand.

In Figure 2.4, we depict a sample path of the optimal policy for Scenario 35. This scenario

resulted in the largest change in the optimal expected total reward which could indicate that the

optimal policies are different. However, when we dig into the optimal policy, we find that the op-

timal charging and replacement actions are similar in amount and timing. When comparing the

two models, the number of decision epochs in which the optimal actions are the same are 141

charging/discharging actions and 150 replacement actions over the 167 decision epochs. Addi-

tionally, the number and timing for battery replacement is very similar between the two MDP

models. In total over the entire time horizon, the policy indicates to replace 12 batteries for both

the disaggregated-MDP and the aggregated-MDP model. In total, the disaggregated and aggre-

gated MDP models charged 106 and 96 batteries, respectively. The only notable difference is that
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the optimal policy for the disaggregated-MDP indicates to discharge 1 battery near midnight for 5

days over the one-week time horizon, but the aggregated MDP never discharges any batteries. We

emphasize that our point is not to verify that the aggregated and disaggregated models generate

the same reward and policy for all cases. Instead, we seek to show that the optimal expected total

reward and optimal policies under aggregation and disaggregation are close enough to justify the

benefits, in reducing the curses of dimensionality, of the aggregated MDP for SAIRPs.

Hence, when we consider the trade-offs between accuracy and size of problem that we

can computationally solve, we believe aggregation is a valid approach for modeling SAIRPs.

We acknowledge that we cannot provide any guarantee on the percentage difference between

the aggregated and disaggregated model for practical size problems because there is no compu-

tational way to optimally solve the disaggregated model. Without an optimal value for the dis-

aggregated model, such a guarantee is not possible. We used sophisticated, high-performance

computers with three shared memory nodes, quad Xeon octo-core 2.4 GHz E5-4640 processors,

and 768GB of memory and yet we are only able to optimally solve the disaggregated model for

two batteries. Such complexity is common among stochastic optimization problems. It is com-

mon practice when encountering such complex problems, to either make assumptions and/or use

heuristic methods. We selected to make the assumption that we are not representing each battery

capacity individually, and instead, we use the average battery capacity in the system. We denote

this model as the aggregated model. Even with this assumption, the aggregated model is large

and hard to solve and thus, we use both an exact solution method (backward induction) and two

approximate solution methods (the heuristic benchmark policy and reinforcement learning ap-

proach). We could have instead just used a heuristic method for the disaggregated model. How-

ever, we reiterate that even with this approach, we would not be able to provide a guarantee on

the quality of a heuristic method because there is no computational way to optimally solve the

disaggregated model for practical or even small size problems.

In our analysis, we seek to show that even when faced with these computational challenges,

we believe that using the aggregated model, which we can optimally solve for a larger number
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of batteries, is reasonable. We are not attempting to say that the disaggregated model is exactly

equivalent to the aggregated model. However, instead, we seek to show that for problem sizes

that we can optimally solve, the percentage difference is reasonable. To support this conclusion,

we examine both the value and solutions returned. For the majority of scenarios, the percentage

difference in the expected total reward (objective value) is less than 5%. Furthermore, the so-

lution/policy is what is actually implemented by the swap station, thus, we quantify how these

operations differ between the two models. The average absolute difference between the actions

indicating the total number of batteries to charge, discharge, and replace over all scenarios are

tiny and equal 6.4, 0.5, and 0.4, respectively. This implies that the optimal policies do not shift

under the aggregation assumption.

In conclusion, we believe that the results from the disaggregated-MDP with a (M + 1)-

sized state vector show promise to indicate that aggregation of battery capacity is valid. We only

see slight changes in the expected total reward and optimal policy. We believe such small changes

are worth the ability to solve larger problem instances with the aggregated-MDP. However, we

are transparent that these results are limited due to the computational resources necessary (mem-

ory). Thus, we next describe how we validated the aggregation of capacity for larger problem

instances using a Monte Carlo simulation.

2.4.1.2 Monte Carlo Simulation

In our Monte Carlo simulation, we track both the individual status of each battery and the average

capacity progression used in the presented SAIRP model. For each individual battery, we record

the charge status (1 or 0) and the capacity (in [0,1]). We consider M individual batteries in the

swap station that all start with full capacity and full charge. Then during each time period t, we

uniformly at random generate the number of batteries to charge and swap demand, denote these

αt and γt , respectively. The αt batteries with the highest capacity that are not full are selected

for charging. The γt batteries with the highest capacity that are full are selected for swapping.

Batteries whose capacity drops below the replacement threshold θ are selected for replacement.
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Table 2.3: Differences in the simulation tracking each individual battery capacity as compared to
the average capacity progression calculated in the SAIRP model.

Absolute Error Percentage Error
Time Horizon Average Max Min Average Max Min

1 week 4.53% 15.42% 0.00% -1.51% 8.16% -13.09%
1 month 5.46% 15.73% 0.00% 3.43% 10.93% -13.25%

We record the action for each individual battery and update the charge status for the start

of the next time period by recording that charging batteries become full, swapped batteries be-

come not full, replaced batteries become full, and batteries with no action stay the same. We do

not consider discharging batteries as our computational results infrequently showed this action.

We also update the capacity status for each individual battery using the following. Batteries se-

lected for charging, start the next time period with δC less capacity. Batteries selected for replace-

ment, start the next time period with full capacity. When batteries are swapped, the capacity of

the swapped battery is unknown. Thus, batteries selected for swapping start the next time period

with a capacity value selected uniformly at random from [θ,1]. Using the number of batteries that

are charged, swapped, and replaced, we concurrently update the approximate average capacity

that our model will use, s2
t , in accordance with Equation (2.4).

We performed this simulation for M = 100, δC = 0.01 and θ = 0.8 for a time horizon of 1

week (168 hours) and 1 month (720 hours). Due to the randomly generated number of batteries

charged, number of batteries swapped, and swapped capacity, we repeated the simulation 5 times

for both time horizons. Upon completion of the simulation, we use the individual capacity of

each battery to calculate the true average battery capacity for each time period, denote this ηt .

We compare ηt to s2
t using an absolute difference (ηt − s2

t ) and percentage difference |ηt − s2
t |/ηt

for each time period. We present the average, minimum, and maximum absolute and percentage

difference values over all simulations and time periods in Table 2.3. As is evident by the results

in Table 2.3, we believe tracking the average capacity of batteries in the swap station is a good

approximation in face of the computational challenges of tracking individual battery capacity.

36



2.4.2 Exact Solution Method: Backward Induction

We seek to solve our finite horizon Markov Decision Process (MDP) model to maximize the ex-

pected total reward given in Equation (2.11). As explained in Section 2.3, the state and action

spaces of our MDP are finite, hence there exists at least one deterministic policy that is optimal

(Puterman, 2005). Thus, we use backward induction to find an optimal deterministic policy for

the number of batteries to charge, discharge, and replace when in each state and time. Back-

ward induction (Puterman, 2005) is a dynamic programming algorithm that starts from the last

decision epoch and steps backward in time to determine the set of best actions for the optimal-

ity Equations (2.12). The optimal policy is comprised of the set of best actions for all states and

times. We note that backward induction returns the optimal policy regardless of which distribu-

tion function is used to model the uncertainty of the random variables (Puterman, 2005).

2.4.2.1 Effect of the Problem Size

The size of the stochastic SAIRP impacts the required computational time and memory for de-

termining an optimal policy. We measure the size in terms of the number of batteries, M, the

time horizon, N, the capacity increment, ε, and the replacement threshold, θ. The size of the

state space is O(M(1−θ)
ε

) and the size of the action space is O(M2). This results in the size of the

probability transitions to be O(M4N(1−θ

ε
)2) and the size of the optimal policy to be O(MN 1−θ

ε
).

Thus, as we consider a realistic number of batteries, a precise capacity increment, and a realistic

time horizon, we run into the curses of dimensionality. The curses of dimensionality limits the

problem size we can consider for computational experiments.

2.4.3 Approximate Solution Methods

In this section, we propose two approximate solution methods to address the limitations of dy-

namic programming and overcome the curses of dimensionality. First, in Section 2.4.3.1, we dis-

cuss our heuristic benchmark policy. Next, we present a reinforcement learning (RL) method in

Section 2.4.3.2 where we use an iterative process for approximating the value function. We note,
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RL also goes by the term approximate dynamic programming (ADP) in the operations research

community (Powell, 2011).

2.4.3.1 Heuristic Benchmark Policy

Although we implemented techniques to reduce the size of the MDP developed, we still run into

the curses of dimensionality due to the size of the problem. Different types of policies, includ-

ing myopic policies, look-ahead policies, policy function approximations, and value function

approximations can be used as an approximation of the optimal policies (Powell, 2011). A my-

opic benchmark policy is comprised of a set of rules that dictate the action to be taken when in

each state and decision epoch. Myopic policies are easy to implement and they do not rely on the

forecasts based on decisions made in the future (Powell, 2011). Further, due to their simplicity,

these policies are scalable for solving large problem instances. Hence, as an approximate solu-

tion method, we propose a heuristic benchmark policy, similar to a myopic policy, which is easy-

to-implement, fast, and does not explicitly use forecasted information or make decisions for the

future in the present.

We note that our heuristic benchmark policy is not myopic in the sense that it does not my-

opically optimize the problem for the present time. Specifically, the actions determined for each

state and time from the heuristic benchmark policy are not necessarily the best actions from a

myopic perspective, but they dynamically select actions according to the values for input param-

eters and the present decision epoch. Our benchmark policy constructs a solution dictating the

action to take when in each state and time, in line with a constructive heuristic algorithm; this

approach is consistent with other researchers (Huang and Liang, 2011; Wang and Meng, 2008;

Yoon and Albert, 2020; Van der Heide et al., 2018; Yu et al., 2019; Lee et al., 2015) proposing a

rule, strategy, or algorithm as their benchmark policies to solve complex optimization problems.

A true myopic approach is not appropriate for our problem because short-term and long-term ac-

tions are in conflict. The actions needed to operate batteries in the short-term are exactly what is

detrimental for long-term operation. Furthermore, short-term optimization might overlook the
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system’s variability thereby having the potential to yield low-performance solutions in the long-

term.

Initially, we created many different heuristic benchmark policies based on observations

in the preliminary results. From these observations, we created a policy where the actions taken

(i.e., the number of batteries that are charged and replaced) depend most on the replacement cost,

degradation rate, and time-of-day. Our act of refining the benchmark policy is analogous to refin-

ing routines and subroutines within different heuristics (Schneider and Kirkpatrick, 2006; Zhou

et al., 2020a; Wu et al., 2020; Li et al., 2020; Asghari and Al-e-hashem, 2020; Yao et al., 2020;

Zhen et al., 2020; Zhong et al., 2020; Lee et al., 2015). We present the full details of this policy

in Algorithm 1. To aid the communication of the policy, we also visually depict the rules in Fig-

ure 2.5. We note, although we refined this heuristic benchmark policy based on preliminary ex-

periments, we demonstrate in Section 2.5.3 that this policy is robust and performs well for many

different SAIRP instances under different conditions. Overall, in this policy, we prescribe the

number of batteries that are charged and replaced based on the input state and model parameters.

We proceed by explaining the logic behind the heuristic benchmark policy using replacement

cost, degradation rate, and time-of-day.

First, we discuss when and under what conditions we replace batteries. Informally, we re-

place all depleted batteries when the average capacity is just above the replacement threshold. We

disallow replacement, based on replacement cost and degradation rate, early or late in the time

horizon. We define early and late in the horizon differently based on the degradation rate. As

the degradation rate increases, batteries lose capacity more quickly, and more frequent large re-

placement costs occur. Thus, when degradation rate and replacement costs are higher, we strictly

constrain the times when replacement can occur. We note that the optimal policies are computa-

tionally demanding to calculate and rely on the complex relationships between the input factors

and system dynamics. Our purpose in developing the heuristic benchmark policies is to provide

an easy-to-implement, well-designed, and practical approach for swap station managers. The

benchmark policies do not require sophisticated optimization and instead provide a set of rules
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Figure 2.5: Graphical representation of heuristic benchmark policy actions.

that results in an implementable policy. Furthermore, for practical, large-scale problems when

other approximate methods take significant computational time, the heuristic policy provides ap-

plicable policies in seconds. Moreover, as we show in Section 2.4.3.2, the heuristic policy can be

coupled with reinforcement learning methods to provide near-optimal solutions.

Formally, the replacement action depends on whether the replacement cost is high, low,

or in the middle. Thus, we define κ1 and κ2 and construct ranges (0,κ1], (κ1,κ2), [κ2,∞) for the

low, medium, and high buckets of replacement cost, respectively. If the input replacement cost Lt

is in the high bucket, no batteries are ever replaced. Further, if the input decision epoch is very

early or very late in the time horizon, we do not allow batteries to be replaced (see red areas in

Figure 2.5). If the replacement cost is in the medium or low buckets, we dictate a policy to re-

place all batteries during certain time periods if the average capacity (s2
t ) drops below ζ. We set
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Algorithm 1 Heuristic Benchmark Policy
1: Input Time and State: decision epoch t, s1

t full batteries, s2
t average capacity

2: Input Model Parameters: degradation rate δC, replacement cost Lt , and number of batteries M
3: Initialize: a1

t ← 0 and a2
t ← 0

4: if s2
t ≥ ζ then . Examine higher average capacities.

5: if t % 24 = 0 then . Midnight?

6: a1
t ←M− s1

t
7: else if δC ≤ ∆1 then . Low degradation?

8: a1
t ← min(M− s1

t −a2
t , I2)

9: else if δC > ∆1 and Lt ≤ κ2 then . Degradation not low and replacement cost not high?

10: a1
t ← min(M− s1

t −a2
t , I2)

11: else if δC > ∆1 and Lt > κ2 then . Degradation not low and replacement cost high?

12: a1
t ← min(M− s1

t −a2
t , I3)

13: end if
14: else if θ≤ s2

t < ζ and t % 24 6= 0 then . Examine lower average capacities at non midnight times.

15: if s1
t < I4 and t ≥Ub1 then . Less than I4 full batteries close to the end of time horizon?

16: if δC ≤ ∆1 or (δC > ∆1 and Lt ≤ κ2) then . Degradation low? Or degradation not low and

replacement cost not high?

17: a1
t ← I2

18: else if δC > ∆1 and Lt > κ2 then . Degradation not low and replacement cost high?

19: a1
t ← I3

20: end if
21: else if s1

t < II and Lb1 < t <Ub1 then . Less than II full batteries and not too early and late?

22: if δC ≤ ∆1 then . Low degradation?

23: a2
t ←M− s1

t
24: else if ∆1 < δC ≤ ∆2 then . Medium degradation?
25: if Lt ≤ κ1 or (Lt > κ1 and Lb2 < t <Ub2) then . Replacement cost low? Or replacement

cost not low and not early and late?

26: a2
t ←M− s1

t
27: end if
28: else if δC > ∆2 then . High degradation?
29: if Lt ≤ κ1 or (Lt > κ1 and Lb3 < t <Ub3) then . Replacement cost low? Or replacement

cost not low and middle of the horizon?

30: a2
t ←M− s1

t
31: end if
32: end if
33: end if
34: end if
35: return Optimal decisions a1

t , a2
t at time t with current state (s1

t ,s
2
t ).

ζ greater than the replacement threshold θ to ensure that we never enter the absorbing state. The

time periods we allow batteries to be replaced depends on the battery degradation rate. Similar

to replacement cost, we define ∆1 and ∆2 and construct buckets (0,∆1], (∆1,∆2), [∆2,∞) for the

low, medium, and high degradation rate buckets, respectively. If the degradation rate is low and

the replacement cost is in the low or medium buckets, we replace all batteries once the average

capacity drops below ζ (see low degradation in the left portion of Figure 2.5). If the degradation
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rate is in the medium bucket and the replacement cost is low, we replace all batteries once the

average capacity drops below ζ. Instead, if the degradation rate is in the medium bucket and the

replacement cost is in the medium bucket, we replace all batteries if the average capacity drops

below ζ and the time is not early or late in the time horizon (i.e., t 6≤ Lb2 and t 6≥ Ub2). Lastly,

if the degradation rate is high and the replacement cost is in the low bucket, we replace all bat-

teries once the average capacity drops below ζ (see high degradation in the left portion of Figure

2.5). Instead, if the degradation rate is high and the replacement cost is in the medium bucket, we

replace all batteries if the average capacity drops below ζ and the decision epoch is in the very

middle of the time horizon (i.e., Lb3 < t <Ub3).

Next, we discuss when and under what conditions we charge batteries. There is a cyclic na-

ture in operating the swap station due to demand patterns. Demand is lower during the night and

higher during the day. Thus, we charge all empty batteries during the midnight decision epoch.

Outside of midnight, we set a reorder quantity (either I2 or I3) and reorder this amount when the

number of charged batteries drops below a set threshold. The reorder quantity and threshold de-

pend on the current average capacity and the replacement cost. When the average battery capac-

ity is not near the replacement threshold (s2
t ≥ ζ), we prescribe the following charging actions. If

the degradation rate is low, we charge I2 batteries or all not full batteries if the number of not full

batteries is less than I2, equivalently min(I2,M− s1
t − a2

t ). We also charge min(I2,M− s1
t − a2

t )

batteries when the degradation rate is in the medium or high buckets and the replacement cost is

in the low or medium buckets. Instead, if the degradation rate is in the medium or high buckets

and the replacement cost is in the high bucket, we charge min(I3,M− s1
t − a2

t ) batteries where

I3 < I2. Thus, when the degradation rate is medium or high and the replacement cost is high, we

charge less batteries.

If the average capacity is near the replacement threshold (θ ≤ s2
t < ζ), the decision epoch

is at the very end of the time horizon (t ≥Ub1), and less than I4 of the batteries are full, then we

charge either I2 or I3 batteries, where I4 is an inventory level and I2 and I3 are reorder amounts.

In general, I3 < I2 ≤M− I4. We charge I2 batteries if the degradation rate is in the low bucket or
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if the degradation rate is in the medium or high bucket and the replacement cost is in the low or

medium bucket. When the degradation rate is medium or high and the replacement cost is high,

we charge I3 batteries. Note, our reason for charging batteries near the end of the time horizon is

twofold. First, we charge batteries to meet demand and reaching the absorbing state this late in

the time horizon does not decrease the expected total reward. Second, the terminal reward (see

Equation (2.9)) assumes the station can swap all remaining fully charged batteries if the absorb-

ing state is not reached. For specific details, the rules of the heuristic benchmark policy are for-

mally described in Algorithm 1.

All of the parameter values for this benchmark policy can be set based on the input pa-

rameters of the SAIRP MDP model. For example, I1, I2, I3, I4 can be calculated as percentages

of the number of batteries, M; Lb1,Lb2,Lb3,Ub1,Ub2,Ub3 can be calculated as percentages of

the time horizon N; κ1,κ2 can be calculated as percentages of the replacement cost; ∆1,∆2,ζ can

be calculated as percentages of the ranges on δC; and ζ can be calculated based on θ. As we will

demonstrate in our computational results, this heuristic benchmark policy can be applied to many

SAIRPs with different input parameters.

2.4.3.2 Reinforcement Learning Approach

In this section, we introduce a reinforcement learning (RL) method to solve stochastic SAIRPs

of different sizes. The novel feature of our RL method is that we leverage the high-performance

of our heuristic policy to initialize the value function approximation. As we will demonstrate in

Section 2.5.3, our RL method with heuristic policy initialization provides near-optimal solutions

for modest sized problems (M ≤ 7, N ≤ 168) and can solve large-scale SAIRPs (i.e., M = 100,

N = 744).

Two main approaches for solving problems suffering from the curses of dimensionality can

be classified as value iteration (VI) and policy iteration (PI). The choice of an appropriate method

highly depends on the problem characteristics (Powell, 2011). PI methods that require generat-

ing feasible policies are not appropriate for our problem as the possible combination of actions
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over the time horizon is large and it is non trivial to iteratively find a feasible policy in an improv-

ing direction. Hence, we adopt an approximate VI approach. In the proposed approximate VI

method, we ensure that the returned policies are feasible during the iterative process. In addition

to using the benchmark policy to intelligently initialize the value function approximation, we also

use a double pass procedure. We denote this RL approach the double pass with heuristic policy

initialization (DHPI) RL method. We will demonstrate in Section 2.5.3 that our DPHI RL method

outperforms both a standard approximate VI approach and our heuristic benchmark policy alone.

Table 2.4: Notation used in the reinforcement learning algorithm.

Notation Description

τ1 The number of iterations in the heuristic policy initialization

τ2 The number of core RL iterations

Ṽ n
t (st) The heuristic value of being in state st at time t for iteration n using the heuristic policy

V n
t (st) The optimal value of being in state st at time t for iteration n

V n
t (st) The approximate value of being in state st at time t for iteration n

υ̂n
t (st) The observed value of state st at time t for iteration n

αn
t The step-size value at iteration n at time t

We outline the steps of our DPHI RL method in Algorithm 2 which uses the notation de-

scribed in Table 2.4. The proposed algorithm has two main stages. In the first stage, we evaluate

the heuristic benchmark method for τ1 simulated sample paths, as shown in lines 1-10 of Algo-

rithm 2. The details of this are in lines 2-8 where for every iteration, given the initial state of the

system, we move forward in time using the information from the present state, a sample obser-

vation of demand, and the action taken as calculated by the heuristic benchmark policy. Then in

lines 8-10, moving backward in time, we accumulate the immediate rewards to find the heuristic

value of being in state st at time t for iteration n, Ṽ n
t (st). If a state st is visited over several sample

paths, we use the average to calculate Ṽ n
t (st). In Equation (2.16), we calculate the heuristic value

of being in the visited state st ′ at time t ′. We store the heuristic values and policies associated

with all the visited states over time for all iterations and use these to initialize the second stage of

Algorithm 2.
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Ṽ n
t ′ (st ′) =

[
N−1

∑
t=t ′

rt(st ,at)+ rN(sN)

]
. (2.16)

In stage 2 of Algorithm 2, we perform the core value iteration method with double pass

procedure for τ2 iterations. First, we initialize the value function approximation using the heuris-

tic values for all visited states, as given in line 11. In line 12, we calculate the approximate value

of being in the terminal states using the terminal reward for all iterations. Next, in lines 13-23, we

perform the double pass procedure. In the forward pass, shown in lines 13-18, for each iteration,

given the present state, we sample an observation of the demand and take the action that maxi-

mizes the present contribution (immediate reward) plus the last approximation of the transitioned

state’s value as given by Equation (2.17). When the best action is selected, the system transitions

to the future state using Equations (2.3) and (2.4). Hence, in the forward pass, we update the state

and decision rules in the system moving forward in time. When the algorithm selects the action

for the last decision epoch, we move backward in time over the sample path created by the vis-

ited states, realized uncertainty, and taken action to update the value approximation as shown in

lines 19-22. In the backward pass, the observed value is calculated using Equation (2.18) wherein

V n−1
t+1 (st+1) is used as the approximation of E(Vt+1 | st ,at). Given that the optimal observed value

can not be lower than the heuristic value Ṽ n
t (st), we update the observed value in line 20. Ulti-

mately, we update the present approximation using the observed value in the current iteration and

previous approximation. In Equation (2.19), the step-size function αn
t and (1−αn

t ) determine the

weights on the current observation and previous approximations, respectively.

an
st ,t = argmax

at∈Ast

{
rt(st ,at)+V n−1

t+1 (st+1)
}
. (2.17)

υ̂
n
t (st) = max

at∈Ast

{rt(st ,at)+E(Vt+1 | st ,at)} . (2.18)

V n
t (st) = (1−α

n
t )V

n−1
t (st)+α

n
t υ̂

n
t (st). (2.19)
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Algorithm 2 Double Pass with Heuristic Policy Initialization RL Method
1: for n = 1, . . . ,τ1 do . Start generating heuristic policy.

2: Select the initial state sn
1.

3: for t = 1, . . . ,N−1 do
4: Sample an observation of the uncertainty, Dt .
5: Determine the action an

t using heuristic policy and move to next state, sn
t+1.

6: end for
7: end for . End generating heuristic policy.

8: for t = N, . . . ,1 do
9: Find Ṽ n

t (st) . Use Equation (2.16) to find the values of visited states in the heuristic policy method.

10: end for
11: Initialize V 0

t (st) for t = 1, . . . ,N−1. . Start double pass by inputting Ṽ n
t (st) for visited states.

12: Set V n
N(s) = rN(s) for s ∈ S and n = 1, . . . ,τ2.

13: for n = 1, . . . ,τ2 do . Start the forward pass.

14: Select initial state sn
1.

15: for t = 1, . . . ,N−1 do
16: Sample an observation of the uncertainty, Dt .
17: Determine the action an

t and move to next state, sn
t+1.

18: end for . End the forward pass.

19: for t = N, . . . ,1 do . Start the backward pass.

20:
υ̂

n
t (st) = max(υ̂n

t (st),Ṽ n
t (st)). (2.20)

. Update the observed value.

21: Smooth the new observation with the previous value using Equation (2.19).
22: end for . End the backward pass.

23: end for . End double pass.

2.5 Computational Results

In this section, we outline the computational tests performed which were used to validate the pro-

posed model and deduce insights about operating a battery swap station. We solved all test in-

stances of the stochastic SAIRP MDP on a High Performance Computer (HPC) that has three

shared memory nodes, quad Xeon octo-core 2.4 GHz E5-4640 processors, and 768GB of mem-

ory. We note that backward induction generates optimal policies while the heuristic benchmark

policy and the RL method provide near-optimal solution for SAIRPs. We proceed by summariz-

ing the data used, the Latin hypercube designed experiment performed, and the results.
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2.5.1 Data

We examined operating a drone swap station for one week where each decision epoch corre-

sponds to one hour, thus N = 168. A similar set of experiments could be conducted for EVs,

but due to space, we focus on drone swap stations. The first decision epoch is 0:00 on Monday

and the last one is 23:00 on Sunday. The one hour increment is consistent with the time needed

to recharge batteries using a level 2 or 3 charger (Morrow et al., 2008; Ribbernick et al., 2015;

Tesla, 2017). To calculate the time-dependent charge cost and discharge revenue, we use the 2016

historical power prices from the Capital Region, New York (National Grid, 2016). Power prices

vary by time-of-year; thus, to capture a worst-case scenario when power prices are high, we

use the historical prices from December 12-18 as shown in Figure 2.6. By combining the time-

varying power prices with the assumption that a drone battery has 400 Wh capacity, we derive

the time-varying battery charge cost and discharge revenue. These battery capacities are consis-

tent with the DJI Spreading Wing S1000 battery (DJI, 2019). We assume the discharging revenue

equals the charging costs.

Figure 2.6: Power price fluctuation over one
week.

Figure 2.7: Mean demand over time.

We model the arrival of customers to a swap station using a non-homogenous (i.e., dy-

namically changing, with peaks and off-peaks) Poisson process. This modeling decision is con-

sistent with many other papers modeling the arrival of customers (Widrick et al., 2018; Nurre

et al., 2014; Tan et al., 2014; Sun et al., 2019; Swartzman, 1970; Green et al., 2007; Harris et al.,

1987). In absence of real data representing the arrival of customers to a swap station, we assume

the mean arrival of customers mimics historical observations at a gas station. This assumption is

consistent with other research examining swap station arrivals (see, (Widrick et al., 2018; Nurre
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et al., 2014; Sun et al., 2019)). Assuming swap demand follows a Poisson distribution, we set the

time-varying mean swap demand, λt , equal to the historical time-varying demand for Chevron

gas stations Nexant, Inc. et al. (2008). In Figure 2.7, we display the mean swap demand for each

decision epoch (hour) of the one-week time horizon, which has peaks and off-peaks over time.

Note, the demand values can be scaled up or down based on different assumed number of cus-

tomers visiting the swap station in a one week time period. To ensure that swap stations adhere

to a minimum service level, we set the battery replacement threshold to θ = 80% thereby forc-

ing batteries to be replaced before the average capacity drops below 80%. This 80% threshold is

consistent with battery end-of-life (Wood et al., 2011; Debnath et al., 2014).

We proceed by performing a Latin hypercube designed experiment and analyze how changes

in input parameters impact the expected total reward, met demand, and optimal policies.

2.5.2 Latin Hypercube Designed Experiment

In this section, we summarize the design and results from performing a 40-scenario Latin hy-

percube designed experiment. A Latin hypercube designed experiment is a space-filling design

commonly used for computer simulations (Montgomery, 2008). For each scenario of our de-

signed experiment, we use backward induction to find the optimal policy when maximizing the

expected total reward. In addition to capturing the expected total reward, we examine the charg-

ing/discharging and replacement actions in the optimal policies and calculate the amount and

expected percentage of met demand. For all scenarios, we consider a drone battery swap station

with M = 7 full-capacity batteries and discretize the average capacity in increments of ε = 0.001.

Note, these are the largest and smallest values for M and ε, respectively, which are solvable on

the high performance computer due to the curses of dimensionality. On average, the scenarios

require 830GB of memory and take 3.8 hours to solve.

In the designed experiment, we change 3 factors corresponding to the revenue per swap,

β, the replacement cost, Lt , and the battery degradation factor, δC. We select these factors as they

influence how frequently batteries are replaced and the amount of demand the swap station can
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meet. Further, as battery technology advances, these factors will change and thus, our intent in

the designed experiment is to analyze the swap station operations under different (and possibly

future) conditions. For each factor, we define low and high values as outlined in Table 2.5. We set

the low and high values per battery swap to $1 and $3, respectively. Based on current data for the

price per kWh, we set the cost to replace a drone battery equal to $2 to $100, which represents

an optimistic future forecast and todays cost (Romm, 2017). We assume the battery degradation

per cycle, δC, is linear, which is consistent with research on the degradation for the first 500 cy-

cles (Lacey et al., 2013; Ribbernick et al., 2015; Xu et al., 2018). We acknowledge that there are

many factors which influence battery degradation and many studies that observe different degra-

dation rates (Plett, 2011; Abe et al., 2012; Dubarry et al., 2011; Ribbernick et al., 2015). Synthe-

sizing these studies, we use optimistic and pessimistic degradation rates by setting the low and

high values of δC to 0.5% and 2% per cycle, respectively.

From these low and high values, we use the LHS DOE generator version 1.0.0.0 in MAT-

LAB (Frederic, 2016) to generate 40 scenarios which cover the experiment space. We present

the factors for all 40 scenarios and the results representing the expected total reward, expected

met demand percentage, expected number of batteries replaced, expected number of batteries

charged, and expected number of batteries discharged in Table 2.6.

Using backward induction, we derive the optimal action for every state over time. With the

optimal action, we can generate sample paths of actions, states, and demand over time by assum-

ing an initial starting state, generating a realized demand, and implementing the optimal action.

The future states of the sample path are then generated using Equations (2.3) and (2.5). As there

are many sequences of realized demand and corresponding sample paths, we select to display

the sample path when the initial state has all batteries with full capacity and full charge and the

realized demand equals the mean demand.

Using the results in Table 2.6 and the generated sample paths, we deduce insights about the

operation of a drone battery swap station. First, focusing on the expected met demand, scenarios

10, 22, 24, 26, 29, 31, 35, 36, 37, and 40 all satisfy more than 80% of the demand. These scenar-
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Table 2.5: Factors with associated low and high values for use in the Latin hypercube designed
experiment.

