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Abstract  
Vibrational spectroscopy (infrared and Raman spectroscopy) is based on the 

interaction of matter with electromagnetic radiation. These techniques probe 

a wide range of information including physical and chemical properties 

yielding large dimensions of data. The advancement in the art of 

chemometrics for accurate prediction of sample properties presented a crucial 

turning point in the development of the spectroscopic methods, facilitating 

the interpretation of the large spectral data.  

This thesis investigates the application of different chemometric modelling 

techniques to vibrational spectroscopic data from samples like meat, 

pharmaceuticals and immune cells. The nature of information probed 

determined the choice of chemometric techniques; however, some techniques 

gave better approximation (performance) for one sample than the others 

might. The analytical applications conducted in this thesis includes; 

discrimination of red meat species, quality assessment of red meat using 

conventional Raman and infrared spectroscopy, discrimination of cancer and 

immune cells using Raman microscopy and isothermal dehydration of 

pharmaceutical crystalline hydrates using low-frequency Raman 

spectroscopy.   

Chapter one of this thesis introduces the concept of vibrational spectroscopy, 

spectroscopic instrumentation, spectral preprocessing, multivariate analysis 

(chemometrics) and highlights the aims of this thesis.  

The second chapter investigates the discrimination of red meat species (beef, 

lamb and venison) using Raman and infrared spectroscopic techniques.  

Classification models were built using partial least square discriminant 

analysis (PLSDA) and support vector machine classification (SVMC); 

whereas principal component analysis (PCA) was employed for exploratory 
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analysis. Visual assessment of the PCA scores revealed distinct separation of 

the three meat species for both spectroscopic techniques.  Classification 

models built using the Raman data and validated against an independent test 

set yielded a classification accuracy ≥ 80 % and ≥ 92 % for the PLSDA and 

SVMC methods, respectively. Classification model created using the infrared 

data yielded an accuracy ≥ 94 % for both chemometric methods. This suggests 

that both Raman and infrared spectroscopic methods posit an effective tool 

for red meat discrimination. 

Chapter three of this thesis investigates the implementation of Raman and 

infrared techniques as well as three data fusion strategies to evaluate pH and 

percentage intramuscular fat (% IMF) content of red meat. Quantitative 

models were built using partial least square regression and validated against 

an independent test set. Results obtained suggest a good correlation between 

the reference and predicted pH values using the Raman, infrared and high-

level data fusion strategy whereas Raman and low-level fusion showed 

similar level of performance for predicting the % IMF content in red meat.   

In chapter four, low-frequency Raman spectroscopy was shown to be very 

sensitive for monitoring the in situ isothermal dehydration of piroxicam and 

theophylline monohydrates. The dehydration was performed at four different 

temperatures and monitored in both the low-wavenumber (20 – 300 cm-1) and 

mid-wavenumber (335 – 1800 cm-1) Raman regions. Analysis performed 

using multivariate curve resolution (MCR) suggested the formation of 

specific anhydrous forms of piroxicam and theophylline upon dehydration of 

their respective monohydrates. The formation of the anhydrous forms was 

also detected on different timescales (approx. 2 min) between the low- and 

mid-wavenumber Raman regions. This finding highlights the differing nature 

of the vibrations being detected between these spectral regions.   
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In chapter five, Raman spectroscopy was demonstrated as a sufficient tool to 

discriminate cancer and immune cells. Phenotype of T-cells and monocytes 

were incubated with media conditioned by glioblastoma stem-cells (GSCs) 

showing different molecular background. Multivariate analysis performed 

using principal component - linear discriminant analysis (PCA-LDA) and 

SVM yielded sensitivities and specificities ≥ 70 % and ≥ 67 %, respectively. 

The results were in agreement with the flow cytometry analysis.  
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Chapter 1 

Introduction  

In this thesis, a wide range of systems were investigated using vibrational 

spectroscopic techniques. This introduction briefly outlines Raman and infrared 

spectroscopy, experimental methodologies, spectral preprocessing techniques and 

multivariate analytical tools used within this thesis. Owing to the variation in the samples 

studied, each chapter has its own introduction to review the peculiarity of the system, 

analytical methods and data analysis pertaining to that chapter. With the exception of 

chapter one, each chapter comprises inclusion of published materials with permission 

from the publishing journals.  

1.1 Spectroscopy 

Spectroscopy encompasses the study of interaction of matter with electromagnetic 

radiations (or light) often resulting in transition between quantised electronic, vibrational 

and/or rotational states. This interaction could result in different phenomena (or 

processes) including absorption, emission or scattering of the incident photons (light) by 

the illuminated material [1, 2]. These phenomena can facilitate the understanding of the 

matter under illumination.   

The absorption phenomenon involving transitions between the lowest energy state 

to a vibrationally excited state results in transitions observed in infrared (IR) and near 

infrared (NIR) spectroscopy. Absorption is a single photon phenomenon, where one 

photon provides the energy for transition from the ground state to an excited state and 

disappears after the transfer. In IR spectroscopy, the photon induces a transition between 
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vibrational energy levels. Those from  = 0 →   = 1 are called fundamental transition 

and can be strong. The vibrational levels are associated with normal vibrational modes 

such as bond stretching and bending. In addition to fundamental transition ( = 0 →   =

1),  one may also observe overtones and combination bands of fundamental vibrations at 

near IR frequencies. These are much weaker than fundamental transitions and are 

observed on transitions from  = 0 →   = 2, 3, 4 … [3].  

Conversely, the scattering phenomenon is a two-photon process involving an 

incident and a scattered photon. On interaction of matter with monochromatic light, the 

incident photons are scattered by the matter in different directions. First observed by J. 

W. Strutt, the majority of the scattered photons will consist of the same energy as the 

incident photon (ℎ𝑣0). This is commonly referred to as elastic or Rayleigh scattering [4]. 

However, approximately 0.000001 % of the scattered photons were observed to have 

energies above or below the incident photon, this is referred to as inelastic or Raman 

scattering after C.V Raman who discovered this phenomenon [5].   The energy difference 

between the incident and scattered photon is informative on the nature of the sample under 

illumination.  

If the Raman scattering process involves a loss of energy to the molecule under 

illumination, the energy of the scattered photon (ℎ𝑣𝑠) is less than the incident 

photon (ℎ𝑣0 −  ∆𝐸). This is the Stokes scattering. Whereas if the scattering process 

occurred by gain of energy from the molecule, which is possible for transition from a 

vibrationally or rotationally excited state to a ground state, the energy of the scattered 

photon (ℎ𝑣𝑠) is obtained as (ℎ𝑣0 +  ∆𝐸). This is the anti-Stokes scattering [5, 6]. Figure 

1.1 describes the energy levels leading to possible transitions that can occur on interaction 

of light with matter.   
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Figure 1.1: Energy diagram showing the processes on interaction of light with matter including 

absorption, fluorescence and scattering of photons. The energy of the incident photon is given as 

ℎ𝑣0.   The energy difference for transition between the ground state ( = 0) and first vibrationally 

excited state ( = 1) is labelled as ∆𝐸. Fluorescence process involves absorption of photon into 

an excited state with subsequent emission from a lower level excited state to the ground state. 

This Figure was adapted from Fraser S.J [7].  

 

Vibrational spectroscopy commonly refers to Raman scattering and IR absorption 

techniques, as well as inelastic neutron scattering [8]. As earlier highlighted, infrared 

spectroscopy is based on the absorption of electromagnetic radiation at fundamental 

frequencies, where the frequency of the electromagnetic radiation matches the vibrational 

frequency.  For a vibrational or rotational transition to be IR active, a net change in dipole 

moment in the molecule is required upon vibration or rotation. For example, the charges 

in HBr are not evenly distributed since bromine is more electronegative than hydrogen, 

and has a higher electron density. The more electronegative bromine atom has a slightly 

negative charge, 𝛿−, and the hydrogen atom has a slightly positive charge, 𝛿+as such 

vibration of this bond results in a net change in dipole moment (IR active mode). Upon 

vibration of the molecule, a fluctuation in the dipole moment is experienced resulting in 
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a field that interacts with the electric field of the electromagnetic radiation. Absorption 

occurs if there is a match between the frequencies of the electromagnetic radiation with 

the natural vibration of the molecule. In contrast, molecules such as Cl2, N2 and Br2, do 

not possess a net dipole moment, as such the associated vibrations or rotations are IR 

inactive [9].  

Conversely, for a molecule to be Raman active, rotational and vibrational transitions 

within the molecule must result in changes in molecular polarizability (𝛼). On interaction 

of a molecule with an electric field (from the laser beam), an induced dipole moment (𝑃) 

is produced due to distortion of the electron cloud. This distortion is caused by the 

attraction of the positively charged nucleus towards the negative pole in the electric field 

and the negatively charged electron towards the positive pole of the electric field. As 

such, for a Raman active molecule, (
ⅆ𝛼

ⅆ𝑞
)

0
≠ 0 (i.e., slope near equilibrium position). A 

simple illustration of Raman activity in smaller molecules like CO2 can be shown using 

the polarizability ellipsoid, which is a surface that extends 
1

√𝛼𝑖
  from the centre of the 

molecule (where 𝑖 is the direction from the centre). A diagrammatical representation of 

the polarizability ellipsoid is shown in Figure 1.2(a) [10]. 

From Figure 1.2(a), the size of the ellipsoid in the 𝑣1 vibration is changing; hence, it 

is Raman active. However, despite the changing size and shape of the ellipsoid in the 𝑣3 

vibration, the ellipsoid at +q and -q are the same, as such the vibration is Raman inactive. 

Similarly, despite the shape of the ellipsoid in the 𝑣2 vibration, the shape and size at the 

two extremes are the same, hence,  𝑣2 is Raman inactive [10].  
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Figure 1.2: (a) Vibration of a CO2 molecule showing changes in the polarizability ellipsoids (b) 

Difference between Raman active (𝑣1) and Raman inactive (𝑣2, 𝑣3) vibrations in a CO2 

molecule. These figures have been adapted from Ferraro, J.R. et al.[10] 

 

For symmetric molecules with a centre of inversion, Raman and IR are mutually 

exclusive. Since the selection rules for IR and Raman spectroscopy are different, bonds 



Chapter 1 Introduction| 6 

 

that are IR-active will be Raman inactive and vice versa. Hence, Raman spectroscopy is 

often considered a complementary technique to IR spectroscopy.  Despite providing 

molecular level information, each of these techniques possesses distinct pros and cons for 

analytical applications.  

Raman spectroscopy is ideal for analysing samples in aqueous solution or in samples 

with a high moisture content like meat. This is because water is a weak Raman scatterer 

and thus gives negligible interference on the Raman spectra.  Unlike Raman, specific 

regions of the IR spectrum can be obscured by water signal owing to the absorption of IR 

radiation by water. 

