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Abstract 

This study evaluated the impact of inoculum source and anode surface modification 

(carboxylate -COO
-
 and sulphonamide -SO2NH2 groups) on the microbial composition 

of anode-respiring biofilms. These two factors have not previously been considered in 

detail. Three different inoculum sources were investigated, a dry aerobic soil, brackish 

estuarine mud and freshwater sediment. The biofilms were selected using a poised 

anode (-0.36 V vs Ag/AgCl) and acetate as the electron donor in a three-electrode 

configuration microbial fuel cell (MFC). Population profiling and cloning showed that 
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all biofilms selected were dominated by Geobacter sp., although their electrochemical 

properties varied depending on the source inoculum and electrode surface modification. 

These findings suggest that Geobacter sp. are widespread in soils, even those that do 

not provide a continuously anaerobic environment, and are better at growing in the 

MFC conditions than other bacteria.  

 

Keywords: microbial fuel cell; electroactive biofilm; soils; electrode surface; 

population profiling. 

 

1. Introduction 

Exoelectrogens are found in anaerobic sediments and soils where they have access to 

both reduced organic compounds, for use as electron donors, and insoluble inorganic 

electron acceptors including manganese and iron oxides (Lovley, 1993; Weber et al., 

2006). Many locations meet these requirements while varying in other environmental 

parameters. Previous work has confirmed the presence of exoelectrogenic bacteria in 

various different environments including freshwater sediments (Chae et al., 2009; 

Holmes et al., 2004), marine sediments (Bond et al., 2002; Tender et al., 2002), salt-

marshes (Holmes et al., 2004), anaerobic sludge from potato processing (Rabaey et al., 

2004), wastewater treatment plants (Kan et al., 2011; Lefebvre et al., 2010), and 

recently in mangrove swamp sediments (Salvin et al., 2012). Geobacteraceae are 

usually the predominant microorganisms colonizing the anodes introduced in such 

environments, with a higher abundance of Desulfuromonas species in marine and salt-

marsh sediments; while in freshwater sediments, Geobacter species are the most 

common Geobacteraceae (Holmes et al., 2004). Following the Baas-Becking 
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hypothesis (1934) that "Everything is everywhere, but the environment selects", we 

should expect to select for exoelectrogenic biofilms dominated by Geobacteraceae 

whatever the inoculum used. Indeed, Yates et al. (2012) showed that the predominance 

of Geobacter sp. in acetate-fed MFCs (Microbial Fuel Cells) was independent of the 

inoculum source, after testing three inocula (two wastewaters from different locations 

and an anaerobic bog sediment). However, other researchers found that the inoculum 

makes a difference in the selection of anode-respiring biofilm in MFCs (Miceli et al., 

2012). Miceli et al. (2012) tested thirteen samples from locations around the world and 

placed them in MFCs with electrodes poised at -0.30 V vs Ag/AgCl in acetate medium. 

Only 7 out of 13 samples produced sufficient current (>1.59 A/m
2
) after 21 days of 

selection. They found that bacteria related to the genus Geobacter dominated only two 

of the seven biofilm communities producing a high current; the other biofilm 

communities contained different known and/or novel exoelectrogenic bacteria (Miceli et 

al., 2012). Few studies have looked at the effect of inoculum source on the composition 

of exoelectrogenic biofilms selected in MFCs either with or without fixed anode 

potentials. To bring more consistency in the results, it is recommended to test inocula in 

MFCs held at the same fixed potential (e.g., -0.08 V vs SHE), as the anode potential is 

likely to influence the composition of the anodic biofilm (Commault et al., 2013). The 

inocula tested in previous studies are typically from rich, moist anaerobic environments 

likely to contain Geobacter sp. In this study three very different inocula are tested: a 

saline estuary mud; a freshwater sediment; and a dry, exposed, low fertility basalt/loess 

soil thought to be unlikely to contain Geobacter sp. Each inoculum was placed in an 

MFC with the anode held at -0.36 V vs Ag/AgCl (-0.08 V vs SHE) as an electron 

acceptor and provided acetate as an electron donor. The selected anodic biofilms were 
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compared for current production, biofilm/electrode interaction, and dominant microbial 

community composition.  

