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Abstract 16 

Gazul is the shallowest mud volcano (MV) within the Shallow Field of Fluid Expulsion (SFFE) of 17 
the northeastern Gulf of Cádiz (NE Atlantic; 300-1200 m depth). The SFFE represents an 18 
important geo- and biodiversity area that was designated as a Site of Community Importance 19 
under the European Habitats Directive in 2014. In this study, geological features, habitats and 20 
associated biodiversity, as well as anthropogenic impacts, were characterized at the Gazul MV 21 
from underwater imagery and multibeam bathymetry. Multivariate methods using the Bray-22 
Curtis similarity index identified six main habitats, each of which harbored a characteristic 23 
faunal assemblage that included: (1) sandy ripple bottoms typified by the actiniarian Actinauge 24 
richardi; (2) sandy, muddy, coarse sand and bioclastic bottoms dominated by the solitary coral 25 
Flabellum chunii; (3) coarse sand and bioclastic bottoms, together with soft sediments covered 26 
by scattered methane-derived authigenic carbonates (MDACs) (mixed bottoms), characterized 27 
by the echinoid Cidaris cidaris; (4) hard bottoms comprising MDACs dominated by a wide 28 
variety of sponges and gorgonians; (5) coral-rubble bottoms typified by the presence of 29 
colonial scleractinian communities dominated by Madrepora oculata; and (6) mixed bottoms 30 
characterized by the presence of a styelid ascidian. Slope and water depth were the main 31 
factors explaining assemblages’ distribution, which was also supported by the presence of 32 
MDACs such as slabs, crusts and chimneys on the seafloor, as well as by the geomorphologic 33 
diversity of Gazul MV. The results highlight Gazul MV as an eco-biologically important area 34 
harboring different vulnerable marine ecosystem (VME) elements with indicator taxa such as 35 
scleractinians, sponges, gorgonians and black corals. ROV images revealed abandoned or lost 36 
fishing gears and marine debris on the seafloor, indicating anthropogenic impacts in Gazul MV 37 
and adjacent areas. Indeed trawling fisheries activities have also been detected in Vessel 38 
Monitoring System datasets. A fishery restricted area is recommended in Gazul MV due to the 39 
occurrence of diverse VMEs and species included in different conservation directives and 40 
conventions. 41 

Keywords: benthic communities, conservation, deep-sea habitats, mud volcano, ROV, 42 
vulnerable marine ecosystem 43 



2 

 

1. Introduction 44 

Submarine elevations (e.g. seamounts, mounds, diapiric ridges, mud volcanoes) are 45 

considered exceptional seafloor features harboring distinct benthic and demersal associated 46 

communities and habitats (Samadi et al., 2007; Ramos et al., 2016; Rueda et al., 2016; Corbera 47 

et al., 2019), which can even promote large pelagic biodiversity in the open ocean (Morato et 48 

al., 2006; Holland and Grubbs, 2007; Litvinov, 2007). There is a strong link between deep-sea 49 

benthic communities at submarine elevations with local bottom current and substrate types 50 

(Van Rooij et al., 2010). In areas with strong bottom currents, erosion and sediment transport 51 

are promoted and, in some cases, hard substrata are exhumed and colonized by suspension 52 

feeders (Van Rooij et al., 2010; Gasser et al., 2011). In those areas, associated benthic 53 

communities are usually dominated and structured by slow-growing and long-living organisms, 54 

mainly suspension feeders (e.g. colonial scleractinians such as the so called white corals, 55 

gorgonians and sponges), which benefit from a local high productivity derived from mound-56 

induced upwelling and the enhanced currents around them (Genin et al., 1986; Roden, 1986; 57 

Rogers, 1994; Richer de Forges et al., 2000; Samadi et al., 2007). These organisms provide 58 

three-dimensionally complex habitats (sometimes known as “marine animal forests”; Rossi et 59 

al., 2017; Wienberg and Titschack 2017) for a large number of vagile invertebrates and 60 

demersal fish, and they only occur in specific locations (Richer de Forges et al., 2000; Samadi et 61 

al., 2007; Altuna, 2013). These habitat-forming organisms are important features of the deep 62 

sea, recently classified as vulnerable marine ecosystems (VMEs hereinafter), and are very 63 

sensitive and vulnerable to fishing activities, particularly to bottom contact gears (Koslow et 64 

al., 2001; Clark and Koslow, 2007). 65 

Ecosystems on submarine elevations are at the forefront of international concerns and 66 

negotiations, and discussed by worldwide organizations, policy makers and scientific 67 

researchers in order to improve the sustainable use of resources as well as the protection of 68 

the associated biodiversity in VMEs in the high seas (Gjerde and Breide, 2003; WWF/IUCN, 69 

2004; United Nation, 2007; FAO, 2009). Nevertheless, the level of scientific knowledge of 70 

deep-sea habitats is still limited (Koslow et al., 2015). Scientific data regarding the description 71 

of VMEs and associated communities are crucial for establishing management strategies in 72 

order to protect ecologically important deep-sea areas. Regarding deep hard bottoms, which 73 

are difficult to study using classical extractive methods without destroying ecosystem 74 

components, the development of non-invasive techniques (e.g. underwater cameras, remotely 75 

operated vehicles (ROVs hereinafter), multibeam echosounder systems) has enabled the direct 76 

visual inspection of the seafloor characteristics and the megafauna, allowing the identification, 77 
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mapping and quantitative study of different habitats (e.g. Orejas et al., 2009; Howell et al., 78 

2010; Bo et al., 2011; Sánchez et al., 2014; Taviani et al., 2015; Ramos et al., 2016; Lim et al., 79 

2017; van den Beld et al., 2017; de la Torriente et al., 2018; Price et al., 2019). Underwater 80 

images and videos have largely increased our knowledge on deep-sea VMEs, fostering 81 

management and conservation plans (WWF/IUCN, 2004; Ramirez Llodra and Billett, 2006), and 82 

providing precise information for the assessment of the environmental status for several 83 

indicators of the European Marine Strategy Framework Directive (MSFD, 2008/56/EC) 84 

concerning the conservation of natural habitats (Kazanidis et al., 2020). 85 

Over the last few decades, commercial fisheries shifted effort and expanded into the 86 

deep-sea following fisheries overexploitation on global continental shelves (Morato et al., 87 

2006; Norse et al., 2011; Costello et al., 2012; FAO, 2018). This shift in exploitable fishing 88 

depths is leading to potentially long-term impacts including biodiversity loss in VMEs (Pitcher 89 

et al., 2010). Within southern Europe, there is detailed and extended information regarding 90 

deep-sea VMEs for the western and central Mediterranean basin (e.g. D’Onghia, 2019; Puig 91 

and Gili, 2019; Rueda et al., 2019; Gulf of Lions: Orejas et al., 2009; Gori et al., 2013; Aymà et 92 

al., 2019; off Cape Santa Maria di Leuca: Tursi et al., 2004; Taviani et al., 2005; Mastrototaro et 93 

al., 2010; D’Onghia et al., 2011; Strait of Sicily: Zibrowius and Taviani, 2005; Schembri et al., 94 

2007; Freiwald et al., 2009; Taviani et al., 2009), whereas other areas are less studied, as for 95 

instance the southern Iberian continental margin (Díaz-del-Río, 2014; de la Torriente et al., 96 

2018; Corbera et al., 2019; Rueda et al., accepted). 97 

The European LIFE+ INDEMARES Project was carried out in Spanish waters with the 98 

main aim of providing the necessary scientific information to establish a network of deep-sea 99 

areas of biological interest for conservation purposes. One of the study cases was the Shallow 100 

Field of Fluid Expulsion (SFFE hereinafter) (Díaz-del-Río, 2014), which is located on the upper 101 

and middle slope of the Gulf of Cádiz (GoC hereinafter) continental margin, between 300 and 102 

1200 m water depth. This area presents an important number of mud diapirs and mud 103 

volcanoes resulting from massive plastic material movements and actively extruding material, 104 

respectively, from sub-seafloor layers to the surface due to density differences (Díaz-del-Río et 105 

al., 2003; Pinheiro et al., 2003; Medialdea et al., 2009), which is why the area is also known as 106 

the mud volcanoes of the GoC (MVGoC hereinafter). This geomorphological diversity is 107 

enriched by the presence of fields of methane-derived authigenic carbonates (MDACs 108 

hereinafter) exhumed by bottom currents erosive processes, which have triggered a 109 

diversification of habitat types and biological communities (Greinert et al., 2001). 110 
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Traditionally, soft bottoms across the MVGoC have been exploited by multispecific 111 

bottom trawl fleets, with the Norway lobster Nephrops norvegicus (Linnaeus, 1758) as one of 112 

the main target species due to its high economic value (Jiménez et al., 2004; Vila et al., 2015). 113 

The MVGoC were integrated into the European Natura 2000 network as a Site of Community 114 