The inherent weak nature of Raman scattering (1 in 106 to 108) necessitates the use 

of powerful lasers for improved signals, which could lead to photodecomposition of 

samples [10]. In contrast, IR spectrometers require the use of easily accessible broad-

spectrum light sources (such as Globar) owing to absorption being a common 

phenomenon. Limited sample preparation is required for the use of Raman, and 

measurements can be performed through optically transparent materials such as glass 

window and packaging. This is challenging in IR, owing to the absorption of the materials 

that might obscure the signal of the analyte of interest. The use of transparent matrix such 

as solid KBr for IR analysis results in sample contamination.   

Conventional Raman spectroscopic instruments focus on Stokes signals (200 cm-1 – 

4000 cm-1) providing information relating to the intramolecular interaction within a 

sample. Access to the low frequency Raman (LFR) region (< 10 – 200 cm-1) is possible 

on incorporation of ultra-narrow bandpass filters such as volume Bragg gratings, allowing 

for filtering of the dominant Rayleigh signal [11, 12].  The LFR probes the collective 

translation, libration and deformation of the molecular skeleton within a crystal lattice, 

i.e., intermolecular vibrations. The LFR region is characterized by much stronger signal 

as compared to the mid frequency Raman (MFR) region for many materials [12, 13]. One 

reason for the strong intensities at low frequency Raman shifts, 𝑣̃𝑜, is that the Raman 

cross section for a vibrational mode j, (
𝜕𝜎𝑗

𝜕𝛺
) is strongly dependent on the scattering 

frequency, (𝑣̃0 −  𝑣̃𝑗)4:  
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                                (
𝜕𝜎𝑗

𝜕𝛺
) =  (

24𝜋4

45
) (

(𝑣̃0 −  𝑣̃𝑗)4

1 − 𝑒𝑥𝑝 [
−ℎ𝑐𝑣̃𝑗

𝑘𝑇
]

) (
ℎ

8𝜋2𝑐𝑣̃𝑗
) 𝑆𝑗                           1. 1 

 

where 𝑣̃0 refers to the laser frequency, T is the temperature in Kelvin and the remainder 

are physical constants [13, 14]. For a typical measurement of polarized Raman optical 

activity, the Raman scattering activity, 𝑆𝑗, which is related to the derivative terms of the 

mean polarizability (𝛼̅𝑗
2) and anisotropy (𝛽𝑗

2), can be expressed as: 

 

                                                        𝑆𝑗 =  𝑔𝑗[45𝛼̅𝑗
2 + 7𝛽𝑗

2]                                                         1. 2 

 

where 𝑔𝑗 refers to the degeneracy of the vibrational model j [12, 15]. 

1.2 Dispersive versus Fourier transform (FT) spectrometers 

For the purpose of this thesis, data collection was performed using both dispersive 

and Fourier transform (FT) instruments. As such, a general description of both setups is 

presented below.   

Current dispersive Raman instrument setup consists of the excitation source (laser), 

optics for sample illumination and light collection, wavelength selector (filter or 

spectrometer) and the detector. There are varieties of excitation sources including argon 

(488 and 514.5 nm), krypton ion (530.9 and 647.1 nm), helium-neon (632.8 nm), diode 

(785 and 830 nm) and Neodymium-Yttrium Aluminium Garnet (ND:YAG,) (1064 nm). 

The choice of laser depends on the intended application, with shorter wavelengths prone 

to inducing possible photodecomposition and fluorescence (argon and krypton ion) 

whereas longer wavelength can reduce fluorescence and photodecomposition while 
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operating at higher power [2, 6]. Isolation of single laser beam is performed using the 

bandpass filters, with the lens guiding the laser beam to the sample. The dominant 

Rayleigh scattering is separated from the weak Raman scattering using a combination of 

notch filters and grating monochromator. The detectors such as Germanium (Ge), 

Indium-Gallium-Arsenic (InGaAs) or multichannel based charged couple device (CCD) 

then convert the incoming optical signal into charge, which is integrated and transformed 

into readout [2, 16].  

The Michelson interferometer is the main component of the FT instruments. In FT 

spectrometers, the electromagnetic radiation from the source is split into two partial 

beams using a beamsplitter, which are reflected on a moving and fixed mirror then back 

to the beamsplitter, where the beams recombine. The optical path length of the beam is 

changed owing to the moving mirror, resulting in either constructive or destructive 

interference of both beams (interferogram). A Fourier transformation is performed on the 

interferogram to obtain the spectrum [3]. A schematic representation of the dispersive and 

FTIR spectrometers is presented in Figure 1.3.  

 

 

 

 

 

 

 



Chapter 1 Introduction| 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: A schematic representation of spectrometers (a) dispersive Raman (b) Fourier 

transform instrument. The notch filter in the Raman spectrometer is used in removing the 

predominant Rayleigh scattering and laser line, with the Raman signal imaged onto the CCD 

detector by a combination of mirrors and grating system. 

 

FT spectrometers have the multiplex advantage due to the simultaneous 

measurement of multiple wavelengths in the interferometer increasing acquisition speed. 

Each point in the interferogram contains information from each wavelength of light, since 

light is not separated into individual frequencies as compared to the dispersive 

instruments. This allows for the acquisition of many scans, which are further averaged on 

the FTIR in a shorter time. Also, the use of internal calibration in FTIR instrument offers 

the advantage of high precision as compared to dispersive IR instruments, which use 
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external calibration [3]. Despite these potential advantages, the application of modern 

dispersive spectrometers, particularly in Raman spectrometers has surged. This is due to 

advances in optical technologies such as notch filters, which have facilitated the removal 

of the dominant Raleigh scattering without the introduction of additional gratings. The 

incorporation of charge coupled device (CCD) detection has enabled the collection of 

multiple wavelength simultaneously (the multiplex advantage), as such, rapid co-addition 

of spectral data has become a viable method in improving the signal to noise ratio (SNR). 

The reduced mirrors and grating component has also increased the throughput and 

reduced the scan time in dispersive spectrometers [17].  

1.3 Sampling 

The sampling technique and volume play a vital role in the acquisition of accurate 

and representative spectral data using different spectroscopic techniques. Large area scan 

relative to sample size is required for heterogeneous samples like foodstuffs and 

pharmaceuticals whereas small area sampling might be appropriate for studies where the 

substructure is of interest. An illustration of the large area scan, used in the meat studies, 

along the x- and y-axis is shown in Figure 1.4. 

 

 

 

 

 

 

Figure 1.4: Illustration of the large area scan technique adopted for analysis of heterogeneous 

samples like red meat by incorporating an x, y stage. This facilitates better representation of the 

sample under study with the sample attached to it.  
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1.4 Instrumentation  

The experiments described in this thesis were performed using a range of Raman and 

infrared spectroscopic instruments including a Vertex 70 spectrometer (Bruker Optics, 

Ettlingen, Germany) with a Platinum attenuated total reflectance (ATR) diamond 

accessory (GladiATR, Pike Technologies, Madison, USA) equipped with a wide range, 

room temperature, DLaTGS (Lanthanum α Alanine doped Triclycine sulphate) detector. 

This setup is the FT-IR instrument utilized herein.  

The FT-Raman setup comprised of a MultiRam FT-Raman spectrometer (Bruker 

Optics, Ettlingen, Germany) equipped with a liquid N2 cooled Ge detector and 1064 nm 

Nd:YAG laser. In this work the downward looking objective with a defocused aperture 

(~2 mm diameter spot size) in back scattering geometry was used. This is the FT-Raman 

instrument. Both the FT-IR and FT-Raman instruments were used for preliminary studies 

on samples requiring bulk analysis and had the disadvantage of subsampling when 

analysing heterogeneous samples like meat, and long acquisition time specifically for FT-

Raman. 

Large area scanning was facilitated by incorporating a raster system moving along 

the x and y-axis while measuring with the WP 1064 nm Raman spectrometer (Wasatch 

Photonics, USA) equipped with TEC cooled G9214-512S InGaAs array Hamamatsu 

detector. The Raman system was connected using flexible fibre optics and an adaptable 

probe head for flexible sampling.  The raster system consisted of two UTS100CC linear 

motorized platforms (Newport Corp. Irvine, CA, USA) and ESP301-3G 3-axis controller 

(Newport Corp. Irvine, CA, USA) was used for positioning the sample. The raster system 

allowed for measurement across 100 mm x 70 mm dimension.  

A custom-built low-frequency Raman setup allowed for simultaneous collection of 

the conventional mid-wavenumber and low-wavenumber Raman regions. The setup 

consisted of a 785 nm laser module excitation source (Ondax, Inc. Monrovia, CA, USA) 

which was filtered by BragGrate bandpass filters (OptiGrate Corp. Oviedo, FL, USA) to 

remove amplified spontaneous emission before irradiating the sample. Backscattered 



Chapter 1 Introduction| 12 

 

light from the sample was collected and filtered through a set of volume Bragg gratings 

(Ondax Inc., Monrovia, CA) and focused into an LS 785 spectrograph (Princeton 

Instruments, Trenton, NJ, USA) where the light was dispersed onto a CCD detector 

(PIXIS 100 BR CCD, Princeton Instruments, Trenton, NJ, USA). 

Microscale sample analysis was performed using an Alpha 300R+ confocal Raman 

microscope (WITec GmbH, Ulm, Germany), with 532 and 785 nm incident laser options 

(Coherent, California). The confocality of the system allows for depth measurements and 

imaging, with the spatial resolution particularly through the z-axis dependent on the 

sample shape and refractive index [18]. The lateral resolution or diameter (d) of the spot 

size is limited by the Abbe relationship as expressed in Equation 1.3 

 

                                                     𝑑 =
0.62 ∗ 𝜆 (𝑛𝑚)

𝑁𝐴
                                                                 1. 3 

 

where λ is the wavelength of the laser (nm) and NA is the numerical aperture of the 

microscope objective used [19]. A summary of the diffraction limited spot size with our 

current Raman microscope instrument is presented in Table 1.1.  

Table 1.1: The calculated spot sizes for the Alpha 300R+ confocal Raman microscope at different 

wavelengths and objectives. 

Objective NA 
d (nm) at   

532 nm 

d (nm) at 

785 nm 

10x 0.25 1319 1947 

50x 0.8 412 608 

100x 0.9 366 541 
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1.5 Spectral preprocessing  

Despite not being a substitute for optimal data acquisition, preprocessing of spectral 

data is commonly applied prior to building chemometric models. Spectral preprocessing 

techniques were employed to remove features not associated with IR absorption and 

Raman scattering including random noise, intensity variations due differences in sample 

focus as well as baseline element from fluorescence and thermal emission sources. 

Selection of appropriate preprocessing technique to be applied on a spectral data can be 

performed via a variety of ways including visualisation of spectral data, trial and error 

approach or use of data quality parameters. For the purpose of this thesis, a range of 

spectral preprocessing techniques was adopted for different samples based on educated 

guess; with these techniques discussed below.  

