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[1] This paper introduces a ‘‘refractivity from clutter’’ (RFC) approach with an inversion
method based on a pregenerated database. The RFC method exploits the information
contained in the radar sea clutter return to estimate the refractive index profile. Whereas
initial efforts are based on algorithms giving a good accuracy involving high
computational needs, the present method is based on a learning machine algorithm in
order to obtain a real-time system. This paper shows the feasibility of a RFC technique
based on the least squares support vector machine inversion method by comparing it to a
genetic algorithm on simulated and noise-free data, at 1 and 5 GHz. These data are
simulated in the presence of ideal trilinear surface-based ducts. The learning machine is
based on a pregenerated database computed using Latin hypercube sampling to improve
the efficiency of the learning. The results show that little accuracy is lost compared
to a genetic algorithm approach. The computational time of a genetic algorithm is very
high, whereas the learning machine approach is real time. The advantage of a real-time
RFC system is that it could work on several azimuths in near real time.

Citation: Douvenot, R., V. Fabbro, P. Gerstoft, C. Bourlier, and J. Saillard (2008), A duct mapping method using least squares

support vector machines, Radio Sci., 43, RS6005, doi:10.1029/2008RS003842.

1. Introduction

[2] In the low troposphere, anomalous propagation
events occur owing to air movements and water evapo-
ration. Survey radars usually work between 1 and 10 GHz
in sea environment, and the detection range strongly
depends on the atmospheric conditions at these frequen-
cies. Anomalous propagation can cause ‘‘holes’’ in de-
tection and either increase or decrease the radar detection
range. This topic is especially critical for low-flying and
floating targets for survey radar. Evaporation ducts,
surface-based ducts, elevated ducts, and subrefractive
layers are the identified anomalous propagation phenom-
ena. These atmospheric structures are characterized by
their vertical refractive index profile (Figure 1) [Babin et
al., 1997].

[3] The atmospheric conditions can be measured with
radiosondes, rocket sondes, and buoys. Then the refrac-
tive index profile can be deduced from these measure-
ments. Besides, refractometers can directly measure the
refractive index. However, these techniques are difficult
and expensive to implement. Atmospheric measurements
also have a very low refreshment frequency and the
delay between two measurements is too large for most
situations. That is why ‘‘refractivity from clutter’’ (RFC)
has been proposed to extract the refractivity directly from
the radar clutter return [Krolik and Tabrikian, 1998;
Rogers et al., 2000; Gerstoft et al., 2003a, 2003b; Yardim
et al., 2007]. Inferring the values of the modified
refractivity profile from the sea clutter is a complex
inverse problem because the relation between modified
refractivity profile parameters and sea clutter is clearly
nonlinear and ill-posed. Moreover, from a meteorological
point of view, it implies several simplifying hypotheses
to be solvable as described in section 2.
[4] The choice of the algorithm for the inversion is

critical for RFC applications. Operational applications
necessitate short computation time, less than ten minutes,
to avoid error due to temporal evolution of refractivity
[Rogers, 1996; Douvenot et al., 2008]. Many fast non-
linear optimization methods exist. Neural networks,
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Support Vector Machines (SVM), radial basis functions,
and kriging are the most common [Bartoli et al., 2006].
[5] In the present paper, a learning method using the

least squares support vector machines algorithm (LS-
SVM) [Suykens et al., 2002] is proposed. The LS-SVM
algorithm is based on a least squares optimization with
linear constraints. This kind of problem is convex and
avoids the local minima during the learning phase.
Therefore, LS-SVM is preferred to neural networks and
other optimization methods. The work presented here
focuses on obtaining the modified refractivity profile
from modeled propagation losses, without taking into
account the value of the sea clutter radar cross section
(RCS). This paper focuses on the feasibility of such a
system, by comparing a LS-SVM method with a genetic
algorithm (GA) [Gerstoft et al., 2003a] in ideal condi-
tions, with noiseless simulated propagation losses. RFC
using LS-SVM method can provide a system giving a
refractivity estimation in real time, which is important for
operational conditions.
[6] First, the RFC is introduced and the parameterization

of the refractivity profile is presented. Second, the GA and
LS-SVM processes are briefly exposed. The two inversion
methods for RFC applications are compared in terms of
accuracy and speed, and finally, the results are discussed.