Importance (SCI-ESZ 12002 “Volcanes de fango del Golfo de Cádiz”) due to the presence of (1) 115 

five habitat subtypes within “1180 Submarine structures made by leaking gases", and (2) nine 116 

habitat subtypes within “1170 Reefs”, both categories included within Annex I of the Habitats 117 

Directive of the European Union (Council Directive 92/43/EEC) (Díaz-del-Río, 2014). 118 

Furthermore, highly fragile keystone epibenthic species related to the OSPAR (Oslo and Paris 119 

Commissions) habitats list (https://www.ospar.org/work-areas/bdc/species-habitats) such as 120 

“coral gardens” and “deep-sea sponge aggregations” are also present in the MVGoC (Rueda et 121 

al., 2016). Nevertheless, despite the increasing interest on deep-sea ecosystems, few studies 122 

have been focused on the associated benthic fauna of MVGoC (Delgado et al., 2013; Rueda et 123 

al., 2016; Lozano et al., 2020a, b), most of them studying the distinct fauna associated with 124 

fluid migration and seepage (Oliver et al., 2011; Rueda et al., 2012; Cunha et al., 2013; 125 

Rodrigues et al., 2013), while some others analyzed the spatial and temporal distribution of 126 

cold-water corals (Taviani et al., 1991; Wienberg et al., 2009). 127 

The aims of the present study were: (i) to identify and describe the main habitats and 128 

megabenthic assemblages occurring on Gazul MV and surrounding areas, (ii) to map their 129 

distribution using a backscatter raster in order to get an interpretative habitat map, and (iii) to 130 

analyze the potential influence of seafloor characteristics (obtained using acoustic systems) on 131 

the distribution of these habitats. This information will improve the knowledge on the 132 

biological and ecological characteristics of this specific area of the GoC, as well as of a recently 133 

declared SCI.  134 

135 

https://www.ospar.org/work-areas/bdc/species-habitats
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2. Materials and Methods 136 

2.1. Study area 137 

The geomorphology of the GoC is largely shaped by tectonics and diapiric processes 138 

related to a complex geodynamic evolution of the continental margin (Medialdea et al., 2009). 139 

These processes provide escape pathways for over-pressured sediments and fluids from 140 

deeper layers to the seafloor surface, and favor the formation of characteristics seafloor 141 

structures such as MVs (Pinheiro et al., 2006; Fernández-Puga et. al., 2007). On the upper and 142 

middle slope of the Spanish continental margin (300-730 m depth), the SFFE is characterized 143 

by the presence of two main diapiric ridges (DR hereinafter), the Guadalquivir DR and the 144 

Cádiz DR (Somoza et al., 2003; Fernández-Puga et al., 2007); two main contourite channels 145 

with sinuous morphology, the Gusano and Huelva channels (García et al., 2009); and several 146 

MVs and mud diapirs (Díaz-del-Río, 2014; Palomino et al., 2016). 147 

Gazul is one of the four MVs that have been confirmed in the SFFE (Palomino et al., 148 

2016). It is located in the northeastern part of the SFFE and to the north of the Cádiz DR (Fig. 149 

1). This MV has its summit at 363 m depth (relief: 107 m) and a diameter of 1200 m. According 150 

to Palomino et al. (2016), this MV has a subcircular base and an asymmetrical bathymetric 151 

profile, with flanks of different lengths and oriented NE–SW. It presents two prolongations 152 

running NW–SE that are interpreted as 20 to 40 m height outcrops of muddy materials, 153 

surrounded by two depressions (depth: 15 and 20 m below adjacent bottoms; length: 2.1 and 154 

2.3 km, respectively) located north and northwest of the MV main edifice (Fig. 1C). There are 155 

also isolated and grouped mounds about 55 m wide occurring to the west of the western 156 

depression, at depths between 460 and 480 m and oriented NW–SE (Fig. 1C). The summit of 157 

Gazul MV is characterized by a thin veneer of hemipelagic muddy sediments overlying greenish 158 

grey-mud breccia facies with abundant bioclasts and MDACs; the area of the mounds presents 159 

MDACs, mainly slabs and chimneys; finally, sediments of the depressions are coarser and 160 

composed of sand and bioclastic gravel (Palomino et al., 2016). 161 

The pattern of oceanographic circulation in the GoC is controlled by the exchange of 162 

water masses through the Strait of Gibraltar, with the surficial North Atlantic Central Water 163 

flowing into the Alboran Sea and the deeper Mediterranean Outflow Water (MOW 164 

hereinafter) flowing out to the Atlantic Ocean (Lacombe and Lizeray, 1959; Ochoa and Bray, 165 

1991; Sánchez-Leal et al., 2017) (Fig. 1A). The MOW, which shows high salinity (38.45 psu) and 166 

temperature (12.9 °C), sweeps along the southwestern Iberian margin as a seafloor bottom 167 

current between 300 m and 1200 m water depth, flowing to the north and west due to the 168 



6 

 

Coriolis deflection, and splitting into two main branches, the Mediterranean Upper Core and 169 

the Mediterranean Lower Core (Madelain, 1970; Ambar and Howe, 1979; Sánchez-Leal et al., 170 

2017). The present study area is under the influence of the Mediterranean Upper Core (Fig. 171 

1A), with bottom currents reaching a maximum speed of 0.3–0.5 m·s-1 along the contourite 172 

channels, in contrast to the minimum speeds of between 0.01–0.1 m·s-1 observed between the 173 

diapiric ridges (Díaz-del-Río, 2014; Sánchez-Leal et al., 2017). This MOW branch exerts a great 174 

influence on the bottoms of this area as it circulates in contact with the friction surface of the 175 

seabed, resulting in diverse morphological features, both depositional and erosional 176 

(Hernández-Molina et al., 2003; García et al., 2009; Sánchez-Leal et al., 2017; Lozano et al., 177 

2020b). 178 

2.2. Video sampling design and video data collection 179 

Underwater video transects have been recorded in three expeditions conducted at 3 180 

sites on Gazul MV (the summit, northern flank and southern flank) and also at 4 sites from the 181 

surrounding areas (the eastern and western adjacent areas, and the western and central 182 

depressions) between 2012 and 2016 (Fig. 1C). The first expedition was carried out within the 183 

LIFE+ INDEMARES/CHICA project on board the Research Vessel (RV) Ramón Margalef (CHICA-184 

0412 expedition); during this expedition three ROV video transects (total recording time of 6h 185 

20min) were performed using the ROV LIROPUS 2000 (model Super Mohawk II; equipped with 186 

a high definition Kongsberg video camera, a Kongsberg tooling camera and three frontal flash 187 

LED Matrix). The second survey was carried out within the ISUNEPCA project on board the RV 188 

Ángeles Alvariño (ISUNEPCA-0616 expedition); during this expedition three Remotely Operated 189 

Towed Vehicle (ROTV) video transects (2h 55min) were performed using the ROTV TST-HORUS 190 

(equipped with two Full HD video cameras which have an angle of inclination of 45° in relation 191 

to the ground, and a unique frontal flash LED Matrix). The third survey was carried out within 192 

the H2020 ATLAS project on board the RV Sarmiento de Gamboa (MEDWAVES expedition); 193 

during this expedition two ROV video transects (13h 31min) were performed using the ROV 194 

LIROPUS 2000. Underwater transects of all three expeditions were georeferenced with a 195 

transponder that allowed the position of the images to be precisely determined relative to the 196 

RV vessel along each transect. Additionally, both the ROV and the ROTV were equipped with 197 

two parallel laser beams providing either a 10 cm (ROV) or a 7.5 cm spatial scale (ROTV). 198 

The bathymetric data of Gazul MV (and surrounding areas) used in this study were 199 

acquired during the ISUNEPCA project using a Kongsberg Simrad EM 710 multibeam 200 

echosounder (from 70 to 100 kHz) with a lower velocity, and processed with CARIS HIPS & SIPS 201 
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data processing software to produce a 5×5 m bathymetric grid model. Backscatter values and 202 

other seafloor predictors were also processed from swath bathymetry using the Geocoder 203 

algorithm of CARIS HIPS & SIPS software. In addition, a backscatter mosaic was created after 204 

the processing of bathymetric data with CARIS HIPS & SIPS software with a 3×3 m of spatial 205 

resolution and it was analyzed with the ArcGis v10.7. 206 

The video footage (22h 46min of recording) was visually analyzed and split into one-207 

minute video track units (Nt= 1366 video track units) for the geological and biological data 208 

acquisition, and named as samples hereinafter. These 1-min samples were treated as different 209 

samples and those with different substrate types were removed in order to avoid ambiguous 210 

classifications with species from different habitats. The video tracks that corresponded to 211 

sampling events (when the ROV is not moving), zooms or indistinct images were removed from 212 

the analysis, and only those 1-min video samples displaying continuous movement ROV tracks 213 

at similar low speeds (ROV: 12 m·min-1; ROTV: 16 m·min-1) and distance from the bottom 214 

