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émanant des établissements d’enseignement et de
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Abstract: Helicenes are molecules with ortho-fused aromatic rings that adopt a 

inherently chiral helical shape. This helical topology combined with the extended -

conjugated system provides them with excellent chiroptical and photophysical 

properties. These properties and peculiarities make helicenes important candidates for 

the conception of new chiroptical switches. Several examples of light-, redox- and pH-

triggered helicene-based switches have recently appeared in the literature including 

examples from our group. Some of them are multi-input and/or multi-output systems in 

which the changes can be triggered by different stimuli and/or read-out by different 

techniques, an attractive advantage for functional materials.  

Keywords: chiroptical switches, helicenes, optical activity, circularly polarized light, 

circular dichroism, molecular materials. 
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1. Introduction 

Helicenes are molecules with ortho-fused aromatic rings that adopt a helical shape as a 

consequence of the steric hindrance between the terminal rings [1]. The first 

hetero[5]helicenes were reported in 1903 by Meisenheimer and Witte, [2] and the first 

synthesis and resolution of carbo[6]helicene (hexahelicene) was performed by Newman 

in the 1950s [3a-c]. Since then, numerous methods have given access to a great variety 

of carbo-, hetero- and metallo-helicenes, [1] sometimes in multi-gram scale [3d-f]. 

Using diverse stereoselective or resolution methods, a great panel of enantiopure helical 

-conjugated scaffolds can be accessed [3,4]. Concomitantly to the discovery of new 

efficient synthetic methodologies, experimental combined with theoretical studies of the 

steric, electronic, and optical properties of helicenes have shed new light to the potential 

applications of this class of inherently chiral molecules as chiral materials [5].  Indeed, 

the main property of helicenes is their helical structure which renders them chiral. Such 

inherently chiral topology combined with an extended -conjugation provides helicenes 

with huge optical rotation (OR) values, intense electronic circularly dichroism (ECD) 

spectra [6] and substantial circularly polarized luminescence (CPL) [7a]. Strong 

chiroptical activity may find many applications in chiral materials [8]. The OR, ECD 

and CPL represent chiroptical properties which are characterized by differences 

between left- and right-circularly polarized light transmission, absorption and emission, 

respectively [9].  

  The development of functional devices at the molecular level has attracted 

considerable interest during the last decades [10]. Molecular switches, in which there is 

a switching between two molecular states, are based on bistability, which means that the 

molecule has two stable states and can be resting in one of them. There are also other 

requirements in the construction of chiroptical switches such as chemical stability, non-
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destructive read-out, fast response times, reproducibility and fatigue resistance [11]. 

Interconversion of the two bistable chiral forms can result from responses of the chiral 

molecules to external stimuli such as heat, light, pressure, pH, chemicals, redox 

potential, solvent, ... (Scheme 1). 

The contributions to the field of chiroptical switches are stimulated by their potential 

applications as molecular memory elements, or logic operators, in which data storage 

and processing are the ultimate goal [11]. For example, systems that possess switchable 

functionality may lead to new prospects in molecular information processing and 

storage [12]. Chiroptical switches have also found applications in the detection of a 

multitude of different analytes with a high level of sensitivity, in asymmetric catalysis 

to offer switchable stereoselectivity [13] and in molecular motors since chirality can 

provide unidirectionality and original kinds of motions [11]. On the other hand, devices 

displaying circularly polarized luminescence (CPL) are of great interest because CPL 

activity may be a powerful method for addressing encoded information (cryptography) 

or for preparing 3D displays [7b]. 

Several recent examples of chiroptical switches have used helicenes in their designs. 

They are detailed in the next sections which are organized according to the input 

responsible for the switching process, namely helicene-based switches triggered by i) 

light, ii) redox and iii) acid/base stimuli. Helicenes unique attributes allow them to 

display several advantages such as higher solubility than more planar aromatic 

structures and large variations in electronic properties and chiroptical properties upon 

breakage or modification of the -conjugation. Stability is an important requirement for 

switches, solubility allows handling in solution, and the possibility of large reversible 

changes in properties upon stimulus confers facile read-out. 
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Scheme 1.  

