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PCA‑based unsupervised feature 
extraction for gene expression 
analysis of COVID‑19 patients
Kota Fujisawa1*, Mamoru Shimo2, Y.‑H. Taguchi 3, Shinya Ikematsu4 & Ryota Miyata5*

Coronavirus disease 2019 (COVID‑19) is raging worldwide. This potentially fatal infectious disease is 
caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). However, the complete 
mechanism of COVID‑19 is not well understood. Therefore, we analyzed gene expression profiles of 
COVID‑19 patients to identify disease‑related genes through an innovative machine learning method 
that enables a data‑driven strategy for gene selection from a data set with a small number of samples 
and many candidates. Principal‑component‑analysis‑based unsupervised feature extraction (PCAUFE) 
was applied to the RNA expression profiles of 16 COVID‑19 patients and 18 healthy control subjects. 
The results identified 123 genes as critical for COVID‑19 progression from 60,683 candidate probes, 
including immune‑related genes. The 123 genes were enriched in binding sites for transcription 
factors NFKB1 and RELA, which are involved in various biological phenomena such as immune 
response and cell survival: the primary mediator of canonical nuclear factor‑kappa B (NF‑κB) activity 
is the heterodimer RelA‑p50. The genes were also enriched in histone modification H3K36me3, and 
they largely overlapped the target genes of NFKB1 and RELA. We found that the overlapping genes 
were downregulated in COVID‑19 patients. These results suggest that canonical NF‑κB activity was 
suppressed by H3K36me3 in COVID‑19 patient blood.

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). It was first identified in December 2019 in Wuhan, Hubei, China, and has resulted 
in an ongoing  pandemic1–3. COVID-19 is a potential zoonotic disease with a moderate mortality rate (2–5%) and 
is primarily transmitted through droplets and direct contact with infected individuals or incubation  carriers4. 
The large number of mild and asymptomatic cases is considered to be a feature of SARS-CoV-25–7. However, it 
can severely impact the lungs, and COVID-19 survivors can suffer long-term health effects. Although numerous 
studies on COVID-19 have been conducted, our understanding of it is still far from complete. Currently there are 
no clearly effective preventive or therapeutic remedies for COVID-19. Patients with COVID-19 have no choice 
but to receive supportive care to relieve  symptoms8. Therefore, it is imperative to elucidate the mechanism of 
COVID-19 and find an effective treatment method.

The “silver bullet” approach requires analyzing RNA-Seq data containing RNA extracted from samples. By 
comparing the gene expressions of COVID-19 patients with those of non-patients, we can obtain more informa-
tion about the infectious disease pathology. A data-driven approach using machine learning is an efficient strategy 
for predicting mechanisms that are difficult to elucidate through the application of conventional knowledge-based 
analysis in biology. Although it is not difficult to obtain various kinds of omics data for COVID-19, the data is 
difficult to analyze because they often include several tens of thousands of candidate genes and few samples.

Recently, an unsupervised feature extraction method based on principal component analysis (PCA) has been 
suggested for its utility in gene selection. This method, called  PCAUFE9–27, enables analysis of data sets with a 
small number of samples and many variables. The algorithm, which is based on linear algebra, is computation-
ally light and has been confirmed to work well for various gene selection problems. For example, an integrated 
analysis of the mRNA/miRNA expression associated with posttraumatic-stress-disorder- (PTSD-) mediated heart 
 disease17 and various  cancers12 identified a possible candidate gene associated with those diseases. More recently, 
an integrated gene expression analysis of blood from patients with dengue hemorrhagic fever by using PCAUFE 
identified 46 genes that are critical to the disease progression, whereas other methods of bioinformatic analysis 
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were unable to obtain such  results27. Furthermore, a theoretical justification for the PCAUFE methodology was 
already developed in previous studies (for more details,  see27).

In this paper, we identify genes associated with COVID-19 by applying PCAUFE to the RNA expression 
profiles of COVID-19 patients and healthy control subjects. Figure 1 shows an outline of our study. We confirm 
the reliability of the identified genes from the viewpoints of both biology and machine learning. Furthermore, we 
use bioinformatics tools to identify the transcription factors and histone modifications that regulate the selected 
genes in the upper layers. The novelty in this manuscript lies our findings that the application of PCAUFE to the 
gene expression profiles provided the smallest number of genes which are reasonable to explain the COVID-19 
development from both machine learning and biological perspectives by comparing to the other typical gene 
selection methods described in the following section.

