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Abstract

The panel variant of the KPSS tests developed by Hadri (2000) for the null of stationarity
su¤ers from size distortions in the presence of cross section dependence. However, applying
the bootstrap methodology we �nd that these tests are approximately correctly sized.
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1 Introduction

A number of alternative procedures have been proposed to test for the presence of unit roots in

dynamic heterogeneous panels, see e.g. Im, Pesaran, and Shin (2003) (IPS) and Maddala and

Wu (1999) (MW). These authors test the null hypothesis of a unit root against the alternative

of at least one stationary series, by using the (Augmented) Dickey-Fuller (ADF) statistic across

the cross-sectional units of the panel. By contrast, Hadri (2000) proposed an LM procedure to

test the null hypothesis that all of the individual series are stationary (either around a mean

or around a trend) against the alternative of at least a single unit root in the panel. The two

LM tests proposed by Hadri (2000) are panel versions of the test developed by Kwiatkowski,

Phillips, Schmidt, and Shin (1992). A critical assumption underlying these tests is that of cross

section independence among the individual time series in the panel and both the MW and IPS

tests exhibit severe size distortions in the presence of cross-sectional dependence.

This paper investigates the performance of the Hadri (2000) tests in the presence of cross-

section dependence. Based on Monte Carlo simulations we �nd that the Hadri (2000) tests

also su¤er from severe size distortion, and we use the bootstrap method to allow for potential

cross-sectional dependency. The plan of the paper is as follows. Section 2 brie�y reviews the

Hadri (2000) approach to unit root testing in panels. Section 3 presents the design of the Monte

Carlo simulation and the main results.

2 The Hadri tests

Hadri (2000) proposes residual based Lagrange Multiplier tests for the null hypothesis that the

time series for each cross section unit, i, are stationary around a level or around a deterministic

time trend, against the alternative of at least a single unit root. Following Hadri (2000), consider

the models:

yit = rit + "it, (1)

and

yit = rit + �it+ "it, (2)

where rit is a random walk,

rit = rit�1 + uit, (3)
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and "it and uit are mutually independent normal distributions. Also, "it and uit are i:i:d: across

i and over t, with E ["it] = 0, E
�
"2it
�
= �2" > 0, E [uit] = 0, E

�
u2it
�
= �2u � 0, t = 1; :::; T and

i = 1; :::; N .

Let "̂�it ( "̂
�
it) be the residuals from the regression of yi on an intercept, for model (1), (on

an intercept and a linear trend term, for model (2)). Let �̂2"� ( �̂
2
"� ) be a consistent estimator

of the error variance (corrected for degrees of freedom) from the appropriate regression, which

are given by:

�̂2"� =
1

N (T � 1)

NX
i=1

TX
t=1

"̂�it
2;

and

�̂2"� =
1

N (T � 2)

NX
i=1

TX
t=1

"̂�it
2:

Also, let Slit be the partial sum process of the residuals,

Slit =

tX
j=1

"̂lij ; l = �; � :

Then the LM statistic is:

LMl =

1

N

NP
i=1

1

T 2

TP
t=1
Slit

2

�̂2"
; l = �; � :

Hadri (2000) considers the standardised statistics:

Z� =

p
N
�
LM� � ��

�
��

) N (0; 1) ; (4)

and

Z� =

p
N (LM� � �� )

��
) N (0; 1) : (5)

The mean and the variance of the random variable Z� are �� =
1
6 and �

2
� =

1
45 , respectively.

The mean and the variance of the random variable Z� are �� =
1
15 and �

2
� =

11
6300 , respectively.

3 Monte Carlo simulations and results

We use Monte Carlo simulations to examine the e¤ects of cross-section dependence on the size

and power of Z� and Z� . Following Hadri (2000), to investigate the size of Z� and Z� the

data-generating process (DGP) for model (1) is:
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yit = �i + "it;

while for model (2) the corresponding DGP is given by:

yit = �i + �it+ "it;

where "t are i:i:d: N (0; 1) under the null hypothesis. We generate �i � U [0; 10] and �i �

U [0; 2], where U stands for a uniform distribution; �i and �i are generated once and then �xed

in all replications. We consider the cases of N = (15; 25; 50; 100) and T = (15; 25; 50), where

the �rst 100 time observations for each cross-sectional unit are discarded. A total of 2,000

replications are used in computing the empirical size and power of the tests at the 5% nominal

level.

The Monte Carlo experiments of Hadri (2000) demonstrate that these tests have good size

properties for T and N su¢ ciently large and this observation is consistent with our own �ndings

(which are not reported here to save space).

However, even for relatively large N and T , and in line with the results on both the IPS

and the MW panel unit root tests, the tests of Hadri (2000) su¤er from severe size distor-

tions in the presence of cross-sectional dependence, as can be seen in Table 1, where following

O�Connell (1998) we assume that the variance-covariance matrix of the disturbance vector

"t = ["1t; "2t; :::; "Nt] has the form:

E
�
"t"

0
t

�
= 
 =

0BBB@
1 ! : : : !
! 1 : : : !
...

