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ABSTRACT

In recent years a plethora of theoretical carbon allotropes have been proposed, none of which have been experimentally
isolated.  We discuss here criteria that should be met for a new phase to be potentially experimentally viable.  We take as
examples Haeckelites, 2D networks of sp2-carbon containing pentagons and heptagons, and “Penta-graphene”, consisting of
a layer of pentagons constructed from a mixture of sp2- and sp3- coordinated carbon atoms.  In 2D-projection appearing as
the “Cairo pattern”,  pentagraphene is elegant and aesthetically pleasing.  However we dispute the author’s claims of its
potential stability and experimental relevance.

SIGNIFICANCE STATEMENT
We describe criteria that should be applied when evaluating whether theoretically proposed carbon allotropes may be 
experimentally isolated.  We discuss the importance of energetic isomeric “funnels” centered on a stable allotropic form, the role 
of defects in catalyzing structural transformations to lower energy isomers, and chemical stability.  This is demonstrated with 
literature examples such as C60 and B80. We apply these criteria to a recently proposed carbon allotrope, Penta-graphene, 
demonstrating with the aid of density functional calculations that it will not be experimentally attainable.  A second example, 
Haeckelites, are unlikely to be experimentally achievable when neutral, but may be stabilized through significant charge transfer.  
The principals discussed here are general and can be applied to any theoretically proposed materials.

INTRODUCTION

One of the joys of carbon research is the huge flexibility of carbon bonding (1-4), resulting in many varied allotropes that have
already been experimentally identified.  Computational modeling opens the floor to predicting many more, and tools such as graph
theory  (5)  and  evolutionary  algorithms  (6)  allow systematic  exploration  of  potential  bonding  networks.  New  computationally
proposed  phases  are  typically  identified  as  metastable  via  positive  phonon  modes,  and  sometimes  via  molecular  dynamics
simulations showing lattice coherence at experimental operating temperatures.  However there are common criteria beyond these
two tests which link those allotropes which have been experimentally isolated. 

Firstly they occupy deep potential wells in the surrounding energetic landscape. Additionally the surrounding energy wells are all
higher in energy, “funneling” towards the stable structural form.  Finally, barriers to subsequent conversion to alternative structures
are typically high.  Buckminsterfullerene,  Ih-C60, is a good example. The disconnectivity graph for C60 connecting the 1,812 isomers
with pentagonal and hexagonal faces via branches whose height indicates the transformation barrier has a ‘willow tree pattern’, with
a gentle funnel running towards the stable  Ih-C60 isomer (7) (Figure 1a).  The relatively high barriers are accessible during high
temperature growth, and alternatively can be catalysed via the presence of impurities or carbon interstitial atoms (8-10).
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In  contrast,  attempts  to  experimentally  isolate  higher  order  boron fullerenes  have been  largely  unsuccessful  to  date.   For  the
proposed fullerene B80 this can be understood since the energy landscape was shown to feature many closely related isomers with
similar (and sometimes lower) energies (11).  In contrast calculations for B40, for which there are first experimental indications (12),
show a single (D2d, 1A1) cage isomer, energetically well separated from alternative isomers (Figure 1b).  This behavior is consistent
with the rules discussed above.

We  apply  here  a  similar  analysis  for  experimental  viability  to  other  proposed  phases,  starting  with  “Penta-Graphene”,  a  two-
dimensional carbon allotrope proposed by Zhang et al (4). The structure can be viewed as a series of out-of-plane distorted ethylene
units connected via tetrahedral sp3-carbon linkers.  The result is a corrugated layer which in projection matches the “Cairo pattern”
of distorted pentagons (Figure 2a). 

RESULTS AND DISCUSSION 

Thermodynamic Stability: Relative Energy

The first test of any new proposed structure is of its thermodynamic stability.  Considering Penta-graphene,  while real  phonon
energies  (positive eigenvalues from the Hessian matrix) indicate that it is at least a local structural minimum (4),  its formation
enthalpy  shows  that  it  is  a  very  high  energy  structure.   We  have  performed  a  number of  calculations  on  pentagraphene  and
structural derivatives, using DFT/LDA calculations (see Method).  Penta-graphene is 0.761 eV per atom less stable than graphene.
This is significantly less stable than amorphous carbons (0.16eV) (13) most nanotubes and Ih-C60 (0.39eV) (14), and places it in a
similar energy range to experimentally unconfirmed isomers such as R3-Carbon (15).  