Results
Application of PCAUFE to gene expression in COVID‑19 patients. This section describes how we 
used PCAUFE to analyze the gene expression patterns of multiple COVID-19 patients.

The first example (data set 1, GSE152418) was obtained by Arunachalam et al28. It includes five severity cat-
egories: ICU patients (IP), severe patients (SP), moderate patients (MP), convalescent patients (CP), and healthy 
controls (HC). By investigating the principal component (PC) loadings that statistically differentiated the group 
of IP + SP + MP (16 patients) from the group of CP + HC (18 non-patients), we found the second and third 
PCs (PC2 and PC3). The P values computed with a t-test rejected the null hypothesizes that the mean loadings 
within the group of IP+SP+MP and within the group of CP+HC were identical: 9.69 ×  10−5 for PC2 and 3.67 × 
 10−3 for PC3. Although the PC1 loadings were the significantly different between patients and non-patients, the 
P value (1.83 ×  10−2) was larger than those of PCs 2 and 3. As also shown in Fig. S1, the 2nd and 3rd PCs more 
clearly separated samples into patients and non-patients than the first one. This is the reason why we chose PCs 
2 and 3, but not 1. On this plane, we selected 141 probes embedded in the PC scores as outliers according to a 
χ2 test with the P values adjusted by the Benjamini and Hochberg (BH)  criterion29. Table 1 lists all 123 genes 
associated with the 141 probes.

To confirm that we successfully selected critical genes representing the relationship between samples, we built 
the model to predict the COVID-19 patients or not from only the 123 genes selected with PCAUFE. We used 
data set 2, which consisted of 100 COVID-19 patients and 26 non-COVID-19 ones, to calculate the area under 
the curve (AUC)30. We used logistic regression (LR)31, support vector machine (SVM)32,33, and random forest 
(RF)34 as classification models. Table S1 shows each hyperparameter of the three models. We performed 5-fold 
cross-validation by randomly shuffling the samples of data set 2 for the three classifiers. Figure 2(a) shows the 
receiver operating characteristic (ROC)  curves35,36 of each model. As shown in this figure, the average AUC for 
each model was derived to be above 0.9. From these results, we could use the 123 selected genes for the predic-
tion of the COVID-19 outcome.

Comparison with other gene selection methodologies. To confirm the robustness of our results, we 
performed gene selection with two other classical methods: significance analysis of microarrays (SAM)37 and 
linear models for microarray data (LIMMA)38. By applying both SAM and LIMMA to data set 1 (GSE152418), 
we identified genes associated with adjusted P-values below 0.01. We confirmed that the majority of the genes 
selected by PCAUFE were included among those selected by SAM and LIMMA. Every time SAM was applied, 
the selected genes changed. Thus, the results of SAM are not shown in this report. As for LIMMA, the selected 

Figure 1.  Outline of this study. First, we select genes related to the disease by using unsupervised machine 
learning; then, we enrich them by applying biological knowledge to identify the transcription factors and 
histone modifications of the selected genes.
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probes included all of the genes selected by PCAUFE. It was noteworthy that PCAUFE could limit the can-
didate genes to a much smaller number than the common gene expression analysis tools could; for example, 
18,458 probes were selected by LIMMA. By further limiting the 18,458 probes to almost the same number as 
in PCAUFE from the smallest adjusted P-values, we also performed the patient/non-patient classification from 
the genes selected by LIMMA using data set 2. The results using LR, SVM and RF are shown in Fig. 2(b). We 
confirmed that the classification performances of each model were comparable to those in PCAUFE.

To increase the robustness of our results, we also selected genes using some more recent R packages:  edgeR39 
and  DESeq240. As with SAM and LIMMA, by applying both edgeR and DESeq2 to data set 1, we identified genes 
associated with adjusted P-values below 0.01. The numbers of probes selected by edgeR and DESeq2 were 4452 
and 5696, respectively. Thus, these methods selected much more genes than PCAUFE. The genes selected by 
edgeR and DESeq2 contained the 59 and 64 genes selected by PCAUFE, respectively. The common genes selected 
among the three methods were 57. For further comparison with PCAUFE, we conducted the classification 
analysis to predict whether the sample was the COVID-19 patient or not based on the genes selected by edgeR 
and DEseq2. In the classification analysis, we limited the same number of probes selected by each of edgeR and 
DEseq2 with the smallest adjusted P-values as in PCAUFE (i.e., 141), since both methods selected too many 
genes to use them for explanatory variables of the prediction models (i.e., 4452 and 5696). The numbers of genes 
associated with those probes were 111 for edgeR and 113 for DEseq2, respectively. Figures 2(c) and (d) shows the 
ROC curves of the patient-prediction models using the limited probes. Their AUCs were approximately equal 
to those in PCAUFE. As described above, we found that a smaller number of genes selected by PCAUFE than 
the other methods were significant in predicting the COVID-19 patients or not.

