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Abstract

Heath, Jarrow, and Morton (1992) present a general framework for
modeling the term structure of interest rates which nests most other models as
special cases.  In their framework, the dynamics of the term structure and the
prices of derivative instruments depend only upon the initial term structure and
the forward rate volatility functions.  Despite their importance, there has been
little empirical work studying the forward rate volatility functions.   This paper
begins to fill this gap by estimating some nonparametric models of the forward
rate volatilities.  In a univariate model, the form of the forward rate volatility
function differs for different maturities, and for some maturities appears not to be
a monotonic function of the level of the forward rate.  In a bivariate model, a
measure of the “slope” of the term structure seems to have an important impact
on the volatility.   These results differ from the simple models that have been
proposed and used in the literature.
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1 Introduction
The “arbitrage” or “preference-free” approach to modeling the term structure of interest

rates was pioneered by Ho and Lee (1986).1  In this approach the initial term structure is used as

an input to the model, and a no-arbitrage condition in the bond market is used to derive a

restriction on the dynamics of the term structure.  Heath, Jarrow, and Morton (HJM) (1990, 1992)

generalize and extend the Ho-Lee approach, and present a very general framework for modeling

the term structure of interest rates.  Starting with the initial term structure of forward rates and the

forward rate volatility functions, HJM derive the drifts of the forward rate processes under the

equivalent martingale measure or risk neutral probability, and show that the drifts depend only on

the initial term structure and the forward rate volatilities.  As a result, the dynamics of the term

structure and the prices of interest rate derivative instruments are completely determined by the

initial term structure and the forward rate volatility functions.   In the HJM framework, other term

structure models (e.g., the Ho-Lee (1986), Hull-White (1990), and Cox, Ingersoll, Ross (1985)

models) can be obtained as special cases of the general framework by making the appropriate

choices of the forward rate volatility functions. The specification of the volatility structure also

has a significant impact on the pricing of interest rate derivatives (Ritchken and

Sankarasubramanian (1995b)).

For these reasons, the volatility functions play a crucial role in implementations of the

HJM model.   They (together with the initial term structure) completely determine the dynamics

of the term structure, the numerical methods that may be used to compute the prices of interest

rate derivatives,2 the actual prices computed, and the ability of the model to fit market prices.

However, surprisingly, to date there has been relatively little empirical work on the forward rate

                                                  

1 In this approach prices do depend on preferences, but only through the initial term structure and the
specified volatility functions.  This avoids the direct modeling of preferences.
2 Lattice and partial differential equation methods may only be used if the term structure is Markovian with
respect to some finite set of state variables.  This condition holds only for certain special cases of the
volatility functions.
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volatility functions. Much of the work that has been done has focused on a limited set of

specifications, and used “implied” parameter approaches which estimate the model parameters by

choosing them so that the prices generated by the model match or come close to the actual prices

of some subset of the existing traded options.  Different studies reach different conclusions, due

to differences in the data and methodologies used.

Flesaker (1993) tests the ability of the constant volatility model (i.e., the Ho-Lee model)

to fit option prices, and finds that the model is not consistent with the data.  Amin and Morton

(1994) study the ability of the HJM model with six different volatility specifications to match the

prices of Eurodollar futures options. Although some models perform better than the others, there

are systematic biases for all models. Cohen and Heath (1992) compare the performance of several

forward rate models in predicting future market prices, and find that the proportional model

performs best. Abken and Cohen (1994) use option prices to test several HJM forward rate

volatility models, and find strong support for the exponential proportional model. Bühler, Uhrig-

Homburg, Walter, and Weber (1998) compare the performance of some forward rate models for

valuing interest rate options using German market data.  For their data, the linear proportional

model seems to work best. Amin and Ng (1997) use GARCH models to infer future volatility

from the information in the Eurodollar futures options, and find that the square root model

outperforms the other models they consider. In addition, Bliss and Ritchken (1995) test a general

implication of the two-state-dimensional Markov model proposed in Ritchken and

Sankarasubramanian (1995a).  They find support for the restriction on the dimensionality of the

state space.

This literature indicates that there is no consensus about what specifications of the

volatility functions are reasonable, though there is some evidence in favor of the proportional

models.3 To use a parametric model, a specific functional form must be assumed.  But because

                                                  

3 Some approaches used by practitioners to estimate the forward rate volatility functions are described in
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we have relatively little knowledge of the features of the forward rate volatility, imposing any

functional restriction is itself almost certainly a misspecification. As we are still at the stage of

exploring the features of the forward rate volatility, a reasonable way to start is to use

nonparametric methods to estimate the forward rate volatility in order to provide guidance about

what choices of the parametric models are reasonable.

In this paper, we use the interest rates implied from the prices of Eurodollar futures

contracts and 1-month LIBOR futures contracts to construct time series of (estimates of) the

“instantaneous” forward rates for a range of maturities, and use nonparametric methods to

estimate the forward rate volatility functions.  Specifically, in the context of a one-factor HJM

model we use the Nadarya-Watson kernel regression estimator to estimate the relation between

the forward rate volatility and the level of the forward rate.  The results indicate relatively little

dependence of the forward rate volatilities on the levels of the forward rates.  For the short-term

forward rates, the volatility is generally increasing in the level of the forward rate, and in the

middle of the range of forward rates (where most of the data lie) the volatility is a convex

function of the level of the forward rate.  However, for the longer term forward rates the volatility

appears not to be a monotonic function of the level of the forward rate, in that the estimated

volatility decreases for high levels of the forward rate.  For both short and long term forward

rates, the dependence of the volatility on the level is relatively weak.   These results are

inconsistent with both the simple power function specifications of volatility that have been

popular in the empirical literature studying the dynamics of the “short” rate, and the proportional

specifications popular with practitioners.

