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Abstract  

 

We review selected experimental saltation studies performed in laboratory 

wind tunnels and collision experiments performed in (splash-) laboratory 

facilities that allow detailed observations between impinging particles on a 

stationary bed. We also discuss progress in understanding aeolian transport 

in nonterrestrial environments.  
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 Saltation studies in terrestrial wind tunnels can be divided into two 

groups. The first group comprises studies using a short test bed, typically 1-

4 m long, and focuses on the transitional behaviour near the upwind 

roughness discontinuity where saltation starts. The other group focuses on 

studies using long test beds — typically 6 m or more — where the saturated 

saltation takes place under equilibrium conditions between wind flow and 

the underlying rough bed. 

 Splash studies using upscaled model experiments allow collision 

simulations with large spherical particles to be recorded with a high speed 

video camera. The findings indicate that the number of ejected particles per 

impact scale linearly with the impact velocity of the saltating particles. 

Studies of saturated saltation in several facilities using predominantly 

Particle Tracking Velocimetry or Laser Doppler Velocimetry indicate that 

the velocity of the (few) particles having high trajectories increase with 

increasing friction velocity. However, the speed of the majority of particles 

that do not reach much higher than Bagnold’s focal point is virtually 

independent of Shields parameter — at least for low or intermediate u*-

values. In this case mass flux depends on friction velocity squared and not 

cubed as originally suggested by Bagnold. Over short beds particle velocity 

shows stronger dependence on friction velocity and profiles of particle 

velocity deviate from those obtained over long beds.  

 Measurements using horizontally segmented traps give average 

saltation jump-lengths near 60-70 mm and appear to be only weakly 

dependent on friction velocity, which is in agreement with some, but not all, 
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older or recent wind tunnel observations. Similarly some measurements 

performed with uniform sand samples having grain diameters of the order of 

0.25-0.40 mm indicate that ripple spacing depends on friction velocity in a 

similar way as particle jump length. The observations are thus in agreement 

with a recent ripple model that link the typical jump length to ripple 

spacing. A possible explanation for contradictory observations in some 

experiments may be that long observation sequences are required in order to 

assure that equilibrium exists between ripple geometry and wind flow.  

 Quantitative understanding of saltation characteristics on Mars still 

lacks important elements. Based upon image analysis and numerical 

predictions, aeolian ripples have been thought to consist of relatively large 

grains (diameter > 0.6 mm) and that saltation occurs at high wind speeds (> 

26 m/s) involving trajectories that are significantly longer than those on 

Earth (by a factor of 10-100). However, this is not supported by recent 

observations from the surface of Mars, which shows that active ripples in 

their geometry and composition have characteristics compatible with those 

of terrestrial ripples (Sullivan et al., 2008). Also the highest average wind 

speeds on Mars have been measured to be < 20 m/s, with even turbulent 

gusts not exceeding 25 m/s. 

 Electrification is seen as a dominant factor in the transport dynamics 

of dust on Mars, affecting the structure, adhesive properties and 

detachment/entrainment mechanisms specifically through the formation of 

aggregates (Merrison et al., 2012). Conversely for terrestrial conditions 

electric fields typically observed are not intense enough to significantly 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

affect sand transport rates while little is known in the case of extra-terrestrial 

environments.  

 

Keywords: aeolian laboratory studies; saltation; splash; particle trajectory; 

ripple spacing; dust detachment  

 

1. Introduction 

 

 Almost a century of research on aeolian processes has led to an overall 

understanding of wind flow and sediment transport systems and their 

interaction. A substantial part of the advances of our understanding has 

come from meticulous studies in the most commonly used aeolian 

laboratory — the wind tunnel. In an aeolian context a breakthrough in wind 

tunnel testing came during the 1930s where R.A. Bagnold in a series of 

studies obtained the first physically based insight into aeolian dynamics as 

documented in articles in the Proceedings of the Royal Society (Bagnold, 

1936, 1937, 1938) and later in his famous book The Physics of Blown Sand 

and Desert Dunes (Bagnold, 1941). After the Second World War new wind 

tunnels for aeolian research were built and the purpose of wind tunnel 

facilities broadened so that subjects other than pure aeolian dynamics were 

included. In Japan Kawamura (1951) studied sand movement in a wind 

tunnel at Tokyo University. In North America in late fall of 1947, a study of 

the mechanics of wind erosion was initiated at Kansas State College, 

Manhattan, KS, USA, using laboratory and field (portable) wind tunnels 
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(Zingg and Chepil, 1950; Chepil, 1965). In Denmark, at the Danish 

Technical University, Jensen (1954) investigated the aerodynamics of 

shelter belts in order to optimize the protection of fields during periods with 

little or no vegetation. During the 1960s and 1970s laboratory wind tunnels 

became more abundant; and in 1976 the first planetary facility ‘The Martian 

Surface Wind Tunnel’ (MARSWIT; Greeley, 1977) was put into operation 

in Ames, California by NASA. Although the number of terrestrial wind 

tunnels has been more or less stagnant since then, new or modified facilities 

now enable not only wind speed but also environmental parameters such as 

temperature (cryogenic), humidity (McKenna Neuman and Scott, 1998; 

McKenna Neuman and Sanderson, 2008), and electrification (Rasmussen et 

al., 2009; Merrison, 2012) to be investigated. In the planetary context two 

closed-circuit facilities have also come into use at Aarhus University 

(Rasmussen et al., 2011). 

 Initially wind tunnel laboratory studies focused on steady state 

saturated transport, i.e., the transport of particles on granular beds composed 

of plentiful dry, unconsolidated grains of sedimentary or artificial 

(industrial) origin. Bagnold (1941) recognized the existence of a fluid 

threshold for initiation of saltation and another, lower impact threshold 

above which saltation, once started, could be sustained. Influences on 

threshold conditions from, e.g., varying gravity, particle and gas density and 

composition were investigated in aeolian wind tunnels as well as in the 

MARSWIT facility (e.g., Iversen, 1976; Greeley et al., 1980; Iversen and 

White, 1982), and later the role of bed slope was also investigated (Iversen 
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and Rasmussen, 1994). Bagnold (1941) linked mass transport (q) to friction 

velocity (u*) and suggested a cubic relation; subsequent modifications led to 

slightly different transport equations, e.g., Kawamura (1951), Lettau and 

Lettau (1978), and Owen (1964, 1980). Moreover, Bagnold (1941) observed 

that the feedback on the wind flow exerted by the saltating grains is 

equivalent to an increased friction (aerodynamic roughness length, z0) of the 

bed; and from theoretical reasoning, Owen (1964) proposed that for a 

saltating bed z0 increases with u*
2
/g where g is gravitational acceleration. 

Experimental support of this came somewhat later (e.g., Rasmussen and 

Mikkelsen, 1991; Rasmussen et al., 1996). Bagnold also observed that the 

modification of the wind profile resulted in an almost constant velocity at 

some fixed height above the bed inside the region of intense saltation — the 

focal point.  

 As insight into saltation dynamics increased it became evident that a 

fundamental issue to solve was the physics involved in the collision process 

between impinging particles and the bed — expressed by the splash function 

(Unger and Haff, 1987). Although some information about the splash 

process (in the following referred to as the splash) initially came from high 

speed film recordings in wind tunnels (Willetts and Rice, 1986; Rice et al., 

1996) another more valuable source of information was experiments 

performed in special splash facilities equipped with high-speed cameras 

(Mitha et al., 1986; Beladjine et al., 2007). A formal name, the splash law, 

was introduced by Anderson et al. (1991) specifying the probability of 

number and velocity distributions for rebounding and ejected grains. 
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 The terrestrial aeolian studies span a narrow fluid-dynamic range, and 

aeolian wind tunnels have undergone only small modification since the turn 

of the millennium. Planetary conditions, on the other hand, span an 

extremely broad range of dynamic conditions owing to varying pressure, 

temperature, and atmospheric composition — which impose large variation 

of density and viscosity and thus, indirectly, impose limitations on flow 

velocity, for instance. Parallel to this measuring, techniques and data 

analysis have advanced significantly and are the indirect cause for many 

recent advances within the aeolian field. Therefore the objectives of the 

present paper are to describe important developments in facilities and 

equipment and to highlight the contribution of laboratory experimentation to 

improve insight into aeolian dynamics and systems. We concentrate on 

active saltation of dry, loose, and unconsolidated materials; while aeolian 

systems where chemical bonding, cohesion, or adhesion plays an important 

role are beyond our experience. Initially in section 2 we discuss the state of 

wind tunnels and the design of equilibrium air and sediment flows as well as 

the concept of steady-state saltation by also including new experimental 

data. Section 3 focuses on the splash laboratory where modern high-speed 

video recorders have replaced the old film techniques (e.g., Beladjine et al., 

2007) and data analysis greatly improved using modern digital image 

analysis rather than cumbersome visual inspection. Section 4 focuses on the 

transport layer and results obtained using vertically stacked traps, laser 

techniques spanning simple laser illumination of cross sections, to advanced 

techniques such as Laser Doppler Velocimetry (LDV) and Particle Tracking 
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Velocimetry (PTV). Section 5 presents important observations from 

planetary environments and discusses some aspects of laboratory 

experiments in a planetary context; while finally in section 6 we discuss and 

conclude on important issues concerning laboratory-based simulation of 

aeolian systems. A list of symbols is given in Appendix A.  

 

2. Steady-state air flow and saltation in wind tunnels 

 

2.1. The terrestrial aeolian wind tunnel 

 

 A primary aim of an aeolian wind tunnel is to allow simulation of 

mechanics and transport of granular material ranging from dust to gravel 

size under the influence of wind flow in the atmospheric surface layer, i.e., 

the lowest part of the boundary layer between the surface of the Earth and 

the free flow in the overlaying atmosphere. Most wind tunnels are 

horizontal; but because in nature much sand transport takes place on sloping 

dune surfaces, at least one laboratory facility allows the slope of the bed to 

be varied within ±25° (Iversen and Rasmussen, 1994). Ideally wind tunnels 

should have as large a cross section as possible in order to let a turbulent 

boundary layer form with eddies at scales that are common in nature. 

However, in reality space and power constraints for the fan limit how large 

the cross sections can be made at a reasonable cost. One may distinguish 

between large tunnels where the width (W) and the height (H) ≥ 1 m, 

medium-sized tunnels where 0.5 m ≤ W and H ≤ 1 m, and small tunnels 
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where W, H < 0.5 m. A selection of tunnels representing these classes is 

listed in Table 1.  

 Owen and Gillette (1985) investigated the constraints on the 

development of saltation imposed by a wind tunnel of limited height and 

concluded that the Froude number Fr = U¥/(gH) (U¥ being free stream 

velocity, g acceleration of gravity, and H tunnel height) should not be larger 

than 20. For a small 30-cm-high wind tunnel, this limits the free airstream 

velocity to ~ 8 m/s so that results from high friction velocity experiments 

may become dubious.  

 The turbulent spectrum in the tunnel must be as close as possible to 

that above a natural surface, but even for the largest tunnels a serious 

truncation of the low frequency end of the spectrum cannot be avoided. In 

contrast to this, the propagation of external disturbances into the wind 

tunnel is easier to remove by placing sets of screens and/or honeycombs at 

the entry to the working section. If the fan is placed downwind of the 

working section (suction-type tunnel; Table 1), a bell-mouth is usually 

placed at the tunnel inlet; whereas if the fan is placed upwind of the working 

section a suitable buffer volume with several screens followed by a 

contraction is efficient in removing unwanted external fluctuations 

(Bradshaw and Pankhurst, 1964). Both types of tunnel are suitable for 

aeolian studies, but a minor disadvantage of the suction-type tunnel may be 

that for a given fan speed the velocity may gradually decrease if the screens 

in the sedimentation chamber in front of the fan become clogged with (fine) 

particles during an experiment.  
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Table1  

Data for wind tunnels representing the range of dimensions which is 

typically found for aeolian studies. B: blower type; S: suction type; R: 

recirculating 

 

 

2.2. Steady state air flow 

 

 An aeolian tunnel must allow proper simulation of processes at the 

interface between Earth and Atmosphere. Therefore a boundary layer having 

suitable characteristics for a given experiment must be produced upwind of 

the working section and, for practical reasons, over as short a distance as 

possible.  The most common method for documenting the dynamic state of 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

this boundary layer is and has long been the pitot-static tube connected to a 

differential precision manometer.  

 The friction velocity of a boundary layer is u* = (t/r)
½

 where t is the 

bed shear stress and r is air density. For a turbulent boundary layer with 

constant bed stress, the vertical gradient of the velocity component (u) in the 

mean flow direction is required to have a log-linear segment (White, 1991):  

 

 
k

*

)(ln

u

z

u
=

¶
¶

  (1) 

 

The von Karman constant k  = 0.4.  

