
Vertex Coloring with Communication and Local Memory

Constraints in Synchronous Broadcast Networks

Hicham Lakhlef, Michel Raynal, François Täıani

To cite this version:

Hicham Lakhlef, Michel Raynal, François Täıani. Vertex Coloring with Communication and Lo-
cal Memory Constraints in Synchronous Broadcast Networks. [Research Report] 2035, IRISA;
Université de Rennes 1. 2016, pp.23. <hal-01300095>

HAL Id: hal-01300095

https://hal.inria.fr/hal-01300095

Submitted on 8 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Rennes 1

https://core.ac.uk/display/48155914?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-01300095

Vertex Coloring with Communication and Local Memory

Constraints in Synchronous Broadcast Networks

Hicham Lakhlef‡ Michel Raynal‡,⋆ François Taı̈ani‡

‡ IRISA, Université de Rennes, France
⋆ Institut Universitaire de France

hicham.lakhlef@irisa.fr raynal@irisa.fr francois.taiani@irisa.fr

Tech Report #2035, 23 pages, April 2016

IRISA, University of Rennes 1, France

Abstract

The vertex coloring problem has received a lot of attention in the context of synchronous round-

based systems where, at each round, a process can send a message to all its neighbors, and receive

a message from each of them. Hence, this communication model is particularly suited to point-to-

point communication channels. Several vertex coloring algorithms suited to these systems have been

proposed. They differ mainly in the number of rounds they require and the number of colors they

use.

This paper considers a broadcast/receive communication model in which message collisions and

message conflicts can occur (a collision occurs when, during the same round, messages are sent to

the same process by too many neighbors; a conflict occurs when a process and one of its neighbors

broadcast during the same round). This communication model is suited to systems where processes

share communication bandwidths. More precisely, the paper considers the case where, during a

round, a process may either broadcast a message to its neighbors or receive a message from at most

m of them. This captures communication-related constraints or a local memory constraint stating

that, whatever the number of neighbors of a process, its local memory allows it to receive and store at

most m messages during each round. The paper defines first the corresponding generic vertex multi-

coloring problem (a vertex can have several colors). It focuses then on tree networks, for which it

presents a lower bound on the number of colors K that are necessary (namely, K = ⌈∆
m
⌉+1, where

∆ is the maximal degree of the communication graph), and an associated coloring algorithm, which

is optimal with respect to K .

Keywords: Broadcast/receive communication, Bounded local memory, Collision-freedom, Conflict-

freedom, Distributed algorithm, Message-passing, Multi-coloring, Network traversal, Scalability,

Synchronous system, Tree network, Vertex coloring.

1 Introduction

Distributed message-passing synchronous systems From a structural point of view, a message-

passing system can be represented by a graph, whose vertices are the processes, and whose edges are

the communication channels. It is naturally assumed that the graph is connected.

Differently from asynchronous systems, where there is no notion of global time accessible to the

processes, synchronous message-passing systems are characterized by upper bounds on message trans-

fer delays and processing times. Algorithms for such systems are usually designed according to the

round-based programming paradigm. The processes execute a sequence of synchronous rounds, such

that, at every round, each process first sends a message to its neighbors, then receives messages from

them, and finally executes a local computation, which depends on its local state and the messages it has

received. The fundamental synchrony property of this model is that every message is received in the

round in which it was sent. The progress from one round to the next is a built-in mechanism provided

by the model. Algorithms suited to reliable synchronous systems can be found in several textbooks

(e.g., [19, 21])1. When considering reliable synchronous systems, an important issue is the notion of

local algorithm. Those are the algorithms whose time complexity (measured by the number of rounds)

is smaller than the graph diameter [1, 17].

Distributed graph coloring in point-to-point synchronous systems One of the most studied graph

problems in the context of an n-process reliable synchronous system is the vertex coloring problem,

namely any process must obtain a color, such that neighbor processes must have different colors (distance-

1 coloring), and the total number of colors is reasonably “small”. More generally, the distance-k col-

oring problem requires that no two processes at distance less or equal to k, have the same color. When

considering sequential computing, the optimal distance-1 coloring problem is NP-complete [12].

When considering the distance-1 coloring problem in an n-process reliable synchronous system, it

has been shown that, if the communication graph can be logically oriented such that each process has

only one predecessor (e.g., a tree or a ring), O(log∗ n) rounds are necessary and sufficient to color the

processes with at most three colors [10, 17]2. Other distance-1 coloring algorithms are described in

several articles (e.g. [3, 5, 14, 16]). They differ in the number of rounds they need and in the number of

colors they use to implement distance-1 coloring. Let ∆ be the maximal degree of the graph (the degree

of a vertex is the number of its neighbors). Both algorithms in [3, 5] color the vertices with (∆+1) colors.

The first one requires O(∆+ log∗ n) rounds, while the second one uses O(log∆) rounds. An algorithm

is described in [14] for trees, which uses three colors and O(log∗ n) rounds. Another algorithm presented

in the same paper addresses constant-degree graphs, and uses (∆+1) colors and O(log∗ n) rounds. The

algorithm presented in [16] requires O(∆ log∆ + log∗ n) rounds. These algorithms assume that the

processes have distinct identities3, which define their initial colors. They proceed iteratively, each round

reducing the total number of colors. Distributed distance-2 and distance-3 coloring algorithms, suited to

various synchronous models, are presented in [6, 8, 9, 11, 13, 15].

Motivation and content of the paper The previous reliable synchronous system model assumes that

there is a dedicated (e.g., wired) bi-directional communication channel between each pair of neighbor

processes. By contrast, this paper considers a broadcast/receive communication model in which there

is no dedicated communication medium between each pair of neighbor processes. This covers practical

system deployments, such as wireless networks and sensor networks. In such networks, the prevention

1The case where processes may exhibit faulty behaviors (such as crashes or Byzantine failures) is addressed in several

books (e.g., [2, 18, 19, 20]).
2log∗ n is the number of times the function log needs to be iteratively applied in log(log(log(...(log n)))) to obtain a value

≤ 2. As an example, if n is the number of atoms in the universe, log∗ n ⋍ 5.
3Some initial asymmetry is necessary to solve breaking symmetry problems with a deterministic algorithm.

1

of collisions (several neighbors of the same process broadcast during the same round), or conflicts (a

process and one of its neighbors issue a broadcast during the same round), does not come for free. In

particular, round-based algorithms that seek to provide deterministic communication guarantees in these

systems must be collision and conflict-free (C2-free in short).

We are interested in this paper to offer a programming model in which, at any round, a process

can either broadcast a message to its neighbors (conflict-freedom), or receive messages from at most

m of its neighbors (m-collision-freedom). This means that we want to give users a round-based pro-

gramming abstraction guaranteeing conflict-freedom and a weakened form of collision-freedom, that we

encapsulate under the name C2m-freedom (if m = 1, we have basic C2-freedom).

The ability to simultaneously receive messages from multiple neighbors can be realized in practice

by exploiting multiple frequency channels4 . The parameter m ≥ 1 is motivated by the following obser-

vations. While a process (e.g., a sensor) may have many neighbors, it can have constraints on the number

of its reception channels, or constraints on its local memory, that, at each round, allow it to receive and

store messages from only a bounded subset of its neighbors, namely m of them (m = 1, gives the classic

C2-free model, while m ≥ ∆ assumes no collision can occur as in the classic broadcast/receive model

presented previously). This “bounded memory” system parameter can be seen as a scalability parameter,

which allows the degree of a process (number of its neighbors) to be decoupled from its local memory

size.

C2m-freedom can be easily translated as a coloring problem, where any two neighbors must have

different colors (conflict-freedom), and any process has at most m neighbors with the same color (m-

collision-freedom). Once such a coloring is realized, message consistency is ensured by restricting the

processes to broadcast messages only at the rounds associated with their color. While it is correct, such

a solution can be improved, to allow more communication to occur during each round. More precisely,

while guaranteeing C2m-freedom, it is possible to allow processes to broadcast at additional rounds, by

allocating multiple colors to processes. From a graph coloring point of view, this means that, instead

of only one color, a set of colors can be associated with each process, while obeying the following two

constraints: (a) for any two neighbor processes, the intersection of their color sets must remain empty;

and (b) given any process, no color must appear in the color sets of more than m of its neighbors.

We call Coloring with Communication/Memory Constraints (CCMC) the coloring problem de-

scribed above. More precisely, this problem is denoted CCMC(n,m,K,≥ 1), where n is the number

of processes (vertices), m is the bound on each local memory (bound on the number of simultaneous

communication from a reception point of view), and K the maximal number of colors that are allowed.

“≥ 1” means that there is no constraint on the number of colors that that can be assigned to a process.

CCMC(n,m,K, 1) denotes the problem instance where each process is assigned exactly one color.

From a technical point of view, the paper focuses on tree networks. It presents a lower bound on the

value of K for these communication graphs, and an algorithm, optimal with respect to K , which solves

both instances of CCMC.

Roadmap The paper is made up of 7 sections. Section 2 presents the underlying system model. Sec-

tion 3 formally defines the CCMC problem. Then, considering tree networks, whose roots are dynami-

cally defined, Section 4 presents a lower bound on K for CCMC(n,m,K, 1) and CCMC(n,m,K,≥ 1)
to be solved. Section 5 presents then a K-optimal algorithm solving CCMC(n,m,K,≥ 1). (from which

a solution to CCMC(n,m,K, 1) can be easily obtained.) Section 6 presents a proof of the algorithm.