Factor Low High

Basic revenue per swap (β) 1 3
Replacement cost Lt 2 100

Battery degradation factor (δC) 0.005 0.02

ios all have a higher revenue per battery swap. We reiterate that we set all swap revenue values

such that they exceed the maximum charging cost. However, the results indicate that solely set-

ting the swap revenue higher than the charging cost is not sufficient to meet all demand. Instead,

the swap revenue needs to be higher to account for the future replacement costs due to battery

degradation. Thus, if the replacement cost is too high in comparison to the swap revenue, the

swap station is not motivated to meet demand as meeting demand causes more frequent battery

replacement. However, when the prices are in line, the swap station will replace batteries and sat-

isfy demand with batteries that have a higher average capacity.

Next, we seek to deduce insights about characteristics of the optimal policy. First, we dis-

play the results from scenario 31 where 80% of demand is met and comment on how the opti-

mal policies for other scenarios differ. Assuming the realized demand equals the mean demand,

we display sample paths of the optimal action over time (Figure 2.8), the state over time (Figure

2.9), and the met demand over time (Figure 2.10). We note, this is one of many different sample

paths and scenarios examined. In both the optimal state and optimal action sample paths, we see

a relatively consistent structure in terms of the number of full batteries, average battery capacity,

number of batteries charging, and number of batteries replaced. Over the 7 days, approximately

1/2 of the batteries are kept full. To keep the batteries full, we see a consistent charging pattern

by day of the week. Due to the charging, we see a steady decline in the average battery capac-

ity (see Figure 2.9). Once the battery capacity drops to 80%, the optimal replacement action for

this scenario is to replace all 7 batteries, which occurs approximately every 1.5 to 2 days. This

restores all batteries to full and 100% capacity. The replacement is necessary to continue to meet
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Table 2.6: Scenarios and results of the backward induction algorithm for the Latin hypercube
designed experiment.

Opt. Exp. Exp. Met Num. Num. Num. Num.
Scenario β Lt δC Tot. Rew. ($) Dem. (%) Replaced Charged Disch. Met Dem.

1 1.03 45 0.009 306.27 39.2 0 192 0 196
2 1.08 82 0.011 226.44 27.4 0 133 0 137
3 1.13 61 0.005 610.78 66.6 0 332 0 333
4 1.20 69 0.009 357.77 39.2 0 192 0 196
5 1.23 89 0.008 379.30 41.0 0 200 0 205
6 1.26 47 0.010 369.39 38.2 0 187 0 191
7 1.32 98 0.019 173.69 17.0 0 80 0 85
8 1.39 94 0.011 292.13 27.8 0 133 0 139
9 1.41 87 0.014 227.79 21.2 0 100 0 106

10 1.48 36 0.006 643.87 81.8 6 402 0 409
11 1.53 68 0.016 247.36 21.2 0 100 0 106
12 1.56 28 0.018 218.60 51.4 14 238 0 257
13 1.6 57 0.010 470.59 38.2 0 187 0 191
14 1.68 31 0.017 305.66 40.4 7 191 0 202
15 1.71 62 0.006 691.36 54.2 0 266 0 271
16 1.76 44 0.017 284.95 21.2 0 100 0 106
17 1.83 55 0.016 296.39 21.2 0 100 0 106
18 1.88 51 0.019 248.14 17.0 0 80 0 85
19 1.94 66 0.012 409.05 27.8 0 133 0 139
20 1.95 73 0.019 257.45 17.0 0 80 0 85
21 2.00 83 0.012 421.81 27.8 0 133 0 139
22 2.07 20 0.013 817.62 81.0 19 383 0 405
23 2.15 90 0.013 391.04 24.0 0 114 0 120
24 2.16 41 0.007 967.02 81.4 7 397 0 407
25 2.22 79 0.015 360.13 21.2 0 100 0 106
26 2.27 8 0.007 1351.20 82.4 21 399 9 412
27 2.32 25 0.017 749.91 76.2 22 356 0 381
28 2.37 74 0.014 384.65 21.2 0 100 0 106
29 2.40 7 0.018 1240.81 82.4 42 381 12 412
30 2.50 14 0.008 1376.01 82.2 18 398 6 411
31 2.51 24 0.015 942.54 80.0 21 377 0 400
32 2.56 34 0.009 1114.34 76.0 9 369 0 380
33 2.64 39 0.010 1051.63 79.8 12 386 0 399
34 2.68 54 0.016 469.07 41.0 0 195 0 205
35 2.71 3 0.007 1796.43 82.4 41 391 21 412
36 2.77 16 0.012 1358.72 81.8 21 391 4 409
37 2.83 21 0.013 1244.51 80.8 21 382 2 404
38 2.90 77 0.015 471.28 21.2 0 100 0 106
39 2.91 96 0.020 349.03 15.6 0 72 0 78
40 2.96 12 0.005 1836.53 82.4 7 403 14 412

demand. Note, due to the curses of dimensionality and the computational limitations of being

able to only examine a one week time horizon, we consider pessimistic battery degradation rates,

which scenario 31 has. Pessimistic degradation rates can result in more frequent battery replace-

ments. In reality, batteries with a slower degradation would not need to be replaced as frequently

as our results indicate. However, in spite of the computational limitations, we believe the struc-
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Figure 2.8: Action taken over time for a sample path of the optimal policy of Scenario 31 when
realized demand equals the mean demand.
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Figure 2.9: Number of full batteries and average capacity for the optimal policy over time for
Scenario 31 when realized demand equals the mean demand.

ture and pattern of the optimal policy will be close to swap stations run for longer time periods

and a slower battery degradation rate. In Figure 2.10, we display the demand and met demand

over time. Overall, we are able to meet 80% of demand, but fail to meet all demand during high

peak time periods.

When reviewing the optimal replacement policy for scenario 31, we see that when the av-

erage capacity drops to 80% the swap station replaces all batteries. This policy is present in most

scenarios, however, not all. For example, in Figure 2.11 we display the sample path of the op-

timal state over time for scenario 22. Consistent with the results previously presented, this is a

sample path when the realized demand equals the mean demand. Focusing on the changes to the
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Figure 2.10: Demand and met demand for the optimal policy for scenario 31 when realized de-
mand equals the mean demand.
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Figure 2.11: Number of full batteries and average capacity for the optimal policy for scenario 22
when realized demand equals the mean demand.

average capacity, we see that sometimes all batteries are replaced (i.e., average capacity goes up

to 100%), but during mid-day on Thursday only a portion of the batteries were replaced.

The sample path for the optimal action in scenario 31 (see Figure 2.8) does not indicate to

discharge any batteries. However, in seven scenarios we did observe discharging actions which

earns the swap station revenue from the energy supplied. We note, in all seven scenarios with

discharging, replacement also occurs. As discharging causes batteries to degrade, this behavior

coincides with our intuition that when discharging occurs replacement will also occur. Further,

when discharging occurs, full batteries are not available for meeting swap demand until they are

recharged. However, discharging can occur during time periods with low demand without sacri-
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Figure 2.12: Number of full batteries and charging/discharging actions for the optimal policy
over time for Scenario 35 when realized demand equals the mean demand.

ficing the satisfaction of demand. In Figure 2.12, we display a sample path for the optimal action

of scenario 35 which has discharging. The discharging occurs when the swap station has a large

number of full batteries during the early hours of each day when the mean demand is low.

To obtain additional insights on the effect of the three factors, we perform a one-by-one

correlation analysis as summarized in Figure 2.13. Each column of Figure 2.13 corresponds to

the three factors: revenue per swap, replacement cost, and battery degradation. Each row of Fig-

ure 2.13 corresponds to four different metrics: the number of batteries replaced, the expected

total reward, the amount of satisfied demand, and the number of batteries charging. Each point

corresponds to a scenario and is calculated based on the sample path of the optimal policy when

realized demands equals mean demand.

First, we examine the number replaced as a function of the three factors. The replacement

cost has the greatest impact on the number replaced in which we see zero replacements when the

replacement cost is above $41. For costs below $41, we see a greater number of replacements as

the cost decreases. We would assume that high revenue per swap values and high battery degra-

dation values would result in a high number of battery replacements. We do see a positive corre-

lation between the number of replacements and the revenue per swap. We justify this relationship

because a higher revenue per swap incentivizes the swap station to charge batteries to meet as

much demand as possible. This charging leads to battery degradation and future necessary re-
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Figure 2.13: Correlation between the three factors and the number of batteries replaced, the opti-
mal expected total reward, the amount of demand satisfied, and the number of batteries charging
under the optimal policy.

placements. Thus, when the revenue per swap is high enough it offsets the future replacement

costs. We observe no correlation between the battery degradation factor and the number of bat-

teries replaced. This result is counterintuitive and indicates that replacement is not solely based

on how quickly batteries degrade and instead involves a complex relationship with many factors.

Next, we examine the expected total reward. The relationships are intuitive; the results indicate

the expected total reward to increase as revenue per swap increases, replacement cost decreases,

or the battery degradation factor decreases.

Lastly, due to their similarities, we examine both the amount of satisfied demand and the

number of batteries charging. As the revenue per swap increases, we meet more demand and

charge more batteries. This coincides with our intuition that when the revenue is set high enough,

the swap station performs the necessary charging actions to meet demand. However, there are
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three scenarios (34, 38, and 39) that despite having high revenue per swap values, a relatively

low amount of demand is satisfied. All three scenarios have a high replacement cost and the op-

timal policy indicates to not replace any batteries. We also observe two scenarios (3 and 10) with

low revenue per swap and a large amount of met demand. In both cases, the battery degradation

factor is small which causes the average capacity to reduce at a slow rate. In spite of this small

battery degradation factor, battery replacement occurs in scenario 10 due to the small battery

replacement cost. These replacements enable consistent charging and satisfaction of more than

80% of the demand. In parts (h) and (k) of Figure 2.13, we observe a negative correlation be-

tween the replacement cost and both the amount of satisfied demand and the number of batteries

charged. In parts (i) and (l) of Figure 2.13, there is more occurring with each scenario than what

is portrayed in the graphs. In all scenarios above the blue trend line, batteries are replaced which

enables the satisfaction of demand through battery charging even when the battery degradation

factor increases. Contrarily, in all scenarios below the blue trend line, batteries are not replaced

and thus, less demand is satisfied thereby requiring less battery charging. When no batteries are

replaced, the battery degradation factor has a greater impact on both the amount of met demand

and the number of batteries charging.

2.5.3 Performance of the Approximate Solution Methods

In this section, we evaluate the performance of our two approximate solution methods through

a comparison with the exact algorithm, backward induction (BI). In Section 2.5.3.1, we outline

our methods for selecting the best parameters for our proposed approximate solution methods. In

Section 2.5.3.2, we demonstrate the high performance of the heuristic benchmark policy and our

Double Pass with Heuristic Policy Initialization (DPHI) RL method. We discuss the robustness of

our heuristic benchmark policy over changes in the set of Latin hypercube designed experiment

and the number of batteries. Lastly, we demonstrate the ability of the DPHI RL method to solve

the large-scale SAIRPs.
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Table 2.7: Parameters used for the heuristic benchmark policy.

Parameter Value Parameter Value Parameter Value

I1 0.25M κ1 0.25Lmax
t κ2 0.41Lmax

t
I2 0.5M Lb1 0.05N Ub1 0.95N
I3 0.3M Lb2 0.25N Ub2 0.75N
I4 0.5M Lb3 0.4N Ub3 0.6N
∆1 δC

min +
1
3(δ

C
max−δC

min) ∆2 δC
max− 1

3(δ
C
max−δC

min) ζ θ+0.02

2.5.3.1 Parameter Specifics for the Approximate Methods

In this section, we describe the specific parameter values that we use for our two approximate

solution methods. In our heuristic benchmark policy, there are 15 parameters. Thus, optimiz-

ing the parameter values is not a trivial task. Hence, we empirically examine different parameter

values, which is consistent with the selection of heuristic and metaheuristic parameters and sub-

routines (Zhou et al., 2020a; Wu et al., 2020; Li et al., 2020; Asghari and Al-e-hashem, 2020;

Yao et al., 2020; Zhen et al., 2020; Zhong et al., 2020; Lee et al., 2015). Specifically, to select the

parameters, we test 18 sets of candidate values for the 15 parameters on the 40 instances of LHS

designed experiments. In Table 2.7, we display the set of parameters that we found to produce

the best overall results. To validate the selection of these parameters, we test their performance

on new, distinct sets of LHS designed experiment scenarios where the number of batteries, the

revenue per swap, the replacement cost, and the battery degradation factor are changed. We will

demonstrate in this section the robust performance of the heuristic benchmark policy for all of

these instances.

We note that a complicated combination of factors impacts the optimal policy over time,

so we do not take the approach of optimizing the problem over a myopic horizon to derive the

values of parameters. Instead, we design the parameters to be easy-to-implement for managers to

yield robust decision rules over various scenarios. To determine the values of these parameters,

we ran many preliminary experiments and observed trends and insights from sample paths of the

optimal policies. We used these trends and insights to empirically test many different values and

combinations of parameter values. One trend that we noticed is that replacement cost is a critical
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factor when deciding whether to replace batteries or not (see Figure 2.13). Thus, we define Lmax
t

to equal the present replacement cost of a battery which also is used as the upper bound for the

designed experiment. We then examine battery replacement costs lower than this value because

there is a forecasted decreasing trend in battery prices over time (Romm, 2017).

We use Lmax
t to set κ1 and κ2 for the heuristic benchmark policy to create low, medium, and

high buckets of replacement costs. These buckets allow us to analyze and determine swap sta-

tions operations if there is a dramatic or moderate decrease in battery replacement costs. When

examining our preliminary experiments, we found that 100% of the scenarios with replacement

cost higher than 0.4Lmax
t incorporate no replacement action. When the replacement cost is less

than or equal 0.4Lmax
t and the revenue per swap is high enough, we observe replacement actions.

Thus, we set κ2 = 0.41Lmax
t to define the high bucket. From further empirical experimentation,

we observed a meaningful difference in the total number of batteries replaced when the replace-

ment cost is above or below 0.25Lmax
t . Specifically, on average, we replaced 9.17 when the re-

placement cost is between 0.25Lmax
t and 0.41Lmax

t and replaced 23.30 batteries when the replace-

ment cost is below 0.25Lmax
t . Thus, we set κ1 = 0.25Lmax

t .

Next, we describe how we set the replacement threshold for the heuristic benchmark pol-

icy, ζ. As we do not want the system to enter the absorbing state and discontinue operation (when

the average capacity is below θ), we set ζ > θ. Further, from preliminary experiments, we ob-

served that of the scenarios that replace batteries, 75% have replacement occur when the average

battery capacity drops below θ+0.02. As follows, we set ζ = θ+0.02 and only allow battery re-

placement when the average capacity is between θ and ζ. Additionally, we restrict when replace-

ment may occur based on time and the battery degradation factor, δC. Specifically, we disallow

battery replacement very early and late in the time horizon of the problem. During the middle

of the time horizon, we allow set intervals (LB1,UB1), (LB2,UB2), and (LB3,UB3) which when

combined with replacement cost and the degradation factor levels (defined by ∆1 and ∆2) dictates

when replacement can or cannot occur. We set these intervals based on preliminary experiments

and noticed that only 5% of the scenarios include replacement actions outside of these intervals.
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Lastly, we examined when and how many batteries are charged from our preliminary ex-

periments. From these experiments, we observed that solely looking at how many batteries are

charged gave an incomplete picture. Instead, we found that we must also examine a charge-up-to

level indicating how many batteries should be full over time. Thus, we set values for (I2 and I3) to

indicate how many batteries should be charged and (I1, I4) to indicate how many batteries should

be full in inventory. As these values strongly interact together, we empirically examined many

combinations and selected the combination that resulted in the highest overall performance. We

also observe a small correlation between the number of batteries to charge and the battery degra-

dation factor. However, we observed this to be the weakest factor when deciding the number of

batteries to charge. As a result, we break down the battery degradation factor into three equal low,

medium, and high buckets with ∆1 and ∆2. We use these buckets combined with the replacement

cost buckets to calculate how many batteries to charge.

Now, we present the parameter values used for our DHPI RL method. We experimentally

determined these values and selected the ones which resulted in the best convergence behavior

over all scenarios. We set the number of iterations to generate sample paths of demand for the

heuristic benchmark and core double pass algorithm equal to τ1 = 1000 and τ2 = 100000, re-

spectively. We use the harmonic step-size function, αn
t = w/(w+n−1), as is consistent with the

literature (Powell, 2011; Rettke et al., 2016; Meissner and Senicheva, 2018), with w = 4000.

In Section 2.5.3.2, we compare our DPHI RL method with a standard approximated value

iteration (AVI) method wherein the action selection and value approximations are performed

moving forward in time. We note, as compared to our DPHI RL method, no intelligent initial-

ization is used. We observe that adding the exploration feature, generating more sample paths of

demand per iteration, and setting a higher number of iterations, τ, improves the performance of

the AVI method. In our AVI method, we use the exploration feature where an action that does

not necessarily maximize the summation of the present and future contributions can be selected.

In the for loop of action at time t and iteration n, with our exploration feature we allow an ac-

tion with a lower total contribution to replace another action with higher total contribution with a
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probability equal to pn. In the AVI method, we use a linear function pn = 0.2−0.2(n/τ) to reduce

exploration as n, the iteration counter, increases. We generate 30 sample paths of demand per it-

eration and set the number of iterations to be τ = 1000000. We use the harmonic step-size and

scale w to be in line with τ, i.e., w = 40000.

2.5.3.2 Analysis of the Experimental Results

In this section, we provide the results of solving the designed experiment scenarios using our

proposed approximate solution methods, the heuristic benchmark policy and Double Pass with

Heuristic Policy Initialization (DPHI) RL. We compare the results with Backward Induction (BI)

and an approximated value iteration (AVI) method. We will demonstrate the superiority of our

DPHI RL method and the speed and competitiveness of our heuristic benchmark policy. More-

over, we discuss that the heuristic benchmark policy is robust to changes in the number of bat-

teries and set of scenarios (i.e., SAIRP instances). Finally, we demonstrate the capability of our

DPHI RL method for solving large-scale SAIRPs.

We solved all 40 scenarios of the designed experiment (see Section 2.5.2) using the heuris-

tic benchmark policy, DPHI RL, AVI, and BI for M = 7. We note, due to the curses of dimension-

ality, we are not able to determine the optimal expected total reward for values higher than M = 7.

We empirically demonstrate that the policies generated by the heuristic benchmark policy and

DPHI RL are near-optimal for many different possible scenarios. We summarize the optimality

gap of all scenarios using the approximate methods in Table 2.8. We calculate the optimality gap

for the approximate methods using Equation (2.21) and the demand gap using Equation (2.22).

To calculate the demand gap, we use the sample path where the realized demand equals the mean

demand.

Optimality Gap =
BI Expected Reward - Approx. Expected Reward

Expected Reward BI
∗100%. (2.21)
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Demand Gap =
BI Satisfied Demand - Approx. Satisfied Demand

BI Satisfied Demand
∗100%. (2.22)

From the results, the average optimality gap of the heuristic benchmark policy over all sce-

narios is 10.03% where 45% of the scenarios have an optimality gap less than 5%. Our DPHI RL

method results in the smallest average optimality gap equal to 7.35%. We note, both of these are

significantly lower than 24.22%, the AVI average optimality gap.

The average computation time to generate a policy for the heuristic benchmark policy,

DPHI RL, AVI, and BI are 0.01, 80.55, 660.55, and 13649.92 seconds, respectively. We note,

the computational time of our heuristic benchmark policy consists of two operations: policy gen-

eration and policy evaluation. We denote the time it takes to calculate the action the swap station

should take when in each state and time, using Algorithm 1, as the policy generation time. The

average policy generation time over all scenarios is 0.01 seconds. We note that solely generat-

ing a policy does not give us an indication of the how well it performs. To calculate the expected

reward for the heuristic benchmark policy, we use the transition probability of transferring from

a current state to a future state given the action. Therefore, we do not have perfect information

and instead must incorporate the uncertain demand into this calculation. Thus, we must perform

a procedure analogous to backward induction to calculate the expected total reward for a given

policy. As a result, the average policy evaluation time is 13360.57 for the benchmark policy.

Overall, we observe the high performance of the benchmark policy and DHPI RL Method.

The benchmark policy takes fractions of a second to generate a solution. Thus, operationally, the

swap station needs to take less than a second, on average, to generate a policy that they can im-

plement to achieve this high performance in a highly variable environment having non-stationary

demand for swapping with peaks and off-peaks. If the swap station is looking for a policy with a

lower optimality gap, the DHPI RL method can be used and takes under 5 minutes on average.

Next, we focus on the amount of demand met using the approximate solution methods as
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Table 2.8: Performance comparison of the approximate solution methods.

Optimality Gap (%)
Heuristic

Scenario Benchmark DHPI RL AVI
1 20.52 18.62 26.66
2 3.20 1.68 15.48
3 22.98 20.96 26.58
4 20.52 18.85 27.15
5 11.42 9.17 16.61
6 25.37 23.51 29.60
7 2.73 1.82 15.53
8 3.07 1.60 14.54
9 1.68 0.78 11.09
10 2.37 0.51 26.34
11 19.03 14.30 20.85
12 17.20 14.22 18.99
13 19.12 23.44 29.62
14 27.77 25.41 31.88
15 25.04 14.94 21.67
16 19.04 15.59 23.68
17 19.02 14.45 20.28
18 2.65 1.67 16.61
19 3.08 1.90 19.13
20 2.65 1.77 16.86
21 3.07 1.75 19.50
22 2.95 0.92 38.35
23 12.27 10.63 16.74
24 3.43 0.47 31.69
25 1.70 0.77 15.41
26 7.50 5.07 23.62
27 12.45 7.92 52.68
28 1.63 0.74 10.61
29 5.78 1.25 34.57
30 6.70 1.67 23.78
31 3.55 1.05 42.18
32 5.94 2.46 31.45
33 3.74 0.87 36.05
34 24.84 20.63 26.13
35 14.03 10.62 24.52
36 4.91 0.17 30.38
37 2.22 0.61 35.04
38 1.69 0.71 14.34
39 8.07 6.78 14.28
40 6.36 3.85 18.38

Avg. Gap (%) 10.03 7.60 24.22
Avg. Time (s) 0.01 80.55 660.55

compared to the optimal policy. Overall, there are 10 and 16 scenarios where the benchmark and

DPHI RL solutions satisfy more demand than the optimal policy, respectively. For the heuristic

benchmark policy, 67.5% of the scenarios have a demand gap less than 10%. In 40% of the sce-

narios, we see a demand gap of less than 10% for the DPHI RL method. On average, the amount

of satisfied demand with the benchmark policy and the DPHI RL method are only 7.4% and 3%

less than the amount of satisfied demand under the optimal policy, respectively.

By taking all scenarios into consideration, we can conclude that our heuristic benchmark

62



policy and DPHI RL method are capable of generating near-optimal solutions quickly. The bench-

mark policy requires only bytes of memory to generate a policy which is remarkably lower than

the 830GB of memory needed for backward induction. The required memory for the DPHI RL

method and AVI is 1.2GB and 36GB, respectively, demonstrating RL’s power to address memory

issues. The memory requirements combined with the speed demonstrate the applicability of the

heuristic benchmark and the DPHI RL method for solving large problem instances that backward

induction is not capable of solving.

Next, we demonstrate that the selected parameters for the heuristic benchmark policy based

on percentages of the SAIRP input parameters work well for a station with different number of

batteries. Due to curses of dimensionality, we focus on validating the use of the benchmark pol-

icy for M ≤ 7. Specifically, we calculate the optimal expected total reward for all 40 scenarios of

the designed experiment with M = 4,5,and 6. The average optimality gap for M = 4,5, and 6 are

equal to 8.61%, 8.12%, and 9.45%, respectively. These results further confirm that the bench-

mark policy is a suitable method for SAIRP instances with different input parameters. Thus, we

can conclude that the heuristic benchmark policy is robust and capable of generating quality solu-

tions for many different empirical tests.

The parameters for the heuristic benchmark policy outlined in Table 2.7 were determine

based on many empirical observations from the tests on the 40 scenarios (see Table 2.6) with

M = 7. Thus, to verify that these parameters perform well for other scenarios, we generated an

additional 40 new scenarios and show that the benchmark policy still performs well for these new

scenarios. With each new scenario, we used backward induction to calculate the optimal expected

total reward and compared this to the expected total reward returned from the benchmark pol-

icy with M = 7. Our results indicates that the average gap between backward induction and the

heuristic benchmark policy for these new scenarios is 10.3%. The small gap indicates that the

high performance of the heuristic benchmark policy does not rely on the previously tested 40 sce-

narios. Overall, we conclude that the proposed benchmark policy is well designed and robust to

the proposed MDP model.
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Lastly, we demonstrate how we are capable of solving large-scale SAIRPs with our DPHI

RL method. For the large-scale SAIRPs, we use the data, parameter settings, and the same set of

40 LHS scenarios as we used for the modest sized instances. However, we note that we scale the

demand to be in line with M′ = 100, that is λ′t = (100/7)λt . Furthermore, for the one-month time

horizon, T ′ = 744, we use the historical power prices from December 2016, which is the month

with the highest power price over the year. Overall, the average computational time is 30018 sec-

onds and we need 126GB of memory to solve these large-scale scenarios using our DPHI RL

method. We conclude that DPHI RL is capable of solving large-scale SAIRPs in a reasonable

time and using manageable memory.

2.6 Conclusions and Future Research

In this research, we introduced a stochastic scheduling, allocation, and inventory replenishment

problem (SAIRP) for a battery swap station wherein there is an interaction between the first-level

of inventory (battery charge) and second level of inventory (battery capacity). A main contribu-

tion of the SAIRP is considering how battery degradation leads to necessary battery replacement

where the degradation is directly caused by the use and charging of batteries. We examine a bat-

tery swap station, such as one used for drones or EVs, faced with stochastic demands for swap-

ping. We model the operations at a swap station as a stochastic SAIRP and propose a Markov

Decision Process (MDP) model. We define a two-dimensional state space for the MDP repre-

senting the number of full batteries and average capacity coupled with a two-dimensional action

space representing the number of batteries charged/discharged and number of batteries replaced.

We validated the use of average capacity as opposed to each individual battery capacity using

a disaggregated MDP model and Monte Carlo simulation. As a result, we believe this research

presents an important step forward in modeling battery dependent systems which explicitly incor-

porates battery capacity degradation. We solve the MDP using backward induction so as to deter-

mine the optimal policy indicating the number of batteries to charge, discharge, and replace over

time in face of non-stationary charging prices, non-stationary discharging revenue, and capacity-
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dependent swapping revenue.

We conducted comprehensive computational tests and deduced insights from the results of

scenarios generated from Latin Hypercube Sampling. From these results, we analyzed the impact

to the expected total reward and optimal policies when the revenue per swap, replacement cost,

and the battery degradation factor change. Two key insights that we deduce from these results are

as follows. Battery degradation does not have a significant impact on the number of batteries re-

placed and instead replacement is impacted by the complex interactions between degradation and

costs. In most scenarios, the optimal policy indicates to replace all batteries in the swap station at

once rather than replacing a portion of the inventory at strategic points in time.

The MDP model for the stochastic SAIRP is large and suffers from the curses of dimen-

sionality. Thus, we propose two approximate solution methods, a heuristic benchmark policy and

a double pass with heuristic policy initialization (DHPI) RL method. From the computational

tests, we deduce that both methods are competitive and have high performance in terms of op-

timality gap, satisfied demand gap, and computational time. Generating the benchmark policy

requires an insignificant amount of memory and time, thereby making it usable for realistic-sized

instances. To design the heuristic benchmark policy, we empirically tested many rules that in-

dicate when and how many batteries are charged and replaced over time. We also leverage the

heuristic policy to intelligently initialize our reinforcement learning approach. As a result, we

demonstrate that the DPHI RL method can solve large-scale problems in a reasonable time and

using a reasonable memory requirements.

Overall, we make steps towards understanding this new SAIRP problem class as we demon-

strate that we can solve small problems optimally and other, larger problems using a reinforce-

ment learning and a heuristic benchmark policy. Future work should investigate theoretically

proven structure of the optimal policy which dictates when specific actions should be taken. One

approximation technique that can be investigated is a policy gradient approach wherein we pa-

rameterize the value and policy functions and then find and update the parameter’s value such

that they are maximizing the average reward per time period. Additionally, researchers should
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theoretically examine the existence of structure in the optimal policy which would enable the use

of more efficient algorithms. Other research should examine different distributions governing

the uncertain demand and also others types of uncertainty from the incoming swapped batteries

and capacity degradation rate. Lastly, researchers should examine how changing the replacement

threshold, θ, changes the optimal policies and possibly the demand for swaps.
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3. A Monotone Approximate Dynamic Programming Approach for the Stochastic Schedul-

ing, Allocation, and Inventory Replenishment Problem: Applications to Drone and Elec-

tric Vehicle Battery Swap Stations

Amin Asadi Sarah Nurre Pinkley

3.1 Introduction

Electric vehicles (EVs) and drones hold great promise for revolutionizing transportation and

supply chains. The United States Department of Energy (2014) reports that EVs can reduce oil

dependence and carbon emissions, but vehicle adoption is hindered by range anxiety, purchase

price, recharge times, and battery degradation (Rezvani et al., 2015; Saxena et al., 2015). Drone

applications have increased in recent years; many organizations are using drones or undergoing

testing to use drones for different purposes, including, but not limited to, delivery (CBS NEWS,

2013; Weise, 2017; DHL Press Release, 2016; Wallace, 2015), transportation (Mutzabaugh,

2017), and agriculture (Jensen, 2019). However, drone use is restricted by short flight times,

long battery recharge times, and battery degradation (Park et al., 2017; James, 2020; Drones

Etc., 2015). An option to overcome these barriers for EVs and drones is a battery swap station.

A battery swap station is a physical location that enables the automated or manual exchange of

depleted batteries for full batteries in a matter of seconds to a few minutes.

Swap stations have many benefits including their ability to help reduce battery degradation.

Battery degradation, or, more specifically, battery capacity degradation, is the act of the battery

capacity decreasing over time with use. Each recharge and use of a battery causes a battery to de-

grade. Degraded battery capacity means EVs and drones have shorter maximum flight times and

ranges. Thus, an interesting aspect of managing battery swap stations is that both battery charge

and battery capacity are needed; however, the recharging and use of battery charge is the exact

cause of battery capacity degradation. Thus, this presents a unique problem where recharging

batteries, which enables the system to operate in the short-term, is harmful for long-term opera-
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tion. Although all recharging causes degradation, the regular-rate charging used at swap stations

reduces the speed in which batteries degrade as compared to fast-charging (Lacey et al., 2013;

Shirk and Wishart, 2015). This increases battery lifespans and causes less environmental waste

from disposal. In spite of this benefit, swap stations still must determine when to recharge and

replace batteries.

The benefits of battery swap stations are not restricted to decreasing battery degradation.

Swap stations also alleviate range anxiety by allowing users to swap their batteries in a couple of

minutes. Furthermore, battery swap stations are projected to be a key component within a smart

grid through the use of battery-to-grid (B2G) and vehicle-to-grid (V2G). B2G and V2G enable

a charged battery to discharge the stored energy back to the power grid (Dunn et al., 2011). In

practice, several companies such as Toyota Tsusho and Chubu Electric Power in Japan (Nuvve,

2021a,b), NIO and State Grid Corporation in China (Zhang, 2020), and Nissan and E.ON in the

UK (Inside EVs, 2020) have installed or plan to install V2G technology. Swap stations can also

reduce the purchase price barrier through a business plan where the swap station owns and leases

the high-cost batteries (Mak et al., 2013). For the many organizations seeking to use drones, a

set of continuously operating drones is often vital. However, continuous operation is difficult

because the realized flight time of a drone is often less than the recharge time (James, 2020;

Drones Etc., 2015). Thus, automated drone battery swap stations are a promising option because

no downtime for recharging is necessary. Given the benefits and applications of swap stations,

we examine the problem of optimally managing a battery swap station when considering battery

degradation.