2. Definitions and Hypotheses

2.1. Atmospheric Ducts

[7] When modeling the atmospheric ducts, the modi-
fied refractivityM is preferred to the refractive index n. It
is expressed as

M ¼ n� 1ð Þ � 106 þ 0:157z; ð1Þ

where z is the altitude in meter. As the refractive index is
very close to unity, the difference from 1 is highlighted
inM. The second term corrects for the Earth curvature. A
negative gradient of modified refractivity implies ducting
conditions, subrefractive condition appears for a gradient
superior to 0.127 M unit/m [Yardim et al., 2007], and
standard atmosphere corresponds to 0.118 M unit/m.
[8] Some meteorological conditions can cause abnor-

mal propagation. The refractivity is modified by temper-
ature and/or humidity gradients. There are four identified
types of duct [Turton et al., 1988] (Figure 1): curve a,
evaporation duct; curve b, surface-based duct; curve c,
elevated duct; and curve d, subrefractive layer. Elevated
ducts are similar to surface-based ducts with a higher
duct base. They are not taken into account in RFC
because they have low influence on the power losses at
the sea level. Actually, the waves trapped into an
elevated duct are bent at high altitude and reach the
sea surface beyond the maximum radar range considered
for RFC. The subrefractive layer is a rare event and
measurements are lacking to be accurately characterized,
hence it is not taken into account in this study.
[9] The refractive conditions are considered constant

with the distance for the entire propagation path. This
hypothesis seems valid in open sea but could be a strong
simplification in coastal environment, where the meteo-
rological conditions may highly vary [Kerr, 1987]. A
distance-varying refractive index could be introduced in
further work. Rogers [1996] shows that the RMS error in
propagation factor exceeds 6 dB or more after 30 min
due to temporal decorrelation. Thus, a practical RFC
system has to update environment parameter estimates
much faster than 30 min. This calls for a simple range-
independent model that can be estimated fast.

Figure 1. Modified refractivity profile and associated parameters for evaporation duct (curve a),
surface-based duct (curve b), elevated duct (curve c), and subrefractive layer (curve d). For
evaporation duct and subrefractive layer, d is the duct height. For surface-based duct and elevated
duct, zb is the height of the duct base, Md is the M deficit into the duct, and zthick is the duct
thickness.
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[10] The evaporation duct is a quasi-permanent event
above the sea. It is due to a strong humidity gradient at
the sea surface, which causes a refractive index gradient
as well. The worldwide mean of the duct height d,
defined as the height above the sea mean level at which
dM/dz = 0 M unit/m (Figure 1, curve a), is about 10 m.
The duct height sometimes reaches 30 m and exception-
ally 40 m [Anderson, 1989; Patterson, 1992]. If the value
of d is considered as constant with the distance,
performing an inversion in the case of an evaporation
duct is not a hard problem because d is the only
parameter to retrieve. A simple inversion method as
gradient descent or quadratic regression could be used
[Rogers et al., 2000].
[11] On the contrary, the surface-based duct is less

frequent, but its effect on propagation is much stronger. It
highly increases the radar range or creates detection
‘‘holes.’’ Its occurrence is about 15% of the time world-
wide but until 50% of the time in the Persian Gulf
[Patterson, 1992]. It is often due to an advection move-
ment of a relatively warm and dry air, which forms a
strong negative gradient of modified refractivity. The
surface-based duct is typically modeled as a trilinear
profile (Figure 1, curve b) [Gossard and Strauch, 1983],
where zb is the height of the duct base, Md is the M
deficit into the duct, and zthick is the duct thickness. The
following limits for the duct parameters are chosen from
the work of Gerstoft et al. [2003a]: zb varies from 0 to
300 m, Md from 0 to 100 M unit, and zthick from 0 to
100 m. The obtained profile is trilinear with slope
discontinuities at the basis and at the top of the duct. A
continuous arctangent-shaped surface-based duct model
has been proposed by Webster [1983] to avoid disconti-

nuities in the model. However, nor the trilinear model
neither the arctangent-shaped model are based on a
physical description and a model cannot be presented
as better than the other. Moreover, these two types of
ducts have very close effects on the wave propagation
(see Appendix A). We finally choose the trilinear model,
which is simpler to use. Actually, the duct strength can
be linked to the parameters of the trilinear duct through
the expression [Turton et al., 1988]