Finally, Section 7 concludes the paper.

4Depending on the underlying hardware (e.g., multi-frequency bandwidth, duplexer, diplexer), variants of this broad-

cast/receive communication pattern can be envisaged. The algorithms presented in this paper can be modified to take them into

account.

2

2 Synchronous Broadcast/Receive Model

Processes, initial knowledge, and the communication graph The system model consists of n se-

quential processes denoted p1, ..., pn, connected by a connected communication graph. When consider-

ing a process pi, 1 ≤ i ≤ n, the integer i is called its index. Indexes are not known by the processes.

They are only a notation convenience used to distinguish processes and their local variables.

Each process pi has an identity idi, which is known only by itself and its neighbors (processes at

distance 1 from it). The constant neighborsi is a local set, known only by pi, including the identities of

its neighbors (and only them). In order for a process pi not to confuse its neighbors, it is assumed that

no two processes at distance less than or equal to 2 have the same identity. Hence, any two processes at

distance greater than 2 can have the very same identity.

∆i denotes the degree of process pi (i.e. |neighborsi|) and ∆ denotes the maximal degree of the

graph (max{∆1, · · · ,∆n}). While each process pi knows ∆i, no process knows ∆ (a process px such

that ∆x = ∆ does not know that ∆x is ∆).

Timing model Processing durations are assumed equal to 0. This is justified by the following obser-

vations: (a) the duration of local computations is negligible with respect to message transfer delays, and

(b) the processing duration of a message may be considered as a part of its transfer delay.

Communication is synchronous in the sense that there is an upper bound D on message transfer

delays, and this bound is known by all the processes (global knowledge). From an algorithm design

point of view, we consider that there is a global clock, denoted CLOCK , which is increased by 1, after

each period of D physical time units. Each value of CLOCK defines what is usually called a time slot

or a round.

Communication operations The processes are provided with two operations denoted broadcast() and

receive(). A process pi invokes broadcast TAG(m) to send the message m (whose type is TAG) to its

neighbors. It is assumed that a process invokes broadcast() only at a beginning of a time slot (round).

When a message TAG(m) arrives at a process pi, this process is immediately warned of it, which triggers

the execution of the operation receive() to obtain and process the message. Hence, a message is always

received and processed during the time slot –round– in which it was broadcast.

From a linguistic point of of view, we use the two following when notations when writing algo-

rithms, where predicate is a predicate involving CLOCK and possibly local variables of the concerned

process.

when TAG(m) is received do communication-free processing of the message.

when predicate do code entailing at most one broadcast() invocation.

Message collision and message conflict in the m-bounded memory model As announced in the

Introduction, there is no dedicated communication medium for each pair of communicating processes,

and each process has local communication and memory constraints such that, at every round, it cannot

receive messages from more than m of it neighbors. If communication is not controlled, “message

clash” problems can occur, messages corrupting each other. Consider a process pi these problems are

the following.

• If more than m neighbors of pi invoke the operation broadcast() during the same time slot (round),

a message collision occurs.

• If pi and one of its neighbors invoke broadcast() during the same time slot (round), a message

conflict occurs.

As indicated in the introduction, an aim of coloring is to prevent message clashes from occurring, i.e.,

in our case, ensures C2m-freedom. Let us observe that a coloring algorithm must itself be C2m-free.

3

3 The Coloring with Communication/Memory Constraints Problem

Definition of the CCMC problem Let {p1, · · · , pn} be the n vertices of a connected undirected

graph. As already indicated, neighborsi denotes the set of the neighbors of pi. Let the color domain be

the set of non-negative integers, and m and K be two positive integers. The aim is to associate a set of

colors, denoted colors i, with each vertex pi, such that the following properties are satisfied.

• Conflict-freedom. ∀i, j : (pi and pj are neighbors)⇒ colors i ∩ colors j = ∅.

• m-Collision-freedom. ∀i,∀c : |{j : pj ∈ neighborsi ∧ c ∈ colors j}| ≤ m.

• Efficiency. | ∪1≤i≤n colors i| ≤ K .

The first property states the fundamental property of vertex coloring, namely, any two neighbors are

assigned distinct colors sets. The second property states the m-constraint coloring on the neighbors of

every process, while the third property states an upper bound on the total number of colors that can be

used.

As indicated in the Introduction, this problem is denoted CCMC(n,m,K, 1) if each color set is

constrained to be a singleton, and CCMC(n,m,K,≥ 1) if there is no such restriction.

Example An example of such a multi-coloring of a 21-process network, where ∆ = 10, and with the

constraint m = 3, is given in Figure 1. Notice that K = ⌈∆
m
⌉+ 1 = 5 (the color set is {0, 1, 2, 3, 4}).

Figure 1: Multi-coloring of a 21-process 10-degree tree with the constraint m = 3 (5 colors)

Particular instances The problem instance CCMC(n,∞,K, 1) is nothing other than the classical

vertex coloring problem, where at most K different colors are allowed (m = ∞ states that no process

imposes a constraint on the colors of its neighbors, except that they must be different from its own color).

The problem instance CCMC(n, 1,K, 1) is nothing other than the classical distance-2 coloring problem

(vertices at distance ≤ 2 have different colors).

Using the colors The reader can easily see that CCMC(n,m,K,≥ 1) captures the general coloring

problem informally stated in the introduction. Once a process pi has been assigned a set of colors

colors i, at the application programming level, it is allowed to broadcast a message to neighbors at the

rounds (time slots) corresponding to the values of CLOCK such that (CLOCK mod K) ∈ colorsi.

4

4 CCMC(n,m,K,≥ 1) in a Tree Network: Lower Bounds

4.1 An impossibility result

Considering tree networks, this section presents a lower bound on K: neither CCMC(n,m,K, 1), nor

CCMC(n,m,K,≥ 1), can be solved for K ≤ ⌈∆
m
⌉. The next sections will present an algorithm solving

CCMC(n,m,K,≥ 1) in the synchronous model described in Section 2, and a proof of it. As shown

next, this algorithm is such K = ⌈∆
m
⌉+ 1, and is consequently optimal with respect to the total number

of colors.

Theorem 1. Neither CCMC(n,m,K, 1), nor CCMC(n,m,K,≥ 1) can be solved when K ≤ ⌈∆
m
⌉.

Proof Let us first show that there is no algorithm solving CCMC(n,m,K, 1) when K ≤ ⌈∆
m
⌉. To this

end, let us consider a process pℓ, which has ∆ neighbors (by the very definition of ∆, there is a such

process). Let ∆ = m× x+ y, where 0 ≤ y < m. Hence, x = ∆−y
m

= ⌊∆
m
⌋ colors are needed to color

∆− y = m× x processes. Moreover, if y 6= 0, one more color is needed to color the y < m remaining

processes. It follows that ⌈∆
m
⌉ is a lower bound to color the neighbors of pℓ. As pℓ cannot have the same

color as any of its neighbors, it follows that at least ⌈∆
m
⌉ + 1 are necessary to color {pi} ∪ neighbors i,

which proves the theorem for CCMC(n,m,K,≥ 1).

Let us observe that an algorithm solving CCMC(n,m,K, 1) can be obtained from an algorithm solv-

ing CCMC(n,m,K,≥ 1) by associating with each pi a single color of its set colorsi. Hence, any algo-

rithm solving CCMC(n,m, ⌈∆
m
⌉,≥ 1) can be used to solve CCMC(n,m, ⌈∆

m
⌉, 1). As CCMC(n,m, ⌈∆

m
⌉, 1)

is impossible to solve, it follows that CCMC(n,m, ⌈∆
m
⌉,≥ 1) is also impossible to solve. 2Theorem 1

4.2 A necessary and sufficient condition for multicoloring

Let CCMC(n,m, ⌈∆
m
⌉ + 1, > 1) denote the problem CCMC(n,m, ⌈∆

m
⌉ + 1,≥ 1) where at least one

node obtains more than one color.

Theorem 2. CCMC(n,m, ⌈∆
m
⌉+ 1, > 1) can be solved on a tree of maximal degree ∆, if and only if

∃i : ⌈
∆

m
⌉+ 1 > max

({⌈

∆i

m

⌉}

∪
{⌊

∆j

m

⌋ ∣

∣

∣
pj ∈ neighbors i

})

+ 1.

The proof of this theorem appears in Appendix A.

5 CCMC(n,m,K,≥ 1) in a Tree Network: Algorithm

The algorithm presented in this section use as a skeleton a parallel traversal of a tree [21]. Such a

traversal is implemented by control messages that visit all the processes, followed by a control flow that

returns at the process that launched the tree traversal.

Algorithm 1 is a C2m-free algorithm that solves the CCMC(n,m, ⌈∆
m
⌉,≥ 1) problem. It assumes

that a single process initially receives an external message START(), which dynamically defines it as the

root of the tree. This message and the fact that processes at distance smaller or equal to 2 do not have the

same identity provide the initial asymmetry from which a deterministic coloring algorithm can be built.