 Noise reduction 

Noise is a term that encompasses undesirable components that occur over time, 

which could negatively influence the overall spectral quality and interpretation.  In 

general, electrical and thermal signals are the main contributors to the noise component 

in spectral data. Some noise sources can be minimized or eliminated using dark spectrum 

subtraction whereas others can be averaged out by increasing acquisition time, laser 

power or co-addition of multiple spectra [20, 21]. Spectral quality has been described in 

relation to the signal-to-noise ratio (SNR), which is the inverse of the relative standard 

deviation of the measured value [22]. For example, the SNR of the peak intensity of a 

Raman band can be expressed as the ratio of the mean peak height (𝑆̅) to the standard 

deviation (σy) as shown in Equation 1.4.  

                                                                   𝑆𝑁𝑅 =
𝑆̅

𝜎𝑦
                                                                  1. 4 

   

where 𝑠̅ is the mean peak height and σy is the standard deviation of the peak height [22].  
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Optimising analytical techniques will potentially lead to reduction in noise signal 

and consequently lead to increase in the SNR. One approach to achieving this is in 

repetitive scanning and co-addition of individual spectra [20, 21]. The relationship 

between the SNR and number of co-additions (N) is expressed in Equation 1.5. 

 

                                                       𝑆𝑁𝑅 ∝  √𝑁                                                                   1. 5 

 

From Equation 1.3, a 1.4-fold increase in SNR is obtained on doubling the number 

of scans or length of scan, whereas a 10-fold increase is obtained with a 100-fold increase 

in the number of co-additions. Continually increasing the number of co-additions may not 

be feasible owing to constraints in computer memory for storing accumulated spectral 

data, longer acquisition time and possibility of thermal degradation on increased exposure 

of samples to electromagnetic radiation [21]. However, further noise reduction can be 

performed post-spectral acquisition using varied smoothing schemes including Savitzky-

Golay smoothing (SGSM) and moving average smoothing (MASM), but their selection 

and adaptation depends on the application. For the purpose of this thesis, only SGSM was 

applied and is described below. 

 Savitzky-Golay smoothing (SGSM) 

Smoothing is regularly applied for the removal of high frequency components in 

spectral data. The Savitzky-Golay smoothing utilises a moving window polynomial 

fitting technique, replacing the original values with more regular variations after the fit. 

The SGSM method requires parameters like the polynomial order (o) and filter windows 

size (w) [23].  

For a given signal measured at n points, and filter windows, w, the SGSM algorithm 

fits a polynomial of order, o, in each filter window as the filter is moved across the signal. 

The polynomial fit at the center gives rise to the filter estimate which replaces the centre 

point value for each window (for spectral data, w is usually an odd integer for ease of 
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calculation) [24, 25]. The polynomial order must be less than or equal to the number of 

filter windows and the number of filter windows less than the number of variables to be 

estimated. A representation of noise reduction on Raman spectral data using different 

SGSM filter windows is shown in Figure 1.5.  

 

 

 

 

 

 

 

 

 

Figure 1.5: Representation of Raman spectra pre- and post-smoothing using Savitzky-Golay 

smoothing filter, first order polynomial with varied filter windows from 3 to 15. The figure shows 

improved spectral quality on smoothing; however, selecting the appropriate filter window is of 

critical importance to avoid removal of important spectral information.  

 Baseline correction  

Baseline artefacts in spectroscopic data arise from a range of sources including 

fluorescence, phosphorescence, Mie scattering, detector thermal noise, sample focus and 

particle size variations. This induces unequal shifts in the amplitude across different 

wavenumbers and consequently leading to curved baseline [23, 26]. It is important that 

baseline artefacts be corrected to enhance subtle differences desirable for comparing 

spectral data, particularly if further analysis is performed using chemometrics. This is 

also essential for objectivity and reproducibility.  
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Several methods are available for baseline correction including linear baseline 

correction (LBC), rubber band correction (RBC), polynomial fitting, differentiation-

based methods and the more software specific shape baseline correction (SBC) (WITec 

software). 

1.5.3.1 Linear baseline correction (LBC) 

Linear baseline correction identifies two variables, which defines the new baseline 

and subtract a linear slope from the spectral data as shown in Figure 1.6. The two selected 

variables or points are defined as 0, with the rest of the variables transformed with linear 

interpolation/extrapolation [27]. It is important that the variables selected possess no 

spectroscopic bands. LBC is effective in transforming a sloped baseline to a horizontal 

baseline, working best for smaller wavenumber (𝜈) range, as such, LBC is not effective 

for transforming a curved baseline. LBC for a single spectrum is mathematically 

described by the equation  

                                                   𝑥 =  𝑥̃ + 𝛼 + 𝛽𝑥                                                                        1. 6 

 

where x is the vector representing the spectrum, 𝑥̃ is the vector representing the 

spectral features of interest, α and β are the estimated slope and offset which are based on 

at least two points, which are thought to contain only baseline information [28]. 
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Figure 1.6: Representative Raman spectrum of piroxicam monohydrate pre- (blue) and post- 

(black) linear baseline correction. 

 

1.5.3.2 Polynomial fitting and subtraction 

Polynomial fitting offers a distinct advantage of retaining the input spectral 

intensities and contours [29]. A specific number of baseline points is fitted with an n-

order polynomial to estimate the baseline. The estimated curve baseline is compared to 

original data and if the baseline matches, it is subtracted from the spectrum to remove the 

curved baseline [30]. This baseline correction technique may not be feasible for large 

spectral data sets, owing to the manual selection of the polynomial order and visualisation 

of the spectral data. An illustration of a polynomial subtraction for baseline correction is 

shown in Figure 1.7. The original spectrum was fitting with a 3rd order polynomial and 

the baseline component subtracted.  
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Figure 1.7: A representation of polynomial subtraction for baseline correction performed on a 

Raman spectrum of theophylline monohydrate. 

 

1.5.3.3 Rubber band correction (RBC) 

Rubber band baseline correction is effective in transforming curved or nonlinear 

baseline to a horizontal baseline in a given spectrum, particularly in emissive materials 

like biological samples.  RBC utilizes series of polynomial function to fit a concave curve 

on a part or entire portion of the spectrum. The concave curve is further subtracted from 

the spectrum resulting in a horizontal baseline [31]. The RBC method has been 

incorporated in spectral acquisition software like OPUS 7.5 software (Bruker Optik, 

Ettlingen, Germany) and data analysis software packages like Orange Canvas (University 

of Ljubljana, Slovenia). Figure 1.8 shows a representation of RBC on an example IR 

spectrum. 
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Figure 1.8: A representation of IR spectra of Lamb pre- (black) and post- (green) rubberband 

baseline correction.  

1.5.3.4 Baseline offset correction  

Baseline offset can be employed in correcting baseline differences for slight offset 

in intensities.  It also compensates for other spectral preprocessing techniques which 

might generate negative intensity values. This is particularly effective when constraints 

such as non-negative variables are required during chemometric analysis. For baseline 

offset, the value of the lowest point in each spectrum is subtracted from all the variables, 

resulting in all the variables having a positive value and zero (0) being the minimum point 

[27]. An example of baseline offset correction on a spectrum is given in Figure 1.9. 
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Figure 1.9: Example of Raman spectrum of piroxicam monohydrate pre- (red) and post- (black) 

baseline offset correction. The baseline corrected spectrum has all its variables above zero (0).  

 

1.5.3.5 Shape baseline correction  

The shape baseline function is unique to the WITec Project Five software (WITec, 

Ulm, Germany) and highly effective for subtraction of fluorescent signals. The baseline 

function utilizes a rounded shape to map out nonlinear baseline in a given spectrum on a 

pixel-by-pixel basis, which is then subtracted. The selection of shape size is important to 

avoid loss of spectral information. A smaller shape size will subtract more details from 

the spectrum, unlike larger shape size, which subtracts more rough shapes. An example 

of spectral baseline correction using the shape function is shown in Figure 1.10. 
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Figure 1.10: Example of Raman spectra of graphite pre- (blue) and post- (orange and black) shape 

baseline correction. The figure shows a substantial loss of information between 2500 – 3000 cm-

1 while using a smaller shape size (100) as compared to a larger shape size (300).  

 Normalisation and scaling  

Normalisation aims at correcting disparity in intensities across spectral data acquired 

using the same experimental parameters but under slightly different conditions. These 

differences in intensity can arise from various sources including variation in sample 

surfaces, change in optical path length and laser intensity [32]. Correction of spectral 

intensities can be performed using a range of methods including standard normal variate 

(SNV) transformation, mean normalisation (MNorm) and multiplicative scatter 

correction (MSC), which also rectifies baseline variations.  

1.5.4.1 Mean normalisation 

Mean normalisation computes new variables for each row (single observation) in a 

data matrix by diving the original spectral variables by the mean of the spectrum. For 

each point along a spectrum, a new variable is computed by dividing the original variable 

in the point 𝑥𝑗  by the mean of the observation, 𝑥̅𝑖. This technique can easily be adopted 

for spectral data with negative variables by computing the absolute values for each point 

as shown below 
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                                                         𝑥𝑛𝑒𝑤(𝑖, 𝑗) =  
𝑥𝑜𝑙ⅆ(𝑖, 𝑗)

|𝑥(𝑖,∙)|
                                                      1. 7 

 

where 𝑥𝑛𝑒𝑤(𝑖, 𝑗) refers to the new variable for each point in i sample and j variable, 

𝑥𝑜𝑙ⅆ(𝑖, 𝑗) is the old variable for that point and  𝑥(𝑖,∙) is the mean of the variables in an 

observation (the spectrum of the sample) [27].  

1.5.4.2 Standard normal variate (SNV) transformation 

SNV was introduced to reduce multiplicative effects of scattering and particle size, 

as well as the disparity in global intensities of spectral data. The SNV transformation 

centers and scales an individual spectrum using their standard deviation as described in 

the equation [33] 

                                                     𝑥𝑖,𝑗
𝑆𝑁𝑉 =  

(𝑥𝑖,𝑗 − 𝑥̅𝑖)

√
∑ (𝑥𝑖,𝑗 − 𝑥̅𝑖)2𝑝

𝑗=1

𝑝 − 1

                                                  1. 8 

  

where  𝑥𝑖,𝑗
𝑆𝑁𝑉 is the element of the transformed spectrum, 𝑥𝑖,𝑗 is the corresponding 

original element i at variable j, 𝑥̅𝑖 is the mean of the spectrum i, and p is the number of 

variables in the spectrum (wavenumbers). This equation can be simplified as  

                                                         𝑥𝑖,𝑗
𝑆𝑁𝑉 =  

(𝑥𝑖,𝑗 − 𝑥̅𝑖)

𝜎
                                                             1. 9 

where the denominator, σ is the standard deviation in intensity of the spectrum. A 

representation of the SNV transformation on infrared spectra of red meat sample is shown 

in Figure 1.11. 
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Figure 1.11: Representation of spectral data pre- and post-normalisation (a) initial spectral data 

(b) mean normalised data (c) standard normal variate transformed data   

 

1.6 Multivariate analysis (chemometrics) 

Spectroscopic investigation of systems studied in this thesis yielded large spectral 

data sets with numerous data points. The use of univariate data analysis (single or few 

peaks) for identification, classification or quantification of these spectra is not ideal owing 

to the significant loss of information across the spectral regions not selected. A more 

global approach utilizing wider spectral regions was facilitated by the use of methods that 

incorporate various mathematical and statistical techniques. This approach is referred to 

as multivariate analysis (MVA) or chemometrics. 
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The term ‘chemometrics’ was first coined in early 1970s by Professor S. Wold in 

Swedish as ‘kemometri’ and was described as “the art of extracting chemically relevant 

information from data produced in chemical experiments”. The idea of chemometrics is 

analogous to other ‘metrics’ including econometrics and biometrics. It basically involves 

the application of mathematical and statistical treatments to chemical data [34]. 