 For a fixed sand bed (i.e., no saltation), we can determine the state of 

the flow near the bed using the dimensionless roughness factor (roughness 

Reynolds number):  

 

 
n

*
*

uk
R s=  (2) 

 

where ks is the equivalent grain roughness (Brutsaert, 1982), and n is the 

kinematic viscosity of the air. A bed is (aerodynamically) smooth if R*  < 5. 

Thus for a flow where u* = 0.25 m/s and n = 2 ´ 10
-5

 m
2
/s, the bed will be 

aerodynamically smooth when the sand roughness ks ≤ 0.4 mm. As a 

plausible assumption, we use ks = Dp (Camenen et al., 2006). A (flat) bed 

composed of typical wind-blown sand with Dp = 0.25 mm will be 

aerodynamically smooth below the saltation threshold. In this case the flow 
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depends on viscosity (n), and there will be a laminar sublayer near the bed 

where the dimensionless velocity )( *uu(z)  will increase linearly with the 

dimensionless height )(ln
*u

z

n
. Above the laminar sublayer the 

dimensionless velocity scales linearly with the logarithm of dimensionless 

height (Fig. 1A).  

 

 

 

 

Fig. 1. (A) The boundary layer above a smooth bed in a wind tunnel 

showing the linear sublayer and the logarithmic overlap regions. The 
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representation of the dimensionless velocity profile by the ‘Law of the Wall’ 

(Spalding, 1961) is also indicated (modified after White, 1991). 

(B) Dimensionless wind speed profile (u(z)/U¥) measured above a rough 

bed (fixed roughness, ¥U  is free stream velocity). The logarithmic wind 

profile (Eq. 4a) and the ’Law of the Wake‘ (Coles, 1956) are also shown.  

 

 The logarithmic region extends from a height of z > 30 n/u* above the 

surface — which approximately corresponds to 3 mm for the values given 

above. One should note that in a semi-log plot, the zero intercept of the 

mean velocity vs height is z0M = 0.135n/u*, which may serve as a useful 

control of the velocity profile (Brutsaert, 1982). For grains larger than about 

0.4 mm, the bed condition is complex (the transition regime, Schlichting, 

1979), but also unusual in the present context and therefore it will not be 

considered here. 

 When saltation is active the boundary layer conditions change 

abruptly because the bed becomes rough — even for the finest sand 

particles. According to Owen (1964) the roughness length z0 depends on 

saltation intensity; and he suggested that 

  

 
g

Cuz *

22

0 =  (3) 

 

 Later experiments give support to this (e.g., Sherman, 1992; 

Rasmussen et al., 1996), and for different friction velocities and grain size 
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their values of C range between 0.04 and 0.06 for fully developed saltation. 

Thus for the fully turbulent boundary layer, the wind speed variation u(z) 

with height (z) in the logarithmic overlap region is described by the 

logarithmic wind law (White, 1991):  

 

 
0

ln
z

z

κ

u
u(z) *=   (4a) 

 

 If inserting Eq. (3) into Eq. (4a), we get the velocity profile for a 

rough granular bed with saltation:  

 

 2

2
ln

*

*

Cu

gz

κ

u
u(z) =  (4b) 

 

indicating that the friction velocity is not linearly proportional to the free 

stream velocity in the tunnel as is the case for fixed bed roughness.  

 The downstream development of a natural equilibrium boundary layer 

is slow, and the logarithmic overlap region will be shallow unless the 

boundary layer is artificially thickened. Rasmussen et al. (2011) inserted a 

combination of turbulence spires and roughness arrays downwind of the 

screen(s) in the entry, while McKenna Neuman (2004) used roughness 

arrays only. For any given combination of friction velocity (u*) and 

aerodynamic roughness length (z0), turbulence spires can be designed 

following guidelines given by Irwin (1981); while Raupach et al. (1991) set 

out how sparse roughness arrays can conveniently be designed using the 
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aspect ratio (frontal area/areal block density). For friction velocities selected 

in the range between 0.2 and 0.75 m/s, the value of z0 falls in the range of 

4×10
-5

 to 1.1×10
-3

 m with a corresponding variation of R* between 0.5 and 

35 — so one should note that near and slightly above the saltation threshold 

true z0/u* scaling may not be found.  

 When the boundary layer forms in the wind tunnel under a mild 

pressure gradient, a slight wake will form and influence the wind profile in 

the logarithmic overlap region — in particular its upper part (Fig.1B). To 

correct for this, Coles (1956) proposed the Law of the Wake:  

 

 ú
û

ù
ê
ë

é
÷
ø

ö
ç
è

æ´´÷÷
ø

ö
çç
è

æ
=

δ

zΠ
Π

z

z

κ

u
u(z) *

2
sin2ln 2

0

 (5) 

 

where P is Coles’ wake parameter that depends on the horizontal pressure 

gradient, and d  is the boundary layer thickness. In wind tunnels with a small 

cross section or generally when the flow speed becomes very high, this will 

bias the estimation of u* and z0 unless properly corrected for. White (1991) 

has outlined a method to compensate for the influence using observations of 

the velocity profile and the horizontal pressure gradient in the working 

section. However, measuring the horizontal pressure gradient with high 

accuracy has not gained common practice in aeolian studies although the 

influence from the wake can be observed in many studies (e.g., McKenna 

Neuman and Nickling, 1994; Bauer et al., 2004). Using Coles (1956) Law 

of the Wake on velocity profile data recorded in a rather small wind tunnel, 
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Rasmussen et al. (1996) used P-correction according to White (1991) and 

found good experimental agreement between observed and predicted wind 

speed data (Fig. 1B). Although the wind speed profiles observed by Bauer et 

al. (2004) have a noticeable influence of the slight wake, their calculated P-

values vary somewhat and show less systematic behaviour. Finally we shall 

mention that the velocity profiles recorded by Dong et al. (2003) differ from 

most other wind tunnel profiles because in their study the transition to the 

free flow seems undetectable despite that measurements have been made up 

to almost half the height of the wind tunnel.  

 In addition to the wake influence on the upper part of the logarithmic 

overlap region, the saltation cloud may significantly influence the lower part 

of the velocity profile. Thus when extrapolated to the logarithmic y-axis in a 

log linear plot of log(z) vs. u, the velocity profiles will intersect in a focus 

region within the transport layer. However, the velocity profile in the focus 

region is modified by the grain-borne shear stress, i.e., the momentum 

carried by the saltation grains (Bagnold, 1941): and based on numerical 

calculations, Durán et al. (2011) found that the wind speed and the height at 

the focal point depends on grain size but typically is near 2 m/s at an 

elevation of about 10 mm above the bed. Ho et al. (2014) found 

corresponding values of height and velocity to be 8 mm and 2.8 m/s, 

respectively, 13 mm and 5.0 m/s for sand samples with grain diameter 0.23 

mm and 0.63 mm.  

 

2.3. Steady-state saltation flux 
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Two different but not independent problems are involved in assuring that 

steady state mass transport exists in a laboratory experiment. Firstly, what is 

the optimum design of the laboratory facility, and secondly how can one 

actually document that temporal and spatial variations have been removed 

from the flow?   

 First consider a system with steady-state saltation that is in balance 

with the wind flow. The response to a sudden (step) increase in wind flow is 

a gradual change in mass transport toward a new asymptotic equilibrium or 

saturated value (q). It requires a certain time (or distance) to reach the 

saturated value — this is specified by the time constant or the saturation 

length (lsat) of the system, which is the distance needed before mass flow is 

(1-e
-1

 )´q or near 63% of the new equilibrium value. Based on laboratory 

experiments, Andreotti et al. (2010) found that lsat is of the order of a half 

meter for a sand having Dp  = 0.2 mm. Therefore the saturated value will be 

reached within ~ 1.5 m. If at the upwind end of the bed saltation flux is zero, 

Andreotti et al. (2010) found that an additional distance is required for 

saltation to build up through the cascading reaction. Based on their 

experiment they find that the total distance downwind of the entry — the 

fetch length LF (Gillette et al., 1996) — needed for saltation to reach the 

saturated value is ~ 2 m. Notably, earlier wind tunnel studies using 

somewhat longer tunnels (Walker, 1981; Shao and Raupach, 1992; Gillette 

et al., 1996) and numerical simulation (Shao and Li, 1999) indicated that LF 

is of the order of 15 m or more.   
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 Despite the scatter in results, it is obviously important that LF is 

minimized. This requires a careful design of the tunnel inlet and feeding 

sand while (artificially) adding momentum to the grains. When feeding 

sand, a problem is to balance distortion of the airflow by the feeder 

mechanism and actually feed the grains with a proper momentum 

distribution. Ideally grains should be fed with a spatial variation of rate and 

velocity corresponding to that of the saltation cloud in a very long working 

section. However, after a number of inconclusive tests in the Aarhus tunnel 

where design-tubes having different shape and density were tested, a 

relatively simple solution has been implemented. Feeding is performed onto 

the hard surface of the roughness array 0.5 m upstream of the leading edge 

of the sand bed. The sand emerges through 4 circular tubes (OD = 10 mm) 

that terminate ~ 200 mm above the bed for friction velocities u* < 0.35 m/s; 

6 tubes that terminate ~ 125 mm above the bed for friction velocities in the 

range 0.35 ≤ u* ≤ 0.65 m/s while they terminate at 100 mm for high friction 

velocities u* > 0.65 m/s. With this configuration, erosion pins placed at 1-m 

intervals downwind of the leading edge show changes in bed elevation (> 1 

mm) within the first 3 m for low friction velocities and up to 7 m for the 

highest friction velocities. When friction velocity exceeds 0.7 m/s, depletion 

of sand at the upstream end of the sand bed will occur after 10 to 30 min and 

quickly propagate downstream, thus limiting the duration of continuous 

experiments using the present feeding system.  

 When saltation starts from a bed that initially is flat, Bagnold (1941) 

observed that embryonic ripples appear quickly and simultaneously with 
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accumulation of the coarsest grains in the crest region and gradually 

increasing ripple amplitude/wavelength. During this transient but short 

phase, a slight change in skin friction from the bed/ripples may occur, which 

in turn might cause some (minor) adjustment of the transport rate. Likewise 

a gradual long-term change of the geometry of the ripples may influence 

transport rate. Therefore Rasmussen and Mikkelsen (1991) used isokinetic 

sampling with vertically stacked traps on a prerippled bed composed of dune 

sand having diameter Dp = 0.225 mm. Although grains were fed into the 

tunnel at a constant rate, they observed that during the first 30 min the sand 

flux was constant, but then it showed a small (5%) decrease after 40 min 

while after 75 min the flux had dropped to about 75% of the initial rate. 

Based on this, Iversen and Rasmussen (1999) prerippled the bed during 5-10 

min and restricted maximum run time to 30 min. Initially prerippling was 

done in order to avoid possible transitional influences during the change 

from the flat bed to the rippled bed, although such influences could not be 

detected because of the poor temporal resolution of the trap data. However, 

we can add that McKenna Neuman and Nickling (1994) used a fixed 10-min 

prerippling interval in their wind tunnel experiments. However, detailed 

information on the procedure used before and during runs is far from 

available for all wind tunnel experiments despite that this may seem 

relevant.   

 In order to cast additional light on the long-term stability of mass 

transport we include observations recently made in the Aarhus wind tunnel 

using two different sand beds composed of uniform sand samples 
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respectively with diameters of 0.180 and 0.320 mm. Starting with a flat bed, 

the rate of grains passing the measuring volume of a laser-Doppler 

anemometer (see section 4) during intervals from ~ 3 to 50 s is recorded at 

three elevations. This is repeated 2-4 times at three different friction 

velocities. For each height and friction velocity, the grain rate measured 

during the first observation interval is used to normalise the observed rates 

during the following observation intervals thus defining the relative rate 

(Fig. 2). The measuring intervals have different length because decreasing 

volume fraction with height requires longer sampling times. For the lowest 

friction velocity recording starts at the lowest level and continues at the next 

level if either 1000 grains have been counted or 50 s have passed. For the 

higher friction velocities the corresponding limits are 2000 grains and 40 s.  

The data show considerable scatter — especially for the smallest grains. No 

clear trend is visible, but it may seem possible that there is a slight increase 

in the relative rate during the initial phase when the ripples evolve. Some of 

the outliers are probably associated with bursts of grains following a strong 

gust sweeping into the near-bed region.  
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Fig. 2. The relative grain rate at 3 heights and 3 friction velocities (u*) above 

2 beds of uniform quartz grains having diameter (Dp):   (A) Dp = 0.18 mm; 

u* = 0.27, 0.53, 0.70 m/s; and (B)  Dp = 0.32 mm, u* = 0.29, 0.50, 0.68 m/s). 

