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HAMILTON-JACOBI EQUATIONS FOR OPTIMAL CONTROL ON JUNCTIONS

AND NETWORKS ∗, ∗∗

Yves Achdou1, Salomé Oudet2 and Nicoletta Tchou3

Abstract. We consider continuous-state and continuous-time control problems where the admissible
trajectories of the system are constrained to remain on a network. A notion of viscosity solution of
Hamilton-Jacobi equations on the network has been proposed in earlier articles. Here, we propose a
simple proof of a comparison principle based on arguments from the theory of optimal control. We
also discuss stability of viscosity solutions.

Résumé. On considère des problèmes de contrôle optimal pour lesquels l’état est contraint à rester
sur un réseau. Une notion de solution de viscosité des équations de Hamilton-Jacobi associées a été
proposée dans des travaux antérieurs. Ici, on propose une preuve simple d’un principe de comparaison.
Cette preuve est basée sur des arguments de contrôle optimal. La stabilité des solutions de viscosité
est aussi étudiée.

1991 Mathematics Subject Classification. 34H05, 49J15.

The dates will be set by the publisher.

Introduction

A network (or a graph) is a set of items, referred to as vertices (or nodes/crosspoints), with connections
between them referred to as edges. In the recent years there has been an increasing interest in the investigation
of dynamical system and differential equation on networks, in particular in connection with problem of data
transmission and traffic management (see for example Garavello-Piccoli [12], Engel et al [9]). While control
problems with state constrained in closures of open sets are well studied ( [22, 23], [8], [16]) there is to our
knowledge much fewer literature on problems on networks. The results of Frankowska and Plaskacz [10, 11] do
apply to some closed sets with empty interior, but not to networks with crosspoints (except in very particular
cases).

The literature on continuous-state and continuous-time control on networks is recent: the first two articles
were published in 2012: control problems whose dynamics is constrained to a network and related Hamilton-
Jacobi equations were studied in [1]: a Hamilton-Jacobi equation on the network was proposed, with a definition
of viscosity solution, which reduces to the usual one if the network is a straight line (i.e. is composed of two
parallel edges sharing an endpoint) and if the dynamics and cost are continuous; while in the interior of an
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edge, one can test the equation with a smooth test-function, the main difficulties arise at the vertices where
the network does not have a regular differential structure. At a vertex, a notion of derivative similar to that of
Dini’s derivative (see for example [2]) was proposed: admissible test-functions are continuous functions whose
restriction to each edge is C1. With this definition, the intrinsic geodesic distance, fixed one argument, is an
admissible test-function with respect to the other argument. The Hamiltonian at a vertex depends on all direc-
tional derivatives in the directions of the edges containing the vertex, see § 2.3 below. Independently, Imbert,
Monneau and Zidani [14] proposed an equivalent notion of viscosity solution for studying a Hamilton-Jacobi
approach to junction problems and traffic flows. There is also the work by Schieborn and Camilli [21], in which
the authors focus on eikonal equations on networks and on a less general notion of viscosity solution.
Both [1] and [14] contain the first comparison and uniqueness results: in [1], suitably modified geodesic distances
are used in the doubling variables method for proving comparison theorems under rather strong continuity as-
sumptions. In [14], Imbert, Monneau and Zidani used a completely different argument based on the explicit
solution of a related optimal control problem, which could be obtained because it was assumed that the Hamil-
tonians associated with each edge did not depend on the state variable.
A general comparison result has finally been obtained in the quite recent paper by Imbert-Monneau [13]. In the
latter article, the Hamiltonians in the edges are completely independent from each other; the main assumption is
that the Hamiltonian in each edge, say Hi(x, p) for the edge indexed i, is bimonotone, i.e. non increasing (resp.
non decreasing) for p smaller (resp. larger) than a given threshold p0i (x). Of course, convex Hamiltonian coming
from optimal control theory are bimonotone. Moreover, [13] handles more general transmission conditions than
the previous articles, with an additional running cost at the junctions. In [13], the proof of the comparison result
is rather involved and only uses arguments from the theory of partial differential equations: in the most simple
case where all the Hamiltonians related to the edges are strictly convex and reach their minima at p = 0, the
idea consists of doubling the variables and using a suitable test-function; then, in the general case, perturbation
arguments are used for applying the results proved in the former case.
In coincidence with these research efforts about networks, Barles, Briani and Chasseigne, see [3, 4], have re-
cently studied control problems with discontinuous dynamics and costs, obtaining comparison results for some
Bellman equations arising in this context, with original and elegant arguments. Related problems were also
recently addressed by Rao, Siconolfi and Zidani [19,20].
The aim of the present paper is to focus on optimal control problems with independent dynamics and running
costs in the edges, and to show that the arguments in [3] can be adapted to yield a simple proof of a comparison
result.

Sections 1 to 4 are devoted to the case of a junction, i.e. a network with one vertex only. Section 1 contains
a description of the geometry and of the optimal control problem. In Section 2, a Hamilton-Jacobi equation is
proposed for the value function, together with a notion of viscosity solution. It is proved that the value function
is a viscosity solution of the Hamilton-Jacobi equation. Also in Section 2, Lemma 2.1 on the structure of the
Hamiltonian at the vertex will be important for obtaining the comparison principle. Some important properties
of viscosity sub and supersolutions are given in Section 3, and the comparison principle is proved in Section 4.
In §5 we discuss the stability of the viscosity sub and super solution under perturbations of the Hamiltonians.
In §6 we show that all the results can be easily extended to the case when there is an additional cost at the
junction. Finally, in Section 7, the results obtained for the junction are generalized for networks with more than
one vertices.

1. The junction

1.1. The geometry

Let us focus on the model case of a junction in Rd with N semi-infinite straight edges, N > 1. The edges are
denoted by (Ji)i=1,...,N . The edge Ji is the closed half-line R+ei. The vectors ei are two by two distinct unit
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vectors in Rd. The half-lines Ji are glued at the origin O to form the junction G:

G =

N⋃
i=1

Ji.

The geodetic distance d(x, y) between two points x, y of G is

d(x, y) =

{
|x− y| if x, y belong to the same edge Ji
|x|+ |y| if x, y belong to different branches Ji and Jj .

1.2. The optimal control problem

We consider infinite horizon optimal control problems which have different dynamics and running costs in
the edges. We are going to describe the assumptions on the dynamics and costs in each edge Ji. The sets of
controls are denoted by Ai and the system is driven by a dynamics fi and the running cost is given by `i. Our
main assumptions are as follows

: [H0] A is a metric space (one can take A = Rm). For i = 1, . . . , N , Ai is a non empty compact subset
of A and fi : Ji ×Ai → R is a continuous bounded function. The sets Ai are disjoint. Moreover, there
exists L > 0 such that for any i, x, y in Ji and a ∈ Ai,

|fi(x, a)− fi(y, a)| ≤ L|x− y|.

We will use the notation Fi(x) for the set {fi(x, a)ei, a ∈ Ai}.
: [H1] For i = 1, . . . , N , the function `i : Ji × Ai → R is a continuous and bounded function. There is a

modulus of continuity ωi such that for all x, y in Ji and for all a ∈ Ai, |`i(x, a)− `i(y, a)| ≤ ωi(|x− y|).
: [H2] For i = 1, . . . , N , x ∈ Ji, the non empty and closed set

FLi(x) ≡ {(fi(x, a)ei, `i(x, a)), a ∈ Ai}

is convex.
: [H3] There is a real number δ > 0 such that for any i = 1, . . . , N ,

[−δei, δei] ⊂ Fi(O).

Remark 1.1. In [H0] the assumption that the sets Ai are disjoint is not restrictive: it is made only for

simplifying the proof of Theorem 1.2 below. Indeed, if Ai are not disjoint, then we define Ãi = {i} × Ai and

f̃i(x, ã) = fi(x, a), ˜̀
i(x, ã) = `i(x, a) if x ∈ Ji and ã = (i, a) with a ∈ Ai.

The sets Ãi are disjoint compact subsets of Ã = ∪i=1,...,nÃi which is a (compact) metric space for the distance

d̃((i, a), (j, b)) = |i− j|+ dA(a, b), and the functions f̃i, ˜̀
i inherit the properties of fi and `i.

The assumption [H2] is not essential: it is made in order to avoid the use of relaxed controls.
Assumption [H3] is a strong controllability condition at the vertex (wich implies the coercivity of the Hamil-
tonian). It has already been widely used in the framework of networks (for instance, the same assumption is
made in [1,3], and the coercivity of the Hamiltonian is assumed [13]). We will see that [H3] yields the continuity
of the value function. Without any controllability condition, the value function may not be continuous and
the definition of the viscosity solutions should differ from the one proposed below. There are of course milder
controllabilty conditions, but with them, our techniques do not seem to apply in a straightforward manner.
Here is a general version of Filippov implicit function lemma, see [17], which will be useful to prove Theorem 1.2
below.
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Theorem 1.1. Let I be an interval of R and γ : I → Rd × Rd be a measurable function. Let K be a closed
subset of Rd × A and Ψ : K → Rd × Rd be continuous. Assume that γ(I) ⊂ Ψ(K), then there is a measurable
function Φ : I → K with

Ψ ◦ Φ(t) = γ(t) for a.a. t ∈ I.