2. Light-driven helicene-based chiroptical switches 

Photoisomerization reactions of diverse chromophores (such as diarylethenes, 

spiropyrans, or azobenzenes) are good ways to photomodulate the chiroptical properties 

of a chiral molecule [11]. Diarylethenes and more thermally stable dithienylethenes 

(DTEs) are known to undergo reversible ring closure and opening upon irradiation with 

two different wavelengths, accompanied by an important variation of the optical 

properties [14]. With the use of appropriate chiral substituents, the cyclization can be 

diastereoselective and may be used in chiroptical switches [14,15]. A few examples of 

chiroptical switches bearing dithienylethenes and helicene moieties have been studied, 

taking advantage of these photochromic scaffolds to modulate the helical topology. In 

1999, Dinescu et al. reported photochromic helical 1,2-dithienylethenes [16] that were 

built upon the rigid frame of dodecahydrophenantrene 1, a thia[5]helicene analogue due 

to the ortho-fused multi-ring locked structure in the open form 1 (Scheme 2). The high 

molecular rigidity of the closed form 2 provided stability to the isomer formed after 

cyclization. The switching process consisted of photo-closing and photo-opening by 

irradiation at wavelengths corresponding to the absorption bands of the open ( = 310 

nm) and closed ( > 450 nm) isomers. Although the authors did not study the process by 

chiroptical spectroscopy, they achieved a reversible thermally stable photochromism. 

Indeed, the colour of the benzene solutions changed from clear to yellow upon UV 

irradiation of the open form, and from yellow to colourless upon irradiation with visible 

light. The photochromic behaviour was also explored in an amorphous polymeric film. 

The authors attributed the efficiency of complete switching between these species to 

molecular rigidity and helical conformation and more than 10 cycles could be achieved 

in the absence of oxygen [16].  



5 
 

 

Scheme 2.  

In 2001, Branda and coworkers reported the incorporation of the DTE photochrome 

within thia[7]helicenes [17]. When irradiated at 410 nm, the open-form DTE scaffold 3 

[17a] underwent a conrotatory ring-closing, yielding the thia[7]helicene architecture 4 

(74% in the photostationary state). The photochemical regeneration of the open form by 

irradiating at 458 nm destroyed the extended thia[7]helicene backbone. The 

photoswitching activity was studied through the changes in the UV-vis absorption 

spectra of the racemic system. Later on, an enantioenriched version was developed by 

the same authors, by attaching chirality at the end of both arms through pinene 

derivatives (5 in Scheme 3) [17b]. The photoswitchable behaviour of ring-opened and 

ring-closed forms was examined using their chiroptical properties (OR and ECD). The 

ring closure performed at 400 nm appeared 40 % effective in the photostationary state  

and revealed a high level of stereoselectivity since only one single stereoisomer M-6 

was obtained. The photoreaction appeared reversible with efficient ring opening at 

higher wavelengths without observable degradation. Because of a dominant chiral 

conformer, the ring-open system 5 displayed ECD and strong differences were observed 

in the ECD signal of the photostationary state 6, as well as in the optical rotary 

dispersion (ORD) spectra (Scheme 3b,c). Therefore they satisfy the requirements of a 

successful chiroptical switch with large differences in the ECD and ORD spectral 

properties and stability of the ring-open and closed forms. This example nicely 

illustrates how the combination of an efficient photoresponsive molecular backbone and 

an inherently chiral architecture can greatly impact the environment and properties 

through efficient chiral induction processes.  
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Scheme 3.  