The reception of the message START() causes the receiving process (say pr) to simulate the reception of

a fictitious message COLOR(), which initiates the sequential traversal.

Messages The algorithm uses two types of messages, denoted COLOR() and TERM().

• The messages COLOR() implement a control flow visiting in parallel the processes of the tree from

the root to the leaves. Each of them carries three values, denoted sender, cl map, and max cl.

5

– sender is the identity of the sender of the message. If it is the first message COLOR()
received by a process pi, sender defines the parent of pi in the tree.

– cl map is a dictionary data structure with one entry for each element in neighborsx∪{idx},
where px is the sender of the message COLOR(). cl map[idx] is the set of colors currently

assigned to the sender and, for each idj ∈ neighborx, cl map[idj] is the set of colors that

px proposes for pj .

– max cl is an integer defining the color domain used by the sender, namely the color set

{0, 1, . . . , (max cl − 1)}. Each child pi of the message sender will use the color domain

defined by max(max cl, σi) to propose colors to its own children (σi is defined below).

Moreover, all the children of the sender will use the same slot span {0, 1, . . . , (max cl−1)}
to broadcast their messages. This ensures that their message broadcasts will be collision-

free5.

• The messages TERM() propagate the return of the control flow from the leaves to the root. Each

message TERM() carries two values: the identity of the destination process (as this message is

broadcast, this allows any receiver to know if the message is for it), and the identity of the sender.

Local variables Each process pi manages the following local variables. The constant ∆i = |neighbors i|
is the degree of pi, while the constant σi = ⌈

∆i

m
⌉ + 1 is the number of colors needed to color the star

graph made up of pi and its neighbors.

• statei (initialized to 0) is used by pi to manage the progress of the tree traversal. Each process

traverses five different states during the execution of the algorithm. States 1 and 3 are active states:

a process in state 1 broadcasts a COLOR() message for its neighbors, while a process in state 3
broadcasts a message TERM() which has a meaning only for its parent. States 0 and 2 are waiting

states in which a process listens on the broadcast channels but cannot send any message. Finally,

state 4 identifies local termination.

• parenti stores the identity of the process pj from which pi receives a message COLOR() for the

first time (hence pj is the parent of pi in the tree). The root pr of the tree, defined by the reception

of the external message START(), is the only process such that parentr = idr.

• coloredi is a set containing the identities of the neighbors of pi that have been colored.

• to colori is the set of neighbors to which pi must propagate the coloring (network traversal).

• color mapi[neighbors i ∪ {idi}] is a dictionary data structure where pi stores colors of its neigh-

bors in color mapi[neighbors i], and its own colors in color mapi[idi]; colors i is used as a syn-

onym of color mapi[idi].

• max cli defines both the color domain from which pi can color its children, and the time slots

(rounds) at which its children will be allowed to broadcast.

• slot spani is set to the value max cl carried by the message COLOR() received by pi from its

parent. As this value is the same for all the children of its parent, they will use the same slot span

to define the slots during which each child will be allowed to broadcast messages.

Initial state In its initial state (statei = 0), a process pi waits for a message COLOR(). As already

indicated, a single process receives the external message START(), which defines it at the root process.

It is assumed that CLOCK = 0 when a process receives this message. When it receives it, the corre-

sponding process pi simulates the reception of the message COLOR(idi, cl map, σi) where cl map[idi]
defines its color, namely, (CLOCK + 1) mod σi (lines 01-02). Hence, at round number 1, the root will

send a message COLOR() to its children (lines 19-20).

5As we will see, conflicts are prevented by the message exchange pattern imposed by the algorithm.

6

Initialization: σi = ⌈
∆i

m
⌉+ 1; statei ← 0; colors i ← ∅; colors i is a synonym of color mapi[idi].

(01) when START() is received do % a single process pi receives this external message %

(02) pi executes lines 04-25 as if it received the message COLOR(idi, cl map, σi)
where cl map [idi] = {(CLOCK + 1) mod σi} .

(03) when COLOR(sender, cl map,max cl) is received do

(04) if (first message COLOR() received)

(05) then parenti ← sender; color mapi[parenti]← cl map[sender];
(06) coloredi ← {sender}; to colori ← neighborsi \ {sender};
(07) color mapi[idi]← cl map[idi]; % Synonym of colors i %

(08) max cli ← max(max cl, σi); slot spani ← max cl;

(09) if (to colori 6= ∅) % next lines: tokens i is a multiset %

(10) then tokens i ← {m tokens with color x, for each x ∈
(

[0..(max cli − 1)] \ colors i
)

}
\ { one token with color z, for each z ∈ color mapi[parenti] };

(11) while (|tokens i| < |to colorsi|) do

(12) if (|colorsi| > 1) then let cl ∈ colors i; suppress cl from colors i
(13) add m tokens colored cl to tokens i
(14) else let cl be the maximal color in color mapi[parenti];
(15) add one token colored cl to tokens i;

(16) color mapi[parenti]← color mapi[parenti] \ {cl}
(17) end if

(18) end while;

(19) Extract |to colorsi| non-empty non-intersecting multisets tk[id] (where id ∈ to colori)

from tokens i such that no tk[id] contains several tokens with the the same color;

(20) for each id ∈ to colori do color mapi[id]← {colors of the tokens in tk[id]} end for;

(21) statei ← 1 % pi has children %

(22) else statei ← 3 % pi is a leaf %

(23) end if

(24) else color mapi[idi]← color mapi[idi] ∩ cl map[idi]
(25) end if.

(26) when
(

(CLOCK mod slot spani) ∈ colorsi) ∧ (statei ∈ {1, 3})
)

do

(27) case (statei = 1) then broadcast COLOR(idi, color mapi,max cli); statei ← 2
(28) (statei = 3) then broadcast TERM(parenti, idi); statei ← 4 % pi’s subtree is colored %

(29) end case.

(30) when TERM(dest, id) is received do

(31) if (dest 6= idi) then discard the message (do not execute lines 25-28) end if;

(32) coloredi ← coloredi ∪ {id};
(33) if (coloredi = neighbors i)

(34) then if (parenti = idi) then the root pi claims termination else statei ← 3 end if

(35) end if.

Algorithm 1: C2m-free algorithm solving CCMC(n,m, ⌈∆
m
⌉+ 1,≥ 1) in tree networks (code for pi)

Algorithm: reception of a message COLOR() When a process pi receives a message COLOR() for

the first time, it is visited by the network traversal, and must consequently (a) obtain an initial color

set, and (b) propagate the the network traversal, if it has children. The processing by pi of this first

message COLOR(sender, cl map,max cl) is done at lines 05-23. First, pi saves the identity of its

parent (the sender of the message) and its proposed color set (line 05), initializes coloredi to {sender},
and to colori to its other neighbors (line 06). Then pi obtains a color set proposal from the dictionary

cl map carried by the message (line 07), computes the value max cli from which its color palette will

be defined, and saves the value max cl carried by the message COLOR() in the local variable slot spani

(line 08). Let us remind that the value max cli allows it to know the color domain used up to now, and

the rounds at which it will be able to broadcast messages (during the execution of the algorithm) in a

7

collision-free way.

Then, the behavior of pi depends on the value of to colori. If to colori is empty, pi is a leaf, and

there is no more process to color from it. Hence, pi proceeds to state 3 (line 22).

If to colori is not empty, pi has children. It has consequently to propose a set of colors for each of

them, and save these proposals in its local dictionary color mapi[neighbors i]. To this end, pi computes

first the domain of colors it can use, namely, the set {0, 1, . . . , (max cli − 1)}, and considers that

each of these colors c is represented by m tokens colored c. Then, it computes the multiset6, denoted

tokens i, containing all the colored tokens it can use to build a color set proposal for each of its children

(line 10). The multiset tokens i is initially made up of all possible colored tokens, from which are

suppressed (a) all tokens associated with the colors of pi itself, and, (b) one colored token for each color

in color mapi[parenti] (this is because, from a coloring point of view, its parent was allocated one such

colored token for each of its colors).

Then, pi checks if it has enough colored tokens to allocate at least one colored token to each of

its children (assigning thereby the color of the token to the corresponding child). If the predicate

|tokens i| ≥ |to colori| is satisfied, pi has enough colored tokens and can proceed to assign set of

colors to its children (lines 19-20). Differently, if the predicate |tokens i| < |to colori| is satisfied, pi
has more children than colored tokens. Hence, it must find more colored tokens. For that, if colors i
(i.e., color mapi[idi]) has more than one color, pi suppresses one color from colors i, adds the m as-

sociated colored tokens to the multiset tokens i (lines 12-13), and re-enters the “while” loop (line 11).

If colors i has a single color, this color cannot be suppressed from colors i. In this case, pi considers

the color set of its parent (color mapi[parenti]), takes the maximal color of this set, suppresses it from

color mapi[parenti], adds the associated colored token to the multiset tokens i, and –as before– re-

enters the “while” loop (line 15). Only one token colored cl is available because the (m − 1) other

tokens colored cl were already added into the multiset tokens i during its initialization at line 10.