As the last part of this subsection, we conducted a weighted gene co-expression network analysis (WGCNA). 
Following the analytic procedure used  in41  and42, we applied the WGCNA R  package43 to data set 1. We here 
selected power of β = 7 as the soft threshold for constructing a scale-free network (Supplementary Fig. S2(A)). We 
then obtained 99 modules in the co-expression network as shown in Supplementary Fig. S2(B). These modules 
included 18882 probes, which were much more than those selected by PCAUFE (i.e., 141). Moreover, almost 
half (i.e., 58) of the genes selected by PCAUFE were contained in those by WGCNA. For reference, the protein-
protein interaction (PPI) networks consisting of the genes that belonged to the top 3 modules with the smallest 
P values and the results of enrichment analyses for these genes are also shown in Supplementary Fig. S3 and 
Table S2, respectively.

As demonstrated above, we verified our approach, in which PCAUFE was adopted for gene selection, could 
narrow down the candidate genes more effectively than ordinary methods such as WGCNA, edgeR, and DEseq2.

Discussion
In this study, we first identified 123 genes related to COVID-19 patients using PCAUFE. We justified the use of 
the linear dimensional reduction method by the following supplementary analysis: To compare with PCAUFE, 
we also applied t- distributed stochastic neighborhood embedding (t-SNE)44 and uniform manifold approxi-
mation and projection (UMAP)45–47, two typical nonlinear dimension reduction methods, to dataset 1 for gene 

Table 1.  One hundred and twenty-three genes selected by PCAUFE. All of these genes were also selected by 
LIMMA.

ACTB ACTG1 ADRBK1 AHNAK ALAS2 ANXA1

ANXA2 APLP2 ARL4C B2M BTG1 BTG2

C1orf63 CCR7 CD14 CD163 CD69 CD74

CD83 CLU COX1 CTSB CTSS CXCR4

CYFIP2 DDX3X DDX5 DNAJB1 DUSP1 DUSP2

EEF1A1 EIF1 EIF4G2 ENO1 F13A1 FCN1

FLNA FOS FOSB FTL GAPDH GLUL

GPR183 GRN HBA1 HBA2 HBB HLA-B

HLA-DPA1 HLA-DRA HLA-DRB1 HLA-DRB5 HLA-E HMHA1

HSP90B1 HSPA5 HSPA8 IFI27 IFITM3 IGJ

IL10RA IL1B IRF1 ISG15 ITGA2B ITGB2

IVNS1ABP JAK1 JUNB JUND KLF2 KLF6

LCK LCP1 LOC100507709 LOC100507714 MAFB MCL1

MX1 NFKBIA NFKBIZ NR4A1 NR4A2 PIK3IP1

PKM2 PLBD1 PNRC1 PPBP PPP1R15A PSAP

PTGER4 PTPRC RGS2 RPL13 RPL3 RPS2

S100A12 S100A8 S100A9 SELL SERPINA1 SF3B1

SH3BGRL3 SLC2A3 SORL1 SPARC SRSF5 SRSF7

SUN2 TAGAP TLN1 TMEM66 TNFAIP3 TNFRSF1B

TSC22D3 TUBA1A TYMP UBC VCAN YPEL5

ZFP36 ZFP36L2 ZNF331
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selection. In the same manner with the PCAUFE algorithm, we tried to search the probes which passed the χ2 
test with the P value adjusted by the BH criterion. As shown in Fig. S4, however, we found no probes with the 
adjusted P values less than 0.01 on the planes. The first algorithm of PCAUFE searches for principal compo-
nents (i.e., axes) whose loadings statistically separate two groups such as patients and non-patients. Therefore, 
the outliers through the χ2 test in the second algorithm of PCAUFE could be regarded as the probes that were 
abnormally up-or down-regulated in some patients compared to non-patients. On the other hand, t-SNE and 
UMAP emphasize preserving the similarity of the probes as a distance when reducing a high-dimensional data 
set to two dimensions, the axes in the low-dimensional space do not always correspond to the two groups. Thus, 
it is not suitable for gene selection to naively use these nonlinear dimensional reduction methods because it does 
not mean that the probes located far from the origin in the low-dimensional space can serve as the biomarkers 
for the diagnosis of COVID-19.