Transforming to Graphene. Secondly, penta-graphene is not the stable centre of a “funnel” of isomeric structures, but instead forms
part of an energetic funnel of structures centred on graphene.  Figure 2 shows an example sequence of bond rotations and bond-
breakages by which penta-graphene can be transformed directly  to graphene.   Each step is exothermic, but only if  the unit cell
vectors are allowed to geometrically relax along with all atoms. This does not appear to have been done in the original paper by
Zhang  et al.   The unit cell  area increases 19.6% from penta-graphene (25.96Å2) to graphene (31.05Å2).  This is because the sp3

bonding  and  corresponding  non-planarity  in  penta-graphene  give  it  a  relatively  dense  2D-projected  basal  plane  compared  to
graphene.   Constraining  the  unit  cell  dimensions  to  those  of  penta-graphene  therefore  energetically  disadvantages  planar  sp 2

restructuring.

The periodic boundary conditions for the calculations necessarily require that the set of rotations at each step, e.g. from (a) to (b) be
simultaneous as shown, and this may be argued to be improbable. However, we have also tested the equivalent single isolated bond
rotation for a 2×2 repeated supercell of penta-graphene.  Rotating just one of the C-C bonds marked in Figure 2a releases 0.812eV,
showing that transformation from penta-graphene to graphene could occur stepwise.  

Thus  since  Penta-graphene  forms  part  of  a  continuous  energetic  funnel  towards  Graphene,  it  will  not  be  possible  to  isolate
experimentally on thermodynamic grounds.  

The above analysis is consistent with molecular dynamics simulations which have been used to map out carbon energy landscapes in
terms of structural crystallinity and density, as a function of applied pressure and temperature (16).   Consistent with experiment,
these landscapes predict that stable crystalline carbon polytypes contain only one hybridization state of carbon (either sp 2 or sp3),
with mixed phases stable in amorphous configurations.  They also show energy funneling towards fully sp 2 or sp3 phases, depending
on system pressure.

Metastable structures may still  nonetheless  be isolated if  their  conversion to stable phases is  kinetically  inhibited due to high
interconversion barriers, so we next consider kinetic stability criteria.
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Kinetic Stability and the importance of defects

A classical stability test is the use of molecular dynamics (MD) simulations at experimental temperatures.   Penta-graphene was
shown in this way to maintain its structure for 1ps at 300K (4).  However this is not sufficient to demonstrate kinetic stability.

Structural distortion in materials is typically a localized process commencing at defective sites, often catalysed by impurities and
defects.   The 90° carbon-carbon bond rotation processes shown in Figure 2a are an example of  this.   Each bond rotation step
represents the annihilation of a dislocation dipole in the underlying graphene lattice, and requires the simultaneous breaking and
reformation of two carbon bonds.   Similar carbon-carbon bond rotation in graphene has an extremely high calculated enthalpy
barrier of 8.99eV (9). For the single bond rotation step in penta-graphene discussed above we have calculated the reaction barrier to
be in the range 2.33-3.04 eV (17).  This is already significantly lower than that of graphene. 

However the C-C bond rotation barrier in graphene is reduced by a factor of four in the presence of defects such as carbon adatoms
(9),  and  similarly  introducing  a  carbon  adatom  to  penta-graphene  also  drops  the  calculated  barrier  by  35%  to  only  1.51  eV.
Additionally the local energy release associated with this restructuring will also likely render the process auto-catalytic. Thus in the
presence of any defects penta-graphene is unlikely to be stable.  We note that the authors did indeed run MD simulations for point
defects in Penta-Graphene (4), but these were for only 5ps and with fixed lattice constants as discussed above.