As already said, when the predicate |tokens i| < |to colori| (line 11) becomes false, tokens i con-

tains enough colored tokens to assign to its children. This assignment is done at lines 19-20. Let

ch = |to colori| (number of children of pi); pi extracts ch pairwise disjoint and non-empty subsets of

the multiset tokens i, and assigns each of them to a different neighbor. “Non-empty non-intersecting

multisets” used at line 19 means that, if each of z multisets tk[idx] contains a token with the same color,

this colored token appears at least z times in the multiset tokens i.

If the message COLOR(sender, cl map,−) received by pi is not the first one, it was sent by one of

its children. In this case, pi keeps in its color set color mapi[idi] (colors i) only colors allowed by its

child sender (line 24). Hence, when pi has received a message COLOR() from each of its children, its

color set colors i has its final value.

Algorithm: broadcast of a message A process pi is allowed to broadcast a message only at the

rounds corresponding to a color it obtained (a color in colors i = color mapi[idi] computed at lines 07,

12, and 24), provided that its current local state is 1 or 3 (line 26).

If statei = 1, pi received previously a message COLOR(), which entailed its initial coloring and a

proposal to color its children (lines 09-21). In this case, pi propagates the tree traversal by broadcasting

a message COLOR() (line 27), which will provide each of its children with a coloring proposal. Process

pi then progresses to the local waiting state 2.

If statei = 3, the coloring of the tree rooted at pi is terminated. Process pi consequently broadcasts

the message TERM(parenti, idi) to inform its parent of it. It also progresses from state 3 to state 4,

which indicates its local termination (line 28).

6Differently from a set, a multiset (also called a a bag), can contain several times the same element. Hence, while {a, b, c}
and {a, b, a, c, c, c} are the same set, they are different multisets.

8

Algorithm: reception of a message TERM() When a process pi receives such a message it discards it

if it is not the intended destination process (line 31). If the message is for it, pi adds the sender identity

to the set coloredi (line 32). Finally, if coloredi = neighbors i, pi learns that the subtree rooted at it is

colored (line 33). It follows that, if pi is the root (parenti = i), it learns that the algorithm terminated.

Otherwise, it enters state 3, that will direct it to report to its parent the termination of the coloring of the

subtree rooted at it.

Solving CCMC(n,m,K, 1) in a tree Algorithm 1 can be easily modified to solve CCMC(n,m,K, 1).

When a process enters state 3 (at line 22 or line 34), it reduces color mapi[idi] (i.e., colors i) to obtain

a singleton.

6 CCMC(n,m,K,≥ 1) in a Tree Network: Cost and Proof

The proof assumes n > 1. Let us remember that colors i and color mapi[idi] are the same local variable

of pi, and pr denotes the dynamically defined root process.

Cost of the algorithm Each non-leaf process broadcasts one message COLOR(), and each non-root

process broadcasts one message TERM(). Let x be the number of leaves. There are consequently (2n −
(x+ 1)) broadcasts. As ∆ ≤ x+ 1 (7), the number of broadcast is upper bounded by 2n−∆.

Given an execution whose dynamically defined root is the process pr, let d be the height of the

corresponding tree. The root computes the colors defining the slots (rounds) at which its children can

broadcast the messages COLOR() and TERM(). These colors span the interval [0..⌈∆r

m
⌉], which means

that the broadcasts of messages COLOR() by the processes at the first level of the tree span at most

⌈∆r

m
⌉ + 1 rounds. The same broadcast pattern occurs at each level of the tree. It follows that the

visit of the tree by the messages COLOR() requires at most d⌈∆
m
⌉ rounds. As the same occurs for the

the messages TERM(), returning from the leaves to the root, it follows that the time complexity of the

algorithm is O(d⌈∆
m
⌉).

Lemma 1. Algorithm 1 is conflict-free.

Proof The algorithm uses two types of messages: COLOR() and TERM(). We first show conflict-

freedom for COLOR() messages (if a process broadcasts a message COLOR(), none of its neighbors is

broadcasting any message in the same round). Let us first notice that a process pi broadcasts at most one

message COLOR(), and one message TERM() (this is due to the guard statei ∈ {1, 3}, line 26, and the

fact that the broadcast of a message makes its sender progress to the waiting state 2 or 4). Moreover, let

us make the following observations.

• Observation 1: The first message sent by any node is of type COLOR() (line 27).

• Observation 2: Except for the root process, a message COLOR() is always broadcast by a process

after it received a message COLOR() (which triggers the execution of lines 03-25).

• Observation 3: Except for leaf processes, a message TERM() is always broadcast by a process

after it received a message TERM() from each of its children (lines 30-35 and line 28.).

Observations 1 and 2 imply that when the root process broadcasts its COLOR() message, none of its

neighbors is broadcasting a message, and they all receive the root’s COLOR() message without conflict.

Let us now consider a process pi, different from the root, which receives its first message COLORk()
(from its parent pk). Because there is no cycle in the communication graph (a tree), all the children of pi

7Let pi be the process that has ∆ as degree. If pi is the root of the tree, the tree contains at least ∆ leaf processes. This is

because each neighbor of pi is either a leaf or the root of a subtree that has at least one leaf process. And if pi is not the root

of the tree, pi possesses ∆− 1 children, and the number of leaf processes is at least ∆− 1 following a similar reasoning.

9

(neighbors i \ {pk}) are in state 0, waiting for their COLOR() message. Moreover, due to Observations

1 and 2, they will receive from pi their message COLOR() without conflict. After sending its COLOR()
message, pi’s parent pk remains in the waiting state 2 until it receives a TERM() message from all its

children (lines 32-33), which include pi. As a consequence, pk is not broadcasting any message in the

round in which it receives pi’s COLOR() message, which is consequently received without conflict by all

its neighbors.

As far the messages TERM() are concerned we have the following. Initially, only a leaf process

can broadcast a message, and when it does it, its parent is in the waiting state 2 (since it broadcast

a message COLOR() at line 27 and it must receive messages TERM() to proceed to state 3). Hence a

message TERM() broadcast by a leaf cannot entail conflict. Let us now consider a non-leaf process pi. It

follows from Observation 3 that pi can broadcast a message TERM() only when its children are in state

4 (in which they cannot broadcast), and its parent (because it has not yet received a message TERM()
from each of its children) is in the waiting state 2. Hence, we conclude that the broadcast of a message

TERM() by a non-leaf process is conflict-free, which concludes the proof of the lemma. 2Lemma 1

Definition A message COLOR(sender, cl map,max cl) is well-formed if its content satisfies the fol-

lowing properties. Let sender = idi.

M1 The keys of the dictionary data structure cl map are the identities in neighborsi ∪ {idi}.

M2 ∀ id ∈ (neighbors i ∪ {idi}) : cl map[id] 6= ∅.

M3 ∀ id ∈ neighbors i : cl map[id] ∩ cl map[idi] = ∅.

M4 ∀c : |{j : (idj ∈ neighbors i) ∧ (c ∈ cl map[idj])}| ≤ m.

M5 1 < max cl ≤ ⌈∆
m
⌉+ 1.

M6 ∀ id ∈ (neighbors i ∪ {idi}) : cl map[id] ⊆ [0..max cl − 1].

Once established in Lemma 3, not all properties M1-M6 will be explicitly used in the lemmas that

follow. They are used by induction to proceed from one well-formed message to another one.

Lemma 2. If a message COLOR(sender, cl map,max cl) received by a process pi 6= pr is well-formed

and entails the execution of lines 05-23, the while loop (lines 11-18) terminates, and, when pi exits the

loop, the sets colors i and color mapi[parenti] are not empty, and their intersection is empty.

Proof Let us consider a process pi 6= pr that receives a well-formed COLORj(sender, cl map,max cl)
message from pj . Let us assume COLOR() causes pi to start executing the lines 05-23, i.e., COLOR() is

the first such message received by pi. The body of the while loop contains two lines (lines 12 and 14)

that select elements from two sets, colors i and color mapi[parenti] respectively.

Before discussing the termination of the while loop, we show that lines 12 and 14 are well-defined,

i.e. the sets from which the elements are selected are non-empty. To this aim, we prove by induction

that the following invariant holds in each iteration of the loop:

color mapi[parenti] 6= ∅, (1)

colors i 6= ∅, (2)

|tokens i| = m×max cli −m× |colors i| − |color mapi[parenti]|. (3)

Just before the loop (i.e., before line 11), Assertion (1) follows from the assignment to color mapi[parenti]
at line 05 and the property M2 of COLORj() (idj = parenti). Assertion (2) also follows from M2

(colorsi is synonym of color mapi[idi]). Assertion (3) follows from M3, M6, and the initialization of

max cli at line 08.

Let us now assume that Assertion (1) holds at the start of a loop iteration (i.e., just before lines 12).

There are two cases.

10

• If |colors i| > 1, lines 14-16 are not executed, and consequently color mapi[parenti] is not

modified. It follows from the induction assumption that Assertion (1) still holds.

• If |colors i| ≤ 1, we have the following. Because we are in the while loop, we have |tokens i| <
|to colorsi|, which, combined with Assertion (3), implies

|to colorsi| > m×max cli −m× |colors i| − |color mapi[parenti]|,
from which we derive

|color mapi[parenti]| > m×max cli −m× |colors i| − |to colorsi|,
> m×max cli −m× |colors i| − (∆i − 1) (because of line 06),

> m× σi −m× |colors i| − (∆i − 1) (because of line 08),

> m× (⌈∆i

m
⌉+ 1)−m× |colors i| − (∆i − 1) (by definition),

> ∆i +m−m× |colors i| − (∆i − 1) (arithmetic),

> m× (1− |colors i|) + 1.