lmax ¼
2Csbd �

ffiffiffiffiffiffi
Md

p
� zthick

3
; ð2Þ

where Csbd is a constant equal to 3.77 � 10�3 for
surface-based ducts and lmax is the maximum wave-
length trapped into the duct in meter.
[12] Evaporation ducts are modeled using one or two

parameters and are quite simple ducts to retrieve. The
LS-SVM RFC method has been applied on real data in
the presence of evaporation ducts [Douvenot et al.,
2007]. Therefore, surface based ducts are considered to
test and validate the feasibility of an RFC system
including the inversion method proposed in this paper.
More complex and realistic profiles, as ‘‘double ducts’’
composed of an evaporation duct and a surface-based
duct simultaneously, are to be studied in further works.

2.2. Sea Clutter Model

[13] In RFC technique, the propagation losses L are
processed to determine the environmental parameters
M = (zb, Md, zthick). In this paper, the refractive
conditions are determined from simulated propagation
losses. However, in operational conditions, only the
power PR(M) observed by the radar is available. The
received power has to be processed in order to isolate
the propagation losses. The received power can be
written (from the radar equation) [Kerr, 1987, p. 473]

PR Mð Þ ¼ PEG
2 4p
l2

sL2 Mð Þ; ð3Þ

where the emitted power PE, the wavelength l, and the
antenna gain G are known. Only the radar cross section
(RCS) of the sea clutter s is needed to obtain the
propagation losses L from the received power. Now,
the RCS s is the product of the illuminated area AI by
the Normalized RCS (NRCS) s0. The illuminated area
can be expressed as (Figure 2)

AI ¼
1

2
Rq3dB HORtc sec qg

� �
; ð4Þ

where t is the radar pulse length, c is the velocity of
wave propagation, R is the distance from the radar to
the sea pixel, q3dBHOR is the horizontal antenna
aperture, qg is the grazing angle, and sec denotes the
secant function. The range resolution of the radar is

Figure 2. The area illuminated by the radar (top) from
above and (bottom) from the side. The parameter t is the
radar pulse length, c is the velocity of wave propagation,
R is the distance from the radar to the sea pixel, �3dBHOR

is the horizontal antenna aperture, �g is the grazing angle,
and sec is the secant function.
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(1/2)tc [Kerr, 1987]. Note that AI is proportional to R
if qg is constant.
[14] The problem is now to choose a model for the

NRCS of the sea clutter s0. It depends on several
meteorological parameters and on the grazing angle qg
[Feng et al., 2005]. However, the grazing angle is almost
constant beyond the horizon in the presence of a range-
independent evaporation duct [Paulus, 1990].
[15] For instance, with an antenna at a height of 25 m,

the grazing angle hardly fluctuates beyond 10 km
(Figure 3) for each refractivity condition. This result is
obtained using ray tracing in heterogeneous and verti-
cally stratified atmosphere [Paulus, 1990; Rogers et al.,
2000]. The incident angle of the electromagnetic wave qg
is determined at sea level. Considering the sea roughness
as uniform with the distance and the incident grazing
angle of the trapped wave also as constant at the sea
surface, s0 can be considered as constant beyond the
horizon. Hence the model s = Ct R, where Ct is a
constant, could be relevant. Note that these results are
obtained for range-independent evaporation ducts. De-
pendence with respect to the grazing angle [Ward et al.,
2006] could be introduced for the study of complex
refractivity variations.
[16] Once the propagation losses L are known, an

inversion algorithm is needed in order to retrieve the
parameters of the modified refractivity profile.

3. Inversion Methods

[17] Retrieving the parameters of the ducts from the
propagation losses is a complex problem. Two different

inversion methods are presented in this paper. The first is
a GA included in the SAGA code developed by Gerstoft
et al. [2003a, 2003b]. The second, the LS-SVM, is a
learning machine selected for its computational speed
once trained. This latter method is based on a pregen-
erated and preprocessed database. As the main part of the
computation is made prior to the operational use, the
inversion using LS-SVM is real time.