(generally between 0.5 and 2.0 m) were included in the analyses. This methodology has been 215 

recently used in similar studies for identifying epibenthic habitats and spatial patterns of 216 

associated benthic assemblages (e.g. Beaman et al., 2016; de la Torriente et al., 2018). The 217 

interpretation of soft bottoms at Gazul MV in the video footage has been carried out using 218 

information regarding the nature and sediment texture obtained from previous works carried 219 

out in the LIFE+ INDEMARES project and MEDWAVES expedition (Díaz-del-Río, 2014; Palomino 220 

et al., 2016; Orejas, 2017). Finally, a total of 505 out of 1366 1-min video samples 221 

corresponding to a unique substrate type and covering similar characteristics (ROV speed and 222 

distance from the bottom) were included for the habitat identification analysis. 223 

2.3. Biological and geological data sets 224 

The abundance of identifiable and conspicuous epibenthic and demersal species was 225 

evaluated in each one of the 505 1-min video samples according to a semi-quantitative index 226 

coded as 1 (1 observation [i.e. individual/colony] per 1-min video sample), 2 (2-5 227 

observations), 3 (5-30 observations), 4 (30-100 observations) and 5 (>100 observations). 228 

Several groups of morphologically similar species were used instead when species 229 

identification using video imagery was not possible in order to avoid taxonomic inconsistencies 230 

(see Table 1). This approach was applied mainly to sponges, which were very diverse and 231 

abundant in the area, but scarcely distinguishable from each other in the underwater images, 232 

being grouped as “large sponges”, “small and digitate sponges” and “encrusting sponges”. 233 

Other groups included small gorgonians and were referred to the “Bebryce group”, 234 
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alcyonaceans and hydrozoans. Despite these taxonomic limitations, this approach gives an 235 

idea of the range of organisms that form part of the faunal communities identified in the 236 

samples. In addition, the density (in terms of individuals or colonies m-2) of these species (or 237 

species groups) was evaluated on specific video frames obtained from different 1-minute video 238 

samples by measuring the areas of the frames with the help of the scale provided by the laser 239 

beams. Some video-taxonomic determinations of epibenthic taxa were confirmed with 240 

specimens collected with benthic dredge and beam-trawl (sampling area ca. 300 m2 and 2000 241 

m2, respectively, and targeting epifaunal and demersal organisms from sedimentary and non-242 

sedimentary habitats) in previous LIFE+ INDEMARES/CHICA expeditions carried out before 243 

obtaining underwater imagery in Gazul MV (Díaz-del-Río, 2014; Palomino et al., 2016; Rueda et 244 

al., 2016; Sitjà et al., 2019).  245 

Six different bottom types were defined in order to avoid uncertainties and to facilitate 246 

interpretation, including (1) coarse sand and bioclastic bottoms (CSBB); (2) sandy ripple 247 

bottoms (SRB); (3) sandy bottoms (SB); (4) hard bottoms comprising MDACs (i.e. bottoms 248 

dominated by large crusts or slabs partly covered by a thin layer of sediment) (HB); (5) coral-249 

rubble bottoms (CRB); and (6) mixed bottoms (i.e. soft sediments covered by scattered 250 

MDACs) (MXB). Substrate types and seafloor micro-morphologies (e.g. ripples) as well as fluid 251 

venting related features (e.g. carbonate chimneys) were annotated in each 1-min video sample 252 

and, whenever possible, ground truthing by samples and available sedimentological and 253 

backscatter data obtained in different LIFE+ INDEMARES/CHICA expeditions at Gazul MV (Díaz-254 

del-Río, 2014; Palomino et al., 2016). 255 

Data based on first-order derived statistics of bathymetric data were obtained using 256 

different extensions within ArcGIS v10.7. These seafloor predictors included slope (degrees of 257 

inclination), aspect (orientation of the seabed), backscatter (where high values correspond to 258 

hard substrates), profile curvature (topographic unevenness) and Bathymetric Position Index 259 

(BPI; it measures whether the area is on a topographic high (crest) or low (depression) relative 260 

to the surrounding area), as well as water depth as a position variable. 261 

2.4. Anthropogenic activity indicators 262 

Bottom trawling activity in Gazul MV and adjacent areas was obtained from Vessel 263 

Monitoring System (VMS) datasets for the period between 2006 and 2012, which were 264 

supplied by the Secretaría General del Mar of the Spanish government. These datasets 265 

included date, time, vessel registration number, vessel position and speed, and type of fishing 266 

gear (e.g. trawl, purse seine, etc.). Annual and average fishing efforts (as total trawled hours) 267 
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were calculated for a grid of the study area with 1 km2 cell size. These analyses were carried 268 

out using the package VMStools in R software (Hintzen et al., 2012). Interpolation between 269 

positional signals was calculated in VMStools. Positional signals corresponding to fishing 270 

activity were defined by a speed range of 2 to 5 knots, as this is the usual speed for trawling 271 

vessels operating in the area. The results obtained were expressed in trawling hours and 272 

represented in a map with the software ArcGIS v10.7. 273 

Additionally, the abundance and distribution of marine litter was analyzed by 274 

annotating its presence on each 1-min video sample. Litter was classified following the Master 275 

List of Categories of Litter Items given by the MSFD Technical Subgroup on Marine Litter 276 

(2013), which divided the marine litter into five main categories of material (plastics, metal, 277 

rubber, glass/ceramics, natural products). Additionally, marine litter was analyzed considering 278 

the type of item (e.g. fishing lines, cans, drink bottles), and their presence was evaluated 279 

through the relative frequency of occurrence of each type, estimated as the percentage of 280 

samples in which the litter was present. The potential impact of marine litter on benthic fauna 281 

was also evaluated following the classification of Angiolillo et al. (2015) (i.e. covering, abrasion, 282 

hanging, lying). 283 

2.5. Data analyses 284 

The total frequency of occurrence of each taxa and assemblage identified in the 285 

analyzed underwater imagery has been determined as the percentage of samples in which a 286 

particular taxa/assemblage is present, and it was expressed as a frequency index (%F). In the 287 

case of those taxa included in further analysis, the relative frequency of occurrence per 288 

bottom type was also considered. 289 

Multivariate methods such as group-average sorting classification (CLUSTER) with the 290 

UPGMA agglomeration algorithm (Sneath and Sokal, 1973) and non-metric multidimensional 291 

scaling ordination (nMDS) using the Bray-Curtis similarity index were carried out 292 

independently on the same matrix of abundance values (i.e. as semi-quantitative ranks above 293 

mentioned). For these multivariate analyses, only those characteristic epibenthic taxa that 294 

provided a biological structure (potential habitat-forming species) and displayed a total 295 

frequency of occurrence in samples of more than 1% were considered, and referred to as 296 

habitat-typifying species (Table 1). These multivariate analyses were done for detecting spatial 297 

patterns and identifying epibenthic assemblages forming habitats on Gazul MV. To test for 298 

differences between the identified assemblages, a distance-based permutational multivariate 299 

analysis of variance (PERMANOVA) (Anderson, 2001; McArdle and Anderson, 2001) was 300 
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performed. This design included 2 fixed and orthogonal factors: substrate type (6 levels: coarse 301 

sand and bioclastic bottoms, sandy ripples bottoms, sandy and muddy bottoms, hard bottoms, 302 

coral-rubble bottoms, mixed bottoms) and sites (7 levels, 3 in the MV: summit, northern flank, 303 

southern flank; and 4 in the surrounding area: central depression, western depression, eastern 304 

adjacent area, western adjacent area). The PERMANOVA analysis was based on Bray-Curtis 305 

similarity on semi-quantitative data, using 999 random permutations. The identification of the 306 

main taxa characterizing each group (i.e. epibenthic assemblages) in the CLUSTER analysis was 307 

performed through a similarity percentage analysis (SIMPER) with a 90% cut-off for low 308 

contributions. All statistical analyses were carried out using PRIMER 6+ software (Clarke and 309 

Warwick, 2001). 310 

Information regarding the bottom type observed along the video tracks and the 311 

epibenthic assemblages identified from multivariate analyses was superimposed on the 312 

backscatter mosaic, resulting in an interpretative habitat map obtained with the ArcGIS 313 

desktop software. 314 

Finally, the potential effect of seafloor variables in the spatial distribution of 315 

assemblages was determined using canonical correspondence analysis (CCA), previously 316 

applied in other works using underwater imagery (e.g. Sánchez et al., 2014; Gunton et al., 317 

2015; de la Torriente et al. 2018; Grinyó et al., 2018). The set of variables used in the CCA 318 

analysis included backscatter, slope, aspect, BPI and profile curvature, as well as the location of 319 

sites in terms of depth (m). The statistical significance of the effect of each variable was tested 320 

by a Monte Carlo permutation test. Prior to this, the seafloor variables were screened for 321 

correlations in order to avoid collinearity using a Spearman correlation analysis. These 322 

multivariate analyses were executed using the software CANOCO 4.5. 323 

324 
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3. Results 325 

3.1. Bottom types 326 

 Two major substratum types were identified at Gazul MV. Hard substrates showed 327 

higher backscatter values (mean values ranging between -16.72 and -18.73 dB) and are located 328 

in areas with greater slopes (mean slope: 9.13±0.4 degrees), whereas soft substrates showed 329 

lower backscatter values (between -20.64 and -23.33 dB) and were located in generally flat 330 

surfaces (mean slope: 3.04±0.2 degrees).  331 

CSBB were observed in 23.6% of the samples (n= 119 samples), mainly located in the 332 

western depression with many shell remains (mostly belonging to the pectinid bivalve 333 