Chemical Stability and Oxidation

While chemical stability is not strictly a criterion for experimental viability, it is nonetheless an important indicator.  In order to
examine potential environmental stability of Penta-graphene, we calculated its reaction with O 2. In the triplet state O2 oxidation of
the surface is highly exothermic, releasing 2.24eV per O2 molecule, with a barrier to chemisorption of only 0.16eV. Accounting for
spin conversion to an eventual singlet state (surface crossing) releases a further 2.34eV.  Oxygen forms epoxides at the distorted
localized  surface  C=C  bonds.   Thus  Penta-graphene  would  undergo  highly  exothermic  spontaneous  oxidation  on  the  slightest
exposure to air.

Haeckelites and related sp2-layered structures 

Our next example is the Haeckelites (1-3), a family of layered sp2-carbon structures constructed from pentagons, heptagons, and
optionally  hexagons.  Despite extensive theoretical  investigation since their  first  proposition nearly twenty years  ago (1),  these
structures have never been unambiguously experimentally isolated.  

Figure 3a-c shows three Haeckelite structures. In terms of thermodynamic stability all three are less stable than graphene, (Fig.3a)
Oblique O5,6,7 by 0.377eV/C, (Fig.3b) rectangular R5,7 by 0.244eV/C and (Fig.3c) Hexagonal H5,6,7 by 0.251eV/C, although the energies
relative to graphene are significantly lower than that of Penta-graphene.  Structures 3a and 3b can both be converted to graphene via
90° bond rotations of the bonds labeled ‘X’ in Figure 3, and hence lie on the thermodynamic ‘funnel’ terminating at graphene.  As
discussed previously, the bond rotation barrier can also be lowered through the presence of defects.  Structure 3c cannot reconstruct
via  bond  rotations  to  Graphene,  but  if  produced  through  a  sequential  edge  growth  process  could  still  be  replaced  by
thermodynamically  preferable  graphene.   Thus  from  the  arguments  above,  we  would  not  expect  these  structures  to  be
experimentally viable.  

If the system is charged however, the thermodynamic picture changes.  Figure 4 shows the energy of Haeckelite-3c and Penta-
graphene relative to graphene at different charge states.  While Penta-graphene becomes increasingly unstable with charging, the
Haeckelites become increasingly stable, and for high charge accumulation, Haeckelite-3c becomes more stable than graphene. The
effect is even more marked for the Octahedral-square structure (Figure 3e) which shifts from 0.57eV/C less stable than neutral
graphene, to comparable energy when charged 0.25e/C.
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Structural analogues that have indeed been experimentally isolated are metal borocarbides MB 2C2, where M=Mg, Sc, Ce, Ca, Y, La, Lu
(18,19).  These are layered B2C2 structures intercalated with metal ions (Figure 3). Hexagon, pentagon-heptagon (Figure 3b) and
octagon-square lattices (Figure 3d) have been experimentally identified depending on the metal cation (19). Among these phases
MgB2C2 exhibits a stable hexagonal graphene-like lattice. This can be understood since the Mg 2+ cation donates sufficient electrons to
compensate the electron deficiency of boron with respect to carbon, i.e. 2 electrons for each B 2C2 motif. In contrast M3+ cations (La3+,
Ce3+, Y3+, Sc3+, Lu3+) donate one extra electron compared to Mg2+, leading to an extra charge of 0.25e/lattice atom.  These cations form
non-hexagonal borocarbide lattices, in agreement with our analysis of thermal stability vs charge state for carbon sheets, where at
0.25e/carbon atom Haeckelite and octahedron-square lattices become thermodynamically competitive with graphene (20).

Thus while the calculations suggest that isolated Haeckelites are unlikely to be formed experimentally, in situations of heavy doping,
such as metal-ion intercalation in layered crystals, or ion overlayers on  surfaces,  experimental isolation of Haeckelites may be
possible.

CONCLUSIONS

The calculations presented here strongly suggest that penta-graphene will not be an experimentally achievable allotrope of carbon.
Not only would penta-graphene be difficult to isolate from the plethora of alternative isomers with similar energies, it should rapidly
restructure  towards  graphene  in  the  presence  of  even  a  few  catalytic  impurities.  Even  were  it  to  form,  it  would  not  be
environmentally  stable.   Haeckelites,  while  unlikely  to  be  experimentally  attainable  in  isolation,  may  still  be  experimentally
achievable in the presence of charge transfer ions.