3.1. Genetic Algorithm

[18] Genetic algorithms (GA) start with the selection of
a population of q member models. Models consist of bit
strings for each uncertain/unknown parameters (parame-
ters are, thus, discretized in GA, in contrast to Simulated
Annealing methods, which usually work with continuous
variables).
[19] The ‘‘fitness’’ of each member is the value of the

objective function for the particular model. On the basis
of the fitness of the members, ‘‘parents’’ are selected and
through a randomization, a set of ‘‘children’’ is pro-
duced. These children replace the least fit of the original
population and the process iterates to develop an overall
fitter population. The formation of child models is
performed through the application of operators to the
parents.
[20] Figure 4 shows the GA principle. Each child

population Pi+1 is processed in three steps: first, the
more likely ‘‘parents’’ are selected in the parent popula-
tion Pi. Then, crossover uses a part of the string corres-
ponding to a parameter from one parent and supplements
it with a part of the string for the same parameter from
the other parent. The operation is applied individually to
every parameter string (multipoint crossover), resulting
in all-direction parameter perturbations.
[21] Mutation follows crossover and changes bit values

in parameter strings in a random fashion. Bit changes
occur with a low probability (usually 0.05). The small
changes imposed on the new generation through the
occasional bit changes assist the optimization process
to escape from local minima. These three steps are
applied on each population to obtain a final population
containing an overall fitter population Pk. A more de-
tailed description of genetic algorithms and their appli-
cation to parameter estimation is given by Gerstoft
[1994].

3.2. LS-SVM

[22] In the late 1990s, Suykens and Vandewalle [1999]
developed LS-SVM from Vapnik’s work on support
vector machines (SVM) [Vapnik and Lerner, 1963;
Vapnik and Chervonenkis, 1964; Vapnik, 1995]. This
special case (quadratic loss function) simplifies the
SVM theory formulation as exposed by Smola and
Schölkopf [1998]. Moreover, the authors made great
efforts to unify the theories of LS-SVM, neural net-

Figure 3. Reflection angle with respect to the distance
in the presence of an evaporation duct for d = 2.5, 10,
and 20 m. Antenna is at a height of 25 m.
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works, optimization, and Gaussian processes. Following
Suykens et al. [2002], the theory is outlined below.
[23] LS-SVM is a training process. The aim of

the training process is to obtain an approximation
of the nonlinear function f with respect to the vector of
the propagation losses L at different ranges. The vector
of the duct parameters M is the output: M = f(L).
[24] Figure 5 displays the process to generate the N

element training database. First, N items of three-
dimensional parameter sets Mtr describing N different
surface-based ducts are drawn using a Latin hypercube
sampling [McKay et al., 1979]. Then, from these
parameter values, N propagation losses vectors Ltr are
obtained by carrying out N propagation simulations
using the PWE solved by split-step Fourier (SSF)
propagation method [Barrios, 1992]. This wave propa-

gation method is accurate and takes into account the
refractive index variations. Thereby, the training data-
base is the set (Mtr, Ltr).
[25] Latin hypercube can generate a multidimensional

training database more efficiently than using a regular
sampling of each parameter zb, Md, and zthick [Loh,
1996]. This method is extracted from the design of
experiments theory [Vivier, 2002] and generalizes Leo-
nard Euler’s Latin square. Here is the principle of the
generation of the N-sized three-dimensional database of
the duct parameters as illustrated in Figure 6. In the
three-dimensional space, the variations of the variables
(zb, Md, zthick) are represented from minimum to maxi-
mum value on each dimension. Each interval is divided
into N equal sections. For the first draft, an interval is
randomly drawn among the N intervals on the 3 dimen-

Figure 5. Process to generate the N element training database (Mtr, Ltr) by Latin hypercube
sampling.