Pseudamussium peslutrae and to the brachiopod Gryphus vitreus) and echinoid spines (Cidaris 334 

cidaris), with the eastern mounds containing similar bioclasts (Fig. 2). Sinusoidal and partly 335 

bifurcated SRB were locally restricted to a flat surface in the western adjacent area (17.2 % of 336 

the samples) with the lowest backscatter values, whereas homogeneous SMB were observed 337 

in the central depression (6.8 %) (Fig. 2). SB were also detected close to the summit area of the 338 

MV and along the southwestern flank, in the latter displaying some bioturbation (6.7 %) (Fig. 339 

2). HB dominated by MDACs, mainly slabs, was mainly found on the eastern mounds as well as 340 

on the southwestern flank (17.2%) and displayed the highest backscatter values (Fig. 2). In HB 341 

located close to the eastern mounds, a chimney forest was observed with some chimneys still 342 

showing an erected position (Fig. 2). These chimneys displayed lengths ranging between 50 343 

and 100 cm and maximum diameters between 10 and 20 cm, and some of them were 344 

colonized by large sponges. CRB mostly composed of Madrepora oculata remains were usually 345 

found on the northern flank of the MV (16.8%), a steep area with steep slopes and high BPI 346 

values (Fig. 2). Finally, MXB (16 %) were widespread throughout the study area (Fig. 2). 347 

3.2. Epibenthic assemblages and habitats 348 

 A total of 51 taxa (42 epibenthic taxa and 9 fishes) were identified in the samples 349 

(Table 1) including the actinarians Actinauge richardi and Peachia sp., the scleractinians 350 

Flabellum chunii, Dendrophyllia cornigera, Madrepora oculata and Lophelia pertusa, the 351 

gorgonians Acanthogorgia hirsuta and Callogorgia verticillata, the antipatharians Antipathella 352 

subpinnata and Leiopathes glaberrima, a styelid ascidian (probably belonging to the genus 353 

Polycarpa), the poriferan Asconema setubalense (hexactinellid) and the echinoderm Cidaris 354 

cidaris (echinoid). Small gorgonians (Bebryce group) were mostly represented by Bebryce 355 

mollis and Swiftia dubia; large sponges included Poecillastra compressa, Petrosia crassa, 356 
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Phakellia robusta and Pachastrella sp.; Axinella vellerea was among the small and digitate 357 

sponges; encrusting sponges would include Jaspis sp. (likely J. incrustans) whereas 358 

alcyonaceans were mainly represented by Paralcyonium spinulosum; finally, Polyplumaria 359 

flabellata was one of the most frequently observed hydrozoans. 360 

The best represented groups characterizing epibenthic assemblages forming habitats 361 

were cnidarians (17 taxa) and echinoderms (12 taxa) (Table 1) as well as sponges, but in the 362 

latter case they were aggregated into groups of morphologically similar species. Large sponges 363 

and the echinoid C. cidaris, followed by the gorgonian A. hirsuta and the scleractinians F. chunii 364 

and M. oculata, were the most frequent habitat-typifying species observed in the study area 365 

(Table 1). Finally, a total of 9 ichthyofauna taxa were also identified, with the blackbelly 366 

rosefish Helicolenus dactylopterus being the most representative fish species identified in 367 

Gazul MV and surrounding areas and observed mostly on MXB, HB and CRB. 368 

 CLUSTER analyses split the samples into two main clusters at a level of 95.93% of 369 

dissimilarity (Fig. 3A) and in a similar way of Fig. 2E. Bottom type seems to have a role in the 370 

clustering, since the first cluster grouped samples mainly located on soft bottoms 371 

(corresponding to soft bottom assemblages), whereas the second cluster was characterized by 372 

samples mainly located on hard and mixed bottoms (corresponding to hard and mixed bottom 373 

assemblages). The first cluster was further divided into three groups: Group IA (57% similarity 374 

within the group) with samples collected on SRB, group IB (50% similarity) comprised mainly 375 

samples of CSBB but also of SB, and group IC (40% similarity) grouped mainly samples of CSBB 376 

but also of MXB (Fig. 3A). The second cluster grouped samples of MXB and hard bottoms that 377 

included rocky and CRB, which formed one large group clustering at 24% similarity that was 378 

divided into group IIA (36% similarity) with samples mainly located on bottoms with MDACs 379 

but also on MXB, and group IIB (37% similarity) comprising samples mostly located on CRB, and 380 

one small group (IIC) that corresponded to samples mostly located on MXB (Fig. 3A). 381 

Assemblages obtained by means of CLUSTER analysis are also consistent in the two-382 

dimensional MDS plot. This revealed a good data fit in the ordination of all samples since raw 383 

stress (a measure of the goodness-of-fit of the representation of the true similarity matrix 384 

values by the ordination according to Clarke (1993)) was 0.08, with a segregation of samples 385 

according to faunal composition and structure, which also responded to bottom type (Fig. 3B). 386 

Table 2 shows faunal differences between clusters (interpreted as different assemblages 387 

conforming habitats) highlighted by the SIMPER analysis. This analysis revealed that 388 

differences between assemblages on soft and hard-mixed bottoms were mostly due to the 389 
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presence and/or higher abundance of F. chunii, A. richardi, C. cidaris and Peachia sp. on soft 390 

bottoms, and of large and small-digitate sponges, A. hirsuta, M. oculata, hydrozoans and A. 391 

setubalense on hard-mixed bottoms (Average dissimilarity= 94.99%). 392 

Differences in the composition and structure of faunal assemblages between bottom 393 

types and sites were detected by the PERMANOVA analysis (Table 3). Pairwise comparisons 394 

revealed that differences were consistently significant among all bottom types (p< 0.001, for 395 

all cases) and sites (p< 0.001, for all cases). The largest differences among bottom types were 396 

detected between assemblages of CRB and those of SRB (Pairwise test: t= 20.802; Average 397 

dissimilarity: 1.79%), and among sites, between assemblages at the northern flank of the MV 398 

and those located at the western adjacent area (Pairwise test: t= 13.578; Average dissimilarity: 399 

94.53%). Overall, soft bottoms presented a significantly lower number of taxa than hard and 400 

mixed bottoms (Mann-Whitney: U= 6725.5; p< 0.001), with the lowest value observed in SB 401 

(12 taxa) and the highest one in MXB (32 taxa); on the other hand, CRB displayed the highest 402 

mean number of taxa per sample (5.3±0.2 taxa; mean±SE), whereas the lowest values was 403 

observed in CSBB (1.5±01 taxa). 404 

PERMANOVA also showed, for some assemblages, significant differences regarding 405 

different bottom types and/or sites. For instance, hard bottom assemblage IIB (corresponding 406 

to CRB with colonial scleractinians, see below) displayed a significantly different structure 407 

considering both factors, being more distinct for site than for bottom-type (PERMANOVA: 408 

factor bottom type, Pseudo-F: 6.186, p< 0.001; factor site, Pseudo-F: 18.641, p< 0.001). In this 409 

case, pairwise comparisons after PERMANOVA revealed that the largest average dissimilarity 410 

was detected between the MV summit and the northern flank (SIMPER: 63%) due to higher 411 

abundances of A. subpinnata, L. glaberrima, M. oculata and large sponges in the northern 412 

flank. In the case of the widely distributed soft bottom assemblage IB (corresponding to a F. 413 

chunii assemblage, see below), differences were only significant for site (PERMANOVA: factor 414 

bottom type, Pseudo-F: 0.634, p= 0.499; factor site, Pseudo-F: 15.626, p< 0.001), with the 415 

highest average dissimilarity (SIMPER: 82.37%) observed between the western depression and 416 

the southern flank of the MV due to the higher abundance of F. chunii and the presence of C. 417 

cidaris in the western depression, and the presence of Peachia sp. in the southern flank. 418 

 Regarding multivariate analyses based on both biological and seafloor characteristics, 419 

six different assemblages were detected (Fig. 3), with three main soft bottom assemblages 420 

identified as: 421 
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i) Soft bottoms dominated by the actiniarian Actinauge richardi (group IA): this assemblage 422 

was found on SRB of the western adjacent area, where it was observed in 85 samples (17.6 423 

%F). It is characterized by A. richardi (semi-quantitative index [SQI] values: 2-4), which reached 424 

densities up to 25 individuals per square meter (indiv. m-2) (Fig. 4A-C); secondary characteristic 425 

species included Peachia-like actinarians (SQI values: 1-2), which were observed in high 426 

densities in some samples, the echinoid C. cidaris (SQI values: 1-2) and isolated individuals of 427 

the solitary scleractinian F. chunii. 428 

ii) Soft bottoms dominated by the scleractinian Flabellum chunii (group IB): this assemblage 429 

was mainly found on CSBB, being recorded in 128 samples (25.3 %F), and at a lower extent on 430 