 

 For the three u*-values, the ripple pattern is not stable after 600 s 

(section 4). Therefore long-term observation of transport rate was made 

using the 0.320-mm sample. The relative mass transported through the 

working area during a series of 10-min periods (u* = 0.29 m/s and u* = 0.50 

m/s) or 20-min periods (u* = 0.68 m/s) are depicted in Fig. 3. At each 

friction velocity, the relative mass flux is found from normalizing the 

observed mass fluxes during a period with that collected during the last 

period, and data indicate that transport at the lower u*-values apparently 

decreases until ~ 1 h has passed and a steady ripple pattern has developed. 

In our opinion it is likely that for sand beds composed of uniform grains the 

change in mass transport is caused by a slight increase in form drag 

resulting from the development of the stable ripple pattern. For the bed 
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composed of dune sand (Rasmussen and Mikkelsen, 1991), which has a 

larger variation in grain size than the uniform distributions described above, 

the change in mass transport is more substantial than for the uniform beds. 

However, on beds with a broad size distribution a thin coarse layer may 

form on the ripple crests (e.g., Walker, 1981). Such size segregation could 

influence the temporal changes of mass transport, but we are not aware of 

any clear documentation of this.  

 

 

 

Fig. 3. The relative mass flux measured at different friction velocities (u*) 

downstream of a bed composed of uniform quartz grains: Dp = 0.32 mm. 

 

 The measurements presented in Figs. 2 and 3 represent techniques that 

together with sampling using vertically segmented traps have been used for 

many years to acquire information about total mass transport. Some 

segmented traps and mass collector traps have been equipped with 

electronic devises to continuously monitor the catch and some point 

sampling methods use sound (micro-/miniphone sensor; Ellis et al., 2009) or 
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piezoelectric crystals (Gillette and Stockton, 1986) rather than LDV-

information to record the passage of a grain. Nevertheless, systematic bias 

in the sampling are associated with all the sampling devices mentioned 

above. The vertically segmented trap underestimates flux considerably near 

the surface (Nickling and McKenna Neuman, 1997; Rasmussen and 

Mikkelsen, 1998). So far we have been unable to acquire precise and 

reliable laser Doppler velocity measurements close to the surface where the 

flux is highest and validation poor (Rasmussen and Sørensen, 2008) — this 

may be because of strong back-scatter of the laser signal from bed particles. 

Likewise several of the sound/piezoelectric sensors underestimate flux 

because of deficiencies in sensitivity (Sherman et al., 2011). Finally 

variation in the flux across the tunnel complicates comparison between total 

mass collector data and flow measurements made at the centre-line of the 

tunnel (Williams, 1964; Iversen and Rasmussen, 1999; Ho et al., 2014).  

 

3. The splash laboratory 

 

 The impact of particles onto the bed has been recognized for a long 

time to be an important process that drives saltation transport.  As a saltating 

particle impacts the bed, it generally rebounds and produces ejection of 

particles from the bed (the so called ejecta or splashed particles) when it is 

fast enough. Many experimental (Mitha et al., 1986; Willetts and Rice, 1986, 

1989; Werner, 1990; Nalpanis et al., 1993; Rioual et al., 2003; Beladjine et 

al., 2007; Ammi et al., 2009) and numerical (Anderson and Haff, 1988; 
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Werner and Haff, 1988; Anderson et al., 1991; Oger et al., 2005; Crassous 

et al., 2007) studies have been devoted to the splash process. We shall 

provide here the main salient features, and because we shall consider 

particles of different diameter (Dp), we shall also introduce Shields 

parameter (or Shields number) ))((* ps gDS rrt -= where t is the shear 

stress, rs and r are particle density and air density, and g is gravity.  

 Owing to the experimental difficulty of tracking particles within a 

dense saltation layer only few in-situ measurements of the impact process 

during steady and fully developed states of saltation transport have been 

made. The in situ measurements are achieved in wind tunnels at low Shields 

parameter (i.e., slightly above the threshold of transport in order to have a 

dilute transport layer) using high speed video recordings (Willetts and Rice, 

1986, Nalpanis et al., 1993). Willetts and Rice (1986) found in particular 

that the impacting grains hit the sand surface at small angles between 10° 

and 16° and rebound with an angle between 20° and 40°. In addition, they 

established that the grains ejected from the granular bed have an average 

speed of one order of magnitude less than the impacting speed. 
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Fig. 4. Experimental setup for model splash experiments from Beladjine et 

al. (2007): An air gun is used to propel a single particle onto a packing of 

like particles. The air gun can move on a semicircular rail that allows the 

incident angle to be varied from 0° to 90°. By varying the pressure, the 

speed of the incident can be adjusted to a given value. Particles used for 

these experiments are spherical PVC beads (6 mm in diameter). 

 

 To circumvent the difficulty of in situ measurements, many model 

collision experiments have been developed (Mitha et al., 1986; Rioual et al., 

2003; Beladjine et al., 2007; Ammi et al., 2009). The principle of these 

model experiments is to propel a single particle, at a given impact velocity 

and angle, onto a granular packing of like particles (see Fig. 4). These 

experiments were generally performed with model particles, spherical and 

larger than sand grains, to facilitate the manipulation and the particle 

tracking analysis.  Similitude laws for the collision process are based on the 

Froude number defined as Fr = Vi/(gDp)
½

 where Vi is the impact velocity 

and Dp is the median diameter of the particles. In standard conditions of 
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aeolian sand transport with 0.200-mm grains, the impact velocities of the 

saltating grains range from 1 to 5 m/s. The Froude number therefore lies 

between 20 and 100. For example, using 6-mm particles as in Beladjine et 

al. (2007) requires impact speed ranging from 10 to 50 m/s. An example of 

a typical collision of a 6-mm particle impacting a granular packing of like 

particles at the speed of 18 m/s is shown in Fig. 5 (Beladjine et al., 2007). 

We clearly identify two distinct processes: (i) the rebound of the impact 

particles and (ii) the set of splashed particles with a much smaller speed than 

the rebound particle. 

 

 

Fig. 5: Successive snapshots of a collision of a 6-mm particle onto a 

granular packing of like particles (experiments by Beladjine et al., 2007). 

The impact velocity and angle are, respectively, Vi = 74 (gd)
1/2

 = 18 m/s, 

and qi = 40
o
 for this collision. The time step between two successive images 

is 4 ms.  
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 On the basis of the model collision experiments, important features for 

the rebound particle and for the splashed particles have been identified and 

are summarized below. Numerical simulations based on discrete element 

method (DEM) (Anderson and Haff, 1988; Werner and Haff, 1988; 

Anderson et al., 1991; Oger et al., 2005; Crassous et al., 2007) generally 

confirm the experimental outcomes. 

 

3.1. Rebound  

 

 According to results of model collision experiments (Beladjine et al., 

2007), the rebound process is only specular for a narrow range of impact 

angles near 20°. For lower (grazing) impact angles the rebound angle is 

greater than the incident angle; whereas for impact angles higher than 20°, 

the rebound angle is less than the incident one (Fig. 6A).  
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Fig. 6. (A) Model collision experiment with 6-mm particles (Beladjine et al., 

2007): mean rebound angle qr as a function of the impact angle qi for a fixed 

impact speed Vi = 106 (gDp)
1/2

 = 26 m/s. The dashed line represents the 

specular limit (i.e., qr = qi). (B) Model collision experiment with 6-mm 

particles (Beladjine et al., 2007): variation of the average restitution 

coefficients ez and e as a function of the impact angle qi for a fixed impact 

velocity Vi = 106 (gDp)
1/2

 = 26 m/s. The dotted lines stand for best fits of the 

form: ez = Az/sin(qi)-Bz (with Az = 0.30 and Bz = 0.15), and e = A-B sin(qi)  

(with A = 0.87 and B = 0.72). 

 

 An important consequence of this is that horizontal momentum of the 

impacting particle is converted into vertical momentum of the rebound 

particle. This feature is clearly seen through the vertical restitution 

coefficient ez characterizing the rebound and defined as ez = Vr,z/Vi,z (where 

Vr,z and Vi,z are, respectively, the vertical components of the rebounding and 

impacting velocity). As shown in Fig. 6B, ez increases with decreasing 
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impact angle and exhibits values > 1 for impact angle smaller than 20°. This 

conversion from the horizontal to the vertical direction is fundamental in 

order to maintain the saltation motion. Indeed, a saltating particle in a steady 

motion has to reach on average the same height for each of its successive 

jumps. During the ascending phase of the jump, the saltating particle 

experiences air drag forces, thus dissipating energy. The energy dissipation 

in the vertical direction should be balanced by energy gain. This balance is 

made possible thanks to the momentum conversion during the collision. The 

physical reason behind this behaviour lies in the roughness or, more exactly, 

the bumpiness of the bed surface. On a perfectly smooth surface, one 

expects a specular reflection, while on a bumpy surface one expects a 

rebound angle greater than the incident angle for grazing collision. 

Currently we are unable to predict the transition angle from simple 

arguments, but this critical value is expected to be dependent on the 

geometrical roughness of the bed surface. For example, if we imagine a 

collision of a fine particle onto a packing of coarse particles, the critical 

angle for the transition may be larger because the effective bumpiness of the 

bed surface (compared to the diameter of the incident particle) is enhanced.  

 We introduce another restitution coefficient, e, defined as the ratio of 

the rebound speed to that of the impact speed:  

  
i

r

V

V
e = .  

 The knowledge of both coefficients, ez and e, is sufficient to 

characterize completely the rebound process. As shown in Beladjine et al. 
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(2007), both are independent of the impact velocity and are decreasing 

functions of the impact angle. They are well approximated by the following 

laws: 

 

 ez = Az/(sinθi ) - Bz (6) 

 e = Asinθi - B (7) 

 

Az, Bz, A, and B are constants, which are expected to depend on the material 

properties of the particles.  

 As shown in Crassous et al. (2007), the key material property is the 

dissipation rate in a binary collision and can be characterized by the normal 

restitution coefficient en within a binary collision.  The plastic particles used 

in the model experiments of Beladjine et al. (Beladjine et al., 2007) have a 

normal restitution coefficient close to that found with glass beads (which are 

expected to behave as quartz sand grains): en = 0.9. For these particles the 

constants in Eqs. (6) and (7) have the following values: Az = 0.30, Bz = 0.15,  

A = 0.87, and B = 0.72. One can mention that Werner and Haff (1988) 

proposed the same type of law for ez, deduced from a model collision 

experiment achieved with sand grain. They found slightly different values 

but compatible with those of Beladjine et al.: Az = 0.26 and Bz = 0.19. 

 

3.2. Splashed particles 
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 When the incident bead impacts the bed, it does not only rebound but 

can also eject other beads from the packing.  The ejected beads fly off in all 

directions with a speed that rarely exceeds 10% of the incident velocity. The 

experimental results from collision model experiments (Beladjine et al., 

2007) show that the number of splashed particles at a given impact angle 

increases linearly with the impact speed above a critical velocity xc (see Fig. 

7):  

 

 ( )
p

ci
iejje

gD

ξV
θfn

-
=   (8) 

 

where ( )iejf q  is an increasing function of the impact angle, and xc is the 

critical velocity below which no particles are splashed. This critical velocity 

is roughly independent of the impact angle (Werner and Haff, 1988, 

Beladjine et al., 2007). Werner and Haff (1988) found that 
pc gD20»x , 

whilst Beladjine et al. obtained twice that value.  
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Fig. 7. Model collision experiment with 6-mm particles: the main figure 

shows mean values of the number of ejected beads versus the impact speed 

for two different impact angles: qi = 10° (♦) and qi = 40°  (▲). Insert shows 

the collapse of the data when the mean number of ejected beads is 

renormalized by (1-e
2
) (Beladjine et al., 2007) 

 

 The linear dependence of the number of splashed particles with the 

impact velocity indicates that the splash process is predominantly driven by 

the transport of momentum rather than energy. A collision process based on 

energy transport would have led to a quadratic dependence of the splashed 

particles with the impact velocity: )(
2

pije gDVn µ .  

 Several authors proposed a functional form for the dependency of the 

splashed particles with the impact angle. Werner and Haff (1988) proposed 

a simple function:
ijef qsin3»  while based on extensive experiments 

Beladjine et al. (2007) noted that the function fej is strongly correlated to the 

energy loss of the impacting particle during the rebound. They indeed found 

that  

 

 ( )[ ] ( )[ ]22 sin720870113113 iije θ..θef --»-»   (9) 

 

 The reason for this fundamental correlation is not completely 

understood. Based on momentum conversation, we would have expected 
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instead that fej~ (1-e). This is, however, not what was found based from 

experiments.  