Figure 4. Scheme of the GA process. Pi are the populations, and (x1, . . ., xn) are the elements of
each population.
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sions. The intervals Izb
1 , IMd

1 , Izthick
1 are obtained. Then a

vector value (zb
1, Md

1, zthick
1 ) is randomly drawn into these

intervals. For the second draft, the intervals Izb
2 , IMd

2 , Izthick
2

are drawn among the N � 3 intervals deprived of the
intervals Izb

1 , IMd
1 , Izthick

1 . The process is repeated N times
until the last remaining intervals Izb

N , IMd

N , Izthick
N . All

random distributions are uniform.
[26] Now that the database is generated, it has to be

processed to obtain a nonlinear approximation of the
aimed function. In learning theory, this step is the
training of the system. Once the training database is
generated, the system must be trained in order to obtain
an approximation of the function f in the form

Moutput ¼
XN
j¼1

aj exp �
kLinput � Ltr

j k2

s2
K

 !
þ B; ð5Þ

where sK
2 is the width of the Gaussian function. It is a

parameter of the inversion system. The support vectors
a = (aj)j=1. . .N and the bias B are the values to optimize.
The optimization is carried out during the training of
the system, where the function is tested on the training
database. Moutput is scalar and represents zb, Md, or
zthick. So there is a function f for each parameter.
[27] Figure 7 shows the training process of LS-SVM.

The system ‘‘learns’’ the best approximation of the
function f by optimizing a and B on the training database
itself. The Gram matrix Wij = exp(�kLi

tr � Lj
trk2/sK2 ),

with i, j 2 {1, . . ., N}, is introduced. The optimized

support vectors and bias are computed by solving the
system

0 ~1T

~1 Wþ gId

� �
� Bopt

aopt

� �
¼ 0

Mtr

� �
; ð6Þ

where g 2 ] 0, + 1 [ is the second parameter of the
inversion algorithm: g defines the trade-off between
the accuracy on the training database and the ability of
the function to find solutions outside the training
database. It is called the regulation parameter; aopt are
the support vectors, and Bopt is the bias of the function at
the optimum.
[28] In theory, the propagation losses are mapped

through a higher dimensional space using the Gaussian
function in (5) and (6) in order to mimic the nonlinearity
of the function f. Note that this Gaussian function can be
replaced by another kernel function [Mercer, 1909]. The
final system (6) is a Karush-Kuhn-Tucker system
obtained by solving a ridge regression system as an
optimization system under equality constraints. The
ridge regression is carried out on the whole training
data in order to obtain an approximation of the aimed
function. For details, see Suykens et al. [2002].
[29] Determination of aopt and Bopt in (5) is the

training of the system. It requires inverting the N � N
matrix W + gId. Once the system is trained, the inversion
process is fast, less than 1 s. For an observed vector of
propagation losses Linput, the equation (5) to determine
the duct parameter Moutput is very fast. A nonlinear and

Figure 6. Illustration of the Latin hypercube sampling in the three-dimensional space of the
trilinear surface-based duct parameters (zb, Md, zthick) for N = 8.
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real-time approximation of the aimed function f (Linput) =
Moutput is obtained.

4. Inversion Results

4.1. Comparison Layout

[30] The comparison of the inversion methods GA and
LS-SVM for RFC is carried out on two simulated data

sets. The first consists of propagation losses for 20
environments at 1 GHz. The antenna is set at a height
of 50 m and its beam width is 30�. The second one is
made on 10 environments at 5 GHz. The antenna is set at
a height of 25 m, and its beam width is 4.6�. The values
of the duct parameters are drawn randomly in the limits
mentioned in section 2.1, i.e., zb � 300 m, Md � 100 M
unit, zthick � 100 m. The inversion is carried out on

Figure 7. Scheme of the training process of LS-SVM algorithm.

Figure 8. Two inversion cases at 1 GHz. (right) The propagation losses above the sea before
inversion computed with the true parameters and after inversion computed with LS-SVM and
SAGA are plotted. (left) Their associated profiles with respect to the altitude are depicted. True
parameters are (a) zb = 171 m,Md = 55 M unit, and zthick = 67 m and (b) zb = 31 m,Md = 61 M unit,
and zthick = 82 m.
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simulated propagation losses at the sea surface in the
presence of constant surface-based ducts along the
pathway in order to retrieve the duct parameters M =
(zb, Md, zthick). For both GA and LS-SVM, the inversion
is carried out between 10 and 50 km with 1 point each
200 m. Thus, each set of propagation losses contains
201 points.
[31] The GA software SAGA [Gerstoft, 2006] is