SMB. This is the most frequent assemblage found on soft bottoms of Gazul MV and 431 

surrounding areas (50.2 %F). Its characteristic species is the solitary coral F. chunii (Fig. 4D-G), 432 

which showed densities between 1 and 3 indiv. m-2 (SQI values: 2-3). Nevertheless, a highly 433 

dense aggregation was observed at the western depression, with densities up to 10 indiv. m-2 434 

(SQI values: 4-5) (Fig. 4F). Characteristic species include Peachia-like actinarians, which were 435 

observed on SMB of the central depression, and were locally very abundant (SQI values: 3) (up 436 

to 4 indiv.·m-2), with C. cidaris mainly occurring at the western depression (SQI values: 1-2), 437 

and with isolated individuals of the polychaete Hyalinoecia tubicola (Fig. 4H). 438 

iii) Soft bottoms dominated by the echinoid Cidaris cidaris (group IC): the sea urchin C. cidaris 439 

was widely distributed (SQI values: 1-2), mainly observed on soft bottoms (52.7%), but also on 440 

hard (27.3%) and mixed (20%) ones. It was found to be a locally dominant species on several 441 

soft bottoms of the study area, characterizing this assemblage in 7.5% of the samples. Density 442 

of C. cidaris did not usually exceed 2 indiv. m-2 (Fig. 4I-J), and it was accompanied by F. chunii in 443 

CSBB, isolated pennatulaceans (e.g. Funiculina quadrangularis) in SMB, and by the decapod 444 

Munida intermedia in MXB. 445 

 Three main assemblages were identified on CRB and on hard bottoms (Fig. 3), mainly 446 

conformed by MDACs and sometimes intermixed with soft bottoms: 447 

iv) Hard and mixed bottoms dominated by sponges and gorgonians aggregations (group IIA): 448 

this assemblage included (1) aggregations of sponges, which were observed colonizing MXB 449 

and hard substrates in 84 samples (16.6 %F). Characteristic species, such as the 450 

demospongians Phakellia spp. and Poecillastra compressa among others, constitute the large 451 

sponges group (SQI values: 2-3) (Fig. 5A), recorded in 127 samples and reaching densities up to 452 

12 colonies per square meter (col. m-2), together with large individuals of the hexactinellid 453 

Asconema setubalense (SQI values: 2-3) (40 samples; Fig. 5C), and encrusting and digitate 454 
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sponges (SQI values: 2) (22 samples; up to 23 col. m-2). The (2) gorgonian aggregations (<1 %F) 455 

were observed on MXB and dominated mainly by Acanthogorgia hirsuta (SQI values: 2) (up to 456 

15 col. m-2; Fig. 5D) and the Bebryce-group (SQI values: 1), which were sometimes 457 

accompanied by other gorgonians such as the large Callogorgia verticillata (Fig. 5E), as well as 458 

by isolated large sponges and C. cidaris. The (3) mixed sponge-gorgonian aggregations were 459 

observed in 79 samples (15.6 %F), mainly on hard bottoms of the mounds located in the 460 

eastern adjacent area. A mixed and dense aggregation of A. setubalense (up to 4 col. m-2) and 461 

A. hirsuta (up to 10 col. m-2) was found in those mounds. Sponge aggregations and mixed 462 

sponge-gorgonian aggregations also included other typifying species such as C. verticillata (SQI 463 

values: 1), small gorgonians (mostly Bebryce mollis and Swiftia dubia; Fig. 5B) (SQI values: 2-3), 464 

different echinoderms such asteroids (e.g. Chaetaster longipes), crinoids (e.g. Leptometra 465 

phalangium) and echinoids (e.g. C. cidaris, Gracilechinus acutus) (SQI values: 1, respectively), 466 

the decapod M. intermedia (SQI values: 2) and the octopus Eledone cirrhosa (SQI values: 1). 467 

v) Coral-rubble bottoms dominated by colonial scleractinians (group IIB): this assemblage is 468 

associated with CRB occurring at the northern flank and close to the summit of Gazul MV. It is 469 

characterized by the white coral species Madrepora oculata (SQI values: 2-4) (96 samples; 470 

density up to 10 col. m-2), Lophelia pertusa (SQI values: 1-2) (16 samples; up to 1 col. m-2) and 471 

Dendrophyllia cornigera (SQI values: 1-2) (14 samples; up to 3 col. m-2), representing 16.8% of 472 

the samples (Fig 5F-H). In addition, other typical species include the antipatharians (black 473 

corals) Antipathella subpinnata (up to 6 col. m-2) and Leiopathes glaberrima (up to 4 col. m-2), 474 

highly branched hydrozoans (e.g. Polyplumaria flabellata), large sponges (up to 6 ind. m-2) (SQI 475 

values: 2-3, respectively), encrusting and small-digitate sponges (SQI values: 2-3), gorgonians 476 

(e.g. A. hirsuta, B. mollis), as well as abundant bright-orange ophiurids (Ophiothrix), the 477 

echinoids G. acutus, Echinus melo and C. cidaris, and the decapod M. intermedia (SQI values: 1-478 

2, respectively). 479 

vi) Mixed bottoms dominated by styelid ascidian aggregations (group IIC): this assemblage is 480 

strongly associated with slabs located on bottoms with sand ripples of the western adjacent 481 

area of the Gazul MV. This assemblage showed a low frequency of occurrence (<1 %F), and 482 

was characterized by the presence of a dominant styelid ascidian (probably belonging to the 483 

genus Polycarpa) (SQI values: 4-5), which reached densities up to 50-70 ind. m-2 (Fig. 5I-J). 484 

These ascidians were accompanied by B. mollis colonies (SQI values: 2-3), crinoids, the 485 

decapods M. intermedia and Bathynectes maravigna, yellowish encrusting sponges and large 486 

colonies of the polychaete Filograna implexa (SQI values: 1-2, respectively). Ascidians were 487 

also observed on hard substrates slightly covered by sediments of the mounds located in the 488 
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western adjacent area, intermixed with aggregations of A. hirsuta (up to 15 col. m-2) and large 489 

white sponges (up to 3 ind. m-2). 490 

3.3. Effects of seafloor variables on the epibenthic assemblages 491 

The multivariate CCA ordination analysis of the characteristic species generated an ordination 492 

biplot with the first two axes explaining 16.4% of variance of the species data, and which 493 

accounted for 84.4% of the variation of the species and the seafloor variables relationship 494 

(Table 4). A Monte Carlo test indicates that all canonical axes together were highly significant 495 

(p <0.001; 999 permutations under full model). Marginal effects (fit of the first CCA axis with 496 

each variable entered separately) determined by the forward selection procedure of CANOCO 497 

were highest for slope, depth and backscatter. Regarding conditional effects (additional fit as 498 

each variable is added to the model), the analysis highlighted slope, backscatter and BPI. 499 

Figure 6 shows the CCA biplot based on CCA axes 1 and 2, with slope and depth negatively 500 

correlated with axis 1, whereas axis 2 was positively correlated with backscatter (Table 4). 501 

Seafloor profile curvature made the lowest contribution to axis building, showing low 502 

discriminatory power. CCA sample discrimination and grouping were consistent with the 503 

groups obtained from the cluster and ordination analysis (Fig. 3). 504 

3.4. Anthropogenic activity indicators at Gazul MV and surrounding areas 505 

Bottom trawling represented the main type of commercial fishing technique in the area; 506 

however, it must be considered that the authors could not obtain information on recreational 507 

or artisanal fishing that could occasionally occur at Gazul MV. Bottom trawling effort (total 508 

number of hours of trawling per km2 for the period 2006-2012) showed the highest values in 509 

the upper slope of the continental margin (depths ranging between 130-530 m). Trawling 510 

effort decreased in intensity between 400-500 m depth, with the lowest effort values observed 511 

around Gazul MV. No signs of bottom trawling were observed on the seabed. Effort increased 512 

towards the westernmost part of the SCI “Volcanes de fango del Golfo de Cádiz” (depths 513 

ranging between 500-600 m) and around Anastasya MV, where trawling activity is focused on 514 

the Norway lobster (Nephrops norvegicus) (Fig. 7). 515 

A total of 28 marine litter items were recorded in the samples, including mostly 516 

artificial polymer materials (85.2 %), but also glass (14.8 %). Overall and regarding type of item, 517 

fishing gears represented the dominant source of debris (63.0 %) (Fig. 8A-F), including fishing 518 

lines and nets. Ropes were occasionally found, representing 3.7 % of the samples. Finally, 519 

plastic and glass were observed in 18.5 % and 14.8 % of the samples, mostly as bottles (Fig. 520 
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8G). The highest occurrence of marine litter, mostly fishing lines, was observed in the western 521 

adjacent area (42.9% of the total observed) followed by the western depression (25%) and the 522 

northern flank (14.3%). 523 

More than half of marine litter items (61.5%) were observed in contact with sessile 524 

invertebrates, probably causing potential abrasion on large sponges, gorgonians and/or 525 

ascidians on mixed bottoms (56.2%) (Fig. 8A); on colonial scleractinians, black corals and large 526 

sponges on coral-rubble bottoms (25%) (Fig. 8B-C); and on Actinauge individuals on soft 527 

bottoms (18.8%). A small piece of net was observed snagged on a MDAC covering partly a 528 