 To describe completely the splashed process, one has to specify, in 

addition to the number of splashed particles, the average take-off velocity of 

the splashed particles. The model collision experiments show that the 

average vertical take-off velocity of the splashed particles is independent of 

the impact angle and weakly sensitive to the impact speed. Therefore the 

distribution of the vertical take-off velocity is also independent of the 

impact angle and weakly sensitive to the impact speed. Its main feature is 

that it exhibits a large tail (Fig. 8)  

 

 

Fig. 8. Wind tunnel observations of the vertical velocity distribution of 

saltating particles located within the transport layer (at z = 10Dp) 

immediately above the bed (Ho et al., 2014). Data are shown for different 

Shields numbers (S*).  

 

 Several distribution laws have been proposed such as the exponential 

distribution, the G distribution, and the lognormal distribution that are all 
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good candidates to describe the experimental data. Among the distributions, 

one can mention the Raleigh distribution proposed by Werner and Haff 

(1988): 
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where pzz gDVV =
~

 and 
pgD4.3»s ; and the log-normal distribution 

suggested by Beladjine et al. (2007): 
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where 2
~

0 =V . The two parameters m and s characterize the lognormal 

distribution:  σ ≈ 0.78 while m slightly varies with the impact velocity 

(ranging from 0.25 to 0.55) when Vi spans from 
pgD75  to 

pgD160 .  

 

The total amplitude of the ejection speed of the splash particles (i.e, 

22

yx VVV +=  follows exactly the same trend as the vertical ejection 

speed. The total ejection speed is also almost insensitive to the impact 

velocity and angle and exhibits a distribution with a large tail. 

 The last feature of the splashed particles is the angle of take-off. The 

average take-off angle is found to be independent of the impact speed and 
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weakly dependent of the impact angle. It varies from 80
o
 for grazing impact 

angles to 90° for normal impact (Beladjine et al., 2007). 

 

4. The transport layer  

 

 In the following section we focus on observations of saltation 

trajectories and grain kinematics in the transport layer. First we consider 

how slight modification of segmented traps coupled with particle image 

velocimetry (PIV) and laser Doppler velocimetry (LDV) have added 

valuable information about saltation dynamics. Then we consider how 

simple laser sheet illumination has proven a valuable tool to investigate 

bedform development and movement.  

 

4.1. The trajectory: information from horizontally segmented traps  

 

 A comprehensive experiment with a primitive horizontally segmented 

trap was performed at Pismo Beach, CA, USA, by Greeley et al. (1996) and 

indicated significant downstream variation of grain size and collected mass. 

Likewise, Horikawa and Shen (1960) used a horizontally segmented trap in 

a wind tunnel study of particle jump length in saltation. Apart from that 

little laboratory work involving the use of horizontally segmented traps has 

been done until the trap shown in Fig. 9 was recently installed across the 

downstream end of the working section in the wind tunnel in Rennes (Ho et 

al., 2014).  
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Fig. 9. The horizontally segmented trap in the 6-m-long wind tunnel at 

University 1, Rennes, France. The spacing between chambers in the two-

dimensional sand trap is 15 mm. PTV/PIV measurements are made just 

upwind of the trap.  

 

 The collected flux of sand across the central 60% of the tunnel is 

uniform, while in the wall-zone the flux gradually decreases to about two-

thirds of a few cm from the wall. This corresponds to an effective width of 

the tunnel of about 90%, which is close to the value reported by Iversen and 

Rasmussen (1999). A rather similar segmented trap is also installed in the 

Aarhus wind tunnel, but here it only collects sand across the mid-60% of the 

tunnel over a downstream distance of 60 cm. In the direction of the flow, the 

first compartment is always 10 mm wide, but the width of the following 

compartments varies between 10 and 15 mm. Initially the first 10 

compartments were 10 mm wide followed by 15-mm wide compartments 

for the remaining distance, but later the setup was changed so that only the 
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first compartment is 10 mm wide while the following compartments are all 

15 mm wide.  

 Based on initial testing, a reasonable assumption is that no saltating 

grains are ejected beyond the end of the sand bed (< 3%) so the data 

collected in the trap contains accumulated information about the distribution 

of saltation jump lengths. During steady state mass transport (q), the flux 

collected in the first chamber of the trap (M0) represents the vertical 

saltation flux, i.e., the mass of particles ejected per unit time and area. Let 

Pl(l) be the distribution of saltation jump length then, according to Ho et al. 

(2014), the average jump length l can be calculated as  
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 Ho et al. (2014) used a fine-grained sample (Dp = 0.23 mm) and a 

rather coarse-grained sample (Dp = 0.63 mm), and they observed that 

although the normalized jump length (l/d) is different for the two samples, 

no clear variation of l with Shields parameter is observed. Observations of 

l using the horizontally segmented trap in the Aarhus wind tunnel are 

weakly sensitive to flow strength, which is also the case for horizontal trap 

field data (Namikas et al., 2003) for which Ho et al. (2014) have derived the 

mean jump length in a way similar to that used in the analysis of the Rennes 

wind tunnel data (Fig. 10A). Notably, in addition to bias caused by 

rebouncing of grains on the wall-tops between compartments, the 
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calculation of l  is very sensitive to the mass collected in the first chamber 

where small irregularities in the bed in front of the trap may result in 

considerable experimental scatter.  

 Despite the modest variation in jump length observed above, a rather 

consistent picture emerges when wind tunnel and field data are plotted 

together (Fig. 10A) with a mean jump length of the order of 60-75 mm. For 

the sand-size particles investigated above, the mean saltation length is not 

related to the sand grain size in a simple manner. Instead the analysis made 

by Ho et al. (2014) on limited experimental data suggested that it depends 

linearly with the height of the Bagnold focus point, which shows a slight 

variation with grain size as indicated in section 2. In the experimental data 

there is a slight indication that the jump length may actually increase 

slightly with friction velocity and that a possible reason is suggested by the 

small increase in sediment catch in the most downwind compartments for 

high wind speeds, which is present in the data observed by Ho et al. (2014) 

and in the recent observations in the Aarhus wind tunnel using an 

intermediate-sized sand sample (Fig. 10B).  
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Fig. 10. (A) Mean jump length vs. Shields number for natural sands of 

different particle size (Dp) (0.118 mm < Dp < 0.63 mm; (B) normalized 

distribution of the downstream decrease of mass flux collected in trap 

compartments (fi) at three different Shields numbers (Q is the total mass 

flow rate). 

 

4.2. The trajectory: information from laser-assisted tracking and 

velocimetry. 

 

 For quantities such as particle concentration, velocity, and trajectory 

characteristics in the transport layer, the laser light is one of the primary 

tools in experimental work that has brought recent advances in the field of 

aeolian dynamics. This is not only the case for sophisticated use of laser 

light in advanced instrumentations but also for simple setups where laser 

light has been used in combination with, e.g., photography. Three 

commonly applied methods are particle tracking velocimetry (PTV), particle 

imaging velocimetry (PIV) and laser Doppler velocimetry (LDV) — the 

latter also refered to as laser Doppler anemometry (LDA) (Rasmussen et al., 
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2009). In PTV and PIV, a high-powered pulsed laser serves as the light 

source for generating a vertical laser sheet (Fig. 9). Particles passing within 

the light sheet are illuminated, and a digital camera is able to capture each 

light pulse in separate image frames (for a discussion of the sampling 

strategies we refer to Creyssels et al., 2009). However, what should be 

pointed out is that in complex particulate flows, which exhibit a large range 

of particle velocities, the dynamic range of the standard PIV method is often 

saturated and that severe limitations occur on the measurability of some 

flows. This is, for example, the case for the flow of saltating particles where 

great heterogeneity of the particle velocities exists because of the existence 

of two distinct dynamic populations: the ascending and descending grains. 

Here grain velocity is underestimated (Creyssels et al., 2009), while such 

limitations are avoided in the PTV-technique where evaluation of the 

particle displacement is performed by individual particle tracking, not by 

means of spatial correlation. In LDV the Doppler shift of two collimated 

coherent laser beams is used to measure the velocity of a (tracer) particle. 

As particles move through the fringes of the interfering beams, they reflect 

light that fluctuates in intensity, the frequency of which is proportional to 

the component of particle velocity that lies in the plane of two laser beams. 

For all the laser-based measurement methods, an important advantage is that 

using optics with a large enough focal length will allow measurements to be 

made from outside the wind tunnel when part of the side wall is transparent. 

The PTV allows measurements quite close to the bed, but here reflections 

from the bed may obscure LDV measurements resulting in unrealistic 
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values and low validation rates — at least in the early LDV instruments 

(Rasmussen and Sørensen, 2008). The beam height of an LDV instrument is 

typically less than a quarter mm so it is possible to precisely set the 

elevation of the measurements. In the direction perpendicular to the flow the 

crossing between the two beams is slightly larger (mm-scale), depending on 

the focal length of the optics and whether a beam expander is being used, 

yet the measuring position is quite well defined. Contrary to this the rate of 

grains that can be detected is limited by the small measuring volume, and 

irregularities in the bed combined with the movement of ripples 

continuously change the local bed elevation. Therefore for the LDV 

instrument that will not continuously record the position of the bed, we find 

that it is impossible to acquire good quality data much closer to the bed than 

2-3 mm.  

 

4.2.1. The vertical profile of concentration  

 

 For different free stream velocities, Liu and Dong (2004) used PDV 

data to derive a concentration profile near the downstream end of a 2.5-m-

long and 0.8-m-wide sand bed composed of sand samples each having a 

narrow range of grain diameter Dp. At elevation z they calculated mass flux 

density ( LDAppz AΩnρφ /= ) normalized with grain momentum (
pzpVr ) 

where n is the rate of grains passing the cross-sectional area of the laser 

(ALDA), rp and Wp is particle density and volume, and Vpz is grain velocity. 

Unfortunately they did not measure friction velocities, which prevents a 
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thorough comparison with other concentration data. For grains of diameter 

0.2-0.3 mm and free stream velocities of 10, 12, 14, 16, and 18 m/s, their 

concentration profiles are shown in Fig. 11.  Zhang et al. (2008) used PTV 

to measure the concentration profile downstream of a 1-m-long and 0.2-m-

wide tray with 0.1–0.125 mm quarts sand. Their concentration 

measurements are presented in a rather unconventional way as g/cm
2
 with 

little accompanying information of calculation methods. Thus we interpret 

that the mass is estimated from particles counted at a given increment in 

elevation  normalized with the (planar) area at that elevation, while no 

volume is considered. Therefore we cannot make a quantitative comparison, 

but when plotted in Fig. 11 their data show a very different structure than 

that found in the Liu and Dong data.  

 

 

 

Fig. 11. Compilation of particle concentration data. Profiles are for free 

stream velocity (Liu and Dong, 2004) and different u* (0.24, 0.32, 0.48, 

0.56, 0.67 m/s, Creyssels et al., 2009; 0.27, 0.38, 0.56, 0.69 m/s, Rasmussen 

and Sørensen, 2008).  
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 Using PTV, measurements of true volume concentration were derived 

by Creyssels et al. (2009) for 0.242-mm saltating particles in the Aarhus 

wind tunnel. Profiles are given for friction velocities almost evenly 

distributed in the interval 0.24 – 0.69 m/s. The profiles show a reasonable 

exponential behaviour, and Creyssels et al. (2009) found that to the first 

order, the increase of the extrapolated concentration at the bed (n0) is 

proportional to the Shields parameter )( *

0 tSS -= bn  with β ≈ 0.017 and St 

≈ 0.009, where St is the critical Shields parameter below which saltation 

cannot be sustained. Reinterpretation of older PDV-measurements of grain 

speed and transport rate (Rasmussen and Sørensen, 2008) enable us to 

derive concentration profiles above a bed composed of the same sand 

sample but using a methodology similar to that used by Liu and Dong 

(2004). We are aware that besides uncertainty caused by the low number of 

observed data at the higher elevations (< 50), a primary source of 

uncertainty is associated with the estimation of the effective measurement 

cross section. For the particular laser instrument used by Rasmussen and 

Sørensen (2008), the nominal measurement volume is 0.2 mm high and 4.8 

mm wide. However, the grains that have varying shape from pure angular to 

almost spherical have diameter similar to the height of the measurement 

volume. Therefore we have used an effective height of 0.6 mm in this way 

rather arbitrarily, assuming particles being detected if more than ~ 20% of 

their diameter passes the laser cross section. When the LDV-concentration 

profiles are plotted in Fig. 11 they are observed to fall within reasonable 
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proximity to the PTV data, but the match is rather  poor for the larger 

friction velocities. However, the two sets of data from the Aarhus wind 

tunnel where the fetch is more than 10 m long have reasonably similar 

slope. The profiles measured by Liu and Dong  (2004) over a much shorter 

bed are considerably steeper. This may be expressed in the value of the 

decey-length (lc), i.e., the elevation at which the concentration (n) has 

dropped to 37% (e
-1´n0) of the surface value. For the Creyssels et al. (2009) 

data lc ≈ 10 mm, while it is 30-40 mm for the Liu and Dong (2004) data. 