We model the operations at a battery swap station using the new class of stochastic schedul-

ing, allocation, and inventory replenishment problems (SAIRPs). In SAIRPs, we decide on the

number of batteries to recharge, discharge, and replace over time when faced with time-varying

recharging prices, time-varying discharge revenue, uncertain non-stationary demand over time,

and capacity-dependent swap revenue. SAIRPs consider the key interaction between battery

charge and battery capacity and link the use and replenishment (recharging) actions of charge
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inventory with the degradation and replenishment needs of battery capacity inventory. Battery

charge and capacity are linked because each recharge and discharge of a battery causes the bat-

tery capacity to degrade, and the level of battery capacity directly limits the maximum amount

of battery charge. To replenish battery capacity, we must determine when and how many batter-

ies to replace over time. For SAIRPs, the combination of battery charge and battery capacity is

necessary to satisfy non-stationary, stochastic demand over time.

We model the problem as a finite horizon MDP model allowing us to capture the non-

stationary elements of battery swap stations over time, including mean battery swap demand,

recharging price, and discharging revenue (Puterman, 2005). The MDP’s state space is two-

dimensional, indicating the total number of fully charged batteries and the average capacity of

all batteries at the station. The action of the model is two-dimensional. The first dimension indi-

cates the total number of batteries to recharge or discharge. The second dimension indicates the

total number of batteries to replace. The selected action results in an immediate reward, equal to

profit, comprised of capacity-dependent revenue from battery swaps, revenue from discharging

batteries back to the power grid, cost from recharging batteries, and cost from replacing batteries.

The system transitions to a new state according to a discrete probability distribution representing

battery swap demand over time, the current state, and the selected action. For our MDP model of

the stochastic SAIRP, we seek to determine an optimal policy that maximizes the expected total

reward, which is equal to the station’s expected total profit. A standard solution method for solv-

ing MDPs is backward induction (BI) (Puterman, 2005). We solve a set of modest-sized SAIRPs

using BI to provide a baseline for comparing the approximate solution methods; however, as we

showed in Chapter 2, BI is not effective for deriving optimal policies for realistic-sized SAIRPs.

Stochastic SAIRPs suffer from the curses of dimensionality, thus, we investigate theoretical

properties of the problem to inform more efficient solution methods. We prove that the stochastic

SAIRP has a monotone non-decreasing value function in the first, second, and both dimensions of

the state. We also prove that general SAIRPs violate the sufficient conditions for the existence of

a monotone optimal policy in the second dimension of the state. However, if the number of bat-
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tery replacements in each decision epoch is constrained to be less than a constant upper bound,

we prove there exists a monotone optimal policy for the second dimension of the state in the

stochastic SAIRP.

To overcome the curses of dimensionality, we exploit these theoretical results and investi-

gate efficient solution methods. We investigate methods that exploit our proven monotone struc-

ture, including Monotone Backward Induction (MBI) (Puterman, 2005) and monotone approx-

imate dynamic programming (ADP) algorithms. First, we examine Jiang and Powell (2015)’s

Monotone Approximate Dynamic Programming (MADP) algorithm which exploits the mono-

tonicity of the value function. Next, we propose a new regression-based Monotone ADP algo-

rithm, which we denote MADP-RB. In our MADP-RB, we build upon the foundation of MADP

and introduce a regression-based approach to intelligently initialize the value function approxi-

mation.

We design a comprehensive set of experiments using Latin hypercube sampling (LHS).

We compare the performance of ADP methods with the BI and MBI for the LHS’s generated

scenarios of a modest size. Experimentally, we show our regression-based ADP generates near-

optimal solutions for modest SAIRPs. Besides, using the same LHS scenarios, we solve large-

scale SAIRPs with our proposed ADP algorithms. We demonstrate that our proposed ADP ap-

proaches can overcome the inherent curses of dimensionality of SAIRPs that BI, and MBI failed

to succeed.

Main Contributions. The main contributions of this work are as follows: (i) we demon-

strate that stochastic SAIRPs violate the sufficient conditions for the optimality of a monotone

policy in the second dimension of the state and prove the existence of a monotone optimal pol-

icy for the second dimension of state when an upper bound is placed on the number of batteries

replaced in each decision epoch; (ii) we prove the monotone structure for the MDP value func-

tion; (iii) we propose a regression-based monotone ADP method by utilizing the theoretical struc-

ture of the MDP optimal value function to intelligently approximate the initial value function and

make updates in each iteration; (iv) we computationally demonstrate the superior performance of
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our regression-based monotone ADP algorithm and deduce managerial insights about managing

battery swap stations.

The remainder of the chapter is organized as follows. In Section 3.2, we outline literature

relevant to our modeling approach, solution approaches, and EV and drone applications. In Sec-

tion 3.3, we formally define the stochastic scheduling, allocation, and inventory replenishment

problem as a two-dimensional Markov Decision Process. In Section 3.4, we present theoret-

ical results for the stochastic SAIRP. In Section 3.5, we present solution methods and outline

the monotone ADP algorithm with regression-based initialization to solve stochastic SAIRP in-

stances. In Section 3.6, we present results and insights from computational tests of the solution

methods and realistic instances of the stochastic SAIRP. We summarize the contributions in Sec-

tion 3.7 and provide opportunities for future work.

3.2 Literature Review

There is growing interest surrounding electric vehicles (EVs) and drones in industry and academia.

We proceed by discussing the relevant literature pertaining to (i) the EV and drone swap station

application; (ii) the background knowledge for the proposed approach using aspects of optimal

timing and reliability, inventory management, and equipment replacement problems; (iii) the sci-

entific works that explain the lithium-ion battery degradation process; and (iv) ADP approaches

that address the curses of dimensionality. To the best of our knowledge, no past research has de-

rived the structure of the optimal policy and value function for the scheduling, allocation, and

inventory replenishment problem nor solved the realistic-sized instances of SAIRPs to derive in-

sights for managing the operations at a battery swap station faced with battery degradation.

Swap stations were initially introduced for EVs and thus have a more extensive research

base. However, there is growing interest surrounding drone battery swap stations. We first exam-

ine the work on managing the internal operations of a battery swap station that are most similar

to the model presented in this chapter and Chapter 2. Widrick et al. (2018) develop an inven-

tory control MDP for a swap station that only considers the number of batteries to recharge and
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discharge over time but excludes battery capacity levels, degradation, and replacement. They

prove the existence of a monotone optimal policy only when the demand is governed by a non-

increasing discrete distribution (e.g., geometric). Nurre et al. (2014) also consider determining

the optimal charging, discharging, and swapping at a swap station using a deterministic integer

program that excludes uncertainty. Worley and Klabjan (2011) examine an EV swap station with

uncertainty and seek to determine the number of batteries to purchase and recharge over time.

Note, purchasing batteries is fundamentally different from battery replacement in SAIRPs. Wor-

ley and Klabjan (2011) examine the one-time purchase of batteries to open a swap station and

do not consider purchasing decisions over time. Contrarily, we assume the initial number of bat-

teries at the swap station is previously determined and instead consider replacing batteries over

time. Sun et al. (2014) propose a constrained MDP model for determining an optimal charging

policy at a single battery swap station and examine the tradeoffs between quality of service for

customers and energy consumption costs.

Other research considers a mix of long-term strategic and short-term operational swap sta-

tion decisions. Schneider et al. (2018) consider a network of swap stations that seeks to deter-

mine the long-term number of charging bays and batteries to locate at each station and the short-

term number of batteries to recharge over time. Schneider et al. (2018) do consider charging ca-

pacity; however, their use of capacity indicates the number of batteries that can be recharged at

one time in the station and do not model battery capacity. Kang et al. (2016) propose the EV

charging management problem, which determines the optimal locations for a network of swap

stations and further determines the charging policy for each location. Their definition of charging

policy only considers charging and excludes discharging or replacement. Excluding the explicit

charging actions over time, Zhang et al. (2014) determine the number of batteries that are nec-

essary for swapping over time. For further studies in the area of EV operations management, we

refer the reader to a review by Shen et al. (2019).

A common limitation of the aforementioned research is that it fails to account for battery

degradation. To the best of our knowledge, there are very few articles that consider battery degra-
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dation. Chapter 2 research is the first to introduce stochastic SAIRPs for managing battery swap

stations with degradation. However, in Chapter 2, we do not theoretically analyze this problem

class, do not introduce intelligent approximate dynamic solution methods that exploit the theoret-

ical results, and do not provide insights from solving realistic-sized SAIRPs.

Others have examined battery degradation in a deterministic setting without any uncer-

tainty (Kwizera and Nurre, 2018; Park et al., 2017; Tan et al., 2019). Sarker et al. (2015) consider

the problem of determining the next day operation plan for a battery swap station under uncer-

tainty. They do consider battery degradation; however, they solely penalize battery degradation

with a cost in the objective and do not link it to a reduction in operational capabilities.

Others have examined battery swap stations from different perspectives. Researchers have

examined how to find the optimal number and location of swap stations in a system (Shavarani

et al., 2018; Kim et al., 2013; Hong et al., 2018). Extending this idea further, Yang and Sun (2015)

look to locate swap stations and route vehicles through the swap stations. Others have examined

how to locate and/or operate swap stations that are coordinated with green power resources (Pan

et al., 2010), stabilize uncertainties from wind power (Gao et al., 2012), or coordinate with the

power grid (Dai et al., 2014).

Our research is related to optimal timing and reliability problems. There is a rich litera-

ture on finding the optimal timing of decisions to maximize systems’ lifespan and reliability. For

instance, researchers maximize the expected quality-adjusted life years by finding the optimal

timing of living-donor liver transplantation (Alagoz et al., 2004), biopsy test (Chhatwal et al.,

2010; Zhang et al., 2012), and replacement of an Implantable Cardioverter Defibrillator generator

(Khojandi et al., 2014). There are two options for the actions in these works (e.g., transplant/wait,

take/skip the biopsy test, replace/not replace). However, our action determines the number of

batteries to recharge/discharge and replace in each epoch because it is not a single battery that

enables the station to operate. Instead, it a set of batteries that enables operation, which creates a

significantly larger action space that is dependent on the number of batteries at the station. Sim-

ilar to our work is that of (Bloch-Mercier, 2001), which determines the optimal timing and dura-
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tion of a degrading repairable system. There is extensive research in the nexus of optimization,

reliability, and systems maintenance. We refer the reader to the recent review paper by de Jonge

and Scarf (2020) for further study.

Our research can be placed under the umbrella of inventory management and equipment

replacement problems with stochastic elements. There is a large research base examining these

types of problems under different characteristics. We proceed by reviewing a small sample of

this body of knowledge by focusing on foundational work and research most similar to the scope

of this research. Researchers have extensively studied inventory problems, including those with

stochastic demand (Porteus, 2002), two- and multi-echelon supply chains (Clark and Scarf, 1960;

Clark, 1972), and multiple products (DeCroix and Arreola-Risa, 1998). A desirable feature of

the solutions to inventory problems is that the optimal policy has a simple structure. A classic ex-

ample of such an optimal policy is the (s,S) policy that indicates to order up to S units when the

inventory level drops below s (Scarf, 1960). Others have examined more sophisticated inventory

problems which include scheduling production (Laan and Salomon, 1997; ElHafsi, 2009; Maity,

2011; Golari et al., 2017), performing maintenance or replacement (Horenbeek et al., 2013), and

ordering spare parts for maintenance (Elwany and Gebraeel, 2008; Rausch and Liao, 2010). Ad-

ditionally, researchers have examined perishable inventory that degrades over time (Nahmias,

1982) or inventory that can be recycled or remanufactured in a closed-loop supply chain (Toktay

et al., 2000; Zhou et al., 2011; Govindan et al., 2015).

The proposed work is distinct from this previous literature as it links the actions of recharg-

ing batteries to the actions that must be taken for replacing battery capacity. No prior work in-

cludes the counter-intuitive property that the act of maintaining the system in the short term (e.g.,

through recharging batteries which can be analogous to short-term maintenance or short-term in-

ventory replenishment) is harmful for long-term performance (e.g., future need to replace equip-

ment or replenish other types of inventory).

A novel component of our work is the consideration of battery degradation within the

decision-making process. Battery degradation is most traditionally measured based on calendar
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life or cycles, where a cycle consists of one use and one recharge (Lacey et al., 2013; Ribbernick

et al., 2015). Using physical experiments, simulation, and mathematical modeling, researchers

aim to capture the rate of battery degradation for different batteries and conditions such as tem-

perature and depth of discharge (Plett, 2011; Abe et al., 2012; Ribbernick et al., 2015; Hussein,

2015; Dubarry et al., 2011). We approximate battery degradation using a linear degradation fac-

tor derived from the work of Lacey et al. (2013) and Ribbernick et al. (2015), as is consistent

with other research using a linear forecast (Xu et al., 2018; Abdollahi et al., 2015; Wood et al.,

2011).

Our MDP model suffers from the curses of dimensionality due to the very large size of all

MDP elements together, including state and action spaces, transition probability, and reward. Ap-

proximate dynamic programming (ADP) is a method that has had great success in determining

near-optimal policies for large-scale MDPs (Powell, 2011). Researchers have used ADP methods

to solve problems in energy, healthcare, transportation, resource allocation, and inventory man-

agement (Bertsimas and Demir, 2002; Powell and Topaloglu, 2005; Simao et al., 2009; Erdelyi

and Topaloglu, 2010; Maxwell et al., 2010; Çimen and Kirkbride, 2013; Meissner and Senicheva,

2018; Çimen and Kirkbride, 2017; Nasrollahzadeh et al., 2018). Jiang and Powell (2015) pro-

pose a monotone ADP algorithm that is specifically designed for problems with monotone value

functions. In this research, we prove that the value function of the stochastic SAIRP has a non-

decreasing monotone structure. Hence, we utilize Jiang and Powell (2015)’s monotone ADP al-

gorithm and enhance it by adding a regression-based initialization.

3.3 Problem Statement

In this section, we present and model the Markov Decision Process (MDP) model of the schedul-

ing, allocation, and inventory replenishment problem (SAIRP) that considers stochastic demand

for swaps over time, non-stationary costs for recharging depleted batteries, non-stationary rev-

enue from discharging, and capacity-dependent swap revenue. The MDP model captures the dy-

namic average battery capacity over time, the associated replacement policies, and the interaction
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between battery charge and battery capacity at a battery swap station. We note, this model was

originally presented in Chapter 2; however, we believe it is necessary to provide the reader with

the formal problem definition to enable understanding of the main theoretical and algorithmic

contributions that follow. We use a finite horizon MDP to capture the high variability of data over

time, including the mean demand for battery swaps, the price for recharging batteries, and the

revenue earned from discharging batteries back to the power grid. The uncertainty in the system

is the stochastic demand for battery swaps (i.e., exchange of a depleted battery for a fully-charged

battery). We model this uncertainty (stochastic demand) using the random variable, Dt , for each

time period t. These random variables are explicitly used to calculate the transition probabilities.

The objective is to maximize the expected total reward of the swap station and determine optimal

policies which dictate how many batteries to recharge, discharge, and replace over time. For our

model, the expected total reward equals the expected total profit calculated as the revenue from

satisfying demand and discharging batteries to the power grid minus the costs from recharging

and replacing batteries.

We formulate our MDP model with the following elements. We define T as the finite set of

decision epochs, which are the discrete periods in time in which decisions are made. By defining

N as the terminal epoch, T = {1, . . . ,N−1}, N < ∞.

We denote the two-dimensional state of the system at time t, st = (s1
t ,s

2
t ) ∈ S = (S1× S2),

as the total number of fully charged batteries, s1
t ∈ S1, and the average capacity of all batteries,

s2
t ∈ S2, at the swap station. In the design of s1

t , we only consider that batteries are either fully

charged or depleted. The number of full batteries at time t, s1
t , is an integral value between 0 and

M, where M is the total number of batteries in the station, thus, S1 = {0,1,2, . . . ,M}.

We use an aggregated MDP in which we track the discretized average battery capacity

rather than a disaggregated MDP, which tracks each battery capacity individually, to reduce the

curses of dimensionality from the second dimension of the state. The disaggregated MDP severely

suffers from the curse of dimensionality as the state space’s size grows exponentially as the num-

ber of batteries increases. We discretize the average battery capacity where S2 = {0,θ,θ+ ε,θ+
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2ε, . . . ,1}, in which θ equals the lowest acceptable average battery capacity and ε in the dis-

cretized capacity increment. State zero in S2 is an absorbing state representing that the average

battery capacity dropped below θ. To discourage the station from allowing the battery capacity

to drop below θ thereby resulting in lower quality batteries at the station, we disallow charging,

discharging, swapping, and replacement when in this absorbing state. Hence, the set of feasible

actions when in an absorbing state, s2
t < θ or s2

t = 0, only includes no recharge/discharge and no

replacement. We note, with this aggregated modeling proposed in Chapter 2, the problem size

and complexity are reduced, which is not always necessary when using approximate solution

methods. However, the aggregated model allows us to benchmark the performance of new and

existing approximate solution methods and analyze larger SAIRP instances. Further, in Chapter

2, we previously showed that the results do not significantly change with aggregation.

We denote the two-dimensional action to represent the number of batteries to recharge/

discharge, a1
t , and the number of batteries to replace, a2

t , at time t. In our aggregated MDP model,

there is no known difference between the capacity of batteries as we only track the average ca-

pacity of all batteries. In reality, swap stations, applying the aggregated MDP, may track/not track

the capacity of each battery. If, consistent with the model, the swap station does not track indi-

vidual battery capacity values, we assume the specific batteries that are selected to be recharged/

replaced or discharged/swapped are arbitrarily selected from the set of empty and fully-charged

batteries, respectively. However, if the swap station does track the individual battery capacity

value, we assume that the station selects to recharge/discharge and swap batteries with the highest

capacity values and selects to replace batteries with the lowest capacity values. With this selec-

tion mechanism, individual battery capacity values will be closer to the average battery capacity

of the system and, thus, further emphasizes the aggregated modeling decision. Regarding the first

dimension of the action, a1
t , we attribute a positive value to the number of batteries to recharge,

a1+
t , and a negative value to the number of batteries to discharge, a1−

t . To clarify the distinction

between recharging and discharging actions, we define positive recharging, a1+
t , and discharging

actions, a1−
t , with Equations (3.1) and (3.2). We note that only dealing with the positive number
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of batteries that are recharged or discharged using Equations (3.1) and (3.2) is helpful to clarify

the forthcoming state transition, probability transitions, and reward calculations.

a1+
t =

 a1
t if a1

t ≥ 0,

0 otherwise,
(3.1)

a1−
t =

 |a
1
t | if a1

t < 0,

0 otherwise.
(3.2)

The action a1
t represents both the number of batteries that are recharged, when a1

t is posi-

tive, and the number of batteries that are discharged, when a1
t is negative. We designed the action

in this way as it is not beneficial to recharge and discharge at the same epoch, as they will can-

cel each other out and cause the capacity to degrade. Thus, we select one value for a1
t for each

time t, and state, st . Depending on whether the selected action is positive or negative indicates

whether recharging or discharging will occur. We denote the number of plug-ins in the station

as Φ. We assume all plug-ins are capable of supplying energy from the grid to recharge batteries

and receiving energy from batteries discharged using Battery to Grid (Dunn et al., 2011). We de-

fine the first dimension of action as a1
t ∈ A1

t = {max(−s1
t ,−Φ), . . . ,0, . . . ,min(M− s1

t − a2
t ,Φ)},

which limits the number of discharged batteries by the minimum of the number of plug-ins and

the number of full batteries (−min(s1
t ,Φ) = max(−s1

t ,−Φ)) and limits the number of recharged

batteries by the minimum of the number of plug-ins and the number of depleted batteries that

were not replaced. In the second dimension of the action space, a2
t ∈ A2

t = {0, . . . ,M− s1
t }, we

only allow depleted batteries to be replaced at each epoch t which arrive in epoch t + 1 with full

charge and capacity. We define Ast = (A1
st
×A2

st
) ⊆ (A1

t ×A2
t ) as the set of feasible actions for the

state st at time t. In our model, the set of feasible actions when in an absorbing state, s2
t < θ or

s2
t = 0, only includes no recharge/discharge and no replacement; i.e., A(s1

t ,0)
= {(0,0)}.

In Figure 3.1, we display the timing of the operations at the swap station including recharg-

ing, discharging, replacing, and swapping between epochs t and t + 1. We assume that the time
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between two consecutive epochs is sufficient to recharge or discharge a battery completely. In

our model, we could preemptively recharge, discharge or replace batteries for future time peri-

ods. Therefore, depleted (full) batteries selected for recharging (discharging) in epoch t are fully

charged (depleted) at the start of epoch t + 1. When stochastic demand for a battery swap ar-

rives in epoch t, we can swap up to the number of fully-charged batteries in our inventory which

equals the number of fully-charged batteries at the start of t minus the number of discharged bat-

teries. We subtract the fully-charged batteries assigned to be discharged as they are unavailable

for swapping until the next decision epoch.

Start of
epoch t

# Fully charged
and average capacity

(s1
t ,s

2
t )

Replace a2
t

batteries
Recharge a1+

t
batteries

Discharge a1−
t

batteries

Demand Dt occurs
in epoch t, satisfied

if fully charged
batteries available

Recharged a1+
t and

discharged a1−
t

batteries complete

New replaced a2
t

batteries arrive

Start of
epoch t +1

# Fully charged and
average capacity

(s1
t+1,s

2
t+1)

Figure 3.1: Diagram outlining the timing of events for the SAIRP model.

Transition probabilities indicate the likelihood of transitioning between states when con-

sidering the uncertainty of the system. In our MDP model, the uncertainty in the system is the

stochastic demand for battery swaps (i.e., exchange of a depleted battery for a fully-charged

battery) at each decision epoch t, Dt . The amount of satisfied swap demand in epoch t equals

min{Dt ,s1
t − a1−

t } wherein the second term indicates the number of full batteries that are not al-

ready discharging at t. We outline the state transition for the first dimension of the state in Equa-

tion (3.3) which determines the number of full batteries in epoch t + 1 based on the number of

full, recharged, discharged, replaced, and swapped batteries in epoch t.
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s1
t+1 = s1

t +a2
t +a1+

t −a1−
t −min{Dt ,s1

t −a1−
t }. (3.3)

The second state transitions according to Equation (3.4), which determines the future av-

erage capacity in t + 1 based on the current average capacity and the number of full, recharged,

discharged, and replaced batteries in epoch t. We assume that all batteries swapped at time t have

a capacity equal to the average capacity of the batteries at the swap station. We justify the as-

sumption with the following logic. Batteries previously swapped in epoch t1 < t, which are in use

outside of the station between t1 and t and need to be swapped again in epoch t, have a capacity

similar to the average station capacity at t when the swap station is used regularly (i.e., t − t1 is

small). We define δC to represent the amount of battery capacity degradation from one battery

cycle. We adopt the cycle-based degradation measure (Abdollahi et al., 2015; Lacey et al., 2013)

and assume that batteries do not degrade when not in use. Further, without loss of generality, we

attribute the degradation from a full cycle to the recharge/discharge portion of the cycle. We use

round() to represent that Equation (3.4) returns values in the discretized state space, S2, with ε

precision.

g2(s1
t ,s

2
t ,a

1
t ,a

2
t )= s2

t+1 = round
(
(s2

t −δC)(a1+
t +a1−

t )+a2
t + s2

t (M−a1+
t −a1−

t −a2
t )

M

)
. (3.4)

In the first term in the numerator of Equation (3.4), we multiply the summation of the num-

ber of recharged (a1+
t > 0) and discharged (a1−

t > 0) batteries by the reduced average capacity

(s2
t −δC) due to the recharging/discharging actions. The second term adds the a2

t replaced batter-

ies with 100% capacity. The third term maintains the same capacity for batteries not recharged,

discharged, and replaced. These terms are all averaged over the M batteries in the swap station.

The system enters the absorbing state 0 ∈ S2 when the average capacity is less than θ. To discour-

age entrance into this absorbing state, no recharging, discharging, swapping, or replacement is

allowed. This setting ensures that swap stations should take appropriate actions before allowing
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the average capacity to drop below θ. Thus, the transition of the second dimension of the state is

precisely defined with Equation (3.5).

f 2(s1
t ,s

2
t ,a

1
t ,a

2
t ) = s2

t+1 =

 g2(s1
t ,s

2
t ,a

1
t ,a

2
t ) if g2(s1

t ,s
2
t ,a

1
t ,a

2
t )≥ θ,

0 otherwise.
(3.5)

In Equation (3.6), we define the probability of transitioning from state st = (s1
t ,s

2
t ) in epoch

t to the state j = ( j1, j2) in epoch t +1 when action at = (a1
t ,a

2
t ) is taken.

p( j1, j2 | s1
t ,s

2
t ,a

1+
t ,a1−

t ,a2
t ) =



ps1
t +a2

t +a1+
t −a1−

t − j1 if a2
t +a1+

t < j1 ≤ s1
t +a2

t +a1+
t −a1−

t and

j2 = f 2(s1
t ,s

2
t ,a

1
t ,a

2
t ),

qs1
t +a2

t +a1+
t −a1−

t − j1 if j1 = a2
t +a1+

t and j2 = f 2(s1
t ,s

2
t ,a

1
t ,a

2
t ),

0 otherwise.

(3.6)

We define p j = P(Dt = j) and qu = ∑
∞
j=u p j = P(Dt ≥ u). Each probability in Equation

(3.6) depends on the number of batteries swapped, i.e., s1
t + a2

t + a1+
t − a1−

t − j1 (see Equation

(3.3)). When no batteries are swapped in epoch t, the station still has s1
t + a2

t + a1+
t − a1−

t fully

charged batteries at epoch t + 1. Instead, if all available fully-charged batteries in epoch t are

swapped, the station will have a2
t +a1+

t fully charged batteries at epoch t +1, which are the result

of the a2
t replaced and a1+

t recharged batteries in epoch t.

In Equation (3.6), the probability of transitioning to another state is non-zero only when

Equation (3.5) is satisfied. When the transition probability is P(Dt = s1
t + a2

t + a1+
t − a1−

t − j1),

the demand for swaps is less than or equal to the number of full batteries available for swapping

(as in condition 1 of Equation (3.6)). Alternatively, when the demand for swaps is greater than

the number of available full batteries, the state transitions according to the cumulative probability

P(Dt ≥ s1
t + a2

t + a1+
t − a1−

t − j1). If Equation (3.5) is not satisfied, j1 is lower than the total

number of batteries recharged and replaced (a2
t + a1+

t ), or j1 exceeds than the maximum number

of fully charged batteries, s1
t +a2

t +a1+
t −a1−

t , the probability of transition is zero.
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To clarify the transition probability function, we illustrate using an example. Consider the

case when at epoch t, the swap station has 80 full-batteries and 20 depleted batteries in inven-

tory (i.e., M = 100,s1
t = 80), the average battery capacity equals 0.85, and we take the action to

recharge 10 batteries (i.e., a1
t = a1+

t = 10) and replace 5 batteries (i.e., a2
t = 5). For this example,

we assume recharging or discharging for one time period results in a capacity degradation equal

to 0.01 (i.e., δC = 0.01) and the discretized capacity increment is also 0.01 (i.e., ε = 0.01). If

there is no demand for battery swaps (i.e., Dt = 0), at epoch t +1 the station will have 95 full bat-

teries with a discretized average capacity equal to 0.86. Thus, the probability of transitioning to a

state with more than 95 full batteries or an average capacity not equal to 0.86 is zero. Contrarily,

if the demand for swaps is 80 or more (i.e., Dt ≥ 80), then all full batteries in inventory will be

swapped and the number of full batteries at at epoch t + 1 equals a2
t + a1+

t = 10+ 5 = 15. Thus,

the probability of transitioning to a state with less than 15 full batteries is zero. Further, the prob-

ability of transitioning to a state with exactly 15 full batteries and average capacity equal to 0.86

indicates that demand for swaps met or exceeded s1
t −a1−

t = 80. Lastly, consider the case that we

transition to a state with 30 full batteries and average capacity equal to 0.86. The 30 full batteries

is between the minimum, a2
t + a1+

t = 15, and maximum, s1
t + a2

t + a1+
t − a1−

t = 95 number of

full batteries; thus, we know that a2
t + a1+

t = 15 batteries arrive at the end of t indicating that we

swapped s1
t + a2

t + a1+
t − a1−

t − j1 = 80+ 5+ 10− 0− 30 = 65 batteries at epoch t. As follows,

the probability of transitioning to this state equals the probably that demand for swaps equals 65,

i.e., P(Dt = 65).

The actions taken seek to maximize the expected total reward. The expected total reward

depends on the immediate reward earned at each epoch. Specifically, the immediate reward is the

profit earned. In our setting, swap stations earn revenue from swapping and/or discharging fully-

charged batteries and incur costs to recharge and/or replace depleted batteries. We calculate the

immediate reward at epoch t according to the state of the system st = (s1
t ,s

2
t ), the taken action

at = (a1
t ,a

2
t ), and the future state st+1 = (s1

t+1,s
2
t+1). Specifically, the immediate reward is calcu-

lated according to Equation (3.7),
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rt(st ,at ,st+1) = ρs2
t
(s1

t +a2
t +a1+

t −a1−
t − s1

t+1)−Kta1+
t + Jta1−

t −Lta2
t , (3.7)

where s1
t +a2

t +a1+
t −a1−

t − s1
t+1 equals the number of batteries swapped and the time-dependent

recharging cost, discharging revenue, and replacement cost are defined as Kt , Jt , and Lt , respec-

tively. We note that SAIRPs consider two aspects of a battery, charge and capacity. In this model,

the fully-charged/empty batteries are not necessarily full-capacity as they might already be de-

graded due to the previous recharge/discharge actions. Thus, the average capacity of batteries can

take a value less than 100%. We assume the realized swap revenue depends on the current aver-

age capacity. Thus, we define ρs2
t

to be the capacity-dependent revenue per battery swapped in

Equation (3.8).

ρs2
t
= β

(
1+

s2
t −θ

1−θ

)
=

β(1+ s2
t −2θ)

1−θ
. (3.8)

We set β ≥ maxt∈T Jt to ensure the swap station is profitable with each battery swapped

(i.e., the swap revenue is no less than the maximum recharging cost). We use the average capacity

of batteries as the indicator of the quality of batteries in the station when developing the revenue

per swap function. Revenue per battery swap is a linear function of the average capacity of batter-

ies in the station. This setting ensures that the stations can gain higher revenue when the average

capacity is higher. It also provides an incentive for swap stations to replace batteries for higher

revenue and benefits customers by receiving higher quality batteries. In the design of Equation

(3.8), when the average capacity is at the lowest operational value (s2
t = θ), the revenue per swap

ρs2
t

equals β, which is at least equal to the maximum price paid for recharging batteries. When

the swap station has an average battery capacity equal to 1, s2
t = 1, then ρs2

t
= 2β which equates

to a higher revenue earned due to higher customer satisfaction from swapping a higher quality

battery. Hence, in our design, the revenue per swap has a value between [β,2β] depending on the

average capacity of batteries in the station at time t. We calculate the terminal reward in Equation

(3.9) as the potential revenue from swapping all remaining fully charged batteries provided the
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average battery capacity is at least θ.

rN(sN) =

 ρs2
N

s1
N if s2

N ≥ θ,

0 otherwise.
(3.9)

Using the probability transition function and the immediate reward, we define the immedi-

ate expected reward in Equation (3.10).

rt(st ,at) = ∑
st+1∈S

[
pt(st+1 | st ,at)(ρs2

t
(s1

t +a2
t +a1+

t −a1−
t − s1

t+1))
]
−Kta1+

t + Jta1−
t −Lta2

t .