We also investigated the impact of electrode surface properties on the selection of 

electro-active biofilms in MFCs. The anode surface chemical and physical properties 

affect bacterial adhesion and electron transfer process between bacteria and electrodes 

(Guo et al., 2013). Modification of electrode surfaces aiming to improve the efficiency 

of MFCs has recently emerged as a new field of research (Kumar et al., 2013; Wei et 

al., 2011). Although some studies have proven that certain anode modifications lead to 

more efficient MFCs (Lapinsonniere et al., 2013; Picot et al., 2011), the influence of 

surface modifications for biofilm growth and maintenance is not well understood. In 

this study, the effect of two different chemical groups: negatively charged carboxylate 

group (-COO-) and sulfonamide group (-SO2NH2) neutral at physiological pH were 

tested on electro-active biofilms selected in MFCs using the same inoculum and same 

anode potential (-0.36 V vs Ag/AgCl). The sulfanilamides are characterized by their 

lipophilicity and their amine groups partly protonated at pH 7. Note however that the 

amine group is lost in the modification process so that the resulting modifier bears a 

neutral charge (phenylsulfonamide). The lipophilicity of sulfanilamides favours their 

interactions with the lipid bilayer of the bacterial cell membrane and the polymeric 

lipophilic compounds of EPS (extracellular polymeric substances). The presence of 

phenylsulfonamide at the electrode surface is therefore likely to encourage the 

attachment of bacteria via lipophilic attachment. The carboxylates (-COO
-
) are 

negatively charged at pH 7 (pKa(-COOH/-COO-) ~ 4), which could potentially repulse 

bacteria. The bacterial community composition of biofilms selected on modified 

electrodes was investigated along with their electrochemical properties. 
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This paper examines whether two independent factors, inoculum source and electrode 

surface modification, could alter the composition and electrochemical properties of 

anodic biofilms selected in MFCs. This question is of importance for the discovery of 

new anode-respiring bacteria and new metabolic pathways for higher current production 

in MFC. The two factors were tested independently starting with three different 

microbial inoculum sources.  

 

2. Methods 

2.1. Electrode modification procedures 

Carboxylate and sulfonamide groups were grafted onto graphite rod electrodes using the 

electrochemical reduction of aryl diazonium salts, as described by Picot et al. (2011). 

The process involved two steps, the formation of aryl diazonium salts from their 

corresponding amines followed by in-situ electro-reduction of the diazonium, by cyclic 

voltammetry with monitoring of the charge consumed in the process to control the 

amount of molecules grafted on the electrode (Picot et al., 2011). Diazonium salts were 

generated in situ in a total volume of 75 mL of acidic aqueous medium (0.1 M HCl) 

containing the starting aryl amine (4 mM of 4-aminobenzoic acid for -COO
-
 and 2 mM 

of 4-aminobenzenesulfonamide for -SO2NH2) and sparged with argon for 10 min to 

remove oxygen. Then sodium nitrite (NaNO2) was added at a final concentration of 

10 mM. The mix was kept on ice in the dark to stabilize the generated aryl diazonium 

salt. This solution served as the electrolyte for the modification of the previously 

sandpapered graphite electrode by electrochemical reduction of the diazonium salts 

using a potentiostat (model EA164 QuadStat). A three-electrode cell configuration was 

used with an Ag/AgCl, NaCl (3 M) reference electrode (0.28 V vs SHE, BASI 
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Electroanalytical Chemistry, MF-2052) and a second graphite electrode as the counter 

electrode, as described by Commault et al. (2013). Electrochemical reduction of the 

diazonium salts was achieved by recurrent cyclic voltammetry sweeps starting at zero-

current potential (around +0.2V vs Ag/AgCl) and decreasing to -0.2 V vs Ag/AgCl. 

Several scans at a rate of 0.05 V.s-1 were needed to reach a global charge density (Q) of 

15 - 20 mC.cm
-2

 (projected anode area of 5.81 cm
2
). To probe the effect of the 

modification on the electrode properties, cyclic voltammetry was performed at a scan 

range of -0.1 V to 0.4 V and a scan rate of 0.1 V.s
-1

 in a solution of potassium 

ferricyanide K3[Fe(CN)6]: 2 mM of ferricyanide, 0.1 M KCl and 10 mM of phosphate 

buffer pH 7. The voltammograms obtained were compared to an unmodified graphite 

electrode.  