Proof. See [17]. ut

Let us denote by M the set:

M =
{

(x, a); x ∈ G, a ∈ Ai if x ∈ Ji\{O}, and a ∈ ∪Ni=1Ai if x = O
}
. (1.1)

The set M is closed. We also define the function f on M by

∀(x, a) ∈M, f(x, a) =

{
fi(x, a)ei if x ∈ Ji\{O},
fi(O, a)ei if x = O and a ∈ Ai.

The function f is continuous on M because the sets Ai are disjoint. Let F̃ (x) be defined by

F̃ (x) =

{
Fi(x) if x belongs to the edge Ji\{O}
∪Ni=1Fi(O) if x = O.

For x ∈ G, the set of admissible trajectories starting from x is

Yx =

{
yx ∈ Lip(R+;G) :

∣∣∣∣ ẏx(t) ∈ F̃ (yx(t)), for a.a. t > 0,
yx(0) = x,

}
. (1.2)

Theorem 1.2. Assume [H0],[H1],[H2] and [H3]. Then

(1) For any x ∈ G, Yx is non empty.
(2) For any x ∈ G, for each trajectory yx in Yx, there exists a measurable function Φ : [0,+∞) → M ,

Φ(t) = (ϕ1(t), ϕ2(t)) with

(yx(t), ẏx(t)) = (ϕ1(t), f(ϕ1(t), ϕ2(t))), for a.e. t,

which means in particular that yx is a continuous representation of ϕ1

(3) Almost everywhere in [0,+∞),

ẏx(t) =

N∑
i=1

1{yx(t)∈Ji\{O}}fi(yx(t), ϕ2(t))ei.

(4) Almost everywhere on {t : yx(t) = O}, f(O,ϕ2(t)) = 0.

Proof. The proof of point 1 is easy, because 0 ∈ F̃ (O).
The proof of point 2 is a consequence of Theorem 1.1, with K = M , I = [0,+∞), γ(t) = (yx(t), ẏx(t)) and
Ψ(x, a) = (x, f(x, a)).
From point 2, we deduce that

ẏx(t) =

N∑
i=1

1{yx(t)∈Ji\{O}}fi(yx(t), ϕ2(t))ei + 1{yx(t)=O}}f(O,ϕ2(t)),

and from Stampacchia’s theorem, f(O,ϕ2(t)) = 0 almost everywhere in {t : yx(t) = O}. This yields points 3
and 4. ut
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It is worth noticing that in Theorem 1.2, a solution yx can be associated with several control laws ϕ2(·). We
introduce the set of admissible controlled trajectories starting from the initial datum x:

Tx =


(yx, α) ∈ L∞Loc(R+;M) : yx ∈ Lip(R+;G),

yx(t) = x+

∫ t

0

f(yx(s), α(s))ds in R+

 . (1.3)

Remark 1.2. If two different edges are aligned with each other, say the edges J1 and J2, many other assumptions
can be made on the dynamics and costs:

• a trivial case in which the assumptions [H1]-[H3] are satisfied is when the dynamics and costs are
continuous at the origin, i.e. A1 = A2; f1 and f2 are respectively the restrictions to J1×A1 and J2×A2

of a continuous and bounded function f1,2 defined in Re1×A1, which is Lipschitz continuous with respect
to the first variable; `1 and `2 are respectively the restrictions to J1 × A1 and J2 × A2 of a continuous
and bounded function `1,2 defined in Re1 ×A1.

• In this particular geometrical setting, one can allow some mixing (relaxation) at the vertex with several
possible rules: More precisely, in [3,4], Barles et al introduce several kinds of trajectories which stay at
the junction: the regular trajectories are obtained by mixing outgoing dynamics from J1 and J2, whereas
singular trajectories are obtained by mixing strictly ingoing dynamics from J1 and J2. Two different
value functions are obtained whether singular mixing is permitted or not.

The cost functional. The cost associated to the trajectory (yx, α) ∈ Tx is

J(x; (yx, α)) =

∫ ∞
0

`(yx(t), α(t))e−λtdt, (1.4)

where λ > 0 is a real number and the Lagrangian ` is defined on M by

∀(x, a) ∈M, `(x, a) =

{
`i(x, a) if x ∈ Ji\{O},
`i(O, a) if x = O and a ∈ Ai.

The value function. The value function of the infinite horizon optimal control problem is

v(x) = inf
(yx,α)∈Tx

J(x; (yx, α)). (1.5)

Proposition 1.1. Assume [H0],[H1],[H2] and [H3]. Then the value function v is bounded and continuous on
G.

Proof. The proof essentially uses Assumption [H3]. Since it is classical, we skip it. ut

2. The Hamilton-Jacobi equation

2.1. Test-functions

For the definition of viscosity solutions on the irregular set G, it is necessary to first define a class of the
admissible test-functions

Definition 2.1. A function ϕ : G → R is an admissible test-function if

• ϕ is continuous in G and C1 in G \ {O}
• for any j, j = 1, . . . , N , ϕ|Jj ∈ C1(Jj).

The set of admissible test-functions is noted R(G). If ϕ ∈ R(G) and ζ ∈ R, let Dϕ(x, ζei) be defined by

Dϕ(x, ζei) = ζ dϕdxi (x) if x ∈ Ji\{O} and Dϕ(O, ζei) = ζ limh→0+
dϕ
dxi

(hei).
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Property 2.1. If ϕ = g ◦ ψ with g ∈ C1 and ψ ∈ R(G), then ϕ ∈ R(G) and

Dϕ(O, ζ) = g′(ψ(O))Dψ(O, ζ).

2.2. Vector fields

For i = 1, . . . , N , we denote by F+
i (O) and FL+

i (O) the sets

F+
i (O) = Fi(O) ∩ R+ei, FL+

i (O) = FLi(O) ∩ (R+ei × R),

which are non empty thanks to assumption [H3]. Note that 0 ∈ ∩Ni=1Fi(O). From assumption [H2], these sets
are compact and convex. For x ∈ G, the sets F (x) and FL(x) are defined by

F (x) =

{
Fi(x) if x belongs to the edge Ji\{O}
∪i=1,...,NF

+
i (O) if x = O,

and

FL(x) =

{
FLi(x) if x belongs to the edge Ji\{O}
∪i=1,...,NFL+

i (O) if x = O.

2.3. Definition of viscosity solutions

We now introduce the definition of a viscosity solution of

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Du(x, ζ)− ξ} = 0 in G. (2.1)

Definition 2.2. • An upper semi-continuous function u : G → R is a subsolution of (2.1) in G if for any
x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local maximum point at x, then

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Dϕ(x, ζ)− ξ} ≤ 0; (2.2)

• A lower semi-continuous function u : G → R is a supersolution of (2.1) if for any x ∈ G, any ϕ ∈ R(G)
s.t. u− ϕ has a local minimum point at x, then

λu(x) + sup
(ζ,ξ)∈FL(x)

{−Dϕ(x, ζ)− ξ} ≥ 0; (2.3)

• A continuous function u : G → R is a viscosity solution of (2.1) in G if it is both a viscosity subsolution
and a viscosity supersolution of (2.1) in G.

Remark 2.1. At x ∈ Ji\{O}, the notion of sub, respectively super-solution in Definition 2.2 is equivalent to
the standard definition of viscosity sub, respectively super-solution of

λu(x) + sup
a∈Ai
{−fi(x, a) ·Du(x)− `i(x, a)} = 0.

2.4. Hamiltonians

We define the Hamiltonians Hi : Ji × R→ R by

Hi(x, p) = max
a∈Ai

(−pfi(x, a)− `i(x, a)) (2.4)
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and the Hamiltonian HO : RN → R by

HO(p1, . . . , pN ) = max
i=1,...,N

max
a∈Ai s.t. fi(O,a)≥0

(−pifi(O, a)− `i(O, a)). (2.5)

We also define what may be called the tangential Hamiltonian at O by

HT
O = − min

i=1,...,N
min

a∈Ai s.t. fi(O,a)=0
`i(O, a). (2.6)

Thanks to the definitions of FLi(x) (in particular of FL+
i (O)), the continuity properties of the data and the

compactness of Ai, one easily notes that the following definition is equivalent to Definition 2.2.