(3.10)

We define the decision rules, dt(st) : st → Ast , as a function of the current state and time.

Our decision rules determine the selected action at ∈ Ast when the system is in st at decision

epoch t ∈ T . In our problem setting, we use deterministic Markovian decision rules because we

choose which action to take provided we know the current state (Puterman, 2005). A policy π

consists of a sequence of decision rules (dπ
1 (s1),dπ

2 (s2), . . . ,dπ
N−1(sN−1) for all decision epochs.

The expected total reward of policy π, denoted υπ
N(s1) when the system starts in state s1 at time

t=1 is calculated according to Equation (3.11).

υ
π
N(s1) = Eπ

s1

[
N−1

∑
t=1

rt(st ,at)+ rN(sN)

]
. (3.11)

In Section 3.5, we describe our solution methodology to find optimal/near-optimal solu-

tions to maximize the expected total reward of the stochastic SAIRPs.

3.4 Theoretical Results

In this section, we prove theoretical properties regarding the structure of the optimal SAIRP pol-

icy and value function. First, we show that the stochastic SAIRPs violate the sufficient conditions

for the optimality of a monotone policy in the second dimension of the state. Second, we prove

the existence of a monotone optimal policy for the second dimension of the state in a special case

of the SAIRP. Lastly, we prove the monotonicity of the value function when considering the first,
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second, and both dimensions of the state. In the remainder of this section, we present the main

theorems and point the reader to the appendices for the formal mathematical proofs.

3.4.1 Monotone Policy

Our investigation in proving the structure of an optimal policy for the SAIRP is motivated by the

desire to exploit efficient algorithms that require less computational effort to find optimal policies

and increase the ability to solve larger problem instances (Puterman, 2005). Widrick et al. (2018)

examined the problem of managing a battery swap station when only considering battery charge,

or equivalently the first dimension of our MDP model. They proved the existence of a monotone

optimal policy when demand is governed by a non-increasing discrete distribution. In our inves-

tigation of the second dimension, our intuition was that monotonicity would be preserved for the

stochastic SAIRP. Informally, this equates to the optimal policy indicating to replace more bat-

teries when the average capacity is lower. However, in Lemma 1, we prove a counter-intuitive

result that, in general, the sufficient conditions for the optimality of a monotone policy in the sec-

ond dimension of the state do not exist for the stochastic SAIRPs. Instead, we are able to prove

the existence of a monotone optimal policy for the second dimension of the state when an upper

bound is placed on the number of batteries replaced at the swap station in each decision epoch.

First, we formally define a monotone optimal policy. A non-increasing monotone policy π

has the property that for any si,s j ∈ S with si ≤ s j (for multi-dimensional states, please see the

partial ordering definition in Definition 2 of Appendix 3.B), there exist decision rules dπ
t (si) ≥

dπ
t (s j) for each t = 1, . . . ,N−1 (Puterman, 2005). The sufficient conditions for the existence of a

monotone optimal policy in the second dimension of the state are as follows (Puterman, 2005).

1. rt(s2
t ,a

2
t ) is non-decreasing in s2

t for all a2
t ∈ A′.

2. qt(k | s2
t ,a

2
t ) is non-decreasing in s2

t for all k ∈ S2 and a ∈ A′.

3. rt(s2
t ,a

2
t ) is a subadditive function on S2×A′.

4. qt(k | s2
t ,a

2
t ) is subadditive on S2×A′ for every k ∈ S2.
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5. rN(sN) is non-decreasing in s2
N .

Where A′ includes all possible actions for the second dimension of the action space. Specifically,

A′ = {∪st∈SA2
st
}. We note that qt(k | s,a) = ∑

∞
j=k pt( j | s,a), which is the sum of the probabilities

from k to ∞, in general. For the second dimension, we have qt(k | s2
t ,a

2
t ) = ∑

∞

j2=k pt( j2 | s2
t ,a

2
t ).

In Lemma 1, we prove that one of the aforementioned conditions is not satisfied for stochas-

tic SAIRPs. In Theorem 1, we are able to prove that a monotone optimal policy in the second

dimension of the state does exist when there is an upper bound on the number of batteries re-

placed in each decision epoch. We refer the reader to Appendix 3.A for full details of the proof of

Lemma 1 and Theorem 1.

Lemma 1. The stochastic SAIRPs violate the sufficient conditions for the optimality of a mono-

tone policy in the second dimension of the state.

Theorem 1. There exist optimal decision rules d∗t : S→ Ast for the stochastic SAIRP which are

monotone non-increasing in the second dimension of the state for t = 1, . . . ,N−1 if there is an

upper-bound U on the number of batteries replaced at each decision epoch where U = Mε

2(1−s2
t )

,

when M is the number of batteries at the swap station and ε is the discretized increment in capac-

ity.

We provide an example to explain the optimality of the monotone policy in the second di-

mension of the state. Consider a swap station with M = 100 batteries, a discretized capacity in-

crement ε = 0.01, and a replacement threshold θ = 0.8. The monotone policy is optimal when

the maximum number of batteries replaced per epoch, U , is between 2 and 50. The specific value

between 2 and 50 depends on the value of the average capacity. If the average capacity s2
t = 0.8,

then U = 100(0.01)
2(1−0.8) = 2 whereas if s2

t = 0.99, then U = 100(0.01)
2(1−0.99) = 50. We note that when s2

t =

1, then U = 100(0.01)
2(1−1) = ∞ meaning there is no limit on the number of replaced batteries. How-

ever, as the average capacity is already at the highest value of 1, it is not advantageous for swap

stations to incur the cost for replacing a full capacity battery after which the average capacity will
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remain at 1. Although there is a restriction on the number replaced in each epoch, there are no

restrictions on the consistent replacement of batteries over multiple consecutive decision epochs.

3.4.2 Monotone Value Function

We now investigate the structure of the value function for stochastic SAIRPs. Although proving

that a value function has a monotone structure is a weaker result than proving the structure of an

optimal policy, it enables the application of computationally efficient solution methods. We prove

that the MDP value function for the stochastic SAIRP is monotone non-decreasing in the first,

second, and both dimensions. These results directly motivate our selection of efficient approxi-

mate dynamic programming algorithms.

A value function V (s) is monotone non-decreasing in state s, if for any si,s j ∈ S with si≤ s j

we have V (si)≤V (s j) for any given action in any decision epoch t (Papadakia and Powell, 2007;

Jiang and Powell, 2015). The MDP value function for the stochastic SAIRP is given in Equation

(3.12) which is comprised of the immediate expected reward (as given by Equation (3.7)) and the

transition probabilities (as given by Equation (3.6)). In Theorem 2, we show that the value func-

tion is monotone in s2
t . This means for any given action, in each decision epoch t, as the average

capacity increases, the MDP value function will not decrease.

Theorem 2. The MDP value function of the stochastic SAIRP is monotonically non-decreasing in

s2
t .

In Theorem 3, we prove that the value function is monotone in s1
t . This means for any

given action in each decision epoch t, as the number of fully-charged batteries increases, the

MDP value function will not decrease. If the demand for the MDP model is governed by a non-

increasing discrete distribution, this result is implied from the result of Widrick et al. (2018).

However, we strengthen the result as we do not require a non-increasing discrete distribution in

Theorem 3.

Theorem 3. The MDP value function of the stochastic SAIRP is monotonically non-decreasing in

s1
t .
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When considering both dimensions simultaneously, in Theorem 4, we prove that the value

function is monotone in (s1
t ,s

2
t ).

Theorem 4. The MDP value function of the stochastic SAIRP is monotonically non-decreasing in

(s1
t ,s

2
t ).

In a multi-dimensional setting, we need to define the concepts of partial ordering and par-

tially non-decreasing function, which are given by Definitions 2 and 3 in Appendix 3.B. We also

refer the reader to Appendix 3.B for full details of the proofs of Theorems 2, 3, and 4.

3.5 Solution Methodology

This section presents the solution methods used to solve the stochastic Scheduling, Allocation,

and Inventory Replenishment Problem (SAIRP). First, we briefly describe the dynamic pro-

gramming solution methods with the backward induction (BI) approach to provide exact solu-

tions when the problem is not large-scale. Next, we present the approximate dynamic program-

ming methods to overcome the curses of dimensionality and yield high-quality solutions for the

stochastic SAIRPs.

3.5.1 Exact Solution Method: Dynamic Programming

Backward induction (BI) is an exact solution method to find optimal policies for the Markov De-

cision Process (MDP) problems (Puterman, 2005). Our goal is to find the optimal policy π∗ that

maximizes the expected total reward given by Equation (3.11). We attribute the optimal value

function, V ∗t (st), to the optimal policy. We calculate the optimal value based on cumulative val-

ues of taking the best actions onward from decision epoch t to N when in state st at time t (see

Equation (3.12)). We use Bellman equations as presented in Equation (3.12) to find optimal poli-

cies and corresponding optimal value functions for t = 1, . . . ,N−1 and st ∈ S.

Vt(st) = max
at∈Ast

{
rt(st ,at)+ ∑

j∈S
pt( j | st ,at)ut+1( j)

}
. (3.12)
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The BI algorithm starts from t = N and sets VN(sN) = rN(SN) according to Equation (3.9).

Then, it finds the actions that maximize Vt(st) for every state st moving backward in time (t =

N− 1, . . . ,1) using Equation (3.13). The optimal expected total reward over the time horizon is

V ∗1 (s1) where s1 is the state of the system at the first decision epoch.

a∗st ,t = arg maxat∈Ast

{
rt(st ,at)+ ∑

j∈S
pt( j|st ,at)ut+1( j)

}
. (3.13)

Now, we clarify terms used in the remainder of this chapter. A sample path of demand is

the collection of a realized demand (uncertainty element) per time period generated from a given

probability distribution. A sample path of state is comprised of the collection of consecutive vis-

ited states, one per time period. To calculate the visited states, we need the decision rule returned

by a solution method for all states or visited states over time, the sample path of demand, and the

present state. Using this information, we use the state transition functions (Equations (3.3) and

(3.5)) to calculate the sample path of state. A sample path of policy is the set of consecutive de-

cision rules of the visited states of the system. We use the term instance to refer to an example of

stochastic SAIRP, specifically when we discuss the size of stochastic SAIRPs. The term scenario

is used to refer to examples within our space-filling designed experiment that include different

values for parameters. These values are generated such that to cover the designed experiment

space (see Section 3.6.3).

3.5.2 Approximate Dynamic Programming Solution Methods

In this section, we outline our monotone approximate dynamic programming algorithm with

regression-based initialization (MADP-RB). Approximate dynamic programming is a proven so-

lution method that overcomes the curses of dimensionality (Powell, 2011). Using the foundation

of the monotone approximate dynamic programming algorithm proposed by Jiang and Powell

(2015), we make enhancements by exploiting our theoretical results to intelligently approximate

98



the initial value function approximation and update the approximation with each algorithmic iter-

ation.

The stochastic SAIRP suffers from the curses of dimensionality considering the size of

all MDP elements together. In Chapter 2, we showed that the size of the the state space, the ac-

tion space, the transition probability function, and the optimal policy are O(M(1−θ)
ε

), O(M2),

O(M4N(1−θ

ε
)2), and O(MN 1−θ

ε
), respectively, where M, N, ε, and θ are the number of batter-

ies, the time horizon, the capacity increment, and the replacement threshold, respectively. For

instance, the size of the transition probability function is O(1015) for a realistic-sized problem

with M = 100 batteries, planning over a one month time horizon in one hour increments N = 744

with discretized battery capacity in increments of ε = 0.001. Due to these large sizes, standard

MDP solution methods, such as backward induction (BI), were ineffective in solving realistic-

sized instances of the stochastic SAIRP (see Chapter 2). Although there are many different ADP

algorithms and approaches (Powell, 2011), there is no standard method to link the best algorithm

to solve any particular problem. However, using the problem structure is good practice when

developing efficient and effective algorithms. As we proved in Theorems 2, 3, and 4, the value

function is monotonically non-decreasing in both dimensions, s1
t and s2

t . Hence, it is reasonable

to utilize and enhance the monotone approximate dynamic programming algorithm proposed by

Jiang and Powell (2015). This algorithm has already shown promising performance for several

application areas (Jiang and Powell, 2015). We proceed by outlining the core steps of (Jiang and

Powell, 2015)’s monotone approximate dynamic programming (MADP) algorithm while high-

lighting our additions and changes to create the monotone approximate dynamic programming

algorithm with regression-based initialization (MADP-RB). To aid with the explanation, in Al-

gorithm 3, we outline the MADP and underline the enhancements for our MADP-RB. First, we

introduce the notation necessary for the ADP algorithms in Table 3.1.
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Table 3.1: Notation used in the ADP algorithms.

Notation Description

maxIteration+1 The maximum number of regression-based initialization iterations

M The starting number of batteries used for the small SAIRPs solved using BI

T The time horizon in the small SAIRP

uiter
t (st) The optimal value of being in state st at iteration iter and time t

τ The maximum number of core ADP iterations

V n
t (st) The optimal value of being in state st at time t for iteration n

V n
t (st) The approximate value of being in state st at time t for iteration n

υ̂n
t (s

n
t ) The observed value of state sn

t at time t for iteration n

zn
t (s

n
t ) The smoothed value of being in state st at time t for iteration n

3.5.2.1 Monotone ADP with Regression-Based Initialization

In this section, we describe the core steps of the MADP algorithm proposed by Jiang and Powell

(2015) and our enhancement using regression-based initialization in Algorithm 3. We display our

enhancements in Algorithm 3 with underlines to make it more clear for the reader. We proceed

by explaining the implementation of the algorithm.

The Monotone ADP with Regression-Based Initialization (MADP-RB) has two main steps.

In the first step, we intelligently initialize the value function approximation using a linear regres-

sion function. The coefficients of the regression function are derived from feeding the optimal so-

lutions of small SAIRPs. The second step is the core MADP algorithm that consists of updating

the approximated values of visited and non-visited states over time through an iterative process.

The states are visited over time at each iteration using the information of the present state, real-

ized uncertainty, and taken action. The approximated value of the visited state is updated based

on the observed value and previous approximated value. At each iteration, the monotonicity oper-

ator updates the approximated value of the non-visited states over time. We proceed by explain-

ing each step in detail.

The first step of the MADP algorithm is to initialize the value function approximation for
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all decision epochs such that the monotonicity of the value function is preserved. Commonly, this

is done by assigning a constant value, e.g., 0, to V 0
t (st) for all st ∈ S and t = 1, . . .N−1. However,

using 0 or any constant value fails to exploit how the monotone value function changes based on

state and time. Thus, our enhancement to the MADP algorithm is to intelligently approximate the

initial value function approximation by exploiting the monotonicity of the value function. To do

so, we iteratively calculate the optimal value function for small but increasing problem instances.

Then, we use linear regression to approximate the initial value function for larger problem in-

stances. To further explain this enhancement, we outline how these steps can be applied to the

stochastic SAIRP.

In the stochastic SAIRP, as M and T increase, the problem suffers from the curses of di-

mensionality. For instance, the transition probability is O(1015) for a realistic-sized problem

when M = 100, N = 744, and ε = 0.001. Thus, we first optimally solve small instances of the

stochastic SAIRP with small numbers of batteries M � M and time periods T � T . We repeat

this step by slowly increasing the number of batteries by one until we reach a user defined max-

imum number of iterations (or until it is computationally infeasible to optimally solve small in-

stances with BI). For each instance, we determine the optimal value function and the associated

trends based on changes in the state, time, and number of batteries. From the value functions for

smaller instances of the problem, we use linear regression on the decision epoch (t), the state of

the system (st), and the number of batteries in the station (M) to approximate the initial value

function approximation for larger problem instances. See lines 1-6 in Algorithm 3 that describe

this regression-based enhancement which are new and distinct from Jiang and Powell (2015). We

complete the initialization phase in line 7, where we set the approximate value for the terminal

epoch for all states and all core iterations n = 1, . . . ,τ to the terminal reward (see Equation (3.9)).

The algorithm iteratively proceeds in accordance with (Jiang and Powell, 2015) in lines

8-12. With each iteration, we select the best action starting from a random initial state (line 10)

and move forward in time (line 11) using a sample observation of uncertainty and the approxi-

mate value of the future state, V n−1
t+1 ( j) (line 12). Specifically, we pick the best action (line 12)
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Algorithm 3 Monotone Approximate Dynamic Program with Regression-based Initilization

1: Initialize M batteries and T time periods, where M�M and T � T .
2: Set iteration counter iter = 0.
3: for iter ≤MaxIterations do
4: uiter

t (st)← Use backward induction to find the value function for the problem with M+ iter
batteries and T time periods, where M�M and T � T .

5: end for
6: Initialize V 0

t (st) using linear regression on the combined uiter
t (st) for all states at t = 1, . . . ,N−1.

7: Set V n
N(s) = rN(s) for s ∈ S and n = 1, . . . ,τ

8: Set n = 1 n≤ τ

9: Select initial state Sn
1

10: for t = 1, . . . ,N−1 do
11: Sample an observation of the uncertainty, Dt , determine optimal action an

t and future value υ̂n
t (s

n
t ).

12: Smooth the new observation with the previous value,

zn
t (s

n
t ) = (1−αn)V

n−1
t (sn

t )+αnυ̂
n
t (s

n
t ) (3.14)

13: Perform value function monotonicity projection operator as in Jiang and Powell (2015)
14: Determine next state, Sn

t+1
15: end for
16: Increment n = n+1

using Equation (3.15) and store the current observed value using Equation (3.16). In Equation

(3.16), we use the previous approximation of the future states, V n−1
t+1 (st+1), as the approximation

of E(Vt+1 | st ,at).

an
st ,t = argmax

at∈Ast

{
rt(st ,at)+V n−1

t+1 (st+1)
}
. (3.15)

υ̂
n
t (s

n
t ) = max

at∈Ast

{rt(st ,at)+E(Vt+1 | st ,at)} (3.16)

In line 13, we use a combination of the current value function approximation, V n−1
t (sn

t ),

and the current observed value, υ̂n
t (s

n
t ) to calculate the smoothed value of being in state st , zn

t (s
n
t ).

This combination is weighted based on a stepsize function, αn. Traditional stepsize functions, in-

cluding 1/n (Powell, 2011) and harmonic (Powell, 2011; Rettke et al., 2016; Meissner and Senicheva,

2018), usually smooth the value function using pure observations for early iterations and grad-

ually put less weight on the observation and put more on the approximations as the number of
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iterations increases.

Next, we apply the monotonicity projection operator as defined in Jiang and Powell (2015)

(line 14). We note that the algorithm stores the value of all the states, and the monotonicity opera-

tor adjusts the value of non-visited states according to the value of the visited state. It ensures that

no approximated value violates the monotonicity of the value function. For instance, consider the

visited state st and an arbitrary state s̃t such that st ≤ s̃t and V t(st) > V t(s̃t). The monotonicity

operator increases the approximation for s̃t up to V t(st) and preserves the monotonicity property

of the value function. Similarly, we decrease the approximation for lower states (i.e., s̃t ≤ st) with

higher value approximations than the visited state. Lastly, the algorithm moves forward in time to

the next decision epoch until the last decision epoch, wherein a new iteration begins. Every new

iteration starts from an arbitrary state and steps forward in time until the input number of itera-

tions are completed.

3.5.2.2 Stepsize Function

Finding a good stepsize is a problem-dependent procedure that requires empirical experiments

(Powell, 2011). A stepsize function, αn is used to scale the current observed value and (1−αn) is

used to scale the current value function approximation. Because the value function approximation

is often initially set to constant values and therefore is not informative, many stepsizes start with

higher αn values that emphasize the observed value. Then, as more iterations are conducted, αn is

decreased in order to place a greater emphasis on the value function approximation. We note that,

a stepsize function needs to satisfy the three basic conditions given by Powell (2011) to guarantee

convergence. A basic example of such stepsize function is 1/n. Our preliminary experiments show

that using the 1/n stepsize function is not appropriate as the rate of decreasing αn over iterations

is too fast for SAIRPs. Instead, we use the harmonic stepsize function (Powell, 2011) that uses a

user-defined parameter, w, to controls the rate of decrease over iterations. In Equation (3.17), we

provide the formal definition of the harmonic stepsize function.
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αn =
w

w+n−1
(3.17)

Additionally, we use the Search-Then-Converge (STC) stepsize rule that can control the

rate of decrease in αn by appropriately setting the parameter values (Powell, 2011). Hence, the

STC function is suitable for cases like ours that need an extended learning phase (Powell, 2011).

The STC rule was initially proposed by Darken and Moody (1992); however, we use the general-

ized STC formula given by George and Powell (2006) presented in Equation (3.18).

αn = α0

(
µ2
n +µ1

)
(

µ2
n +µ1 +nζ−1

) (3.18)

The harmonic and STC stepsize functions follow the common process of weighting the

observation higher earlier and decreasing this weighting with each iteration. The harmonic and

STC stepsize functions are classified as deterministic as their values do not change based on the

observations. In contrast, adaptive stepsize functions are sensitive to changes in the observations.

To broaden our investigation, we also use the adaptive stepsize first introduced in George and

Powell (2006) in Section 3.6.

3.6 Computational Results

In this section, we present the results and insights from computational experiments on differ-

ent SAIRP instances. First, we present the data used to solve modest and realistic-sized SAIRP

instances. We clarify how we distinguish modest, realistic-sized, and small SAIRP instances.

We denote SAIRP instances as modest if they are optimally solvable using backward induction

(BI) (i.e., 7 batteries total and only a one-week time horizon). We denote SAIRP instances as

realistic-sized if they include larger numbers of batteries and the system is considered for longer

time horizons (i.e., 100 batteries over a one-month time horizon). Due to the curses of dimen-
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sionality, the realistic-sized instances are not optimally solvable using BI. Within our monotone

approximate dynamic programming with regression-based initialization solution procedure, we

initially solve small SAIRP instances that are optimally solvable using BI in a matter of minutes

(i.e., 2, 3, or 4 batteries over a one-week time horizon). After explaining the data for these in-

stances, we proceed by explaining in detail the regression-based initialization used in MADP-RB,

the Latin hypercube sampling (LHS) designed experiments, solution method comparison, and

solutions/insights for both the modest and realistic-sized SAIRPs.

3.6.1 Explanation of Data

For the computational results, we use realistic data representing the costs to recharge, discharge,

and replace a battery, the demand, and the battery degradation rate. To avoid redundancy in pre-

senting similar insights for both EVs and drones, we focus on drones. First, we present the asso-

ciated data, and then we show the results of a comprehensive set of experiments in Sections 3.6.3

and 3.6.4.

First, we set parameters associated with drone battery costs. We set the cost to recharge a

battery using the historical power prices from the Capital Region, New York area in 2016 (Na-

tional Grid, 2016). We use the time frame with the highest total power price for the modest and

realistic-sized instances with the time horizon of a week and a month, respectively. Hence, as dis-

played in Figure 3.2, we select December 12-18 and the month of December for the modest and

realistic-sized problems, using dashed and solid lines, respectively. We multiply these historical

time-varying power prices by the maximum capacity of a battery to calculate the non-stationary,

time-varying costs to recharge a battery. We assume a drone battery has a maximum capacity

equal to 400 Wh as in the DJI Spreading Wing S1000 battery (DJI, 2019). We assume the rev-

enue earned from discharging a battery back to the grid is equal to the charge price. Consistent

with level 2 or 3 battery charging (Morrow et al., 2008; Ribbernick et al., 2015; Tesla, 2017),

we assume a depleted (full) battery takes one hour (i.e., time between two consecutive decision

epochs) of recharging (discharging) to become full (depleted). We use the purchase price for bat-
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teries to calculate the cost of battery replacement. Assuming the price per kWh of a battery is ap-

proximately $235 (Romm, 2017), we set the replacement cost of a drone battery to be $100. This

calculated replacement cost serves as the baseline price, which is used and varied in the Latin

hypercube designed experiments in Section 3.6.3.

Figure 3.2: Power price fluctuations over December (realistic-sized SAIRP) and the week of Dec.
12-18 (modest Size SAIRP), 2016 in the Capital Region, New York.

In the absence of real data representing the number of customers demanding swaps at the

station over time, we use the methodology of Chapter 2, Widrick et al. (2018), and Nurre et al.

(2014) to derive the mean demand at the swap station over time. We assume the mean demand,

λt , is equivalent to the historical arrival of customers at Chevron gas stations (Nexant, Inc. et al.,

2008). Using λt , we assume the demand follows a Poisson distribution where t is the hour of the

day. We scale λt to be in line with the number of batteries in the problem instance. Let λ′t be the

scaled demand for M′ number of batteries. Because λt is originally used for M = 7, we calculate

λ′t values by multiplying M′/7 by λt . In Figure 3.3, we display the mean demand by hour over a

one-week time horizon for the modest instances with M = 7. For longer time horizons, we as-

sume the mean arrival of demand repeats every week.

We use existing studies to calculate the battery degradation rate per cycle. Although there

are several factors that influence the battery degradation process, research states that the capac-

ity fading has a linear behavior, especially in the first 500 cycles (Dubarry et al., 2011; Hussein,

2015; Lacey et al., 2013; Ribbernick et al., 2015). We note that the standard number of cycles
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Figure 3.3: Mean demand for swaps over time.

for a drone Lithium-ion battery is 300 to 500 (δC ≈ 0.1%) (Battery University, 2017). We select

a higher value for the degradation rate to account for the elements that accelerate the degrada-

tion process, such as temperature from continuous use and recharging in swap stations. Thus,

we select δC = 2% as the baseline degradation rate and vary this value in our computational ex-

periments to capture how changes in the degradation rate impact the policy and performance of

the system. We note, the model is robust in that future experiments can be conducted for differ-

ent baseline δC values to represent different degradation characteristics. In general, the industry-

accepted battery end of life value is 80% of capacity. As follows, we set the replacement thresh-

old θ = 80% (Wood et al., 2011; Debnath et al., 2014). We note that s2
t < 80% is equivalent to the

absorbing state of the system s2
t = 0 wherein the feasible action set is A(s1

t ,0)
= {(0,0)}. Hence,

we can only replace batteries when the average capacity of batteries is not less than 80%.

3.6.2 Regression-Based Initialization

In this section, we explain our regression-based method to initialize the MADP-RB intelligently.

We examine the empirical experiments of small SAIRPs and detect that the value function of the

optimal policies Vt(st) is a function of the decision epoch (t), the state of the system (st), and the

number of batteries in the station (M). To clarify, we display the optimal values Vt(st) of scenario

6 from the Latin hypercube designed experiments presented in Section 3.6.3. We display two

consecutive decision epochs in Figure 3.4. In this example, we compute and show the optimal

Vt(st) when we solve small SAIRPs with M = 2,3,4.

As shown in Figure 3.4, the horizontal axis denotes the states, and the vertical axis shows
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the corresponding values. Among various techniques to estimate or forecast V 0
t (st), we want a

fast and simple method to generate and assign the initial approximations. Therefore, we propose

using the linear regression function presented in Equation (3.19) to initialize the approximated

value function, V 0
t (st).

V 0
t (st) = h0 +h1M+h2s1

t +h3s2
t +h4t (3.19)

Having solved the small SAIRPs, we find the appropriate values for h0, h1, h2, h3, and h4. In Sec-

tions 3.6.3 and 3.6.4, we demonstrate how the intelligent initial value function approximation

leads to superior results.

Figure 3.4: An instance of the optimal values over states in two consecutive decision epochs

3.6.3 Latin Hypercube Designed Experiments for Modest SAIRPs

In this section, we perform a Latin hypercube sampling designed experiment that is used to assess

the quality of the solution methods and to deduce insights for the battery swap station applica-

tion. A Latin hypercube sampling (LHS) designed experiment is a space-filling design with broad

application in computer simulation (Montgomery, 2008). Using the LHS configuration of Chap-

ter 2, with the test set of 40 scenarios generated to cover the design space of parameters, we first

quantify the performance of MBI, MADP, and MADP-RB.

In Chapter 2, we were able to optimally solve 40 modest LHS scenarios using BI. We run

all computational tests using a high-performance computer with four shared memory quad Xeon

octa-core 2.4 GHz E5-4640 processors and 768GB of memory. Even on a high-performance

computer, the largest scenario we were able to optimally solve using BI is with M = 7, ε = 0.001,
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and N = 168 which represents a full week of operations where each decision epoch is one hour.

Using these modest scenarios, herein, we are specifically concerned with quantifying the speed

and performance of MBI, MADP, and MADP-RB against a known optimal policy and optimal

expected total reward. The factors and their associated lower and upper bounds are defined as in

Table 3.3 (we refer the reader to Chapter 2 for a complete justification for how these low and high

values are calculated).

Memory Intensive Processing vs. Compute Intensive Processing. We can implement BI

and MBI in two ways. In the first way, which we denote ‘Memory Intensive’, we calculate and

store all of the transition probability values, so they are readily available throughout the execu-

tion of the algorithm. In the second way, which we denote ‘Compute Intensive’, we do not store

any probability values and instead calculate each probability value when needed for calculations

through the execution of the algorithm. As is indicated in their names, the Memory Intensive way

requires more memory and the Compute Intensive way requires more time as it needs to calcu-

late probability values numerous times. We implement and use both ways to solve the modest

SAIRP instances on a high-performance computer (HPC). We note, on this HPC, we have differ-

ent options. If we want to run the algorithm for longer, we have up to 72 hours of computational

time available per run with access to only 768 GB of memory using four shared memory quad

Xeon octa-core 2.4 GHz E5-4640 processors. However, if we want to use more memory, we have

access to 3 TB of memory (four shared memory Intel(R) Xeon(R) CPU E7-4860 v2 2.60GHz

processors) but only 6 hours of computational time. Thus, our results reflect these limitations.

In Table 3.2, we report the memory used and computation times for BI and MBI by in-

stance and method. We use red to highlight the instances where we either exceeded the memory

or time available and thus, do not find a solution. As is evident by the results, BI and MBI are

not tractable solution methods for even modest-sized SAIRPs. MBI does outperform BI; how-

ever, the computation time is significant even for M = 10. Although not shown in Table 3.2, when

M ≥ 12, MBI exceeds the 72-hour time limit. We note that our approximate solution methods do

not run into memory issues. Hence, we move forward with the faster processing method, Memory
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Intensive, to solve SAIRPs hereafter.

Table 3.2: Time and memory used for different size of SAIRPs using memory intensive and com-
pute intensive methods.

Memory Intensive Compute Intensive
Mem. BI Comput. MBI Comput. Mem. BI Comput. MBI Comput.

Size Used (GB) Time (h) Time (h) Used (GB) Time (h) Time (h)

M = 7 830 3.8 3.6 0.2 29.2 7.5
M = 8 1120 > 6 > 6 0.2 52.6 11.3
M = 9 2030 > 6 > 6 0.2 > 72 16.3

M = 10 > 3072 > 6 > 6 0.2 > 72 24.8

We computationally test MBI for the general case when no limits are placed on how many

batteries are replaced per decision epoch and the MADP and MADP-RB methods with the har-

monic, Search-Then-Converge (STC), and adaptive stepsize functions. For the core ADP pro-

cedure, we run the scenarios for τ = 500000 iterations. For these stepsize functions, based on

extensive computational experiments, we present the most favorable results. For the harmonic

stepsize function, Powell (2011) recommends that αn < 0.05 in the last iteration (τ = 500000).