2.2. Anode-respiring biofilm growth and selection 

All the anode-respiring biofilms presented in this paper were selected in 100 mL MFCs 

as previously described by Commault et al. (2013). The anode potentials were 

maintained at -0.36 V versus Ag/AgCl (i.e. -0.08 V vs SHE) using a three-electrode 

arrangement. The counter electrode (carbon cloth, Fuel Cell Earth LLC, Ma, USA) was 

separated from the anolyte by an Ultrex CMI-7000 cation-exchange membrane 

(Membranes International Inc., NJ, USA) in a chamber containing 0.1 M phosphate 

buffer (pH 7.5). The anode, a (modified or unmodified) graphite rod of 5.81 cm
2
, was 

maintained at a fixed potential by a 4-channel potentiostat (model EA164 QuadStat) 

connected to an e-corder 1621 unit (eDAQ Pty Ltd, NSW, AUS). The same inoculum 

was used for the experiment comparing the effects of two chemical groups grafted on 

anodes. The COO- and SO2NH2 MFCs were both inoculated with 50 mL of water-

saturated soil collected in Lincoln (Christchurch, NZ). For the experiment comparing 
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the effect of three different inocula on the growth and selection of anodic biofilms, 

50 mL of soils from diverse environments were added to three different MFCs with 

unmodified working electrodes. The inocula were referred to as (i) “Crater Rim” (CR) a 

dry soil collected on the hillside of a Banks Peninsula walking track (Canterbury, NZ); 

(ii) “Church Bay” (CB) a wet saline estuary mud (Canterbury, NZ); and (iii) “Halswell 

River” (R) a wet soil from the bed of a freshwater stream (Canterbury, NZ). Once 

inoculate, the 100 mL MFCs were filled with a minimal medium (pH 7.5) containing 

15 mM of acetate (composition described in Commault et al. (2013)) previously sparged 

with nitrogen (<10 ppm of O2) gas for 10 min. The biofilms were left to develop on the 

constant-voltage anodes for 29 days (66 days for “Crater Rim”) at room temperature 

(21°C) without mixing. The biofilms were fed 50 mL of fresh, nitrogen-sparged, acetate 

medium (15 mM acetate, pH 7.5) every two or three days in batch mode, corresponding 

to hydraulic retention times of 96 hours (4 days) and 145 hours (6 days) respectively. 

Current measurements were made every 10 min to follow the formation of anode-

respiring biofilms. The experiment comparing the different inocula was not replicated 

due to the limited number of channels of the potentiostat.  

2.3. Electrochemical analysis 

Prior to each electrochemical analysis, the totality of the used medium (100 mL) was 

replaced in each anode chamber with fresh acetate medium (15 mM) to ensure that the 

pH and the chemical oxygen demand were the same for all the MFCs. Power density 

curves were plotted 29 days after selection under acetate saturation using the 

potentiostat (model EA164 QuadStat) and a two-electrode cell configuration by 

coupling the reference electrode with the counter electrode and poising the anode versus 

the counter/reference electrode, as described by Picot et al. (2011). Ten different 
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voltages were applied for 300 s from open circuit potential to near short-circuit 

potential, while monitoring the steady state current. The internal resistance of system 

(Rint) is obtained at maximum power and was calculated using equation (1).  

  (1), with Pmax the maximum power and I the corresponding 

current.  

The electronic interactions at the interface of the biofilm/electrode were measured by 

cyclic voltammetry 29 days after selection (66 days for “Crater Rim”). Cyclic 

voltammetry was performed using a potentiostat (EC epsilon, BASi, IN, USA) at 

1 mV.s
-1

 in turnover conditions and at 25 mV.s
-1

 in non-turnover conditions at 

potentials ranging from -0.6 V to 0.1 V vs Ag/AgCl. The cyclic voltammogram of the 

electrolyte from the “Crater Rim” MFC was performed using a clean graphite rod 

electrode of 5.81 cm
2
 and the same parameters as in non-turnover conditions, after 

10 min of bubbling with nitrogen (<10 ppm of O2) gas. 

