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Abstract

This paper presents concepts and basics of distributed computing which are important (at least
from the author’s point of view), and should be known and mastered by Master students and engi-
neers. Those include: (a) a characterization of distributed computing (which is too much often con-
fused with parallel computing); (b) the notion of a synchronous system and its associated notions
of a local algorithm and message adversaries; (c) the notionof an asynchronous shared memory
system and its associated notions of universality and progress conditions; and (d) the notion of an
asynchronous message-passing system with its associated broadcast and agreement abstractions, its
impossibility results, and approaches to circumvent them.Hence, the paper can be seen as a guided
tour to key elements that constitute basics of distributed computing.

Keywords: Asynchronous distributed computing, Consensus number, Locality of a computation,
Process crash failure, Read/wite system, Synchronous communication, Wait-freedom.

∗This paper is an invited “tutorial” paper presented at IEEE ICDCS 2016. (IEEE proceedings pages 2-11). It is dedicated
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1 By Way of an Introduction: Two Citations

For me, the first challenge for computing science is to discover how to maintain order in a finite, but very
large, discrete universe that is intricately intertwined. And a second, but not less important challenge is
how to mould what you have achieved in solving the first problem, into a teachable discipline: it does
not suffice to hone your own intellect (that will join you in your grave), you must teach others how to
hone theirs. The more you concentrate on these two challenges, the clearer you will see that they are
only two sides of the same coin: teaching yourself is discovering what is teachable.

E. W. Dijkstra,My hopes of computing science(EWD 709) (1979)

Teaching is not an accumulation of facts.

L. Lamport,Teaching concurrency, ACM SIGACT News, 40(1):58-62 (2009)

2 What is the Essence of Distributed Computing

2.1 Distributed computing is about mastering uncertainty

Distributed computing1 arises when one has to solve a problem in terms of distributed entities (usually
called processors, nodes, processes, actors, agents, sensors,peers, etc.) such that each entity has only
a partial knowledge of the many parameters involved in the problem that has tobe solved [56]. Hence,
in one way or another, in any distributed computing problem, there are several computing entities, and
each of them has to locally take a decision or compute a result, whose scope isglobal.

The geographical scattering of the computing entities, the (a)synchrony of their communication,
their mobility, the fact that each entity initially knows only its own local inputs, the possibility of failures,
etc., createuncertaintyon the system state, in the sense that no computing entity can have an exact view
of the current global state. This uncertainty, created by theenvironment, constitutes anadversarythat
the programmer cannot control but has to cope with.

Although distributed algorithms are often made up of a few lines, their behaviorcan be difficult to
understand and their properties hard to state, prove, and implement. Hence, distributed computing is not
only a fundamental topic ofInformatics2, but also a challenging topic where simplicity, elegance, and
beauty are first-class citizens [20, 56].

2.2 The notion of a (distributed) task

The most fundamental notion of sequential computing is the notion of analgorithm implementing a
mathematical function (left part of Figure 1). This gave rise to the notion of computability theory [68],
and complexity theory [27], which are the foundations on which relies sequential computing.

Differently, the basic unit of distributed computing is the notion of atask,which was formalized in
several papers (e.g, see [34, 35]). A task is made up ofn processesp1, ...,pn (computing entities), such
that each process has its own input (letini denote the input ofpi) and must compute its own output (let
outi denote the output ofpi). Let I = [in1, · · · , inn] be an input vector (let us notice that a process
knows only its local input, it does not know the whole input vector). LetO = [out1, · · · , outn] be
an output vector (similarly, even if a process is required to cooperate with the other processes, it will
compute only its local outputouti, and not the whole output vector). A taskT is defined by a setI of
input vectors, a setO of output vectors, and a mappingT from I toO, such that, given any input vector

1Parts of this section are inspired from the position paper [58].
2As nicely stated by E.W. Dijkstra (1930-2002): “Computer science is no more about computers than astronomy is about

telescopes”. Hence, to prevent ambiguities, I use the wordinformaticsin place ofcomputer science. On a pleasant side, there
is no more “computer science” than “washing machine science”.
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piini outi

Input I OutputO ∈ T (I)

T ()

f () out = f (in)in

A taskT () (distributed computing)A function f () (sequential computing)

Figure 1: Function vs. task

I ∈ I, the output vectorO (cooperatively computed by processes) is such thatO ∈ T (I) (right part of
Figure 1). The casen = 1 corresponds to sequential computing.