Thus, we set ατ = 0.05 and w = 25000. We note, our tests show that the average optimality gap

increases when w is below 25000, thus we use w = 25000. For setting the STC parameters, we let

α0 = 1 to put the total weight on the observation at the beginning of the procedure. This results

in α1 = 1. We test six values for µ1 = 10, 100, 500, 600, 1000, and 10000, five values for µ2 = 10,

100, 1000, 10000, and 100000, and 3 values for ζ = 0.6, 0.7, and 0.8 to adjust the tuple of param-

eters (µ1,µ2,ζ). Over these 90 experiments, we observe that (µ1,µ2,ζ) = (600, 1000, 0.7) yields

the best result in terms of the average optimality gap. Thus, we use this tuple of parameter values

for the STC stepsize. For the adaptive stepsize function, we use the setting presented in Powell

(2011). In the adaptive stepsize, we need to estimate the bias and its variance. For smoothing the

observation and approximation of the bias and its variance, Powell (2011) recommends using a

harmonic stepsize that tends to a value between 0.05 and 0.1 in the last iteration. Consistent with

this recommendation, we use the harmonic stepsize function with w = 25000. For the MADP-

RB, we set M = 2, T = T = 168 hours, MaxIterations = 2 (i.e., 3 iterations are used as the input
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for the linear regression and value of iter can be 0, 1, and 2), and use BI to optimally solve the

scenarios for 2, 3, and 4 batteries. We then plug these results into Equation (3.19) to set the initial

approximation as in line 6 of Algorithm 3.

Table 3.3: Factors with associated low and high values for use in the Latin hypercube designed
experiment.

Factor Low High

Basic revenue per swap (β) 1 3

Replacement cost Lt 2 100

Battery degradation factor (δC) 0.005 0.02

Later, we will show that adding the regression-based initialization to MADP significantly

improves the quality of solutions. One can argue that initialization using any monotone value

function leads to the same result. We tested this argument using a set of arbitrary monotone value

functions and report the best-founded function. We call the algorithm with this arbitrary mono-

tone value function initialization MADP-M. We note that in MADP, the initial value function is

a constant and equals to V 0
t (st) = 0 ∀st ∈ S. In MADP-M, the monotone value function used for

initialization is V 0
t (st) =

(
β(1+s2

t −2θ)
1−θ

)
(s1

t ) + k(N − t) where k is a constant. The first term is a

monotone value function that equals the revenue generated from swapping all of the full batteries

when in state st at time t. The second term is a non-negative term with an opposite relationship

with time, which means the value of being in every state, st , is higher at earlier decision epochs.

The logic behind adding the non-negative term is as follows. The value of being in state st , Vt(st),

accumulates the reward from time t onward to the end of the time horizon, so we may expect to

gain a higher reward (profit) over a longer time. Although Vt(st) is not always decreasing in t, the

general trend is observed in the optimal values of small SAIRPs. Our tests show that MADP-M

with k ≤ 1 outperforms MADP. Then, we test k = 0.1,0.2, . . . ,1 and observe that MADP-M with

k = 0.5 yields the best result.

In Table 3.4, we summarize the 40 scenarios and the results comparing the approximate

methods to backward induction. Specifically, we calculate an average optimality gap over all
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scenarios, comparing MADP (monotone approximate dynamic programming), MADP-M (mono-

tone approximate dynamic programming algorithm with arbitrary monotone value function ini-

tialization), MADP-RB (monotone approximate dynamic programming algorithm with regression-

based initialization), and Monotone Backward Induction (MBI) to the optimal expected total re-

ward calculated using BI. In Equation (3.20) for each scenario of MADP, MADP-M, and MADP-

RB, we input the expected total reward of the last iteration into the expected reward of the ap-

proximated method. Then, we can calculate the average and maximum optimality gaps over 40

scenarios given by the last two rows of Table 3.4.

Optimality Gap =

∣∣∣∣Expected Reward BI - Expected Reward Approximated Method
Expected Reward BI

∣∣∣∣∗100%

(3.20)

Immediately evident from Table 3.4 is that MADP-RB led to significantly smaller average and

maximum optimality gaps than Jiang and Powell (2015)’s MADP, MADP-M, and MBI. Overall,

we find that MADP-M outperforms MADP in regards to the average optimality gap. This demon-

strates that initializing an ADP approach, even with an arbitrarily monotone value function does

result in benefit. However, we further find that when considering both the average and maximum

optimality gaps, MADP-RB significantly outperforms MADP-M. This demonstrates the signifi-

cant benefit of the regression-based initialization. We proceed by further analysis of MADP and

MADP-RB.

We note, MBI is a reasonable approximation for scenarios with high replacement costs, but

it does not provide competitive optimality gaps when replacement cost is low. However, when

we limit the number of batteries replaced in each epoch in accordance with Theorem 1, the op-

timality gap is 0.00%. MBI is smarter than BI and can save computational time when searching

for the best policies. In other words, we do not need to loop over all the actions when using the

monotonicity property of the optimal policy. However, as we showed, BI and even MBI are not

computationally tractable for realistically sized instances of SAIRPs, which necessitates using

approximate solution methods.
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As is expected, ADP methods take significantly less time than BI and MBI, which take on

average 3.8 hours and 3.6 hours, respectively. The computational time of MADP-RB includes

three major operations in Algorithm 3: (i) obtaining the data for the regression function in steps

1-5; (ii) deriving the regression function in step 6; and (iii) calculating the monotone ADP results

in steps 7-18. The average computational time for operations (i), (ii), and (iii) are 902 seconds

(0.25 hours), less than 1 second, and 1025 seconds (0.28 hours), respectively. We note that (iii) is

equivalent to the average computational time of MADP without the regression-based initializa-

tion. In other words, if we execute the initialization steps offline, there is no difference between

the computational time of MADP and MADP-RB as finding the coefficients of the regression

function takes less than a second. As the problem instance of the SAIRP increases significantly,

the required memory and time for BI and MBI also increase significantly. However, MADP and

MADP-RB enable us to solve realistic-sized SAIRP instances, as we demonstrate in Section

3.6.4.

Next, to compare the two ADP methods, we quantify a measure of convergence. One way

to evaluate an ADP method is to focus not only on the ending performance but also on the con-

vergence with each iteration. Thus, we calculate the average optimality gap over all iterations,

gs
m, for each method m and scenario s. In this calculation, we average the optimality gap for all

iterations (τ) as in Equation (3.21).

gs
m =

1
τ

τ

∑
i=1

∣∣Expected total reward at iteration i−Optimal expected total reward
∣∣

Optimal expected total reward
∗100% (3.21)

In Figure 3.5, we show the expected total reward (value) as a function of the number of it-

erations for MADP and MADP-RB with the three different stepsizes. The rows of Figure 3.5 cor-

respond to the harmonic, STC, and adaptive stepsizes, respectively. The columns correspond to

the scenarios which result in the low, average, and high gs
m in the LHS where m includes MADP

with the three stepsizes. Within each subfigure, we display three lines showing the progression
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Figure 3.5: Expected total reward convergence of MADP and MADP-RB using different Stepsize
functions vs optimal expected reward.

of the value by iteration for MADP and MADP-RB and the optimal value for the state s1, which

corresponds to the initial state of the swap station when all batteries are full and new with full

capacity. From the subfigures, we observe that MADP-RB consistently outperforms MADP in

regards to convergence.

Now, we explain the possibility of convergence to a value greater than optimal (see Figures

3.5-(I), 3.5-(II), and 3.5-(III)). The approximated value depends on two factors: (i) the previous

approximation value and (ii) the present observation value. These values are smoothed using a

stepsize function and set equal to the approximation value for the next iteration. Hence, as either

value can be greater than the optimal value in any iteration, the smoothed value can take a value

higher than the optimal value. For example, suppose the initial approximation is too high. In that

case, the smoothed value can be higher than the expected value of being in any state.

We also calculate the average optimality gap over iterations over scenarios for each method

m using Equation (3.22). In this equation, m = MADP and MADP-RB, and the total number of
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scenarios in our Latin Hypercube designed experiments is 40.

gm =
∑

40
s=1 gs

m

40
(3.22)

In Table 3.5, we display the average optimality gap over iterations over scenarios for MADP

and MADP-RB using different stepsize functions given by Equation (3.22). As shown in Table

3.5, the average optimality gap associated with MADP-RB for all stepsizes is remarkably lower

than MADP. This indicates that MADP-RB is able to more quickly converge to the optimal value

as compared to MADP.

Table 3.5: Comparison between convergence over iterations using MADP and MADP-RB.

Average Optimality Gap over Iterations over Scenarios (%)
MADP MADP-RB

Harmonic STC Adaptive Harmonic STC Adaptive

36.72 40.84 32.58 6.89 8.53 5.90

The required computation effort for both ADP approaches depends on, in part, the number

of iterations, τ. Thus, we analyze how the value function changes by iteration, which will inform

our choice of τ for future experiments. In Figure 3.5, we observe the value function plateaus be-

fore τ = 500000. Furthermore, we notice that both methods do not significantly change after

τ = 100000 in many scenarios. When examining all scenarios solved by MARP-RB, we calculate

the percentage difference between the value at τ = 100000 and τ = 500000. For the harmonic

stepsize, the average percentage difference is 1.03% and the maximum percentage difference is

8.86%. We obtained similar values for the STC and adaptive stepsize and scenarios; however, to

avoid redundancy, we proceed with an analysis of the harmonic stepsize.

As the value does not always convey the operational changes in the policy which deci-

sion makers implement, we proceed by analyzing the changes in policy at iteration 100000 and

500000. We use Equation (3.23) to compute the percentage difference in the policies using at

iteration 500000 and 100000 when 500 sample paths of realized demand generated. With this
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equation, we calculate the percentage difference between the summation of the recharging, dis-

charging, and replacement actions as we decrease the number of iterations for each scenario. We

then average this value over all scenarios. Specifically, in Equation (3.23), TCa
s and TCa

s repre-

sent the total number of actions, recharging/discharging (a = a1) and replacements (a = a2), for

scenario s using τ = 500000 and τ = 100000, respectively. That is, TCa1

s and TCa1
s denote the

total number of recharging/discharging actions and TCa2

s and TCa2
s are the total number of re-

placements for scenario s using 500000 and 100000 iterations, respectively. Our results show the

average percentage difference in the number of recharged/discharged and replaced batteries over

40 scenarios are 6% and 5%, respectively.

Average (%) difference for action a over all scenarios =
1

40

40

∑
s=1

∣∣TCa
s −TCa

s
∣∣

TCa
s

∗100%. (3.23)

Thus, as the changes in the value and policies are not significant, we use τ = 100000 in our future

computational experiments for solving realistic-sized SAIRPs in Section 3.6.4.

Exploiting the monotonicity property does significantly improve the quality of solutions

and convergence of ADP methods. To demonstrate this result, we run two versions of standard

approximate value iteration (AVI) without and with regression-based initialization, AVI and AVI-

RB, respectively. Adding the monotonicity property to AVI and AVI-RB converts them to MADP

and MADP-RB, respectively. In Table 3.6, we present a summary comparing AVI, MADP, AVI-

RB, and MADP-RB using the harmonic stepsize function and 500000 iterations. In this table, we

present the average optimality gap of AVI, MADP, AVI-RB, and MADP-RB over all 40 scenarios

of our Latin hypercube designed experiments (see Table 3.4 for full details of these 40 scenarios).

As is evident by these results, using the monotonicity property decreases the average optimality

gap. However, we observe that the regression-based initialization is even more impactful than

the monotonicity operator. By adding the monotonicity operator, the average optimality gap de-

creases by 10.31% (AVI to MADP) but by adding the regression-based initialization, the average

optimality gap decreases by 26.42% (AVI to AVI-RB). The lowest average optimality gap occurs
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with MADP-RB that has both the monotonicity property and regression-based initialization.

Table 3.6: Comparison between the average optimality gap of different approximate solution
methods.

Approximate Method AVI MADP AVI-RB MADP-RB

Average Optimality Gap (%) 41.17% 30.86% 14.75% 7.09%

3.6.4 Monotone ADP Results and Performance for Realistic-sized SAIRPs

In this next set of computational experiments, we focus on the ability to solve and deduce insights

from realistic-sized stochastic SAIRPs. We proceed by determining the parameters, summarizing

the results, including the expected total reward and computational times, presenting sample paths

of policies, and analyzing the relationship between the outputs and inputs of the experiments.

For the test instances, we solve all 40 scenarios of the designed experiment presented in

Section 3.6.3 using the realistic data summarized in Section 3.6.1. Specifically, we consider 100

batteries, a one-month time horizon with each decision epoch representing one hour, and scaled

mean demand λ′t = (λt)(M′/7) where M′ = 100 and λt is the original mean arrival of demand at

time t in line with the original modest-sized problem with M = 7. Due to the curses of dimen-

sionality, BI and MBI are not capable of solving these large problems; thus, we focus on the per-

formance of MADP and MADP-RB with τ =100000 iterations.

In Table 3.7, we present the expected total reward and required computational time for the

MADP and MADP-RB methods with harmonic, Search-Then-Converge (STC), and adaptive

stepsizes. The average computational time of MADP-RB is only 8 minutes longer than MADP

for all stepsize functions as a result of executing the regression-based initialization (see steps 1-

6 in Algorithm 3). We highlight the highest expected reward for each row of Table 3.7. We ac-

knowledge that the highest expected total reward does not always indicate the lowest optimality

gap; however, we use this as a metric of comparison in the absence of being able to determine the

optimal solution and value for these realistic-sized SAIRPs.
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The results are very clear and consistent. The MADP-RB value is always greater than

MADP for all stepsize functions and scenarios. Within MARP-RB, we observe that harmonic,

STC, and adaptive stepsize generate the highest expected total reward in 11, 3, and 26 scenarios,

respectively.

Table 3.7: Results of realistic-sized SAIRPs for the latin hypercube designed experiment.

MADP Expected Total Reward ($) MADP-RB Expected Total Reward ($)
Scenario Harmonic STC Adaptive Harmonic STC Adaptive

1 3468.3 2791.7 3639.3 6964.3 7303.6 7884.1
2 5404.1 4900.6 4773.9 7073.1 7622.2 7549.9
3 9324.8 4219.4 8788.3 15443.0 15840.8 16491.2
4 5397.1 3890.3 5836.5 8684.0 9645.6 9710.6
5 4783.1 4923.2 4986.2 10308.5 10597.4 11079.1
6 4824.0 2363.0 5443.4 7545.4 8123.5 8797.8
7 3779.6 4415.5 4422.3 5269.7 5176.2 5212.2
8 4479.5 3401.0 3521.3 8128.5 9336.6 9486.3
9 2087.0 2546.6 2730.5 6848.6 7446.5 7780.6
10 8461.4 8736.6 7297.4 22060.2 19707.0 20229.4
11 3684.1 3385.4 3749.2 6581.5 7463.9 7889.3
12 2888.5 2842.8 3357.9 5903.6 6052.8 5900.4
13 6248.1 4061.9 5994.1 11620.6 12228.4 12950.7
14 3253.2 2578.2 3426.1 7176.3 7258.9 7573.4
15 9983.3 9573.4 8814.8 16484.4 16326.9 16614.3
16 4446.9 3631.8 4474.7 7177.7 7417.1 7268.3
17 4789.0 3875.1 5372.4 7804.2 8601.2 8787.8
18 3958.3 3634.7 4291.3 6900.5 6998.8 7260.1
19 5855.0 4561.5 6722.5 10514.8 10892.3 12124.5
20 4090.8 3676.9 2051.8 7415.2 7501.5 7529.3
21 7545.6 5562.7 7116.9 10685.1 12764.6 13478.4
22 5454.8 5539.8 5699.1 33221.8 31557.5 32379.8
23 5629.3 5707.7 7111.5 11848.4 12005.5 12811.4
24 10593.2 10698.7 11037.8 34805.9 32215.2 32399.8
25 4963.0 5349.2 7186.8 10505.9 10074.7 11664.4
26 51874.6 48577.1 50855.3 84745.6 83125.1 85354.7
27 5224.7 5512.7 4699.4 16876.2 16771.0 17203.0
28 6366.9 5006.7 6514.1 11356.8 12461.2 12748.8
29 39244.6 34101.7 37832.0 71877.0 70920.1 71396.5
30 25188.0 24640.2 26046.0 79376.8 77325.9 80233.1
31 5373.0 5971.0 6832.8 33432.0 31564.1 32693.5
32 9216.7 10299.8 10055.9 44189.8 42772.4 43355.7
33 9929.9 9783.1 10293.0 29615.5 28922.0 28786.7
34 5920.8 4409.0 6452.9 11341.8 12115.3 13178.0
35 100038.0 98060.7 98254.7 122397.0 122683.0 124779.0
36 18743.7 17610.1 16362.2 73562.5 72612.0 73060.5
37 8067.0 9426.7 12138.2 60294.6 58483.0 59488.7
38 7726.4 5789.2 8285.0 12137.7 14070.3 14674.7
39 5699.1 5683.8 5168.2 11029.9 10982.9 11158.6
40 68536.0 63309.2 62951.7 112542.0 111153.0 112073.0

Avg CPU 8.5 8.5 8.6 8.6 8.6 8.7
Time (hours)
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In addition to examining the expected total reward of the two ADP methods, we exam-

ine sample paths of the policies when 500 sample paths of realized demand are generated. Our

results show that the average percentage of demand met levels off around when the number of

sample paths is greater than 200. As a result and to be conservative, for all scenarios, we calcu-

late the average of demand met for 500 sample paths. We observe that the average of demand met

for 500 sample paths over all the scenarios under MADP-RB is 25%, 29%, and 19% more than

MADP with harmonic, STC, and adaptive stepsize functions, respectively. The optimal policies

are similar across these three stepsize functions, thus, we proceed by presenting further analysis

for MADP-RB policy using the harmonic stepsize function.

From the sample paths, we observe three typical behaviors within all LHS scenarios. In

Figure 3.6, we displayed examples of the fluctuations of the average capacity for these three cat-

egories when the realized demand equals mean demand. In Type 1, the average capacity remains

over 95% percent throughout the time horizon (see Figure 3.6a). This is achieved with many re-

placement actions. The scenarios that exhibit Type 1 behavior have low replacement costs and

high revenue per swap (including scenarios 26, 29, 30, 35, 36, 40, 37, and 22). In Type 2 (see

Figure 3.6b), the average capacity does not stay as high as Type 1, but is maintained above 85%

for the entire time horizon except the very end of the month. For 500 sample paths of demand,

on average, in scenarios with Type 1 behavior, we observe replacement in 60% of the epochs

and when a replacement occurs, 15% of the batteries are replaced. In contrast, in scenarios with

Type 2 behavior, replacement occurs in 41% of the decision epochs and 7% of the batteries are

replaced when a replacement occurs. The scenarios that exhibit Type 2 behavior have average re-

placement cost and revenue per swap values (includes scenarios 31, 27, 32, 24, 33, 10, and 15).

In these scenarios, it is beneficial to recharge batteries to ensure demand is met, but the station

allows battery capacity to degrade and does not replace batteries as frequently. Finally, in Type 3

(see Figure 3.6c), the average battery capacity consistently decreases over the time horizon to the

replacement threshold of 80%. Fewer batteries are replaced as, on average, we observe replace-

ment in 11% of the decision epochs and only 3% of batteries are replaced when a replacement
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occurs. This demonstrates a reduced priority for maintaining a high battery capacity. At epochs

when batteries are replaced, a small number of batteries are replaced at a time and are done to en-

sure the minimum capacity is maintained. The scenarios that exhibit Type 3 behavior have high

replacement costs and low swapping revenue values.

Figure 3.6: Sample paths of average capacity over time horizon for three types of LHS scenario
when realized demand equals means demand.

Next, we dig into a specific scenario to compare and contrast the policies for the modest

and realistic-sized instances. Our intent in this analysis is to determine whether similar actions

are taken for the same scenario when considering more batteries over a long time horizon. We

observed this is not the case, thereby justifying the need to solve realistic-sized instances. To

demonstrate our observations, we present results for scenario 15 that has meaningful differences

with regard to the replacement actions, charging actions, and amount of demand met between

the modest and realistic-sized instances. In the realistic-sized problem, on average, we observe

replacement in 27% of the decision epochs, and when replacement occurs 4% of the batteries

are replaced. However, the derived policy in the modest problem consists of no replacement ac-

tions. With regard to charging, on average, we see charging actions in 97% and 40% of decision

epochs for the realistic-sized and modest problems, respectively. With more frequent charging

and replacement actions in the realistic-sized problem, the percentage of met demand is higher

than the modest problem. The derived policy for the realistic-sized problem satisfies 76% of de-

mand, which is significantly higher than 54% of the demand met for the modest problem. From

this analysis, while we must solve a finite horizon MDP to capture the time-varying elements, it
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is necessary to be able to computationally solve instances with longer time horizons and a larger

number of batteries that mimic reality in order to determine the general operating policies.

In Figure 3.7, we present a sample path of the policy when realized demand equals the

mean demand for the realistic-sized SAIRP associated with scenario 15. We observe that more

batteries are replaced before epochs with high power prices (e.g., 53% on day 12 before the high

power price days of December 12-18), which is consistent among Type 2 scenarios. When this

replacement occurs, the battery capacity is higher, which results in higher swapping revenue to

offset to higher costs to recharge batteries. Overall, we observe a consistent trend for recharg-

ing batteries and meeting demand during the time horizon. The number of full batteries is kept

between 40% and 60% of the total number of batteries during the middle of the day and recharg-

ing is conducted to raise the number of full batteries to 90% over night. We show in Figure 3.8

that the policy meets 100% of demand during off-peak epochs and more than 50% during peak

epochs.

Figure 3.7: Sample path of the policy for scenario 15 when realized demand equals mean de-
mand.

3.7 Conclusions

We examined a stochastic scheduling, allocation, and inventory replenishment problem (SAIRP)

for a battery swap station where there is a direct link between the inventory level and necessary

recharging and replacement actions for battery charge and battery capacity. Specifically, the di-
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Figure 3.8: Demand and met demand for scenario 15 based on the sample path when realized
demand equals mean demand.

rect link is that the act of recharging a battery to enable short-term operation is the exact cause

for long-term battery capacity degradation. This creates a unique problem where trade-offs be-

tween recharging and replacing batteries must be analyzed. We utilized a Markov Decision Pro-

cess (MDP) model for a battery swap station faced with battery degradation and uncertain arrival

of demand for swaps. In the MDP model of the stochastic SAIRP, we determine the optimal pol-

icy for charging, discharging, and replacing batteries over time when faced with non-stationary

charging prices, non-stationary discharging revenue, and capacity-dependent swap revenue. We

prove theoretical properties for the MDP model, including the existence of an optimal monotone

policy for the second dimension of the state when there is an upper bound placed on the num-

ber of batteries replaced in each decision epoch. Further, we prove the monotonicity of the value

function. Given these results, we solved the stochastic SAIRP using both backward induction

(BI) and monotone backward induction (MBI). However, we run into the curses of dimensional-

ity as we are unable to find an optimal policy for realistic-sized instances.

To overcome these curses, we propose a monotone approximate dynamic programming

(ADP) solution method with regression-based initialization (MADP-RB). The MADP-RB builds

upon the monotone ADP (MADP) algorithm, which is fitting for problems with monotone value

functions (Jiang and Powell, 2015). In our MADP-RB, we initialize the value function based on

an intelligent approximation using regression. We used a Latin hypercube designed experiment

to test the performance of MBI, MADP, and MADP-RB. In the designed experiment, we exam-
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ine both modest-sized problem instances that are optimally solvable using BI and realistic-sized

instances. Overall, we observed that MADP-RB resulted in the greatest performance in terms of

computational time, optimality gap, convergence, and expected total reward.

Our investigation into SAIRPs opens the avenue for many opportunities for future work. In

terms of the model and solution method, researchers should examine state reduction/aggregation

approaches and quantify how they impact the quality of the solutions and computational time.

Future research should consider different mechanisms within a disaggregated MDP model that

captures individual battery states and actions. Furthermore, it is valuable to solve the disaggre-

gated MDP using approximate solution methods and compare the insights with the presented ag-

gregated MDP. Moreover, it is interesting to study discretizing the state of charge of batteries and

allow partial recharging decisions. For the battery swap station application, future work should

consider different types of charging options, multiple swap station locations, and multiple classes

of demand dictated by how long the battery must operate to satisfy the demand (e.g., how far a

drone must fly).
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Appendix

3.A Monotonicity of the Second Dimension of the State

In this Appendix, in Lemma 1, we prove that the stochastic SAIRPs violate the sufficient condi-
tions for the optimality of a monotone policy in the second dimension of the state. Then, in The-
orem 1, we prove the special conditions under which a monotone policy in the second dimension
of the state is optimal. First, we state Lemma 1 and then prove Lemmas 2, 3, 4, and 5 that we use
to prove Lemma 1 and Theorem 1.

Lemma 1. The stochastic SAIRPs violate the sufficient conditions for the optimality of a mono-
tone policy in the second dimension of the state.

Lemma 2. If s2
t ≥ s̃2

t and a2
t ,a

1
t ,s

1
t are constant then j2 ≥ j̃2.

Proof. Using Equation (3.4), the second state of the system transitions from s2
t to j2 and from s̃2

t

to j̃2 when action at = (a1
t ,a

2
t ) is taken. In Equation (3.4), we use the round() function to return

values in the discretized state space. Without loss of generality, we examine the state transition
for the second state of the system without the round() function, as the round() function does not
alter the validity of the arguments. Thus, we have

j2 = s2
t+1 =

1
M

[
s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
,

j̃2 = s̃2
t+1 =

1
M

[
s̃2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
.

(3.24)

We start from j2 ≥ j̃2 and reduce it to an always true statement.

j2 ≥ j̃2⇔
1
M

[
s2
t (M−a2

t )+a2
t −δC(a1+

t +a1−
t )
]
≥ 1

M

[
s̃2
t (M−a2

t )+a2
t −δC(a1+

t +a1−
t )
]
⇔

s2
t (M−a2

t )+a2
t −δC(a1+

t +a1−
t )≥ s̃2

t (M−a2
t )+a2

t −δC(a1+
t +a1−

t )⇔
s2
t (M−a2

t )≥ s̃2
t (M−a2

t ).

As a2
t ≤M, (M−a2

t ) is always non-negative. Thus, we can divide both sides of the last inequality
by this non-negative value and get s2

t ≥ s̃2
t which is always true.

�

Lemma 3. If s2
t , a1

t , and θ are fixed, then replacing less than

ξ =
⌊

δC(a1+
t +a1−

t )−M(s2
t −θ)

1− s2
t

⌋
causes a transition to absorbing state η.

Proof. Transition from state s2
t to absorbing state η means s2

t+1 < θ. From Equation (3.24) we
know that

s2
t+1 =

1
M

[
s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
.
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Therefore,

s2
t+1 = j2 < θ⇔

1
M
[s2

t (M−a2
t )+a2

t −δ
C(a1+

t +a1−
t )]< θ⇔

s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )< Mθ⇔
(1− s2

t )a
2
t < Mθ+δ

C(a1+
t +a1−

t )−Ms2
t ⇔

a2
t <

Mθ+δC(a1+
t +a1−

t )−Ms2
t

1− s2
t

⇔

a2
t <

δC(a1+
t +a1−

t )−M(s2
t −θ)

1− s2
t

.

Because a2
t is an integer, the upper bound can be derived using the floor function.

a2
t < ξ =

⌊
δC(a1+

t +a1−
t )−M(s2

t −θ)

1− s2
t

⌋
.

�
In this Appendix, when we use the transition probability and reward functions with only

the second dimension of the state and action as arguments, we assume that the first dimension of
the system is fixed (i.e., s1

t and a1
t are constants).

Lemma 4. For the stochastic SAIRP, qt(k | s2
t ,a

2
t ) is a deterministic function equal to

qt(k | s2
t ,a

2
t ) =

{
0 if j2 < k,
pt( j2 | s2

t ,a
2
t ) = 1 if j2 ≥ k.

Proof. As defined in Section 3.3,

qt(k | s,a) =
∞

∑
j=k

pt( j | s,a).

Hence, when the first dimension of the system is fixed, we have

qt(k | s2
t ,a

2
t ) =

∞

∑
j2=k

pt( j2 | s2
t ,a

2
t ).

From the second state transition function given by Equation (3.5), the value of second state
in the future, s2

t+1 = j2, does not depend on Dt . From Lemma 3, if we start from s2
t and take ac-

tion a2
t , the capacity will transition to the absorbing state j2 = η, if

a2
t <

⌊
ξ

⌋
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or it will transition to state j2 ≥ θ, if
a2

t ≥
⌊

ξ

⌋
.

Thus, this is a deterministic transition with into two intervals,
[
η, j2] and ( j2,1

]
. If k ∈ ( j2,1

]
,

then qt(k | s2
t ,a

2
t ) equals zero. However, if k ∈

[
η, j2], then k ≤ j2 and qt(k | s2

t ,a
2
t ) equals 1.

�
We use the notation we define in Definition 1 in Lemma 5, Lemma 1, and Theorem 1.

Definition 1. The second dimension of the state transitions to the following state when starting
from s2

t and taking action a2
t .

j2
A =

1
M

[
s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
. (3.25)

The second dimension of the state transitions to the following state when starting from s̃2
t and

taking action a2
t .

j2
B =

1
M

[
s̃2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
. (3.26)

The second dimension of the state transitions to the following state when starting from s2
t and

taking action ã2
t .

j2
C =

1
M

[
s2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
. (3.27)

The second dimension of the state transitions to the following state when starting from s̃2
t and

taking action ã2
t .

j2
D =

1
M

[
s̃2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
. (3.28)

Lemma 5. If s2
t ≥ s̃2

t and a2
t ≥ ã2

t , then j2
A ≥max( j2

B, j2
C)≥min( j2

B, j2
C)≥ j2

D .

Proof. Based on Definition 1, we need to show j2
A has the greatest value and j2

D has the lowest
value. Thus, as follows we prove j2

A ≥ j2
B, j2

A ≥ j2
C, j2

A ≥ j2
D, j2

B ≥ j2
D, and j2

C ≥ j2
D. We proceed

with a proof by cases starting with the claim and reducing it to an always true statement.

i. j2
A ≥ j2

D
j2
A ≥ j2

D⇔
1
M

[
s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
≥ 1

M

[
s̃2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
⇔

s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )≥ s̃2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )⇔

Ms2
t − s2

t a2
t +a2

t −Ms̃2
t + s̃2

t ã2
t − ã2

t ≥ 0⇔

M(s2
t − s̃2

t )+a2
t (1− s2

t )− ã2
t (1− s̃2

t )≥ 0.

We know a2
t (1− s2

t )≥ ã2
t (1− s2

t ), so it suffices to show that

M(s2
t − s̃2

t )+ ã2
t (1− s2

t )− ã2
t (1− s̃2

t )≥ 0⇔
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M(s2
t − s̃2

t )+ ã2
t (s̃2

t − s2
t )≥ 0⇔

(M− ã2
t )(s

2
t − s̃2

t )≥ 0.

Because M≥ ã2
t and s2

t ≥ s̃2
t the last statement is always non-negative and we prove our claim

that j2
A ≥ j2

D.

ii. j2
A ≥ j2

B
j2
A ≥ j2

B⇔
1
M

[
s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
≥ 1

M

[
s̃2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
⇔

s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )≥ s̃2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )⇔

s2
t (M−a2

t )≥ s̃2
t (M−a2

t ).