Hence, because |colors i| ≤ 1, we obtain |color mapi[parenti]| > 1, which means that pi’s
local variable color mapi[parenti] contains at least two elements before the execution of line 12.

Because only one color is removed from color mapi[parenti], this local variable remains non-

empty after line 16, thus proving Assertion (1).

Let us now assume that both Assertion (2) and Assertion (3) hold at the start of a loop iteration (i.e., just

before line 12). There are two cases.

• Case |colors i| > 1. In this case we have: (i) one color is removed from colors i, (ii) m colored

tokens are added to tokens i, and (iii) color mapi[parenti] remains unchanged. |colors i| > 1 and

(i) imply that Assertion (2) remains true; and (i) and (ii) mean that Assertion (3) is preserved.

• Case |colors i| ≤ 1. In this case we have: (i) one color is removed from color mapi[parenti], and

one colored token added to tokens i, and (ii) colors i stays unchanged. (i) implies that Assertion

(3) remains true, and (ii) ensures Assertion (2) by assumption.

This concludes the proof that the three assertions (1)–(3) are a loop invariant. Hence, Assertion (1) and

Assertion (2) imply that lines 12 and 14 are well-defined.

Let us now observe that, in each iteration of the loop, new colored tokens are added to tokens i, and

thus |tokens i| is strictly increasing. Because |to colori| remains unchanged, the condition |tokens i| <
|to colori| necessarily becomes false at some point, which proves that the loop terminates.

Just after the loop, the invariant is still true. In particular Assertion (1) and Assertion (2) show that

both the sets colors i and color mapi[parenti] are not empty when pi exits the while loop.

Finally, due to to the fact that the message COLORj() is well-formed, it follows from M3 that we

have colors i ∩ color mapi[parenti] = ∅ after line 07. As colors are added neither to colors i, nor to

color mapi[parenti] in the loop, their intersection remains empty, which concludes the proof of the

lemma. 2Lemma 2

Lemma 3. All messages COLOR() broadcast at line 27 are well-formed.

Proof To broadcast a message COLOR(), a process pi must be in local state 1 (line 27). This means that

pi executed line 21, and consequently previously received a message COLOR(sender, cl map,max cl)
that caused pi to execute lines 05-23.

Let us first assume that COLOR() is well-formed. It then follows from Lemma 2 that pi exits the

while loop, and each of colors i and color mapi[parenti] is not empty (A), and they have an empty

intersection (B). When considering the message COLOR(idi, color mapi,max cli) broadcast by pi we

have the following.

11

• M1 follows from the fact that the entries of the dictionary data structure created by pi are:

color mapi[parenti] (line 05), color mapi[idi] (line 07), and color mapi[id] for each id ∈
to colorsi = neighbors i \ {parenti} (lines 06 and 20), and the observation that no entry is

ever removed from color mapi is the rest of the code.

• M2 follows from (A) for color mapi[parenti] and color mapi[idi], from line 19 for the iden-

tities in to colorsi = neighbors i \ {parenti} (due to |tokensi| ≥ |to colorsi| when line 19 is

executed, and the non-intersection requirement of the tk[id] sets, no tk[id] is empty), and from

the observation that color mapi is not modified between the end of line 20 and the broadcast of

line 27. This last claim is derived from the fact that color mapi is only modified when messages

are received, and that neither pi’s parent nor pi’s children are in states that allow them to send

messages while pi is transitioning from line 20 to line 27.

• Similarly M3 follows

– for id = parenti: from (B) and the fact that color mapi[parenti] never increases,

– for id ∈ to colori = neighbors i \ {parenti}: from the fact that, due to lines 10 and 12,

at line 19 tokens i contains no token whose color belongs to colors i, from which we have

tk[id] ∩ color mapi[idi] = ∅ for any id ∈ to colori.

• M4 follows from the construction of tokens i. This construction ensures that, for any color c,
tokens i contains at most m tokens with color c (line 10, 13, and 15).

• M5 is an immediate consequence of the assignment max cli ← max(max cl, σi) at line 15.

• M6 follows from the following observations:

– for id ∈ {idi, parenti}: from max cl ≤ max cli (line 08) and the fact that the message

COLOR() received by pi is well-formed (hence color mapi[idi] ∪ color mapi[parenti] ⊆
[0..(max cl − 1)]),

– for id ∈ to colori = neighbors i \ {parenti}: from the fact that tokens i contains only

tokens whose color is in [0..(max cli − 1)] (line 10).

The previous reasoning showed that, if a process receives a well-formed message COLOR(), executes

lines 05-23 and line 27, the message COLOR(idi, color mapi,max cli) it will broadcast at this line is

well-formed. Hence, to show that all messages broadcast at line 27 are well-formed, it only remains to

show that the message COLOR(idr , color mapr,max clr) broadcast by the root pr is well-formed. Let

us remember that neighborsr is a constant defined by the structure of the tree, and parentr = idr /∈
neighborsr.

Let us notice that the message COLOR(id, cl map,max cl), that pr sends to itself at line 02,is not

well-formed. This is because, cl map[id] is not defined for id ∈ neighbors i. When pr receives this

message we have the following after line 10:

|tokensr| = m× |σr| −m = m× (|σr| − 1) = m⌈∆r

m
⌉ ≥ ∆r,

from which we conclude |tokensr| ≥ ∆r = |to colorsr| = |neighborsi|. Hence, pr does not

execute the loop body, and proceeds to lines 19-20 where it defines the entries color mapr[id] for

id ∈ to colorsr = neighborsr . A reasoning similar to the previous one shows that the message

COLOR(idr , color mapr,max clr) broadcast by pr at line 27 satisfies the properties M1-M6, and is

consequently well-formed. (The difference with the previous reasoning lies in the definition of the set

to colorsi which is equal to neighbors i \ {parenti} for pi 6= pr, and equal to neighborsr for pr.)

2Lemma 3

Lemma 4. If a process pi computes a color set (colors i), this set is not empty.

12

Proof Let us first observe that, if a process pi 6= pr receives a message COLOR(−, cl map,−), the

previous lemma means that this message is well-formed, and due to property M2, its field cl map[idi]
is not empty, from which follows that the initial assignment of a value to color mapi[idi] ≡ colors i is a

non-empty set. Let us also observe, that, even if it is not well-formed the message COLOR(−, cl map,−)
received by the root satisfies this property. Hence, any process that receives a message COLOR() assigns

first a non-empty value to color mapi[idi] ≡ colors i.

Subsequently, a color can only be suppressed from color mapi[idi] ≡ colors i at line 24 when

pi receives a message COLOR() from one of its children. If pi is a leaf, it has no children, and con-

sequently never executes line 24. So, let us assume that pi is not a leaf and receives a message

COLOR(idj , cl map,−) from one of its children pj . In this case pi previously broadcast at line 27 a mes-

sage COLOR(idi, color mapi,−) that was received by pj and this message is well-formed (Lemma 3).

A color c that is suppressed at line 24 when pi processes COLOR(idj , cl map,−) is such that c ∈
colors i and c /∈ cl map[idi]. cl map[idi] can be traced back to the local variable color mapj[idi] used

by pj to broadcast COLOR() at line 27. Tracing the control flow further back, color mapj[idi] was

initialized by pj to color mapi[idi] (line 05) when pj received the well-formed message COLOR() from

pi.When processing COLOR() received from pi, process pj can suppress colors from color mapj[idi]
only at line 16, where it suppresses colors starting from the greatest remaining color. We have the

following.

• If pi is not the root, the message COLOR() it received was well-formed (Lemma 3). In this case, it

follows from the proof of Lemma 2 that it always remains at least one color in color mapj[idi].

• If pi = pr, its set colors r is a singleton (it “received” COLOR(idr , cl mapr,−) where cl mapr
has a single entry, namely cl mapr[idr] = {1}). When pj computes tokensj (line 10) we have

|tokens j| = m×max(|σr|, |σj |)−m = m⌈
max(∆r,∆j)

m
⌉ ≥ max(∆r,∆j) ≥ ∆j = |to colorsj|,

from which follows that |tokens j| ≥ |to colorsj| = |neighborsj |−1. Hence, pj does not execute

the loop, and consequently does not modify color mapj[idr].

Consequently, the smallest color of colorsi ≡ color mapi[idi] is never withdrawn from color mapj[idi].
It follows that, at line 24, pi never withdraws its smallest color from the set color mapi[idi]. 2Lemma 4

Lemma 5. If pi and pj are neighbors colors i ∩ colors j = ∅.

Proof As all color sets are initialized to ∅, the property is initially true. We show that, if a process

receives a message COLOR(), the property remains true. As TERM() messages do not modify the

coloring—lines 30-35—they do not need to be considered.