Furthermore, it should be noted that the use of state-of-the-art deep learning techniques is not always suc-
cessful in the gene expression analysis of a new type of disease such as COVID-19: We also applied a recently 

Figure 2.  ROC curves of each classification model to predict COVID-19 patients or not based on the probes 
selected by (a) PCAUFE, (b) LIMMA, (c) edgeR, and (d) DESeq2, respectively. Note that since the number 
of probes respectively selected by LIMMA, edgeR, and DESeq2 were all above 4000, too much more than the 
samples, the probes with the smallest adjusted. P values were further restricted to be almost the same number 
as in PCAUFE, 141, for the explanatory variables. Using each classification model, we respectively performed 
fivefold cross-validation and reported the averages and standard deviations of the 5 runs.
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published method called single-cell Decomposition using Hierarchical Autoencoder (scDHA)48, that was 
described as reliably extracting representative information of each cell, to data set 1 for comparison to PCAUFE. 
Supplementary Figure S5 displays the scatter plot of samples of data set 1 in the dimension reduction space of 
scDHA. As shown in this figure, scDHA could not separate the COVID-19 patients from non-patients based on 
gene expression profiles of PBMCs at all. The reason is probably that this data set has too few samples and too 
many variables for training the autoencoder. PCAUFE is computationally less expensive than other methods 
because it only requires one application of PCA to a gene expression matrix in a peculiar way. Therefore, it has 
been successfully used to tackle a variety of gene selection problems (for detail, see e.g.,49). As described above, 
we consequently demonstrated the usefulness of this non-novel but powerful gene selection method for the 
data sets of gene expression profiles from COVID-19 patients and proposed a novel mechanism underlying the 
COVID-19 development.

We second implemented three independent models to classify COVID-19 patients and non-patients based 
on the 123 genes selected by PCAUFE: LR, SVM, and RF, and confirmed that all the models archived the high 
AUCs of over 90%. The reason why we did not use the state-of-art deep learning techniques for the classification 
model was that the sample size in the dataset used for the cross-validation (i.e., 126) was not large enough for 
the number of explanatory variables (i.e., 123). For example, it may be possible to build the classification model 
with deep learning by virtually increasing the number of samples as  in50. Liu et al.51 used convolutional neural 
networks (CNNs) to predict Alzheimer’s patients based on the fMRI images of their hippocampus, but we did 
not use them because the explanatory variables in our patient prediction model were gene expression levels, 
in which the similarities could not be assumed between elements close in location as in images. However, as 
mentioned above, the statistical relevance of the genes selected by PCAUFE is already guaranteed because we 
found the conventional machine learning models had sufficient prediction accuracies.

To show the further robustness of our results, we also perform gene selection using data set 2 and clustering 
analysis to validate the separability by the selected genes using data set 1. The numbers of genes selected from 
data set 2 by PCAUFE, LIMMA, edgeR, and DESeq2 were 145, 7360, 4809, and 5018, respectively. LIMMA, 
edgeR, and DESeq2 respectively included the 79, 82, and 82 of 145 genes selected by PCAUFE using data set 2. 
On the other hand, the number of genes overlapping between the 123 and 145 genes selected by PCAUFE was 
38. For the clustering analysis, we adopted an unsupervised learning model, UMAP, since data set 1 included 
only 34 samples, too few to train and test the supervised learning models using it. The results shown in Sup-
plementary Fig. S6 indicate that the genes selected by PCAUFE could classify the COVID-19 patients or not as 
well as LIMMA, edgeR, and DESeq2. In the end, we got similar results even if we switched the data sets for gene 
selection and patient/non-patient classification.