We also use the kernel regression estimator to estimate a bivariate specification in which

the volatility depends on both the level of the forward rate and the spread between long and short

term forward rates.  These results suggest that the forward rate volatility is increasing in the

                                                                                                                                                      

Chapter 13 of Jarrow (1996).
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spread between long and short term forward rates.  Controlling for the effect of the spread, the

volatility appears not to be a monotonic function of the level of the forward rate, in that once

again the estimated volatility decreases for high levels of the forward rate.  However, in the

bivariate model, the relation between the volatility of forward rates and their levels is weaker than

it is in the univariate results.   Interpreted literally, these results are inconsistent with all simple

models of the volatility functions that have been used or proposed.  Interpreted more skeptically,

they indicate little or no relation between the forward rate volatility and the level of the forward

rate.

Nonparametric methods have recently been used in estimating the drift and diffusion

functions of the “short” rate, and both our approach and results are related to this literature.

Stanton (1997) uses kernel regression to estimate the drift and diffusion (i.e., volatility) functions

of the short interest rate, and obtains an estimated diffusion function that is similar in shape to the

diffusion functions we estimate for relatively short term forward rates.  Boudoukh, Richardson,

Stanton, and Whitelaw (1998) use kernel regression to estimate a two-factor model of the

dynamics of the short rate and a proxy for the yield on a 10-year bond, and find that the diffusion

functions depend on the spread between the 10-year yield and the short rate.  Ait-Sahalia (1996a)

estimates the diffusion function of the interest rate process by assuming a linear drift. He finds

that the diffusion function increases linearly with the interest rate when the level is low, it then

becomes exponentially positively related to the level of the interest rate and finally goes down at

high levels of the interest rate. Ait-Sahalia (1996b) uses a semi-nonparametric estimator to

estimate and test flexible specifications for the drift and diffusion functions of the spot rate

process, and concludes that the drift is nonlinear.  His point estimates also suggest that the

volatility is not a monotonic function of the level of the spot rate.

The balance of the paper is organized as follows. Section 2 briefly reviews the HJM

model, while Section 3 introduces the multivariate kernel regression estimator. Section 4

describes the data and the construction of the “instantaneous” forward rates. Section 5 reports the
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results of the univariate kernel estimation, and Section 6 develops a bivariate model to estimate

the diffusion process of the forward rate and reports the empirical results of the bivariate

estimation. Section 7 summarizes and concludes.

2 The Heath-Jarrow-Morton Framework

To fix notation and clarify the exposition, this section briefly summarizes the HJM

framework in the case of one Brownian motion or “factor.”  HJM model the evolution of the term

structure by focusing on the “instantaneous” forward rate at time t  for time T , denoted ),( Ttf .

The instantaneous forward rate is defined through the relation









−= ∫

T

t

dvvtfTtP ),(exp),( ,

or

T
TtPTtf

∂
∂−= ),(ln),( ,

where ),( TtP is the price at time t of a default-free zero coupon bond paying one unit of account

at time T.4   The instantaneous spot interest rate at time t, denoted )(tr , is given by

),()( ttftr = .

The underlying probability model is a filtered probability space ),,,( PF FΩ  and a time

index set ],0[ T=T , where FFT = and }0:{ TtFt ≤≤=F  is the standard filtration for a one-

dimensional Brownian motion.  For each date T, the forward rate ),( Ttf  evolves according to

the Itô process

                                 )(),,(),,(),( tdBTtdtTtTtdf ωσωµ += ,                                     (1)

                                                  

4 Equivalently, the instantaneous forward rate is ),,(lim 0 εε +↓ TTtf , where

( )),(/),(ln)/1(),,( TtPTtPTTtf εεε +−≡+ .
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where )(tB  is a Brownian motion, µ  and σ  are the “drift” and “volatility” (or diffusion)

functions, respectively, and Ω∈ω  indicates the possible dependence of the drift and volatility

functions on the entire history of the process.   HJM show that there is a unique equivalent

martingale measure or risk-neutral probability Q , and that under Q  the drift is given by

∫=
T

t

Q dvvtTtTt ),,(),,(),,( ωσωσωµ .

Thus, under Q , the forward rate ),( Ttf  evolves according to the process

                                      )(),,(),,(),( tdBTtdtTtTtdf Q ωσωµ += .                                    (2)

A key feature of (1) and (2) is that the forward rate volatility functions are identical, i.e.

they are unaffected by the change of probability.  Thus, we may base estimation upon (1), the

evolution of the process under the original probability P, even though it is (2), the evolution of

the process under Q, which matters for the purposes of pricing interest rate derivative

instruments. This means that we may estimate the volatility functions using a time series of

forward rates generated under the original probability P.

3. Estimation Approach
For estimation, we specialize (1) and consider forward rate dynamics of the form

)()),(()),((),( tdBtxdttxttdf τστµτ +=+ ,                                (3)

where )(tx is a vector of variables which (together with the maturity tT −≡τ ) determine the

drift and volatility functions.  In some of our analyses )(tx  consists of only the forward rate

),( τ+ttf , while in others it includes the spot rate )(tr  or a “spread” between long and short-

term forward rates.  To estimate the process, we construct estimates (described below) of the

instantaneous forward rates for various fixed maturities ,25.0=τ  0.5, 0.75, …  3.75, and 4.0
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years, and estimate a separate volatility function for each maturity.  Thus, we estimate 16

different processes

)())(())(()( tdBtxdttxtdf τττ σµ += ,

though we do not report detailed results for all 16.

When )(tx  consists of only the forward rate ),( τ+ttf , equation (3) defines a Markov

process.  It is well know that in the HJM framework the drift under the martingale probability Q

is “path dependent” except in certain special cases, which implies that the forward rate processes

under Q are Markov only in certain special cases.  However, (3) describes the process under the

original probability P, and nothing in the HJM framework precludes the forward rates being

Markov under P.   In addition, Ait-Sahalia (1996c) tests, and fails to reject, the hypothesis that the

slope of the term structure is a Markov process.  Since the slope of the term structure is a forward

rate, his results are consistent with the forward rate processes being Markov under P 5. Most

importantly, with the daily observation interval we use, misspecification of the drift function will

have virtually no impact on our estimates of the forward rate volatility functions.