Furthermore, chemometric techniques is designed to establish relationships between 

different measurements from a chemical system or process through the application of a 

range of mathematical and statistical methods [35]. MVA techniques have found 

widespread use in spectroscopy providing a way of finding similarities, visualisation of 

variations and quantification of spectral data.  

Chemometric techniques can be employed for both qualitative, quantitative and 

classification type analysis. Qualitative analysis usually entails identification of 

characteristic bands in a spectral data to determine the composition and changes occurring 

in the sample of interest. Principal component analysis (PCA) has been widely applied 

for this purpose [36]. Classification methods can be either supervised or unsupervised, 

with unsupervised methods requiring no prior knowledge of the dataset. Classification 

methods include linear discriminant analysis (LDA) [37, 38], factor analysis [39], cluster 

analysis [40], partial least square discriminant analysis (PLSDA) [41-43], K-nearest 

neighbors [44], hierarchical cluster analysis [45], soft independent modelling of class 

analogy [36] and support vector machine classification (SVMC) [46]. Quantitative 

analysis can be performed using tools like multilinear regression (MLR), principal 

component regression (PCR) [47], partial least square regression (PLSR) [13, 48] and 

support vector machine regression [49]. Multivariate curve resolution (MCR) can be 

employed for both classification and regression analysis [50, 51].    

In general terms, most chemometric techniques like those mentioned above aim at 

separating chemically relevant data from noise, where noise refers to unrelated data or 

data which cannot be modelled. This is presented in simple terms in the equation 

 

                                                          𝑋 = 𝑀 + 𝐸                                                                        1. 10 
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where X is the raw noise containing chemical data, M is the chemical model 

comprising the chemically relevant information and E is the noise which cannot be 

modeled [34]. 

 Principal component analysis (PCA) 

Principal component analysis is a bilinear modelling technique that provides an 

interpretable overview of the main information contained in a multidimensional table. It 

aims at extracting important information in large spectral data, reducing the 

dimensionality of the dataset by keeping only the important information. As such, PCA 

facilitates the simplification and analysis of the structure of the dataset while minimizing 

loss of important information [52, 53]. PCA accomplishes this by estimating new 

uncorrelated variables which maximizes variance referred to as principal components 

(PCs) as described in the equation 

 

                                                      𝑋 = 𝑇 ∙ 𝑃𝑇 + 𝐸                                                            1. 11 

 

where X is the original dataset (matrix of i samples by k variables), T is the scores 

matrix, PT is the loadings matrix and E is the residual matrix which is the part of the 

matrix not explained by the PCA model. The scores, T, represent the reduced 

dimensionality for each sample, highlighting the sample differences or similarities. The 

loadings matrix highlights the information being described in each PC, that is, the variable 

contributions and correlations.  

PCA finds the direction in space along which the distance between data points is 

largest. These directions are computed iteratively, such that the first PC (PC1) carries the 

most information (or explains the most variance). The second PC (PC2) is computed 

under the constraints of being orthogonal to PC1, explaining variance not described in 
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PC1. Calculation of subsequent PCs are performed in like manner. A geometric 

representation of PCA model in three dimensions is shown in Figure 1.12.  

 

 

 

 

 

 

 

 

 

Figure 1.12: An illustration of the projection of a data matrix, X, with N points and k-variables 

using PCA. This figure shows calculation of PCs in a 3-variable dataset. The PC score of an object 

(ti) is the distance from the mean along PC line.  

 

 Linear discriminant analysis (LDA) 

Linear discriminant analysis (LDA) method is a supervised feature extraction tool 

used for classifying patterns between two or more classes. The LDA algorithm provides 

linear transformation of n-dimensional feature vectors (or samples) into an m-dimensional 

space called discriminant variables (where m < n), such that the distance between-class 

variance is maximized relative to the within-class variance [38].  LDA aims at finding 

optimal boundaries between classes, with subsequently unknown samples classified 

according to Euclidean distance.   

LDA classifies samples by assuming normal distribution of samples as well as equal 

covariance matrices among the q number of classes. The LDA discriminant function can 

classify the data x to a class p using Bayes rule as shown  [54] 
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                             𝛿𝑝(𝑥) =  𝑥𝑇𝛴−1𝜇𝑝 −  
1

2
𝜇𝑝

𝑇𝜮−1𝜇𝑝 + 𝑙𝑜𝑔10(𝜋𝑝)                                    1. 12 

 

where x is the data to be classified, 𝜇 is the mean of x variables and 𝜮 is the 

covariance matrix for class p and 𝜋 is the likelihood of data x belonging to class p.  

However, with unequal covariance between classes, the shape of the curve separating 

the group is not linear; hence, a quadratic discriminant function is applied as shown in the 

expression   

 

               𝛿𝑝(𝑥) =  −
1

2
𝑙𝑜𝑔10|𝜮𝑝| −  

1

2
(𝑥 − 𝜇𝑝)𝑇𝜮𝑝

−1(𝑥 − 𝜇𝑝) + 𝑙𝑜𝑔10(𝜋𝑝)                1. 13 

 

 Support vector machine classification (SVMC) 

Support vector machine classification is a supervised method that utilizes linear and 

non-linear functions to map data, X, into higher dimensional space, allowing for 

classification of samples based on a set of predefined classes.  The SVMC algorithm 

identifies the hyperplane with the maximum margin in the n-dimensional space (where n 

is the number of spectral features) and employs this to correctly classify the multivariate 

data into predefined groups [46, 55]. Further prediction of unknown samples can be 

performed using the created model and where class assignment is not possible; the sample 

is assigned to the nearest fit. An illustration of the SVMC support vector hyperplane is 

shown in Figure 1.13. 
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Figure 1.13 An illustration of SVMC classification in 2-dimensional space. The support vectors, 

market in black circles, define the optimal margin, which is the margin of largest separation 

between the two classes are determined.  

 Inverse regression 

Inverse regression attempts to find the best relationship that correlates X-variables 

(independent variables) to y-variables (dependent variables), with the assumption that 

new samples will have the same relationship/function. Basic inverse regression methods 

aim at estimating the regression coefficient, β and α that solves Equation 1.14.  

 

                                                   𝑦 = 𝑋 ∙ 𝛽 + 𝛼 + 𝜀                                                                  1. 14 

 

where y is the vector of the reference values, X is a matrix of the independent variables, 

β is the matrix of coefficients, α is an intercept scalar and ε is the residue noise [56].  
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 Multiple linear regression (MLR) 

Unlike simple linear regression that deals with finding relationship between one 

independent variable and one dependent, multiple linear regression (MLR) attempts to 

model a relationship between two or more independent variables (x) and a response 

variable (y) by fitting a linear equation to the observed data.  The y-variable is described 

as a polynomial function of the x-variables and the noise that cannot be modelled as 

shown in the equations: 

 

                                  𝑦 = 𝑓(𝑥1 +  𝑥2 +  𝑥3 … + 𝑥𝑛) +  𝜀                                                      1. 15 

                               𝑦 =  𝛽0 +  𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑛𝑥𝑖𝑛 +  𝜀                                        1. 16 

 

where, 𝛽𝑖 (𝑖 = 1, 2, 3, … , 𝑛) are the regression coefficients.  

 

The value of the coefficient can be estimated using ordinary least squares by taking the 

derivatives of the sum of the squared difference between the predicted 𝑦̂-value and true 

y-value resulting in Equation 1.17.  

 

                                                          𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦                                                            1. 17 

 

MLR is effective in cases where the number of variables is small and not significantly 

correlated (assumes orthogonality between the columns in the X-matrix). This makes 

MLR suboptimal for spectroscopic data, hence, the emergence of alternative regression 

models [57].  
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 Principal component regression (PCR) 

The PCR method is a combination of PCA and MLR for quantitative purpose. PCA 

is first performed on the X matrix, yielding the principal components. These PCs are 

further regressed against the Y matrix using MLR, as such, removing the collinearity 

requirement that is associated with the application of MLR. PCR decomposes the X-

matrix using PCA as described in Equation 1.8, then regresses the PC scores against the 

y-matrix using MLR as described  

 

                                                 𝑦 = 𝑇 ∙ 𝑏 + 𝑓                                                              1. 18  

 

where y is the vector containing the response variables (concentrations) to be 

modelled, T is the scores matrix from the PCA, b is the vector containing coefficients and 

f is the y-residual from the MLR model [58].  

 Partial least square regression (PLSR) 

Partial least square regression method is the variation of PLS that is used primarily 

for quantitative studies. The PLSR method aims at decomposing both the X- and Y- 

matrices simultaneously to identify the latent variables (or factors) in X which best 

predicts the latent variables in Y [57]. PLSR is calculated using the least square algorithm 

and similar to PCR. However, unlike PCR which performs a PCA first on the X-matrix 

and then regresses the scores (T) against the Y-matrix, PLSR decomposes both X- and Y- 

matrices simultaneously to obtain the maximized covariance between T (scores of 

independent block X) and U (scores of dependent block Y). This calculation can be 

performed as described in Equation 1.11 and 1.19 respectively [27, 59]. 
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                                                          𝑌 = 𝑇 ∙ 𝑄𝑇 + 𝐹                                                                 1. 19 

 

where Y is the matrix containing the response vectors such as concentration, T are 

the scores vector, Q is the loadings matrix and F is the Y-residual errors the PLS model.  

In comparison to other least square algorithms such as multilinear regression (MLR), 

PLSR is more robust to collinearity, noise and high dimensionality in data. One of the 

advantage of PLSR over PCA/PCR is in the selection of the latent variables (LVs), which 

is a covariance between the X and Y matrices, as such, accounting for both variability and 

correlation. However, it is important that appropriate LVs be selected to account for the 

optimal variances within the dataset, and yet not overfit the model [35].  

 Partial least square discriminant analysis (PLSDA) 

The PLSDA method is a variation of PLSR employed for classification of samples. 

PLSDA is a linear and parametric technique that identifies LVs, which emphasizes 

maximal covariance between the X and Y matrices.  However, unlike PLSR, the response 

matrix Y, comprises of vectors of zeros (0) and ones (1), which is used in assigning class 

membership [42]. For two-class discrimination, class members are assigned a dummy 

variable of one (1) and non-members assigned a variable of zero (0).  

The PLSDA output gives a value for each sample with the associated standard 

deviation. These values can be used in determining class assignments or further employed 

as probability density functions in estimating the posterior probabilities of samples using 

Bayesian rule.  