Definition 2.3. • An upper semi-continuous function u : G → R is a subsolution of (2.1) in G if for any
x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local maximum point at x, then

λu(x) +Hi(x,
dϕ
dxi

(x)) ≤ 0 if x ∈ Ji\{O},
λu(O) +HO( dϕdx1

(O), . . . , dϕ
dxN

(O)) ≤ 0.
(2.7)

• A lower semi-continuous function u : G → R is a supersolution of (2.1) if for any x ∈ G, any ϕ ∈ R(G)
s.t. u− ϕ has a local minimum point at x, then

λu(x) +Hi(x,
dϕ
dxi

(x)) ≥ 0 if x ∈ Ji\{O},
λu(O) +HO( dϕdx1

(O), . . . , dϕ
dxN

(O)) ≥ 0.
(2.8)

The Hamiltonian Hi are continuous with respect to x ∈ Ji, convex with respect to p. Moreover p 7→ Hi(O, p)
is coercive, i.e. lim|p|→+∞Hi(O, p) = +∞ from the controlability assumption [H3]. Following Imbert-Monneau

[13], we introduce the nonempty compact interval Pi0

Pi0 = {pi0 ∈ R s.t. Hi(O, p
i
0) = min

p∈R
Hi(O, p)}. (2.9)

Lemma 2.1. Assume [H0],[H1],[H2] and [H3], then

(1) pi0 ∈ Pi0 if and only if there exists a∗ ∈ Ai such that fi(O, a
∗) = 0 and Hi(O, p

i
0) = −pi0fi(O, a∗) −

`i(O, a
∗) = −`i(O, a∗)

(2)

min
p∈R

Hi(O, p) = − min
a∈Ai s.t. fi(O,a)=0

`i(O, a) (2.10)

(3) For all p ∈ R, if p ≥ pi0 for some pi0 ∈ Pi0 then

max
a∈Ai s.t. fi(O,a)≥0

(−pfi(O, a)− `i(O, a)) = min
q∈R

Hi(O, q) = − min
a∈Ai s.t. fi(O,a)=0

`i(O, a).

Proof. The Hamiltonian Hi reaches its minimum at pi0 if and only if 0 ∈ ∂Hi(O, p
i
0). The subdifferential of

Hi(O, ·) at pi0 is characterized by

∂Hi(O, p
i
0) = co{−fi(O, a); a ∈ Ai s.t. Hi(O, p

i
0) = −pi0fi(O, a)− `i(O, a)},

see [24]. But from [H2],

{(fi(O, a), `i(O, a)); a ∈ Ai s.t. Hi(O, p
i
0) = −pi0fi(O, a)− `i(O, a)}
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is compact and convex. Hence,

∂Hi(O, p
i
0) = {−fi(O, a); a ∈ Ai s.t. Hi(O, p

i
0) = −pi0fi(O, a)− `i(O, a)}.

Therefore, 0 ∈ ∂Hi(O, p
i
0) if and only if there exists a∗ ∈ Ai such that fi(O, a

∗) = 0 and Hi(O, p
i
0) = −`i(O, a∗).

We have proved point 1.
Point 2 is a direct consequence of point 1.
If p is greater than or equal to some pi0 ∈ Pi0, then

max
a∈Ai:fi(O,a)≥0

(−pfi(O, a)− `i(O, a)) ≤ max
a∈Ai:fi(O,a)≥0

(−pi0fi(O, a)− `i(O, a)) = Hi(O, p
i
0)

where the last identity comes from point 1.
On the other hand,

max
a∈Ai:fi(O,a)≥0

(−pfi(O, a)− `i(O, a)) ≥ − min
a∈Ai:fi(O,a)=0

`i(O, a).

Point 3 is obtained by combining the two previous observations and point 2. ut

Remark 2.2. It can also be proved that p ≤ max(q ∈ Pi0) if and only if

Hi(O, p) = max
a∈Ai:fi(O,a)≥0

(−pfi(O, a)− `i(O, a)).

In Figure 1, we give an example for the graphs of p 7→ Hi(O, p) and of p 7→ H+
i (O, p) ≡ maxa∈Ai:fi(O,a)≥0(−pfi(O, a)−

`i(O, a)), and the related interval Pi0.

0−2 2 4−3 −1 1 3 5
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15

Figure 1. The graphs of the Hamiltonian p 7→ Hi(O, p) (with the circles) and of p 7→
H+
i (O, p) ≡ maxa∈Ai:fi(O,a)≥0(−pfi(O, a) − `i(O, a)) (with the signs +). In the example,

Pi0 = [0, 2].

2.5. Existence

Theorem 2.1. Assume [H0],[H1],[H2] and [H3]. The value function v defined in (1.5) is a bounded viscosity
solution of (2.1) in G.

The proof of Theorem 2.1 is made in several steps, namely Proposition 2.1 and Lemmas 2.2 and 2.3 below:
the first step consists of proving that the value function is a viscosity solution of a Hamilton-Jacobi equation
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with a more general definition of the Hamiltonian: for that, we introduce larger relaxed vector fields: for x ∈ G,

f̃(x) =

η ∈ Rd :
∃(yx,n, αn)n∈N,
(yx,n, αn) ∈ Tx,
∃(tn)n∈N

s.t.
tn → 0+ and

lim
n→∞

1

tn

∫ tn

0

f(yx,n(t), αn(t))dt = η


and

f̃`(x) =(η, µ) ∈ Rd × R :
∃(yx,n, αn)n∈N,
(yx,n, αn) ∈ Tx,
∃(tn)n∈N

s.t.

∣∣∣∣∣∣∣∣∣∣
tn → 0+,

lim
n→∞

1

tn

∫ tn

0

f(yx,n(t), αn(t))dt = η,

lim
n→∞

1

tn

∫ tn

0

`(yx,n(t), αn(t))dt = µ

 .

Proposition 2.1. Assume [H0],[H1],[H2] and [H3]. The value function v defined in (1.5) is a viscosity solution
of

λu(x) + sup
(ζ,ξ)∈f̃`(x)

{−Du(x, ζ)− ξ} = 0 in G, (2.11)

where the definition of viscosity solution is exactly the same as Definition 2.2, replacing FL(x) with f̃`(x).

Proof. See [1]. ut

For all ϕ ∈ R(G), it is clear that if x ∈ Ji\{O}, then Hi(x,Dϕ) = sup(ζ,ξ)∈f̃`(x){−Dϕ(x, ζ)− ξ}. We are left

with comparing sup(ζ,ξ)∈FL(O){−Dϕ(O, ζ)− ξ} and sup(ζ,ξ)∈f̃`(O){−Dϕ(O, ζ)− ξ}. The two quantities are the

same. This is a consequence of the following lemma

Lemma 2.2.

f̃`(O) =
⋃

i=1,...,N

co

FL+
i (O) ∪

⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

) .

Proof. The proof being a bit long, we postpone it to the appendix. ut

Lemma 2.3. Assume [H0],[H1],[H2] and [H3]. For any function ϕ in R(G),

sup
(ζ,ξ)∈f̃`(O)

{−Dϕ(O, ζ)− ξ} = max
(ζ,ξ)∈FL(O)

{−Dϕ(O, ζ)− ξ}. (2.12)

Proof. It was proved in [1] that FL(O) ⊂ f̃`(O). Hence

max
(ζ,ξ)∈FL(O)

{−Dϕ(O, ζ)− ξ} ≤ sup
(ζ,ξ)∈f̃`(O)

{−Dϕ(O, ζ)− ξ}.

From the piecewise linearity of the function (ζ, µ) 7→ −Dϕ(O, ζ)− µ, we infer that

sup

(ζ,µ)∈co
{
FL+

i (O)∪
⋃
j 6=i

(
FLj(O)∩({0}×R)

)}(−Dϕ(O, ζ)− µ)

= max

(
max

(ζ,µ)∈FL+
i (O)

(−Dϕ(O, ζ)− µ),max
j 6=i

max
(0,µ)∈FLj(O)

−µ

)
≤ maxj=1,...,N max(ζ,µ)∈FL+

j (O)−Dϕ(O, ζ)− µ) = max(ζ,ξ)∈FL(O){−Dϕ(O, ζ)− ξ}.

We conclude by using Lemma 2.2. ut
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3. Properties of viscosity sub and supersolutions

In this part, we study sub and supersolutions of (2.1), transposing ideas coming from Barles-Briani-Chasseigne
[3, 4] to the present context.

Lemma 3.1. Assume [H0],[H1],[H2] and [H3]. Let R be a positive real number such that for all i = 1, . . . , N
and x ∈ B(O,R) ∩ Ji

[−δ
2
ei,

δ

2
ei] ⊂ Fi(x).

For any bounded viscosity subsolution u of (2.1), there exists a constant C∗ > 0 such that u is a viscosity
subsolution of

|Du(x)| ≤ C∗ in B(O,R) ∩ G,
i.e. for any x ∈ B(O,R) ∩ G and ϕ ∈ R(G) such that u− ϕ has a local maximum point at x,

| dϕ
dxi

(x)| ≤ C∗ if x ∈ B(O,R) ∩ Ji\{O} (3.1)

min
i

dϕ

dxi
(O) ≥ −C∗ if x = O. (3.2)

Proof. Let Mu (resp M`) be an upper bound on |u| (resp. `j for all j = 1, . . . , N). The viscosity inequality
(2.7) yields that

Hi(x,
dϕ

dxi
(x)) ≤ λMu if x ∈ B(O,R) ∩ Ji\{O}, (3.3)

HO(
dϕ

dx1
(O), . . . ,

dϕ

dxN
(O)) ≤ λMu if x = O. (3.4)

From the controlability in B(O,R)∩Ji, we see that Hi is coercive with respect to its second argument uniformly
in x ∈ B(O,R) ∩ Ji, and more precisely that Hi(x, p) ≥ δ

2 |p| −M`.

Thus, from (3.3), there exists a constant C∗ = 2λMu+M`

δ such that | dϕdxi (x)| ≤ C∗ if x ∈ B(O,R) ∩ Ji\{O}.
If x = O, we use the fact that H+

i (O, p) ≥ δ
2 max(0,−p) −M`. The viscosity inequality (3.4) then yields that

mini
dϕ
dxi

(O) ≥ −C∗. ut

Lemma 3.2. Assume [H0],[H1],[H2] and [H3]. There exists a neighborhood of O in G in which any bounded
viscosity subsolution u of (2.1) is Lipschitz continuous.