In general  when determining the experimental feasibility of synthesizing new carbon phases, it is not sufficient to establish the
pristine material as a metastable minimum on a local energy surface.   We have highlighted here the importance that the structure lie
at the apex of a disconnectivity graph of related isomers, occupying a unique energetically isolated position.  Chemical and kinetic
stability, notably in the presence of catalytic defects (both intrinsic and extrinsic) are also critical.  This analysis could easily be
extended to other proposed carbon allotropes, such as the various graphyne phases (21), and indeed is general beyond its simple
application to carbon.

METHOD 

Quantum Chemical Calculations.

DFT calculations were performed using the AIMPRO code (22), with a basis set containing 22 independent Gaussian-based
functions per carbon atom and 40 per oxygen atom. Hartwigsen-Goedecker-Hutter relativistic pseudopotentials were used
(23). Finite temperature smearing was used for the electronic state population with temperature kT=0.01eV. Lattice vectors
were relaxed simultaneously with atom positions and lattice symmetry broken.  For Pentagraphene and related 12 atom unit
cells a 4×4 Monkhorst-Pack (24) k-point grid was used, for the 2×2 48 atom cell a 2×2 k-point grid was used.  Saddle points
were determined using the climbing nudged elastic band algorithm (25).  Orthorhombic octahedron-square cells contained 4
atoms, 8×8×1 k-points, hexagonal H567 cells had 16 atoms, 4×4×1 k-points, R5,7 cells contained 48 atoms, 2×2×1 k-point grid,
and  O5,6,7 cells 12 atoms, 4×4×1 k-point grid.
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FIGURE LEGENDS

Figure 1. (a) “Willow Tree” pattern of different C60 isomers, with the lower points of each vertical bar representing the calculated
formation enthalpy relative to  Ih-C60,  bar heights representing  the calculated barrier to transformation.  This shows that  Ih-C60 is
significantly  more  stable  than other  isomers  and lies  at  the  centre  of  an “energetic  funnel”.  Adapted from (7).  (b)  Calculated
formation  enthalpies  of  B40,  showing  the  D2d cage  structure  is  significantly  more  stable  than  alternative  isomers.  Taken  from
Reference (12).

Figure 2.  A calculated structural  transformation route from (a) penta-graphene to (d) graphene,  each step is exothermic.   Red
arrows indicate direction of motion of atoms for 90° rotation of carbon-carbon bonds. Red (blue) lines indicate C-C bonds that are
broken (formed).  Note that structures (a-c) were constrained within orthogonal unit cells, this constraint was lifted for step (c) to
(d).  The final structure, graphene, is 0.761 eV per atom more stable than (a). Unit cells marked with dotted lines, calculated cell
dimensions are (a) 5.095Å×5.095Å, (b) 4.769Å×5.510Å, (c) 4.888Å×5.318Å, and (d) 4.883Å×6.476Å, α=100.88°. 
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Figure 3. Three Haeckelite structures (a) Oblique O5,6,7, (b) a rectangular R5,7 and (c) Hexagonal H5,6,7 (nomenclature from Ref [1b]), 
and (d) octagon-square structure. In MC2B2 borocarbides, lighter carbon atoms marked with red circles are replaced with boron in 
(b) M=Sc and (d) M= Ce, Y, Ca, Ln (metal ions located above the centre of heptagons and octagons respectively).  Bonds marked ‘x’, 
when rotated, convert a 5-7-7-5 patch into four hexagons.

7



Figure 4. Relative stability of Penta-Graphene (Figure 2a) and Hex-Haeckelite (Figure 3a) compared to graphene, as a function of 
charge state per C atom.  While Penta-Graphene is increasingly unstable with charging, Haeckelites and Square-Octahedral 
structures are increasingly stabilized, becoming comparable with graphene or even thermodynamically favoured at 0.25e/carbon.
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