 Multivariate curve resolution (MCR) 

Multivariate curve resolution is employed in solving the mixture analysis problem. 

MCR is a mathematical technique that resolves multicomponent mixture systems through 

a bilinear modelling of the pure component contributions. It is applied in spectroscopy 
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for decomposition of spectral mixtures (X) into a product of the component spectra (S) 

and concentration profiles (C) [51, 60]. The MCR bilinear model decomposes mixed 

signal as  

 

                                                            𝑋 = 𝐶 ∙ 𝑆𝑇 + 𝐸                                                              1. 20 

 

where X is the original data matrix such as spectral mixture, C is the concentration 

of the components, ST is the component spectra and E is the error matrix containing the 

unmodelled part of the data matrix [27, 60].  

The transformation of Equation 1.20 can lead to multiple pairs of C and ST due to the 

rotational and intensity ambiguity. Resolving these ambiguities requires the introduction 

of constraints during MCR analysis. These constraints ensure that the resolved profiles 

fulfil some preselected properties. Common applied constraints include non-negativity, 

unimodality and closure. The non-negative constraints ensure that the concentrations and 

spectra of the pure components have variables greater than or equal to zero (0). 

Unimodality allows for the presence of one maximum in each pure profile. This is the 

situation of many monotonic reaction profiles shows either increasing or decreasing 

component. The closure constraint is applied to closed reaction systems where the sum 

of the concentration of all the species (each row of the C matrix) involved equals a 

constant value for all samples [27, 60].  

1.7 Model optimisation and assessing quality of 

calibrations 

For any dataset, different pre-processing and model parameters would be tested to 

determine an optimum solution to the particular problem. One approach to testing this is 

adopting the cross-validation resampling technique.  
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 Cross-validation 

The cross-validation technique splits the calibration dataset into k number of groups 

(k-fold cross-validation). These groups can be selected at random or systematically. The 

groups are individually selected to form the test set while the rest of the data form the 

train set, which is employed in estimating the regression coefficients such as β and α 

(Equation 1.14). This is then utilised in estimating the ŷ-values of the test set. This process 

is repeated until all samples have been tested and their estimated values generated. The 

optimum model is commonly assessed using the minimum Root Mean Squared Error 

(RMSE). 

                                                      𝑅𝑀𝑆𝐸 = √∑
(𝑦̂ − 𝑦)2

𝑛

𝑛

𝑖=1

                                                    1. 21 

 

where (ŷ − y) is the difference between the predicted values and the actual reference 

values. 

Cross-validation is useful for finding the optimum model parameters and algorithm 

to yield the minimum RMSE for a typical dataset, however, it is not a good measure of 

the model’s ability to predict unknown samples. This is because samples forming the test 

set in cross-validation also belong to the training set. It is important to test the model 

against an independent test set. In such case, the RMSE would be renamed RMSECV or 

RMSEP to indicate cross-validation or prediction (independent test set).  

 Outlier detection 

Sample outliers are points that do not follow the general trend of most (or all) other 

points in the model. These points might be problematic to the overall accuracy of the 

calibration model, as such, need to be investigated and if required removed to ensure 



Chapter 1 Introduction| 34 

 

model stability and improved accuracy [61]. Simple outlier detection can be performed 

on visual inspection of the scores plot; samples that are far from the rest might suggest 

that they are outlier. Assessment of the RMSE on cross-validation with and without these 

samples could provide more insight into their status as outliers. A more sound approach 

will be using statistical tools such as Q-residual, F-residual, leverage, Hotelling T2 

statistics and custom local outlier factor [62]. 

For the purpose of this thesis, outlier detection was performed using the influence 

plot. This is a plot of the leverage (Hotelling T2 statistics) against the residuals. Sample 

residuals (Q- and F-residuals) are derived from the error matrix and relates to the 

unexplained variance in a sample. It is common for samples to have some degree of 

unexplained variance; however, large unexplained variance suggests that the model 

poorly describes the sample. If this sample is not influential, leaving the sample might 

not be problematic to the overall model. The Hotelling T2 relates to the explained variance 

in the model, with higher value suggesting that the sample is well described by the model. 

This sample is usually problematic in the calibration, as it has a higher than average 

leverage or influence in the model. The most problematic are samples with high residuals 

and high influence. These samples are poorly described by the model and have higher 

than average influence in the model. Both residuals and Hotelling T2 are calculated within 

a given confidence interval, samples outside the critical limit are probably outlier and 

should be removed prior to recalculation of the model. A representation of the influence 

plot is shown in Figure 1.14.  
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Figure 1.14: Influence plot highlight possible outlying samples in the model. Removal of these 

samples might improve the model stability and accuracy.  

1.8 Summary   

This chapter described the concepts of Raman and infrared spectroscopy alongside 

the various experimental considerations. 

Spectral preprocessing techniques including noise reduction, removal of baseline, 

scaling and scatter correction were also discussed. Specifically, noise reduction 

techniques such as moving average and Savitzky-Golay were highlighted. Baseline 

correction tools included LBC, polynomial subtraction, RBC, shape function and baseline 

offset. Scaling and scatter correction method included MNorm and SNV.   

The concept of chemometric techniques was introduced and a range of chemometric 

techniques used in thesis were also described. This included classification techniques 

such as PCA, LDA SVMC, PLSDA and regression methods such as PLSR, PCR and 

MCR. 

High residual 

High influence 

High Influence 
High Residuals 

7 1 



Chapter 1 Introduction| 36 

 

Vibrational spectroscopy in combination with chemometric tools posit a powerful 

tool in analytical chemistry. Infrared spectroscopy in combination of chemometrics have 

been applied in food analysis [63-67], medicine [68-70] and pharmaceuticals [71, 72]. 

Raman spectroscopy in combination with a range of chemometric tools have also been 

applied for food analysis [73-78], pharmaceuticals [13, 79-82] and medical applications 

[83-85]. 

1.9 Thesis aims 

The main aim of the thesis is the application of Raman and infrared spectroscopy in 

combination with chemometrics to analyse a range of samples. Each chapter in this thesis 

discusses specific projects and comprises published papers, with the necessary copyright 

permissions obtained. Owing to the variety of topics discussed in this thesis, an 

introduction into each project with the related important literature review is provided at 

the beginning of each chapter.  

The following projects were discussed in this thesis: 

 The use of Raman spectroscopy in combination with chemometrics to non-

destructively discriminate red meat species, in particular beef, venison and lamb. 

The use of infrared spectroscopy, howbeit destructive owing to the use of the ATR 

system was also employed in combination with chemometrics for the 

discrimination of the red meat types.   

 The quantification of meat quality parameters including pH, % 

intramuscular fat (IMF) and tenderness was assessed using Raman and infrared 

spectroscopy in combination with chemometrics. The correlation of spectral data 

to chemical measurements was believed to be possible using vibrational 

spectroscopic techniques. Fusion of Raman and infrared data at low, mid and high 

levels were proposed to highlight any improvement in model performance on 

correlation of spectral data to chemical measurements of pH, % IMF and 

tenderness.   



Chapter 1 Introduction| 37 

 

 The use of Raman microscopy in combination with chemometrics to 

discriminate the phenotypes of T-cells and monocyte after incubation with media 

conditioned glioblastoma stem-cells (GSCs) showing different molecular 

background.  

 The use of low frequency Raman spectroscopy in combination with 

chemometrics to investigate the in situ isothermal dehydration of crystalline 

hydrates, particularly piroxicam and theophylline monohydrates at different 

temperatures. This examined the simultaneous application of the low and mid 

frequency Raman region to identify the changes occurring as well as the 

timescales in which these changes were first observed.
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Chapter 2 

Analysis of intact meat  

2.1 Acknowledgments  
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chemical measurements. 
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2.3 Introduction  

Meat continues to play a key role in human dietary requirements, with an 

approximate composition of 75 % water, 19 % protein, 3.5 % soluble non-protein, 2.5% 

fat and other micronutrients [86]. The Food and Agriculture Organisation of the United 
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Nations estimated that 330 million tonnes of meat was produced globally in 2017, with 

the average meat price increasing by nearly 9 % from 2016 [87]. This is indicative of the 

growth potential of meat and meat products industries. This growth potential has also 

increased the need for proper identification of meat and meat products, as their 

consumption impact on the overall health, safety, religious and ethical beliefs of 

consumers. 

The growing consumer interest in high quality meat, and assurances on the integrity 

of meat products, have increased the need for identification and traceability of meat and 

meat products across the production chain [88]. Following the horsemeat scandal in 

Europe in 2013 [41], research relating to meat adulteration and discrimination has 

significantly increased [89-93]. These research studies are predominantly aimed at 

proffering alternative techniques for faster, cheaper, accurate and robust meat assessment.  

Several techniques have been applied for the identification of meat origin and meat 

discrimination. These techniques include, but are not limited to, DNA-based molecular 

techniques such as polymerase chain reaction [94-96], DNA barcoding [97], DNA 

fingerprinting [98] and DNA polymorphism [99] or protein and fat-based techniques 

including electrophoresis [89], liquid chromatography – mass spectrometry [100], gas – 

chromatography [101, 102] and enzyme-linked immunosorbent assay [103]. Despite the 

advantages associated with the use of these techniques, there are some limitations to their 

applicability. These limitations include sample destruction, requirement for skilled 

personnel and expensive instruments as well as long analysis time [104]. Specific 

limitation associated with DNA and protein-based technique include the denaturation of 

key analyte markers [105] whereas low reproducibility is common with chromatographic 

fat-based techniques [106]. Owing to these limitations, there is a need to develop an 

improved, easy to use and reliable technique for meat discrimination. 

Over the last decade, vibrational spectroscopy has garnered significant attention as 

an applicable alternative for meat assessment. Vibrational spectroscopy (Infrared and 

Raman spectroscopy) posit great advantages over traditional methods for meat 

discrimination and quality assessment [107-112]. These advantages include minimal 

sample preparation, rapid measurement / short analysis time, non-destructive, non-
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invasive, cost-effective, increased sensitivity as well as the potential for inline/online 

integration [64]. In addition, water molecules have negligible Raman signature making 

Raman spectroscopy less susceptible to interferences by water molecules in either meat 

sample or the environment in which the measurement is occurring. 

Raman spectroscopy is based on the principle of inelastic scattering reported by 

C. V. Raman [6]. On interaction of a sample with light, a small portion of the incident 

light is scattered, with the resulting scattered light having an energy, which is different 

from the incident light. The measurable energy change between the incident and scattered 

light is referred to as Raman shift. This Raman shift generates molecular specific spectra 

from the sample under analysis; which can be used for qualitative identification [113].  

Infrared spectroscopy has also been investigated for meat assessment [114]. In 

contrast to Raman scattering, infrared spectroscopy is based on the resulting transition 

between the ground and excited states upon absorption of electromagnetic radiation by 

matter. Detailed description of Raman and infrared techniques have been presented in 

Chapter 1. 