2.3 Distributed computing vs. parallel computing

This difference lies in the fact that a task is distributed by its very definition. This means that the
processes, each with its own inputs, are geographically distributed and, due to this imposed distribution,
need to communicate to compute their outputs. The geographicaldistribution of the computing entities
is a not a design choice, it is an input of the problem which gives its name todistributed computing.

Differently, in parallel computing, the inputs are, by essence, centralized. When considering the
left part of Figure 1, a functionf(), and an input parameterx, parallel computing addresses concepts,
methods, and strategies which allow to benefit from parallelism (multiple processing entities) when
one has to implementf(x) [7, 51]. The inputx is given, and (if any) its initial scattering on distinct
processors is not a priori imposed, but is adesign choiceaiming at obtaining efficient implementations
of f().

Any problem that can be solved by a parallel algorithm, could be solved (usually very inefficiently)
by a sequential algorithm. Hence, theessenceof parallel computing consists in masteringefficiency.
Differently, theessenceof distributed computing is not on looking for efficiency but on coordination
in the presence of “adversaries” such as asynchrony, failures, locality, mobility, heterogeneity, limited
bandwidth, etc.

Given a parallel application, it is of course possible that, due to a design choice, inputs are scattered
on the processors by the application designer, and consequently distributed computing problems may
appear at the implementation level of a parallel application.

2.4 The hardness of distributed computing

From a computability point of view, if the system is reliable, a distributed problem,abstracted as a task
T , can be solved in a centralized way. Each processpi sends its inputini to a given predetermined
process, which computesT (I), and sends back to each processpj its outputoutj .

This is no longer possible if the presence of failures. Let us consider one of the less severe types
of failures, namely process crash failures in an asynchronous system.One of the most fundamental
impossibility result of distributed computing is the celebrated FLP result due to Fischer, Lynch, and
Paterson [23]. This result states that it is impossible to design a deterministic algorithm solving the
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basicconsensusproblem in an asynchronous distributed system in which even a single process may
crash, be the underlying communication medium a message-passing network of a read/write shared
memory (consensus is defined in Section 4.2). Roughly speaking, in a distributed setting, the local
outputs depends on both the local inputsand the environment, while in a parallel setting, the outputs
depends only on the inputs.

Hence, it appears that, in distributed computing, “there are many problems which are not com-
putable, but these limits to computability reflect the difficulty of making decisions in the face of ambigu-
ity, and have little to do with the inherent computational power of individual participants” [34]. As we
can see, the essence of distributed computing is fundamentally different from the efficiency issues (task
graph, scheduling, etc.) which motivated parallelism and constitutes its foundations [57].

3 Synchronous System, Locality, and Message Adversaries

3.1 Synchronous system model

Graph representation From a structural point of view, the system is represented by an undirected
connected graphG = (V,E), such|V | = n.

Each vertex represents a computing entitypi, 1 ≤ i ≤ n, which is a reliable sequential process (Tur-
ing machine enriched with the two communication operationssend() andreceive()). “Reliable” means
that each process executes its local algorithm, without crashing or committing more severe failures (i.e.,
it never behaves arbitrarily).

Each edge ofG represents a bidirectional reliable channel, on which the processes it connects can
send or receive messages. “Reliable” means that there is neither loss, duplication, nor alteration of
messages.