...
. . .

...
! ! : : : 1

1CCCA ; ! < 1:

In the Monte Carlo experiments, ! = (0:3; 0:5; 0:7; 0:9), with ! = 0:0 being the case of cross-

sectional independence considered by Hadri (2000). We note that the size distortion increases

as the strength of the cross-sectional dependence, !, increases.

To correct the size distortion caused by cross-sectional dependence, we follow Maddala and

Wu (1999) and more recently Chang (2004), who considered bootstrapping unit root tests. To

implement this approach in the context of the Hadri tests, we bootstrap the residuals from

either a regression of yi on a constant for the Z� test or yi on a constant and a trend for the
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Z� test. As suggested by Maddala and Wu (1999) (p.646), we resample the residuals with the

cross-section index �xed, so that we preserve the cross-correlation structure of the error term.

Results are based on 2,000 Monte Carlo replications, with 100 bootstrap replications used to

generate the bootstrap distributions of the tests. The major conclusion that one can draw

is that bootstrapping the errors seems to largely correct for the over-size problem (Table 1),

although for T = 15 and T = 25 there is evidence to suggest that even the bootstrapped test

statistics are slightly over-sized.

Finally, to investigate the empirical power of the Hadri tests we assume that � = �2u=�
2
" =

(0:001; 0:1; 1; 10; 100), with � = 1 corresponding to a pure random walk in yt; notice that

� = 0, i.e. �2u = 0, corresponds to the case where yt is stationary (these parameter values

are similar to those used by KPSS and Hadri). The results reported in Table 2 show that for

given T , N and ! power increases with �. We note that for �xed T , N and �, as the degree of

cross-sectional dependency, !, increases, power falls.
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Table 1. Empirical size of the Hadri tests with cross section dependence

Z� statistic Z� statistic
T N ! N(0,1) Bootstrap N(0,1) Bootstrap
15 15 0.3 9.80 5.75 6.30 5.35

0.5 14.45 6.20 10.90 5.05
0.7 18.10 6.30 14.35 5.30
0.9 21.10 6.25 17.85 5.05

15 25 0.3 12.10 6.75 9.05 5.65
0.5 16.55 6.50 14.50 6.00
0.7 20.10 6.60 19.35 6.10
0.9 22.80 6.30 22.80 6.15

15 50 0.3 16.15 6.35 12.25 4.65
0.5 21.60 6.35 18.85 5.45
0.7 23.85 6.25 24.20 5.80
0.9 25.00 6.25 26.25 6.20

15 100 0.3 18.15 5.55 15.65 5.55
0.5 24.05 5.70 22.95 4.90
0.7 27.70 5.90 27.05 5.15
0.9 29.10 5.75 30.35 6.00

25 15 0.3 11.80 6.60 10.45 6.80
0.5 16.50 5.85 15.95 5.80
0.7 19.05 6.50 19.65 5.50
0.9 20.40 6.25 21.50 5.55

25 25 0.3 11.25 5.40 12.15 6.05
0.5 15.70 5.30 17.40 6.05
0.7 18.90 5.60 22.05 6.60
0.9 21.30 4.95 25.85 6.10

25 50 0.3 17.90 6.95 16.35 6.10
0.5 23.00 6.60 22.35 6.30
0.7 24.50 6.80 26.85 6.50
0.9 26.25 6.95 28.90 5.95

25 100 0.3 16.95 4.55 19.60 4.60
0.5 22.65 4.95 24.65 4.40
0.7 25.40 5.05 27.10 4.80
0.9 27.60 4.75 27.65 5.10

50 15 0.3 9.30 4.95 10.50 5.55
0.5 14.35 5.40 15.10 5.80
0.7 17.25 5.85 19.60 6.00
0.9 19.65 6.15 23.40 6.10

50 25 0.3 11.65 4.85 12.20 4.65
0.5 16.10 4.50 17.45 4.50
0.7 19.75 5.05 20.55 4.55
0.9 22.15 4.70 24.05 4.95

50 50 0.3 15.95 5.55 16.20 4.90
0.5 19.95 5.25 22.35 4.65
0.7 22.30 4.85 25.00 4.60
0.9 23.50 4.80 26.65 4.10

50 100 0.3 18.85 4.90 19.35 4.40
0.5 23.25 4.70 24.20 5.25
0.7 27.15 5.40 27.45 5.20
0.9 27.70 5.55 29.65 4.95

The 95% con�dence intervals for 5% sign�cance levels based on 2,000 replications are (4.04,5.96).
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Table 2. Power of bootstrapped Hadri tests with cross section dependence

Z� statistic Z� statistic
T N � �

0.001 0.01 0.1 1 100 0.001 0.01 0.1 1 100
15 15 0.3 5.90 10.35 64.25 99.95 100.00 5.50 6.30 19.95 95.10 100.00

0.5 6.20 9.35 58.55 99.95 100.00 5.05 6.10 17.15 93.40 100.00
0.7 6.90 8.95 51.75 99.90 100.00 5.40 5.95 14.75 91.90 100.00
0.9 6.40 8.65 44.00 99.80 100.00 5.25 5.85 13.05 89.20 100.00