Because we successfully confirmed the robustness of our results, we next investigated the biological reliability 
of the 123 selected genes. First, we uploaded the 123 genes to three enrichment analysis servers,  GeneSetDB52, 
 Metascape53, and  TargetMine54, to compensate for the bias introduced by each individual enrichment. Multiple 
immune-related enrichments were detected. For example, Gene Ontology (GO) biological process (BP) terms 
GO:0019221 (cytokine-mediated signaling pathway), GO:0060333 (interferon-gamma-mediated signaling path-
way), and GO:0060337 (type I interferon-mediated signaling pathway) were identified by all three servers. GO 
cellular component (CC) term GO:0042613 (MHC class II protein complex) was identified by GeneSetDB and 
TargetMine. Reactome pathways R-HSA-877300 (interferon gamma signaling), R-HSA-6785807 (Interleukin-4 
and Interleukin-13 signaling), R-HSA-449147 (signaling by interleukins), and R-HSA-1280218 (adaptive immune 
system) were identified by Metascape and TargetMine (for more details, see supplemental S1_File).

Second, we confirmed biological validation of the identified genes by examining the interactions between 
them. Tight relationships between the genes would indicate that the gene selection was reliable, because single 
proteins rarely function without collaboration with other proteins. Thus, we uploaded the 123 genes to the 
STRING  server55, which detected 659 protein–protein interactions among the products of these genes. There-
fore, the 123 genes were also enriched for protein–protein interactions because of the functional collaborations 
between their products. These enrichment analyses suggested that PCAUFE could successfully identify a biologi-
cally feasible set of genes related to COVID-19.

To investigate the upstream transcription factors (TFs) that regulate the 123 genes selected by PCAUFE, we 
also uploaded them to  Enrichr56,57, a multi-functional enrichment analysis server. Among the results given by 
Enrichr, NFKB1 and RELA had smaller adjusted P-values for “TRRUST Transcription Factors 2019,” as shown in 
Fig. 3. We also noticed the three highest-ranked TF bindings for “ENCODE TF ChIP-seq 2015”: NELFE, RELA, 
and KAT2A (for more details, see Fig. S7 in the supplemental S2_File).

The 123 genes were also enriched for multiple histone modifications, and the results are listed in Table 2. 
Furthermore, as shown in Fig. 4, the genes associated with the histone modifications largely overlapped the TF 
target genes.

The nuclear factor-kappa B (NF-κB) TFs play an evolutionarily conserved and critical role in the triggering 
and coordination of both innate and adaptive immune  responses58. The NF-κB family of transcription factors 
consists of five members: p50, p52, p65 (RelA), c-Rel, and RelB, which are encoded by NFKB1, NFKB2, RELA, 
REL, and RELB,  respectively59. The primary mediator of canonical NF-κB activity is the heterodimer RelA-p50, 
which consists of the RelA transcriptional activator and the nfkb1 protein  p5060,61.

Nakshatri et al.62 suggested that NF-κB activity is suppressed by H3K36me3, which is consistent with the 
observed enrichment of NFKB1- and RELA-binding sites in these 123 genes. Many studies have also reported 
that the expression levels of genes associated with immune signaling are downregulated in naso/oropharyngeal 
swabs and peripheral blood mononuclear cells (PBMCs) in patients with COVID-19. Mick et al.63 showed 
that COVID-19 is characterized by a diminished innate immune response, with reduced expression of genes 
involved in toll-like receptor and interleukin signaling, chemokine binding, neutrophil degranulation, and inter-
actions with lymphoid cells, as compared to other viral acute respiratory illnesses. Meckiff et al.64 showed that 
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SARS-CoV-2-reactive  CD4+ T cells express significantly lower levels of immune-related transcripts as compared 
to influenza-reactive cells. Ouyang et al.65 reported that the genes that are underexpressed in severe cases mainly 
involve Th17-cell differentiation, cytokine-mediated signaling pathways, and T-cell activation. Li et al.66 reported 
that proteins mediating T-cell receptor signaling are downregulated in severe COVID-19 PBMCs.

To investigate the expression variation of the five overlapping genes in Fig. 4, we confirmed the PC2 and PC3 
scores for data set 1 via the scatter plot shown in Fig. 5. The probes that were negatively located for both PC2 
and PC3 were mainly upregulated for COVID-19. On the other hand, the probes that were positively located 
for both PCs were mainly downregulated for COVID-19. As shown by the red squares in Fig. 5, the overlapping 
genes in Fig. 4 were positively located for both PCs. Therefore, those overlapping genes were downregulated for 
COVID-19. These analysis results are consistent with the above  references62–66.

Figure 3.  Bar graph of TRRUST Transcription Factors 2019. The graph visualizes the top ten enriched 
transcription factors of the genes selected by PCAUFE. The bars are colored and sorted according to their 
P-values.