A number of studies have reported on the potential of Raman [41, 64, 86, 88, 106, 

112], near infrared [115, 116] and mid infrared spectroscopy [117, 118] in combination 

with chemometrics to discriminate meat species. Despite the successful discrimination 

presented in these reports, some of the studies utilized extracted fat and not the intact 

meat . This tends to increase the analysis time, margin for error and unsuitability for inline 

integration [41, 106]. The chemometric techniques employed in this study included 

principal component analysis (PCA) for exploratory analysis; partial least square 

discriminant analysis (PLSDA) and support vector machine classification (SVMC) for 

developing classification models.  

For the purpose this study, a one versus all PLSDA was adopted, with dummy 

variables used in assigning predefined classes. Three PLSDA models were built for the 

discrimination of each of the meat specie. In building the PLSDA models, class members 

were coded with the dummy variable 1 (𝑐𝑙𝑎𝑠𝑠 𝑤1) and 0 for non-members (𝑐𝑙𝑎𝑠𝑠 𝑤0). 

The PLSDA model was calculated using a k-fold (k = 3) systematic cross-validation 
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technique. The optimum PLSDA model was determined against the minimum root mean 

square error of cross-validation (RMSECV) of the training set. The PLSDA model 

prediction values formed the probability density function, which were further utilized in 

estimating the posterior probabilities of samples belonging to each meat class. The a priori 

probabilities 𝑃(𝑤0) and 𝑃(𝑤1) were calculated from the training set assuming that meat 

classes had equal number of participating samples. The Bayesian decision rule for class 

assignment was based on maximum probability value as shown in the equations 

 

                                                  𝑃(𝑤𝑐|𝑦̂𝑢) =  
𝑃(𝑦̂𝑢|𝑤𝑐) ∗  𝑃(𝑤𝑐)

𝑃(𝑦̂𝑢)
                                            2. 1 

 

The denominator can be obtained using 

 

                                 𝑃(𝑦̂𝑢) =   𝑃(𝑦̂𝑢|𝑤0) ∗  𝑃(𝑤0) +  𝑃(𝑦̂𝑢|𝑤1) ∗  𝑃(𝑤1)                        2. 2  

 

where, c refers to the classes,  𝑃(𝑤0) and 𝑃(𝑤1) are the a priori probabilities and can be 

calculated from the training dataset assuming the number of samples of each class is 

representative of the entire population, 𝑃(𝑦̂𝑢|𝑤0) and 𝑃(𝑦̂𝑢|𝑤1) are the probability 

density functions for the classes 𝑤0 and 𝑤1 which can be obtained for the calculated 

model [119].   

The Bayesian decision rule attempts to minimize error in class assignment, 

𝑃(𝑒𝑟𝑟𝑜𝑟|𝑦̂𝑢). The probability that a sample belonging to class 𝑤0 will be wrongly 

assigned is given by the probability that the sample with prediction 𝑦̂𝑢 actually belongs 

to class 𝑤1, i.e., 𝑃(𝑤1|𝑦̂𝑢). Likewise, the probability of a wrong decision for class 𝑤1 is 

given by 𝑃(𝑤0|𝑦̂𝑢) [119]. As such in assigning unknown samples to a class using 

Bayesian decision rule: 

 

     𝑑𝑒𝑐𝑖𝑑𝑒 𝑐𝑙𝑎𝑠𝑠 𝑤0 𝑖𝑓 𝑃(𝑤0|𝑦̂𝑢) >  𝑃(𝑤1|𝑦̂𝑢);  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑑𝑒𝑐𝑖𝑑𝑒 𝑐𝑙𝑎𝑠𝑠 𝑤1              2. 3 
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The SVMC model was developed using both a linear and non-linear kernel function. 

This was to highlight any possible improvement by the non-linear kernel to capture 

complex spectral relationships. Samples were assigned to predefined classes prior to the 

model development.  

Model performances were assessed with respect to the prediction accuracy, 

sensitivity and specificity. Sensitivity is the ability of a model to correctly identify true 

positives. In this case, samples belonging to a specific meat class. Specificity relates to 

the ability of a model to identify true negatives, i.e., samples not belonging to a meat 

class. Accuracy is the ability of the model to correctly classify the samples into their 

assigned classes. These parameters can be calculated using Equations 2.4 to 2.6, with a 

diagrammatical representation presented in Figure 2.1. 

 

 

 

 

 

 

 

Figure 2.1: A 2x2 table illustrating the basis of deriving the sensitivity, specificity and accuracy 

of predicted classes.   

 

                                                   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 100 [
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
]                                              2. 4 

 

                                                 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  100 [
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
]                                              2. 5 
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                                        𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 [
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
]                                     2. 6 

 

where, TP is the true positives, i.e., correct classification of samples to their assigned 

class, FP is the false positives, i.e., wrong classification of a sample into a class, FN is 

the false negatives, which wrongly indicates that a sample is not a member of a class and 

TN is the true negatives which correctly indicates that a sample is not a member of a class 

[120]. 

In this work, an FTIR and fibre optic - coupled Raman spectrometer was employed 

for fast discrimination of intact beef, venison and lamb samples. To minimize the 

challenge of subsampling, the meat samples were scanned on a raster system allowing for 

representative sampling during measurement using Raman spectrometer. This was not 

possible with the FTIR setup, as such multiple spot measurements was implemented. The 

acquired spectral data were pre-processed using a combination of techniques and 

analysed with three different chemometric tools including PCA, PLSDA and SVMC. 

2.4 Materials and methods 

 Sample collection and preparation 

Samples from three species representative of the New Zealand red meat sector were 

obtained from AgResearch Invermay, New Zealand. A total of ninety beef (Bos Taurus), 

lamb (Ovis aries) and venison (Cervus elaphus scoticus, hippelaphus and pannonensis) 

(30 samples per meat specie) were used in this study.  

The venison samples were obtained from farmed red deer. The deer included a 

mixture of European sub-species (Cervus elaphus scoticus, hippelaphus and 

pannonensis). Four different stags sired the males and seven different stags sired the 

female. The animals were farmed with 50 % of their diet on an energy basis provided 

using palm kernel expeller (PKE) and the other 50 % from pasture (rye grass dominant, 
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with some white clover). The males and non-pregnant females were 11-months and 23-

months old, respectively, at the time of slaughter. The ram lambs (Ovis aries) were 

sourced from the AgResearch Progeny Test flock which comprised of a mixture of pure 

maternal and maternal cross terminal genetics. They were approximately six months old 

at the time of slaughter.  The beef samples were obtained from Bos Taurus, with the left 

and right striploin and inside round (M. Longissimus dorsi and M. semimembranosus) 

collected for various reference and spectroscopic measurements. The muscles were 

grouped based on their pH and subjected to either ageing or non-ageing treatment. The 

meat samples were collected from the left and right-hand side loins of the animal 

carcasses to account for differences originating from the animal sides. Meat cuts of 100 

mm x 70 mm were collected from each muscle and wet-aged by sealing in a vacuum bag.  

The samples were stored below -17 ºC for 1-2 weeks prior to Raman measurement.  

 

 

 

 

 

 

Figure 2.2: A representation of the meat sample.  

 

 Instrument and sample measurement  

2.4.2.1 Reference measurement 

pH measurements were obtained using a portable meat pH meter - HI99163 (123 

Hanna Instruments, Mediray, New Zealand). pH point measurements were taken after the 

subcutaneous fat was removed from the M. Longissimus dorsi and M. semimembranosus. 
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This was further cut into sections and the median pH (n = 5) was used as the pH in the 

subsequent modelling. The meat samples were freeze-dried prior to percentage 

intramuscular fat content (% IMF) analysis.  

Reference % IMF analysis was performed using gas chromatography, as outlined by 

Craigie et al. [121]. The % IMF analysis was performed using a direct trans-methylation 

technique involving the extraction and esterification of lipids in a single step. The team 

at AgResearch, New Zealand carried out the reference chemical measurement.   

2.4.2.2 Raman Spectroscopy  

Raman spectral data were collected using a Wasatch Photonics (WP) 1064 nm 

Raman spectrometer (Wasatch Photonics, USA) equipped with TEC cooled G9214-512S 

InGaAs array Hamamatsu detector (at -15 ºC) and fibre optics probe for routing the 

excitation light from the laser and collected light to the spectrometer. The Raman probe 

tip can be adjusted to the samples and has a spot size of 1 mm diameter. The probe consists 

of hollow optical fibre of 600 µm outer diameter and matched numerical aperture to the 

spectrometer input (NA = 0.36), thus reducing loss of light within the fibre optics. The 

probe is connected to the laser and spectrometer using an SMA 950 adaptor. 

Measurements were acquired with a Dash spectrometer control software v2.1 over a 

spectral window of 313-1895 cm-1 and a spectral resolution of 6 cm-1. The instrument was 

calibrated using 1,4-bis(2-methylstyryl) benzene.  

The meat samples were measured at 450 mW laser power, 15 s integration time x 12 

co-added scans. Each 12 s scan had a background (dark scan) subtracted. For 

representative sampling, the 100 mm x 70 mm meat cuts were scanned on a raster setup 

with each scan extending over an area of 50 mm x 30 mm per portion.  The raster system 

comprised of two UTS100CC linear motorized platforms (Newport Corp. Irvine, CA, 

USA) and ESP301-3G 3-axis controller (Newport Corp. Irvine, CA, USA) was used for 

positioning the sample. All measurements were performed in triplicate to obtain a 

representative sample and avoid the limitation of sub-sampling associated with spot 
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measurements. The acquired spectral data were subsequently averaged to three spectra 

per sample prior to analysis.  

2.4.2.3 Infrared spectroscopy 

Sample measurement was performed using a Vertex 70 (Bruker Optics, Ettlingen, 

Germany) spectrometer with a Platinum attenuated total reflectance (ATR) diamond 

accessory (GladiATR, Pike Technologies, Madison, USA) equipped with a wide range 

of room temperature DLaTGS Lanthanum α Alanine doped TriGlycine sulphate) 

detector. Spectra information were acquired with OPUS software-version 7.5 (Brucker 

Optics, Ettlingen, Germany) over 400 - 4000 cm-1 spectra region with sample scan-time 

of 32 s and spectral resolution of 4 cm-1. Background spectra were collected from the 

cleaned blank ATR crystal prior to the presentation of each sample replicate. Each meat 

sample was divided into three portions; and for each portion, five measurements were 

taken. 

2.4.2.4 Spectral Processing  

To account for instrument variation, sample presentation, environment changes and 

background interferences over the duration of measurement, spectral data were 

preprocessed using a range of techniques. Baseline correction was applied to reduce the 

effect of fluorescence and sample focus; smoothing was performed on the Raman data to 

reduce noise, and standard normal variate transformation was performed to account for 

intensity variation across measurements.  The background (dark scan) subtracted Raman 

spectra were preprocessed in Orange Canvas (University of Ljubljana, Slovenia) and The 

Unscrambler X 10.3 (CAMO, Norway). All Raman spectra were baseline corrected using 

rubber band baseline correction (RBC) in Orange Canvas [122]. The baseline corrected 

spectra were normalized using standard normal variate (SNV) transformation and 

smoothing performed using the Savitzky-Golay smoothing filter (first order polynomial, 

7-point filter window) for noise reduction without distorting the acquired signal.  
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The MIR spectral regions 3025 – 2760 cm-1, 1780 – 1710 cm-1 and 1485 – 1055 cm-

1 were independently baseline corrected using linear baseline correction (LBC) in The 

Unscrambler X 10.3 (CAMO, Norway). The baseline corrected spectral region were 

collectively normalized using standard normal variate (SNV) transformation to account 

for intensity variations across replicate measurements. 