Proof. We adapt the proof of H.Ishii, see [15].
Take R as in Lemma 3.1, fix z ∈ B(O,R) ∩ G and set r = (R − |z|)/4. Fix any y ∈ G such that d(y, z) < r.
It can be checked that for any x ∈ G, if d(x, y) < 3r then d(x,O) < R. Choose a function f ∈ C1([0, 3r)) such
that f(t) = t in [0, 2r] and f ′(t) ≥ 1 for all t ∈ [0, 3r) and limt→3r f(t) = +∞. Fix any ε > 0. We are going to
show that

u(x) ≤ u(y) + (C∗ + ε)f(d(x, y)), ∀x ∈ G such that d(x, y) < 3r, (3.5)

where C∗ is the constant in Lemma 3.1.
Let us proceed by contradiction. Assume that (3.5) is not true. According to the properties of f , the function

x 7→ u(x)− u(y)− (C∗ + ε)f(d(x, y)) admits a maximum ξ ∈ B(y, 3r) ∩ G. However, from the fact (3.5) is not
true, we deduce that ξ 6= y. Hence, it is possible to modify the function ψ : G → R, x 7→ (C? + ε)f(d(x, y))
away from a neighborhood of ξ and obtain an admissible test function that we use in the viscosity inequality
satisfied by u; from (3.1) and (3.2) in Lemma 3.1 and from explicit calculatiobns concerning the derivatives of
d(x, y) at the point ξ, we obtain that

(C∗ + ε)f ′(d(ξ, y)) ≤ C∗,
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which leads to a contradiction.
If d(x, z) < r then d(x, y) < 2r and f(d(x, y)) = d(x, y). In this case, (3.5) yields that

u(x) ≤ u(y) + (C∗ + ε)d(x, y), ∀x, y ∈ G s.t d(x, z) < r, d(y, z) < r.

By symmetry, we get

|u(x)− u(y)| ≤ (C∗ + ε)d(x, y), ∀x, y ∈ G s.t d(x, z) < r, d(y, z) < r,

and by letting ε tend to zero:

|u(x)− u(y)| ≤ C∗d(x, y), ∀x, y ∈ G s.t d(x, z) < r, d(y, z) < r. (3.6)

Now, for two arbitrary points x, y in G∩B(O,R), we take r = 1
4 min(R−|x|, R−|y|) and choose a finite sequence

(zj)j=1,...,M ∈ G belonging to the segment [x, y] if x and y belong to some Ji or to [O, x]∪ [O, y] in the opposite

case, and such that z1 = x, zM = y and d(zi, zi+1) < r for all i = 1, . . . ,M − 1 and
∑M−1
i=1 d(zi, zi+1) = d(x, y).

From (3.6), we get that
|u(x)− u(y)| ≤ C∗d(x, y), ∀x, y ∈ G ∩B(O,R).

ut

Lemma 3.3. Assume [H0],[H1],[H2] and [H3]. Any bounded viscosity subsolution u of (2.1) is such that

λu(O) ≤ −HT
O . (3.7)

Proof. Since, from Lemma 3.2, u is Lipschitz continuous in a neighborhood of O, we know that there exists
a test-function ϕ in R(G) which touches u from above at O. Since u is a subsolution of (2.1), we see that

λu(O) +HO( dϕdx1
(O), . . . , dϕ

dxN
(O)) ≤ 0, which implies that λu(O) +HT

O ≤ 0. ut

Remark 3.1. It is interesting to note that in [3] and [4], a condition similar to (3.7) is introduced to characterize
a particular viscosity solution of the transmission problem studied there among all the possible solutions in the
sense of Ishii, (this condition is not satisfied by all subsolutions).
In the present context, the fact that (3.7) is automatically satisfied by subsolutions seems to be linked to the
richness of the space R(G): for any Lipschitz function u defined in a neighborhood of O, there exists ϕ ∈ R(G)
such that u− ϕ has a maximum at O.

The following lemma can be found in [3, 4] in a different context:

Lemma 3.4. Let v : G → R be a viscosity supersolution of (2.1) in G. Then if x ∈ Ji\{0}, we have for all
t > 0,

v(x) ≥ inf
αi(·),θi

(∫ t∧θi

0

`i(y
i
x(s), αi(s))e

−λsds+ v(yix(t ∧ θi))e−λ(t∧θi)
)
, (3.8)

where αi ∈ L∞(0,∞;Ai), yix is the solution of yix(t) = x+
(∫ t

0
fi(y

i
x(s), αi(s))ds

)
ei and θi is such that yix(θi) = 0

and θi lies in [τi, τ̄i], where τi is the exit time of yix from Ji\{O} and τ̄i is the exit time of yix from Ji.

Proof. See [3] for the detailed proof. We restrict ourselves to mentioning that the proof of (3.8) uses the results
of Blanc [6, 7] on the minimal supersolution of exit time control problems. ut

Remark 3.2. Note that comparison results of Barles-Perthame [5] imply the following suboptimality principle
for subsolutions that will not be needed in the sequel: let w be a continuous viscosity subsolution of (2.1) in G.
If x ∈ Ji\{0}, we have for all t > 0,

w(x) ≤ inf
αi(·)

sup
θi

(∫ t∧θi

0

`i(y
i
x(s), αi(s))e

−λsds+ w(yix(t ∧ θi))e−λ(t∧θi)
)
, (3.9)



12 TITLE WILL BE SET BY THE PUBLISHER

where αi ∈ L∞(0,∞;Ai), y
i
x is the solution of yix(t) = x+

(∫ t
0
fi(y

i
x(s), αi(s))ds

)
ei and θi is such that yix(θi) = 0

and θi lies in [τi, τ̄i], where τi is the exit time of yix from Ji\{O} and τ̄i is the exit time of yix from Ji.

The following theorem is reminiscent of Theorem 3.3 in [3]:

Theorem 3.1. Assume [H0],[H1],[H2] and [H3]. Let v : G → R be a viscosity supersolution of (2.1), bounded
from below by −c|x| − C for two positive numbers c and C. Either [A] or [B] below is true:

: [A] There exists a sequence (ηk)k∈N of positive real numbers such that limk→+∞ ηk = η > 0, an index
i ∈ {1, . . . , N} and a sequence xk ∈ Ji such that xk ∈ Ji \ {O} and limk→+∞ xk = O satisfying the
following: for any k ∈ N, there exists a control law αki such that the corresponding trajectory yxk remains
in Ji ∩B(O, r) in the time interval [0, ηk], i.e. yxk(s) ∈ Ji ∩B(O, r) for all s ∈ [0, ηk], and is such that

v(xk) ≥
∫ ηk

0

`i(yxk(s), αki (s))e−λsds+ v(yxk(η))e−ληk (3.10)

: [B]

λv(O) +HT
O ≥ 0. (3.11)

Proof. Let us assume that [B] does not hold.
For any i in {1, . . . , N}, take for example

qi = min
pi0∈Pi0

pi0,

and q = (q1, . . . , qN ). From Lemma 2.1,

HO(q) = HT
O . (3.12)

Consider the function

v(x)− qi|x|+
|x|2

ε2
if x ∈ Ji.

Standard arguments show that this function reaches its minimum near O and any sequence of such minimum
points xε converges to O and that v(xε) converges to v(O).

It is not possible that xε be O, because since v is a viscosity supersolution of (2.1), we would have that

λv(O) +HO(q) ≥ 0,

and therefore λv(O) +HT
O ≥ 0, which is a contradiction since [B] does not hold.

Therefore, there exists i ∈ {1, . . . , N} such that, up to the extraction of a subsequence, xε ∈ (Ji\{O})∩B(O, r2 ),
for all ε. We can therefore apply Lemma 3.4: for any t > 0,

v(xε) ≥ inf
αi(·),θi

(∫ t∧θi

0

`i(y
i
xε(s), αi(s))e

−λsds+ v(yixε(t ∧ θi))e
−λ(t∧θi)

)
, (3.13)

where yix is the solution of yix(t) = x+
(∫ t

0
fi(y

i
x(s), αi(s))ds

)
ei.

Take t = r
4Mf

for example. From [H0] and [H2], the minimum in (3.13) is reached for some αi,ε and θi,ε > 0,

see [3] :

v(xε) ≥
∫ t∧θi,ε

0

`i(y
i
xε(s), αi,ε(s))e

−λsds+ v(yixε(t ∧ θi,ε))e
−λ(1∧θi,ε). (3.14)

If there exists a subsequence (still called θi,ε) such that limε→0 θi,ε = θ > 0, then we obtain [A] with ηε = t∧θi,ε
and η = t ∧ θ. Note that since t = r

4Mf
and xε ∈ (Ji\{O}) ∩ B(O, r2 ), we deduce from Assumption [H0] that

yxε(s) ∈ Ji ∩B(O, r) for all s ∈ [0, ηε].
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Assume by contradiction that [A] does not hold: then, from the latter argument, limε→0 θi,ε = 0.