Let us consider two neighbor processes pi and pj , which computes their color sets (if none or only

one of pi and pj computes its color set, the lemma is trivially satisfied). As the network is a tree, one of

them is the parent of the other. Let pi be the parent of pj .
Process pi broadcast a message COLOR(−, cl map,−) at line 27 in which the set cl map[idj] is

color mapi[idj], as computed at line 19. If this message is received by pj , this set will in turn be

assigned to color mapi[idj] at pj . As this message is well-formed (Lemma 3), we therefore have

color mapi[idi] ∩ color mapj[idj] = ∅ (Property M3 of a well-formed message). Then, while pi can

be directed to suppress colors from color mapi[idi] at line 24, it never adds a color to this set. The same

is true for pj and color mapj[idj]. It follows that the predicate color mapi[idi]∩ color mapj[idj] = ∅
can never be invalidated. 2Lemma 5

Lemma 6. ∀i,∀c : |{j : j ∈ neighbors i ∧ c ∈ colors j}| ≤ m.

Proof The property is initially true. We show that it remains true when processes receive messages.

Let us consider a process pi that broadcasts a message COLOR(). Due to the fact that such mes-

sages are broadcast only at line 27, it follows from Lemma 3 that the message COLOR(idi, cl map,−)
broadcast by pi is well-formed. Hence it satisfies property M4. When processing this message

13

A each child pj of pi adopts cl map[idj] as its initial color set and assigns it to color mapj[idj];

B pi’s parent pk uses cl map[idk] to update color mapk[idk] at line 24 such that color mapk[idk]
⊆ cl map[idk].

(A), (B), and M4 imply that just after pi’s neighbors have processed pi’s message, the lemma holds.

As already seen in the proof of other lemmas, color mapj[idj] may subsequently decrease, but never

increases: colors can be suppressed from color mapj[idj] (line 24) but never added to it. And the

same is true at pi for its set of colors color mapi[idi], and at its parent pk for color mapk[idk]. It then

follows that |{j : j ∈ neighbors i∧c ∈ colors j }| ≤ m throughout the execution of the algorithm, which

concludes the proof of the lemma. 2Lemma 6

Lemma 7. Algorithm 1 is collision-free.

Proof We have to show that no process can have more than m of its neighbors that broadcast during the

same round. Initially, all processes are in state 0. Let us consider a process pi and assume that one of its

neighbors pj is broadcasting a message. Let us further assume that this message is of type COLOR().

• If pj is pi’s parent, pj’s COLOR() message is the first message received by pi, and both pi and its

children (pi’s remaining neighbors) are in state 0, and hence silent. There is no collision at pi.

• If pj is one of pi’s children, the value slot spanj used by pj at line 26 is equal to max cl con-

tained in the message COLOR(−,−,max cl) first received by pj from pi. Because of Lemma 3,

this message is well-formed, and consequently satisfies property M6. Any other child pℓ of pi
broadcasting during this round will have received the same first message, and will therefore be us-

ing the same slot spanℓ = max cl value. It follows from Property M6, the assignment of line 07

executed by any child pℓ (of pi) that received the message, and the fact that its set colors ℓ can only

decrease after being first assigned, that colors ℓ ⊆ [0..slot spanℓ − 1] for any child pℓ of pi (C).

Lemma 6, Property (C), and the CLOCK -based predicate defining the rounds at which a process

is allowed to broadcast (line 26), imply that at most m children of pi can broadcast during the

same round. If pi has a parent pk (i.e. pi is not the root), both pi and pk are in state 2, and hence

pk is silent, proving the lemma. If pi is the root, all its neighbors are its children, and the lemma

also holds.

The same reasoning applies to the messages TERM() broadcast by the children of pi and its parent.

2Lemma 7

Lemma 8. Each process computes a set of colors, and the root process knows when coloring is termi-

nated.

Proof Let us first observe that, due to Lemmas 2 and 3, no process pi 6= pr can loop forever inside the

while loop (lines 11-18), when it receives its first message COLOR(). The same was proved for the root

pr at the end of the proof of Lemma 4. Moreover, a process cannot block at line 24 when it receives

other messages COLOR() (one from each of its children). Hence, no reception of a message COLOR()
can prevent processes from terminating the processing of the message. The same is trivially true for the

processing of a message TERM().

Let us first show that each process obtains a non-empty set of colors. To this end, we show that each

non-leaf process broadcasts a message COLOR().

• When the root process pr receives the external message START(), it “simulates the sending to it-

self” of the message COLOR(idr , color mapr, σr), where the dictionary data structure color mapr
has a single element, namely, color mapr[idr] = {1}. The root pr executes consequently the

14

lines 25-23, during which it obtains a color (color mapr[idr] = {1}, line 07), and computes a set

of proposed colors color mapr[idj] for each of its children pj (lines 19-20). It then progresses to

the local non-waiting state 1 (line 21). Hence, during the first round, it broadcasts to its neighbors

the message COLOR(idr , color mapr, σr).Because the algorithm is conflict- and collision-free

(Lemmas 1 and 5), this message is received by all the root’s neighbors.

• Let us now consider a process pi that receives a message COLOR(sender, color map,max cl)
for the first time. It follows from Lemma 4 that pi starts computing a non-empty set colors i
and enters the waiting state 1 (line 21). Finally, as colors i ⊆ [0..slot spani −1], and CLOCK

never stops increasing, the predicate of line 26 is eventually satisfied. It follows pi broadcasts

the messageCOLOR(idi , color mapi,max cli). As above all of pi’s neighbors will receive this

message.

It follows that COLOR() messages flood the tree from the root to the leaves.

Moreover, when a process pi has received a message COLOR() from each of its neighbors (children

and parent), it has obtained the final value of its color set color mapi[idi] = colors i. Due to

lemma 4, this set is not empty, which concludes the first part of the proof.

Let us now show that the root learns coloring termination. This relies on the messages TERM(). As

previously, due to Lemma 1 and Lemma 7, these messages entail neither message conflicts nor message

collisions.

Let us observe that each leaf process enters the non-waiting state 3. When the predicate of line 26

is satisfied at a leaf pℓ (this inevitably occurs), this process broadcasts the message TERM() to its parent

pi. Then, when pi has received a message TERM() from each of its children, it broadcasts TERM() to its

own parent. This sequence repeats itself on each path from a leaf to the root. When the root has received

a message TERM() from each of its children, it learns termination (line 34), which concludes the proof

of the lemma. 2Lemma 8

Lemma 9. |
⋃

1≤i≤n colors i | = ⌈
∆
m
⌉+ 1.

Proof Let pr, pa, · · · , pℓ be a path in the tree starting at the root pr and ending at a leaf pℓ. It follows

from

• the content of the parameter max cl of the messages COLOR(sender, cl map,max cl) broadcast

along this path of the tree (broadcast at line 27 and received at line 03), and

• the assignment of max(max cl, σi) to max cli at line 08,

that max clℓ = max(σr, σa, · · · , σℓ). Let pℓ1, ..., pℓx be the set of leaves of the tree. It follows that

max(max clℓ1, · · · ,max clℓx) = max(σ1, · · · , σn), i.e., the value max cl carried by any message is

≤ ⌈∆
m
⌉+ 1.

The fact that a process pi uses only colors in [0..(max cli − 1)], combined with Theorem 1 implies

the lemma. The algorithm is consequently optimal with respect to the number of colors. 2Lemma 9

Theorem 3. Let K = ⌈∆
m
⌉+1. Algorithm 1 is a C2m-free algorithm, which solves CCMC(n,m,K,≥

1) in tree networks. Moreover, it is optimal with respect to the value of K .

Proof The proof that Algorithm 1 is C2m-free follows from Lemma 1 and Lemma 7. The proof that it

satisfies the Conflict-freedom, Collision-freedom, and Efficiency properties defining the CCMC(n,m,K,≥
1) problem follows from Lemmas 2-6, and Lemma 8. The proof of its optimality with respect to K fol-

lows from Lemma 9. 2Theorem 3

15

7 Conclusion

The paper first introduced a new vertex coloring problem (called CCMC), in which a process may be

assigned several colors in such a way that no two neighbors share colors, and for any color c, at most

m neighbors of any vertex share the color c. This coloring problem is particularly suited to assign

rounds (slots) to processes (nodes) in broadcast/receive synchronous communication systems with com-

munication or local memory constraints. Then, the paper presented a distributed algorithm which solve

this vertex coloring problem for tree networks in a round-based programming model with conflicts and

(multi-frequency) collisions. This algorithm is optimal with respect to the total number of colors that

can be used, namely it uses only K = ⌈∆
m
⌉ + 1 different colors, where ∆ is the maximal degree of the

graph.

It is possible to easily modify the coloring problem CCMC to express constraints capturing specific

broadcast/receive communication systems. As an example, suppressing the conflict-freedom constraint

and weakening the collision-freedom constraint into

∀i,∀c : |{j : (idj ∈ neighborsi ∪ {idi}) ∧ (c ∈ colors j)}| ≤ m, (4)

captures bi-directional communication structures encountered in some practical systems in which nodes

may send and receive on distinct channels during the same round. Interestingly, solving the coloring

problem captured by (4) is equivalent to solving distance-2 coloring in the sense that a purely local

procedure (i.e., a procedure involving no communication between nodes) executed on each node can

transform a classical distance-2 coloring into a multi-coloring satisfying (4). More precisely, assuming

a coloring col : V 7→ [0..(K ∗m) − 1] providing a distance-2 coloring with K ∗m colors on a graph

G = (V,E), it is easy to show that the coloring (with one color per vertex)

col′ : V 7→ [0 .. K − 1]
x → col(x) mod K,

(5)

fulfills (4) on G (8). Since the distance-2 problem with K∗m colors is captured by CCMC(n, 1,K∗m, 1)
(as discussed in Section 3), the proposed algorithm can also solve the coloring condition captured by (4)

on trees in our computing model.