In 2007, Yokayama et al. developed similar dithienylethene photochromes with 

thiahelicene-like closed forms [18a]. In this case, the photoirradiation 

diastereoselectivity was achieved by introducing only one asymmetric carbon in the 

open form (7, Scheme 4). Very large differences in specific optical rotations between 

non-helicenic open form 7 and helicenic photostationary state 8 were obtained. The 

diastereoselectivity of the photochemical ring closure was analyzed as a balance 

between stronger steric/electronic repulsions and 1,3-allylic strains. For example, upon 

photoirradiation at 366 nm, the enantiopure chiral open form 9 yielded M-10 with 57 % 

conversion and 90 % diastereomer excess [18b].   

 

Scheme 4.  

 

Other photochromic systems than DTE's have been used in helicene chemistry. For 

example, Moorthy et al. developed racemic helicenes such as 11 incorporating a 

chromene moiety which exhibited an original photochromism process [19]. Indeed, 

upon light irradiation of colourless 11, helical o-quinonoid intermediate 12 was formed 

and was responsible for the colour appearance and UV-vis absorption (Scheme 5) [19a]. 

Such systems were proposed as molecular logic gates with INHIBIT function for 

applications in optical data storage devices [19b]. 

 

 

Scheme 5.  
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Azobenzenes have also been widely used as photoresponsive cis-trans compounds in 

the design of chiroptical switches [20]. Wang et al. [21] designed a [5]helicene 

analogue 13, consisting of a helical o-terphenyl molecule grafted with a 

photoresponsive azobenzene moiety and an electroactive imide group, therefore acting 

as a dual-mode chiroptical molecular switch (Scheme 6). The strong specific rotation 

measured at 436 nm could be tuned through trans-cis photoisomerization of the 

azobenzene moiety using UV and visible light. Reversible electrochemical modulation 

(vide infra) between  trans-M-13 and [trans-M-13] - was also achieved through the 

reversible redox reaction occurring at the imide group. Large chiroptical read-out 

signals were observed during the redox cycles as indicated by the strong molar 

ellipticity changes at 454 nm (Scheme 6) [21]. Photomodulation studies were also 

conducted in the solid state, using a thin film of polycarbonate containing 2 wt % of P-

13, where a switching behavior similar to that in solution was observed. 

 

Scheme 6.  

3. Redox-driven helicene-based chiroptical switches 

In redox-triggered chiroptical switches, the chiroptical properties can be modulated 

by oxidation or reduction [13, 22], induced either by an electrochemical potential or by 

chemical oxidizing/reducing agents. It is important that sub-products from chemical 

reagents and additives such as electrolytes do not interfere with the detection method. 

Polymers, coordination complexes and organic molecules have been used to display 

redox chiroptical switch behaviour [22]. It is indeed possible to obtain a strong 

chiroptical signal and to achieve good switching activity by using helical polymers with 



8 
 

chiral substituents or dopants. In coordination complexes, redox processes cause 

electronic changes at the metal and conformational changes in the ligands may occur 

which may be used in chiroptical switches. Finally, organic molecules can show 

important changes in their chiroptical properties upon oxidation/reduction in one or 

two-electron processes. The same principles are valid for the design of helicene-based 

redox-triggered chiroptical switches. Pioneering work in the electrochemical 

modification of helicene structures was achieved in 1993 by T. J. Katz et al. who 

prepared helicene oligomers M-(-)-14 using cobaltocene's chemistry (Figure 1). These 

organometallic oligomers revealed efficient tuning of their ECD spectrum upon 

reduction of Co
III

 to Co
II
 [23]. 

 

Figure 1.  

Our group became involved in the field of chiroptical switches in 2010, when we 

started the investigation of platinahelicenes, which incorporate one or several platinum 

centers in their helical backbone [24]. These platinahelicenes, such as 15 in Scheme 7, 

display strong chiroptical properties and efficient phosphorescence at room temperature 

(r.t.), and the presence of the platinum ion allows for the tuning of their properties. 