2.4. DNA extraction 

DNA was extracted at the end of the experiment using an UltraCleanTM Soil DNA 

Isolation kit (MO Bio Laboratories Inc., CA, USA). The extracted DNA was quantified 

by spectrophotometry (NanoDrop® ND-1000) and its quality examined by 

electrophoresis on 0.7% agarose gel. The DNA extracts were then stored at -20°C for 

further analyses. We used ARISA (automated ribosomal intergenic spacer analysis) for 

our analysis of bacterial communities because of the relative ease, cost-effectiveness 

and reproducibility of the method. ARISA is a fast method to visualize the taxon 

richness of a biofilm. In the case of biofilms with low taxon richness, cloning was 

performed to identify the species dominating the biofilms.  
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2.5. Population profiling: Automated Ribosomal Intergenic Spacer Analysis 

(ARISA) 

ARISA is a semi-quantitative molecular DNA fingerprinting technique targeting the 

intergenic region of bacterial 16S and 23S rRNA genes. As length of the intergenic 

region varies across taxa, these data can provide a profile of community structure within 

each sample. ARISA of bacterial DNA was performed as previously described by 

Commault et al. (2013). The results were visualised in GeneMapper software (version 

3.7, Applied Biosystems Ltd.) and processed in Excel. The similarities between the 

bacterial community data among samples were compared using a Bray Curtis similarity 

matrix (Legendre & Legendre, 1998) and visualised in the form of a cluster dendogram 

in PRIMER6 software (version 6.1.12, Primer-E Ltd., Plymouth, UK) (Commault et al., 

2013; Lear et al., 2008). 

2.6. Cloning and sequencing 

The 16S rRNA genes of the extracted DNA were amplified using the universal primers 

B342If (5’-CTA CGG GIG GCI GCA GT-3’) and U806Ir (5’-GGA CTA CCI GGG 

TIT CTA A-3’) (Hori et al., 2006), except for the “Crater Rim” sample where the 16S 

rRNA genes were amplified using the universal primers PB36 (5’-AGR GTT TGA 

TCM TGGCTC AG-3’) and PB38 (5’-GKT ACC TTG TTA CGA CTT-3’) (Lear et al., 

2009). The BIOTAQ™ PCR kit (Bioline), and the following PCR conditions were used: 

(i) 94°C for 3 min; (ii) 30 cycles of 94°C for 60 s, 50°C for 60 s, 72°C for 70 s, and then 

(iii) 72°C for 10 min. Once amplified, the 16S rRNA fragments were ligated into 

pCR2.1 vectors using a TA Cloning® Kit (Invitrogen, USA) and transformed into One 

Shot® 
E. coli TOP10F’ CaCl2 competent cells, according to the manufacturer’s protocol 

(Invitrogen, USA). Isolated clones were selected on Luria Bertani (LB) agar plates 
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containing 100 µg.mL
-1

 of ampicillin. The inserts of clones were sequenced on a 

3130XL Capillary Genetic Analyser (Applied Biosystems Ltd., Melbourne, Australia) 

in both reverse and forward directions using the plasmid specific primers M13f (5’-

CTG GCC GTC GTT TTA-3’) and M13r (5’-CAG GAA ACA GCT ATG AC-3’). The 

forward and reverse sequences were aligned and corrected with ChromasPro software 

(Technelysium Pty Ltd, Brisbane, Australia). The consensus sequences were compared 

with the nucleotide collection (nr/nt) of the National Center for Biotechnology 

Information (www.ncbi.nlm.nih.gov/BLAST/) using the megablast algorithm to 

confirm the likely identity of bacteria based on 16S rRNA gene sequence fragments. 

2.7. Statistical analysis 

Welch’s t-tests were calculated using the excel function ‘T.TEST’. Two-tailed t-tests 

were performed assuming unequal variance. At p < 0.05, we interpreted the data as 

being significantly different. 

 

3. Results and Discussion 

3.1. Effect of different inocula on the selection of Geobacter-dominated biofilms 

Three MFCs were set-up with unmodified electrodes and inoculated with three different 

soil samples. No current was observed immediately after inoculation (Figure 1) 

allowing time for the bacterial community to adapt to the MFC conditions. A positive 

(oxidation) current was first observed in the MFCs inoculated with “Church Bay” (CB) 

and “River” (R) soils approximately 14 days after inoculation, followed by “Crater 

Rim” (CR) MFC after 28 days. The “Church Bay” soil was collected in an estuary 

where the salinity was likely higher than the salinity of the growth medium, but it did 

not seem to impact the start-up time of the MFC compared to the freshwater inoculum. 
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The start-up time of “Crater Rim” MFC was twice as long as the start-up times of the 