Table 2.  Enriched histone modifications detected by Enrichr (ENCODE Histone Modifications 2015) for the 
123 selected genes. Only those with adjusted P-values below 0.05 are listed here.

Rank Histone modification P value adjusted P value combined score

1 H3K36me3 Caco-2 hg19 1.93E−14 7.94 E−12 282.29

2 H3K36me3 kidney epithelial cell hg19 7.73 E−10 1.59 E−07 206.28

3 H3K36me3 bronchial epithelial cell hg19 1.26 E−09 1.73 E−07 65.42

4 H3K36me3 splenic B cell mm9 7.07 E−09 5.83 E−07 53.40

5 H3K36me3 thymus mm9 6.05 E−09 6.23 E−07 67.27

6 H3K36me3 spleen mm9 2.57 E−08 1.76 E−06 48.31

7 H3K36me3 GM06990 hg19 1.49 E−07 8.75 E−06 50.92

8 H3K36me3 BJ hg19 2.98 E−07 1.53 E−05 46.92

9 H3K36me3 kidney mm9 3.08 E−06 1.41 E−04 38.25

10 H3K36me3 SK-N-SH hg19 7.04 E−06 2.90 E−04 43.66

11 H4K20me1 skeletal muscle myoblast hg19 8.88 E−06 3.32 E−04 27.43

12 H3K36me3 myocyte mm9 1.56 E−05 5.36 E−04 68.63

13 H3K36me3 H7 hg19 1.76 E−05 5.57 E−04 25.97

14 H3K36me3 MCF-7 hg19 3.85 E−05 1.13 E−03 26.07

15 H3K36me3 C2C12 mm9 4.34 E−05 1.19 E−03 44.15

16 H3K36me3 small intestine mm9 1.77 E−04 4.56 E−03 18.26

17 H4K20me1 fibroblast of lung hg19 4.39 E−04 1.06 E−02 15.72

18 H3K36me3 cardiac mesoderm hg19 5.37 E−04 1.23 E−02 14.12

19 H3K36me3 CD14-positive monocyte hg19 1.04 E−03 2.14 E−02 13.41

20 H4K20me1 GM12878 hg19 1.04 E−03 2.25 E−02 13.41

21 H3K36me3 CH12.LX mm9 1.63 E−03 3.20 E−02 10.10

22 H4K20me1 keratinocyte hg19 2.34 E−03 4.19 E−02 11.33

23 H4K20me1 mammary epithelial cell hg19 2.34 E−03 4.38 E−02 11.33
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NF-κB is the subject of much active research among pharmaceutical companies as a target for anti-cancer 
 therapy67. Abnormal expressions of NFKB1 and RELA are mediated through mRNA  modifications68. The recent 
progress in N4- Acetylcytidine (N4A) on RNA expression is also playing key role on the cancer  development69. 
Duan J et al.70 reported that N4A, a nucleoside metabolite, activated microglia and sustained NLRP3 inflamma-
some activation by inducing HMGB1 signaling. Released HMGB1 through N4A activated NF-κB and induced 
NLRP3  expression70. NLRP3 inflammasome appropriately activated and enabled to release mature IL-1β71–73. 
IL-1β is an important mediator of the inflammatory response, and is involved in a variety of cellular activities, 
including cell proliferation, differentiation, and  apoptosis74,75.

Figure 4.  Venn diagrams of the enrichment of TF-binding sites and histone modifications for the 123 genes, 
as identified by Enrichr. The numbers in each diagram indicate the numbers of genes selected by PCAUFE 
and regulated by the TFs. Left: NFKB1, RELA (TRRUST Transcription Factors 2019), and H3K36me3_
GM06990_hg19 (ENCODE Histone Modifications 2015); right: NFKB1 (TRRUST Transcription Factors 2019), 
RELA_GM12892_hg19 (ENCODE TF ChIP-seq 2015), and H3K36me3_GM06990_hg19 (ENCODE Histone 
Modifications 2015).