The latter value seems rather large given that on soft beds most of the 

transport will normally take place below this height (Dúran et al., 2011). 

Finally, the profiles measured by Zhang et al. (2008) downwind of a very 

short fetch have no similarity with the rest of the data. This might indicate a 

long fetch is important for establishing an equilibrium concentration profile 

in wind tunnel studies.  

 

4.2.2. The vertical profile of grain speed  

 

 Analysis of high speed movies has been a useful way of acquiring 

detailed information about the velocity of saltating grains, but in recent 

years PIV, PTV, and LDV methods (as described in the previous section) 

have become the common methods. The average horizontal grain velocity 

measured in a number of experiments using PTV as well as one- or two-

dimensional LDV instruments are presented in Fig. 12.  
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Fig. 12. Vertical profiles of the average horizontal grain speed for different 

u* and Dp (· Kang et al., 2008; ),' Creyssels et al., 2009; C Dong et al., 

2004).  

 

 Generally, observations show that up to about 10-15 mm above the 

bed the velocity of grains is small and of the order of 0.5-2 m/s. The data 

presented in Fig. 12 have been recorded at low or intermediate friction 

velocities, but observations made by Creyssels et al. (2009) and Kang et al. 

(2008) for a range of friction velocities or free stream velocities indicate the 

existence of a focal region between 5 and 10 mm  height with almost 

constant grain velocity. Contratry to this, Dong et al. (2004) found 

somewhat higher values below ~ 5 mm height. However, their data were 

recorded using LDV at the end of an only 2.5-m-long test section and their 

data near the bed show considerable scatter. In addition to the short fetch, 

LDV-recording close to the bed is difficult as discussed by Rasmussen and 

Sørensen (2008). The major difference between the data presented by 

Creyssels et al. (2009) and those by Kang et al. (2008) and Dong et al. 
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(2004) is in the velocity-structure between 10 and 50 mm height. Creyssels 

et al. (2009) (and one data set presented by Kang et al., 2008) indicate that 

the velocity increases linearly with height while the remaining data fit closer 

to an exponential increase. However, the experimental setups differ as the 

length of test bed used by Creyssels et al. (2009) is from 4 to 6 times longer 

than the other test beds. Insufficient adaption of the wind profile to an 

abrupt change in roughness might explain some of the difference. Another 

influence might stem from the LDV-recording strategy that is based on 

either acquiring a fixed number of particles (e.g., 5000) or the total number 

of particles within a fixed time interval (e.g., 30 s). When one of the 

conditions is fulfilled at a given height, recording will continue at the 

following height. Another uncertainty of data might be that close to the bed 

the high transport rate results in short sampling times — often < 15 s. Given 

that wind ripples exist on the bed, then the recordings will represent a 

particular section on a single ripple. Unfortunately neither Kang et al. 

(2008) nor Dong et al. (2004) gave information about u* (or Shields 

parameter) so a closer comparison of results is not possible. Finally, we 

should note that because grain concentrations above 15-20 mm are very low, 

the speed of these grains will only have a minor influence on the average 

speed regarding the entire saltation layer.  

 

4.2.3. The vertical profile of flux density  
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 Given information about grain concentration and velocity, the vertical 

profile of flux density can be calculated as the product of the two. For low 

and moderate friction velocities, Creyssels et al. (2009) presented flux 

density profiles for a sand bed with Dp = 0.442 mm (Fig. 13).  

 

 

 

 

Fig. 13. Vertical profiles of mass flux density f(z): (A)  PTV measurements 

(Creyssels et al., 2009);  (B)  LDV measurements from the Aarhus wind 

tunnel (Dp = 0.242 mm). 
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 In some experiments where the flux density profile (f(z)) has been 

found from LDV measurement data nearest to the bed (~25 ´ Dp), it 

apparently shows a larger increase toward the bottom than given by the 

exponential dependence (Fig. 13B). If we ignore this, the constant slope in 

the two figures indicates an exponential decay of flux density with height. 

When extrapolating the profile to the bed, we find f(0) = f0; and for the 

data in Fig. 13A, Creyssels et al. (2009) found the characteristic decay 

length lf to 40´Dp.  

 Further analysis of the data in Fig. 13A indicate that for the same 

sample the flux density profile will collapse to one curve when normalized 

with the excess Shields number S*-St where St is the critical Shields number 

and where scaling with may additionally account for the influence 

from grain size where appropriate (Dúran et al., 2011). Based on the data in 

Fig. 13, we have found the normalized flux density profile for the 0.442-mm 

sample (Fig. 14).   
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Fig. 14. (A) Normalized flux density profile recorded at four friction 

velocities (data from Fig. 13B); (B) relative flux densities at four free stream 

velocities (data from Dong et al., 2006) 

 

 For the low and moderate shear stresses in Fig. 14, the collapse of the 

result when normalized with the Shields parameter indicates that total 

transport rate is proportional to friction velocity squared as originally 

suggested by Unger and Haff (1987). Nevertheless quite near the surface the 

measurements deviate somewhat from the exponential behaviour. In order to 

compare the results with those obtained in a large wind tunnel but above a 

short granular bed, we have extracted data from the investigation made by 

Dong et al. (2006) and plotted these in Fig. 14B. Because no shear stress 

data can be derived from this setup the Shields parameter cannot be 

evaluated. Therefore data cannot be normalized in the same manner as in 

Fig. 14A. Primarily, though, a plot of the flux density normalized with the 

value at the lowest measurement level will have almost the same slope but 

shifted along the abscissa axis to a different position. The profiles obtained 
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in Fig. 14B at three different free stream velocities are much steeper than 

those in Fig. 14A, indicating that in the saltation layer the transport reaches 

higher above the short path than when measured far downstream on the 

granular bed.  

 

4.3. Electrification and its effects 

 

 The contact of sand/dust particles with each other during wind-driven 

transport unavoidably leads to electrification of those particles, typically 

because of the process known as contact electrification (or sometimes 

referred to as tribo-electrification). Such electrification can affect aeolian 

transport in at least two ways, firstly by the generation of electric fields, and 

secondly by the formation of aggregates or agglomerates because of 

electrostatic attraction. Although sand grains typically are not noticeably 

affected by aggregation, the transport of dust is in many cases dominated by 

the formation and breakup of aggregates, and once deposited dust grains are 

rarely found in nature as individual single particulates. Despite the 

importance of electrification and electric field generation in nature and the 

many studies of such effects, this phenomenon remains poorly understood, 

in its fundamental physical process and in its effects. Even without a 

detailed physical understanding of the electrification process, there is 

general agreement on the order of magnitude of the electrification; and this 

is sufficient in most cases to quantify the effect of electrification on, for 

example, entrainment and transport of sand/dust. 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

 For sand-sized particles (e.g., around 100 µm) in terms of electrical 

charge per grain, these empirical values correspond to the order of 10
-14

 – 

10
-12

 C/grain, i.e., 10
5
 – 10

7
 electrons/grain (Schmidt et al., 1999; Gross et 

al., 2001; Sickafoose et al., 2001; Zheng et al., 2006). For suspended dust-

sized grains (e.g., 1-10 µm) electrification of around 10
-16

 – 10
-14

 C/grain, 

i.e. 1000-100,000 electrons/grain, has been observed (Merrison et al., 2004, 

2012). These values are in reasonably good agreement with a proposed 

surface electrification limit (surface charge density) of the order of 0.1 

mC/m
2
 (Poppe et al., 2000); this has been supported by other work (Lowell, 

1986; Perko, 2002; Merrison et al., 2004). Lower values of dust 

electrification are, however, often measured owing to the electrostatic 

aggregation of dust that discharges (de-electrifies) suspended dust, 

especially when in high concentrations and after long suspension times.  

 Efforts are ongoing to establish the size dependence of electrification; 

however, one extremely important aspect of contact electrification is that it 

is seen to preferentially electrify large grains positively with respect to 

smaller grains during interaction (Lacks and Levandovsky, 2007; Lacks et 

al., 2008; Kok and Lacks, 2009). The subsequent separation of larger sand 

grains from suspended dust grains is then seen as a mechanism for electric 

field generation (Jackson and Farrell, 2006). This is illustrated most clearly 

during volcanic eruptions where lightening (electrical discharge) is often 

seen within dust/ash clouds as a result of such electric field generation.  

 There has been extensive experimental and theoretical modelling of 

the effects of electric fields upon sand transport with the assumption that the 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

surface is electrically conductive (Kok and Renno, 2006). In this case the 

threshold for entrainment or detachment is seen to fall (Kok and Renno, 

2008a,b) and the transport rate seen to rise (Rasmussen et al., 2009). 

However in the case of known extraterrestrial planets and also many 

terrestrial environments, the planetary surface may not be considered to be 

conductive and may in fact be a good insulator. In this case the effect of an 

electric field is to inhibit entrainment and enhance particle aggregation 

(dielectric attraction). This has been demonstrated experimentally (Holstein-

Rathlou et al., 2012; Merrison 2012). A simple model based upon Bagnold’s 

(semiempirical) sand transport model and modifying it with the inclusion of 

a vertical electric field stress term has successfully reproduced the 

experimentally observed modification of the threshold and transport rate for 

saltation in a laboratory sand bed while applying an electric field 

(Rasmussen et al., 2009). It involves modifying the wind induced lift stress 

at threshold with the addition of an electric field-induced term — which for 

a conducting surface is tE = +½e0E
2
, where E is the electric field strength at 

the surface, and ε0 is the permittivity of free space. In the case of an 

insulating surface, it becomes 22

0 rEFE et ¥-= (Stoy, 1995); here r is the 

grain radius and F∞ ≈ 3 for a dielectric material (such as glass/silicate) with 

a susceptibility of around 3. Note that this force is negative, i.e., attractive 

toward the surface. Unfortunately the complexity expected within a natural 

saltating bed in terms of electrification and electric field generation may 

make it difficult to predict or even identify the net effect. 
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4.4. Temporal and spatial variation of bed texture  

 

4.4.1. Observation methods 

 

 The use of erosion pins is a well-tested method to acquire information 

about temporal changes of a granular bed. In a wind tunnel, Andreotti et al. 

(2010) used this method to follow changes in the bed elevation along the 

tunnel axis, and in this way estimated the sediment transport saturation 

length  (lsat, see section 2.3). Low-angle lighting and a meter stick is another 

simple way by which detailed information about ripple spacing has been 

acquired over sand beds composed of different-sized sands (Walker, 1981). 

Elaborate studies of bedform morphology and its temporal changes require 

two-dimensional resolution; and here high precision photogrammetry has 

been successfully used to study the development of, for example, wind 

ripples (Seppälä and Lindé, 1978). Until recently the analysis of 

photographic or photogrammetric recordings has been fairly slow and 

cumbersome as compared to digital measurement using precision laser 

scanner tools. In recent years this has been used to characterize the structure 

and stability of bed texture (McKenna Neuman et al., 2012), but the recent 

development of new digital techniques for three-dimensional mapping such 

as the structure from motion principle (Westoby et al., 2012) may change 

this.  

 Nevertheless very useful information may also be acquired from using 

a much simpler laser-based method when combining a laser sheet with a 
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camera positioned with its axis at an angle to the plane of the laser. The 

camera may be placed vertically above the bed looking from an acute angle 

through a transparent wall of the wind tunnel or vice versa, depending on 

the actual laboratory conditions. When the bed is completely horizontal, the 

footprint of the laser is a straight line below the camera while positive or 

negative elevation deflects the laser light to one or the opposite side (Fig. 

15). When calibrated carefully, quite small changes in bed elevation may be 

observed by comparing images recorded before and after the change. 

Andreotti et al. (2006) used laser profiling to measure stages of aeolian 

ripple formation on a rather fine sand (Dp = 0.12 mm) in a 4.5-m-long wind 

tunnel (1 m wide, 0.5 m high), while a similar method has recently been 

used in the Aarhus wind tunnel to acquire some information on the long-

term variation of ripple geometry (Fig. 15).  

 

 

Fig. 15. Vertical profile view of a laser-trace on a sand bed (Dp = 0.18 mm) 

in the Aarhus wind tunnel. Upper: the flat bed at the start of the experiment; 

Lower: the same section when exposed to 30-min wind flow (u* = 0.49 

m/s). The laser is placed vertically above the bed with the sheet aligned 
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along the tunnel axis. The camera is placed in front of the tunnel so that the 

camera focuses on the laser trace at an angle of near 20° to the (horizontal) 

bed. Ripple amplitude is ~ 2.5 mm.  