Indeed, the oxidation of Pt
II
 ion into Pt

IV
 with iodine yielded enantiopure air-stable Pt

IV
-

[6]helicenes P-16. The phosphorescence was quenched upon oxidation and the 

chiroptical properties (OR and ECD) were significantly modified (Scheme 7). The Pt
IV

 

species P-16 could be reduced back to the Pt
II
 complex P-15 by using Zn powder, thus 

recovering the previous chiroptical properties. However, this Pt
II
/Pt

IV
-[6]helicene couple 

cannot be considered as a redox chiroptical switch since it doesn’t display the 

reversibility and reproducibility requirements (purification steps needed).  
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Scheme 7.  

In 2012, we reported the first strictly-speaking helicene-based redox-triggered 

chiroptical switch [25], by designing a carbo[6]helicene grafted with a vinyl-ruthenium  

moiety 17 (Scheme 8). Interestingly, the electroactive metal centre which is -

conjugated with the helicene core through a vinyl moiety enhances the chiroptical 

properties and allows for their redox-tuning in a reversible way without modifying the 

ortho-fused -system. By using a spectro-electrochemical cell (Optically Transparent 

Thin Layer Electrochemical - OTTLE cell) the switch showed multistep reversible 

oxidation / reduction steps at low potentials (0.2/-0.2 V vs. Fc/Fc
+
) and significant 

changes in the ECD at 340, 500 nm and in the near-infrared region (around 1000 nm), 

as a result of the electrochemical input (Scheme 8). Theoretical calculations indicate 

that the vinylhelicene ligand has an important role in these processes by supporting part 

of the charge density which is not totally localized on the metal atom, thus behaving as 

a non-innocent ligand. An enantiopure di(ruthenium-vinyl)helicene system was also 

prepared by us and its redox-switching activity was also examined [25]. 

 

Scheme 8.  

In 2010, Rajca et al. reported the oxidation of a [7]thiahelicene P-18 (a helical -

oligothiophene, Figure 2) giving rise to a radical cation which was configurationally 

stable at r.t. [26]. The electrochemical oxidation was carried out in an OTTLE cell 

observing in real time the changes in the absorption spectra, ECD, and EPR (they 

observed the appearance of an unpaired electron). Although the bistability and 
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reversibility were not examined in details, these results paved the way to new organic 

redox-triggered chiroptical switches. Indeed, later on, several enantiopure organic 

redox-triggered chiroptical switches based on organic helicene derivatives were 

prepared and displayed good reversibility and reproducibility as observed by ECD 

spectroscopy in the UV-vis and NIR region. For example, in collaboration with 

Avarvari’s group, we reported an organic redox chiroptical switch based on a helicenic 

skeleton fused with an electroactive tetrathiafulvalene (TTF) moiety (M-19, Figure 2) 

[27].  Stable radical-cation species [M-19]
+

 were formed upon oxidation and the system 

displayed redox-tuneable chiroptical properties. The shifts and changes in ECD (in UV-

vis and NIR region) were totally recovered over several cycles of electrochemical 

oxidation/reduction in an OTTLE cell, demonstrating the efficiency of non-metallic 

electroactive helicenes as chiroptical switches. A new kind of metal-free redox-

triggered helicene-based chiroptical switch was recently reported by our group and 

Diederich et al. [28]. It consisted of a 1,2-ortho-quinone [6]helicene P-20 (Figure 2) 

that could be reduced to the stable semiquinone radical anion [P-20]
-

 and oxidized back 

reversibly. The changes in ECD and UV-vis absorption were followed by spectro-

electrochemistry, and the switching was reversible over several cycles. Interestingly, the 

reduced semiquinone species was able to recognize the two enantiomers of chiral 

binaphthyl phosphoric acid. This diastereoselective process was evidenced by ENDOR 

experiments [28]. Note that in both examples 19 and 20, significant intramolecular 

charge transfers have been found to be responsible for the strong optical modifications. 

 

Figure 2.  

Teply and coworkers have studied the electrochemical behaviour of configurationally 

stable helical-shaped condensed N-heteropolyaromatics named helquats, such as 21 in 
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Scheme 9, which consist of a structural combination of helicenes and viologens [29]. 