In the other specifications we use, ))',(),,(())'(),,(()( ttfttftrttftx ττ +=+=  or

))',(),(),,(()( sttfttfttftx τττ +−++= l , where  lτ  is a “long” maturity, sτ  is a “short”

maturity, and ),( lτ+ttf  and ),( sttf τ+  are long and short maturity forward rates.  In these

cases, the process x is a Markov process.   We assume that the transition function satisfies

technical conditions sufficient for the process to be a diffusion process.6 Thus, the estimation

problem is to estimate the drift and “volatility” functions of either one or two-dimensional time-

homogeneous processes of the form

)())(())(()( tdBtxdttxtdx σµ += ,

                                                  

5 Of course, the failure to reject a hypthesis does not imply that it is true.
6 See Arnold (1974), Section 2.5.
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where we drop the index τ  in order to simplify the notation.  We assume that the drift and

diffusion functions are such that the process is stationary.

3.1 The kernel regression estimator

The fact that x  is a diffusion process implies that

)())(()](|)()([ ∆+∆=−∆+ otxtxtxtxE µ                                    (4)

and

)())(()](|))()([( 22 ∆+∆=−∆+ otxtxtxtxE σ ,                             (5)

where ∆  is a discrete (but arbitrarily small) time step in a sequence of observations of the process

and )(∆o  is the asymptotic order symbol used to denote a function ζ  such that

0/)(lim 0 =∆∆↓∆ ζ .  Once estimates of the conditional mean and variance are obtained,

estimates of the drift and volatility or diffusion functions are obtained by “inverting” (4) and (5),

yielding

∆
∆+−∆+

∆
= )()](|)()([1))(( otxtxtxEtxµ                                  (6)

and

∆
∆+−∆+

∆
= )(

)](|))()([(
1

))(( 2 o
txtxtxEtxσ .                            (7)

This approach is justified by Banon (1978), and in the finance literature has recently been used by

Stanton (1997).7

A kernel estimator of the stationary density of the process can be obtained as follows.

Let N
iitx 1)}({ =

∆  be a sample of size N from the continuous time process x, observed at the discrete

                                                  

7 Stanton (1997) also develops second- and third-order approximations of the drift and diffusion functions.
Using daily data on the “short” rate, he finds that the three sets of estimators generate essentially the same
results, indicating that the first-order estimators are reasonable choices. Although the conclusion is obtained
based on the short rate data,  the close relationship between the short rate and the forward rates suggest that
the first order approximations will also work well with the forward rate data.
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interval ∆ , where )( itx∆  is a vector in dℜ .  Furthermore, let dz ℜ∈  be a point for which the

estimate of the stationary density is desired, and let jz  denote the j th element of z .  Letting

)(zπ  denote the stationary density, a kernel estimator is of the form

∑ ∏
∏ = =

∆

=


















 −
=

N

i

d

j j

ijj
d

j
j

h
txz

K
hN

z
1 1

1

)(1
)(̂π ,                                       (8)

where K is a kernel function satisfying the conditions

,0for       )(

,1)(

,1)(

),()(
,)(0

2

∞<≤∞≤

=

=
−=

∞<≤≤

∫
∫
∫

ℜ

ℜ

ℜ

nduuKu

duuKu

duuK

uKuK
CuK

d

d

d

n

and d is the dimension of the process x, which in our applications is either one or two.  The kernel

function provides a method of weighting “nearby” observations so as to construct a smoothed

histogram, which is the density estimator (8).  As pointed out by Scott (1992), virtually all

nonparametric estimators are asymptotically kernel methods. The Gaussian kernel

),(           ;
2
1

exp
2
1

)( 2 ∞− ∞∈




−= uuuK

π

is convenient, and is the choice we use in the estimation below.8  The parameter jh  in (8) is the

bandwidth or smoothing parameter associated with the j th kernel. It determines the width of the

kernel function around any point z and specifies the number of  “neighboring points” of an

                                                  

8 Commonly used kernel functions include the Epanechnikov kernel, the Triangle kernel, the Triweight
kernel, the cosine arch kernel and the Gaussian kernel. The relative asymptotic efficiency of these kernels
is very close (See Epanechnikov (1969) and Scott (1992) for details), so in most applications the choice of
kernel function is not important. Both to make our study comparable to the current literature in finance and
because it is convenient, we choose the Gaussian kernel.
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observation (and their weights) that are to be considered in constructing the density estimator at

the point z.

The Nadaraya-Watson kernel regression estimator we use is described in Silverman

(1986) and Scott (1992).  It can be obtained by using the standard relation between the

conditional, joint, and marginal densities,

))((
))(),()(())(|)()((

txg
txtftfgtxtftfg −∆+=−∆+  ,                              (9)

where g  is used to denote the density functions.  The conditional mean of interest is then

obtained by performing the appropriate integration.  We are interested in the conditional mean of

the squared change 2))()(( tftf −∆+ , i.e. we are interested in the conditional second moment

∆==−∆+ )(])(|))()([( 22 xxtxtftfE σ .  In this case, the kernel regression estimator

becomes

∑ ∏

∑ ∏
−

= =

∆

−

= =

∆






 −






 −
−∆+

∆
=

1

1 1

1

1 1

2

2

)(

)(
))()((

1 )(ˆ
N

i

d

j j

ijj

N

i

d

j j

ijj

h
txx

K

h
txx

Ktftf

xσ  .

Thus the kernel estimator for the diffusion is

∑ ∏

∑ ∏
−

= =

∆

−

= =

∆






 −






 −
−∆+

∆
=

1

1 1

1

1 1

2

)(

)(
))()((

1
 )(̂

N

i

d

j j

ijj

N

i

d

j j

ijj

h
txx

K

h
txx

Ktftf

xσ                        (10)

In the univariate case when )(tx  consists simply of the forward rate )(tf , this simplifies to
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∑

∑
−

=

∆

−

=

∆





 −





 −−∆+

∆
=

1

1

1

1

2

)(

)(
))()((

1 )(̂
N

i

i

N

i

i

h
tff

K

h
tff

Ktftf
fσ .                                 (11)

3.2. Bandwidth

Härdle (1990) indicates that the optimal rate of convergence is of the order 94−n , when

bandwidth is of the order 51−n . Various data-driven bandwidth choices can automatically

achieve the optimal rate of convergence, without prior knowledge of the degree of

differentiability of the estimator.