 

 

4.4.1. Some observations of ripple spacing 

 

 Traditionally, a distinction is made between impact ripples (which 

form in fine unimodal sands and have spacing up to 0.2 m); and megaripples 

(which form in coarse bimodal sand and have larger spacing; Ellwood et al., 

1975), but in the following we shall consider impact ripples only.  

 A comprehensive study of ripple spacing (L) and height (h) was made 

in a 30-m-long wind tunnel at MIT (Walker, 1981) using sand samples of 

different size (Dp) and sorting. However, the following discussion will 

consider ripple spacing only. From Walker’s data for well-sorted samples, 

we have calculated dimensionless ripple spacing (L/Dp) and normalized 

friction velocity (u*/u*t) in the same manner as Andreotti et al. (2006). 

Because Walker (1981) did not systematically observe u*t, this has been 

estimated using data given by Iversen and White (1982). Obviously the 

estimated u*t  and u*-values are somewhat uncertain since for the 0.25 and 

0.78 mm size groups there is one observation of L for u*/u*t < 1. However, 

the influence of such error is a minor displacement of the data points in Fig. 

16 parallel to the x-axis that will not influence the general picture shown by 

Walker’s (1981) data. Ripple spacing increases moderately with u* from 
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threshold (u*t) to the critical value (u*fb) at which ripples disappear and a flat 

bed evolves (Fig. 16). Furthermore, L/Dp depends inversely on Dp — the 

finer the material the larger the spacing.  

 For the transition to the (upper) flat-bed regime, Walker observed a 

minimum of u*fb ≈ 0.6-0.7 m/s for Dp ≈ 0.3-0.4 mm; while for the finest size 

group he observed a substantial increase in u*fb to almost 1 m/s.  

 

 

 

Fig. 16. Ripple spacing versus friction velocity for uniform sand samples 

having different particle diameter Dp. Data for sizes 0.20, 0.25, 0.32, 0.40, 

0.78 mm are from Walker (1981); data for the 0.18 sample are recent 

measurements in the Aarhus wind tunnel; while the 0.12 mm data are from 

Andreotti et al. (2006).  
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The temporal evolution of the ripple pattern on a bed composed of fine sand 

(Dp = 0.12 mm) was also investigated by Andreotti et al. (2006). They 

identified three regimes (Fig. 17A): appearance of an initial wavelength, 

coarsening of the pattern, and finally after some time (typically 10 min) 

saturation of the ripples so that (statistically) ripples will essentially 

propagate without changing shape and amplitude anymore.  

 

 

 

 

Fig. 17. (A) Temporal development of the ripple pattern on a 1-m section (x-

axis) of a sand bed  (Dp = 0.12 mm). Time (y-axis) is given in minutes  

(Andreotti et al., 2006). (B) Temporal development of ripple wavelength on 
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a bed composed of quartz sand Dp = 0.180 mm. Time in minutes on x-axis 

and ripple wave length (spacing) on y-axis.  

 

 In the Aarhus wind tunnel the development of ripple wave length for a 

bed composed of 0.180 mm quartz sand was studied at three different 

friction velocities using an ~ 50-cm-long laser trace (Fig. 15B). Because of 

the relative short trace, spatial variation of the ripple pattern as it travels past 

the test section will inevitably result in some fluctuation in the observed 

wave length. Occasionally the merging of two ripples crests into one or the 

formation of a new ripple within the existing pattern will result in apparent 

fluctuation in the wavelength, which would have been less pronounced with 

a longer test trace. At the lowest friction velocity (0.29 m/s) it is possible 

that a final wave length has not been achieved after 60 min, whereas for the 

highest friction velocity (0.58 m/s) a steady state may be reached after only 

a little more than 10 min. For the intermediate friction velocity (u* = 0.42 

m/s) the steady state is reached after about 20 min. Apparently, L/Dp 

depends moderately on friction velocity as observed by Walker (1981) for 

the fine sample, although (as expected) values are slightly higher for the 

0.18-mm Aarhus sample than for Walker’s 0.20-mm sample. Similarly field 

observations made by Sharp (1963) and re-interpreted by Andreotti et al. 

(2006) showed a modest increase of L/Dp with u*/u*t. Contrary to this, the 

wind tunnel data presented for the 0.12-mm sand sample investigated by 

Andreotti et al. (2006) indicate a fairly strong linear increase with friction 

velocity (Fig. 16). Andreotti et al. (2006) used a wind tunnel with a 4-m-
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long test section, but whether this (at least partly) may explain some of the 

deviation from the other samples or whether this is entirely a result of the 

small Dp we are unable to explain. For completeness we should mention that 

data from the laboratory experiment made by Seppälä and Lindé (1978) 

have been excluded from the analysis above as their sand sample has a very 

broad size distribution.   

 

5. Planetary environment simulators  

 

5.1. Observations of aeolian sediment transport in the solar system  

 

 It is a challenge to apply conventional semiempirical models of 

aeolian transport (which have been developed specifically for terrestrial 

application) to other planetary environments such as Mars or Titan where 

most physical parameters are significantly different from those of Earth (i.e. 

density, viscosity, temperature, gravity, humidity, etc.). This challenge, 

however, may help to drive the development of new models that have a 

broader physical basis and may thereby also contribute to improving 

terrestrial transport theories. Four bodies in our solar system have a 

significant atmosphere and an accessible (erodible) surface which can then 

be susceptible to aeolian activity: Mars, Earth, Venus, and Saturn’s moon 

Titan (Bourke et al., 2010; Zimbelman et al., 2013; Lorenz and Zimbelman, 

2014).  
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5.2. Laboratory simulators 

 

 The aim of laboratory-based studies in planetology is to complement 

observational investigations by attempting to recreate 

extreme/extraterrestrial conditions in a controlled way in order to study 

phenomena in detail and to compare the findings with current models and/or 

to those seen in nature. A planetary (or environmental) simulator typically 

attempts to control one or more environmental parameter such as 

temperature, pressure/fluid density, or composition. In addition, the study of 

aeolian transport requires some form of wind tunnel where wind conditions 

can be recreated. 

 Environmental wind tunnels are rare, especially in the study of aeolian 

processes or granular transport. The NASA Ames MARSWIT (Mars 

Surface Wind Tunnel, CA, USA) is an open-circuit, low pressure wind 

tunnel that has been used to study sand transport at low pressure, 

specifically quantifying the threshold wind speed for saltation. In addition to 

this large facility, a much smaller (Venus) wind tunnel allows studies under 

high pressure conditions. The studies made in these facilities are the basis 

for the conventional wisdom regarding sand transport on Mars, Venus, and 

Titan.  

 The airflow in the MARSWIT facility is generated by a high pressure 

nozzle ejector system, the total length is 13 m with a main test section of 1.2 

by 0.9 m and is housed in a 4000-m
3
 low-pressure chamber, which can 

operate at pressures down to ~ 3.8 mbar and wind speeds of 20 - 180 m/s (at 
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low pressure) (White, 1981; Greeley and Iversen, 1985). Limitations of the 

system are that the wind speed is not independent of the chamber pressure 

and that low wind speeds at low pressure are problematic. Additionally this 

system is not able to control temperature and is not well suited to dust 

entrainment/transport study.  

 Environmental (cooled) wind tunnels have been used occasionally in 

studies of snow transport, often involving processes of electrification that 

are relevant to the generation of electrical thunderstorms and lightening 

(Maeno et al., 1985; Schmidt et al., 1999). In the case of the Aarhus 

environmental wind tunnel facilities, a fully hermetic, recirculating wind 

tunnel design has been adopted that allows for control of temperature, 

pressure, composition, and wind flow and allows for the study of suspended 

aerosol particles (e.g., dust) (Merrison et al., 2008; Holstein-Rathlou et al., 

2012). Because of geometrical constraints this requires compromises to be 

made with respect to flow speed and uniformity but has been extensively 

used for wind driven dust and for sand-transport studies. The wind tunnel 

simulator consists of an environmental (thermal-vacuum) chamber within 

which a recirculating wind tunnel is housed (Fig. 18). The wind is generated 

by a set of two fans that draw flow down the 2m×1m tunnel section and 

return it above and below. The test section can be fully removed for access.  

Wind speeds in the range of 1 to 25 m/s have been demonstrated under low 

pressure conditions. Cooling is achieved by a novel liquid nitrogen flow 

system that has achieved temperatures below -150ºC within the test section. 

The inner chamber is thermally isolated from the vacuum chamber. A 
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server-based control system provides control over wind flow, temperature, 

pressure, lighting, etc., but also acts as a data logger.  

 

 

 

  

 

Fig. 18. (A) Photograph of the AWTSII environmental chamber with 

modified flow-enhancement section with reduced cross section. (B) A 

schematic of the chamber construction.  

 

 Sensing is a vital part of achieving a controlled and reproducible 

environment as well as performing reliable experiments. Various sensor 
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systems are employed for wind flow, dust suspension (concentration), 

pressure, temperature, and humidity. Further details of the design and 

technology employed in this facility are presented elsewhere as well as 

discussion of previous research programs (Holstein-Rathlou et al., 2014). 

The most recent developments (modifications) and current/ongoing research 

however will be discussed here with emphasis on those relevant to 

aeolian/sediment transport.  

 

5.3 Settling and detachment studies 

 

The aerodynamic drag upon an aerosol particle is a fundamental parameter 

when studying the dynamic interaction of fluid and dust. This can be 

quantified by measuring the free fall settling velocity. The pioneering work 

of Millikan around the 1920s led to the conventional semi-empirical theory 

(Ishida, 1923). Unfortunately few experimental studies have been performed 

since this time and it has been demonstrated that for aerosols with extremely 

low Reynolds number or Knudsen numbers approaching or greater than 1 

the standard Cunningham correction (or Slip factor correction) is highly 

inaccurate and the three empirical parameters are not universal, for example 

dependent upon composition (Rader, 1990). There is therefore a need for a 

less empirical and more predictive theory to describe the behaviour of fine 

dust in the upper levels of planetary atmospheres i.e., low pressure (Zhigang 

and Wang, 2003).  
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 Given knowledge of the amount of turbulence in the atmosphere 

settling velocities can directly give information about the suspension time 

and size distribution as a function of height (and maximum height) for a 

particular aerosol component.  This has motivated an extensive series of 

experiments in which the settling velocities of size selected (0.25 – 40 µm) 

spherical silicate particles are measured as a function of pressure (1-30 

mbar) in different gases. Here small amounts (around 10mg) of the glass 

spheres are aerosolized (using an over pressure gas flow system) into the 

environmental chamber and the settling velocity of individual grains 

measured using a Laser Doppler Anemometer (Fig. 19).  

 

 

 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

Fig. 19. (A) Laser Doppler anemometer system illuminating aerosolized 

silica spheres inside the AWTSII environmental chamber. (B) A collected 

settling velocity measurement series.  

  

 This is the first stage in a research program in which the dynamics of 

suspended particle-gas interactions are to be quantified in detail. This work 

has direct relevance to the behaviour of aerosols in the atmospheres of a 

wide range of different planets and it complements similar work studying 

settling rates of larger (sand/pebble sized) grains in a vertical wind tunnel 

facility where the effects of morphology have been studied (Bagheri et al., 

2014). Here again the conventional theory appears incomplete and new 

approaches are suggested. Although there is now qualitative agreement in 

the entrainment process responsible for Aeolian dust transport on Mars 

details of the dust aggregate detachment, breakup and lifting still need to be 

studied as well as details of the entrainment rates and effects such as 

turbulence. Studies have begun within the Aarhus environmental wind 

tunnel specifically of the dependence on deposited dust depth (structure), 

dust type, turbulence and wind speed. This again has direct relevance to 

observation and modelling of dust transport on Mars as well as more 

generally for Aeolian planetary studies. Qualitative results already indicate 

that thin dust layers (of the order of 1 monolayer) require significantly 

higher wind shear stress for removal than thicker layers, supporting the 

dust-aggregate theorem.   
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 As discussed in section 2 the saltation threshold has been studied in 

the laboratory under both terrestrial and Martian conditions (Greeley and 

Iversen, 1985). In addition sand detachment studies have also been 

performed (Merrison et al., 2007). There are inconsistencies in the measured 

Aeolian detachment threshold (typically measured at lower density) and 

measurements of the saltation threshold under terrestrial conditions. 

Specifically for larger grains (> 100 µm) the expected linear dependence 

upon particle size seen for saltation becomes independent of size for 

detachment. It is unclear as to whether this inconsistency is due to a 

difference in the processes of saltation and detachment or a pressure related 

effect. An incidental observation here is that it is typical that sporadic 

transport of sand (creep, rolling, rocking) is observed below the threshold 

for saltation. 

 The detailed dynamics of saltation (hop length, height, trajectories, 

transport rates, etc.) have yet to be studied at low atmospheric density 

relevant to the Martian environment. Such studies have now been started in 

the Aarhus environmental wind tunnel with the use of a modified cross-

section reduction stage in which higher wind speeds (shear stress) can be 

achieved over a broad pressure range (10 – 1000 mbar).  