Since xε is a minimum of v(x)− qi|x|+ |x|2
ε2 , we deduce from (3.14) that

0 ≥
∫ θi,ε

0

`i(y
i
xε(s), αi,ε(s))e

−λsds+ v(yixε(θi,ε))(e
−λθi,ε − 1)− qi|xε|+

|xε|2

ε2
, (3.15)

and therefore

0 ≥
∫ θi,ε

0

`i(y
i
xε(s), αi,ε(s))e

−λsds+ v(yixε(θi,ε))(e
−λθi,ε − 1)− qi|xε|. (3.16)

We can write (3.16) as

0 ≤
∫ θi,ε

0

(
−`i(yixε(s), αi,ε(s))e

−λs − qifi(yixε(s), αi,ε(s))
)
ds− v(yixε(θi,ε))(e

−λθi,ε − 1). (3.17)

Dividing by θi,ε and letting ε tend to 0, we obtain that λv(O)+Hi(O, qi) ≥ 0. This implies that λv(O)+HT
O ≥ 0,

which is a contradiction since [B] does not hold. ut

Lemma 3.5. Assume [H0],[H1],[H2] and [H3]. Let r > 0 be given by Lemma 3.2: any bounded subsolution
of (2.1) is Lipschitz continuous in B(O, r) ∩ G. Consider i ∈ {1, · · · , N}, x ∈ (Ji \ {O}) ∩ B(O, r), αi ∈
L∞(0,∞;Ai). Let η > 0 be such that yx(t) = x +

(∫ t
0
fi(yx(s), αi(s))ds

)
ei belongs to Ji ∩ B(O, r) for any

t ∈ [0, η]. For any bounded viscosity subsolution v of (2.1),

v(x) ≤
∫ η

0

`i(yx(t), αi(t))e
−λtdt+ v(yx(η))e−λη. (3.18)

Proof. Since v is Lipschitz continuous in B(O, r) ∩ Ji, the function t 7→ v(yx(t))e−λt is Lipschitz continuous in
[0, η]. Let us define the sets KO = {t ∈ (0, η) : yx(t) = O} and Kc

O = [0, η]\KO. It is clear that KO is closed
and that Kc

O is an open subset of [0, η]. We first observe that, from Stampacchia’s theorem,∫ η

0

1KO (t)
d

dt

(
v(yx(t))e−λt)

)
dt = −λv(O)

∫ η

0

1KO (t)e−λtdt.

Therefore, we deduce from Lemma 3.3 that∫ η

0

1KO (t)
d

dt

(
v(yx(t))e−λt)

)
dt ≥ HT

O

∫ η

0

1KO (t)dt ≥ −
∫ η

0

`i(O,αi(t))1KO (t)dt = −
∫ η

0

`i(yx(t), αi(t))1KO (t)dt.

(3.19)
On the other hand, since Kc

O is an open subset of [0, η], there exists a countable family of disjoint intervals
(ωj)j∈J , ωj ⊂ [0, η] such that Kc

O =
⋃
j∈J ωj . Let aj < bj be the lower and upper endpoints of ω̄j . We can

assume that [aj , bj ] ∩ [ak, bk] = ∅ if j 6= k. From a classical suboptimality principle, see [2, Theorem III.2.33],
we see that for any j ∈ J ,

v(yx(bj))e
−λbj − v(yx(aj))e

−λaj ≥ −
∫ bj

aj

`i(yx(t), αi(t))e
−λtdt.

Noting that

v(yx(bj))e
−λbj − v(yx(aj))e

−λaj =

∫ η

0

d

dt

(
v(yx(t))e−λt

)
1(aj ,bj)(t)dt,



14 TITLE WILL BE SET BY THE PUBLISHER

and summing over j ∈ J , we obtain that∫ η

0

1Kc
O

(t)
d

dt

(
v(yx(t))e−λt)

)
dt ≥ −

∫ η

0

`i(yx(t), αi(t))1Kc
O

(t)dt. (3.20)

We get (3.18) by summing (3.19) and (3.20). ut

4. Comparison principle and Uniqueness

Theorem 4.1. Assume [H0],[H1],[H2] and [H3]. Let u : G → R be a bounded viscosity subsolution of (2.1),
and v : G → R be a bounded viscosity supersolution of (2.1). Then u ≤ v in G.

Proof. It is a simple matter to check that there exists a positive real number M such that the function
ψ(x) = −|x|2−M is a viscosity subsolution of (2.1). For 0 < µ < 1, µ close to 1, the function uµ = µu+(1−µ)ψ
is a viscosity subsolution of (2.1), which tends to −∞ as |x| tends to +∞. Let Mµ be the maximal value of
uµ − v which is reached at some point x̄µ.
We want to prove that Mµ ≤ 0.

(1) If x̄µ 6= O, then we introduce the function uµ(x)− v(x)− d2(x, x̄µ), which has a strict maximum at x̄µ,
and we double the variables, i.e. for 0 < ε� 1, we consider

uµ(x)− v(y)− d2(x, x̄µ)− d2(x, y)

ε2
.

Classical arguments then lead to the conclusion that uµ(x̄µ)− v(x̄µ) ≤ 0, thus Mµ ≤ 0.
(2) If x̄µ = O. We use Theorem 3.1; we have two possible cases:

: [B] λv(O) ≥ −HT
O .

From Lemma 3.3, λu(O) +HT
O ≤ 0. Therefore, we obtain that uµ(O) ≤ v(O), thus Mµ ≤ 0.

: [A] With the notations of Theorem 3.1, we have that

v(xk) ≥
∫ ηk

0

`i(yxk(s), αki (s))e−λsds+ v(yxk(ηk))e−ληk .

Moreover, since yxk(s) ∈ Ji ∩B(O, r) for all s ∈ [0, ηk], Lemma 3.5 can be applied and yields that

uµ(xk) ≤
∫ ηk

0

`i(yxk(s), αki (s))e−λsds+ uµ(yxk(ηk))e−ληk .

Therefore

uµ(xk)− v(xk) ≤ (uµ(yxk(ηk))− v(yxk(ηk)))e−ληk .

Letting k tend to +∞, we find that Mµ ≤Mµe
−λη, which implies that Mµ ≤ 0

We conclude by letting µ tend to 1. ut

Corollary 4.1. Assume [H0],[H1],[H2] and [H3]. The value function u of the optimal control problem (1.5) is
the unique bounded viscosity solution of (2.1).

5. Stability

We now study the stability of sub and super solutions with respect to the uniform convergence of the costs
and dynamics.
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5.1. Assumptions

We consider a family (indexed by ε ∈ [0, 1]) of optimal control problems on the network whose dynamics
and costs are denoted (fεi , `

ε
i ) for i = 1, . . . , N . As above, A is a metric space (one can take A = Rm) and

for i = 1, . . . , N , Ai are nonempty disjoint compact subsets of A. Hereafter, we suppose that the following
properties hold uniformly with respect to ε:

: [H0ε] The functions fεi : Ji×Ai → R are continuous and bounded uniformly w.r.t. ε ∈ [0, 1]; in particular,
there exists M > 0 such that |fεi (x, a)| ≤M for any ε ∈ [0, 1], i = 1, . . . , N , x ∈ Ji, a ∈ Ai . Moreover,
there exists L > 0 such that for any ε, i, x, y in Ji and a ∈ Ai,

|fεi (x, a)− fεi (y, a)| ≤ L|x− y|.

We will use the notation F εi (x) for the set {fεi (x, a)ei, a ∈ Ai}.
: [H1ε] For i = 1, . . . , N , the functions `εi : Ji × Ai → R are continuous and bounded uniformly w.r.t.
ε ∈ [0, 1]; we may assume that |`εi (x, a)| ≤ M for any ε ∈ [0, 1], i = 1, . . . , N , x ∈ Ji, a ∈ Ai with the
same constant M as above. There is a modulus of continuity ωi such that for all ε ∈ [0, 1], x, y in Ji
and a ∈ Ai, |`εi (x, a)− `εi (y, a)| ≤ ωi(|x− y|).

: [H2ε] For i = 1, . . . , N , x ∈ Ji, the non empty and closed set

FLεi (x) ≡ {(fεi (x, a)ei, `
ε
i (x, a)), a ∈ Ai}

is convex.
: [H3ε] There is a real number δ > 0 such that for any ε ∈ [0, 1], i = 1, . . . , N ,

[−δei, δei] ⊂ F εi (O).

We also assume the local uniform convergence of fεi to f0i and `εi to `0i as ε→ 0: for all i = 1, . . . , N and R > 0,

: [H4ε]
lim
ε→0

max
x∈B(O,R),a∈Ai

|fεi (x, a)− f0i (x, a)| = 0.

: [H5ε]
lim
ε→0

max
x∈B(O,R),a∈Ai

|`εi (x, a)− `0i (x, a)| = 0.