Previous studies also show that the performance of kernel estimators depends upon the

choices of kernel and bandwidth (K, h). But for practical problems, the bandwidth is of primary

importance. Below we choose the bandwidth using biased cross-validation, a standard data-

dependent choice.

3.3.  Confidence Band

When the data exhibit time dependence, the traditional way of constructing confidence

intervals is not consistent, and even the classical delete-1 jacknife or bootstrap method is not

reliable. Given that our time series of forward rates displays strong time dependence, we use

Moving Blocks Bootstrap (MBB) method suggested by Künsch (1989) and developed by Liu and

Singh (1992).

Under the MBB scheme, some moving blocks {B1, B2, … , Bn-b+1} are constructed from

the data dimension we choose. Each of the blocks contains b elements with the ith block

containing data )}(,),(),({ 11 −+
∆

+
∆∆

biii txtxtx K .  We randomly draw a block (with replacement

each time), delete this block from the data series, and calculate the estimate. This procedure is
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repeated 5,000 times so that the 5,000 estimates are obtained to derive the estimated variance of

the estimate. Then, the estimated variance of the (squared) forward rate volatility  )(ˆ2 xσ  is

( )
21

1

22 )(ˆ)(
)1(

))(ˆ(̂ ∑
+−

=
−

+−
=

bn

i
i xxJ

bnn
b

xV σσ , (12)

where

[ ]bxbnxnJ ii )(ˆ)()(ˆ 22
−−−= σσ ,

and )(ˆ2 xi−σ is the same estimate as in equation (11) except that data contained in block i are

removed before the estimation is conducted.  Confidence bands of the estimated forward rate

volatility can then be constructed from the variance estimate.

Künsch (1989) indicates that to achieve the consistent result, the number of observations

in a block should be larger than one for bootstrap method, but as the size of a block becomes

larger, the bias of the estimator will increase. Following one of his examples for data with large

sample size, we choose 4=b .

4 Estimates of “Instantaneous” Forward Rates
We estimate the volatility functions using estimates of the “instantaneous” forward rates

for a range of maturities.  These estimates of the “instantaneous” forward rates are constructed

from the daily settlement prices of the Eurodollar futures contracts (based on 3-month LIBOR,

i.e., the London Interbank Offer Rate) and 1-month LIBOR futures contracts traded on the

Chicago Mercantile Exchange.  The Eurodollar futures contracts started trading in December

1981, when only 3 and 6-month contracts were available. Starting in 1990, the maturities of the

Eurodollar contracts have extended out to at least 4 years, and currently extend out to 10 years.

The 1-month Eurodollar futures contracts are also available from 1990.

Some advantages of using Eurodollar futures data are discussed in Jegadeesh and Pennacchi

(1996). Eurodollar and 1-month LIBOR futures contracts are very actively traded with a very
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small bid-ask spread.  Trading stops in all contracts at the same instant, at which time final

settlement prices for all contracts are determined essentially simultaneously, eliminating concerns

about the possible non-synchronicity of prices. In addition, because 3-month LIBOR is a common

index for floating rate instruments such as interest rate swaps and floating rate notes, the

Eurodollar contracts are widely used for hedging and arbitrage, linking the Eurodollar term

structure to the term structure of swap rates.  A further advantage pointed out by Amin and

Morton (1994) is that Eurodollar and 1-month LIBOR futures contracts are cash-settled, which

avoids some delivery and timing problems that are inherent in the Treasury bond and note futures

contracts.

In the context of specific models, some previous studies (e.g., Grinblatt and Jegadeesh

(1996)) determine the difference between the interest rate implied from the futures contracts and

the actual implied forward rate, commonly known as the “convexity bias.” This bias is due

primarily to the fact that the futures contracts settle gains and losses daily, while forward

contracts are settled only at maturity.  This, together with the asymmetric effect of the interest

rate changes on bond prices, results in a gap between the interest rate implied from the futures

contracts and the “true” implied forward rates. The former is usually a few basis points higher

than the latter, and the difference increases with maturity.  Burghardt and Hoskins (1994, 1995)

document this relationship, and suggest an approximate procedure to adjust the implied futures

interest rates that does not depend on any specific model.

To construct the estimates of the instantaneous forward rates, we start with the daily

prices of the Eurodollar and 1-month LIBOR contracts from April 1990 to October 1998,

compute the (continuously compounded) interest rates implied by the futures prices, and adjust

the implied interest rates for the well known “convexity bias” to derive the forward rates with

corresponding maturities. (see, e.g., Burghardt and Hoskins (1994, 1995)).
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We then  “chain” together the forward rates in order to build the term structure.

Specifically, for day t, let 1st + , 2st + , … , lst + denote the last trading dates of the 1-month

LIBOR contracts, and let 1τ+t , 2τ+t , … , mt τ+ denote the last trading dates of the Eurodollar

contracts.9  Starting from the last trading date 1st +  of the first 1-month LIBOR contract, we

construct the forward rates ),,( 21 ststtf ++ , ),,( 31 ststtf ++ … , ),,( 11 τ++ tsttf , where

we stop using the 1-month LIBOR contracts at 1τ+t , the last trading date of the first Eurodollar

contract.10 From that date, we use the Eurodollar contracts to construct the forward rates

),,( 21 τ++ tsttf , ),,( 31 τ++ tsttf , … , ),,( 1 mtsttf τ++ .   The result of this process is a

set of forward rates from 1st +  to  2st + , … , 1τ+t , 2τ+t , … , mt τ+ .  To these forward rates,

we fit a cubic spline11 to obtain the entire term structure from 1st +  to mt τ+ .  Finally, we

differentiated the spline function at the points t + 91.25 days, t + 182.5 days, … , t + 1460 days,

giving us 16 different series of daily instantaneous futures rates with maturities of 3 through 48

month, covering the time period from April 1990 to October 1998.12

Figure 1 shows the time series of the 6-month, 12-month, 24-month, and 48-month

instantaneous forward rates, while Figure 2 shows the relationships between the daily changes

and the levels of the time series. Some summary statistics of several selected time series of

                                                  