Because M ≥ ã2
t we have

s2
t ≥ s̃2

t .

The last statement is always true and we prove our claim that j2
A ≥ j2

B.

iii. j2
A ≥ j2

C
j2
A ≥ j2

C⇔
1
M

[
s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
≥ 1

M

[
s2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
⇔

s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )≥ s2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )⇔

s2
t (M−a2

t )+a2
t ≥ s2

t (M− ã2
t )+ ã2

t ⇔

s2
t (M−a2

t −M+ ã2
t )+a2

t − ã2
t ≥ 0⇔

s2
t (ã

2
t −a2

t )+a2
t − ã2

t ≥ 0⇔

(1− s2
t )(a

2
t − ã2

t )≥ 0.

Because (1− s2
t ) ≥ 0 and (a2

t − ã2
t ) ≥ 0 the last statement is always non-negative and we

prove our claim that j2
A ≥ j2

C.
So far we know j2

A ≥ max( j2
B, j2

C) ≥ min( j2
B, j2

C) and j2
A ≥ j2

D. Now, we show min( j2
B, j2

C) ≥
j2
D. It suffices to show j2

B ≥ j2
D and j2

C ≥ j2
D. First, we show j2

B ≥ j2
D.

iv. j2
B ≥ j2

D
j2
B ≥ j2

D⇔
1
M

[
s̃2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
≥ 1

M

[
s̃2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
⇔

s̃2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )≥ s̃2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )⇔

s̃2
t (M−a2

t )+a2
t ≥ s̃2

t (M− ã2
t )+ ã2

t ⇔
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s̃2
t (ã2

t −a2
t )+(a2

t − ã2
t )≥ 0⇔

(1− s̃2
t )(a

2
t − ã2

t )≥ 0.

Because (1− s̃2
t ) ≥ 0 and (a2

t − ã2
t ) ≥ 0 the last statement is always non-negative and we

prove our claim that j2
B ≥ j2

D.

v. j2
C ≥ j2

D
j2
C ≥ j2

D⇔
1
M

[
s2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
≥ 1

M

[
s̃2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
⇔

s2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )≥ s̃2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )⇔

s2
t (M− ã2

t )+ ã2
t ≥ s̃2

t (M− ã2
t )+ ã2

t ⇔

s2
t (M− ã2

t )≥ s̃2
t (M− ã2

t )⇔

s2
t ≥ s̃2

t .

The last statement is always true and we prove our claim that j2
C ≥ j2

D. From iv and v, we
conclude that min( j2

B, j2
C)≥ j2

D. From i, ii, iii, iv, and v, we prove
j2
A ≥max( j2

B, j2
C)≥min( j2

B, j2
C)≥ j2

D.

�
Using Lemmas 2, 3, 4, and 5, we prove in Lemma 1 that the stochastic SAIRPs violate the

sufficient conditions for the optimality of a monotone policy in the second dimension of the state.
Then, in Theorem 1, we prove the special conditions under which a monotone policy is optimal
in the second dimension of the state.

Lemma 1. The stochastic SAIRPs violate the sufficient conditions for the optimality of a mono-
tone policy in the second dimension of the state.

Proof. First, we need to show that at least one of the following conditions is not always satisfied
for our problem. We will prove that condition 4 is not satisfied; That is, qt(k | s2

t ,a
2
t ) is not subad-

ditive on S2×A′ for every k ∈ S2 where A′ is the set of possible actions in the second dimension,
independent of the state of the system.

1. rt(s2
t ,a

2
t ) is non-decreasing in s2

t for all a2
t ∈ A′.

If s2
t ≥ s̃2

t , it suffices to show that rt(s2
t ,a

2
t )≥ r2

t (s̃
2
t ,a2

t ). From Equations (3.7) and (3.8) we
know

rt(s2
t ,a

2
t ) =

β(1+ s2
t −2θ)

1−θ

[
min{Dt ,s1

t −a1−
t }
]
−Kta1+

t + Jta1−
t −Lta2

t .

We start with our claim, rt(s2
t ,a

2
t )≥ rt(s̃2

t ,a2
t ), and reduce it to an always true statement.

rt(s2
t ,a

2
t )≥ rt(s̃2

t ,a2
t )⇔
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β(1+s2
t −2θ)

1−θ

[
min{Dt ,s1

t −a1−
t }
]
−Kta1+

t + Jta1−
t −Lta2

t ≥
β(1+s̃2

t −2θ)
1−θ

[
min{Dt ,s1

t −a1−
t }
]
−Kta1+

t + Jta1−
t −Lta2

t ⇔
β(1+s2

t −2θ)
1−θ

≥ β(1+s̃2
t −2θ)

1−θ
⇔

s2
t ≥ s̃2

t .

2. qt(k | s2
t ,a

2
t ) is non-decreasing in s2

t for all k ∈ S2 and a ∈ A′.
If s2

t ≥ s̃2
t , we seek to show

qt(k | s2
t ,a

2
t )≥ qt(k | s̃2

t ,a
2
t ).

It is sufficient to show that if j2
A ≥ j2

B from Definition 1, then qt(k | s2
t ,a

2
t ) ≥ qt(k | s̃2

t ,a2
t ).

We show j2
A ≥ j2

B in Lemma 2 and prove our claim.

3. rt(s2
t ,a

2
t ) is a subadditive function on S2×A′.

For rt(s2
t ,a

2
t ) to be subadditive, it means the incremental effect on the expected total reward

of replacing less batteries is less when the average capacity is greater. Consider, s2
t ≥ s̃2

t and
a2

t ≥ ã2
t . It suffices to show that

rt(s2
t ,a

2
t )+ rt(s̃2

t , ã2
t )≤ rt(s2

t , ã
2
t )+ rt(s̃2

t ,a
2
t )⇔

∞

∑
j=0

P(Dt = j)
β(1+ s2

t −2θ)

1−θ

[
min{ j,s1

t −a1−
t }
]
−Kta1+

t + Jta1−
t −Lta2

t

+
∞

∑
j=0

P(Dt = j)
β(1+ s̃2

t −2θ)

1−θ

[
min{ j,s1

t −a1−
t }
]
−Kta1+

t + Jta1−
t −Lt ã2

t ≤

∞

∑
j=0

P(Dt = j)
β(1+ s2

t −2θ)

1−θ

[
min{ j,s1

t −a1−
t }
]
−Kta1+

t + Jta1−
t −Lt ã2

t

+
∞

∑
j=0

P(Dt = j)
β(1+ s̃2

t −2θ)

1−θ

[
min{ j,s1

t −a1−
t }
]
−Kta1+

t + Jta1−
t −Lta2

t .

As the right-hand side and the left-hand side of the inequality are the same, we prove our
claim.

4. qt(k | s2
t ,a

2
t ) is subadditive on S2×A′ for every k ∈ S2. It suffices to show that

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t ),

for every k ∈ S2 if s2
t ≥ s̃2

t and a2
t ≥ ã2

t .
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From Lemma 4,

qt(k | s2
t ,a

2
t ) =

{
0 if j2 < k,
pt( j2 | s2

t ,a
2
t ) = 1 if j2 ≥ k.

From Lemmas 3 and 4, the starting state s2
t transfers to j2

A or j2
C, if we take action a2

t or ã2
t ,

respectively. If the number of batteries replaced is greater than a threshold ξ, then the fu-
ture state is at least the capacity threshold, θ. Otherwise, we will transfer to the absorbing
state, η. Similarly, the starting state s̃2

t transfers to j2
B or j2

D, if we take action a2
t or ã2

t , re-
spectively. If the number of batteries replaced is greater than a threshold

ξ̃ =
⌊

δC(a1+
t +a1−

t )−M(s̃2
t −θ)

1− s̃2
t

⌋
,

then the future state is at least θ. Otherwise, we will transfer to the absorbing state, η.
Recall in Lemma 5 and Definition 1 we have:

j2
A =

1
M

[
s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
,

j2
B =

1
M

[
s̃2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
,

j2
C =

1
M

[
s2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
,

j2
D =

1
M

[
s̃2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
,

and
j2
A ≥max( j2

B, j2
C)≥min( j2

B, j2
C)≥ j2

D.

To show the subadditivity property of the qt(k | s2
t ,a

2
t ) for every k ∈ S2, we divide S2 space

into five intervals. Then, we show that if k ∈
(
max( j2

B, j2
C), j2

A
]

the subadditivity condition
is not satisfied.

i. 0≤ k ≤ j2
D

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t )⇔

1+1≤ 1+1.

ii. j2
D < k ≤min( j2

B, j2
C)

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t )⇔

1+0≤ 1+1.
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iii. min( j2
B, j2

C)< k ≤max( j2
B, j2

C)

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t )⇔

1+0≤ 1+0.

iv. max( j2
B, j2

C)< k ≤ j2
A

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t )⇔

1+0� 0+0.

v. j2
A < k

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t )⇔

0+0≤ 0+0.

Due to the result of part iv, we can not conclude that qt(k | s2
t ,a

2
t ) is subadditive on S2×A′

for every k ∈ S2.

5. rN(sN) is non-decreasing in s2
N .

Consider s2
N ≥ s̃2

N , it suffices to show that rN(sN)≥ rN(s̃N) where:

rN(sN) =

{
ρs2

N
s1

N if s2
N ≥ θ,

0 otherwise.
(3.29)

We examine the three following cases.

i. s2
N ≥ s̃2

N ≥ θ

rN(sN)≥ rN(s̃N)⇔

ρs2
N

s1
N ≥ ρ

s̃2
N

s1
N ⇔

β(1+ s2
N−2θ)

1−θ
s1

N ≥
β(1+ s̃2

N−2θ)

1−θ
s1

N ⇔

s2
N ≥ s̃2

N .

ii. s2
N ≥ θ > s̃2

N
rN(sN)≥ rN(s̃N)⇔

ρs2
N

s1
N ≥ 0⇔

β(1+ s2
N−2θ)

1−θ
s1

N ≥ 0⇔

β(1+ s2
N−2θ)

1−θ
s1

N ≥ 0⇔

1+ s2
N−2θ≥ 0.
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Because 1+ s2
N−2θ≥ 1+θ−2θ = 1−θ and 1−θ≥ 0 we can conclude that:

1+ s2
N−2θ≥ 0.

iii. θ > s2
N ≥ s̃2

N
rN(sN)≥ rN(s̃N)⇔

0≥ 0.

We show that we can not prove the subadditivity condition and in turn, we proved that the
stochastic SAIRPs violate the sufficient conditions for the optimality of a monotone policy in the
second dimension of the state.

�

Theorem 1. There exist optimal decision rules d∗t : S→ Ast for the stochastic SAIRP which are
monotone non-increasing in the second dimension of the state for t = 1, . . . ,N−1 if there is an
upper-bound U on the number of batteries replaced at each decision epoch where U = Mε

2(1−s2
t )

,
when M is the number of batteries at the swap station and ε is the discretized increment in capac-
ity.

Proof. We prove this monotonicity claim by showing the aforementioned five conditions are sat-
isfied (Puterman, 2005). When we fix the first dimension of the state and action, in Lemma 1, we
show that conditions i, ii, iii, and v are true. Thus, it suffices to prove condition iv is true in or-
der to show the existence of monotone optimal decision rules for the second dimension. First, we
prove the following claim and use it to show the subadditivity condition and in turn, monotonic-
ity.

Claim 1. j2
A and j2

C represents the same point if a2
t − ã2

t ≤U.

Proof. We know j2
A and j2

C represents the same point if j2
A− j2

C ≤
ε

2 due to the precision in round-
ing. Thus,

j2
A− j2

C ≤
ε

2
⇔

1
M

[
s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
− 1

M

[
s2
t (M− ã2

t )+ ã2
t −δ

C(a1+
t +a1−

t )
]
≤ ε

2
⇔

1
M

[
s2
t (M−a2

t − (M− ã2
t )+a2

t − ã2
t

]
≤ ε

2
⇔

1
M

[
s2
t (−a2

t + ã2
t )+a2

t − ã2
t

]
≤ ε

2
⇔

1
M

[
(a2

t − ã2
t )(1− s2

t )
]
≤ ε

2
⇔

(a2
t − ã2

t )≤
Mε

2(1− s2
t )
.

Let ã2
t = 0 to get the least upper-bound for the number of batteries to be replaced, we will have

a2
t ≤

Mε

2(1− s2
t )
.
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�
With the case that j2

A = j2
C, we have

j2
A = j2

C ≥ j2
B ≥ j2

D.

Now, we revisit the condition, we seek to show that qt(k | s2
t ,a

2
t ) is subadditive on S2× A′ for

every k ∈ S2.
It suffices to show that

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t ),

for every k ∈ S2 if s2
t ≥ s̃2

t and a2
t ≥ ã2

t .
We divide S2 space into four intervals and show the condition is satisfied for every interval.

i. 0≤ k ≤ j2
D

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t )⇔

1+1≤ 1+1.

ii. j2
D < k ≤ j2

B

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t )⇔

1+0≤ 1+1.

iii. j2
B < k ≤ j2

C = j2
A

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t )⇔

1+0≤ 1+0.

iv. j2
A < k

qt(k | s2
t ,a

2
t )+qt(k | s̃2

t , ã2
t )≤ qt(k | s̃2

t ,a
2
t )+qt(k | s2

t , ã
2
t )⇔

0+0≤ 0+0.

We conclude that qt(k | s2
t ,a

2
t ) is subadditive on S2×A′ for every k ∈ S2. As all conditions

are valid, we deduce that there exists monotone optimal decision rules in the second dimension
of the state for the stochastic SAIRP when there is an upper-bound U on the number of batteries
replaced at each decision epoch.

�
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3.B Monotonicity of Value Functions

In this Appendix, we prove that the MDP value function for the stochastic SAIRP is monotone
non-decreasing in the first, second, and both dimensions of the state. In Theorems 2 and 3, we
show the monotonicity of the value function regarding s2

t and s1
t , respectively, and in Theorem 4

we prove that the value function is monotone in (s1
t ,s

2
t ). To prove these theorems, we need to

ensure that four conditions are satisfied as given by Papadakia and Powell (2007) and Jiang and
Powell (2015). These two articles use different notation, thus, for clarity, we define S as the state
space, A as the action space, and the transition function as f : S×A→ S. To prove the theorems,
we first state key definitions used.

Definition 2. Partial ordering operator � on the N-dimensional set S is defined as s � s′ for any
s,s′ ∈ S, if s(i)≤ s′(i) for all i ∈ {1,2, . . .N} (Papadakia and Powell, 2007).

Definition 3. An N-dimensional real-valued function F is partially non-decreasing on the set S,
if for all s−,s+ ∈ S where s− � s+, we have F(s−)≤ F(s+) (Papadakia and Powell, 2007).

Theorem 2. The MDP value function of the stochastic SAIRP is monotonically non-decreasing in
s2
t .

Proof. Fixing the first dimension of the state space, the MDP value function is monotone if the
following four conditions are satisfied (Papadakia and Powell, 2007; Jiang and Powell, 2015).

1. For e� 0 we have f (s+ e,a)� f (s,a) for all a ∈ A (Papadakia and Powell, 2007). Equiva-
lently, if every s2

t , s̃
2
t ∈ S2 with s2

t ≥ s̃2
t , action at = (a1

t ,a
2
t ) ∈ A is taken, and demand equals

Dt , the second state transition function f 2 satisfies:

f 2(s1
t ,s

2
t ,a

1
t ,a

2
t )≥ f 2(s1

t , s̃
2
t ,a

1
t ,a

2
t ).

From Equation (3.24), if the beginning state is s2
t , then f 2 equals j2, and if the beginning

state is s̃2
t , then f 2 equals j̃2. Because a2

t ,a
1
t ,s

1
t are constant, using Lemma 2 we prove our

claim as
f 2(s1

t ,s
2
t ,a

1
t ,a

2
t ) = j2 ≥ (s1

t , s̃
2
t ,a

1
t ,a

2
t ) = j̃2.

2. The one period cost function rt(s,a) is partially non-decreasing in s ∈ S for all a ∈ A, t =
0,1, . . . ,N−1 (Papadakia and Powell, 2007). It is suffices to show for every t < N, s2

t , s̃
2
t ∈

S2 with s2
t ≥ s̃2

t , if we take action at = (a1
t ,a

2
t ) ∈ A, then the one period reward function

satisfies
rt(s1

t ,s
2
t ,a

1
t ,a

2
t ,Dt)≥ rt(s1

t , s̃
2
t ,a

1
t ,a

2
t ,Dt). (3.30)

We show that we can reduce Equation (3.30) to an always true statement.

rt(s1
t ,s

2
t ,a

1
t ,a

2
t ,Dt)≥ rt(s1

t , s̃
2
t ,a1

t ,a
2
t ,Dt)⇔

β(1+s2
t −2θ)

1−θ

[
min{Dt ,s1

t −a1−
t }
]
−Kta1+

t + Jta1−
t −Lta2

t ≥
β(1+s̃2

t −2θ)
1−θ

[
min{Dt ,s1

t −a1−
t }
]
−Kta1+

t + Jta1−
t −Lta2

t ⇔
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β(1+s2
t −2θ)

1−θ
≥ β(1+s̃2

t −2θ)
1−θ

⇔
s2
t ≥ s̃2

t .

3. The terminal cost function rN(s) is partially non-decreasing in s ∈ S (Papadakia and Powell,
2007). It suffices to show that for every s2

N , s̃
2
N ∈ S2 with s2

N ≥ s̃2
N , that rN(sN)≥ rN(s̃N).

We proved this claim in condition (5) of Lemma 1 and Theorem 1.

4. For each t < N, s2
t and Dt+1 are independent (Jiang and Powell, 2015).

In our model, demand is a random variable and does not depend on the current state or ac-
tion, including s2

t .

As all the conditions are valid for the stochastic SAIRP, we can conclude that the value function
is monotone in s2

t .
�

Theorem 3. The MDP value function of the stochastic SAIRP is monotonically non-decreasing in
s1
t .

Proof. Fixing the second dimension of the state space, the MDP value function is monotone if
the following four conditions are satisfied (Papadakia and Powell, 2007; Jiang and Powell, 2015).

1. For e � 0 we have f (s+ e,a) � f (s,a) for all a ∈ A (Papadakia and Powell, 2007). It suf-
fices to show for every s1

t , s̃
1
t ∈ S1 with s1

t ≥ s̃1
t , if we take action at = (a1

t ,a
2
t ) ∈ A and

demand equals Dt , the first state transition function f 1 satisfies

f 1(s1
t ,s

2
t ,a

1
t ,a

2
t ,Dt)≥ f 1(s̃1

t ,s
2
t ,a

1
t ,a

2
t ,Dt).

Using Equation (3.3), if the beginning state is s1
t , then f 1 equals j1, and if the starting state

is s̃1
t , then f 1 equals j̃1. It suffices to show that

j1 ≥ j̃1⇔

s1
t +a2

t +a1+
t −a1−

t −min{Dt ,s1
t −a1−

t } ≥ s̃1
t +a2

t +a1+
t −a1−

t −min{Dt , s̃1
t −a1−

t }⇔

s1
t −min{Dt ,s1

t −a1−
t } ≥ s̃1

t −min{Dt , s̃1
t −a1−

t }. (3.31)

Three cases can happen for the stochastic demand Dt , and we show that we can reduce
Equation (3.31) to an always true statement in all cases.

i. s1
t −a1−

t ≥ s̃1
t −a1−

t > Dt

s1
t −Dt ≥ s̃1

t −Dt ⇔

s1
t ≥ s̃1

t .

ii. s1
t −a1−

t ≥ Dt ≥ s̃1
t −a1−

t

s1
t −Dt ≥ s̃1

t − (s̃1
t −a1−

t )⇔
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s1
t −a1−

t ≥ Dt .

iii. Dt > s1
t −a1−

t ≥ s̃1
t −a1−

t

s1
t − (s1

t −a1−
t )≥ s̃1

t − (s̃1
t −a1−

t )⇔

a1−
t ≥ a1−

t .

From i, ii, and iii, we conclude that j1 ≥ j̃1. Thus,

f 1(s1
t ,s

2
t ,a

1
t ,a

2
t ,Dt)≥ f 1(s̃1

t ,s
2
t ,a

1
t ,a

2
t ,Dt).

2. The one period cost function rt(s,a) is partially non-decreasing in s ∈ S for all a ∈ A, t =
0,1, . . . ,N− 1 (Papadakia and Powell, 2007). It suffices to show for every t < N, s1

t , s̃
1
t ∈

S1 with s1
t ≥ s̃1

t , if we take action at = (a1
t ,a

2
t ) ∈ A, then the one period reward function

satisfies
rt(s1

t ,s
2
t ,a

1
t ,a

2
t ,Dt)≥ rt(s̃1

t ,s
2
t ,a

1
t ,a

2
t ,Dt).

Using Equation (3.7), we reduce the following statement to an always true statement.

rt(s1
t ,s

2
t ,a

1
t ,a

2
t ,Dt)≥ rt(s̃1

t ,s2
t ,a

1
t ,a

2
t ,Dt)⇔

ρs2
t
(min{Dt ,s1

t −a1−
t })−Kta1+

t + Jta1−
t −Lta2

t ≥

ρs2
t
(min{Dt , s̃1

t −a1−
t })−Kta1+

t + Jta1−
t −Lta2

t ⇔

min{Dt ,s1
t −a1−

t } ≥min{Dt , s̃1
t −a1−

t }. (3.32)

The second dimension is fixed, so we could cancel out ρs2
t

from both sides.
Similar to part 1, three cases can happen.

i. s1
t −a1−

t ≥ s̃1
t −a1−

t > Dt
We can reduce Equation (3.32) to Dt ≥ Dt which is always true.

ii. s1
t −a1−

t ≥ Dt ≥ s̃1
t −a1−

t

We can reduce Equation (3.32) to Dt ≥ s̃1
t −a1−

t which is true for this case.

iii. Dt > s1
t −a1−

t ≥ s̃1
t −a1−

t

We can reduce Equation (3.32) to s1
t ≥ s̃1

t which is always true.

So, we can conclude that

rt(s1
t ,s

2
t ,a

1
t ,a

2
t ,Dt)≥ rt(s̃1

t ,s
2
t ,a

1
t ,a

2
t ,Dt).

3. The terminal cost function rN(s) is partially non-decreasing in s ∈ S (Papadakia and Powell,
2007). It suffices to show that for every s1

N , s̃
1
N ∈ S1 with s1

N ≥ s̃1
N , that rN(sN)≥ rN(s̃N).

As the second state is fixed equal to s2
N , two possible cases can happen.
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i. s2
N < θ

rN(sN)≥ rN(s̃N)⇔

0≥ 0.

ii. s2
N ≥ θ.

rN(sN)≥ rN(s̃N)⇔

ρs2
N

s1
N ≥ ρs2

N
s̃1

N .

ρs2
N

is not a function of the first dimension, so we can cancel it out from both sides.

s1
N ≥ s̃1

N .

Thus, we conclude that
rN(sN)≥ rN(s̃N).

4. For each t < N, s1
t and Dt+1 are independent (Jiang and Powell, 2015).

In our model, demand is a random variable and does not depend on the current state or ac-
tion, including s1

t .

As all the conditions are valid for the stochastic SAIRP, we conclude that the value function is
monotone in s1

t .
�

If there exists a monotone optimal policy, then Theorem 3 is implied. Widrick et al. (2018)
proved that there exists a monotone optimal policy in s1

t only when demand is governed by a non-
increasing discrete distribution. Thus, Theorem 3 provides a stronger result, as it does not depend
on the probability distribution of demand.

Theorem 4. The MDP value function of the stochastic SAIRP is monotonically non-decreasing in
(s1

t ,s
2
t ).

Proof. The MDP value function is monotone if the following four conditions are satisfied (Pa-
padakia and Powell, 2007; Jiang and Powell, 2015).

1. For e � 0 we have f (s+ e,a) � f (s,a) for all a ∈ A (Papadakia and Powell, 2007). Using
Definition 2 for partially ordered functions, it suffices to show that for every st , s̃t ∈ (S1×
S2) with s1

t ≥ s̃1
t and s2

t ≥ s̃2
t , if we take action at = (a1

t ,a
2
t ) ∈ A and demand equals Dt , then

the ith state transition function f i satisfies

f i(st ,at ,Dt)≥ f i(s̃t ,at ,Dt) ∀i = 1,2.

We show the relationship between transition functions for each dimension.

i. f 1(st ,at ,Dt)≥ f 1(s̃t ,at ,Dt)
Using Equation (3.3), we can state that if the beginning state is s1

t , then f 1 equals j1

and if the starting state is s̃1
t , then f 1 equals j̃1. We proved the claim when s2

t ≥ s̃2
t ≥

θ, in part 1 of Theorem 3. If θ > s2
t ≥ s̃2

t , as we are in the absorbing state, the only
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possible action is at = (0,0) that leads to j1 = s1
t ≥ j̃1 = s̃1

t . Similarly, if s2
t ≥ θ > s̃2

t ,
the only allowed action is at = (0,0) because it is the only feasible action for both s2

t

and s̃2
t . Thus, j1 = s1

t ≥ j̃1 = s̃1
t .

ii. f 2(st ,at ,Dt)≥ f 2(s̃t ,at ,Dt)
Using Equation (3.24), we reduce f 2(st ,at ,Dt) ≥ f 2(s̃t ,at ,Dt) to an always true state-
ment:

f 2(st ,at ,Dt)≥ f 2(s̃t ,at ,Dt)⇔
1
M

[
s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
≥ 1

M

[
s̃2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )
]
⇔

s2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )≥ s̃2
t (M−a2

t )+a2
t −δ

C(a1+
t +a1−

t )⇔

s2
t (M−a2

t )≥ s̃2
t (M−a2

t ).

Because M ≥ ã2
t , we know

s2
t ≥ s̃2

t .

The last statement is always true and we prove that f 2(st ,at ,Dt)≥ f 2(s̃t ,at ,Dt).

2. The one period cost function rt(s,a) is partially non-decreasing in s ∈ S for all a ∈ A,
t = 0,1, . . . ,N− 1 (Papadakia and Powell, 2007). Using Definition 2 for partially ordered
functions, it suffices to show that for every st , s̃t ∈ (S1×S2) with s1

t ≥ s̃1
t and s2

t ≥ s̃2
t , if we

take action at = (a1
t ,a

2
t ) ∈ A, then the one period reward function satisfies

rt(st ,at ,Dt)≥ rt(s̃t ,at ,Dt).

Using Equation (3.7), we reduce the following statement to an always true statement.

rt(st ,at ,Dt)≥ rt(s̃t ,at ,Dt)⇔

ρs2
t
(min{Dt ,s1

t −a1−
t })−Kta1+

t + Jta1−
t −Lta2

t ≥

ρ
s̃2
t
(min{Dt , s̃1

t −a1−
t })−Kta1+

t + Jta1−
t −Lta2

t ⇔(
β(1+ s2

t −2θ)

1−θ

)
(min{Dt ,s1

t −a1−
t })≥

(
β(1+ s̃2

t −2θ)

1−θ

)
(min{Dt , s̃1

t −a1−
t })⇔

(1+ s2
t −2θ)(min{Dt ,s1

t −a1−
t })≥ (1+ s̃2

t −2θ)(min{Dt , s̃1
t −a1−

t }). (3.33)

Three cases can happen for the stochastic demand Dt . We show that we can reduce Equa-
tion (3.33) to an always true statement in all cases.

i. Dt > s1
t −a1−

t ≥ s̃1
t −a1−

t

Because (1+s2
t −2θ)≥ (1+ s̃2

t −2θ)≥ 0 and min{Dt ,s1
t −a1−

t }≥min{Dt , s̃1
t −a1−

t }≥
0, we can conclude that Equation (3.33) is always true.

ii. s1
t −a1−

t ≥ Dt ≥ s̃1
t −a1−

t
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We know (1+ s2
t −2θ)≥ (1+ s̃2

t −2θ), thus it suffices to show that

(1+ s2
t −2θ)(min{Dt ,s1

t −a1−
t })≥ (1+ s2

t −2θ)(min{Dt , s̃1
t −a1−

t })⇔

min{Dt ,s1
t −a1−

t } ≥min{Dt , s̃1
t −a1−

t }⇔

Dt ≥ s̃1
t −a1−

t .

The last statement is always true for this case.

iii. s1
t −a1−

t ≥ s̃1
t −a1−

t > Dt
Using the same approach as the previous part, we can reduce Equation (3.33) to Dt ≥
Dt which is always true.

(1+ s2
t −2θ)(min{Dt ,s1

t −a1−
t })≥ (1+ s2

t −2θ)(min{Dt , s̃1
t −a1−

t })⇔

min{Dt ,s1
t −a1−

t } ≥min{Dt , s̃1
t −a1−

t }⇔

Dt ≥ Dt .

So, we conclude that
rt(st ,at ,Dt)≥ rt(s̃t ,at ,Dt).

3. The terminal cost function rN(s) is partially non-decreasing in s ∈ S (Papadakia and Powell,
2007). It suffices to show that for every sN , s̃N ∈ (S1× S2) with s1

N ≥ s̃1
N and s2

N ≥ s̃2
N , that

rN(sN)≥ rN(s̃N). Using Equation (3.29), three cases can happen.

i. s2
N ≥ s̃2

N ≥ θ.
rN(sN)≥ rN(s̃N)⇔

ρs2
N

s1
N ≥ ρ

s̃2
N

s̃1
N .

Because β(1+s2
t −2θ)

1−θ
≥ β(1+s̃2

t −2θ)
1−θ

and s1
N ≥ s̃1

N the last statement is true.

ii. s2
N ≥ θ > s̃2

N
rN(sN)≥ rN(s̃N)⇔

ρs2
N

s1
N ≥ 0.

iii. θ > s2
N ≥ s̃2

N
rN(sN)≥ rN(s̃N)⇔

0≥ 0.

4. For each t < N, (s1
t ,s

2
t ) and Dt+1 are independent (Jiang and Powell, 2015).

In our model, demand is a random variable and does not depend on the current state or ac-
tion, including (s1

t ,s
2
t ).

As all the conditions are valid for the stochastic SAIRP, we conclude that the value function is
monotone in (s1

t ,s
2
t ). �
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3.C Algorithmic and Experimental Parameter Settings

Parameter Value Description

M 2 The starting number of batteries used for the small SAIRPs solved using BI
M 7 The number of batteries in the modest-sized SAIRPs
M 100 The number of batteries in the realistic-sized SAIRPs
T 168 The time horizon (number of hours) in the small SAIRP
T 168 The time horizon (number of hours) in the modest-sized SAIRPs
T 744 The time horizon (number of hours) in the realistic-sized SAIRPs
θ 80% The replacement threshold
ε 0.001 The capacity increment used in discretizing the 2nd dimension of the state

maxIteration+1 3 The maximum number of regression-based initialization iterations
τ 500000 The maximum number of core ADP iterations in the modest-sized SAIRPs
τ 100000 The maximum number of core ADP iterations in the realistic-sized SAIRPs
w 25000 The harmonic stepsize parameter
µ1 600 The STC stepsize parameter
µ2 1000 The STC stepsize parameter
ζ 0.7 The STC stepsize parameter

α0 1 The STC stepsize parameter
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4. Drones for Medical Delivery Considering Different Demands Classes: A Markov Decision

Process Approach for Managing Health Centers Dispatching Medical Products

Amin Asadi Sarah Nurre Pinkley

4.1 Introduction

In the last decade, there has been substantial growth in the use of drones for several applica-

tions, including but not limited to transportation, agriculture, and delivery (Mutzabaugh, 2017;

Jensen, 2019; Weise, 2017; DHL Press Release, 2016). Specifically, delivery using drones has

received extensive attention as it can reduce air pollution and traffic in congested areas (Dhote

and Limbourg, 2020). Moreover, drones are a viable option to reach remote locations with in-

adequate road infrastructure (Davitt, 2019). During pandemics, drones provide a safe and low

contact delivery method, which can effectively slow down the spread of the diseases (UNICEF

Supply Division, 2020; McNabb, 2020). Many companies and organization, including Vanuatu’s

Ministry of Health and Civil Aviation (Kent, 2019), Zipline (Lyons, 2020), Matternet (Matternet,

2020), Manna Aero (Chandler, 2020) use drones to deliver and distribute medical supplies such

as vaccines, medicine, and blood units. Effective operations of such companies, with a fleet of

drones, require addressing battery-oriented issues, including limited flight range, long charging

time needed, high price, and batteries’ short life. In this research, we study a problem that consid-

ers the charge inside drone batteries and classify the stochastic demand according to drone flight

range. We ultimately maximize the expected total met demand for delivering medical items using

drones dispatched from a battery swap station located in a drone hub.