5.2. Convergence of the Hamiltonian at the vertex as ε→ 0

Lemma 5.1. For ε fixed in [0, 1] and i ∈ {1, . . . , N}, let a∗ ∈ Ai be such that fεi (O, a∗) ≥ 0. There exists a
sequence a∗n ∈ Ai such that

fεi (O, a∗n) ≥ δ

n
> 0, (5.1)

|fεi (O, a∗n)− fεi (O, a∗)| ≤ 2M

n
, (5.2)

|`εi (O, a∗n)− `εi (O, a∗)| ≤
2M

n
. (5.3)

Proof. From [H3ε] there exists aδ ∈ Ai such that fεi (O, aδ) = δ. From [H2ε],

λ(fεi (O, aδ), `
ε
i (O, aδ)) + (1− λ)(fεi (O, a∗), `εi (O, a

∗)) ∈ FLεi (O)

for any λ ∈ [0, 1]. In particular, for λ = 1
n , there exists a∗n ∈ Ai such that

1

n
(fεi (O, aδ), `

ε
i (O, aδ)) + (1− 1

n
)(fεi (O, a∗), `εi (O, a

∗)) = (fεi (O, a∗n), `εi (O, a
∗
n))



16 TITLE WILL BE SET BY THE PUBLISHER

which yields (5.1). The statements (5.2) (5.3) follow from [H0ε] and [H1ε]. ut

Corollary 5.1. For any ε ∈ [0, 1], i ∈ {1, . . . , N} and pi ∈ R,

max
a∈Ai s.t. fεi (O,a)≥0

(−pifεi (O, a)− `εi (O, a)) = sup
a∈Ai s.t. fεi (O,a)>0

(−pifεi (O, a)− `εi (O, a)). (5.4)

As in the previous sections, we define the Hamiltonians

Hε
i (x, p) = max

a∈Ai
(−pfεi (x, a)− `εi (x, a)), (5.5)

Hε
O(p1, . . . , pN ) = max

i=1,...,N
max

a∈Ai s.t. fεi (O,a)≥0
(−pifεi (O, a)− `εi (O, a)). (5.6)

With
Hε
O,i(pi) = max

a∈Ai s.t. fεi (O,a)≥0
(−pifεi (O, a)− `εi (O, a)), (5.7)

we can write Hε
O(p1, . . . , pN ) = maxi=1,...,N H

ε
O,i(pi). Finally, we define

HT,ε
O = − min

i=1,...,N
min

a∈Ai s.t. fεi (x,a)=0
`εi (O, a). (5.8)

Proposition 5.1. For any p ∈ RN ,
lim
ε→0+

Hε
O(p) = H0

O(p). (5.9)

Proof. Let us first prove that
lim sup
ε→0+

Hε
O(p) ≤ H0

O(p). (5.10)

For any i ∈ {1, . . . , N}, let (aε)ε be a family of points in Ai such that fεi (O, aε) ≥ 0. Up to the extraction of
subsequence, we can assume that there exists a0 ∈ Ai such that lim

ε→0+
aε = a0. Then f0i (O, a0) ≥ 0 and

(−pifεi (O, aε)− `εi (O, aε)) = (−pif0i (O, a0)− `0i (O, a0)) + o(1).

This implies that

lim sup
ε→0

max
a∈Ai s.t fεi (O,a)≥0

(−pifεi (O, aε)− `εi (O, aε)) ≤ max
a∈Ai s.t f0

i (O,a)≥0
(−pif0i (O, a0)− `0i (O, a0))

i.e. (5.10).
We are left with proving that

lim inf
ε→0+

Hε
O(p) ≥ H0

O(p). (5.11)

For a positive integer n, call Aεi,n,δ the set

Aεi,n,δ = {a ∈ Ai s.t. fεi (O, a) ≥ δ

n
}.

The set A0
i,n,δ is compact and from [H4ε], there exists ε̄n such that for any ε ≤ ε̄n,

A0
i,n,δ ⊂ Aεi,2n,δ ⊂ {a ∈ Ai s.t. fεi (O, a) ≥ 0}.

This implies that

max
a∈A0

i,n,δ

(−pif0i (O, a)− `0i (O, a)) ≤ max
a∈Ai s.t. fεi (O,a)≥0

(−pifεi (O, a)− `εi (O, a)) + o(1)
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and letting ε→ 0

max
i=1,...,N

max
a∈A0

i,n,δ

(−pif0i (O, a)− `0i (O, a))

≤ lim inf
ε→0+

max
i=1,...,N

max
a∈Ai s.t. fεi (O,a)≥0

(−pifεi (O, a)− `εi (O, a)).

Therefore, for any positive integer n,

max
i=1,...,N

max
a∈A0

i,n,δ

(−pif0i (O, a)− `0i (O, a)) ≤ lim inf
ε→0+

Hε
O(p) (5.12)

Consider now a0 ∈ Ai such that

−pif0i (O, a0)− `0i (O, a0) = H0
O(p)

= max
j=1,...,N

max
a∈Aj s.t. f0

i (O,a)≥0
(−pjf0j (O, a)− `0j (O, a)).

From Lemma 5.1, there exists a sequence (a0n)n>0 such that a0n ∈ Ai,n,δ and

lim
n→∞

(−pif0i (O, a0n)− `0i (O, a0n)) = (−pif0i (O, a0)− `0i (O, a0)) = H0
O(p).

From (5.12),
(−pif0i (O, a0n)− `0i (O, a0n)) ≤ lim inf

ε→0+
Hε
O(p) (5.13)

which yields (5.11) by letting n→∞. ut

Remark 5.1. Note that for proving Proposition 5.1, only [H20] , [H30] are needed, (in addition to [H0ε], [H1ε],
[H4ε] and [H5ε]).

Remark 5.2. It is possible to prove under the hypotheses of the Proposition 5.1 that for any pi ∈ R,

lim
ε→0

Hε
O,i(pi) = H0

O,i(pi). (5.14)

The proof is very much like that of Proposition 5.1.

5.3. Convergence of the sub or super solutions as ε→ 0

We consider the family of Hamilton-Jacobi equations depending on the parameter ε:

λu(x) + sup
(ζ,ξ)∈FLε(x)

{−Du(x, ζ)− ξ} = 0 in G, (5.15)

λu(x) + sup
(ζ,ξ)∈FL0(x)

{−Du(x, ζ)− ξ} = 0 in G. (5.16)

Theorem 5.1. Let uε be a sequence of uniformly Lipschitz subsolutions of (5.15) converging to u0 as ε → 0
locally uniformly on G. Then u0 is a subsolution of (5.16).

Proof. Consider x0 ∈ G and ϕ ∈ R(G) such that x0 is a strict local maximum point of u0−ϕ; we wish to prove
that

λu0(x0) +H0
i (x0,

dϕ

dxi
(x0)) ≤ 0 if x0 ∈ Ji\{O},

λu0(O) +H0
O(

dϕ

dx1
(O), . . . ,

dϕ

dxN
(O)) ≤ 0 if x0 = O.
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The proof is standard if x0 6= O. Let us assume that x0 = O. We have to prove that

λu0(O) + max
i=1,...,N

max
a∈Ai s.t. f0

i (O,a)≥0
(− dϕ
dxi

(O)f0i (O, a)− `0i (O, a)) ≤ 0. (5.17)

Having fixed i ∈ {1 . . . N}, define

di(y) =

{
0 if y ∈ Ji,
|y| otherwise.

Let L̄ be an uniform bound of the Lipschitz constant of uε − ϕ. Take C = L̄+ 1.
The function y 7→ u0(y) − ϕ(y) − Cdi(y) reaches a strict local maximum point at O, say in B(O,R). Thanks
to the local uniform convergence of uε, there exists a sequence of local maximum points yε in B(O,R) of
y 7→ uε(y)− ϕ(y)− Cdi(y) which converges to O as ε→ 0.
Moreover yε ∈ Ji, because if it was not the case, then

uε(yε)− ϕ(yε)− uε(O)− ϕ(O) ≤ L̄|yε| = L̄di(y
ε),

would imply
uε(yε)− ϕ(yε)− Cdi(yε) ≤ uε(O)− ϕ(O)− di(yε) < uε(O)− ϕ(O),

which would contradict the definition of yε.
Then, take y 7→ ϕ(y) + Cdi(y) as a test function in the viscosity inequality satisfied by uε. We make out two
cases:

: Case 1: yε ∈ Ji\{O}. We obtain

λuε(yε) +Hε
i (yε,

dϕ

dxi
(yε)) ≤ 0,

and letting ε→ 0

λu0(O) +H0
i (O,

dϕ

dxi
(O)) ≤ 0. (5.18)

: Case 2: yε = O.

λuε(O) + max
j=1,...,N

max
a∈Aj s.t. fεj (O,a)≥0

(−pjfεj (O, a)− `εj(O, a)) ≤ 0,

where pj = dϕ
dxj

(O) + C if j 6= i and pi = dϕ
dxi

(O). Hence,

λuε(O) + max
a∈Ai s.t. fεi (O,a)≥0

(− dϕ
dxi

(O)fεi (O, a)− `εi (O, a)) = λuε(O) +Hε
O,i(

dϕ

dxi
(O)) ≤ 0.

From (5.14), we deduce that

λu0(O) +H0
O,i(

dϕ

dxi
(O)) ≤ 0. (5.19)

Summarizing, we have (5.19) in all cases, because (5.18) implies (5.19). We have proved (5.17). ut

Theorem 5.2. Let (uε)ε be a sequence of supersolutions of (5.15) such that

• there exist a real number C > 0 s.t. for all ε and x ∈ G, |uε(x)| ≤ C(1 + |x|)
• the sequence uε converges to u0 locally uniformly on G as ε→ 0.