MFCs inoculated with “River” or “Church Bay” soils. When Miceli et al. (2012) tried to 

select anode-respiring bacteria from thirteen diverse inocula around the world using a 

poised anode (−0.30 V vs Ag/AgCl) and acetate as the electron donor in a MFC, only 

half of them produced high current densities (>1.5 A/m2, anode) after 21 days of 

selection. They explained that their results might be due to factors such as the suitability 

of the media for the growth of the organisms present in the inocula, varying capacities 

for electrode respiration, or differing methods of biofilm formation between different 

organisms (Miceli et al., 2012). These factors could explain the longer start-up time of 

the “Crater Rim” communities too. The soil collected from the hillside of “Crater Rim” 

walking track was very dry compared to “Church Bay” and “River” soils, and was 

likely to contain mainly aerobic bacteria. Three potential reasons could explain the 

longer start up times seen with the “Crater Rim” inoculum: (i) there may be fewer 

bacteria capable of anode-respiration present in the inoculum, so it takes longer to 

multiply up to the numbers needed to produce a measurable current; (ii) the inoculum 

may contain less diversity amongst the anode-respiring bacteria than is present in the 

other inocula and therefore may lack species or strains well adapted for growing in the 

MFC conditions; (iii) “Crater Rim” bacteria may not have been exposed to anaerobic 

conditions for some time, and so it takes them longer to physiologically adapt to the 

anaerobic conditions or to form appropriate syntrophic associations that allow them to 

effectively colonize the electrode (physiological adaption). The results presented here, 

do not exclude any of these possibilities. It is plausible that the slow start-up of “Crater 

Rim” MFCs was due to a combination of all three reasons. 
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The current delivered by “Church Bay” and “River” MFCs was higher than 1.7 A.m
-2

 

towards the end of the experiment, while the maximal current density generated by 

“Crater Rim” MFC was only 0.13 A.m-2 after 60 days of growth. Surprisingly, the 

current density doubled to reach 0.25 A.m-2 when the biofilm was fed minimal medium 

without acetate after 66 days of operation (Figure 1). This is paradoxical as acetate was 

the only electron donor in the medium. It is possible that the high acetate concentration 

had an inhibitory effect on the electron transfer of the “Crater Rim” biofilm. Feeding the 

biofilm with acetate-depleted medium would have diluted the acetate left in the 

electrolyte to an optimal concentration for the biofilm. To have a better understanding 

of the mechanism of electron transfer in the “Crater Rim” biofilm, cyclic voltammetry 

and sequencing results were then considered.  

The turnover voltammograms of “Church Bay” and “River” biofilms, performed after 

29 days of enrichment, showed a sigmoidal catalytic wave characteristic of acetate 

oxidation by Geobacter sp. at the potential of outer membrane cytochromes with a 

midpoint potential around -0.4 V vs Ag/AgCl (Figure 2a,b). The “Church bay” and 

“River” voltammograms showed a complex pattern (Figure 2a,b), suggesting that two 

different pathways were involved in the electron transfer. At low potentials (between -

0.4 to -0.3 V vs Ag/AgCl) the electron transfer was favoured by one pathway, and was 

then shifted to another pathway at potentials higher than -0.3 V. This dynamic potential-

dependent change between two electron transport pathways was recently described by 

Yoho et al. (2014) in anode biofilm of Geobacter sulfurreducens. The “Crater Rim” 

biofilm had a distinct turnover voltammogram revealing the presence of a redox system 

with a reduction peak at -0.35 V and an oxidation peak at -0.05 V vs Ag/AgCl (E1/2 = -

0.15 V). The same redox system was observed on non-turnover voltammograms, as the 
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biofilm kept on producing the mediator even in the absence of acetate. This redox 

system was not detected in the electrolyte (Figure 2c) and can be assigned to either a 

redox active species produced by the “Crater Rim” biofilm or an outer membrane redox 

protein. In any case, this redox system does not seem to be involved in efficient direct 

or mediated electron transfer between the biofilm and the anode.  

The dominant 16S rRNA genes of the three MFC biofilms were sequenced at the end of 

the experiment to confirm the presence of Geobacter sp. within their bacterial 

communities. Of 12 clones isolated from “Church Bay” biofilm, 11 were most similar 

to Geobacter psychrophilus with 96% of identity (Figure 3). The same Geobacter 

species dominated the “River” biofilm as 8 clones out of 9 were similar at 96% to 