Moreover, from an algorithmic point of view, the proposed algorithm is versatile, making it an

attractive starting point to address other related problems. For instance, in an heterogeneous network,

lines 19-20 could be modified to take into account additional constraints arising from the capacities of

individual nodes, such as their ability to use only certain frequencies.

Last but not least, a major challenge for future work consists in solving the CCMC problem in

general graphs. The new difficulty is then to take into account cycles.

References

[1] Angluin D., Local and global properties in networks of processors. Proc. 12th ACM Symposium on Theory of Computa-

tion (STOC’81), ACM Press, pp. 82–93 (1981)

[2] Attiya H. and Welch J., Distributed computing: fundamentals, simulations and advanced topics, (2d Edition), Wiley-

Interscience, 414 pages (2004)

[3] Barenboim L. and Elkin M., Deterministic distributed vertex coloring in polylogarithmic time. Journal of the ACM,

58(5):23 (2011)

[4] Barenboim L. and Elkin M., Distributed graph coloring, fundamental and recent developments, Morgan & Claypool

Publishers, 155 pages (2014)

8This is because (a) distance-2 coloring ensures that any vertex and its neighbors have different colors, and (b) there are at

most m colors c1, ..., cx ∈ [0..(K ∗m)−1] (hence x ≤ m), such that (c1 mod K) = · · · = (cx mod K) = c ∈ [0..(K−1)].

16

[5] Barenboim L., Elkin M., and Kuhn F., Distributed (Delta+1)-coloring in linear (in Delta) time. SIAM Journal of Com-

puting, 43(1):72-95 (2014)

[6] Blair J. and Manne F., An efficient self-stabilizing distance-2 coloring algorithm. Proc. 16th Colloquium on Structural

Information and Communication Complexity (SIROCCO’10), Springer LNCS 5869, pp. 237-251 (2009)

[7] Bozdag D., Çatalyürek U.V., Gebremedhin A.H., Manne F., Boman E.G., and Öuzgüner F., A Parallel distance-2 graph

coloring algorithm for distributed memory computers. Proc. Int’l Conference on High Performance Computing and

Communications (HPCC’05), Springer LNCS 3726, pp. 796-806 (2005)

[8] Bozdag D., Gebremedhin A.S., Manne F., Boman G. and Çatalyürek U.V., A framework for scalable greedy coloring on

distributed-memory parallel computers. Journal of Parallel and Distributed Computing, 68(4):515-535 (2008)

[9] Chipara O., Lu C., Stankovic J., and Roman. G.-C., Dynamic conflict-free transmission scheduling for sensor network

queries. IEEE Transactions on Mobile Computing, 10(5):734-748 (2011)

[10] Cole R. and Vishkin U., Deterministic coin tossing with applications to optimal parallel list ranking. Information and

Control, 70(1):32-53 (1986)

[11] Frey D., Lakhlef H., Raynal M., Optimal collision/conflict-free distance-2 coloring in synchronous broadcast/receive

tree networks. Research Report, https://hal.inria.fr/hal-01248428 (2015)

[12] Garey M.R. and Johnson D.S., Computers and intractability: a guide to the theory of NP-completeness. Freeman W.H.

& Co, New York, 340 pages (1979)

[13] Gebremedhin A.H., Manne F., and Pothen A., Parallel distance-k coloring algorithms for numerical optimization. Proc.

European Conference on Parallel Processing (EUROPAR), Springer LNCS 2400, pp. 912-921 (2002)

[14] Goldberg A., Plotkin S., and Shannon G., Parallel symmetry-breaking in sparse graphs. SIAM Journal on Discrete

Mathematics, 1(4):434-446 (1988)

[15] Herman T., Tixeuil S., A distributed TDMA slot assignment algorithm for wireless sensor networks. Proc. Int’l Work-

shop on Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS’04), Springer LNCS 3121, pp. 45-58 (2004)

[16] Kuhn F. and Wattenhofer R., On the complexity of distributed graph coloring. Proc. 25th ACM Symposium Principles

of Distributed Computing (PODC’06), ACM Press, pp. 7-15 (2006)

[17] Linial N., Locality in distributed graph algorithms. SIAM Journal on Computing, 21(1):193-201 (1992)

[18] Lynch N.A., Distributed algorithms. Morgan Kaufmann, 872 pages (1996)

[19] Peleg D., Distributed computing, a locally sensitive approach. SIAM Monographs on Discrete Mathematics and Appli-

cations, 343 pages, ISBN 0-89871-464-8 (2000)

[20] Raynal M., Fault-tolerant agreement in synchronous message-passing systems. Morgan & Claypool Publishers, 165

pages, (ISBN 978-1-60845-525-6) (2010)

[21] Raynal M., Distributed algorithms for message-passing systems. Springer, 500 pages, ISBN 978-3-642-38122-5 (2013)

A Proof of Theorem 2

Lemma 10. K ′ >
⌊

∆j

m

⌋

⇐⇒ K ′ ×m > ∆j .

Proof From K ′ > ⌊
∆j

m
⌋we can derive the following. Because K ′ is an integer, we have K ′ ≥ ⌊

∆j

m
⌋+1.

Because ⌊x⌋ > x−1, we obtain K ′ >
∆j

m
−1+1, from which we conclude K ′×m > ∆j . Conversely,

if we have K ′ ×m > ∆j , then K ′ >
∆j

m
, and, because x ≥ ⌊x⌋, we obtain K ′ >

∆j

m
≥ ⌊

∆j

m
⌋, which

concludes the proof of the lemma. 2Lemma 10

Theorem 2 Let K = ⌈∆
m
⌉+ 1. CCMC(n,m,K,> 1) can be solved on a tree of maximal degree ∆, if

and only if
∃i : K > max

({⌈

∆i

m

⌉}

∪
{⌊

∆j

m

⌋
∣

∣

∣
pj ∈ neighbors i

})

+ 1.

17

Proof The terms “process” and “vertex” are considered here as synonyms. To simplify notation, we

consider in the following that idi = i. Let us first notice that if follows from its definition that K ≥ 2.

Proof of the “if direction”.

The proof of this direction consists in a sequential algorithm that associates two colors to a process pi
whose position in the tree satisfies the previous predicate.

Algorithm 2 is a sequential algorithm solving CCMC(n,m, ⌈∆
m
⌉ + 1, 1). Using the control flow

defined by a simple depth-first tree traversal algorithm, it takes two input parameters, a process pj , and

its color. Then, assuming a coloring of both pj and its parent, it recursively colors the vertices of the tree

rooted at pj . The initial call is DF MColoring(i, 0) where pi is a vertex satisfying the predicate stated in

the theorem, and 0 the color assigned to it. The function parent color(j) returns the color of the parent

of pj if pj 6= pi and returns no value if pj = pi. Let us notice that, except for pj = pi, parent color(j)
is called only after the parent of pj obtained a color.

procedure DF MColoring(j, c) is

(01) colori ← c;

(02) if |neighbors j | > 1 then

(03) tokens ← {m colored tokens for each color in {0, 1, · · · , (K − 1)} \ {colorj , parent color(j)} }
∪ { (m− 1) tokens with color parent color(j)};

(04) for each pk ∈ (neighbors j \ {parentj}) do %this loop is executed (∆j − 1) times %

(05) token← a smallest token in tokens ; suppress token from tokens ;

(06) DF MColoring(k, color of token)
(07) end for

(08) end if.

Algorithm 2: Sequential multi-coloring of a tree with a depth-first traversal algorithm (code for pi)

A call to DF MColoring(j, c) works as follows. First, color c is assigned to pj . If pj has a sin-

gle neighbor (its parent, which issued this call), the current procedure call terminates. Otherwise,

the current invocation computes the multiset of colored tokens which includes (a) m identical to-

kens for each possible color, except the colors of pj and its parent, and (b) (m − 1) identical tokens

with the color of parentj (line 03). Let us notice that all the colored tokens are ordered by their

color number, hence the notion of a “token with a smallest color” is well-defined. Then, for each

of pj’s neighbor pk (except its parent), taken one after the other (line 04), a token with a smallest

color is selected for pk (which will inherit the corresponding color) and withdrawn from the multi-

set tokens (hence, this token can no longer be used to associate a color to another neighbor of pj ,
line 04). Due to line 03, the multiset tokens used to assign colors to pj’s neighbors, is such that

|tokens | = (K − 2) × m + (m − 1) = (K − 1) × m − 1 (Property P1). (The factor (K − 2)
comes from the fact the colors are in the color set {0, 1, · · · , (K − 1)} \ {colorj , parent color(j)}. The

term (m − 1) comes from the fact that colori = 0 is already used once for the neighbor pi.) It follows

that the loop is well-defined. The subtree rooted at pk is then depth-first recursively colored (line 05).

It follows that (a) no two neighbors can be assigned the same color (line 03), (b) each process is

assigned a color as small as possible (line 04), and (c) at most m neighbors of a process can be assigned

the same color (lines 02 and 05).