15 25 0.3 6.65 11.65 75.25 100.00 100.00 5.80 7.00 22.40 98.50 100.00
0.5 6.80 9.45 66.65 100.00 100.00 5.95 7.20 19.60 97.30 100.00
0.7 7.15 8.85 56.75 100.00 100.00 6.25 7.35 16.70 95.25 100.00
0.9 6.55 8.35 48.15 100.00 100.00 6.30 7.15 15.80 92.75 100.00

15 50 0.3 6.75 10.90 83.40 100.00 100.00 4.75 5.65 24.80 99.80 100.00
0.5 6.85 9.25 72.40 100.00 100.00 5.55 6.45 19.70 99.40 100.00
0.7 6.65 8.80 60.10 100.00 100.00 5.85 6.80 17.40 98.55 100.00
0.9 6.55 8.20 48.65 100.00 100.00 6.35 7.10 16.40 96.45 100.00

15 100 0.3 5.90 10.30 89.30 100.00 100.00 5.60 6.55 24.85 99.95 100.00
0.5 5.85 9.15 77.65 100.00 100.00 5.05 5.95 20.85 99.90 100.00
0.7 6.25 8.45 63.30 100.00 100.00 5.35 6.30 16.85 99.05 100.00
0.9 6.05 7.85 50.60 100.00 100.00 6.05 7.15 15.80 97.50 100.00

25 15 0.3 7.30 26.45 98.65 100.00 100.00 6.90 10.15 69.50 100.00 100.00
0.5 7.30 18.45 97.70 100.00 100.00 5.95 8.55 57.35 100.00 100.00
0.7 7.00 14.00 96.35 100.00 100.00 5.55 7.40 45.15 100.00 100.00
0.9 6.45 11.10 94.40 100.00 100.00 5.85 6.75 36.30 100.00 100.00

25 25 0.3 6.20 25.25 99.75 100.00 100.00 6.30 9.95 80.25 100.00 100.00
0.5 5.95 15.15 99.50 100.00 100.00 6.55 8.85 65.20 100.00 100.00
0.7 5.65 11.70 98.55 100.00 100.00 6.65 8.45 47.00 100.00 100.00
0.9 5.25 9.55 96.75 100.00 100.00 6.30 7.65 36.40 100.00 100.00

25 50 0.3 8.05 29.05 100.00 100.00 100.00 6.40 9.55 89.45 100.00 100.00
0.5 7.20 17.95 99.95 100.00 100.00 6.40 8.25 70.05 100.00 100.00
0.7 7.65 12.80 99.80 100.00 100.00 6.50 8.15 51.60 100.00 100.00
0.9 7.35 11.50 99.30 100.00 100.00 6.15 7.55 39.20 100.00 100.00

25 100 0.3 5.10 25.60 100.00 100.00 100.00 4.85 8.35 94.20 100.00 100.00
0.5 5.55 14.05 100.00 100.00 100.00 4.55 6.85 72.55 100.00 100.00
0.7 5.45 10.65 99.90 100.00 100.00 5.00 6.25 51.50 100.00 100.00
0.9 5.40 9.55 99.50 100.00 100.00 5.15 6.30 35.95 100.00 100.00

50 15 0.3 10.05 88.25 100.00 100.00 100.00 6.80 28.95 100.00 100.00 100.00
0.5 8.25 77.05 100.00 100.00 100.00 6.55 17.75 99.90 100.00 100.00
0.7 7.20 61.65 100.00 100.00 100.00 6.20 13.35 99.70 100.00 100.00
0.9 6.90 46.80 100.00 100.00 100.00 6.80 11.90 98.80 100.00 100.00

50 25 0.3 9.80 95.15 100.00 100.00 100.00 5.80 29.50 100.00 100.00 100.00
0.5 7.05 83.70 100.00 100.00 100.00 5.05 15.85 99.95 100.00 100.00
0.7 6.75 65.00 100.00 100.00 100.00 4.75 11.35 99.95 100.00 100.00
0.9 5.95 47.30 100.00 100.00 100.00 5.20 10.40 99.45 100.00 100.00

50 50 0.3 10.40 99.40 100.00 100.00 100.00 5.55 33.65 100.00 100.00 100.00
0.5 7.30 89.95 100.00 100.00 100.00 5.45 18.15 100.00 100.00 100.00
0.7 6.15 69.55 100.00 100.00 100.00 4.95 11.65 100.00 100.00 100.00
0.9 5.95 47.15 100.00 100.00 100.00 4.55 9.85 99.90 100.00 100.00

50 100 0.3 9.15 99.80 100.00 100.00 100.00 5.50 32.25 100.00 100.00 100.00
0.5 6.95 93.55 100.00 100.00 100.00 5.75 14.90 100.00 100.00 100.00
0.7 6.65 72.35 100.00 100.00 100.00 5.45 12.20 100.00 100.00 100.00
0.9 6.85 48.45 100.00 100.00 100.00 5.20 10.65 99.95 100.00 100.00
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