Geobacter psychrophilus (Figure 3). When aligned together, the 16S rRNA fragments 

of “Church Bay” and “River” biofilms most similar to Geobacter psychrophilus differed 

by one base at position 118 (Thymine for “River” and Adenine for “Church Bay”), 

suggesting that both biofilms may have been dominated by different isolates of 

Geobacter psychrophilus (initially present in the inoculum). This could explain the 

different voltammogram shapes of the two biofilms (Figure 2a,b). The biofilm 

enrichment with psychrophilic microorganisms might be a consequence of the inoculum 

and/or the enrichment temperature. G. psychrophilus was previously shown to dominate 

anodic communities in MFCs operating at about 20°C (Liu et al., 2012; Lu et al., 2011), 

while other species such as G. sulfurreducens may predominate at temperature higher 

than 30°C (Miceli et al., 2012; Yoho et al., 2014), that would not allow a psychrophilic 

organism to thrive. The selective temperature is therefore likely to affect the 

composition of the anodic communities.  
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The “Crater Rim” biofilm was also dominated by Geobacter sp. (10 clones out of 17). 

Among the Geobacter species identified, 6 were similar at 97% to Geobacter 

psychrophilus. The second group was similar at 99% to Desulfovibrio intestinalis (3 

clones out of 17). Clones most closely related to Proteiniphilum sp., Pseudomonas sp., 

Clostridium sp. and Alcaligenes sp. were each represented by a single DNA sequence 

(Figure 3). Amongst the species present (differing from Geobacter sp.), one or more 

may be responsible for the redox active species detected by cyclic voltammetry in 

Figure 2c.   

It is interesting that three very different environments from separate geographical 

localities: a wet saline environment by an estuary; a wet freshwater environment by a 

lowland river and dry soil on a hillside, provided exactly the same dominant species 

after MFC selection. It suggests that Geobacter psychrophilus is widespread in soils, 

even those that do not provide a continuously anaerobic environment, and is better at 

growing in MFCs in these conditions than other bacteria present. Therefore, G. 

psychrophilus is “everywhere”, as predicted by Baas-Becking (1934), but the 

environment does select where different strains will thrive. Even though the soil 

samples were collected in very different overall environments, each sample likely 

contained many micro-environments, many of which were identical. Consequently, they 

may be inhabited by the same bacteria. These results differed from Miceli et al. (2012) 

who found that bacteria related to the genus Geobacter dominated only two of the seven 

biofilms selected from diverse inocula and producing a high current on cylindrical 

graphite rods poised at -0.30 V vs Ag/AgCl. The voltammograms of the seven biofilms 

all showed sigmoidal waves, suggesting that direct electron-transfer mechanisms were 

involved. None of their seven biofilms showed mediated electron transfer as observed 
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for “Crater Rim” (Miceli et al., 2012), maybe because none were selected from an 

aerobic dry soil. The unique Geobacter-dominated community of “Crater Rim” biofilm 

suggests that the potential capacity for anode respiration is widespread even in 

environments that we might expect would be frequently exposed to oxygen. 

 

3.2 Effect of electrode surface modifications on the selection of Geobacter-

dominated biofilms 

Two MFCs were set-up per treatment using a three-electrode configuration with the 

modified working electrode (-COO
-
 or -SO2NH2) poised at -0.36 V against the Ag/AgCl 

reference electrode. The same inoculum, water-saturated soil, was used for all the MFCs 

and they produced a similar amount of current over the course of the selection phase. 

The biofilms growing on the SO2NH2 electrode had the fastest start-up time with a 

positive current after 2.8 ± 1.1 days, compared to 6.3 ± 1.3 days for the COO- biofilms. 

Although the SO2NH2 modification led to the fastest start-up time, it had the lowest 

maximum power output, while the biofilm attached to the COO-
 electrode delivered the 

highest power density (Figure 4). The MFCs with a modified electrode had a maximum 

power density higher than the one with an unmodified electrode.   

Modifying an electrode with SO2NH2 groups is likely to have a beneficial effect on the 

initial adhesion of bacteria to the electrode as the exoelectrogenic bacteria colonized the 

SO2NH2 electrode faster than the COO
-
 electrode according to their start-up times. The 

sulfonamides are known to have antibacterial properties when free in solution 

(Florestano & Bahler, 1952). Their activity depends on their lipophilicity, which 

determines their ability to get inside the bacterial cell, and their ionization at 

physiological pH. Once inside the cell, they act as competitive inhibitors of 
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dihydropteroate synthase (DHPS), an enzyme present exclusively in bacterial cells, 

resulting in the depletion of folic acid stores leading to failure of purine and thymine 

nucleotides biosynthesis and eventually inhibiting DNA synthesis (Valderas et al., 

2008). In this case, the sulfonamides groups did not have an antibacterial activity as 

they were grafted on the electrode surface. However, their lipophilicity may have 

accelerated the attachment of bacterial cells to the electrode by penetrating the bilayer 

structures of phospholipids of the outer-membrane. This would have resulted in the 

more rapid development of the anode-respiring biofilm and so the production of 

electricity, explaining the faster start-up time. However, the biofilms growing on 

SO2NH2 did not perform as well as the COO
-
 biofilms as shown by the lower power 

density (Figure 4). 