Figure 5.  Scatter plot of the PC2 and PC3 scores for data set 1. The black crosses represent the probes selected 
by PCAUFE, while the gray crosses represent unselected probes. The red squares are associated with the five 
overlapping genes in Fig. 4.
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Although we identified the 123 genes and the upstream TFs related to COVID-19 by using PCAUFE and 
enrichment analyses, we have yet assessed whether these genes have the potential causal effects on the COVID-19 
development. Mendelian randomization (MR)76–80 approach has been widely used to investigate causality between 
genes and disease outcomes. For example, Zhang et al.79 investigated the causal relationships between PTSD 
and the depressive phenotypes using an MR approach. In another of their  studies80, The results of MR analysis 
indicate that genetic variation mediates the causal influences of neuroticism on mental health and cardiovascular 
diseases. This method uses genetic polymorphism information as an operating variable, but unfortunately, the 
data sets we used do not include that information. Moreover, polymorphisms may have several phenotypic effects 
associated with the disease. Thus, we leave the application of the MR approach to the gene expression profiles 
from COVID-19 patients as future work.

In conclusion, we selected 123 COVID-19-related genes by applying PCAUFE to the gene expression lev-
els of PBMCs from COVID-19 patients and healthy subjects. Then, by enrichment analysis, we identified the 
transcription factors and histone modifications that regulate the expression of these genes. Four transcription 
factors, NELFE, RELA, KAT2A and NFKB1, and a histone modification, H3K36me3, may be involved in the 
expression of the 123 genes. NFKB1, RELA, and H3K36me3 were found to overlap in the genes regulating expres-
sion. These two transcription factors are associated with NF-κB, and H3K36me3 may repress it. In fact, when 
we compared the expression levels of the genes duplicated in NFKB1, RELA, and H3K36me3 in GSE152418 
between the COVID-19 patients and healthy subjects, we observed a decrease in expression levels in the COVID-
19 patients. These results suggest that canonical NF-κB activity is suppressed by H3K36me3 in the PBMCs of 
COVID-19 patients.

Methods
Gene expression profiles. Two in vivo gene expression data sets,  GSE15241828 and  GSE15710381, were 
downloaded from Gene Expression  Omnibus82. Hereafter, we denote these as data sets 1 and 2, respectively. 
PCAUFE was applied to data set 1, which described the expression level of each kind of mRNA in each sub-
ject’s PBMCs. The number of probes was 60,683. Data set 2 was then used to confirm the statistical validity of 
the genes selected by PCAUFE. This data set also described the expression level of each gene in each subject’s 
PBMCs. The data included both COVID-19 patients and non-COVID-19 patients who suffered from acute 
respiratory distress syndrome (ARDS) that was not associated with SARS-CoV-2. The number of genes was 
19,472. The expression level of each gene i (= 1, 2,…, N) was standardized for PCAUFE, i.e., we set 1N

∑
i xij = 0 

and 1N
∑

i x
2
ij = 0 . For the details of the samples included in these gene expression profiles, see Table S3 in the 

supplemental S2_File.

PCAUFE. The following briefly explains the PCAUFE procedure used in this study (for more details, 
 see9,12,17,27,49). Let xi j be the expression of the i-th mRNA probe of the jth sample, and let 1N

∑
i xij = 0   and 

1

N

∑
i x

2
ij = 0 , where N is the number of m-RNA probes. First, we applied PCA to the dataset whose rows and 

columns were genes and samples, respectively. In contrast to the usual use of PCA, where samples are embedded, 
the genes were embedded in this implementation. By using a t-test, we specified two principal components (PCs) 
whose loadings statistically differentiated the patients from healthy control samples in order from the smallest 
P-value. Note that, unlike ordinary PCA, this operation does not guarantee that the first two PCs will be selected. 
Second, by using a χ2 test with the P values adjusted by the BH  criterion29, we identified outlier PC scores (i.e., 
genes associated with the adjusted P-values less than 0.01) along with the specified PCs as candidates for the 
disease-related genes. Note that the PC scores in PCAUFE were associated with features (i.e., mRNA probes), not 
with samples, in contrast to the ordinary usage of PCA.

Patient/non‑patient classification models. To verify the genes selected by PCAUFE were useful for 
the diagnosis of COVID-19 patients, we performed the patient/non- patient classification based on the selected 
genes using three standard prediction models: logistic regression  (LR31), support vector machine  (SVM32,33) and 
random forest  (RF34). For the details of each hyperparameter of the three models, see Supplementary Table S1. 
The objective variable was given the value 0 or 1 for each sample depending on a non-COVID-19 or a COVID-
19 patient, respectively. The explanatory variables were given the gene expressions of the probes associated with 
the genes selected by PCAUFE, edgeR, or DESeq2. We randomly allocated 80% of data set 2 to the training set 
and the remains to the test one. Receiver operating characteristic (ROC) curves of each model were drawn to 
calculate the area under the curves (AUCs).
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