Synchrony assumption Synchrony is an abstraction that encapsulates and hides specific timing as-
sumptions, so that algorithms can be written at a high abstraction level [45, 52, 54]. More precisely,
assuming that the processes wake up simultaneously, each processpi with its own input valueini, they
collectively execute a sequence of rounds, where a roundr is made up of three sequential pases:

• A send phase during which each process sends a message to a subset of its neighbors.

• A receive phase during which each process receives the messages sent by its neighbors.

• A local computation phase during which a process modifies its local state according to the mes-
sages it received during the current round.

The fundamental synchrony property lies in the fact that a message sentduring a roundr is received
during the very same roundr. Hence, when a process progresses from roundr to roundr + 1, it
knows that all the messages sent during roundr are received, and all processes are progressing to round
r + 1. Said differently, the processes advance in a lock-step manner, according to the round number,
whose management is provided for free by the computation model. This model is sometimes called the
LOCAL model.

3.2 Local algorithm

Let us assume that, at the first round, each processpi sends to its neighbors the pair〈i, ini〉 at the first
round, and then, at every round, it sends to its neighbors all the pairs ithas learned during the previous
rounds. As all processes start simultaneously, are reliable, and proceed synchronously, it follows that,
afterx ≥ 1 rounds, each processpi knows the pairs〈j, inj〉 of all the processes in itsx-neighborhood
(i.e., at distance at mostx from it). Hence, afterD rounds (whereD is the diameter of the communi-
cation graph),pi knows all the pairs〈, inj〉, and can consequently compute any function on the input
vector[in1, · · · , inn].
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Definition A distributed synchronous algorithm islocal if its time complexity (measured as the num-
ber of rounds it has to execute in the worst case) is smaller than the graph diameter [43] (as an example
a number of rounds polylogarithmic in the number or vertices, or even a constant). Hence, a fundamen-
tal issue of fault-free distributed synchronous computing consists in “classifying problems as locally
computable [...] or not” [43].

An example As an example, let us consider the coloring of the vertices of a graph (i.e., any vertex
must be assigned a color, such that any two neighbors have different colors and the number of colors is
“small” or even minimal). A very elegant distributed synchronous algorithm, which colors the processes
of a ring with at most three colors, is presented in [17]. This algorithm requires log∗ n + 3 rounds3,
which is asymptotically time optimal according to theΩ(log∗ n) lower bound established in [43].

The interested reader will find developments on locality in synchronous systems in many papers
(e.g., [24, 39, 50]) and in the survey [66].

3.3 Message adversaries in synchronous systems

Historical perspective4 Message adversarieshave been introduced by Santoro and Widmayer in [63] to
model and understand what they calldynamictransmission failures. The termsubiquitousfailures [64],
mobilefailure [46], andtransientlink failure [65], have also been used to capture similar network be-
haviors.

Aim The aim of this approach is to consider message losses as normal link behaviors (as long as
messages are not corrupted). The notion of a message adversary is ofa different nature than the notion
of the fair link assumption. A fair link assumption is an assumption on each link taken separately, while
the message adversary notion considers the network as a whole; its aim is not to build a reliable network
but to allow the statement of connectivity requirementsthat must be met for a problem to be solved.
Message adversaries allow us to consider topology changes not as anomalous network behaviors, but as
an essential part of the deep nature of the system.

It follows that message adversaries allows to capture in a single concept both messages losses and
the dynamicity (modification) of the communication network [13].

Definition A message adversaryis a daemon which, at each round, can suppress messages (hence,
these messages are never received). The adversary is not prevented from having a read access to the
local states of the processes at the beginning of each round.

Let us associate a directed graphGr with each roundr, whose vertices are the processes, and there is
an edge frompi to pj if the message sent at roundr by pi to pj is not suppressed by the adversary. There
is a priori no relation on the consecutive graphsGr, Gr+1, etc. Among the possible daemon behavior,
it can defineGr+1 from the local states of the processes at the end of roundr. Let SMPn[adv : AD]
denote the synchronous system whose communication is under the control of an adversary denoted
AD. SMPn[adv : ∅] denotes the synchronous system in which the adversary has no power (it can
suppress no message), whileSMPn[adv : ∞] denotes the synchronous system in which the adversary
can suppress all the messages at every round. It is easy to see that, from a message adversary and
computability point of view,SMPn[adv : ∅] is the most powerful synchronous system model, while
SMPn[adv : ∞] is the weakest. More generally, the more constrained the message adversary AD, the
more powerful the synchronous system.