9 The final settlement value of the Eurodollar and 1-month LIBOR contracts is based on either 3 or 1-
month LIBOR quoted on the last trading date, for a deposit period beginning two business days after the
last trading date.  Thus, the forward rates we construct are actually for the times t + t1 + 2 business days, t +
t2 + 2 business days, etc.  The discussion in the text ignores this settlement convention in order to prevent
the description from becoming needlessly complicated.  However, the algorithms used to construct the
forward rates incorporated the settlement conventions of the interbank market.
10 This involves using at most three of the 1-month LIBOR futures contracts. Because both contracts stop
trading two business days before the third Wednesday of the month, the last trading date of the first
Eurodollar contract always coincides with the last trading date of one of the 1-month LIBOR contracts. One
issue is that the maturity date of the deposit underlying a contract often does not coincide exactly with the
last trading date of the next contract.  In constructing the forward rates we assumed that it does.  This has
virtually no impact on the term structures we construct.
11 We use the “natural” boundary condition that the second derivative of the spline function be zero at the
endpoints.
12 The shortest maturity was 91.25 days so that the forward rates we constructed would not be affected by
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forward rates are provided in Table 1. We observe that while the mean increases with maturity,

the standard deviation is a decreasing function of the maturity. The autocorrelation coefficients up

to lag six of each series are all greater than 0.96, which shows that the data are highly serially

dependent.

Figure 3 shows estimates of the stationary densities of the 6-month and 48-month

forward rate series computed using the Gaussian kernel, with the bandwidth chosen using Biased

Cross-validation.  The two dashed curves are the 95% confidence interval of the marginal density

obtained by Moving Blocks Bootstrap method. The 6-month density is more disperse than that of

the 48-month and has thinner tails. This is consistent with the plots in Figure 2.

                                                                                                                                                      

the spline boundary condition.
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5 Results of Univariate Estimation
 5.1 Kernel regression estimates of the volatility functions

Panels A through D of Figure 4 report estimates of the diffusion function for the forward

rates at maturities of 6, 12, 24, and 48 months. The estimates of the diffusion in Figure 4 (σ̂ ) are

obtained by carrying out the kernel estimation in equation (11) using the Gaussian kernel, with

the bandwidth chosen by biased cross-validation.13  Each of the panels shows the estimated

diffusion function for the range covered by the data.  The dotted lines show 95 percent confidence

bands, constructed using the Moving Blocks Bootstrap method.  We also performed the

estimation for the other 12 series, so that estimates were obtained for maturities separated by 3

months, starting at τ = 3 months.  The pattern of the estimates for the other maturities is

consistent with the pattern seen in Figure 4, so the results for the other maturities are not reported.

In Figure 4 we report results for the 6-month maturity rather than the 3-month maturity because

of the possibility that our estimates of the 3-month “instantaneous” forward rate may be affected

by the boundary condition used with the spline function used to construct the estimates.14

For the 6 and 12-month forward rates, the volatility function in general appears to be an

increasing function of the forward rate, and generally appears to be convex, i.e., as forward rate

becomes higher, the volatility increases at a greater rate.  The convexity which is seen in the

center of the graphs is broadly consistent with simple “power” volatility functions of the form

γσ )())(( taftf = , with 1>γ , and thus is consistent with the volatility functions CKLS (1992)

estimated for the “short” rate.  However, markedly different volatility functions are obtained for

the 24 and 48-month forward rates.  Panels C and D each show a region near the middle of the

                                                  

13 We have repeated the data analysis with the bandwidth choice of 5/1−= Nh σ)  which Stanton (1997) says
he used, and obtained similar results.   Monte Carlo evidence presented in Chapman and Pearson (1999)
indicates that the choice of 5/1−= Nh σ)  works well in estimating the diffusion function, though they study
larger sample sizes than that used in this paper.
14 We also estimated the diffusion function for the 3-month “cash” Eurodollar rate (i.e., 3-month LIBOR)
during the same period of time. The estimated volatility function is similar to that of the 6-month forward
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graph in which the volatility is decreasing in the level of the forward rate.  In both panels the

volatility function changes from being a convex function of the forward rate, to a concave

function, and back to a convex function.

These results are striking because they are inconsistent with all simple models of the

forward rate volatility functions which have been suggested in the literature. While sampling

variation cannot be ruled out as the explanation for the results, in both panels C and D there are

points where the upper confidence band dips below a previously attained value of the lower

confidence band, which suggests that there is a range in which the volatility function is

decreasing.  Moreover, the region in which the volatility appears to be decreasing in the forward

rate is near the center of the distribution of forward rates, where there is a great deal of data.

Thus, these results are not being driven by a relatively small number of data points.

Different results would be obtained with a different bandwidth choice, and the choice of a

sufficiently large bandwidth would “smooth out” the bumps in Panels C and D, and make the

volatility function almost flat.  Such a bandwidth choice would be one mechanism of imposing a

prior belief that the volatility function cannot be decreasing in the level of the forward rate.

However, the relatively narrow bandwidth choice resulting from biased cross-validation gives a

clearer picture of what the data say.  In addition, the results in Chapman and Pearson (1999)

suggest that relatively narrow bandwidth choices are reasonable in estimating the diffusion

function.  One possible explanation of the surprising results in Panels C and D is that the forward

rate level is not the best descriptive factor, or it would work better with some other variables.  We

consider this possibility further in Section 6, where we allow the volatility function to depend on

the “spread” between a long-term and a short-term forward rate.

 5.2 Boundary Constraint

                                                                                                                                                      

rate.
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The method for estimating the forward rate volatility function described above does not

guarantee that the volatility of the forward rate goes to zero as the forward rate approaches zero.

Thus, it can result in estimates in which the forward rate volatility is positive when the forward

rate is zero, which implies that the forward rate can be negative with positive probability. To

avoid this problem, we use the approach of Stanton (1997) to force the diffusion function to be

zero when the forward rate is zero. The results using the constrained estimator are provided in

Panels A through D of Figure 5.

The estimated volatility functions of the 6 and 12-month forward rates are little affected

by the imposition of the constraint.  Comparing Panels A and B of Figure 5 to the corresponding

panels in Figure 4, the shape of the volatility functions is unchanged, though of course the

constrained volatility functions now start at the origin (not shown)  In addition, because of the

constraint the confidence bands are much narrower near the origin, and the estimated volatility

function appears slightly smoother.