 

5.4. Planetary aeolian environments 

  

5.4.1. Venus  
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 Because of obscuring clouds little detailed/high resolution imaging of 

the surface of Venus exists apart from synthetic aperture radar (SAR) data. 

However, there is general agreement that the surface is made up of volcanic 

material following a resurfacing event that occurred around 500 My ago and 

that relatively fine granular material is present at the surface. Owing to low 

wind speeds, no intense aeolian activity seems to appear, despite the high 

fluid density at the surface. Only two relatively small regions show direct 

evidence of sand dune formation though in many areas there is evidence for 

wind streaks (Greeley et al., 1997).  

  

5.4.2. Titan  

 

 In many ways this moon is the most Earth-like planetary body, despite 

its cryogenically low surface temperature of around 90 K. Apparently Titan 

has active and widespread aeolian activity with extensive dune fields 

(Lorenz and Radebaugh, 2009). The sand here is assumed to consist of a 

mixture of water ice and organics. Titan has extensive lake and river 

systems that evaporate, form clouds, and generate precipitation (rain). The 

presence of flowing liquid and the associated erosion makes it similar to 

Earth; however, the liquid is mostly methane with impurities of ethane 

(Bourke et al., 2010; Lorenz and Zimbelman, 2014).  

 Although the dunes on Titan have been studied from orbit (Cassini 

mission), no laboratory experiments have attempted to recreate the dune-

forming process, and details of the saltation process are speculative. With 
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the combination of low gravity, high fluid density, low temperature, and 

exotic (low viscosity and low density) materials, the processes of aeolian 

transport on Titan would be extremely interesting and challenging to 

reproduce in the laboratory — firstly to better understand the sedimentary 

cycles on Titan and secondly to verify atmospheric circulation models.  

    

5.4.3. Mars  

 

 This planet has been studied (mapped) in great detail from orbit and 

with the use of landers/rovers, and abundant and extensive dune systems (of 

many varieties) similar in morphology/scale to terrestrial examples have 

been observed (e.g., Bridges et al., 2007; Sullivan et al., 2008). The dunes 

are typically seen to be inactive at present. However, recently rare and 

sporadic sand transport has been observed in so called dark dunes (Silvestro 

et al., 2010; Bridges et al., 2012b) 

 Unlike sand, the transport of dust is widespread, extensive, and 

seasonal on Mars. It is observed ubiquitously from the surface and from 

orbit. A detailed comparison of the transport of sand and dust on Mars and 

Earth will be made in section 5.5. 

 

5.4.4. Giant planets — e.g., Saturn, Jupiter, Neptune, Uranus  

 

These planets can be considered as having extremely deep atmospheres and 

with no accessible surface. Generally the atmospheric density (pressure) and 
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temperature increase with depth (below the exosphere) in a similar way to 

Earth and with increasing concentrations and differing types of aerosols 

(suspended particulates), such clouds thus obscure deep atmosphere 

observation. The study of aerosol transport (turbulent suspension and 

gravitational settling) as well processes of precipitation, evaporation, etc. are 

of direct relevance to the understanding of these planets. Therefore despite 

not having a solid surface some aspects of wind-driven sediment transport 

can be applied to these environments. 

 

5.5. Dust and sand transport on Mars  

 

 There are differences in the physical behaviour between sand and dust 

(silt) because the dominant forces are different. In the case of sand the 

effects of fluid drag are balanced predominantly by gravitational and inertial 

effects, whereas in the case of finer dust grains adhesive/cohesive forces 

become dominant. In the conventional model of aeolian entrainment, we 

would assume that (individual) dust grains are adhered strongly to the 

surface and that therefore are extremely difficult to remove by wind shear 

(Greeley and Iversen, 1985; Shao and Lu, 2000). Dust entrainment 

(terrestrially) is generally assumed to occur as a secondary process after the 

onset of saltation, in which case saltating sand grains through impact entrain 

dust grains (Greeley, 2002). On Mars however, dust entrainment is seen at 

wind speeds significantly below the threshold for sand entrainment 

(Holstein-Rathlou et al., 2010). Based on combined laboratory studies 
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(Merrison et al., 2007) and observations from Mars (Sullivan et al., 2008) it 

has been deduced that dust transport on Mars occurs through the formation 

of large (sand-sized, low density) dust aggregates/agglomerates that during 

the entrainment process breakup and liberate suspended dust particulates.   

 Two (independent) reliable wind speed data sets have been obtained 

from the surface of Mars. They agree reasonably well and give a reasonably 

reliable determination for the wind speed for which dust transport begins, 

i.e., around 15 m/s measured at around 1.5 m height (Holstein-Rathlou et 

al., 2010). Based on estimates of the surface roughness determination of the 

surface, shear stress could then be made giving a value of around 0.02 Pa. 

This agrees well with environmental wind tunnel measurements and the 

model for dust transport involving dust aggregate formation/breakup. It 

additionally agrees reasonably with values used in global circulation models 

(τth ~ 0.01 Pa) (e.g., Mulholland et al., 2013; Ayoub et al., 2014).  

 Two common types of dust entrainment phenomena exist: one is 

referred to as a local dust storm and is associated with localized high wind 

speeds typically associated with seasonal effects (Kahn et al., 1992). On a 

smaller scale, solar heating can generate ‘dust devils’, these are warm core 

vortices that again are associated with elevated wind speeds sufficient to 

entrain dust. Crude estimates of the contribution in terms of entrained dust 

mass have shown that comparable amounts of dust are suspended through 

both of these phenomena (Balme and Greeley, 2006). The magnitude of dust 

transport is of the order of 1 billion tons/y through the Martian atmosphere, 

which is comparable to dust transport on Earth (Moulin et al., 1997). 
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 In order to improve our understanding of Martian dust transport 

several crucial sets of data are required. Observationally there lacks direct 

measurement of suspended dust concentrations and size determination 

(Lemmon et al., 2004). Experimentally there lacks laboratory studies of dust 

removal rates and details of the entrainment process. Occasionally dust 

storms occur on a global scale and their occurrence and nature are as yet 

poorly understood (e.g., Arvidson et al., 1983; Greeley and Iversen, 1985; 

Kahn et al., 1992; Balme and Greeley, 2006; Bridges et al., 2007).  

 The highest measured wind gusts observed at the surface of Mars (of 

around 25 m/s) are within 20% of the expected threshold for sand grain 

entrainment based on wind tunnel simulations and detachment models 

(Arvidson et al., 1983; Merrison et al., 2007). This is supported 

observationally for example in basaltic sand ripples at Eagle Crater (see 

Yizhaq et al., 2014). The sustained and relatively intense transport of sand 

observed in the so-called dark dunes (thought to be basaltic sand) is 

however surprising and some theoretical/modelling groups have proposed 

different dynamics of the splash and height distribution for saltation on 

Mars as a result of combined effects of reduced gravity and fluid density 

(Almeida et al., 2008). This has yet to be supported by experiment or direct 

observation. The relatively dark tone is likely to be as a result of active 

saltation causing removal of the fine light-toned dust that otherwise covers 

the Martian surface materials. This fine reddish dust is likely to be an 

erosion product that has been mineralogically altered (oxidized) during 

saltation of sand (Merrison et al., 2010).  
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6. Discussion and conclusion  

 

From a certain threshold of shear stress at which grains start to move on a 

flat bed we observe the collective organization of grain movement and bed 

texture during which ripples evolve and after some time move downwind in 

a steady pattern. This is the condition of the splash regime where saturated 

saltation is (primarily) governed by the physics of the splash. Beyond a 

certain high shear stress, the bed becomes flat (upper flat bed regime). Here 

conditions are difficult to study and poorly understood and this regime is not 

considered in the present work. The splash regime is where the majority of 

laboratory investigations have been mad;, and yet due to different scaling 

between flow in existing laboratory facilities and in the atmospheric 

boundary layer, the dynamic range of laboratory flow is strongly limited so 

that full similarity between laboratory and Nature cannot be obtained and 

allow studies of (for instance) coherent flow features such as streamers 

(Bauer et al., 2013).  

 Even without saltation, the shallow equilibrium boundary layer in the 

laboratory complicates unbiased derivation of the bed shear stress (friction 

velocity) when this is made from the vertical gradient of the horizontal 

speed. Therefore sets of roughness arrays and turbulence spires — either in 

combination or separately — are now commonly used in wind tunnel 

studies. In this way it is attempted to match the boundary layer to the 

dynamics of the downstream granular bed (Iversen and Rasmussen, 1999; 
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McKenna Neuman, 2004; Kang et al., 2008; Ho et al., 2014). In some 

saltation studies performed in (low-height) wind tunnels, a correction for the 

horizontal pressure gradient seems useful for reducing bias in friction 

velocity (e.g., Rasmussen et al., 1996). Theoretical reasoning indicate that 

also in wind tunnels with a larger cross-sectional area such pressure-induced 

influences may seriously bias results if not taken into account, so this is an 

issue that deserves more clarification.  

 The wind tunnel investigations that have been considered in the 

present work may be divided into two major groups depending on the length 

of the granular bed used in the study. The one group comprises studies made 

on a downwind section of a long, granular bed extending throughout the 

working section (e.g., Bagnold, 1936; Shao and Raupach, 1992; McKenna 

Neuman and Nickling, 1994; Butterfield, 1999; Iversen and Rasmussen, 

1999; Bauer et al., 2004; Liu and Dong, 2004; Creyssels et al., 2009; Ho et 

al., 2014). These tunnels usually have a short section with boundary layer 

adaption over fixed roughness, before the transition to the granular bed. The 

other group of experiments use an entry section that after the boundary layer 

adaption may have a flat, smooth bed before a short, granular test patch. 

This patch is typically 1-4 m long, often covering only a limited part of the 

total working area in the tunnel (e.g., Liu and Dong, 2004; Dong et al., 

2006; Zhang et al., 2008 ).  

 The results from these two groups are difficult to compare 

quantitatively. A reliable bed shear stress can be estimated above the long 

granular bed with equilibrium saltation; but this is impossible for the short 
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beds where the abrupt roughness change at the upwind end of the granular 

patch results in transitional flow conditions (Brutsaert, 1982; White, 1991). 

Because a proper bed shear stress cannot be derived, a free stream velocity 

(U¥) is most frequently used to indicate the relative flow strength between 

different runs. However, a velocity for the threshold condition (U¥t) is 

seldom given. Therefore the ratio U¥/U¥t cannot be calculated and used as a 

proxy for the dimensionless friction velocity u*/u*t.  

 Observations from the two groups differ in several ways. Above the 

short patches concentration profiles decline more slowly with height than 

above the downstream end of the long granular beds. Within each group 

concentration profiles obtained for different wind strength show consistent 

behaviour (similarity). However, the grain velocity profiles are more 

diverse. Between 5 and 50 mm above the downstream bed of the short 

granular patches, the velocity increases more steeply with height than above 

the longer ones. Above 50 mm the relative difference between observations 

from the two groups is relatively small (< 20%). Because mass flux density 

is equivalent to the concentration at a given height multiplied by the grain 

velocity at the same height, the flux profiles are necessarily steeper above 

the short patches than above the long ones.  

 In studies in long wind tunnels saturated saltation in equilibrium with 

the wind tunnel flow requires an ~ 15-m-long fetch (Walker, 1981; Shao 

and Raupach, 1992). On the first 4-6 m of the granular bed, they observed a 

particularly strong overshoot of saltation transport. Careful design of the 

entry section may shorten this distance but not remove it totally. Therefore 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

we suggest that one consider the studies made on the short patches to 

represent transitional conditions at the upwind end of a granular surface 

where saltation builds up. The flux here is larger than downstream on an 

(infinitely) long granular bed; concentration profiles are steeper and 

trajectories reach greater height such that grains gain more horizontal 

momentum than in the equilibrium saltation farther downstream. Because 

observations are made within a transition zone, they may depend on the 

particular length of the upwind patch, but this has not been studied here. 

 Laboratory studies of the splash have for many years contributed to 

the understanding of the saltation process. The conversion of momentum 

from the horizontal to the vertical direction is fundamental in order to 

compensate for the frictional energy loss during the ascending phase of the 

jump. Expressed in terms of the (vertical) coefficient of restitution (ez) for 

an incoming particle, it is found to increase with decreasing impact angle 

and exhibits values > 1 for an impact angle smaller than 20°. Furthermore, 

when an incoming particle impacts the bed, it may not only rebound but also 

eject other particles that fly off in all directions with a speed that rarely 

exceeds 10% of the incident velocity. The experimental data indicate that 

the number of splashed particles at a given impact angle increases linearly 

with the impact speed above a threshold velocity ( ax » ), which 

constrains the splash process to be predominantly driven by the transport of 

momentum rather than energy. To this we add that grain transport and form 

drag from ripples extract momentum from the wind flow that results in an 

increase in roughness that is proportional to the excess Shields’ parameter 
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(or the square of the excess friction velocity). This ties the wind speed at the 

cm-scale, i.e., in the most intensive part of the saltation cloud to an almost 

fixed value in a focal region (Bagnold’s focal point).  