Madrepora colony (Fig. 8F). The remaining portion of debris (plastic, bottles) was recorded 529 

lying on soft bottoms (60%) (Fig. 8G), and up to three lost fishing lines were observed hanging 530 

in hard substrates on mixed bottoms (40%), in both cases without producing any apparent 531 

injury to sessile organisms. 532 

Discussion 533 

Substrate and habitat heterogeneity 534 

Based on the new observations made in this study, Gazul is an example of a MV with 535 

latent/dormant conditions (León et al. 2007). Gazul MV presents a high availability of MDACs 536 

(e.g. tabular-shape chimneys, slab-shaped pavements and crusts) on the seafloor (Palomino et 537 

al., 2016; this study). MDACs were formed within the sediments during past seepage activity, 538 

and exhumed and exposed to seawater as a consequence of erosive processes by strong 539 

bottom currents, resulting in a high structural complexity of the seabed (Cunha et al., 2002; 540 

León et al., 2007; Magalhães et al., 2012; Viola et al., 2014; Sánchez-Leal et al., 2017). The 541 

chimney forest reported in this study for Gazul MV represents one of the very few examples of 542 

columnar carbonates fields in vertical position found in European waters (Angeletti et al., 543 

2015), and to the best of our knowledge, it is the first reported for the GoC, which 544 

complements other observations on chimney fields of the GoC (Díaz-del-Rio et al., 2003; 545 

Somoza et al., 2003; Magalhães et al., 2012).  546 

The identified epibenthic assemblages forming habitats associated with soft and hard bottoms 547 

of Gazul MV and surrounding areas showed a patchy mosaic distribution with spatial 548 

differences, with hard bottoms of the MV edifice containing the most biodiverse assemblages. 549 

Several authors have observed that the existence of different habitat types in submarine 550 

elevations (e.g. seamounts) are promoted by the presence of diverse substrate types and 551 

geomorphological structures occurring at different depths (McClain and Lundsten, 2015; Du 552 
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Preez et al., 2016; de la Torriente et al., 2018). In a similar way, the high geomorphological 553 

variability and diversity of bottom types of Gazul MV, as well as the different exposition to 554 

bottom currents (Palomino et al., 2016), promotes the existence of biodiverse and vulnerable 555 

faunal communities dominated by sessile slow growing suspension and filter feeding macro-556 

organisms such as deep-water corals and sponges, which potentially benefit from moderate-557 

strong bottom currents (Fernández-Salas et al., 2012) and from an enrichment process 558 

promoted by land-based runoff of important rivers such as the Guadalquivir (García-Isarch et 559 

al., 2006). On the other hand, the diversity of soft bottoms around Gazul MV promotes a 560 

colonization by a variety of species, some of them with a high commercial value (e.g. Norway 561 

lobster), enriching the associated benthic communities when compared to other soft bottoms 562 

within the GoC (Fernández-Zambrano, 2010; Lozano et al., 2020a).  563 

Each assemblage at Gazul was preferentially associated with a specific bottom type and a 564 

combination of seafloor characteristics, with slope, backscatter and depth as the most 565 

important factors determining the distribution of habitats and assemblages. These results are 566 

similar to the observations made by de la Torriente et al. (2018) when studying the distribution 567 

of epibenthic communities at the Seco de los Olivos Seamount (also known as Chella Bank) 568 

(western Mediterranean Sea), as well as by other authors at different submarine elevations 569 

and depth ranges (McClain and Lundsten, 2015; Bernardino et al., 2016; Du Preez et al., 2016). 570 

The presence of hard structures (e.g. MDACs) increase the habitat complexity of the MV 571 

edifice and those of the central and western depressions, when compared to the adjacent 572 

bottoms, representing a major factor influencing the distribution of the benthic communities 573 

(Cunha et al., 2002, 2009; Rueda et al., 2016). Similar patterns of spatial differentiation have 574 

been found in coral mounds and adjacent bottoms without colonial scleractinians that are 575 

generally composed by a lower number of species (Henry and Roberts, 2007), as well as in 576 

those communities of seamounts when compared to the impoverished adjacent bottoms 577 

(Danovaro et al., 2010). 578 

Bottom complexity further increases once MDACs on the seafloor are colonized by organisms 579 

usually presenting complex three-dimensional structures (e.g. colonial scleractinians, 580 

gorgonians, sponges) (Jensen et al., 1992; Díaz-del-Río et al., 2003; León et al., 2007; Buhl-581 

Mortensen et al., 2010; Levin et al., 2015; Wienberg and Titschack, 2017), promoting a 582 

diversification of microhabitat types that are used by numerous species, enriching the 583 

associated faunal communities. These habitat-forming organisms are in some cases also 584 

responsible for generating the substrate, shelter and food for other benthic species (Buhl-585 

Mortensen et al., 2010; Rossi et al., 2017), thus increasing the differences with the adjacent 586 
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soft bottoms, as it has been observed in the present study. In this line, for instance Henry and 587 

Roberts (2007), as well as Buhl-Mortensen et al. (2016), proposed that coral communities offer 588 

high vertical habitat heterogeneity (living/dead coral, rubble, sediment-clogged framework, 589 

etc.) and thus high biodiversity, which foster a characteristic reef fauna. At Gazul MV, the 590 

species previously reported that may benefit from habitat-forming species included the 591 

polychaete Eunice norvegica (Linnaeus, 1767) (associated with the scleractinian  Madrepora 592 

oculata), the gastropods Emarginula spp. and triphorids that feed on sponges, and 593 

solenogastres, epitonids and ovulids that are generally associated with gorgonians, actinaria 594 

and scleractinians of Gazul MV (Rueda et al., 2016; Utrilla et al., 2020). 595 

Soft bottom assemblages 596 

Three main epibenthic assemblages were identified in the soft bottoms of Gazul MV and 597 

surrounding areas, being characterized by deposit feeders such as solitary hard (Flabellum 598 

chunii) and soft cnidarians (Actinauge richardi), as well as by cidarid echinoids (Cidaris cidaris). 599 

Similar species were reported by Fernández-Zambrano (2010) as dominant ones in adjacent 600 

sedimentary habitats around Gazul MV from samples collected with a combination of gears 601 

(beam-trawl, box-core and shipek grab), mostly contributing to differences between faunal 602 

assemblages inhabiting adjacent bottoms in comparison to those of the MV. 603 

Trophic and oceanographic drivers control the spatial distribution of A. richardi populations, 604 

which were observed in the western adjacent area of Gazul MV, an area with strong bottom 605 

currents reflected by the presence of a sandy ripples field. This sea anemone is a passive 606 

suspension feeder that inhabits muddy or sandy bottoms, always offshore (BIOTIC, 2019). 607 

Hormathiid actinarians (Hexacorallia) such as A. richardi have been observed dominating 608 

faunal communities on circalittoral and bathyal sedimentary bottoms of the Cantabrian Sea 609 

(e.g. Avilés canyon), GoC and Mediterranean Sea (e.g. Llanes canyon) (Aguilar et al., 2009; 610 

Ruiz-Pico et al., 2010; Rueda et al., 2016; Lozano et al., 2020a), and represents a key taxa 611 

typifying deep-sea sedimentary assemblages.  612 

In contrast, the solitary scleractinian F. chunii presents a certain structuring character in 613 

sedimentary habitats, being locally abundant in specific soft bottoms of the GoC, as well as of 614 

the Galicia Bank (NW Spain) and of the Conception Bank (Canary Islands) (Almón et al., 2010; 615 

de la Torriente et al., 2014; Díaz-del-Río, 2014).  616 

Finally, the dominant echinoderm C. cidaris showed a patchy distribution in Gazul MV; it 617 

occurs mainly in soft bottoms, but also in hard and mixed bottoms. Similar observations were 618 

made by Delgado et al. (2013) in soft bottoms of the SFFE of the GoC from otter-trawl samples, 619 
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where C. cidaris represented one of the dominant species throughout the year, relating its 620 

patchy distribution to sediment characteristics.  621 

Faunal assemblages inhabiting soft bottoms around MVs are not as biodiverse as those 622 

associated with MVs themselves due to the lower structural complexity of habitats (Fisher et 623 

al., 2007; Cunha et al., 2009; Levin et al., 2015; Rueda et al., 2016). Nevertheless, according to 624 