The impact of the constraint on the estimated volatility functions of the 24 and 48-month

forward rates shown in Panels C and D is somewhat greater, though the qualitative character of

the estimated functions remains unchanged.  In both panels it remains true that the volatility

function decreases for sufficiently high levels of the forward rate.

6 Bivariate Nonparametric Estimation

6.1 The kernel regression estimator

So far we have assumed that the forward rate volatility is a function of the maturity of the

forward rate and its level.  In this section we look for the other variables which would affect the

forward rate volatility. One possible candidate is the forward spread, the difference between a

long-term forward rate and a short-term forward rate. The yield spread has been used as a

measure of the shape of the term structure and a reasonable forecast of the interest rate changes

for decades. For example, Macaulay (1938) first noted that yield spreads tend to predict the
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movement of long interest rates. Fama (1984), Campbell and Shiller (1991), and others analyze

the predicting power of the yield spread for predicting the movement of short and long interest

rates. The inclusion of the spread as a second variable is also suggested by other work (e.g., two-

factor term structure models) in which the spread between long and short-term interest rates is

important.  If the volatility is actually influenced by the spread, and the spread is correlated with

the levels of forward rates (as it must be), then apparently anomalous relations between the

volatility and the level of the forward rate are possible.  In addition, the results of Boudoukh,

Richardson, Stanton, and Whitelaw (1998) suggest that the spread is a determinant of interest rate

volatility. Here we examine effect of the forward rate spread on the forward rate volatility.

We perform bivariate kernel regressions incorporating the effect of the forward spread

and that of the forward rate level.  Specifically, for each of our 16 forward rate series we consider

a time-homogeneous process of the form

)())(),(())(),(()( tdBtstfdttstftdf σµ += .

When the regressors consist of the level of the forward rate and the spread, the estimator (11)
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∑

∑
−

=

∆∆

∆−

=

∆





 −





 −





 −





 −−∆+

=
1

1 2

2

1

1

2

2
1

1 1

12

21
2

)()(

)()(
))()((

 ),(ˆ
N

i

ii

i
N

i

i

h
tsx

K
h

tsx
K

h
tsx

K
h

tfx
Ktftf

xxσ                  (13)

where  N
isiiii

N
ii ttfttfts 11 )},(),({)}({ =

∆∆
=

∆ +−+= ττl  is the sample of observations on the

spread.   As indicated above, we use the Gaussion kernel 




−= 2

2
1

exp
2
1

)( uuK
π

.

6.2 Description of the data
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The four panels in Figure 6 consist of scatterplots showing the relationship between the

6-month, 12-month, 24-month and 48-month forward rates and the rate spread, respectively. We

use the difference between 48-month and 6-month forward rates as our measure of the forward

rate spread, which gives the largest possible spread among the forward rate series we use.

Unsurprisingly, for the shorter maturity forward rates the spread is inversely related to the

forward rate, and covers a relatively wide range.  However, for the longer maturities the forward

rates cover a relatively narrow range, and there appears to be little relationship between the

spread and the level of the forward rate.

Panels A and B of Figure 7 plot the estimated joint density functions of the stationary

distribution of the 6-month rate and the spread (again defined as the difference between the 48-

month and 6-month forward rates), and the 48-month rate and the spread, respectively.  In both

cases, the density functions were estimated using the kernel estimator in equation (8).   The

density surface in Panel A has a simple structure, and reveals the negative correlation between the

level of the 6-month forward rate and the spread. The density surface in Panel B is multimodal

and much more irregular.  Consistent with the scatterplot in Panel D of Figure 6, it does not

reveal any obvious correlation between the 48-month forward rate and the spread.

6.3 Bivariate kernel regression results

Panels A through D of Figure 8 show the estimated volatility functions of the 6, 12, 24,

and 48 month forward rates as function of the levels of the forward rates and the forward rate

spread.  Similar to the confidence bands we constructed for the univariate estimates, confidence

surfaces could be constructed for these bivariate regression estimates.  However, these surfaces

would overlap with the kernel regression surface and make it difficult to visualize and examine

the significance of the bivariate results.  One way to get around this is to first construct the

regression function and confidence surfaces for the estimated bivariate volatility functions, and

then display cross-sections of the three surfaces.  The cross-section for a fixed level of the
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forward rate will show the relation between the volatility and the spread, while the cross-section

for a fixed level of the spread will show the relation between the volatility and the level of the

forward rate.  Panels A through D of Figures 9 and 10 show these cross-sections.

Panel A of Figure 8 plots the volatility of the 6-month forward rate as a function of the

level of the forward rate and the forward rate spread, while Panel B shows the volatility of the 12-

month forward rate as a function of its level and the forward rate spread.  These graphs suggest

that that the volatility of the 6-month forward rates is related to the spread, but that the 12-month

volatility is at best only weakly related to the spread.  In particular, for moderate levels of the

forward rate, the 6-month volatility appears to be first sharply increasing, and then somewhat

decreasing, in the level of the spread.  In contrast to the univariate results in Figures 4 and 5, there

does not appear to be any simple relation between the volatility of these forward rates and their

levels.

This last statement may seem surprising, given the apparent relation between the

volatility and the level of the forward rates for high values of the spread (along the “back” edge of

the graphs in Panels A and B of Figure 8).  However, one cannot reliably conclude anything from

this apparent relationship, because Panels A and B of Figure 6 reveal that for the 6 and 12-month

forward rates there are no realizations in which there are both high forward rates and high

spreads.  Thus, the apparent low volatility when both the forward rate and spread are high is not

based on data in that region, but is only “extrapolated” from the other data points through the

choice of the bandwidth.  Examining Panels A and B of Figure 6, one can see that for moderate

forward rates there have been a wide range of spreads, but that for high forward rates there have

been only relatively low spreads, and for low forward rates there have been moderate to high

spreads.  Also, for low spreads there have been moderate to high forward rates.