2.4.2.5 Multivariate data analysis 

In this study, PCA was utilized as an unsupervised MVA for exploratory analysis 

whereas SVMC and PLSDA were both employed in building a supervised classification 

model for meat discrimination. PCA model development was performed on the entire 

sample set using a k-fold (k = 3) systematic cross validation procedure. Model 

optimization was carried out by the removing outlying samples and the PCA was then 

recalculated.  The PLSDA and SVMC classifications were performed on the training set 

and the model validated against an independent test set. The training set comprised two-

thirds (
2

3
) of the sample set and the test set consisting of one-third (

1

3
) of the sample set. 

The training and test sets selections were performed such that the samples are 

representative of the entire population.  Selection was carried out such that each set had 

samples covering the % IMF range used in this study (samples were first grouped into 

categories depending on their % IMF value (low, intermediate and high fat). For example, 

in the training set, 20 samples each were selected from the sample category “low fat” (% 

IMF < 2.0), “intermediate fat” (% IMF = 2.0 - 3.0) and “high fat” (% IMF > 3.0) [123]. 

Similarly, 10 samples were selected from each of the category forming the test set.  

2.5 Results and Discussion  

The results and discussion are divided into two main components: initial exploratory 

analysis with PCA and classification of meat samples.  
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 Exploratory analysis  

The reference chemical measurements shown in Table 2.1 highlight the variability 

across the meat samples. The meat samples had a percentage intramuscular fat (% IMF) 

content of 1.0 – 2.0 (venison), 1.0 – 4.2 (lamb) and 0.7 – 3.2 (beef). The venison meat 

samples had the least intramuscular fat for the three meat species used in this study. 

 

Table 2.1: Summary of pH and % IMF reference measurements for red meat species 

 

2.5.1.1 Raman Spectral Data Analysis 

Raman spectra were acquired over a spectral range of 313-1895 cm-1, however only 

the selected fingerprint region (750-1750 cm-1) was used for analysis. Figure 2.3 shows 

the mean ± standard deviation of Raman spectra of beef, venison and lamb samples.  The 

composition of meat cut is influenced by numerous factors including animal genetics, 

breed, age at slaughter and rearing condition. The averaged spectra of the meat species 

show relatively little difference in their Raman signatures and are consistent with 

published spectra.  The observed bands may be assigned based on the literature – this is 

summarized in Table 2.2.  Broadly speaking the bands are either attributed to protein, 

amide bands (1660, 1316, 1267 cm-1), amino acid residue features (1362, 1556 cm-1) or 

are due to lipids (1451 cm-1).  The positons of the amide bands depend on the 

conformation of the polypetide backbone and intra- and intermolecular hydrogen bonds; 

as such, these bands can be associated to the secondary structures of protein [124]. The 

band at 1660 cm-1 corresponds to amide I band and does not overlap with the vibrational 

bands of other functional groups, as such can be employed in characterising the secondary 

structure of protein [125].  For example, insulin fibrils and globular proteins have been 

Meat species  pH % IMF 

Venison  5.26 ± 0.07 1.26 ± 0.24 

Lamb 5.96 ± 0.42 2.17 ± 0.95 

Beef 5.61 ± 0.10 1.48 ± 0.65 
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characterised the position and intensity of amide I band [126, 127]. The bands in the 

region 850 – 933 cm-1 are due to both amino acid residues, the polypeptide backbone and 

fats [74, 86, 128-139]. Amide II has been reported to be observed around 1520 – 1570 

cm-1 and is primarily related to C-N stretching, N-H bending and C-C stretching vibration 

modes. Amide II has a weak Raman band and nearly undetectable in non-resonant 

conditions, hence it was not observed in the meat spectra. Amide III band, observed 

around 1316 cm-1 overlap with vibrational modes of other functional groups including 

CH2 and C-C, which complicates their use in secondary structure interpretation [140]. 

The band at 1362 and 1556 cm-1 have been associated to tryptophan whereas CH2 and 

CH3 bending vibrations are observed at  1451 cm-1 [132, 133]. 

 

Table 2.2: Summary of Raman band assignments for red meat species 

 

 

 

Band (cm-1) Origin Assignment References 

911 Short chain lipid C-C stretching [136, 141] 

850 - 933 Amino acid (glutamic 

acid, lysine) and 

polypeptide 

C-CN stretching [131, 136] 

977 Protein =C-H wag [134] 

1075 Amino acid  [142] 

1175 Peptide backbone 

(secondary amine) 

C-N and C-C stretching [134] 

1267 Protein Amide III globular -helix [129, 143] 

1316 Protein Amide III fibrous -helix [86, 129, 144] 

1362 Tryptophan Indole ring [131, 133, 137] 

1451 Lipids CH2 and CH3 bending [74, 132, 137] 

1502 Phenylalanine - [134] 

1556 Tryptophan - [74, 129, 134] 

1660 Peptide backbone Amide I [86, 131, 133] 
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Figure 2.3: Mean ± standard deviation of Raman spectral data acquired from beef (red), venison 

(blue) and lamb (black) meat (n = 60 measurements per meat specie). 

2.5.1.2 Infrared spectral data analysis 

The MIR spectral data were collected over a spectral range of 400 – 4000 cm-1 

and the selected regions (3025-2760 cm-1, 1780-1710 cm-1 and 1485-1055 cm-1) were 

used for further analysis. Figure 2.4 shows the mean IR spectral data alongside the 

standard deviation. The strongest bands were observed at 1546, 1634 and 3275 cm-1 

whereas weaker bands appeared at 2924 cm-1, 2850 cm-1, 1736 cm-1, 1453 cm-1, 1396 cm-

1, 1242 cm-1, 1170 and 1161 cm-1. The band assignments suggest fat, protein and water 
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to be the major components of the red meat samples detected. A summary of the band 

assignments is presented in Table 2.3. The 1485-1710 cm-1 region was excluded due to 

interfering water signals. Also, the broad absorption features around 3100 – 3600 cm-1 

corresponding to the O-H stretching vibrations of water molecules and NH stretching of 

amide in proteins, were not considered in predicting the pH and % IMF due to the large 

variability in the region as compared to others [145].  The mean ± standard of the FTIR 

spectral data is shown in Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Mean ± standard deviation of spectral data acquired using the FTIR instrument (n = 

60 measurements per meat specie).  The FTIR show little deviation across meat measurements. 

The diamond crystal signal from 1900 – 2400 cm-1 has been excluded in this figure. 
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Table 2.3: IR Spectral bands assignment for the chemical functional groups in venison, lamb and beef according to literature

IR (cm-1) Origin Assignments References 

950 - 1200 Glycogen C-O-C stretching  [145, 146] 

1161 Triglycerides (lipids) C-O stretching and C-H bending  [145, 146] 

1242 Protein, Phospholipids CN stretching and NH bending (amide III), PO2
- 

stretching 

[147, 148] 

1396 / 1400 Lipids / Protein COO- stretching and amino side chains [146, 149] 

1453 Lipids CH2 and CH3 scissoring  [36, 150] 

1466 Lipids / Protein C-H scissoring  [114] 

1546 Protein NH bending and CN stretching (amide II) [151] 

1634 Protein / water CN stretching, C=C stretching (olefins), C=O 

stretching (amide I), O-H bending  

[146, 148, 152, 153] 

1736 Lipids C=O stretching of ester, aldehyde, ketone: free fatty 

acids 

[146, 148] 

2850 Lipids CH2 symmetric stretching [145, 153] 

2924 Lipids CH2 asymmetric stretching  [145, 153] 

3275 Protein  NH asymmetric and symmetric stretching   [145, 151] 
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2.5.1.3 Principal component analysis (PCA) – Raman data 

Ninety meat samples (30 samples per meat specie) were used in creating the PCA 

model. The first two PCs explained the most variance across the meat samples (59 % of 

the variance). The PCA scores and loadings plot are shown in Figure 2.5 and 2.6, 

respectively. Despite minor overlaps, the PCA scores plot shows that the beef, venison 

and lamb meat are distinctly separate from one another.  The venison samples clustered 

in the positive PC2 space while the beef and lamb samples clustered in the negative PC2 

space. The beef and lamb samples despite being in the negative PC2 space are 

distinguishable in the scores plot, with the beef cluster seen in the negative PC1 space 

and the lamb cluster in the positive PC1 space.  

 

 

 

 

 

 

 

 

 

 

Figure 2.5: PCA scores plot showing separation of beef, venison and lamb meat samples. 

 

The loadings plot in Figure 2.5 shows the Raman features responsible for the 

separation. Raman spectral features at 911, 977, 1267, 1316, 1362, 1451, 1556 and 1660 

cm-1 were associated with the greatest variance.  Of note is the distinct feature at 911 cm-
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1 that is obscured in the normal Raman spectra by the broad number of features from 850 

– 933 cm-1.   This feature has been reported previously as being associated with CH3 

rocking vibrational mode in lipids [128, 129] as well as α-helix structure in protein [126].  

However, this peak was assigned to lipid because it was somewhat unique to the lamb 

samples, and might be indicative of the shorter chain lipids found mainly in lamb and 

goat meat. The separation along the PC2 axis is associated with the lipids (911 cm-1) 

which is a stronger band in the lamb samples versus 1362 and 1660 cm-1 associated with 

tryptophan and amide I, respectively [74, 131, 133, 136, 137].  These features are more 

intense in the venison samples. The beef samples which cluster in negative PC1 space 

show stronger amide III bands at 1267 – 1316 cm-1 [86, 131, 134]. A summary of the 

peak assignments is presented in Table 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: PCA loadings plot with Raman spectral features associated with variation in beef, 

venison and lamb meat. 
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2.5.1.4 Principal component analysis (PCA) – IR data 

The PCA performed on the spectral acquired using the FTIR highlight the variability 

of spectral data across the meat samples. Despite the higher SNR of the IR spectra 

compared to the Raman, the scores plot shows greater overlap of the meat types. This is 

possibly due to subsampling from spot measurements reiterating the heterogeneity of 

meat samples. Clusters of the meat species can be somewhat distinguished in the first two 

PCs accounting for 85 % variance across the dataset. The PCA scores and loadings plots 

is shown in Figure 2.7 and 2.8, respectively. From the scores plot, majority of the beef 

samples clustered in the positive PC1 space whereas lamb clustered in the negative PC1 

space. The venison samples are distinguishable in the PC2 space, clustering in the positive 

PC2 space whereas majority of the beef samples clustered in the negative PC2 space.  The 

overlap observed in some of the samples across the PC spaces could be attributed to 

variability within samples of the same meat group owing to the heterogeneity of meat 

samples.  