Delgado et al. (2013), soft bottoms of the MVGoC presents species richness values that are 625 

higher to those reported in northern Spain and the Alboran Sea at similar depths, and this 626 

could be related to the geographical location of the GoC, in the Atlantic-Mediterranean and 627 

subtropical-template transition (i.e. confluence of fauna). Indeed, the oceanographic context 628 

of the GoC is complex and characterized by a surficial Atlantic Inflow Water (AIW) current 629 

towards the Alboran Sea and a deep Mediterranean Outflow Water (MOW) current towards 630 

the Atlantic Ocean (Sánchez-Leal et al., 2017). These water masses may transport larvae and 631 

organisms from the Mediterranean and the Atlantic, promoting a biological confluence in the 632 

GoC that could result in high biodiversity in those areas with a high benthic complexity that 633 

can harbor species associated with different substrates as detected at the Gazul MV. 634 

Hard bottom assemblages 635 

Hard bottoms of Gazul MV showed a heterogeneous distribution, being represented by MDAC 636 

formations and by coral-rubble, in both cases increasing the complexity of soft bottoms and 637 

promoting a mixture of hard- and soft-bottoms fauna. The exhumation of MDACs are favored 638 

by moderate-strong bottom currents that at the same time promotes a continuous availability 639 

of food particles, which supports complex faunal communities mainly composed of filter and 640 

suspension feeders (Hovland, 2008). Live colonies of the white coral Madrepora oculata, 641 

intermixed with some dispersed colonies of other colonial scleractinians such as Dendrophyllia 642 

cornigera and the less frequent Lophelia pertusa, were observed associated with coral-rubble 643 

bottoms of the northern flank and close the summit of Gazul MV. This represents one of the 644 

few records of live colonies of these colonial scleractinians in the GoC (Rueda et al., 2016), 645 

which seems to represent an unsuitable area for these species after the past glacial periods 646 

(Wienberg et al., 2009; Van Rooij et al., 2011). Nevertheless, densities of M. oculata colonies in 647 

Gazul MV are occasionally as high as in other areas of the Mediterranean Sea (up to 10 648 

colonies m-2) (Orejas et al., 2009). In several studies dealing with scleractinians of the GoC and 649 

adjacent areas, abundant coral graveyards related to massive declines after glacial periods 650 

have been found but no live colonies could be detected (Wienberg et al., 2009; Wienberg and 651 

Titschack, 2017; Hebbeln et al., 2019). Recently, carbonate mounds with abundant remains of 652 
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M. oculata have also been found in the Pen Duick Escarpment in the Moroccan margin, but no 653 

living colonies of this coral could also be detected (Van Rooij et al., 2011). In the Strait of 654 

Gibraltar, remains of this species were found between 33 and 443 m depth, especially in one 655 

particular area with mounds, but no clear indication was given on the presence of live colonies 656 

by the authors (Álvarez-Pérez et al., 2005). In the Mediterranean Sea, live scleractinian 657 

colonies (mainly of L. pertusa and M. oculata, but also Dendrophyllia spp. and Desmophyllum 658 

dianthus) have been found in specific areas such as the southern Adriatic Sea, Santa Maria di 659 

Leuca, the Corsica Channel and the Strait of Sicily in the central Mediterranean (Schembri et 660 

al., 2007; Vertino et al., 2010; Rossi et al., 2017; Angeletti et al., 2019; D’Onghia, 2019; Lo 661 

Iacono et al., 2019; Rueda et al., 2019; Angeletti et al., 2020), and Cap de Creus canyon and 662 

some Alboran Sea seamounts and banks in the western Mediterranean (Orejas et al., 2009; 663 

Pardo et al., 2011; Gori et al., 2013; Lo Iacono et al., 2014; de la Torriente et al., 2018; Aymà et 664 

al., 2019; Corbera et al., 2019; Puig and Gili, 2019; Rueda et al., 2019). Further deep-sea 665 

exploration with the use of non-invasive methods such as the ones used here (e.g. ROV, ROTV) 666 

will allow the discovery and documentation of new white coral sites, as well as to increase the 667 

information about their associated communities with the combination of sampling methods 668 

targetting endofauna, epifauna and demersal fauna. 669 

The widespread presence of colonial scleractinians and antipatharians in the northern flank 670 

and close to the summit of the MV is related to the characteristics of the substrate (i.e. the 671 

presence of coral-rubble bottoms, which gives them a preferable elevated position), as well as 672 

potentially to the enhanced availability of food. This could be linked to the high-speed flow 673 

promoted by the interaction between bottom currents and topography (Palomino et al., 2016), 674 

which benefit these and other organisms (White et al., 2005, Dorschel et al., 2007, Mienis et 675 

al., 2007, Orejas et al., 2009, Sánchez et al., 2014), as observed for other filter-feeding 676 

assemblages inhabiting similar mud volcanoes of the GoC (Fernández-Salas et al., 2012; Lozano 677 

et al., 2020a, b). On the other hand, although high reflectivity values may indicate the 678 

presence of hard substrates (e.g. coral-rubble) on the southern-southeastern flank of the MV 679 

(see Fig. 2), potential lateral sedimentation by dragging along the slope would cause the 680 

sediment to be deposited on this flank of the MV, resulting in the scarce occurrence of hard 681 

formations on the seafloor. A high sediment supply is necessary to guarantee the fast infilling 682 

of the coral framework, being entrapped within it and providing a stabilizing effect, but it also 683 

increases sediment accumulation (Wienberg and Titschack, 2017; Hebbeln et al., 2019). This is 684 

probably the cause of the scarce presence of colonial scleractinians on this flank of the MV, 685 

which is characterized by sandy and muddy bottoms colonized by solitary corals and cidaroid 686 
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echinoids. Similar observations were made by Orejas et al. (2009) in the Cap de Creus canyon, 687 

linking the scarcity of colonial scleractinians on the northern flank of the canyon to a prevailing 688 

depositional regime with high sediment accumulation rates.  689 

Besides colonial scleractinians, many suspension-feeding species are also favored by the 690 

environmental conditions at Gazul MV, including large deep-sea sponges (90% of the biomass 691 

collected with different sampling gears; see Rueda et al., 2016, Sitjà et al., 2019; e.g. Asconema 692 

setubalense, Pachastrella sp., Poecillastra compressa, Petrosia crassa), several species of 693 

gorgonians (e.g. Swiftia dubia, Bebryce mollis, Acanthogorgia hirsuta) and black corals 694 

(Antipathella subpinnata and Leiopathes glaberrima), among other macro-organisms. These 695 

species have been observed colonizing both exposed MDACs and those with moderate charges 696 

of fine sediments located in the MV and adjacent mounds. Regarding this, Gazul MV 697 

represents a conical edifice that reaches 100 meters above adjacent bottoms, which may 698 

induce turbulent hydrodynamics due to the interaction between the predominant 699 

northwestern wards current and the MV that provides organic particles and removes 700 

sediments that may smother sessile organisms as those abovementioned. Moreover, these 701 

organisms are probably benefited by productive local upwellings and mass and energy inputs 702 

from land-based runoff (e.g. Guadalquivir river) that occur in this area as also found along the 703 

Portuguese coasts of the GoC (García-Isarch et al., 2006; García-Lafuente and Ruiz, 2007; 704 

Echevarría et al., 2009). In addition, Vázquez et al. (2009) and Bruno et al. (2013) explained 705 

how large-amplitude internal waves generated on the lee side of Camarinal sill induce a 706 

suction of chlorophyll-rich water masses from the coastal margins (e.g. Cape Trafalgar, see Sala 707 

et al., 2018) toward the central zones of the channel (i.e. towards the pathway of the MOW). 708 

Deep-sea sponges are one of the dominant taxa at Gazul MV, with some species capable of 709 

forming dense local aggregations, e.g. the sponges A. setubalense, P. compressa and P. crassa. 710 

This was also observed by Sitjà et al. (2019), who studied the sponge fauna of the whole MV 711 

field of the northern GoC from samples collected using a 2 m-wide beam trawl. These authors 712 

highlighted the presence of a ‘micro-aggregation’ of 71 individuals of the carnivorous sponge 713 

Lycopodina hypogea (Vacelet and Boury-Esnault, 1996) on a flattened carbonate boulder of 35 714 

cm2 collected from Gazul MV, this species being rarely found in such high densities. The 715 

sponge faunal list provided by Sitjà et al. (2019) for the MVGoC, with three sponge species 716 

previously documented in the Mediterranean Sea and recorded in the Atlantic Ocean for the 717 

first time (Geodia anceps (Vosmaer, 1894), Coelosphaera (Histodermion) cryosi (Boury-Esnault, 718 