 The variation of grain speed with height, as recorded from 

experimental studies, is complex. However, for the data obtained above the 

long granular beds the observed grain speeds deviate only slightly from air 

speed such that as a first-order approximation it is reasonable to assume that 

grain speed is constant and constrained by the air speed in the focal region, 

i.e., almost invariant with shear stress. Consequently mass flux may be 

estimated by multiplying grain concentration with a typical grain speed. 

Hence contrary to the assumption made by Bagnold (1941) and Owen 

(1964) in their work, the laboratory studies made in long wind tunnels at 

low or moderate shear stresses indicate that flux must be approximately 

proportional to the Shields parameter or friction velocity squared and not 

cubed. Recent laboratory work (e.g., Beladjine et al., 2007; Ho et al., 2014), 

numerical modelling (Dúran et al., 2014) as well as a re-interpretation made 

by Dúran et al. (2011) of observations made by Iversen and Rasmussen 

(1999) gives broad experimental support for this relationship. As the 

saltation cloud may expand to higher elevation above the bed at increasing 

friction velocities, we expect that this could progressively change the 

exponent of Shields parameter toward 1.5. While traditionally many aeolian 

studies use friction velocity as a useful indicator in describing the dynamics, 

recent laboratory investigations point toward the Shields parameter as a 

more general tool that could also incorporate environmental parameters, 
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such as temperature (McKenna Neuman, 2004) and particle density (i.e., 

varying mineralogy). Theoretical reasoning indicate that scaling with 

 may account for the influence from grain size in, e.g., flux density 

(Dúran et al., 2011); but the experimental evidence for this seems limited at 

the present stage, and this is clearly a field for further investigation.   

 Besides the spatial transition discussed above, temporal transition on a 

granular bed may also influence results. Yet once transport begins limited 

information is available on the transitional behaviour of the saltating cloud, 

whereas the collective behaviour as expressed in the temporal development 

of ripple patterns has been investigated in several laboratory studies. Walker 

(1981) observed in the laboratory that for uniform samples that there is an 

intermediate particle size range (0.25-0.40 mm) for which the ripple spacing 

increase from 5-6 to 7-8 cm between the threshold of motion and the 

transition to the flat-bed regime. Corroborating field observations of this 

modest increase in spacing was made by Sharp (1963).  

 On a 0.12-mm bed, Andreotti et al. (2006) observed that after an 

initial coarsening of the pattern this tends to saturate at a finite wavelength 

that depends on friction velocity. Recent studies in the Aarhus wind tunnel 

indicate that for high shear stresses the time to saturation may be a few min. 

For low stresses it may take more than an hour. Actually Andreotti et al. 

(2006) specified this as a possible bias in their study. Ripple spacing is 

observed to increase as bed particles become finer (Fig. 16), but the 

observed influence from increasing u* is larger in the Andreotti et al. (2006) 

experiment than in any of the other studies. For beds composed of sand of 
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different diameter, Iversen and Rasmussen (1999) observed that interparticle 

forces resulted in a larger angle of repose for the small (0.125 mm) particles 

than for the larger particles. Clearly more work is needed to establish a firm 

knowledge of the behaviour of finer particles as compared to the 

intermediate size range of uniform sands.  

 The average saltation jump length that is observed on beds composed 

of uniform sands in the intermediate range is similar to the measured ripple 

length, and the laboratory observations are in excellent agreement with 

recent predictions based on a direct numerical simulation of grains acting 

with wind flow (Dúran et al., 2014). Their analysis indicates that ripple 

spacing is determined by resonant grain trajectories whose length is close to 

the ripple spacing. Saltation impact takes place in an interfacial layer above 

the static sand bed and the splash of the salting grains leads to a mass 

displacement toward ripple crests. According to Durán et al. (2014), the 

translation of the ripples may be taken as a proxy for mass transport.  

 

 

Fig. 20. The downstream displacement with time of two gold-coated quartz 

grains released at the upwind end of the Aarhus wind tunnel under a 
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constant friction velocity near 0.4 m/s. Grain no. 9 belongs to the fine 

fraction, while grain no. 6 belongs to the coarse fraction.  

 

Apart from bridging between experimental observations of ripple spacing 

and grain trajectories, the work by Dúran et al. (2014) also provides 

evidence for an interpretation of the ripple migration process, which was 

deduced from a saltation experiment made in the Aarhus wind tunnel 

(Barndorff-Nielsen et al., 1985). About 30 quartz grains with diameter 

between 0.28 and 0.48 mm were coated with gold, marked radioactively, 

and then one-by-one placed at the upwind end of the tunnel. From here the 

downstream displacement along the bed was followed with a Geiger 

counter. The movement of grains no. 6 and no. 9 represent some typical 

saltation characteristics (Fig. 20).  

 We interpret no. 9 as a typical saltating grain that makes long 

excursions composed of several or many jumps but occasionally coming to 

rest in a trough region downstream of a crest. When one or several ripples 

have moved past the grain it is reactivated and performs a new series of 

jumps. Not all ripples have the same amplitude, so occasionally the grain 

has to wait until one of the deeper troughs will expose it once more to 

impacting grains. Occasionally it makes short jumps and is buried at 

shallow depth among coarser grains on the stoss side of a ripple. Here it lies 

shielded for a time before being exposed once more to impact from saltating 

grains and reactivated. Contrary to this behaviour, the larger grain no. 6 

primarily moves in creep or short jumps (reptation, Anderson et al., 1991) 
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caused by impacts from saltating grains. Resting periods are generally short 

because it stays on the stoss side or crest region most of the time. However, 

after 8 min it is splashed into the trough in front of the ripple where it is 

buried for a considerable time before being exposed again and hit with 

enough momentum to continue its creeping motion. Finally after 13 min it 

comes to rest in a (deep) trough and stays at the same position during the 

remaining part of the 20-min run. All together we therefore conclude that 

the experimental data and the model predictions by Dúran et al. (2014) are 

in excellent agreement and both favour a concept of the ripples representing 

the active transport layer.  

 Electrification is seen as a dominant factor in the transport dynamics 

of dust, affecting the structure, adhesive properties, and 

detachment/entrainment mechanisms specifically through the formation of 

aggregates (Merrison et al., 2012). For sand, however, the degree of 

electrification and the electric fields typically generated (observed) in nature 

are not intense enough to significantly affect transport rates or thresholds 

(Rasmussen et al., 2009; Bo et al., 2013). This may not necessarily be the 

case for extraterrestrial environments. Clearly a large contribution to the 

present knowledge about aeolian processes on Earth comes from well-

designed laboratory work. Relatively precise predictions about the 

behaviour of mass transport by saltation can be made today although 

knowledge regarding, for instance, the influence of particle size — in 

particular the finest and coarsest fractions, still is lacking.  
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 In a Martian context the observed wind thresholds for dust and sand 

transport generally agree with those recreated in the laboratory and also 

predicted by theoretical models. However, the scientific community is still 

far from being able to describe saltation on Mars quantitatively, i.e., predict 

transport rates, ripple structure (lengths), splash, etc. (see Yizhaq et al., 

2014).  

 Some studies (e.g., Almeida et al., 2008) indicate that the saltation 

length (and therefore ripple length) on Mars is a factor of 10-100 times 

longer than that on Earth, also that they consist of significantly larger grain 

diameter (around 600 µm) and that this occurs at high wind speeds (of 2-41 

m/s). This however is not supported by observations from the surface of 

Mars, which show that active ripples on Mars have a wave length of 10 cm 

or less and consist of grains around 100-300 µm, i.e., similar to terrestrial 

ripples (Sullivan et al., 2008). Also the highest average wind speeds on 

Mars have been measured to be < 20 m/s, with even turbulent gusts not 

exceeding 25 m/s.  Although other larger scale sand bed formations are 

observed on Mars (classed as coarse-grained ripples or mega ripples), these 

are seen to be indurated (i.e., not active) and are thought to be formed by 

creep or may even be dunes (Bourke et al., 2010). Interestingly evidence is 

seen for occasional sand entrainment events to heights of > 0.66 m; 

however, similar effects are also observed on Earth for saltation on 

nonerodible beds (e.g., Bridges et al., 2012a; Ho et al., 2014). 

 In other modelling of saltation on Mars, Kok (2010) suggests that the 

dynamic threshold (for sustaining saltation) is as much as an order of 
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magnitude lower than the fluid threshold. Again, however, this does not 

seem to be consistent with observations from Mars where saltation is seen to 

be sporadic and infrequent (not self-sustaining once initiated). In 

conclusion, more work is clearly needed to resolve these inconsistencies, 

which should include not just observation and theory but also laboratory 

simulations.     

 Although saltation-induced abrasion has not been addressed in this 

work, this is a subject of some interest to the environment and one would 

expect there to be a relationship between saltation transport rate and 

abrasion rate. It is worth mentioning here that from recent progress in 

comparing various laboratory studies of abrasion it is becoming clear that 

impact velocity as well as transport rate may be a crucial parameter in the 

process of abrasion. Specifically three regimes appear to exist: for avalanche 

type processes where impact velocities are around 0.3 m/s abrasion appears 

to be negligible (de Vet, 2013); for impact velocities of around 1 m/s active 

abrasion occurs through chipping and the direct production of dust/silt 

(Merrison, 2012); and at higher impact velocities (around 10 m/s) fracturing 

and eventual sand grain disintegration dominates (e.g., Greeley and Iversen 

1985).   

 Finally we wish to draw attention to some important unanswered 

questions where laboratory work can have an important role to play. So far 

very little is known about the dynamics in unsaturated saltation where the 

dominant collision is between the saltating grains and a hard bed. Likewise 

knowledge of the influence from varying grain size (mixed or broad grain 
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size distributions) is only superficially understood. Armouring is an 

important element at some (low or moderate) fluid shear stresses, and 

segregation of grains during transport also influences saltation dynamics — 

not only during steady state conditions but also in the transitional stages 

when the saltation cloud develops from an initially quiescent bed. Scattered 

pieces of information have been collected, but we think that currently we are 

still some distance away from a general frame of reference.  

 In a planetary context there is a need to better understand how varying 

fundamental physical parameters such as fluid density, molecular viscosity, 

and gravity affect the transport of sediments (and the use of semiempirical 

models). Specifically, wind tunnel studies could contribute greatly in this 

regard (at present) by, for example, detailed studies of saltation and dust 

entrainment at different pressures, gas compositions, and material 

properties. Such activities are in their infancy. 
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Appendix A: Notation 

 A, B, C Constants 

 ALDA Cross sectional area of laser 

 b Constant  

 Dp Particle diameter 

 d Median particle diameter 

 d Boundary layer thickness  

 E Electric field strength 

 e Restitution coefficient 

 ez Vertical restitution coefficient 

 en Normal restitution coefficient  

 e0 Permittivity of free space 

 Fr Froude number 

 f Mass flux density 

 g Acceleration due to gravity 

 H Wind tunnel height  

 ks Equivalent grain roughness 

 k von Karman constant 

 L Wind tunnel length 

 LF Fetch distance 

 lc Decay-length for particle concentration 

 lf Decay-length for mass flux density 

 lsat Saturation length ‘ 
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 L Ripple spacing 

 l Saltation jump length 

 M0 Mass collected in first chamber of horizontal 

trap  

 n Rate of grains 

 nej Number (splashed particles)  

 Wp Particle volume 

 n Viscosity 

 n0 Particle concentration at bed 

 P Coles wake parameter 

 q Saturated flux of sediment (sand) 

 R* Roughness Reynolds number 

 r Grain radius 

 r,rp  Densities 

 S* Shields parameter 

 St Critical Shields parameter (dynamic threshold) 

 qi Impact angle 

 qr Mean rebound angle 

 t Shear stress 

 τth Threshold shear stress 

 tE Electric field stress 

 U¥  Free stream velocity (air) 

 U¥t Threshold free stream velocity  
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 u Velocity (air) 

 u* Friction velocity 

 u*fb Critical friction velocity for flat-bed transition 

 V
~

, 
xV

~
, zV

~
 Normalized velocities 

 Vi Impact velocity (particle) 

 Vr,I Vertical component of impacting speed 

 Vr,z Vertical component of rebounding speed 

 
xV  Average horizontal take-off velocity 

 W Wind tunnel width 

 z Elevation 

 z0 Aerodynamic roughness 

 xc Critical velocity  