3Assumingn > 1, log∗
2
n is the number of times the function “log

2
” must be applied inlog

2
(log

2
(log

2
...(log

2
n)...)) to

obtain the value1. Let us remember thatlog∗(approx. number of atoms in the universe)≃ 5.
4Parts of this section are from [59].

5



The spanning TREE message adversary Let TREE be the message adversary defined by the fol-
lowing constraint: at every roundr, the communication graphGr is an undirected spanning tree, i.e.,
the adversary cannot suppress the two messages –one in each direction– sent on the edges ofGr. Let
SMPn[adv : TREE] denote the corresponding synchronous system. As already indicated, for anyr
andr′ 6= r, Gr andGr′ are not required to be related, they can be composed of totally different sets of
links.

Let us assume that each processpi has an initial inputvi. It is shown in [38] that,SMPn[adv :
TREE] allows the processes to compute any computable function on their inputs, i.e., functions on the
vector[v1, . . . , vn].

Solving this problem amounts to ensure that each inputvi attains each processpj despite the fact
the spanning tree can change arbitrarily from a round to the next one. This follows from the following
observation. At any roundr, the set of processes can be partitioned into two subsets: the setyesi which
contains the processes that have receivedvi, and the setnoi which contains the processes that have not
yet receivedvi. As Gr is an undirected spanning tree (the tree is undirected because no messageis
suppressed on each of its edges), it follows that there is an edge ofGr that connects a process of the set
yesi to a process that belongs to the setnoi. So during roundr, there at least one process of the setnoi
which receives a copy ofvi, and will consequently belong to the setyesi of the next round. It follows
that at most(n− 1) rounds are necessary forvi to attain all the processes.

The TOUR message adversary Let us assume that the underlying communication graph is complete
(any pair of processes is connected by a channel). The message adversary denoted TOUR (for tour-
nament) has been introduced in [1]. At any round, this adversary can suppress one message on each
channel but not both: for any pair of processes(pi, pj), either the message frompi to pj , or the message
from pj to pi, or none of them can be suppressed.

LetA ≃T B mean that any task that can be computed in the modelA, can be computed in the model
B, and vice versa. Moreover, letARWn,n−1[fd : ∅] be the standard asynchronous wait-free read/write
model (processes communicate by read/write registers only, and any number of processes may crash,
see Section 4).

The following model equivalence is shown in [1]:SMPn[adv : TOUR] ≃T ARWn,n−1[fd : ∅].
This is an important result as it establishes a very strong relation linking message-passing synchronous
systems where no process crashes but messages can be lost according to the adversary TOUR, with the
basic asynchronous wait-free read/write model.

More relations linking asynchronous wait-free read/write systems, or asynchronous message-passing
systems, both enriched with appropriate failure detectors [15], with synchronous systems weakened with
message adversaries are described in [61].

4 Asynchronous Shared Memory System, and Universality

4.1 Asynchronous processes with register-based communication

Base t-resilient and wait-free read/write models These models are defined by a set ofn asyn-
chronous sequential processes,p1, ...,pn, which communicate through atomic read/write registers. The
t-resilient model assumes that up tot processes may crash. We denote itASMn,t[∅]. The wait-free
model isASMn,n−1[∅] ((n− 1)-resilient model). Hence, the wait-free model allows all processes, ex-
cept one, to crash in an execution. Moreover, there is a strict hierarchy fromASMn,n−1[∅] (the weakest
–and most– general model) toASMn,0[∅] (the strongest –and reliable– shared memory model).
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4.2 Universality in the wait-free model

The fundamental issue The fundamental issue of the wait-free model (ASMn,n−1[∅]) lies in the
following question [32]:given atomic read/write registers and objects of some typeT , is it possible to
implement objects of some typeT ′?