It was anticipated that the carboxylates groups would repulse negatively charged 

bacteria due to their negative charge at pH 7 and so slow down the start-up time or even 

the current production (Picot et al., 2011). The COO- MFCs had a start-up time twice as 

long as the SO2NH2 MFCs, but it showed the highest power density and the highest 

catalytic current (Figure 5), suggesting that the electron transfer from the biofilm to the 

electrode was very efficient. These results are at variance with those of Picot et al. 

(2011) who showed that a negatively charged electrode surface led to a drop of power 

densities compared to an unmodified electrode. However, bacteria poorly colonized 

their electrode modified with benzylcarboxylate groups. Picot et al. (2011) explained 

their results by an electrostatic repulsion between the electrode surface and negative 

charge of bacteria including Geobacter sp. Unlike Picot et al. (2011), Kuzume et al. 

(2013) found that carboxyl groups interact with the outermost cytochromes of 

Geobacter sulfurreducens, facilitating the heterogeneous electron transfer at the 
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microorganism/electrode interface. In this system, we noted that the COO
-
 fuel cell had 

the lowest internal resistance with 422 � against 463 � for the unmodified electrode 

and 495 � for the SO2NH2 MFC. This may be explained in part by the affinity of 

carboxylate groups with the outer-membrane cytochromes facilitating the electron 

transfer from the biofilm to the electrode. 

The turnover voltammograms performed after 29 days of selection showed a sigmoid 

catalytic wave for the two modified electrodes. This wave is characteristic of acetate 

oxidation via the catalytic action of the biofilm grown on the electrode surface 

(Figure 5). The COO
- 
anode had a significantly lower midpoint potential of acetate 

oxidation at -0.406 ± 0 V against -0.394 ± 0.001 V vs Ag/AgCl for the SO2NH2 

electrodes. This is consistent with a relatively faster electron transfer at the carboxylate 

modified electrode.  

ARISA was performed at the end of the experiment, after 29 days of incubation, to 

check if the different electrode surface modifications selected for different bacterial 

communities. The two biofilms were dominated by a small number of taxa, as shown by 

the small number of peaks on their ARISA electropherograms (Figure S1a,b). They 

both had similar dominant bacterial communities with the same four dominant peaks 

present in each of their ARISA profiles at 619 bp, 633 bp, 679 bp and 703 bp. Those 

peaks were previously observed in the ARISA profiles of Geobacter-dominated 

biofilms selected at -0.36 V vs Ag/AgCl (Commault et al., 2013). In spite of being 

selected on different electrode surfaces, the biofilms had similar dominant communities. 

The analysis of the ARISA profile data using the Bray Curtis similarity matrix revealed 

that while no large difference amongst the dominant taxa was observed in the two types 

of biofilms, there were nevertheless consistent differences in community structure 
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(Figure S1c). The Bray Curtis similarity matrix takes more base pairs into account than 

can be visually detected with an electropherogram, and showed that the biofilms from 

the same electrode modification were more similar to each other than to biofilms from 

the other modification. The results from the ARISA profiles and the similarity matrix 

suggested that there were small but consistent differences in the dominant communities 

of the COO
-
 and SO2NH2 biofilms.  

All 16S rRNA gene clones (13/13) of the biofilms selected on the SO2NH2 modified 

electrodes were identified as being similar at 96% to Geobacter psychrophilus. As the 

COO
- 
biofilms were dominated by bacterial OTU with the same ITS length as SO2NH2 

biofilms (Figure S1a), we assumed that COO
- 
biofilms were dominated by Geobacter 

psychrophilus too. 