We now show that, given the previous coloring, it is possible to assign (at least) one more color to

(at least) the root pi. The set of K colors used in Algorithm 2 is the set {0, 1, · · · , (K − 1)}. Let us

consider any vertex pj , which is a neighbor of pi. Due to the property stated in the theorem, we have

K > ⌊
∆j

m
⌋+ 1, which, due to Lemma 10 translates as (K − 1)×m > ∆j (P2).

As colori = 0 and K ≥ 2, we have colori 6= K − 1. Moreover, we also have colorj 6= K − 1. This

follows from the assumption K > ⌈∆i

m
⌉+1, and the fact that, to color pi and its neighbors, Algorithm 2

18

uses ⌈∆i

m
⌉+ 1 ≤ K − 1 colors, namely the color set {0, · · · , (K − 2)}.

When executing DF MColoring(j, c) for a neighbor pj of pi, Algorithm 2 executes (∆j − 1) times

the body of the “for” loop (lines 04-06), (once for each neighbor of pj , except pi, which has already

been assigned a color). It follows from (P2) that (K − 1)×m− 1 > ∆j − 1. Combined with (P1) we

obtain |tokens| > ∆j − 1, from which we conclude that tokens 6= ∅ is always true. It is consequently

a loop invariant in each call related to a neighbor pj of pi. It follows that tokens always contains a

colored token with the highest color, namely (K − 1). This color can consequently be assigned to pi, in

addition of color 0, without violating the conflict-freedom, m-collision-freedom, and efficiency defining

the CCMC problem solved by Algorithm 2. This concludes the proof of the “if” part of the theorem.

Proof of the “only if direction”.

In the following we use the following notations, where M is a multi-set.

• |M | is the size of M (in the following all sets and multisets are finite),

• set(M) is the underlying set of M , the set of elements present at least once in M ,

• 1M (x) is the multiplicity of an element x in M . By construction we have

1M (x) ≥ 1⇐⇒ x ∈ set(M) and |M | =
∑

x∈set(M)

1M (x). (6)

If A and B are two multisets, A ⊎B is the multiset union of A and B. In particular we have:

|A ⊎B| = |A|+ |B| and 1A⊎B(x) = 1A(x) + 1B(x). (7)

We consider a set S as a special case of a multi-set in which all elements of S have a multiplicity of 1:

x ∈ S ⇐⇒ 1S(x) = 1.

Let us assume that CCMC(n,m,K,> 1) can be solved on a tree, such that at least one process, i.e. pi,
is allocated more than one color:

|colors i| ≥ 2. (8)

For ease of exposition, and without loss of generality, we assume all other processes are allocated only

one color:

∀j 6= i : |colors j| = 1. (9)

Let Cneighborsi
denote the multiset of colored tokens allocated to the neighbors of pi:

Cneighborsi
=

⊎

pj∈neighbors i

colors j . (10)

From (9) and (10) we derive (by way of (7))

|Cneighbors i
| = |

⊎

pj∈neighborsi

colors j | =
∑

pj∈neighborsi

|colors j | = |neighbors i| = ∆i. (11)

This means that ∆i colored tokens are needed to color the neighbors of pi.
Because the coloring solves CCMC(n,m,K,> 1), m-Collision-freedom means that

∀c ∈ set(Cneighborsi
) : 1Cneighborsi

(c) ≤ m. (12)

Using (12) in (6) applied to Cneighborsi
gives us

|Cneighbors i
| =

∑

c∈set(Cneighborsi
)

1Cneighborsi
(c) ≤ |set(Cneighbors i

)| ×m, (13)

19

which yields, with (11) (required number of colors for pi’s neighbors):

|set(Cneighbors i
)| ≥

|Cneighborsi
|

m
≥

∆i

m
. (14)

Because |set(Cneighborsi
)| is an integer, (14) implies that

|set(Cneighbors i
)| ≥

⌈

∆i

m

⌉

. (15)

Because the coloring solves CCMC(n,m,K,> 1), it respects Conflict-freedom, implying that

set(Cneighbors i
) ∩ colors i = ∅, (16)

and hence

|set(Cneighbors i
) ∪ colors i| = |set(Cneighbors i

)|+ |colors i|, (17)

≥ |set(Cneighbors i
)|+ 2 using (8), (18)

≥

⌈

∆i

m

⌉

+ 2 >

⌈

∆i

m

⌉

+ 1. using (15) (19)

By definition K ≥ |set(Cneighborsi
) ∪ colors i|, which yields

K >

⌈

∆i

m

⌉

+ 1 (20)

which concludes the first part of the proof on the “only if” direction.

Let us now turn to the neighbors of pi. For pj ∈ neighbors i we consider similarly to pi the set of colored

tokens allocated to pj’s neighbors (which include pi):

Cneighborsj
=

⊎

pk∈neighborsj

colorsk. (21)

Hence (as for pi) we have:

|Cneighborsj
| =

∑

pk∈neighborsj

|colorsk|. (22)

Contrary to pi however, all of pj’s neighbors do not have only one color allocated: pi has at least two,

by assumption. This yields

|Cneighborsj
| = |colors i|+

∑

pk∈neighborsj\{pi}

|colorsk|, (23)

≥ 2 + |neighbors j − 1| × 1 using (8) and (9), (24)

≥ 2 + ∆j − 1 ≥ ∆j + 1. (25)

As for pi, m-Collision-freedom means that

|Cneighborsj
| ≤ |set(Cneighborsj

)| ×m. (26)

(25) and (26) yield

|set(Cneighborsj
)| ×m ≥ ∆j + 1. (27)

20

As for pi we have (Conflict-freedom)

set(Cneighborsj
) ∩ colors j = ∅, (28)

leading to

K ≥ |set(Cneighborsj
) ∪ colors j| by definition, (29)

≥ |set(Cneighborsj
)|+ |colors j | because of (28), (30)

≥ |set(Cneighborsj
)|+ 1 because of (9), (31)

K − 1 ≥ |set(Cneighborsj
)|. (32)

Injecting (32) into (27) gives us

(K − 1)×m ≥ ∆j + 1, (33)

(K − 1)×m > ∆j, (34)

K − 1 >
∆j

m
≥

⌊

∆j

m

⌋

because of Lemma 10, (35)

K >

⌊

∆j

m

⌋

+ 1. (36)

(36) concludes the proof of necessary condition to solve CCMC(n,m,K,> 1). 2Theorem 2

B Defining the slots of the upper layer programming level

When the root process claims termination, the other processes are in their local state 4, but cannot exploit

the multi-coloring assignment. As indicated in the paragraph “Using the colors” (just before Section 4),

to do that, they need to know the value K = ⌈∆
m
⌉+ 1.

The knowledge of K can be brought to the root process by the messages TERM(), and then dissemi-

nated from the root to all the processes. Algorithm 1 is slightly modified and enriched with Algorithm 3

to allow all processes to know the value of K . Modified lines are postfixed by a “prime”, and new lines

are numbered Nxy.

Each process pi manages a new local variable aki (approximate k), initialized to σi = ⌈
∆i

m
⌉+1, and

whose final value will be K . The additional behavior of pi is now as follows.

• First, when a non-root process informs its parent of its local termination, it now broadcasts the

message TERM(parenti, idi, aki) (line 28’). Hence, the values ak of the leaves will be the first to

be known by their parent.

• When a process receives a message TERM(dest, id, ak) (line 30’), in addition to its previous

statements, it updates aki to max(aki, ak) (line N1). It follows that the root learns the value of

K (which is the maximal value ak it receives). When it learns it, the root progresses to the local

state 5 (line 34’).

• Starting from the root, when a non-leaf process is in state 5 and allowed to broadcast (predicate of

line N2), it broadcasts the message END(idi, ak) and progresses to the final state 6 (line N3).

• Finally, when a process pi, in state 4, receives a message END(sender, ak) from its parent, it

updates aki to max(aki, ak) and progresses to state 5 (line N6). It will then forward the message

END(sender, ak) to its children if it has some, and in all cases will enter local state 6 (line N3).

After the local state of a process pi became 6, we have aki = K . Hence, all processes are provided

with a round-based programming level in which each process pi can C2m-freely broadcast messages at

all the rounds such that (CLOCK mod aki) ∈ colors i.

21

(28’) else broadcast TERM(parenti, idi, kprime); statei ← 4

(30’) when TERM(dest, id, ak) is received do

(31) if (dest 6= idi) then discard the message (do not execute lines 31-35) end if;

(32) coloredi ← to coloredi ∪ {id};
(N1) aki ← max(aki, ak);
(33) if (coloredi = neighbors i)

(34’) then if (parenti = idi) then statei ← 5 else statei ← 3 end if

(35) end if.

(N2) when
(

(CLOCK mod aki) ∈ colori) ∧ (statei = 5)
)

do

(N3) if (|neighbors i| 6= 1) then broadcast END(idi, ki) end if; statei ← 6.

(N4) when END(sender, k) is received do

(N5) if (sender = parenti) ∧ (statei = 4)
(N6) then ki ← max(ki, k); statei ← 5
(N7) end if.

Algorithm 3: Obtaining the value K = ⌈∆
m
⌉+ 1 and informing all processes

22