Pansini and Uriz, 1994) and Petrosia (Petrosia) raphida (Boury-Esnault, Pansini and Uriz, 1994)), 719 

would support the idea that the natural export of Mediterranean deep-sea benthos by the 720 
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MOW might be more important than previously believed. Moreover, Sitjà et al. (under review) 721 

found that the deep-sea sponge fauna of the GoC showed closer affinity with that of the 722 

western Mediterranean than with the fauna of the northeastern Atlantic. According to the 723 

authors, this pattern clearly illustrates the importance of the MOW in transporting 724 

components of the Mediterranean deep-sea sponge communities towards the bathyal 725 

communities of the GoC. 726 

Anthropogenic impact 727 

The most active commercial fishing fleet operating around Gazul MV is the trawling fleet, 728 

which represents a multi-species fishery spanning a wide geographic area, with the main target 729 

species including the Norway lobster and the deep-water rose shrimp, as well as other 730 

accompanying species such as the European hake (Merluccius merluccius (Linnaeus, 1758)) and 731 

the monkfish (Lophius spp.), among others (González-García et al., 2020). The greatest fishing 732 

effort throughout the historical dataset is located where the fishing grounds for the Norway 733 

lobster and for the deep-water rose shrimp overlap, matching spatially with the geographical 734 

location of these fishing grounds according to Ramos et al. (1996). Shallow areas of the upper 735 

continental shelf of the GoC are suitable for some commercial species that prefer muddy 736 

bottoms, such as in the case of the Norway lobster, concentrating a great part of the fishing 737 

activity carried out in the GoC. Contrary to this, the trawling activity around Gazul MV is low 738 

mostly due to the presence of MDACs and moderate and high near-bottom current speed that 739 

may promote the presence of coarser sediments that are not ideal for the Norway lobster and 740 

that may make the trawling operations very difficult (González-García et al., 2020). Another 741 

important commercial fishing fleet operating in the area, but with a low impact on benthic 742 

habitats, are represented by that using purse seine nets along the continental shelf down to 743 

100 m depth and targeting mainly the European anchovy Engraulis encrasicolus (Linnaeus, 744 

1758) and the European pilchard Sardina pilchardus (Walbaum, 1792) (Silva et al., 2012). 745 

Finally, commercial bottom longline fishing is carried out mostly in the Strait of Gibraltar area 746 

targeting mainly the blackspot seabream Pagellus bogaraveo (Brünnich, 1768) (Silva et al., 747 

2012). 748 

In this study, the occurrence of marine litter is mainly caused by fishing gears such as lost 749 

nylon long lines, representing more than half of all debris found at Gazul MV. Bottom longline 750 

fishing activity obtained from VMS datasets for the evaluation of the Marine Strategy 751 

Framework Directive shows that this fleet operates mostly off Trafalgar Cape, but also at some 752 

isolated locations of the northern Gulf between Cádiz and Matalascañas, in all cases on the 753 
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continental shelf (Silva et al., 2012). These areas are geographically distant from Gazul MV, and 754 

thus the longlines observed in the images would come from remote locations, being swept 755 

away by strong bottom currents in this area of the GoC. Another explanation could be that 756 

these lost longlines come from recreational fishing taking place around Gazul MV, where 757 

longlines get stuck in hard substrates. Boats engaged in recreational fishing are not required to 758 

carry any location system or to track their catches in fishing logbooks, so it is very difficult to 759 

track their fishing activity within the GoC. Similar observations have been made in other deep-760 

sea areas of southern Europe characterized by intense fishing activities, such as those in the 761 

Tyrrhenian Sea (NW Mediterranean Sea) (Bo et al., 2014; Angiolillo et al., 2015). Although the 762 

abundance of marine litter recorded at Gazul MV is relatively low, a nylon line takes up to six 763 

hundred years to decompose (Bollmann et al., 2010). Therefore, lost or abandoned fishing 764 

gears such as lines and nets can potentially have a high impact on benthic communities 765 

dominated by large and branched scleractinians, gorgonians, black corals and sponges, which 766 

are easily snagged, covered and/or abraded by derelict gears as they can move laterally across 767 

the seabed by the action of strong bottom currents (Ragnarsson et al., 2017). Besides this 768 

direct damage, injured specimens can suffer epibiotic colonization by opportunistic fast-769 

growing species (e.g. hydroids, or polychaetes) that can lead to the death of colony portions or 770 

even the entire colony (Mistri, 1994). In those areas heavily impacted by fishing and lost fishing 771 

lines, potential effects include the decrease of the coverage of habitat-forming species and 772 

lastly the diversity and abundance of associated invertebrates (Bo et al., 2014; Fabri et al., 773 

2014), which could modify the structure and functioning of deep-sea ecosystems. Future 774 

adequate management actions to be developed within the Site of Community Importance 775 

“Volcanes de fango del Golfo de Cádiz” could take advantage of the results presented here, as 776 

they provide a quantitative assessment of marine litter and its distribution at Gazul MV, as well 777 

as a baseline for future monitoring efforts. Similarly, this information can be used as a first 778 

step for setting the targets of Descriptor 10 (marine litter) within the Marine Strategy 779 

Framework Directive. Further monitoring of potential recreational fishing activity should be 780 

implemented in the area together with trawling restrictions for the commercial trawling fleet. 781 

Habitat & Biodiversity Conservation 782 

Gazul MV, as well as other fluid venting submarine structures of the GoC, represents a clear 783 

example of Habitat 1180 (Submarine structures made by leaking gases) under the Habitat 784 

Directive 92/43/EEC (European Commission DG Environment, 2013) considering its geological 785 

past and the presence of mud breccia and MDACs (Palomino et al., 2016). Regarding the 786 

composition and structure of the faunal assemblages identified in this and other more general 787 
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studies (Rueda et al., 2016; Lozano et al., 2020a), Gazul MV may also represent an example of 788 

Habitat 1170 (Reefs) due to the presence of large quantities of MDACs colonized by deep-sea 789 

sponges (e.g. A. setubalense, P. crasa, Phakellia spp., among others) with some colonial 790 

scleractinians (e.g. M. oculata), black corals (A. subpinnata, L. glaberrima) and gorgonian 791 

species (e.g. A. hirsuta, S. pallida, among others). Habitats found in Gazul MV are also similar 792 

to those included in other conventions such as OSPAR (Convention for the protection of the 793 

Marine Environment of the North-East Atlantic) under the names “Coral gardens” or “Deep-794 

sea sponge aggregations” (OSPAR Commission, 2008); furthermore, the VMEs documented in 795 

Gazul MV have been recently included in the VME database from ICES 796 

(https://www.ices.dk/marine-data/data-portals/Pages/vulnerable-marine-ecosystems.aspx). 797 

Gazul MV is located close to the coast at shallower depths than other MVs of the northern 798 

GoC, and is therefore one of the most vulnerable MVs in Spanish waters to human activities 799 

(Palomino et al., 2016). Bottom-trawl fisheries may have already caused significant impacts to 800 

benthic communities, as detected in the abundant remains of nets, ropes and wires 801 

documented in the underwater images. Taking into account the Marine Strategy Framework 802 

Directive (adopted in June 2008) that aims to more effectively protect the marine environment 803 

across Europe, bottom trawl fisheries should be banned in the vicinity of the Gazul MV as this 804 

ecosystem represents a small but locally significant area within the GoC with high ecological 805 

values due to the presence of several ecologically important VMEs (three species of reef 806 

framework-forming corals, coral gardens including solitary scleractinians, gorgonians and black 807 

corals, as well as deep-sea sponge aggregations) that seem to be rare in other areas of the GoC 808 

(Cunha et al., 2009; Rueda et al., 2016). Moreover, trawling activity in Gazul MV is already 809 

relatively low compared to that around other MVs and adjacent bottoms as documented in 810 

this study, and this surely has benefited the establishment and persistence of populations of 811 

very slow-growing and structurally complex organisms. In this sense, the potential 812 

socioeconomic impact to bottom trawling after closuring this area to fisheries is expected to 813 

be very low according to González-García et al. (2020). As commented previously, other 814 

fisheries operating in the northern GoC are concentrated on areas far from Gazul MV such as 815 

along the continental shelf (down to 100 m depth) (e.g. purse seine nets) and close to the 816 

Strait of Gibraltar (e.g. longlines), and also would not be compromised by closure of the Gazul 817 

area. Finally, some biological and ecological attributes of Gazul MV (e.g. presence of MDACs 818 

colonized by colonial scleractinians and antipatharians, sponges and black corals, among other 819 

fauna; high biodiversity, including endemism species, for some faunal groups such as molluscs 820 

(Utrilla et al. 2020) fit several criteria under the Convention on Biological Diversity for an 821 

https://www.ices.dk/marine-data/data-portals/Pages/vulnerable-marine-ecosystems.aspx
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Ecologically or Biologically Significant marine Area (EBSA) (e.g. uniqueness or rarity; 822 

importance for threatened, endangered or declining species and/or habitats; vulnerability, 823 

fragility, sensitivity or slow recovery; biological diversity). In addition to Gazul MV, other areas 824 

of the GoC also have high diversity of benthic habitats including carbonate mounds, submarine 825 

canyons, channels and escarpments shaped by tectonic activity and erosion, MVs) (Díaz-del-826 

Río et al., 2006; Medialdea et al., 2009; Palomino et al., 2016), which could contribute to the 827 

future potential nomination of a wider EBSA in the southern Iberian Peninsula that would 828 

include the connected areas of the Alboran Sea, the Strait of Gibraltar and the GoC. 829 

830 
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