Panels A and B of Figure 9 show the relations between the volatility and the forward rate

spread, with the level of the foward rate fixed at its sample mean.  The middle line in each of

these graphs is a cross-section of the corresponding panel of Figure 8, while the upper and lower
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lines are cross-sections of the confidence surfaces.  These cross-sections indicate the forward rate

volatility is increasing in the level of the spread. Panels A and B of Figure 10 show the relations

between the volatility and the level of the forward rate, holding the spread fixed at its sample

mean.  Again, the middle line in each of these graphs is a cross-section of the corresponding

panel of Figure 8, while the upper and lower lines are cross-sections of the confidence surfaces.

These cross-sections reveal very little dependence of the volatility on the level of the spread.

Comparing them to the corresponding panels of Figure 4, one can see that the estimated relation

between the volatility and the level of the forward rate is weaker after controlling for the effect of

the spread.

Panel C of Figure 8 plots the volatility of the 24-month forward rate as a function of the

level of the forward rate and the forward rate spread, while Panel D shows the volatility of the 48-

month forward rate as a function of its level and the forward rate spread.  These graphs also

display the feature that for moderate levels of the forward rate, the volatility appears to be first

sharply increasing, and then decreasing, in the level of the spread.  In fact, this phenomenon is

more pronounced for the 24 and 48-month forward rates than it was for the 6 and 12-month

forward rates.  The maximum volatility occurs at a forward rate spread of about 2 percent.  Also

similar to the results for the shorter maturities, these graphs show no clear relation between the

volatility and the level of the forward rate.

Panels C and D of Figures 9 and 10 show the cross-sections, holding fixed the level of the

forward rate and the spread, respectively.  As before, the middle line in each graph is a cross-

section of the corresponding panel of Figure 8 with the other variable fixed at its sample mean,

and the upper and lower lines are cross-sections of the confidence bands.

One difference between these two graphs and Panels A and B is that for low levels of the

forward rate and moderate to high levels of the spread the volatility is increasing in the level of

the spread, while in Panels A and B the relation is less clear.  In addition, in Panels C and D the

volatility is highest for moderate levels of the forward rate and the spread, not when the forward
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rate is high and the spread is low.  This, combined with the fact that most of the data lie near the

diagonal running from the “back” corner to the “front” corner, explains why we obtain the

“hump” for moderate levels of the forward rate in the univariate results shown Panels C and D of

Figures 4 and 5.  In essence, these figures showing the results of the univariate estimation are

showing the value of the volatility surface on the diagonal running from high forward rates and

low spreads to low forward rates and high spreads (from the “front” to the “back” of the graphs

shown in Figure 8).

Overall, the results shown in all four panels A through D are broadly consistent.  In all of

them, there is a clear relation between the volatility and the spread for moderate levels of the

forward rate, with the maximum volatility occurs at a forward rate spread of about 2 percent.

Also, the volatility is increasing in the level of the forward rate for low levels of the spread and

moderate to high forward rates.
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7 Conclusion
Heath, Jarrow, and Morton (1992) present a very general framework for modeling the

term structure of interest rates and pricing interest rate derivative instruments. Despite the central

role played by the forward rate volatility functions in the HJM framework, there has been

relatively little work that directly estimates the stochastic process of the forward rate in a general

framework.  This paper begins to fill this gap by conducting a nonparametric analysis of the

forward rate process volatilities.

Univariate kernel regression results indicate that for the short term forward rates the

forward rate volatility is an increasing function of the forward rate. For these forward rates, the

volatility is generally increasing in the level of the forward rate, and in the middle of the range of

forward rates (where most of the data lie) the volatility is a convex function of the level of the

forward rate.  However, for the longer term forward rates the volatility appears not to be a

monotonic function of the level of the forward rate, in that the estimated volatility decreases for

high levels of the forward rate.  For both short and long term forward rates, the dependence of the

volatility on the level is relatively weak.   These results are inconsistent with both the simple

power function specifications of volatility that have been popular in the empirical literature

studying the dynamics of the “short” rate, and the proportional specifications popular with

practitioners.

The constrained estimation procedure of Stanton (1997) generates results consistent with

the unconstrained estimates. The results for the univariate models suggest that no single simple

specification can capture the volatility function for all maturities, and thus that it may be

necessary to develop different diffusion or volatility models for forward rates with different

maturities. Also, the estimated diffusion functions have some features that have not been captured

by any of the previous studies.  These results suggest that a more complicated parametric model

may be needed to better explain the dynamics of the forward rate.
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In the bivariate model, we estimate the relation between the volatility, the forward rate,

and the forward spread.  These results show that for low and moderate levels of the forward rate,

the volatility is increasing in the spread.  For high forward rates, the volatility no longer increases

in the forward rate spread.

The results in this paper are strikingly different from the simple specifications of the

volatility functions that have been proposed.  Interpreted literally, they are inconsistent with all

simple models of the volatility functions that have been used or proposed.  A more skeptical

interpretation would recognize that the results are based on a somewhat arbitrary choice of

bandwidth, and that the finite sample properties of the standard error bands we compute are not

known.  Moreover, it might be hard to accept that the volatility of long term forward rates could

actually decrease for high levels of the forward rate; to our knowledge, such a model has never

been proposed.  Interpreted in this very skeptical fashion, the results indicate that there is no

important dependence of the forward rate volatilities on the levels of forward rates.   Only the

Gaussian HJM models and their special cases such as the Hull-White, Vasicek, and Ho-Lee

models are even broadly consistent with these results.
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Table 1
Summary Statistics

A. Means, standard deviations, and autocorrelations of the forward rates

Maturity Mean Standard
Deviation

AR1 AR3 AR6

3 months 0.054 0.0137 .998 .994 .988
6 months 0.055 0.0131 .998 .992 .985
12 months 0.059 0.0126 .996 .989 .978
24 months 0.066 0.0115 .996 .988 .977
36 months 0.070 0.0111 .997 .989 .979
48 months 0.073 0.0110 .997 .991 .982