Universal object and universal construction Let ASMn,n−1[T ] denoteASMn,n−1[∅] enriched
with objects of typeT , and letSeqSpec be the set of objects that can be defined by a sequential specifi-
cation (e.g., stacks, queues, sets, graphs).

An object typeT is SeqSpec-universal(in short universal) if any object ofSeqSpec can be built
in ASMn,n−1[T ], (i.e., with atomic registers and objects of typeT and despite asynchrony and any
number of process crashes). An algorithm implementing such a generic construction is called auniversal
construction[32]. Examples of universal constructions can be found in textbooks such as [5, 55, 67].

Consensus object A consensus object provides the processes with a single operation, denotedpropose(),
that a process can invoke only once (hence it is a one-shot object).

This operation allows each process to propose a value and obtain (we say“decide”) a value, such
that the following properties are satisfied.

• Validity. If a process decidesv, this decided value was proposed by a process.

• Agreement. No two processes decide different values.

• Integrity. A process decides at most once.

• Termination. If a process do not crash, it decides a value.

Validity relates the outputs to the inputs. Agreement states there is a single output.Termination states
that at least the processes that do not crash must decide.

As cooperating processes have to agree in one way or another (otherwise the problem is only a
control flow problem, as found in parallel computing), a lot of distributed computing problems rely on
the consensus problem, or a variant of it.

Good news and bad news Two main results of distributed computing in the wait-free model are the
following.

• The first result is that the consensus object is universal [32]. This means that any any object of
SeqSpec can be built inASMn,n−1[C], whereC denote the consensus object type.

• The second result is the impossibility to implement consensus from atomic registers only, i.e.,
in ASMn,n−1[∅] [23, 32, 44]. Roughly speaking, this impossibility means that, contrarily to
sequential computing, read/write registers are not powerful enough to solve some problems in the
presence of asynchrony and failures.

Herlihy’s hierarchy (consensus hierarchy) Fortunately, read/write registers are not the only type
of objects that can be implemented in hardware. Numerous objects with atomic operations (such as
test&set(), swap(), fetch&add(), compare&swap(), LL/SC(), etc.) are offered by multi-processors
machines (multicore) to solve synchronization issues. (In the following we use the same name for an
object type and its operation).

Let theconsensus numberof an object typeT be the greatest integern such that this object allows
consensus to be implemented inASMn,n−1[T ]. if there is no such a greatest integer, the consensus
number ofT is +∞.

The consensus number notion was introduced by Herlihy [32], who also introduced the following
infinite hierarchy.
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• The consensus number of atomic read/write registers is1.

• The consensus number of the object types Test&Set, Fetch&Add, queue, stack, (and many others)
is 2. Etc. There are objects with consensus numbern ∈ [3..+∞).

• The consensus number of the object types Compare&Swap, LL&SC, sticky bit (and others) is
+∞.

It follows from this hierarchy that, if one want to cope with process crashes when building a reliable
application on top of a multicore architecture composed ofn cores, one has has to consider a multicore
providing an object type whose consensus numberx is such thatx ≥ n.

Generalizing universality Basically, the previous notion of universality is on a single object. A more
general notion of ak-universal construction has been introduced by in [26]. Ak-universal construction
is an algorithm that can be used to simultaneously implementk objects (instead of just one object),
with the guarantee that at least one of thek constructed objects progresses forever. While Herlihy’s
universal construction relies on atomic registers and consensus objects, ak-universal construction relies
on atomic registers andk-simultaneous consensus objects [2], which are equivalent tok-set agreement
objects [16] inASMn,n−1[∅]. Thek-set agreement is a weakening of consensus, which differs only in
the Agreement property, namely, at mostk different values can be decided by the processes (k = 1 for
consensus).