With these structures, they reported the most intense chiroptical switching response in 

the field of helicenoids to date [29b,c]. The system works at three stages, with two 

consecutive reductions from di-cation, mono-cation to the fully reduced neutral form. 

The radical cation formation upon first reduction or oxidation was monitored by EPR 

spectroscopy. The electrochemical transformation caused very large changes in the 

ECD spectra. The cycling between reduction and oxidation potentials even caused 

changes in the signs of ECD bands or an ON/OFF switching of the ECD signal 

depending on the read-out channel selected (wavelength) [29b].
 
 

 

Scheme 9.  

 

While the former examples did not display any changes in their molecular geometry, 

a series of redox chiroptical switches based on the electrochemical C-C bond 

formation/breaking has been developed by Suzuki and collaborators since 2001 [30,5a]. 

Such systems consist in a closed form, a dihydro[5]helicene derivative with intrinsic 

helical chirality, and an open one corresponding to a biaryl compound with axial 

chirality. For instance, the dihydro[5]helicenes P-22 was opened by two-electron 

oxidation to a stable axially chiral and strongly coloured dicationic species P-23 

(Scheme 10a). Upon two-electron reduction, a good reversibility and bistability was 

achieved, taking into account the importance of the configurational stability and low 

racemization in the process. Between the two states, large differences in the UV-vis and 

ECD spectra were observed [30a,b]. The same authors investigated these systems as 

multimodal switches. For example, in a multi-input/multi-output system, they 

investigated fluorescent dihydro[5]helicene derivative P-24 with appropriate aromatic 
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substituents, that upon oxidation is stereospecifically converted into the binaphthyl 

dication derivative P-25 (Scheme 10b) that is no longer fluorescent and which displays 

different UV-vis and ECD spectra [30e]. This open oxidized species also showed 

solvatochromism, with different colours and ECD spectra depending on the polarity of 

the solvent. Therefore they have a three-way-output response system upon 

electrochemical input (UV-vis, ECD, fluorescence) and the system is also considered as 

a multi-input one because the solvent could tune the properties in UV-vis and ECD 

spectra. Finally, Suzuki et al. reported similar bistable chiroptical switches based on a 

neutral binaphthylic diolefine as the open form, that closed upon oxidation to a 

dicationic dihydro[5]helicene [30c,d,f]. For example, they described in 2008 a 

molecular system with three states [30f].
 
Binaphthylic diolefine  M-26 was oxidized to 

stable dicationic helicene-type (M,R,R)-27, and this second state could be converted into 

fluorescent species (M,R,R)-28 by treatment with NaHCO3 (Scheme 10c). The 

fluorescent helicene-type state could be converted back to the dication by addition of 

acid. This is a case of a four-ways output response system (UV-vis, ECD, fluorescence 

and fluorescence detected ECD - FDCD) with electrochemical and pH inputs (vide 

infra). 

Scheme 10.   

4. Acid-base triggered helicene-based chiroptical switches 

To our knowledge, very few examples of acid-base triggered helicene-based 

chiroptical switches have been reported to date [29c,30f,31,32]. Our group reported 

enantiopure osmium-vinylhelicene complex P-29 and an osmium-carbene helicene P-30 

that are reversibly inter-convertible by using an acid or a base and therefore act as an 

acid-base chiroptical switch [31]. We could indeed achieve the formation of the 
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osmium-carbene helicene derivative P-30 by means of HCl addition, and the recovery 

of the osmium-vinylhelicene complex P-29 by adding Et3N (Scheme 11). Upon such 

transformations, the OR values and ECD bands significantly change due to the 

modification of the electronic interaction between the osmium center and -helicenic 

platform. Although the low stability of these organometallic osmium-helicene 

complexes did not allow very good reversibility and reproducibility, this work was a 

good proof of concept for the use of carbenic complexes as acid-base chiroptical 

switches. 

 

Scheme 11.  