B. Means, standard deviations, and autocorrelations of the forward rate changes

Maturity Mean Standard
Deviation

AR1 AR3 AR6

3 months -.00002 .00073 .103 .028 .018

6 months -.00002 .00070 .080 -.007 -.006

12 months -.00002 .00081 .094 -.002 -.017

24 months -.00002 .00073 .124 -.002 -.003

36 months -.00002 .00064 .121 -.025 -.046

48 months -.00002 .00061 .086 -.013 -.044

C. Correlation coefficients of the forward rates

Maturity 6 months 12 months 24 months 36 months 48 months

3 months .98 .91 .76 .61 .49
6 months .97 .83 .67 .55

12 months .92 .79 .68
24 months .97 .91
36 months .98

Means, standard deviations, and autocorrelation coefficients up to lag 6 of the daily
Eurodollar instantaneous forward rates and their daily changes with selected maturities are
computed. The correlation coefficients of several selected forward rate series are also
provided. The forward rates are from April 1990 to October 1998. There are 2143
observations in each series.
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Figure 1. The time series of the 6-month, 12-month, 24-month and 48-month instantaneous
forward rates. The instantaneous forward rates are derived from the daily Eurodollar futures
prices from April 1990 to October 1998. There are 2143 observations.
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Daily 6-month Forward Rate Changes
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Figure 2. The relationship between the daily forward rate changes and the level of
forward rate for the 6-month, 12-month, 24-month and 48-month forward rates
respectively. These instantaneous forward rates are daily data from April 1990 to October
1998. There are 2143 observations.
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(a) Estimated Density of 6-month Forward Rate
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(b) Estimated Density of the 48-month Forward Rate
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Figure 3. Estimated kernel density. The solid curves are the
estimated kernel marginal density functions of the 6-month
and 48-month forward rates, obtained by using daily data
from April 1990 to October 1998. The dotted curves are the
95% confidence bands obtained by using the Moving Block
Bootstrap method.
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(a) Estimated Diffusion 
for 6-month Forward Rate
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(b) Estimated Diffusion 
for 12-month Forward Rate
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(d) Estimated Diffusion 
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Figure 4. Estimated naïve kernel diffusion. The solid curves are the estimated diffusion
functions of the 6-month, 12-month, 24-month and 48-month forward rates, obtained by
using daily data from April 1990 to October 1998. The naïve kernel regression estimator is
used without any restriction being imposed. The dotted curves are the 95% confidence
bands obtained by using the Moving Block Bootstrap method.
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(a) Constraint Diffusion 
of 6-month Forward Rate
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(b) Constraint Diffusion 
of 12-month Forward Rate
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of 24-month Forward Rate

0.008

0.01

0.012

0.014

0.045 0.057 0.069 0.082 0.094

Forward Rate

(d) Constraint Diffusion 
of 48-month Forward Rate
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Figure 5. Estimated constrained kernel diffusion. The solid curves are the estimated
diffusion functions of the 6-month, 12-month, 24-month and 48-month forward rates,
obtained by using daily data from April 1990 to October 1998. The boundary condition
is imposed so that the diffusions are zero when the forward rates become zero. The
dotted curves are the 95% confidence bands obtained by using the Moving Block
Bootstrap method.
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(a) Forward Spread 
and 6-month Forward Rate
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(b) Forward Spread 
and 12-month Forward Rate
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 (c) Forward Spread 
and 24-month Forward Rate
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(d) Forward Spread 
and 48-month Forward Rate
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Figure 6. The relationship between the forward rate spread and the 6-month, 12-month,
24-month and 48-month forward rates respectively. The rate spread is the difference
between the 48-month rate and the 6-month rate. These are daily data from April 1990 to
October 1998. There are 2143 observations.
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(a) Estimated Bivariate Density of the 6-month Forward Rate

(b) Estimated Bivariate Density of the 48-month Forward Rate

Figure 7. Estimated Bivariate Density Functions of the 6-month and 48-month
forward rates, obtained by using daily data from April 1990 to October 1998. The
density functions are determined by the forward rate and the rate spread, where
the rate spread is the difference between the 48-month rate and the 6-month rate.

(a) Estimated Bivariate Diffusion of the 6-month Forward Rate
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(b) Estimated Bivariate Diffusion of the 12-month Forward Rate

Figure 8. Estimated bivariate diffusion functions of the 6-month, 12-month, 24-month and 48-
month forward rates, obtained by using daily data from April 1990 to October 1998. The
diffusion functions are determined by the forward rate and the rate spread, where the rate spread
is the difference between the 48-month rate and the 6-month rate.
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(c) Estimated Bivariate Diffusion of the 24-month Forward Rate

(d) Estimated Bivariate Diffusion of the 48-month Forward Rate
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(a) Spread Effect on 6-month 
Forward Rate Diffusion
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(d) Estimated Spread Effect 
on 48-month Forward Rate Diffusion
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Figure 9. Forward rate spread effect. The solid curves are the cross-sections of
bivariate kernel diffusion and their confidence surfaces, for the 6-month, 12-month, 24-
month and 48-month forward rates. They are taken along the average forward rate of the
corresponding data series. The spread is the difference between the 48-month forward
rate and the 6-month forward rate. The dotted curves are the cross-sections of 95%
confidence surfaces for the bivariate kernel diffusion estimates along the average forward
rate levels. They are obtained by using the Moving Block Bootstrap method.
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(a) Level Effect on 6-month 
Forward Rate Diffusion
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(b) Level Effect on 12-month 
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(c) Level Effect on 24-month 
Forward Rate Diffusion

0.007

0.009

0.011

0.013

0.015

0.044 0.056 0.069 0.081 0.094

Forward Rate

(d) Level Effect on 48-month 
Forward Rate Diffusion

0.006

0.008

0.01

0.012

0.050 0.062 0.073 0.084 0.095

Forward Rate

Figure 10. Forward rate level effect. The solid curves are the cross-sections of bivariate
kernel diffusion and their confidence surfaces, for the 6-month, 12-month, 24-month and
48-month forward rates. They are taken along the average forward spread level. The
spread is the difference between the 48-month forward rate and the 6-month forward rate.
The dotted curves are the cross-sections of 95% confidence surfaces for the bivariate
kernel diffusion estimates along the average forward spread level. They are obtained by
using the Moving Block Bootstrap method.
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