Then u0 is a supersolution of (5.16).
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Proof. Consider x0 ∈ G and ϕ ∈ R(G) such that x0 is a strict local minimum point of u0 − ϕ; if x0 6= O, the

proof that λu0(x0) +H0
i (x0,

dϕ
dxi

(x0)) ≥ 0 is standard. We therefore focus on the case when x0 = O.
We consider two cases:

: First case: for any i = 1, . . . , N , dϕ
dxi

(O) ≤ max(q : q ∈ Pi0) andH0
i (O, dϕdxi (O)) = H0

O( dϕdx1
(O), . . . , dϕ

dxN
(O)).

In this case, we can use the standard stability argument: there exists a sequence (xε) such that xε is a
local minimum point of uε − ϕ and such that xε converges to O and uε(xε) converges to u0(O). If for
a subsequence εn, xεn = O, then the viscosity inequality is

λuεn(O) +Hεn
O (

dϕ

dx1
(O), . . . ,

dϕ

dxN
(O)) ≥ 0

and by passing to the limit as n→∞ thanks to Proposition 5.1,

λu0(O) +H0
O(

dϕ

dx1
(O), . . . ,

dϕ

dxN
(O)) ≥ 0, (5.20)

which is the desired viscosity inequality for u0. If there does not exists such a subsequence, we can
assume that for a subsequence εn, xεn ∈ Ji\{O}. The viscosity inequality is

λuεn(xεn) +Hεn
i (xεn ,

dϕ

dxi
(xεn) ≥ 0,

and by passing to the limit as n→∞,

λu0(O) +H0
i (O,

dϕ

dxi
(O)) ≥ 0.

Then (5.20) is obtained since H0
i (O, dϕdxi (O)) = H0

O( dϕdx1
(O), . . . , dϕ

dxN
(O)).

: Second case: I 6= {1, . . . , N}, where I is the (possibly empty) set of indices i such that dϕ
dxi

(O) ≤
max(q : q ∈ Pi0) and H0

i (O, dϕdxi (O)) = H0
O( dϕdx1

(O), . . . , dϕ
dxN

(O)). It is always possible to find a function

ψ ∈ R(G) such that
(1) ψ(O) = ϕ(O)

(2) H0
O( dψdx1

(O), . . . , dψ
dxN

(O)) = H0
O( dϕdx1

(O), . . . , dϕ
dxN

(O))

(3) if i ∈ I, then ψ|Ji coincides with ϕ|Ji
(4) if i 6∈ I, then dψ

dxi
(O) < dϕ

dxi
(O) is such that dψ

dxi
(O) ≤ max(q : q ∈ Pi0) and H0

i (O, dψdxi (O)) =

H0
O( dϕdx1

(O), . . . , dϕ
dxN

(O)).

Then, since ψ touches ϕ at O from below, O is still a strict minimum point of u0 − ψ, and for all i,
dψ
dxi

(O) ≤ max(q : q ∈ Pi0) and

H0
i (O,

dψ

dxi
(O)) = H0

O(
dψ

dx1
(O), . . . ,

dψ

dxN
(O)) = H0

O(
dϕ

dx1
(O), . . . ,

dϕ

dxN
(O)). (5.21)

We can apply the result proved in the first case to the function ψ, i.e.

λu0(O) +H0
O(

dψ

dx1
(O), . . . ,

dψ

dxN
(O)) ≥ 0,

and we get (5.20) from (5.21).
ut
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6. Extension to a more general framework with an additional cost at the
junction

It is possible to extend all the results presented above to the case when there is an additional cost at the
junction. Such problems are also studied in [13]. We keep the setting used above except that we take into
account an additional subset A0 of A (it is enough to suppose that A0 is a singleton and that it is disjoint from
the other sets Ai), on which the running cost is the constant `0. We define

M =
{

(x, a); x ∈ G, a ∈ Ai if x ∈ Ji\{O}, and a ∈ ∪Ni=0Ai if x = O
}
,

the dynamics

∀(x, a) ∈M, f(x, a) =

 fi(x, a)ei if x ∈ Ji\{O},
fi(O, a)ei if x = O and a ∈ Ai, i > 0,
0 if x = O and a ∈ A0,

and the running cost

∀(x, a) ∈M, `(x, a) =

 `i(x, a) if x ∈ Ji\{O},
`i(O, a) if x = O and a ∈ Ai, i > 0,
`0 if x = O and a ∈ A0.

The infinite horizon optimal control problem is then given by (1.5) and (1.4). We obtain that the value function
v is continuous in the same manner as above and that v is a viscosity solution of (2.1) with the new definition
of FL(x):

FL(x) =

{
FLi(x) if x belongs to the edge Ji\{O}
{0,−`0} ∪

⋃
i=1,...,N FL+

i (O) if x = O.

The viscosity sub and supersolutions can be also defined as in (2.7) and (2.8) with the new definition of
HO : RN → R:

HO(p1, . . . , pN ) = max

(
−`0, max

i=1,...,N
max

a∈Ai s.t. fi(O,a)≥0
(−pifi(O, a)− `i(O, a))

)
,

and the definition of the constant HT
O is modified accordingly:

HT
O = −min

(
`0, min

i=1,...,N
min

a∈Ai s.t. fi(O,a)=0
`i(O, a)

)
.

With these new definitions, all the results proved in § 3, 4 and 5 hold with obvious modifications of the proofs.
In particular,

• a subsolution of the presently defined problem is also a subsolution of the former problem (without the
additional cost) so it is Lipschitz continuous in a neighborhood of O, and Lemmas 3.2, 3.3 and 3.5 hold.
• The proofs of Lemma 3.4 and Theorem 3.1 are unchanged. In particular, with the choice of q =

(qi)i=1,...,N made in the proof of Theorem 3.1, we still have the identity HO(q) = HT
O .

• The proof of the comparison principle is unchanged.

7. The case of a network

7.1. The geometrical setting and the optimal control problem

We consider a network in Rd with a finite number of edges and vertices. A network in Rd is a pair (V, E)
where
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i) V is a finite subset of Rd whose elements are said vertices
ii) E is a finite set of edges, which are either closed straight line segments between two vertices, or a closed

straight half-lines whose endpoint is a vertex. The intersection of two edges is either empty or a vertex
of the network. The union of the edges in E is a connected subset of Rd. For a given edge e ∈ E , the
notation ∂e is used for the set of endpoints of e, and e∗ = e\∂e stands for the interior of e. Let also ue
be a unit vector aligned with e. There are two possible such vectors: if the boundary of e is made of
one vertex x only, then ue will be oriented from x to the interior of e; if the boundary of e is made of
two vertices, then the choice of the orientation is arbitrary.

We say that two vertices are adjacent if they are connected by an edge. For a given vertex x, we denote by Ex
the set of the edges for which x is an endpoint, and Nx the cardinality of Ex. We denote by G the union of all
the edges in E .
We consider infinite horizon optimal control problems which have different dynamics and running cost in the
edges. We are going to describe the assumptions on the dynamics and costs in each edge e. The sets of controls
are denoted by Ae and the system is driven by a dynamics fe and the running cost is given by `e. Our main
assumptions are as follows

: [H0n] A is a metric space (one can take A = Rm). For e ∈ E , Ae is a non empty compact subset of A
and fe : e×Ae → R is a continuous bounded function. The sets Ae are disjoint. Moreover, there exists
L > 0 such that for any e ∈ E , x, y in e and a ∈ Ae,

|fe(x, a)− fe(y, a)| ≤ L|x− y|.

We will use the notation Fe(x) for the set {fe(x, a)ue, a ∈ Ae}.
: [H1n] For e ∈ E , the function `e : e×Ae → R is a continuous and bounded function. There is a modulus

of continuity ωe such that for all x, y in e and for all a ∈ Ae, |`e(x, a)− `e(y, a)| ≤ ωe(|x− y|).
: [H2n] For e ∈ E , x ∈ e, the non empty and closed set FLe(x) ≡ {(fe(x, a)ue, `e(x, a)), a ∈ Ae} is convex.
: [H3n] There is a real number δ > 0 such that for any e ∈ E , for all endpoints x of e,

[−δue, δue] ⊂ Fe(x).

Let us denote by M the set:

M = {(x, a); x ∈ G, a ∈ Ae if x ∈ e∗, and a ∈ ∪e∈ExAe if x ∈ V} . (7.1)

The set M is closed. We also define the function f on M by

∀(x, a) ∈M, f(x, a) =

{
fe(x, a)ue if x ∈ e∗,
fe(x, a)ue if x ∈ V and a ∈ Ae for e ∈ Ex.

The set of admissible controlled trajectories starting from the initial datum x ∈ G can be defined by

Tx =


(yx, α) ∈ L∞loc(R+;M) : yx ∈ Lip(R+;G),

yx(t) = x+

∫ t

0

f(yx(s), α(s))ds in R+

 , (7.2)

exactly as in § 1.1.
The cost associated to the trajectory (yx, α) ∈ Tx is

J(x; (yx, α)) =

∫ ∞
0

`(yx(t), α(t))e−λtdt,
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where λ > 0 is a real number and the Lagrangian ` is defined on M by

∀(x, a) ∈M, `(x, a) =

{
`e(x, a) if x ∈ e∗,
`e(x, a) if x ∈ V and a ∈ Ae for e ∈ Ex.