 

Recently, we also reported a multiresponsive acid/base chiroptical switch [32] based 

on 2-pyridyl-aza[6]helicene scaffold 31 (Scheme 12) acting as a helicenic 2,2'-

bipyridine system which can be protonated through its bipyridyl core. Upon progressive 

addition of acid aliquots, isosbestic points were found in the UV-vis and ECD spectra, 

and double protonation occurred. Strong changes in emission wavelengths were 

observed, with a 160 nm red-shift of the fluorescence, while CPL activity remained 

similar (gCPL ~ 2.5 x 10
-3

 [9] for both neutral and protonated P-31). The reverse process 

could be achieved by using a base, thus yielding an efficient switch with multimodal 

read-out (UV-vis, ECD, fluorescence, CPL). The corresponding cycloplatinated 

complexes P- and M-32 (see Scheme 12) displayed UV-vis, ECD, r.t. phosphorescence 

and CPL activity and enabled the comparison of their switching abilities with organic 

ligands P- and M-31. Upon gradual monoprotonation of the free pyridyl group in 32, 

clear isosbestic points were also found in UV-vis absorption and ECD spectra. 

However, emission remained at a similar wavelength with a slight increase in the 
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dissymmetry factor (gCPL ~ 2 x 10
-3

, for protonated P-32, twice as high as the neutral 

form P-32, Scheme 12). Thus this example enabled us to compare the CPL switching 

behavior of a fluorescent organic species and a phosphorescent organometallic one [32]. 

Note that switchable CPL functionality may have important applications in the field of 

molecular information processing and storage [7b]. 

 

Scheme 12. 

Finally, very recently, Teply et al. developed a helquat system displaying pH-

switchability. Indeed, by using phenol substituents in the helquat structure, the changes 

in pH triggered very important and reversible changes in the ECD response [29c].  

 

5. Conclusions and perspectives 

In this review, we have presented the few examples of helicene-based chiroptical 

switches that have been reported to date in the literature. The reviewed examples are 

mainly triggered by light, redox or acid/base inputs, but there are alternative stimuli 

such as the solvent. In most of the cases the read-out signal used to compare the 

chiroptical properties of the two binary states is the ECD response but other chiroptical 

methods can be used such as FDCD, ORD or CPL activity. Different wavelengths can 

be used, from the UV to the near-IR regions and large differences in chiroptical 

responses can be accomplished. Another important feature is the possibility to have 

multimodal input accompanied with read-out systems.  

Further developments of helicene-based switches may allow these chiral systems to 

be used in devices. Such an example has already been demonstrated by Katz et al. who 

studied electro-optic switching of helicene derivative forming a nematic liquid 
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crystalline phase [33]. Future progresses are also predictable in the area of luminescent 

materials and the use of CPL as a read-out signal combined with the ECD and OR 

activity, which could be a powerful method for addressing encoded information 

(cryptography) or for 3D displays. Multi-output systems are very appealing as 

prototypes of molecular logic operators since they may act as parallel operating logic 

elements.  Further enhanced chiroptical switches are desired that feature higher 

differences in chiroptical properties between the different states. Only a limited number 

of examples have been reported to date but the doors are already open in electroactive, 

purely-organic and metallahelicenes, and the field will undoubtedly develop to take 

advantage of their potential.  

More important goals of this research would be to conceive chiral materials 

displaying some functions that can be tuned upon an external stimulus, e.g. systems 

mimicking fundamental biological processes. In addition, being able to modulate a 

catalytic activity or a chiral recognition process by an external stimulus is a fascinating 

area of research. Finally, production of motion on a molecular level may pave the way 

to new models of molecular machines [11,12], as has been nicely illustrated in Feringa's 

helical unidirectional molecular motors (Figure 3a) [34] and in Kelly's triptycene-

[4]helicene systems which act as molecular "ratchets" (Figure 3b,c) [35].  

 

Figure 3.  
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Schemes and Figures 

Figure 1. First example of oligomeric organometallic Co
III

 complexes M-(-)-14 bearing 

bis-η
5
-helicenic ligands and displaying redox-tuning of the ECD [23]. 