An even more general notion of universality was introduced in [62], where is presented ak-universal
construction which satisfies the following four desired properties:

• Among thek objects that are constructed, at leastℓ objects (and not just one) are guaranteed to
progress forever.

• Any process that does not crash executes an infinite number of operations on each object that
progresses forever (wait-freedom progress condition).

• The construction is contention-aware, which means that it uses only read/write registers in the
absence of contention.

• The construction is generous with respect to the obstruction-freedom progress condition, which
means that each process is able to complete any one of its pending operationson thek objects if
all the other processes hold still long enough.

This construction is called a(k, ℓ)-universal construction. It uses a natural extension ofk-simultaneous
consensus objects, called(k, ℓ)-simultaneous consensus objects. These objects are shown to be universal
(i.e., necessary and sufficient) for such a construction.

4.3 Weaker progress conditions, and abortable objects

Progress conditions weaker than wait-freedom The termination property stating that any invocation
of an object operation issued by a process that does not crash, terminates, despite the behavior of the
other processes (asynchrony and failures) is calledwait-freedom. Unfortunately, in some cases, the
design of a wait-free implementation of a concurrent object can be costly.

Hence, conditions weaker than wait-freedom have been proposed forthe implementation of concur-
rent objects. They are the following ones.

• Non-blocking. If several processes invoke concurrently operations on an object, and at least one
of these processes does not crash, at least one process returns from its invocation [36].

• Obstruction Freedom. If a process executes in isolation for a long enoughperiod and does not
crash, it returns from its operation invocation [33].

“In isolation” means that, the other processes (which can be engaged in operations on the object)
stop executing during the “long enough period”. As the system is asynchronous, “long enough
period” means a duration “during which a process can execute its operation”.
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let us observe that “non-blocking” is what is called “deadlock-freedom” in a failure-free context.
Moreover, obstruction-freedom is a weaker property than non-blocking. Let us also notice that, as wait-
freedom, non-blocking and obstruction-freedom implementations cannot use lock. This is due to the
fact that, once an object is locked by a processp, it remains locked forever ifp crashes before releasing
the lock.

Example: obstruction-freekset agreement An an example, let us consider thek-set agreement in the
wait-free modelASMn,n−1[∅]. As consensus, this problem is impossible to solve in this model when
k ≤ n− 1. Hence, a way to solve it, is to weaken its termination property, requiring only that a process
returns from its invocation if the obstruction-freedom property is satisfied(i.e., a process has enough
time to execute its operation without being bothered by the other processes).An algorithm solvingk-
set agreement in an anonymous version of the wait-free modelASMn,n−1[∅] is presented in [9]. This
algorithm uses(n− k + 1) multi-writer multi-reader atomic register, which is optimal.

Abortable objects Another way to obtain more efficient implementations of an object is to relax the
semantics of its operations as follows. The invocation of object operations executed in concurrency-free
patterns must always terminate (if the invoking process does not crash).Otherwise they can abort (in
which case, they do not modify the state of the object). Such objects are called abortableobjects [11,
31, 55, 60].

It is also possible to combine abortable objects with the non-blocking progress property (see [55]
for more details).

5 Asynchronous Message-passing System, Impossibility Results

5.1 Asynchronous system model

Definition Let AMPn,t[∅] denote then-process asynchronous message-passing computation model.
In such a model, each process is sequential and asynchronous and upto t processes may crash in an
execution. Moreover, each pair of processes is connected by an asynchronous reliable bi-directional
channel. “Reliable”means that no message can be lost, duplicated, createdfrom thin air, or modified.
“Asynchronous” means that message transfer delays are arbitrary, may vary with time, but are finite.
This is the classic model used in textbooks (e.g., [5, 10, 45, 53, 56]).

Reliable broadcast inAMPn,t[∅] One of the very most basic problems encountered inAMPn,t[∅]
consists in implementing a reliable broadcast communication abstraction. Namely, tobroadcast a mes-
sagem a processp needs to sentm to all the processes. Ifp crashes during these sendings, only a subset
of the non-crashed processes receive the message, and consequently the broadcast is unreliable.