Battery swap stations are a solution to alleviate the aforementioned issues. In battery swap

stations, charged batteries swapped with empty batteries in short minutes. For instance, Matter-

net provides a station to automatically swap drone batteries used for delivering blood units and

medicine between the supplier and hospitals (Ball, 2020). Besides the quick swapping opera-

tion, recharging batteries in anticipation of demand can reduce overcharging and fast charging
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of batteries which are shown to accelerate the battery degradation process (Lacey et al., 2013;

Shirk and Wishart, 2015). The faster batteries degrade the quicker the need for battery replace-

ment which incurs a high cost and environmental waste. The application of a battery swap sta-

tion is not limited to drones and can be extended to electric vehicles (Lambert, 2018; Fusheng,

2019), electric scooters (BBC, 2015) and cell phone battery swaps in airports, hotels, and amuse-

ment parks (FuelRod, 2017). Notably, the number of electric vehicle swap stations is growing in

different regions of the world (Dongmei, 2016; Chauvet, 2015; Peermohamed, 2017; Gordon-

Bloomfield, 2014). In this research, we consider a swap station located at a drone hub that dis-

patches drones to satisfy multiple classes of stochastic demand for medical supplies, which are

classified based on their distance from the station.

Given the growth in the number and applications of battery swap stations, it is crucial to

optimally manage the stations’ operations to reach the highest performance of the station. Thus,

we design a decision-making framework to provide optimal recharging and distribution policies

when considering the stochastic demand originating from different geographical locations. The

drone hub can send drones to locations within their flight range, which differ based on the level

of charge inside their batteries. We classify the demand based on the distance between the hub

and demand locations. Demand classification is widely used in the operations research commu-

nity to properly capture characteristics of systems used in the supply chain, inventory control, and

production management problems (Gayon et al., 2009; Benjaafar et al., 2011; Thompson et al.,

2009; Mlinar and Chevalier, 2016). We consider a level of charge inside batteries corresponding

to each class of demand such that the demand of each class can be satisfied with batteries hav-

ing the same or higher level of charge. That is, each class of demand can be satisfied with one or

multiple levels of charge inside batteries. We formulate this problem as a stochastic scheduling

and allocation problem with multiple classes of demand (SA-MCD).

We use the Markov decision process (MDP) to model the stochastic SA-MCD. It is an ap-

propriate modeling approach for problems like ours that are in the class of sequential decision-

making under uncertainty problems (Puterman, 2005). The decisions are made in discrete points
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in time or decision epochs. We represent the state of the system in the MDP as the number of bat-

teries within each charge level class. The actions of the MDP are the number of batteries recharg-

ing from one level to an upper level of battery charge. The transition probability is a complex

function governed by multiple classes of stochastic demand. In our MDP, the optimal policy de-

termines the maximum expected total reward, which is a function of total weighted met demand

of different classes.

We use backward induction (BI) and a reinforcement learning (RL) method to solve SA-

MCDs. BI can provide exact solutions for problems like SA-MCDs that have finite state and ac-

tion spaces (Puterman, 2005). However, BI runs into the curses of dimensionality and faces com-

putational time and memory issues as our problem size increases. Thus, we apply an RL method

with an exploration feature (Powell, 2011) that is able to find high-quality approximate solutions

for large-scale SA-MCDs, which are not solvable using BI. We show the convergence of our RL

method and demonstrate its capacity to save computational time and memory.

We computationally test the SA-MCD model and solution methods on a case study influ-

enced by the Zipline drone delivery company which delivers blood units, vaccines, and medical

supplies in Rwanda. We consider the drone delivery of these supplies from its station located in

the Muhanga district, Rwanda, to the reachable hospitals throughout the country. We consider the

population of districts, number of hospitals in each district, number of people using a hospital,

and rate of arrivals to each hospital to find the stochastic orders for medical supplies and convert

them to the demand for drone missions, given that each drone can carry 2kg of medical products

at a time (Baker, 2017). We classify this demand into two classes based on the distance between

the station and each hospitals (i.e., closer hospitals are classified in level 1 demand and farther

hospitals are classified in level 2 demand). We import the real data associated with the distance

between locations, the population of districts, flight regulations in Rwanda, and the Zipline drone

configuration, including the speed, flight range, and recharging time.

We derive insights from solving SA-MCDs to manage the distribution operations of the

swap station using different sets of computational experiments. We provide the optimality gap
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and average percentage of the met demand using the RL method for a modest problem (15-21

drones). Solving the modest size problem shows that the Zipline company needs more drones to

satisfy 100% of the stochastic demand. Hence, we draw the relationship between the number of

drones in the station and the amount of met demand using our RL solution for larger instances

of SA-MCD. We also analyze the interplay between the different demand classes and the use of

higher-level charged batteries to satisfy lower-class demand.

Main Contributions. We summarize the main contribution of this chapter as follows. To

the best of our knowledge:

• We are the first to propose stochastic scheduling and allocation problems with multiple

classes of demand (SA-MCD) for managing operations of a drone swap station located at

drone a hub. We classify the demand based on the distance between the station and hospi-

tals generating the stochastic demands.

• We develop an MDP model for SA-MCD and solve it using backward induction and a re-

inforcement learning method to find optimal and near-optimal policies for the station that

faces stochastic demand for sending drones to deliver medical supplies.

• We use the case study influenced by Zipline medical supply delivery using drones in Rwanda.

• We conduct different sets of experiments to derive insights for managing the operations in a

swap station to maximize demand satisfaction.

• We show that our classification approach in modeling improves demand satisfaction, which

is the primary purpose of delivering medical supplies using drones.

The remainder of this chapter is organized as follows. In Section 4.2, we discuss relevant

literature to the modeling, application, and solution methods. In Section 4.3, we present our

Markov Decision Process to model the stochastic scheduling and allocation problems with multi-

ple classes of demand. In Section 4.4, we discuss the exact and approximate solution methods. In
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Section 4.5, we outline the computational experiments conducted and provide insights for manag-

ing swap station operations. We summarize concluding remarks and propose directions for future

work in Section 4.6.

4.2 Related Work

There is a growing interest in the use of drones for many different applications. We provide an

overview of scientific works, which are more relevant to the model, application, and solution

methods presented in this research. Therefore, we focus on providing an overview of research

related to managing operations in swap stations, delivering medical items using drones, Markov

Decision Process (MDP) modeling for dynamic problems, demand classification, and reinforce-

ment learning (RL) solution methods.

Many researchers have studied managing swap station operations. In Chapter 2, we present

an MDP model to find the optimal/near-optimal policies (number of recharging/discharging and

replacement actions) to maximize the expected total profit for the station facing the stochastic de-

mand and battery degradation. We solve this problem using a heuristic, RL methods (Chapter 2),

and a monotone approximate dynamic programming algorithm (Chapter 3) to provide insights

for managing the internal operations in the swap stations. Widrick et al. (2018) propose an MDP

model for the same problem when no battery degradation is considered. Nurre et al. (2014) do

not consider stochasticity and provide a deterministic model to find the optimal policies for man-

aging swap stations. The discussed papers do not consider different demand classes and multiple

states of charge of batteries. Kwizera and Nurre (2018) propose a two-level integrated inventory

model to manage internal operations in a drone swap station delivering to multiple customers (or

classes, equivalently) but exclude the uncertainty in the system. To the best of our knowledge,

we are the first to introduce the stochastic SA-MCDs for managing internal operations in a swap

station facing stochastic demand of different classes.

In recent years, there has been a rapid growth in using drones for many innovative appli-

cations (Macrina et al., 2020). Several papers (Barmpounakis et al., 2016; Chang and Lee, 2018;
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Otto et al., 2018; Khoufi et al., 2019) review the applications of drones in different contexts, and

we refer the reader to Otto et al. (2018) for an extensive review on the optimization approaches

for civil applications of drones. Delivering portable medical items such as blood units and vac-

cines using drones can positively impact the levels of medical service in remote or congested

places where roads are not viable options for transportation and delivery (Otto et al., 2018; Dhote

and Limbourg, 2020). Several companies are using drones to deliver medical supplies in different

parts of the world (Kent, 2019; Lyons, 2020; Matternet, 2020; Chandler, 2020). Notably, we fo-

cus on a case study influenced by Zipline, a drone delivery company which started with 15 drones

delivering medical items to remote locations in Rwanda in 2016 (Staedter, 2016). After success-

ful operations in Rwanda, Zipline expanded its medical delivery service in the south of Ghana

using 30 drones in 2019 (Bainbridge, 2019). During the COVID-19 pandemic, drone delivery

provides a fast, cheap, and reliable method to distribute COVID-19 vaccines. For instance, in

Ghana, Zipline already delivered 11000 doses and will deliver more than 2.5 million doses this

year (Vincent, 2021). Draganfly, a Canada-based company, will use drones to distribute COVID-

19 vaccines to remote areas of Texas starting in Summer 2021 (Singh, 2021).

A drone can store a limited amount of energy that restricts its flight range. This limitation

needs to be considered when modeling real-world problems. Common modeling approaches are

to use the maximal operation time (Tokekar et al., 2013; Wang et al., 2017) and maximal flying

distance (Savuran and Karakaya, 2016; Guerriero et al., 2014). In this research, we use the maxi-

mal coverage of 80km radius (160km round-trip) (Engineering for Change, 2021) from our swap

station, which is located at the Muhanga Zipline drone hub, for geographically-based demand

classification in our case study.

Our SA-MCD problem is in the class of sequential decision-making under uncertainty, and

we use a Markov Decision Process (MDP) model, which is appropriate for this class of problems

(Puterman, 2005). There is extensive research on the use of MDPs for stochastic problems in

the operations research community. A sample of problems and applications that are closer to our

research include drone applications (Al-Sabban et al., 2013; Baek et al., 2013; Fu et al., 2015),
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dynamic inventory and allocation (Federgruen and Zipkin, 1984; Somarin et al., 2017), and opti-

mal timing of decisions (Alagoz et al., 2004; Chhatwal et al., 2010; Zhang et al., 2012; Khojandi

et al., 2014). In SA-MCD, we classify the demands based on the distance between the station and

demand nodes (hospitals) and link each class to one or multiple levels of charge inside drone bat-

teries capable of satisfying the related demands.

Researchers broadly use demand classification to study scheduling, allocation, supply

chain management, and inventory control problems. We discuss a sample of scientific works that

used such a classification in combination with a MDP modeling approach. Gayon et al. (2009)

provide optimal production policies for a supplier facing multiple classes of demands that are

different in the demand rates, expected due dates, cancellation probabilities, and shortage costs.

Benjaafar et al. (2011) formulate an MDP model to derive optimal production policies for an

assembly system wherein the demands are classified based on the difference between shortage

penalties incurred due to the lack of inventory to satisfy orders. Thompson et al. (2009) cate-

gorize patients served by a hospital according to the floors treating patients and the lengths of

stay in hospitals. Mlinar and Chevalier (2016) use an infinite horizon MDP to model an admis-

sion control problem to maximize the expected total profit of a firm serving two classes of cus-

tomers. The customers are classified based on profit margins, order sizes, and lead time. We use a

geographically-based demand classification influenced by different flight ranges of a drone based

on the level of charge inside its batteries. An instance of considering travel range for demand

classification can be found in (Wang et al., 2019) wherein it is assumed that different types of

EVs have different drive ranges. They incorporate this information to provide a framework that

estimates the charging demands for charging stations and determine the service capacity of the

stations without optimizing the system. As they do not consider optimization, this work is signifi-

cantly different from our problem which considers optimization under uncertainty.

When an MDP model is large and complex it suffers from the curses of dimensionality

(Powell, 2011; Sutton and Barto, 2018), and thus, is traditionally solved using approximate so-

lution methods. Researchers apply Reinforcement Learning (RL) (or approximate dynamic pro-
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gramming (ADP), the term more used in the operations research community (Powell, 2011)) to

find approximate solutions which are not solvable using standard exact solution methods, (e.g.,

dynamic programming (Puterman, 2005)). Examples of various ADP/RL methods in dynamic

allocation problems are temporal difference (Roy et al., 1997; Çimen and Kirkbride, 2017, 2013),

case-based myopic RL (Jiang and Sheng, 2009), Q-Learning (Chaharsooghi et al., 2008), value

function approximation (Bertsimas and Demir, 2002; Erdelyi and Topaloglu, 2010; Maxwell

et al., 2010), linear function approximations (Powell and Topaloglu, 2005), and policy iteration

(Nasrollahzadeh et al., 2018). In this research, we apply a value function approximation using

a look-up table (e.g., (Jiang and Sheng, 2009; Kwon et al., 2008)) with an ε-greedy exploration

feature (Powell, 2011; Ryzhov et al., 2019) to make our RL method visit and update the value of

more (both attractive and unattractive) states in the state space. We reduce the exploration rate

(increase the exploitation rate) to make the algorithm converge as it proceeds toward iterations. In

Section 4.4.2, we present a comprehensive explanation of our RL method.

4.3 Problem Description and Formulation

In this section, we present our Markov Decision Process (MDP) approach to model the stochastic

scheduling and allocation problem with multiple classes of demand (SA-MCD). We proceed by

formally describing the classes of demand and the components of our MDP model.

For our problem, we consider a set of medical facilities, each with an unknown number of

requests (i.e., demand) for drone delivery by time. We know how long a drone needs to fly from

the drone hub (located in the swap station) and back to satisfy a request for each medical facility.

We cluster medical facilities with similar flight times into demand classes. The demand for each

medical facility is then aggregated by demand class. As follows, the uncertainty in our MDP is

the number of requests (i.e., demand) for each demand class by time. We assume that there is a

known probability distribution that governs the uncertainty for each demand class over time. We

depict an example of geographically-based demand classification in Figure 4.1.

We link each demand class with the required amount of battery charge that is necessary to

156



Drone hub

Demand Class 1

Demand Class 2

Demand Class 3

Figure 4.1: An example of demand classification based on the distance between the location of
demand and the drone hub.

make the round-trip flight from the drone hub to the medical facility and back. In other words,

higher demand classes that are farther from the drone hub require more charge than those closer

to the hub. Charging all batteries to full charge ensures that each drone+battery pair can satisfy

a request from any demand class. However, in reality, this strategy results in a higher total cost,

longer recharge times, and faster battery degradation. Thus, we make decisions about how many

batteries are recharged to different charge levels over time. Our system incorporates time-varying

elements, including the mean demand per class over time. As a result, we use a finite horizon

MDP. We seek to maximize the expected total reward wherein the reward equals the summation

over all demand classes and time periods of the weighted met demand. We note that the main

purpose of our swap station is demand satisfaction; thus, we do not directly incorporate different

charging costs and times into our model. However, in the objective function, we use multipliers

for the amount of demand of each class that is satisfied using the batteries of higher charge levels.

In this design, higher charge level batteries are capable of satisfying demand for lower classes,

but this can be penalized as it caused unnecessary charging costs. To maximize the expected total

weighted demand, we seek optimal policies indicating how many batteries are charged to each

charge level by state and time. We proceed by detailing the specific components of our MDP.

Decision Epochs: Discrete times within the finite time horizon N < ∞ in which we make

decisions. The set of decision epochs is T = {1,2, . . . ,N−1}.
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States: The state of the system, st , is dynamic and defined in the C-dimensional state space

S. Thus, st = (s1
t ,s

2
t , . . . ,s

C
t ) ∈ S = (S1×S2× . . .SC), where Si is the state space for battery charge

level i for i= 1, . . . ,C. Each Si = {0, . . . ,M} where M represents the total number of batteries. For

each dimension, si
t ∈ Si equals the number of batteries with i level charge. The total number of

batteries over all charge levels must not exceed M in accordance with Equation (4.1). All batter-

ies with a charge level lower than the lowest charge level (i.e., level 1) are implicitly denoted as

being level 0 which does not need to be stored but instead, can be calculated as s0
t = M−∑

C
i=1 si

t .

S =

{
(s1

t ,s
2
t , . . .s

C
t ) :

(
C

∑
i=1

si
t ≤M, ∀t ∈ T

)}
. (4.1)

The C-dimensional state space corresponds to the C demand classes. As previously men-

tioned, each demand class represents a set of medical facilities with similar round-trip delivery

flight times. We link the state space with these demand classes by stating that a drone powered

with charge level i is able to satisfy requests from demand class i and lower. In other words, a re-

quest from demand class i is able to be satisfied by a drone powered with charge level i or higher.

We make the assumption that a demand request from class i is satisfied using a battery from the

lowest, capable, available charge level. For example, imagine we have a request from demand

class 2. Any battery with charge level 2, . . . ,C is capable of satisfying this request. If a battery

is available with charge level 2, this battery is used. However, if no batteries are available with

charge level 2, then we look to assign a battery with charge level 3, and continue increasing the

charge level until a battery is available. If none are available, we designate this demand as unmet.

With this assumption, we maintain higher charge level battery in inventory.

Actions: We use at to denote the recharging action at time t using a vector of size (C(C−1)/2)

such that aik
t represents the number of batteries starting at charge level i which are recharged to

level k for k > i at time t. As follows,

at = {aik
t ∈ Aik

st
: ∀i = 0,1, . . . ,C−1, k = i+1, . . . ,C} (4.2)
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where

Aik
st
= {0,1, . . . ,si

t} ∀i = 1, . . . ,C−1, k = i+1, . . . ,C, and (4.3)

A0k
st
= {0,1, . . . ,M−

C

∑
i=1

si
t} ∀k = 1, . . . ,C. (4.4)

To ensure that the number of batteries selected to be recharged from each charge level does

not exceed the number of batteries within that class, we force the actions to satisfy Equations

(4.5) and (4.6).
C

∑
k=1

a0k
t ≤M−

C

∑
i=1

si
t . (4.5)

C

∑
k=i+1

aik
t ≤ si

t ∀i = 1, . . . ,C−1, ∀t ∈ T. (4.6)

In Figure 4.2, we display the state transitions between different states due to different recharg-

ing actions or demand satisfaction for a single battery. Recharging/demand satisfaction increases/

decreases the level of charge of a battery depending on the level of recharging/classes of met de-

mand.

C· · ·210

1 level charging from 0 to 1 1 level charging from 1 to 2

2 level charging from 0 to 2

C−2 level charging from 2 to C

C−1 level charging from 1 to C

C level charging from 0 to C

Satisfy Demand from Class 1 Satisfy Demand from Class 1

Satisfy Demand from Class 2
Satisfy Demand from Class C−2

Satisfy Demand from Class C−1

Satisfy Demand from Class C

Figure 4.2: An instance of state transition for a single battery.

Transition Probabilities: The system transitions from state st to a future state st+1 accord-
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ing to the selected action and the realized demand within each demand class. In our system, the

demand at time t, denoted Dt , is a vector of size C, i.e., Dt = (D1
t , . . . ,D

C
t ) where each Di

t , for

i = 1, . . . ,C, is a random variable representing the number of requests for demand class i. The

state transitions and the probability transition function is complex; to illustrate these functions,

we focus on an MDP where C = 2. However, we note, that the model could be applied to a prob-

lem with C > 2.

As our state transition is complex, we first define an intermediate state of the system. We

define the intermediate state of the system as L = (L1,L2) and allow this to represent the number

of batteries within the two classes after all actions are taken and batteries are used to satisfy de-

mand within their class (i.e., batteries with charge levels 1 and 2 are used to satisfy the demand

of class 1 and class 2, respectively). We note, this intermediate transition does not incorporate the

batteries from charge level 2 used to satisfy remaining demand from class 1. The transitions to in-

termediate states are governed by Equations (4.7) and (4.8). In Equation (4.7), min{s1
t −a12

t ,D1
t }

equals the satisfied demand of class 1 using the available batteries with charge level 1. Similarly,

min{s2
t ,D

2
t } denotes the satisfied demands of class 2 using batteries with charge level 2 in Equa-

tion (4.8).

L1 = s1
t +a01

t −a12
t −min{s1

t −a12
t ,D1

t }. (4.7)

L2 = s2
t +a02

t +a12
t −min{s2

t ,D
2
t }. (4.8)

Using this intermediate state, we now present the entire state transition equations. Given

L = (L1,L2), we can now use the remaining batteries with level 2 charge to satisfy any remaining

demand for class 1. We present the full future state of the system with Equations (4.9) and (4.10).

s1
t+1 = L1 +min

{
max{0,D1

t − (s1
t −a12

t )},max{0,s2
t −D2

t )}
}
. (4.9)

s2
t+1 = L2−min

{
max{0,D1

t − (s1
t −a12

t )},max{0,s2
t −D2

t )}
}
. (4.10)

In Equations (4.9) and (4.10), V 1 = max{0,D1
t − (s1

t − a12
t )} is the amount of unsatisfied class
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1 demand after using level 1 charged batteries and V 2 = max{0,s2
t −D2

t )} is the number of left-

over level 2 charged batteries after satisfying class 2 demands. Hence, the amount of remaining

class 1 demand that can be satisfied using remaining level 2 charged batteries is the minimum of

(V 1,V 2). We note that our system holds the Markov property that means the system’s future state

does not depend on the state of the system in the past and can be derived using solely the present

state, taken action, and realized uncertainty (Puterman, 2005). We only introduce the intermedi-

ate state of the system to clarify the state transitions, transition probability, and immediate reward

function.

Now, we present the transition probability function from state st to state st+1 = j = ( j1, j2)

using Equation (4.11).

p( j|st ,at)=



(p1
s1
t +a01

t −a12
t − j1

)(p2
s2
t +a02

t +a12
t − j2

) if a01
t < L1 ≤ s1

t +a01
t −a12

t ,

a01
t +a12

t < L2 ≤ s2
t +a02

t +a12
t ,

j2 = L2, and j1 = L1

(p1
s1
t +a01

t −a12
t − j1

)(q2
s2
t
) if a01

t < L1 ≤ s1
t +a01

t −a12
t ,

a01
t +a12

t = L2, j2 = L2, and j1 = L1

(q1
s1
t −a12

t
)(q2

s2
t
) if a01

t = L1,a01
t +a12

t = L2,

j2 = L2, and j1 = L1

(p1
s1
t −a12

t +L2− j2
)(p2

s2
t +a02

t +a12
t −L2) if a01

t = L1,a01
t +a12

t < L2 ≤ s2
t +a02

t +a12
t ,

a02
t +a12

t < j2 ≤ L2, and j1 = a01
t +L2

t − j2

(q1
s1
t −a12

t +L2− j2
)(p2

s2
t +a02

t +a12
t −L2) if a01

t = L1,a01
t +a12

t < L2 ≤ s2
t +a02

t +a12
t ,

a02
t +a12

t = j2, and j1 = a01
t +L2

t − j2

0 otherwise,
(4.11)

where pi
x = P(Di

t = x) and qi
x = ∑

∞
u=x pi

u = P(Di
t ≥ x) ∀i = 1,2. In all of the cases in Equation
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(4.11), the intermediate state transitions are calculated using Equations (4.7) and (4.8). The first

case in Equation (4.11) calculates the transition probabilities when the stochastic demand of class

1 and 2 is less than the number of charged level 1 and 2 batteries, respectively. The future state

equates the intermediate state for each charge level. In the second case, the demand of level 2 is

greater than or equal to the number of batteries with level 2 charge; hence the number of batter-

ies with level 2 charge at time t + 1 equals the number of recently charged batteries from empty

or level 1 charge. The future state of the system equates to the intermediate state of the system.

The third case is similar to the second case. The difference is that in the second case, the stochas-

tic demand of class 1 is less than the number of level 1 charged batteries but in the third case, the

demand is greater than or equal to the number of level 1 charged batteries. The fourth case de-

scribes the condition that all of the demand for the class 1 charge can be satisfied using all the

available level 1 charged batteries plus the leftover batteries of level 2 after satisfying the demand

of class 2. The future state of level 2 batteries will be no more than the intermediate state for

level 2. The amount of satisfied demand in stage 2 (satisfying demand of class 1 using remain-

ing batteries of class 2) equals the difference between the intermediate and future state of level

2 charged batteries. The fifth case is similar to the fourth case, except that all of the demands of

class 1 can not be satisfied in the first and second stage of the demand satisfaction process.

Reward: We calculate the immediate reward of taking action at when the transition from

state st to state st+1 = j occurs using Equation (4.12)

rt(st ,at , j) = ρ
11(s1

t +a01
t −a12

t −L1)+ρ
21(L2− j2)+ρ

22(s2
t +a02

t +a12
t −L2) (4.12)

for t = 1, . . . ,N− 1. The immediate reward is a function of weighted met demand. We use ρi j to

put weights on the amount of met demand of class j using level i charged batteries. We can ad-

just the value of multipliers ρi j based on different factors (e.g., cost of charging) to change the

penalty/reward of satisfying class j demands using level i charged batteries. For instance, when

we implicitly consider the cost factor, we can set ρi j > ρi′ j where i < i′ as we incur a higher cost
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to recharge batteries to level i′ than level i, therefore the reward generated to satisfy class j de-

mand is lower using level i′ charged than level i batteries. In other words, we penalize the reward

function by using a lower value for ρi js when higher-level charged batteries are used to satisfy

class j demand.

In the first term of Equation (4.12), (s1
t + a01

t − a12
t − L1) denotes the number of level 1

charged drones used to satisfy class 1 demand. In the second term, (L2− j2) equals to the number

of level 2 charged batteries used to satisfy class 1 demand. In the third term, (s2
t +a02

t +a12
t −L2)

determines the number of level 2 charged batteries used to satisfy class 2 demand. We note that

our objective is to maximize the expected total satisfied demand which does not directly incor-

porate cost. However, with adjusting the weights of ρi j, we implicitly include a cost factor via

assigning a penalty/reward to demand satisfaction with an excessive level of charge. For instance,

when ρ21 = ρ22 = ρ11 = 1, there is no benefit in recharging batteries to level 1 to satisfy class 1

demand because level 2 charged batteries can satisfy class 1 demand by generating the same re-

ward while these batteries can satisfy class 2 demands, too. However, if ρ21 = 0.5, then we expect

to recharge to/use more level 1 charged batteries to satisfy class 1 demand given that ρ11 = 2ρ21,

which means we penalize the reward of satisfying class 1 demand with level 2 charged batteries.

At the end of the time horizon we calculate the terminal reward. We assume that no action

is taken at the end of the time horizon and that all remaining batteries can be used to satisfy fu-

ture demand. With this, we assume that there is sufficient demand for each level. Thus, we define

the terminal reward using Equation (4.13).

rN(sN) =


ρ11

N s1
N +ρ22

N s2
N if s1

N + s2
N ≤M,

0 otherwise.
(4.13)

We calculate the immediate expected reward rt(st ,at), using the immediate reward and
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transition probability functions given by Equation (4.14),

rt(st ,at) = ∑
j,L∈S

[
pt( j|st ,at)

(
ρ

11(s1
t +a01

t −a12
t −L1)+ρ

21(L2− j2)+

ρ
22(s2

t +a02
t +a12

t −L2)
)]
.

(4.14)

We derive the decision rules, dt(st) : st → Ast , from the action set to maximize the total expected

reward. Because we select a single action based on the present state, which does not depend on

the past states and actions, our decision rules belong to the Markovian decision rules (Puterman,

2005). A policy π is a sequence of decision rules for all decision epochs, that is dπ
t (st) ∀ t ∈ T .

We can calculate the expected total reward of policy π for the problems starting from an arbi-

trary initial state s1 using Equation (4.15). The optimal policy, π∗, maximizes the expected total

reward.

V π
N (s1) = Eπ

s1

[N−1

∑
t=1

rt(st ,at)+ rN(sN)

]
. (4.15)

4.4 Solution Methodology

4.4.1 Backward Induction

As our Markov Decision Process (MDP) model has finite state and action spaces, there is at least

one deterministic optimal policy (Puterman, 2005); thus, backward induction (BI) can determine

such policy (number of recharging actions) that maximizes the expected total reward or weighted

met demand over time. Let V ∗t (st) be the optimal value function equivalent to the maximum ex-

pected total reward from decision epoch t onward when the system is in state st . Then, we can

use optimality (Bellman) equations, given by Equation (4.16), to find the optimal policies for all

the decision epochs when moving backward in time. That is, BI sets the value of being in state

sN at the end of the time horizon N to be equal to the terminal reward value given by Equation

(4.13). Then, the algorithm starts from the last decision epoch and finds the optimal actions and

corresponding values using Equations (4.16) and (4.17) stepping backward in time. The algo-
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rithm aims to find the optimal expected total reward over the time horizon, V ∗1 (s1), for state s1,

which is the system’s initial state at time t = 1. In other words, solving the optimality equations

for t = 1 is equivalent to the expected total reward over the time horizon.

Vt(st) = max
at∈Ast

{
rt(st ,at)+ ∑

j∈S
pt( j | st ,at)ut+1( j)

}
. (4.16)

a∗st ,t = arg maxat∈Ast

{
rt(st ,at)+ ∑

j∈S
pt( j|st ,at)ut+1( j)

}
. (4.17)

The size of state space, action space, transition probability, and optimal policies are func-

tions of O(M2) and O(M3), O(M7N), O(M2N), respectively. As the size of the problem increases,

it becomes challenging for BI to find the optimal solution due to the curses of dimensionality

which cause computational time and memory issues. Hence, we proceed with presenting our re-

inforcement learning (RL) method, which is capable of circumventing such problems (Powell,

2011; Sutton and Barto, 2018).

4.4.2 Reinforcement Learning

In this section, we explain the Reinforcement Learning (RL) method used to find high-quality

approximate solutions and overcome the curses of dimensionality (Powell, 2011) of the stochastic

scheduling and allocation problem with multiple classes of demand (SA-MCD). We proceed by

introducing the notation and continue with our RL features and procedure.

In our RL method, first, we determine the number of drones (M), decision epochs (N −

1), (τ1) iterations, and (τ2) sample paths. Then, we initialize the approximate value at the end of

the time horizon, t = N, for all iterations using the terminal reward function given by Equation

(4.13). For every iteration, we select an initial state sn
1. To select the action, we use the ε-greedy

method (Powell, 2011) that allows exploring the action space that works as follows. We generate

a random number, Rand. Then, we compare Rand with the exploration rate, εn, at iteration n.

If Rand < εn, we select a feasible action arbitrarily. Otherwise, we generate τ2 sample paths of
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Table 4.1: Notation used in the reinforcement learning algorithm.