delivered with the propagation code TPEM (terrain
parabolic equation model) based on the PWE (parabolic
wave equation) solved by SSF (split-step Fourier)
[Barrios, 1992]. This method assumes a two-dimen-
sional propagation, no backscattering, and perfectly
conducting smooth sea surface, which is reasonable
for very low grazing angles [Fabbro et al., 2006].
Most of the default settings are kept for SAGA.
Concerning the GA itself, 10 populations are
launched with 2000 iterations each. Half of the
population is kept at each iteration. The crossover
rate is 50% and the mutation rate is 5%.
[32] For LS-SVM, a Gaussian kernel is chosen [Smola

and Schölkopf, 1998], as described in (5) and (6). The
training database is generated using a three-dimensional
Latin hypercube [McKay et al., 1979] of 10,000
environments for the parameters sets (zb, Md, zthick).

The corresponding propagation losses are modeled using
a PWE propagation method solved by SSF.

4.2. Results

[33] Samples of the inversion results are shown in
Figures 8 and 9. All the propagation losses have been
computed by PWE, considering different sets of refrac-
tivity parameters. On Figures 8 and 9, ‘‘true parameters’’
indicates the propagation losses obtained with the true
refractivity parameters. ‘‘LS-SVM parameters’’ indicates
the propagation losses obtained with the refractivity
parameters retrieved by inversion using the LS-SVM
algorithm. ‘‘SAGA parameters’’ is the same with the
parameters retrieved by GA. The associated profiles are
also plotted.
[34] To quantify the comparison, the difference be-

tween the true propagation losses Ltrue = (Li
true)i=1. . .201

and the propagation losses obtained considering inverted
refractivity parameters has been computed every 200 m.
Finally, the mean of the absolute difference in dB on the
201 points is calculated for each method:

DL
inv ¼ 1

201

X201
i¼1

Linvi � Ltruei

		 		; ð7Þ

Figure 9. Two inversion cases at 5 GHz. (right) The propagation losses above the sea before
inversion computed with the true parameters and after inversion computed with LS-SVM and
SAGA are plotted. (left) Their associated M profiles with respect to the altitude are depicted. True
parameters are (a) zb = 114.05 m, Md = 95.39 M unit, and zthick = 67.72 m and (b) zb = 145.86 m,
Md = 50.92 M unit, and zthick = 40.92 m.
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where the superscript ‘‘inv’’ is the name of the inversion
method (LS-SVM or GA). This result is finally averaged
on all the tested cases to get a global error estimation
DLmean

inv .
[35] The results of LS-SVM and GA inversions are

summarized as follows: (1) at 1 GHz, DLmean
LSSVM =

2.38 dB and DLmean
GA (mean on 20 cases); and (2) at

5 GHz, DLmean
LSSVM = 2.71 dB and DLmean

GA = 1.54 dB
(mean on 10 cases).
[36] The two algorithms are fundamentally different

and this is observed in the results. GA is more accurate
than LS-SVM, but GA uses significantly more CPU
time. The mean of the computation time for the GA is
Tmean
GA � 90 min at 1 GHz and Tmean

GA � 1100 min at
5 GHz. On the same computer, for the LS-SVM
algorithm, Tmean

LSSVM � 0.2 s for both frequencies.
Actually, as shown in section 3.2, LS-SVM only requires
the calculus of the kernel function, whereas the GA
requires a propagation computation, longer at 5 GHz
than at 1 GHz, for each forward model. For LS-SVM
approach, all the propagation computations have been
preprocessed during the training step.
[37] Event though the GA gives more accurate results,

the LS-SVM gives a good idea of the wave propagation
and of the atmospheric duct as shown in Figure 8 (for
1 GHz) and Figure 9 (5 GHz). The one-way propagation
losses above the sea are shown for the true surface-based
duct parameters and for the parameters retrieved by
inversion with the LS-SVM algorithm and with the
GA. Then the associated refractive profiles are plotted.
The two cases are shown at each frequency. The prop-
agation losses obtained with the GA parameters fit the
original ones. However, apart from small discrepancies,
the LS-SVM curve follows the original one. Moreover,
the ducts retrieved by LS-SVM are close to the original
ones. Such accuracy might be sufficient to characterize
the environment effect on propagation in order to
predict trapping phenomenon and to detect shadow
zones in the radar cover as the duct itself is well
approximated by LS-SVM.