We anticipated that changing the electrode surface properties could select for different 

bacterial communities. For instance, a negatively charged electrode surface at pH 7 

(e.g., -COO- modification) should electrostatically repulse bacteria and may result in 

different bacterial communities than neutral electrode surface modification (e.g., -

SO2NH2 modification). The electrode modifications did not influence the composition 

of the most dominant species in the selected biofilms, as their ARISA profiles were 

similar. However, consistent subtle changes in community composition were detected 

by Bray Curtis similarity analysis of ARISA profile data. These results are different 

from the results of Picot et al. (2011), who found using fluorescence in situ 

hybridization (FISH, probe Geo1A), that biofilms selected from domestic wastewater 

on anode modified with benzylcarboxylate groups (functional group -COO-) had less 

bacterial cells than biofilms selected on positively charged surfaces (modified with aryl 

diazonium salts or 4-benzyl triphenylphosphonium diazonium), and only few of them 
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belonged to the Geobacter subgroup (Picot et al. 2011). However, Guo et al. (2013) 

showed that differences in biofilm communities were attributed to differences in 

hydrophilicity or hydrophobicity of electrode surfaces more than to differences in the 

charge of the electrode modification groups. They showed that glassy carbon surfaces 

modified with -CH3, -OH, -SO3
-, or -N+(CH3)3 functional groups by electrochemical 

reduction of aryl diazonium salts all led to the selection of biofilms dominated by 

Geobacter sp., with the positively charged and hydrophilic surfaces being more 

selective to electro-active microbes. Their FISH results showed that at the electrode 

interface, the relative Geobacter abundance on the hydrophobic surface (-CH3) was 

only about half of that of the biofilms on hydrophilic surfaces (-N
+
(CH3)3, -OH, and -

SO3
−
). Hence, Guo et al. (2013) hypothesized that the surface hydrophobicity affects the 

initial attachment of Geobacter sp., and so the subsequent biofilm development. The 

two functional groups tested in the present study probably increased the hydrophilicity 

of the graphite electrode surface. The increase of hydrophilicity compared to the 

unmodified electrode, would have favoured the attachment of Geobacter sp.  

 

4. Conclusion 

The different inocula and electrode surface modifications tested all selected for 

Geobacter-dominated biofilms. However, there were major differences in the biofilm 

communities selected from the different inocula and small but consistent differences in 

the dominant communities of the COO
-
 and SO2NH2 biofilms. The two factors also 

affected the electrochemical properties of the biofilms. 

Because of the dominance of Geobacter sp. in electroactive biofilms, the use of 

different inocula or anode surface modifications is unlikely to lead to the discovery of 
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new anode-respiring bacteria, but it could shed light on new metabolic pathways for 

higher current production in MFC. 
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Figure Captions 

 

Figure 1. Current generated by the MFCs with different inocula over time. Dry soil 

from “Crater Rim” (CR, red cross), saline soil from “Church Bay” (CB, grey square) 

and wet soil from “Halswell River” (R, black triangles).  

Figure 2. Cyclic voltammograms of the biofilms selected from the three different 

inocula after 29 days of enrichment (66 days for “Crater Rim”). a. and b. Turnover 

voltammograms of “Church Bay” and “River biofilms”. c. Voltammograms of “Crater 

Rim” biofilm in turnover conditions (black lines), non-turnover conditions (grey line) 

and the electrolyte of “Crater Rim” MFC (black dashed line). The 3rd and 4th segments 

are shown on the graph. 

Figure 3. Microbial community distribution for anodic communities enriched from 

three different inocula: Church Bay (CB), River (R) and Crater Rim (CR). 

Figure 4. Power density curves for modified and unmodified anodes performed 29 days 

after inoculation. The power density curve of a 29 day-old “unmodified” anode grown 

in the same MFC configuration, at the same potential with the same inoculum is given 

for comparison (data from Commault et al. (2015)). This graph shows the data of one 

representative sample per treatment. 

Figure 5. Turnover voltammograms of an unmodified anode and the modified 

electrodes after 29 days of selection in MFCs. Data are an average of the 3rd and 4th 

segments of two replicates per treatment. The voltammogram of an “unmodified” anode 

grown in the same MFC configuration, at the same potential with the same inoculum is 

given for comparison (data from Commault et al. (2015)). 
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Highlights 

 
• Dry soil MFC had longest start-up time (28 d) and poor current output  

• COO
-
 anodes had longest start-up times (6.3 d) but highest power output (118 mW/m

2
) 

• All biofilms selected were dominated by Geobacter sp.  

• Geobacter sp. is widespread in soils, even those frequently exposed to oxygen 

• Geobacter is very much better at growing in MFC conditions than any other bacteria 

 
 