Notation Description

τ1 The number of core RL iterations

τ2 The number of sample paths of demands (realized uncertainty)

V n
t (st) The optimal value of being in state st at time t for iteration n

V n
t (st) The approximate value of being in state st at time t for iteration n

υ̂n
t (st) The observed value of state st at time t for iteration n

αn The step-size value at iteration n

εn The exploration rate at iteration n

Rand A random number that is used to select exploration or exploitation

zn
t (s

n
t ) The smoothed value of being in state st at time t for iteration n

demands (realized uncertainty) and select the action that maximizes the observed value υ̂n
t (st)

according to Equations (4.18) and (4.19), wherein V n−1
t+1 (st+1) is used to approximate the value

of E(Vt+1 | st ,at) for each sample path. If an action, is selected over multiple sample paths, we

use the average of V n−1
t+1 (st+1) as the approximation. The observed value and the approximated

value at the previous iteration are smoothed using a step size function. This value is now used as

the present approximation value of the observed state. When, an action is selected, we sample

an observation of uncertainty (generate a realized value for stochastic demand) to find the future

state. The algorithm steps forward in time and moves to the future observed state until it reaches

the last decision epoch and new iteration starts. The same process is repeated until τ1 iterations

are completed.

an
st ,t = argmax

at∈Ast

{
rt(st ,at)+V n−1

t+1 (st+1)
}
. (4.18)

υ̂
n
t (s

n
t ) = max

at∈Ast

{rt(st ,at)+E(Vt+1 | st ,at)} . (4.19)

4.5 Computational Results

In this section, we explain the results of solving stochastic scheduling and allocation problems

with multiple classes of demand (SA-MCD) using realistic data influenced by the drone deliv-
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Algorithm 4 Reinforcement Learning Method
1: Initialize M drones, N−1 decision epochs, τ1 iterations, and τ2 sample paths
2: Set V n

N(s) = rN(s) for s ∈ S and n = 1, . . . ,τ1
3: Set n = 1
4: while n≤ τ1 do
5: Select initial state sn

1
6: for t = 1, . . . ,N−1 do
7: Generate a random number Rand
8: if Rand < εn then
9: Sample an observation of the uncertainty, Dt

10: Determine a random feasible action, at
n

11: Calculate the observed value, υ̂n
t (s

n
t )

12: else
13: Find an action that maximizes υ̂n

t (st) over τ2 sample paths
14: Sample an observation of the uncertainty, Dt

15: Calculate the observed value, υ̂n
t (s

n
t )

16: end if
17: Smooth the new observation with the previous approximated value,

zn
t (s

n
t ) = (1−αn)V

n−1
t (sn

t )+αnυ̂
n
t (s

n
t ) (4.20)

18: Update the present approximation using the smoothed value, V n
t (s

n
t )← zn

t (s
n
t )

19: Determine next state, sn
t+1

20: end for
21: Increment n = n+1
22: end while

ery company Zipline. We created this dataset to mimic the geographical locations of the Zipline

drone hub and hospitals in Rwanda, Africa, the population of districts, flight regulations in the

country, Zipline drone configuration, including the speed, flight range, and recharging time. We

solve modest SA-MCDs (15-21 drones) using exact solution methods. As we run into the curses

of dimensionality for larger instances of SA-MCD, we present the results of our reinforcement

learning (RL) method that provides near-optimal solutions for the modest instances and can solve

larger problem instances. We deduce managerial insights for managing the swap station’s distri-

bution operations that maximize the expected total weighted met demand of multiple classes. We

proceed by first explaining the data.
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4.5.1 Data

In this research, we consider the medical supply delivery by Zipline, a drone delivery company

operating in Rwanda. The Zipline station is located at the Muhanga district, west of Rwanda’s

capital city, Kigali. We focus on drone delivery to satisfy the stochastic demand for blood units

originating from hospitals in Rwanda. In Table 4.2, we summarize the input data including, the

name of each hospital, their location, the distance between the station and each hospital, the

approximated population of people using each hospital, the number of blood units and flights

needed per day for each hospital, and the demand class associated with each hospital. We cate-

gorize the demand into two classes based on the distance between the Zipline station and hos-

pitals. As the flight range of the drone is estimated to be 80km (Ackerman, 2020), we assume

demands of hospitals located within [0km, 40km) and [40km, 80km] fall into class 1 and class

2, respectively. The demand class NA means that the hospital is not reachable from the Zipline

station and excluded from further analysis. We exclude six hospitals (denoted by NA in the last

column of Table 4.2) from the 33 identified hospitals as they are located at a distance out of the

drone’s flight range from the origin, Zipline station, which drones with fully-charged batteries

can not cover. We consider ten hospitals in class 1 and 17 hospitals in class 2 which are located

throughout 15 distinct districts in Rwanda.

We approximate the air travel distance between the station and hospitals using the Haver-

sine formula (Sinnott, 1984) that is broadly used to find the distance between two points on the

earth. When calculating the distance, we consider the rules for flying drones in Rwanda, which

does not allow drones to fly within a 10km radius from airports (Rwanda civil aviation author-

ity, 2021). Therefore, we need to adjust the travel distance between the station and two hospitals,

Kiziguro and Rwamagana. Hence, we calculate the closest travel distances such that the flights to

these destinations do not violate the rules for flying drones in Rwanda. In Figure 4.3, we display

the geographical locations of airports, hospitals, and the Zipline station.

Consistent with (Swartzman, 1970; Armony et al., 2015), we use a non-homogenous Pois-

son process to determine the patients’ arrival to hospitals. We examine the daily operations of the
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Table 4.2: The data associated with blood unit delivery using Zipline drones in Rwanda, Africa.

Hospital District Dist. to Pop. reach Pop. need Pop. need Rounded # Class of
name Zipline the blood blood of flights demand

station (km) hospital unit/year unit /day needed/day

Nyamata Bugesera 34.3 361914 7238.3 19.8 10 1
Butaro Burera 73.5 336582 6731.6 18.4 10 2
Nemba Gakenke 47.8 169117 3382.3 9.3 5 2
Ruli Gakenke 27.6 169117 3382.3 9.3 5 1
Kiziguro Gatsibo 75.8 216510 4330.2 11.9 6 2
Ngarama Gatsibo 77.5 216510 4330.2 11.9 6 2
Byumba Gicumbi 61.3 395606 7912.1 21.7 11 2
Gakoma Gisagara 34.9 161253 3225.1 8.8 5 1
Remera Rukoma Kamonyi 20.3 340501 6810.0 18.7 10 1
Kibuye Referral Karongi 48.2 110603 2212.1 6.1 4 2
Kirinda Karongi 22.6 110603 2212.1 6.1 4 1
Mugonero Karongi 55.6 110603 2212.1 6.1 4 2
Gahini Kayonza 85.4 172079 3441.6 9.4 5 NA
Rwinkwavu Kayonza 94.0 172079 3441.6 9.4 5 NA
Kirehe Kirehe 99.6 340368 6807.4 18.7 10 NA
Kabgayi Muhanga 5.2 319141 6382.8 17.5 9 1
Kibungo Ngoma 85.1 336928 6738.6 18.5 10 NA
Muhororo Ngororero 22.6 333713 6674.3 18.3 10 1
Shyira Nyabihu 46.0 294740 5894.8 16.2 9 2
Nyagatare Nyagatare 104.9 465855 9317.1 25.5 13 NA
Kaduha Nyamagabe 40.8 170746 3414.9 9.4 5 2
Kigeme Nyamagabe 53.8 170746 3414.9 9.4 5 2
Kibogora Nyamasheke 77.5 190902 3818.0 10.5 6 2
Nyanza Nyanza 31.9 323719 6474.4 17.7 9 1
Munini Nyaruguru 76.8 294334 5886.7 16.1 9 2
Kabaya Rubavu 44.7 201831 4036.6 11.1 6 2
Gitwe Ruhango 22.4 159943 3198.9 8.8 5 1
Ruhango Ruhango 19.8 159943 3198.9 8.8 5 1
Kinihira Rulindo 50.7 143841 2876.8 7.9 4 2
Rutongo Rulindo 41.9 143841 2876.8 7.9 4 2
Mibilizi Rusizi 107.3 200429 4008.6 11.0 6 NA
Murunda Rutsiro 48.3 324654 6493.1 17.8 9 2
Rwamagana Rwamagana 73.7 313461 6269.2 17.2 9 2

drone station wherein the time between two consecutive decision epoch is 90 minutes (1.5hr).

Thus, N = 24/1.5+ 1 = 17. The 90-minute intervals provide adequate time for drones to receive

charge (McNabb, 2020) and complete a round-trip from the furthest delivery mission to the sta-

tion given that the maximum speed of the drone is 127km/hr (Petrova and Kolodny, 2018).

To derive the mean demand of blood units per time t, we apply the following process. First,

we determine the number of people using a particular hospital based on the population of each

district. If more than one hospital is located in a district, we evenly distribute the district’s total

population over the number of hospitals located in that district. Second, we calculate the num-

ber of blood units needed per year for each hospital by multiplying an estimated portion of the
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Figure 4.3: Locations of hospitals (demand nodes), the swap station located in Zipline drone hub,
and airports in Rwanda.

population that needs blood units per year (2% recommended by the World Health Organization

(WHO) (Dhingra, 2010)) by the number of people using that hospital. The yielded number is an

overestimate of the number reported by (Iliza, 2020). However, we use this number to account for

pessimistic cases wherein the station faces more demand. Third, we divide the number of blood

units required per year by 365 to find the number of blood units needed per day for each hospi-

tal. Next, we use the pattern of patient arrivals to hospitals, consistent with (Green et al., 2007;

Tiwari et al., 2014; Jones et al., 2007), to derive the mean demand for blood units of time t over a

day. The pattern in the literature indicates an ascending trend of arrivals from 6:00am to the peak

at noon, followed by a descending trend from noon to 6:00am of the following day. Specifically,

we use the data from (Green et al., 2007) and fit a polynomial function for generating the mean

arrival rate of time t. In Figure 4.4, we display the mean demand of (Green et al., 2007) and our

fitted function. We scale the mean demand of blood units of time t such that the summation of the

scaled demand over a day equals the calculated number of blood units required per day for each

hospital. Then, as each drone can carry two units of blood (Baker, 2017), we divide the mean
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demand of blood units of time t by two to find the mean demand for flights for each hospital. Fi-

nally, the mean demand for either demand class, λ1
t ,λ

2
t , is the aggregation of mean demands for

flights from the hospitals within each demand class.
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Figure 4.4: Pattern of patients arrivals to a hospital over a day.

In the first experiment, we consider Zipline has a fleet of 15 drones (Staedter, 2016). We

set ρ11 = ρ22 = 1 and ρ21 = 0.5 that indicates satisfying a demand of class 1 using a level 1

charged battery (partially-charged) generates more immediate reward than satisfying that de-

mand using a level 2 charged battery (fully-charged). This setting implies the company provides

less reward when drones with excessive level of charge are used to satisfy demands, which can

be interpreted as a penalty to account for unnecessary higher recharging costs incurred. In other

words, with this setting, the company receives more reward when batteries with level 2 and level

1 charge are used to satisfy class 2 and class 1 demand, respectively, instead of using level 2

charged batteries to satisfy both classes of demand.

The setting of our RL parameters is as follows. The number of core iterations is τ1 = 200000.

As we will see later, the algorithm will converge after 50000 iterations; however, as the computa-

tional time is in a matter of minutes, we keep 200000 iterations over our experiments. We test

τ2 = 1,5,10, . . . ,50 and observe that increasing the parameter to the value of 30 reduces the op-

timality gap and increases the robustness of the results and computational time, but excessive in-

crease in the value of τ2 only magnifies the computational time with little improvement in the
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quality of the result; thus, we set τ2 = 30. We use the adaptive stepsize function provided by

George and Powell (2006). We use εn = 1/n to adjust the value of the exploration rate at itera-

tion n used in the ε-greedy approach to select policies within our RL method. With this function,

we ensure a higher rate of exploration/exploitation in early/late iterations, which is desirable for

visiting more states and enabling the algorithm to converge as it proceeds with each iteration.

4.5.2 Discussion and Analysis

In this section, first, we feed the data explained in Section 4.5.1 to solve the problem using exact

and approximate solution methods, Backward Induction (BI) and Reinforcement Learning (RL),

respectively. Then, we analyze the optimal policies (BI solutions) and assess the quality of near-

optimal solutions derived from RL. Moreover, as the drone delivery company can control and ad-

just ρ21 (the weight of satisfying class 1 demand using level 2 charged batteries), we analyze the

impact of changing the parameter’s value on the station’s operations and amount of met demand.

We also conduct different sets of experiments to solve instances of the problem and answer the

following questions. How many batteries are needed in the station to satisfy a certain level of the

stochastic demand? What is the contribution of classifying the demand on the demand satisfac-

tion? We use a high-performance computer with four shared memory quad Xeon octa-core 2.4

GHz E5-4640 processors and 768GB of memory for running all of our computational tests.

4.5.2.1 Comparing Results of BI and RL

In this section, we present the results from solving stochastic scheduling and allocation problems

with multiple classes of demand (SA-MCD) using BI and RL using the data presented in Section

4.5.1. The system’s initial state is s1 = (0,15), which means all 15 batteries are charged to level

2 (fully-charged). The time horizon is one day and N = 17 wherein the first decision epoch is at

midnight and the time between any two consecutive decision epochs is 90 minutes. That is, the

decisions are made at 16 decision epochs, t, where t = 00:00, 1:30, 3:00, . . . , 10:30, 12:00, 13:30,

. . . , 22:30. We calculate the average percentage of met demand using Equations (4.21) and (4.22)
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wherein we generate 500 sample paths of realized demand using the Poisson distribution at time t

for each class of demand.

(%) of Demand Met over Time for a Sample Path =∣∣∣∣Tot. # Met Dem. over Time - Tot. # Realized Dem. over Time
Tot. # Realized Dem. over Time

∣∣∣∣∗100%. (4.21)

Average (%) of Demand Met =

# of Sample Paths
∑

i=1
(%) of Met Demand over Time for Sample Path i

# of Sample Paths
. (4.22)

We summarize the results in Table 4.3. The percentage of met demand over a sample path

equals the total number of demand met over the total realized demand of both classes. We report

the average of 500 sample paths in Table 4.3. We provide more detailed results about demand

satisfaction by class later in Table 4.5. As shown, RL is faster and can generate a high-quality

solution with 5.3% of optimality gap (derived from Equation (4.23)) in 8 minutes. In Figure 4.5,

we show the convergence of our proposed RL method.

Optimality Gap =

∣∣∣∣Exp. Tot. Reward BI - Exp.Tot. Reward RL Method
Exp. Tot. Reward BI

∣∣∣∣∗100%. (4.23)

Table 4.3: The expected total reward and computational time of solving SA-MCD with ρ21 = 0.5
and M = 15 using BI and RL.

Solution Expected Average Met Computational
Method Total Reward Demand (%) Time (s)

BI 115.1 63.7 6740.7
RL 109.0 60.9 483.7

In Table 4.4, we provide the summary of the results from solving the problem with 15 to

21 drones using BI and RL. We note, BI cannot find the optimal solution when the number of
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drones is greater than 21. For 15-21 drones, RL provides an optimality gap of less than 6% for

all instances and significantly reduces computational time. The maximum difference between the

average percentage of met demand of RL and BI is less than 5%. The results indicate the high

performance of our RL method in providing approximate solutions.

Table 4.4: Computational time, memory used, and average percentage of met demand over time
for 500 sample paths when ρ21 = 0.5 using BI and RL methods.

Backward Induction (BI) Reinforcement Learning (RL)

M Average Met Comput. Memory Average Met Comput. Memory Opt.
Demand (%) Time (s) Used (GB) Demand (%) Time (s) Used (GB) Gap (%)

15 63.7 6740.7 34.2 60.9 483.7 13.4 5.3
16 66.9 11630.4 68.1 64.3 494.1 13.4 3.3
17 69.9 19356.4 125.8 65.2 517.0 13.4 5.0
18 72.6 31405.8 192.2 70.6 534.5 13.4 3.4
19 75.4 49812.5 287.5 72.6 575.7 13.4 3.5
20 77.9 77170.6 411.9 73.6 598.1 13.4 4.8
21 80.2 117154.0 621.1 78.3 600.1 13.4 2.7
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Figure 4.5: Expected total reward convergence of RL method.

We can find the sample paths of visited states and policies using the sample paths of re-

alized demands. Given the initial state, taken actions, realized demand, and the state transition

functions given by Equations (4.9) and (4.10), we can find the future visited state. The consecu-

tive visited states form the sample path of states. The sample paths of policies are the consecutive

selected actions derived from the BI and RL solution methods.

In Figure 4.6, the first, second, and third row depict sample paths of states, optimal pol-

icy, and met demands when the stochastic demand equals mean demand at time t and ρ21 =

0.5,1,and 2, respectively, for M = 15. Intuitively, when ρ21 = 0.5, the level 1 charged batteries
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are used to satisfy class 1 demand and a12
t = 0. When ρ21 increases more batteries of class 1 are

recharged to class 2 to be used for satisfying the demand of class 1. When ρ21 = 1, no batteries

are recharged to level 1 because there is no difference between the value of satisfying the class 1

demand using level 1 and level 2 charged batteries. Hence, the optimal policy includes recharging

batteries to level 2 that can be used for either classes of demand. For all values of ρ, we observe

more recharging actions when demands are in peak periods.
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Figure 4.6: Sample paths of states (I, IV, VI), optimal policies (II, V, VII), and demands (III, VI,
IX) for ρ21 = 0.5,1,2 when the realized demand of either class equal mean demand.

We also compare the average amount of met demand of either class and the optimal poli-

cies over time when ρ21 (controlled parameter by the station) varies between 0.5 to 2 with 0.1

increments. We calculate the percentage of demand satisfaction of either class by inputting the

associated value of each class into Equations (4.21) and (4.22) for different values of ρ21. We

use Equation (4.24) to find the average number of actions over time over all sample paths. We

summarized the result based on 500 sample paths of realized demand in Table 4.5. Intuitively,

as ρ21 increased, more/less class 1 demand is satisfied using drones with level 2/level 1 charged

batteries. On average, more recharging occurs from level 1 to level 2 to satisfy the demand of
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either class. For smaller values of ρ21, increasing the parameter value provides more incentive

for recharging more drones up to level 2 and satisfying both demand levels. However, for larger

values of ρ21, as level 2 charged batteries are used more to satisfy class 1 demand, fewer level 2

charged drones are available to satisfy class 2 demand.

Average Number of Action a01, a02, and a12 =

Total Number of the Action over Time over Sample Paths
Total Number of Sample Paths

∗100%. (4.24)

Table 4.5: Average met demand and policies over time for 500 sample paths for different values
of ρ21.

ρ21 Avg Met Avg Met Avg Met Avg Met Avg Met Avg Avg Avg
Dem. C1 with Dem. C1 with Dem. Dem. Both Class (%) a01 a02 a12
L1 Charge (%) L2 Charge (%) C1(%) C2(%)

0.5 30.0 13.8 43.6 74.5 63.6 0.67 4.97 0.05
0.6 25.7 16.2 41.9 76.2 64.2 0.45 5.14 0.06
0.7 23.8 17.6 41.4 76.8 64.4 0.35 5.21 0.08
0.8 22.3 18.9 41.3 77.1 64.5 0.27 5.25 0.09
0.9 21.0 20.0 41.1 77.1 64.5 0.20 5.29 0.11
1.0 15.9 24.9 40.9 77.5 64.6 0.00 5.32 0.27
1.1 13.9 27.0 41.9 77.5 64.6 0.00 5.24 0.41
1.2 13.1 27.6 40.7 77.5 64.5 0.00 5.22 0.46
1.3 12.6 28.0 40.7 77.5 64.5 0.00 5.20 0.49
1.4 12.2 28.5 40.7 77.3 64.4 0.00 5.17 0.53
1.5 11.5 29.7 41.3 76.6 64.1 0.02 5.08 0.62
1.6 12.4 33.4 45.8 73.4 63.7 0.15 4.76 0.84
1.7 12.5 36.4 48.9 70.4 62.9 0.25 4.48 1.04
1.8 11.1 38.1 49.2 69.7 62.5 0.28 4.34 1.17
1.9 10.3 39.2 49.5 69.0 62.1 0.31 4.24 1.26
2.0 9.1 40.4 49.5 68.6 61.9 0.32 4.15 1.35

A significant finding is that 15 drones are not sufficient to satisfy the demand of either

class. We proceed with analyzing the impact of increasing the number of drones in the station

on the amount of met demand.

4.5.2.2 Analysis on the Number of Required Batteries

In this section, we solve the problem for a larger number of drones in the station to find the rela-

tionship between this number and the amount of met demand. The analysis provides significant

insights for drone delivery companies given the high price to purchase and maintain drones in the
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swap station. First, we note that backward induction (BI) can solve the problem with at most 21

batteries using our computational resources. We summarized the amount of met demand, com-

putational time, and memory used to solve the problem for 15 to 21 drones in Table 4.4 using BI

and RL. For M > 21, we report the results of our RL method in Table 4.6.

Table 4.6: Computational time, memory used, and average percentage of met demand over time
for 500 sample paths when ρ21 = 0.5 using the RL method.

M Avg. Met Comput. Memory M Avg. Met Comput. Memory
Dem. (%) Time (s) Used (GB) Dem. (%) Time (s) Used (GB)

21 76.3 599.2 13.4 41 96.6 1703.0 13.4
22 76.9 654.1 13.4 42 97.4 1761.6 13.4
23 81.0 690.1 13.4 43 97.8 1819.7 13.4
24 82.0 705.2 13.4 44 98.3 1835.9 13.4
25 84.5 765.1 13.4 45 98.6 1969.3 13.4
26 86.7 781.4 13.4 46 98.7 2106.8 13.4
27 87.3 935.2 13.4 47 99.6 2227.0 13.4
28 88.5 1036.8 13.4 48 99.6 2582.8 13.4
29 91.2 1037.8 13.4 49 99.7 2717.7 13.4
30 91.7 1221.1 13.4 50 99.7 2976.0 13.4
31 91.8 1298.3 13.4 51 99.9 2984.6 13.4
32 94.2 1330.8 13.4 52 99.9 3166.9 13.4
33 94.2 1337.3 13.4 53 99.9 3169.9 13.4
34 94.9 1374.1 13.4 54 100.0 3289.2 13.4
35 94.9 1384.5 13.4 55 100.0 3314.5 13.4
36 95.6 1406.9 13.4 56 100.0 3379.8 13.4
37 95.7 1426.6 13.4 57 100.0 3431.3 13.4
38 95.8 1453.5 13.4 58 100.0 3489.0 13.4
39 95.9 1633.4 13.4 59 100.0 3593.0 13.4
40 96.1 1651.4 13.4 60 100.0 3597.5 13.4

As shown, when M ≥ 54, the average percentage of met demand over time for 500 sam-

ple paths is 100%. We depict a sample path of policies for M = 54 when demand equals mean

demand in Figure 4.7. As all batteries are initially available with a level 2 charge, we recharge

fewer drones in the early morning. Then, we recharge more batteries from 6:00 to 18:00 as the

demand of either class increases. Overall, more batteries are recharged to level 2 to satisfy the

demand of either class.

4.5.2.3 Demand Classification Contribution

In this section, we compare the outputs of the models with and without demand classification to

illustrate the contribution of classifying the stochastic demand. We focus on demand satisfaction
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Figure 4.7: Sample paths of states, optimal policies, and demands for 54 drones, ρ21 = 0.5 when
the realized demand of either class equal mean demand.

as the crucial metric to assess the station’s success in delivering medical supplies. We provide

this metric for a different number of drones, which is important for decision-makers given the

high price of purchasing and maintaining drones. In Figure 4.8, we show the average percentage

of met demand for a different number of drones when we use/do not use demand classification.

The blue color shows the percentage for the different number of drones when demand is not clas-

sified. In this model, the state of charge of batteries is either full or empty, and full batteries are

used to satisfy the demand without considering the classified distance between the station and

hospitals. For this model, optimal policies indicate that more than 150 drones are needed to sat-

isfy 100% of demand over 500 sample paths. In the model with demand classification, we note

that finding the optimal policy and, in turn, the average percentage of demand for M > 21 is be-

yond our computational resources. Therefore, we only show the percentage derived from BI for

M ≤ 21 using the color red. However, using reinforcement learning (RL) enables us to offer near-

optimal policies for this model. As shown, RL (black line in Figure 4.8) provides an upper bound

for the optimal number of drones needed to satisfy a particular level of demand for the model

with demand classification. As shown, RL’s policies constantly outperform the optimal policy of

the model with no demand classification in terms of the average percentage of met demand. For

instance, RL’s policies can satisfy 100% of the met demand with only 54 drones, which is sig-

nificantly lower than the required number of batteries to hit this target when the demand is not

classified.
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Figure 4.8: Average percentage of met demand for 500 sample paths when ρ21 = 0.5 using differ-
ent models and solution methods.

4.6 Conclusion

In this research, we addressed managing distribution operations of a drone swap station located

at a drone hub to maximize the amount of stochastic met demand for flights delivering medical

supplies in Rwanda, Africa. We proposed stochastic scheduling and allocation problems with

multiple classes of demand (SA-MCD) where the stochastic demand is classified based on the

distances a drone can fly, which is linked to the level of charge inside the drone’s battery. We

formulated the problem as a Markov Decision Process (MDP) model wherein the optimal poli-

cies determine the number of recharging batteries from one level to a higher level of charge over

time when encountering stochastic demand from different demand classes. We solved the prob-

lem using backward induction (BI) and observe that we run into time/memory issues when the

number of drones is greater than 21. Hence, we applied a reinforcement learning (RL) method

with an exploration feature to find high-quality approximate solutions quickly and overcome the

time/memory issue. We designed a set of experiments to show the high performance of our RL

method and obtain insights about how to manage the operations in the station to maximize the

expected total weighted met demand when the model parameters vary.

We found plenty of directions and opportunities related to this work for future research.
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For instance, in our work, there is no difference between the length of one level or two level

recharging actions as we update the system’s state every 90 minutes. Future research should con-

sider the time difference between different recharging actions to capture the system’s behavior

more realistically. As our model is large-scale and complex, it is worth investigating the use of

scalable solution methods, such as Q-learning, which are suitable for problems with no or incom-

plete models. In terms of modeling and applications, we can have multiple demand classification

criteria, such as level of emergency (plus distance). Future research can add backlogging unsat-

isfied demands if it suits the application. It is also interesting to use the present model to manage

the drone delivery system’s operation for other applications and regions (e.g., Zipline drone deliv-

ery of the COVID-19 vaccine in Ghana). Another interesting research avenue is the incorporation

of delivering multiple medical items with different demand distributions and/or demand classes

using the same shared delivery resources. Additionally, future research should consider how the

operational charging and use actions for different demand classes impacts battery degradation

wherein excessive charging should be avoided to lead to longer battery lifecycles.
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5. Conclusions and Future Work

This dissertation contributes to the field of optimization under uncertainty wherein we propose

novel models and solution methods for dynamic scheduling and allocation problems to manage

the operations in Electric Vehicle (EV) and drone battery swap stations.

In Chapter 2, we presented a novel class of stochastic scheduling allocation and inven-

tory replenishment problems (SAIRP) for managing internal operations in swap stations facing

stochastic demands and non-stationary power prices. We consider the capacity of batteries, which

impacts the drive/flight range of EV and drones in reality, and introduce battery degradation into

the model. We formulated the problem using Markov Decision Process (MDP) model to deter-

mine the recharging, discharging, and replacement actions that maximize the expected total profit

over time. Our MDP utilized an aggregated state by considering the average capacity of batter-

ies instead of the individual capacity of batteries. We verified the benefits of the aggregation by

comparing its solution with a disaggregated MDP and a Monte Carlo simulation. We discussed

the scale of the problem, showed SAIRPs suffer from the curses of dimensionality, and solved the

modest SAIRPs with backward induction. We developed a heuristic benchmark policy and a dou-

ble pass reinforcement learning (RL) method with heuristic policy initialization (DHPI RL) as

our approximate solution methods. Using the high-performance approximate solution methods,

we provide policies for modest snd realistic-sized SAIRPs.

In Chapter 3, we focused on developing intelligent algorithms that exploit the structure

of an optimal policy and value function of SAIRPs to overcome the curses of dimensionality. In

this chapter, we showed that there exists a monotone non-increasing optimal policy in the sec-

ond dimension of the state when there is an upper bound on the number of batteries replaced

in each period. We also demonstrated that the MDP value function of the stochastic SAIRP is

monotonically non-decreasing in the first, second, and both dimensions of the state. We exploited

the monotonicity of value function to select the monotone approximate dynamic programming

(MADP) as our solution approach. We analyzed the optimal policies of small SAIRPs and found

the linear relationship between value and the model’s parameters. Therefore, we developed our

188



monotone approximate dynamic programming with regression-based initialization (MADP-RB),

which is an enhancement of MADP, to initialize the algorithm intelligently. We designed sets of

experiments and showed the high-performance of MADP-RB in solving modest and realistic-

sized SAIRPs regarding the computational time, optimality gap, convergence, and expected total

reward (profit). We provided insights for managing battery swap stations of modest and realistic-

sized SAIRPs based on our analysis of results. A significant finding is that the optimal policy

of modest size and realistic-sized problems can be significantly different. It further emphasizes

solving realistic-sized problems using approximate solution methods. In other words, breaking

down the problem into smaller pieces and solve them consecutively to optimality can not find the

policies that can outperform near-optimal policies of realistic-sized problems solved by ADP/RL

methods.

In Chapter 4, we proposed a novel class of stochastic scheduling and allocation problems

with multiple classes of demand (SA-MCD) for delivering medical supplies using drones. We

classified the stochastic demand for medical items based on the distance between the hospitals

that requests delivery and the swap station located at the drone hub. We linked the classified de-

mand to the charge inside the drones’ batteries such that each class of demand can be satisfied

using drones with a certain level of charge or higher. We sought to determine recharging actions

that maximize the expected total weighted met demand. We fed realistic data from locations of

the Zipline station, airports, and hospitals in Rwanda, the population of districts, flight regu-

lations in Rwanda, and the Zipline drone configuration, including the speed, flight range, and

recharging time. We applied an RL method with the exploration feature and showed its high per-

formance compared to the backward induction solution. We provided our RL’s solution for larger

instances of SA-MCD that are not solvable using backward induction. We conducted different

sets of experiments to obtain insights about the policies and the number of drones needed to sat-

isfy a certain level of demand and performed sensitivity analysis on the parameter controlled by

the station.

There are several directions to expand the work presented in Chapters 2 and 3. Regarding
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the model and solution methods, we suggest that future research should examine other state ag-

gregation methods and analyze their impact on the computational efforts and quality of the solu-

tions. Moreover, it is worthwhile to solve a disaggregated MDP with ADP/RL methods and com-

pare the results with the presented aggregated model. It is also interesting to solve SAIRPs using

other approximate solution methods such as Q-Learning and the policy gradient approach. In

terms of battery swap station applications, researchers should examine utilizing different charg-

ing options, optimizing a swap station network, and analyzing the impact of varying the replace-

ment threshold.

We suggest expanding Chapter 4 work in various directions. First, future research should

consider the different lengths of recharging when levels of recharging differ. Given the complex

transition probability function, we suggest applying a Q-Learning method that fits problems with

no or incomplete MDP elements, such as transition probability when studying SA-MCD with

more than two classes of demand. In this chapter, we provided demand classification based on

the distance between locations. Future work can consider several classification criteria such as

distance, level of emergencies, medical supplies, etc.
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