5. Summary and Conclusion

[38] In this paper, the feasibility of a RFC system using
a learning machine has been shown on simulated data.
The simplifying hypotheses have first been explained,
then the method has been compared to a GA RFC system
on noiseless simulated data. The results show a minor
reduction in accuracy but a great improvement in com-
putation time. Our system is especially interesting in
higher frequencies, around 5 GHz, when the computation
time of the GA-type RFC systems are very slow. The
main interest of the LS-SVM learning machine is to
make all the main calculations before the inversion is

started. Then the obtained RFC system could work in
real time.
[39] The LS-SVM inversion method is not as precise as

the GA one. Yet, the system gives a good idea of the
electromagnetic wave behavior and of the refractive index
profile. Both methods are less precise at 5 GHz as the
wave is more sensitive to refractive index variations.
[40] There are several ways to improve the RFC using

learning machine: the first means is to improve the very
inversion algorithm. An interesting way is to find a fitter
kernel than the Gaussian kernel to the RFC problem.
However, creating a kernel for a specific problem is a
difficult task. Another possible improvement is the
introduction of a correlation between the different
dimensions of the duct during the inversion. The use of
a multitask learning algorithm [Argyriou et al., 2006]
could improve the inversion by inverting the three duct
parameters at once. To improve the inversion, this
method could also be hybridized with a GA-type
inversion: the LS-SVM inversion could give a first
approximation of the duct parameters, and then the GA
could refine the inversion. Therefore, the inversion could
have the accuracy of GAwith a lower computation time.
[41] Another way to improve RFC using a learning

machine is to optimize the training database. Indeed, as
LS-SVM is a learning machine, the generation of the
training database is critical for the efficiency of the
algorithm. To generate an efficient training database,
one must describe at best all the possible cases. Thus,
large and precise meteorological data could permit to
refine the values of the parameters describing the duct in
the training database. The more precise the database, the
more likely the inversion is to succeed. Moreover, the
choice of the sampling method is decisive. A sampling
method better than Latin hypercube sampling could be
applied for RFC.
[42] If the LS-SVM inversion is not precise enough to

perfectly retrieve the refractivity profile, the advantage of
this method is the real-time working. In operational
conditions, the radar can observe several azimuths at
several times. The obtained results could be smoothed
over time and space in order to correlate the results.
Having data at several frequencies or several elevation
angles could also be useful.

Appendix A

[43] The debate of surface-based duct modeling is still
open. One point of interest is the discontinuities in the
vertical profile. To discuss the choice of a trilinear
surface-based duct profile, which implies discontinuities,
a comparison is carried out with a continuous arctangent-
shaped profile, as advised by Webster [1983]. This
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comparison has been made at 2.84 GHz with an antenna
at a height of 30.78 m.
[44] Figure A1 (left) represents the modified refractiv-

ity with respect to altitude for an arctangent-shaped duct,
and Figure A1 (right) represents the 2-D map of the
associated propagation factor with respect to the distance
and altitude. Figure A2 is the same as the Figure A1
considering a trilinear duct instead of an arctangent-

shaped duct. The trilinear duct is chosen very similar
to the arctangent-shaped duct to highlight the effect of
the discontinuities in the refractivity profile. Only small
discrepancies can be observed between the two propa-
gation factor maps. Globally, the discontinuities have no
significant effect on the propagation factor.
[45] Figure A3 compares the propagation factor with

respect to the distance at sea level obtained with the same

Figure A1. (left) The modified refractivity with respect to the altitude for an arctangent-shaped
duct. (right) The 2-D associated propagation factor with respect to the distance and altitude.

Figure A2. (left) The modified refractivity with respect to the altitude for a trilinear duct as close
as possible to the arctangent-shaped duct from the Figure A1. (right) The 2-D associated
propagation factor with respect to the distance and altitude.
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arctangent-shaped duct (dotted line) and trilinear duct
(continuous line). There are some discrepancies between
the two propagation factors because the two refractivity
profiles are not exactly the same. However, the dynamic
of the propagation factors at sea level are very similar.
Also, the discontinuities in the trilinear duct have not a
great impact on the wave propagation.
[46] Note that the aim of RFC is not to give the exact

refractivity profile, but to propose a ‘‘generic’’ model
able to render an accurate approximation of the real
atmospheric conditions.
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