 

 

Figure 2. Examples of organic helicenes bearing electro-active moieties for the 

development of redox-triggered chiroptical switches [26-28]. 

 

 

Figure 3. Two examples of molecular devices prepared from helical molecular systems 

[34,35]. 
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Scheme 1. Principle of an efficient chiroptical switch. 

 

 

Scheme 2. Racemic photochromic dithienylethene switches based on a thia[5]- or 

thia[7]-helicenic derivatives either in the open (1,3) [16] or in the closed forms (2,4) 

[17a]. 

SS

XO O

X = O, N

HH
H H

"Open" form

310 nm

> 450 nm

SS

XO O

HH
H H

"Closed" form

SS

F
F F

F

F

F

F

F

410 nm

> 458 nm

SS

F
F F

F

F

F

F

F

1 2 3 4   

 

  

Requirements: strong chiroptical
changes, non-destructive read-out, 
bistability, reversibility, 
reproducibility, low fatigability,  …

OR, ECD, CPL-1

Chiral topology-1 

S1

S2

OR, ECD, CPL-2

Chiral topology-2 

Stimulus Sn: light, redox, acid-base,
chemical, solvent, pH, temperature,  …



25 
 

Scheme 3. a) Stereoselective photocyclization of chiral dithienylethene 5 to 

thia[7]helicene M-6 [17b]. b) Changes in the UV-vis absorption spectra of a benzene 

solution of open-form upon irradiation at 400 nm light. Insert: ECD spectra of open 

form in benzene (black trace) and of the photostationary state (red trace) generated at 

400 nm light. c) Optical rotatory dispersion of open and closed forms (black and red 

traces respectively). Adapted with permission from ref 17b. 

 

 

Scheme 4. Helicenoid diarylethenes developed by Yokayama et al.. Adapted with 

permission from ref. 18a,b. 
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Scheme 5. a) Helicene-chromene developed by Moorthy’s group [19]. b) UV-vis 

spectra of [4]helicene (left) and [5]helicene (right) chromene before (closed form) and 

after photoirradiation (open form). Adapted with permission from ref. 19a. 

 

 

Scheme 6. Dual photochromic and redox chiroptical switch developed by Wang et al. in 

its cis and trans azobenzene forms [21]. 

 

 

 

 

 

11 12

b) 

a) 



27 
 

Scheme 7. Redox tuning of the chiroptical properties (specific and molar rotations and 

ECD) and luminescence of platina[6]helicene 15 [24]. 
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Scheme 8. ECD spectrum of the Ru-vinylhelicene P-17 (blue) and of its oxidized 

species [P-17]
+

 (red) in dichloroethane at r.t. b) Redox chiroptical switching observed 

by ECD spectroscopy at 340 and 500 nm. c) NIR-CD of neutral and oxidized species 

[25]. 

 

 

 

Scheme 9. Helicene-paraquat derivative 21 developed by Teply et al. that display strong 

chiroptical redox-switching activity. Adapted with permission from ref. 29b. 
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Scheme 10.  Selected binaphthylic/[5]helicenic molecular systems developed by Suzuki 

et al. which act as multimodal chiral switches [30]. 

 

 

Scheme 11. Acid/base-triggered switch based on a helicene-vinyl-osmium/ helicene-

vinyl-osmium binary system [31]. 
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Scheme 12. Acid-base triggered switching of CPL of enantiopure P and M organic (31) 

and organometallic (32) helicene-bipyridine derivatives.  Left: CPL (top) and total 

emission (bottom) of fluorescent 3-(2-pyridyl)-4-aza[6]helicene P-31 (black), and M-31 

(red) enantiomers to respectively P-[31,2H
+
][2BF4

-
] (green) and M-[31,2H

+
][2BF4

-
] 

(blue). Left: CPL (top) and total emission (bottom) of phosphorescent complex P-32 

(black), and M-32 (red) enantiomers to respectively P-[32,H
+
][BF4

-
] (green) and M-

[32,H
+
][BF4

-
] (blue) [32]. 
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