A reliable broadcast ensures that all the correct processes (i.e., the processes that do not crash)
deliver the same set of messagesS, and this set includes –at least– all the messages they broadcast.
This means that, if a process crashes, each of its messages is delivered by all or none of the correct
processes. Moreover, a process that crashes deliver a subset of S (the set messages delivered by the
correct processes). This communication abstraction was cleanly definedin [30]. The reader will find
in the monograph [53] distributed algorithms implementing this abstraction in variousmessage-passing
models prone to both process crashes and channel failures.

From message-passing to read/write registersAnother of the most basic problems of asynchronous
message-passing systems consists in building an atomic read/write register.
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It is shown in [4] thatt < n/2 is a necessary and sufficient condition to simulate a read/write register
in AMPn,t[∅], hence (from a notation point of view) such a register can be implemented only in the
restricted message-passing modelAMPn,t[t < n/2].

An algorithm (named ABD in the literature, according to the names of its authors)that implement
a register inAMPn,t[t < n/2] is described in [4]. This algorithm is based on majority quorums. The
fact that these quorums include a majority of correct processes, associated with the rule “a reader has
to write the value it returns” allows read operations to always obtain correct values. If each message
is assumed to take∆ time units, a write operation require2∆ time units, and a read operation requires
4∆ time units. A very recent algorithm, described in [49], improves the time durationof the read
operation, which requires2∆ time units in “good circumstances” and up to4∆ time units only in “bad”
circumstances.

Universality in AMPn,t[∅] The notion of universality introduced in Section 4.2 translates as follows
in AMPn,t[t < n/2] (the requirementn < n/2 is due to the fact that registers appear in the definition
of the universality notion):How to duplicate a state machine?

This problem was posed first by Lamport in the context of fault-free message-passing systems [41].
In the context ofAMPn,t[t < n/2], it amounts to build a reliable broadcast abstraction such that all
processes receive in the same order all the operations on the object thatis built. In this way, they can
apply the same sequence of operations to their local copies, which ensures their mutual consistency.
Such a broadcast abstraction is calledTotal Order Reliable(TO-reliable) broadcast.

It appears that the construction of TO-reliable broadcast relies on consensus, namely, the processes
have to agree on the order in which operations must be applied to their local copies, and this is a typical
agreement problem. As consensus is impossible to solve inAMPn,1[∅] (i.e., even a single process may
crash) [23]), TO-reliable broadcast is impossible to implement inAMPn,t[t > 0].

5.2 A fundamental dilemma: symmetry breaking

When considering the basic distributed computingAMPn,t[∅], A fundamental dilemma is the follow-
ing.

• On the one side,all processes are equalin the sense that any subset including up tot of them may
crash, and it is not known in advance which processes will crash in a given run.

• On the other side, solving some problem requires that,during some period of time, some pro-
cess(es) be “more equal”than the others. Such processes are usually calledleaders.

This means thatsymmetry breaking in the presence asynchrony and failuresis a fundamental issue in
distributed computing. (This was known in some societies as “Primus inter pares”.)

5.3 Circumventing impossibility results

Possible approaches Several approaches have been proposed to address impossibility results in the
modelAMPn,t[t > 0]. We focus here only on the consensus problem inAMPn,t[t < n/2]. Four
main approaches have been investigated.

• Enrich the system with randomization, and weaken accordingly the termination property [6].
This allows the non-determinism created by the environment (asynchrony and failures) to be
solved [57].

• Restrict the asynchrony of the system [21, 22].

• Restrict the space of the input vectors which can be proposed by the processes [48]. This approach
established a strong connection relating error-correcting codes and agreement problems [25].
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• Introduce failure detectors, i.e., devices that provide each process withinformation on failures.
According to the problem to be solved and the quality of this information, several classes of
failures detectors can be designed [15]. Actually, failure detectors canbe seen as objects that
abstract underlying synchrony assumptions.