The value function of the infinite horizon optimal control problem is

v(x) = inf
(yx,α)∈Tx

J(x; (yx, α)). (7.3)

7.2. The Hamilton-Jacobi equation

For each edge e, x ∈ e∗, let xe be the coordinate of x in the system (Oe, ue) whereOe is an arbitrary origin on e.

For the definition of viscosity solutions on the irregular set G, it is necessary to first define a class of the
admissible test-functions

Definition 7.1. A function ϕ : G → R is an admissible test-function if

• ϕ is continuous in G and C1 in G \ V
• for any e, ϕ|e ∈ C1(e).

The set of admissible test-function is noted R(G). If ϕ ∈ R(G) and ζ ∈ R, let Dϕ(x, ζue) be defined by

Dϕ(x, ζue) = ζ dϕdxe (x) if x ∈ e∗, and Dϕ(x, ζue) = ζ limy→x,y∈e∗
dϕ
dxe

(y), if x is an endpoint of e.

We define the Hamiltonians He : e× R→ R by

He(x, p) = max
a∈Ae

(−pfe(x, a)− `e(x, a)). (7.4)

For a vertex x ∈ V, for a given indexing of Ex: Ex = {e1, . . . , eNx}, we use the notation Ai = Aei , fi = fei ,
`i = `ei for simplicity. Let also σi be 1 if uei is oriented from x to the interior of ei and −1 in the opposite case.
The Hamiltonian Hx : RNx → R is defined by

Hx(p1, . . . , pNx) = max
i=1,...,Nx

max
a∈Ai s.t. σifi(x,a)≥0

(−pifi(x, a)− `i(x, a)). (7.5)

We wish to define viscosity solutions of the following equations

λv(x) +He(x,Dv(x)) = 0 if x ∈ e∗, (7.6)

λv(x) +Hx(Dv(x)) = 0 if x ∈ V. (7.7)

Definition 7.2. • An upper semi-continuous function w : G → R is a subsolution of (7.6)-(7.7) in G if
for any x ∈ G, any ϕ ∈ R(G) s.t. w − ϕ has a local maximum point at x, then

λw(x) +He(x,
dϕ
dxe

(x)) ≤ 0 if x ∈ e∗,
λw(x) +Hx( dϕdx1

(x), . . . , dϕ
dxNx

(x)) ≤ 0 if x ∈ V, (7.8)

where in the last case, dϕ
dxi

(x) = Dϕ(x, uei(x)), for i = 1, . . . , Nx.

• A lower semi-continuous function w : G → R is a supersolution of (7.6)-(7.7) if for any x ∈ G, any
ϕ ∈ R(G) s.t. w − ϕ has a local minimum point at x, then

λw(x) +He(x,
dϕ
dxe

(x)) ≥ 0 if x ∈ e∗,
λw(x) +Hx( dϕdx1

(x), . . . , dϕ
dxNx

(x)) ≥ 0 if x ∈ V. (7.9)
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7.3. Comparison principle

Since all the arguments used in the junction case are local, we can replicate them in the case of a network
and obtain:

Theorem 7.1. Assume [H0n],[H1n],[H2n] and [H3n]. Let v : G → R be a bounded viscosity subsolution of
(7.6)-(7.7), and w : G → R be a bounded viscosity supersolution of (7.6)-(7.7). Then v ≤ w in G.

7.4. Existence and uniqueness

By the same arguments as in the junction case, we can prove that v is a bounded viscosity solution of
(7.6)-(7.7). From the Theorem 7.1, it is the unique bounded viscosity solution.

Proposition 7.1. Assume [H0n],[H1n],[H2n] and [H3n]. The value function v of the optimal control problem
(7.3) is the unique bounded viscosity solution of (7.6)-(7.7).

Remark 7.1. The stability results of § 5 for junctions can be easily generalized to networks.

Appendix A. Proof of Lemma 2.2

For any i ∈ {1, . . . , N}, the inclusion co
{

FL+
i (O) ∪

⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

)}
⊂ f̃`(O) is proved by

explicitly constructing trajectories, see [1]. We skip this part. This leads to

⋃
i=1,...,N

co

FL+
i (O) ∪

⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

) ⊂ f̃`(O).

We now prove the other inclusion. For any (ζ, µ) ∈ f̃`(O), there exists a sequence of admissible trajectories
(yn, αn) ∈ TO and a sequence of times tn → 0+ such that

lim
n→∞

1

tn

∫ tn

0

f(yn(t), αn(t))dt = ζ, and lim
n→∞

1

tn

∫ tn

0

`(yn(t), αn(t))dt = µ.

• If ζ 6= 0, then there must exist an index i in {1, . . . , N} such that ζ = |ζ|ei: in this case, yn(tn) ∈ Ji\{O}.
Hence,

yn(tn) =

∫ tn

0

f(yn(t), αn(t))dt =

N∑
j=1

ej

∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt (A.1)

with ∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt = 0 if j 6= i,∫ tn

0

fi(yn(t), αn(t))1yn(t)∈Ji\{O}dt = |yn(tn)|.

These identities are a consequence of Stampacchia’s theorem: consider for example j 6= i and the
function κj : y 7→ |y|1y∈Jj . It is easy to check that t 7→ κj(yn(t)) belongs to W 1,∞

0 (0, tn) and that its
weak derivative coincides almost everywhere with t 7→ fj(yn(t), αn(t))1yn(t)∈Jj\{O}. Hence,∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt = 0.
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For j = 1, . . . , N , let Tj,n be defined by

Tj,n =
∣∣∣{t ∈ [0, tn] : yn(t) ∈ Jj\{O}

}∣∣∣ .
If j 6= i and Tj,n > 0 then

1

Tj,n

(∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt,

∫ tn

0

`j(yn(t), αn(t))1yn(t)∈Jj\{O}dt

)
=

1

Tj,n

(∫ tn

0

fj(O,αn(t))1yn(t)∈Jj\{O}dt,

∫ tn

0

`j(O,αn(t))1yn(t)∈Jj\{O}dt

)
+ o(1)

where o(1) is a vector tending to 0 as n→∞. Therefore, the distance of
1

Tj,n

(
ej
∫ tn
0
fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt,

∫ tn
0
`j(yn(t), αn(t))1yn(t)∈Jj\{O}dt

)
to the set FLj(O) tends

to 0. Moreover,
∫ tn
0
fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt = 0. Hence, the distance of 1

Tj,n

(
ej
∫ tn
0
fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt,

∫ tn
0
`j(yn(t), αn(t))1yn(t)∈Jj\{O}dt

)
to the set

(
FLj(O) ∩ ({0} × R)

)
tends to zero as n tends to ∞.

If the set {t : yn(t) = O} has a nonzero measure, then

(
0,

1

|{t : yn(t) = O}|

∫ tn

0

`(O,αn(t))1{t:yn(t)=O}dt

)
∈ co


N⋃
j=1

(
FLj(O) ∩ ({0} × R)

) .

Finally, we know that Ti,n > 0.

1

Ti,n

(∫ tn

0

fi(yn(t), αn(t))1yn(t)∈Ji\{O}dt,

∫ tn

0

`i(yn(t), αn(t))1yn(t)∈Ji\{O}dt

)
=

1

Ti,n

(∫ tn

0

fi(O,αn(t))1yn(t)∈Ji\{O}dt,

∫ tn

0

`i(O,αn(t))1yn(t)∈Ji\{O}dt

)
+ o(1)

so the distance of
1

Ti,n

(
ei
∫ tn
0
fi(yn(t), αn(t))1yn(t)∈Ji\{O}dt,

∫ tn
0
`i(yn(t), αn(t))1yn(t)∈Ji\{O}dt

)
to the set FL+

i (O) tends

to zero as n tends to ∞.
Combining all the observations above, we see that the distance of(

1
tn

∫ tn
0
f(yn(t), αn(t))dt, 1

tn

∫ tn
0
`(yn(t), αn(t))dt

)
to co

{
FL+

i (O) ∪
⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

)}
tends to 0 as n→∞.

Therefore (ζ, µ) ∈ co
{

FL+
i (O) ∪

⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

)}
.

• If ζ = 0, either there exists i such that yn(tn) ∈ Ji\{O} or yn(tn) = O:
• If yn(tn) ∈ Ji\{O}, then we can make exactly the same argument as above and conclude that

(ζ, µ) ∈ co
{

FL+
i (O) ∪

⋃
j 6=i

(
FLj(O) ∩ ({0} × R)

)}
. Since ζ = 0, we have in fact that (ζ, µ) ∈

co
⋃N
j=1

(
FLj(O) ∩ ({0} × R)

)
.

• if yn(tn) = O, we have that

∫ tn

0

fj(yn(t), αn(t))1yn(t)∈Jj\{O}dt = 0 for all j = 1, . . . , N . We can

repeat the argument above, and obtain that

(ζ, µ) ∈ co
{⋃N

j=1

(
FLj(O) ∩ ({0} × R)

)}
.
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