The weakest failure detector to solve consensusThis failure detector was introduced in [14], where
it is calledΩ. “Weakest means” that given any information on process failures, which allows consensus
to be solved, it is possible to buildΩ.

This failure detectorΩ provides each processpi with a read-only local variableleaderi, which
always contains a process identity, and satisfies the following “eventual leadership” property: There is a
time τ , after which the variablesleaderi of all the processes that do not crash contain forever the same
valueid, and this identity is the identity of a correct process.

It is important to notice that, during an arbitrary long, but finite, period, each local variableleaderi
can behave arbitrarily. Moreover, the time instantτ is never explicitly known by the processes. Algo-
rithms implementingΩ in AMPn,t[∅] with various underlying synchrony assumptions are presented
in [53]. Ω can be seen as a formal definition of the leader service used in Paxos [42].

The correct information on failures provided byΩ is eventual, and consists in a single identity, which
is not the one of a faulty process. No information on the state (correct or faulty) of other processes is
needed to solve consensus. As we can see,Ω solves the dilemma stated previously.

Indulgent algorithms The class ofeventualfailure detectors (henceΩ) has the following noteworthy
feature. An algorithm based on such a failure detector always terminates (and produces a correct result),
if the failure detector it relies on behaves as described by its specification.If the implementation of the
failure detector never satisfies its specification, the algorithm may not terminate, but if it terminates, it
always produces a correct result. Such algorithms are said to beindulgentwith respect to their failure
detectors [28, 29].

5.4 Process adversaries in asynchronous systems

The notion of aprocess adversaryoriginated in [37], and was later generalized and formalized in [19].
A computability-oriented survey can be found in [40]. This notion generalizes the notion of at-resilient
algorithm.5

Definition A process adversaryA is a set of sets of processes. Given such a setA, and a problemP ,
the aim is to design an algorithm that (a) never violates the safety property ofP , and (b) terminates in
all the executions in which the set of non-faulty processes is a set inA.

As an example, Let us considers a system with four processes denotedp1, ..., p4. The setA =
{{p1, p2},{p1, p4},{p1, p3, p4}} defines an adversary. An algorithmA-resiliently solves a problem if
it terminates in all the executions where the set of non-faulty processes is exactly either{p1, p2} or
{p1, p4} or {p1, p3, p4}. This means that anA-resilient algorithm is not required to terminate in an
execution in which the set of non-faulty processes is exactly the set{p3, p4} or the set{p1, p2, p3}.

The main interest of this notion is the fact that it allows the express termination conditions where
process crashes are not uniform. It modifies the computation model, in the sense that not all processes
are seen as equal, and do not fail in an independent way.

5This section borrows parts from [34].
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An example: core and survivors sets A core C is a minimal set of processes such that, in any
execution, some process inC does not fail. Asurvivor setS is a minimal set of processes such that
there is a execution in which the set of non-faulty processes is exactlyS. Let us observe that cores and
survivor sets are dual notions (any of them can be obtained from the other one).

As an example let us consider a system of 4 processesp1,p2, p3 andp4 where two cores are defined,
namely{p1, p2} and {p3, p4}. The corresponding survivor sets are{p1, p3}, {p1, p4}, {p2, p3} and
{p2, p4}. (Borrowing the quorum terminology and considering cores asquorums, the corresponding
survivor sets are theiranti-quorums). Cores and survivor sets are assumed to be initially known by alll
the processes.

6 Conclusion

The aim of this invited talk was to present some ideas and concepts which belongs to the basics of
distributed computing. Due to time and page limitations, important ideas and conceptshave not been
addressed here (where the term “important” must be understood as subjective and engaging only the
author).

Much more concepts belong to the basics of distributed computing, and still deserve work to be fully
understood and mastered. I cite only three of them: anonymous/homonymous systems (e.g., [3, 8]);
Byzantine failures in agreement problems (e.g., [47]); and dynamic systems(e.g., [12]).
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