The loadings plot highlight the spectral features responsible for the delineation of the 

meat species. IR spectral features at 1176, 1396, 1467, 1736, 2850 and 2917 cm-1 were 

associated with the greatest variance. These features where dominated by lipid signals 

evident in the intense peaks at 1176, 1396, 1736, 2850 and 2917 cm-1 across both PCs, 

with the overlapping samples making it difficult to highlight contribution of these peaks 

across the three sample groups. As such, further classification analysis was performed 

using PLSDA and SVMC. 
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Figure 2.7: PCA scores plot performed using FTIR spectral data showing separation of beef, 

venison and lamb meat samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: PCA loadings plot with IR spectral features associated with variation in beef, venison 

and lamb meat. 
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 Classification of meat samples – Raman data 

2.5.2.1 Partial Least Square - Discriminant Analysis   

A one versus all PLSDA approach was adopted with one model created for 

classifying samples belonging to each meat class (beef or venison or lamb). Optimum 

PLSDA model was determined using the minimum root mean square error of cross-

validation (RMSECV) of the training set. This procedure resulted in the selection of four 

LV for the venison model and three LV for both beef and lamb models. A summary of 

each classification model performance and parameters used is shown in Table 2.2. 

The PLSDA model discriminating venison from beef and lamb was constructed 

using first four latent variables, describing 85 % of the variance within the dataset. A plot 

of the class predictions for the venison sample is shown in Figure 2.9. The model yielded 

a prediction accuracy of 97 and 100 % was obtained for each of the training and test sets. 

Validation of the model on the test set yielded maximum sensitivity and specificity (100 

%). The PLSDA model was discriminating lamb meat species were built using the first 

three factors, which account for 77 % of the total variance within the dataset. The model 

yielded an accuracy of 92 and 81 % for each of the training and test sets, with sensitivity 

and specificity of 87 and 60 % achieved upon validation against the test set. Similarly, in 

the beef PLSDA model, three latent variables were adopted which accounted for 62% of 

the variability in the dataset. The model yielded an accuracy of 88 and 79 % for the 

training and test sets, respectively, with sensitivity and specificity of 87 % and 75 % 

achieved on validation against the test set, respectively. The venison model had the best 

performance in predicting unknown samples with lamb model having the lowest 

performance.  
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Figure 2.9: Prediction of venison (top), lamb (middle) and beef (bottom) meat classes using 

PLSDA and Raman data, where 1 represents class members and 0 represents non-members. 

Samples with value close to 1 in the predicted class suggest that they belong to the meat class, 

whereas samples with value close to 0 suggest they are non-members.  
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The regression coefficient, which highlights Raman features responsible for the 

discrimination of the meat types, is shown in Figure 2.10. In the venison PLSDA model, 

Raman peaks at 933, 1362 and 1451 cm-1 were responsible for the discrimination. The 

peaks at 933 cm-1 and 1362 cm-1 are consistent with amino acid residue such as lysine and 

tryptophan (Table 2.2) whereas the peak at 1451 cm-1 coincided with CH2 and CH3 

bending vibration (aliphatic hydrophobic residue) [74, 133, 137]. In the beef model, the 

regression coefficient showed major contribution from vibrations at 911, 977, 1267, 1362 

and 1660 cm-1. The band at 1362 cm-1 has been associated with C-C stretching vibration 

in tryptophan [74, 133, 134].  The features at 911 and 1267 cm-1 are associated with lipid  

[74, 133, 143] and the feature at 1660 cm-1 is consistent with an amide I band [86, 130]. 

Vibrations associated with discrimination in the PLSDA lamb model were observed at 

911, 977, 1362, 1451 and 1660 cm-1. These are associated with protein and lipid as 

described above.  
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Figure 2.10: PLSDA regression coefficient showing Raman spectral features associated with 

classification of beef, venison and lamb samples 

 

2.5.2.2 Support Vector Machine Classification (SVMC) 

The SVMC classification was performed using a c-SVMC type; with a linear and 

non-linear (radial basis function, γ = 0.01) kernel function. The linear c-SVMC model 

yielded a training accuracy of 100 %, with validation on an independent test set yielding 

an accuracy of 92 %. Sensitivity and specificity of over 87 % were achieved for each meat 

specie using the linear kernel function. The non-linear c-SVMC gave an improved 

sensitivity and specificity on validation against the test set. The model yielded sensitivity 
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and specificity of over 90 and 95 %, respectively. The model had the best performance 

for classifying venison samples with a sensitivity of 100 % for both linear and non-linear 

SVMC models.  A summary of model performances is shown in Table 2.4. 

 

Table 2.4: Model performance for the discrimination of beef, venison and lamb meat Raman 

spectroscopy 

 

 Classification of meat samples – IR data 

2.5.3.1 Partial Least Square - Discriminant Analysis 

The PLSDA model development was performed using the same parameters as 

described for the Raman spectral analysis. Optimum PLSDA model was selected with 

respect to the minimum RMSECV for each of the PLSDA models. These models were 

validated against an independent test set.   

The PLSDA model discriminating venison meat samples was constructed using 

the first seven (7) LVs accounting for 86 % of the variance within the datasetThe model 

` 

PLS-DA models Accuracy 

(%) 

Sensitivity (%) 

 

Specificity (%) 

Beef vs others 88 (80) 95 (87) 93 (75) 

Venison vs 

others 

97 (100) 92 (100) 100 (100) 

Lamb vs others  92 (81) 87 (60) 95 (92) 

SVMC (training and test set) 

Beef vs venison 

vs lamb 

Accuracy 

(%)  

Sensitivity (%) Specificity (%) 

Beef Venison  Lamb Beef  Venison Lamb 

SVMC (linear 

kernel) 

100 (92) 100 

(90) 

100 

(100) 

100 

(87) 

100 (93) 100 (88) 100 

(95) 

SVMC (RBF) 100 (93) 100 

(90) 

100 

(100) 

100 

(90) 

100 (95) 100 (90)  100 

(95) 



Analysis of intact meat| 62 

yielded a prediction accuracy of 99 and 98 % for the training and test sets, respectively. 

A sensitivity and specificity of 100 and 97 %, respectively was achieved on validation 

against an external test set. The model discriminating lamb meat species accounted for 

63 % of the variances within the dataset. A model accuracy, sensitivity and specificity of 

94, 93 and 95 %, respectively upon validation against an external test set. Similarly, the 

beef model yielded a maximum sensitivity and specificity of 100% upon validation 

against an external using 7 LVs, describing 81% of the total variance within the dataset. 

A larger number of LV was selected for the IR analysis as compared to Raman owing to 

the minimum RMSECV obtained across each data set; this was utilised in determining 

the optimum model. 

The regression coefficient plot highlighting spectral features responsible for the 

discrimination of the meat species is shown in Figure 2.12. In the venison model, IR peaks 

at 1100, 1139, 1453, 2850 and 2920 cm-1 had the most contribution to the loadings. The 

peaks are consistent with lipids (1453, 2850 and 2920 cm-1) and glycogen (1100 and 1137 

cm-1) [114, 146]. In the beef model, the major contribution were from bands at 1161, 

1213, 1400 and 1469 cm-1 which have been associated with lipids (1161, 1400, 1469 and 

2920 cm-1) and asymmetric PO2 stretching bands (1213 cm-1) [154]. Major contribution 

for discrimination of lamb samples were observed at 1157, 1213 and 2920 cm-1, 

corresponding to nuclei acid and lipid vibrations. The beef model had the best 

performance in predicting unknown samples with the lamb sample having the least 

performance. This is not surprising as the PCA highlighted higher variability within 

samples of the lamb and venison group.  
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Figure 2.11: Prediction of venison (top), lamb (middle) and beef (bottom) meat classes using 

PLSDA and IR data, where 1 represents class members and 0 represents non-members. Samples 

with value close to 1 in the predicted class suggest that they belong to the meat class, whereas 

samples with value close to 0 suggest they are non-members. 
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Figure 2.12: PLSDA regression coefficient showing IR spectral features associated with 

discrimination of beef, venison and lamb samples. 

2.5.3.2 Support vector machine classification    

The SVMC classification was performed in similar manner as the Raman analysis. 

The linear c-SVMC model yielded a training accuracy of 100 %, with validation on an 

independent test set yielding an accuracy of  98.9 %. Sensitivity and specificity of over 

96 % were achieved for each meat specie using the linear kernel function. The non-linear 

c-SVMC yielded similar result without any significant model improvement. Both the 

linear and non-linear kernel had the best performance for classifying the lamb and venison 

sample.  A summary of model performances is shown in Table 2.5. 
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Table 2.5: Model performance for the discrimination of beef, venison and lamb meat using 

infrared spectroscopy 

 

The focal point of this study was to establish the potency of vibrational spectroscopic 

technique in combination with combination with more than one chemometric technique 

for intact red meat discrimination.  Different preprocessing techniques were trialled based 

on the quality of spectral data acquired, however, only the technique that yielded optimum 

solution was reported. Smoothing of the Raman spectra was necessary owing to the 

presence thermal and electrical signals reducing the quality of the spectral data. PCA 

against the IR data had considerably overlap across the meat types, owing to the 

subsampling error associated with the heterogeneity of meat. This error was less of a 

challenge in the Raman system by integrating the raster sampling system, as such clearer 

separation was observed in the PCA. Optimum classification model was selected based 

on the minimum RMSE on cross-validation. Classification models computed using data 

for both techniques were successful in predicted external test samples not involved in the 

calibration, with accuracies of over 80 % (PLSDA) and 92 % (SVMC) on the Raman data 

and accuracies of over 98 % (SVMC) and 94 % (PLSDA) using IR spectra.  

PLSDA (training and test set) 

PLS-DA models Accuracy 

(%) 

Sensitivity (%) 

 

Specificity (%) 

Beef vs others 97.2 (100) 90 (100) 99.2 (100) 

Venison vs 

others 

98.9 

(97.7) 

100 (96.8) 98.3 (98.2) 

Lamb vs others  87.7 

(94.3) 

71.7 (92.6) 95.8 (95.1) 

SVMC (training and test set) 

Beef vs venison 

vs lamb 

Accuracy 

(%)  

Sensitivity (%) Specificity (%) 

Beef Venison  Lamb Beef  Venison Lamb 

SVMC (linear 

Kernel) 

100 (98.9) 100 

(96.7) 

100 

(100) 

100 

(100) 

100 

(100) 

100 (98.3) 100 

(98.3) 

SVMC (RBF) 100 (98.9) 100 

(96.7) 

100 

(100) 

100 

(100 

100 

(100) 

100 (98.3)  100 

(98.3) 
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Potential inline/at-line inspections using these techniques for food will require longer 

measurement time and large area sampling to enable acquisition of high quality and 

representative spectra data. However, this will still be a very short time compared to 

analysis using conventional techniques. Inclusion of processed and fresh meat samples in 

the calibration model might facilitate the stability, robustness and applicability of the 

models to real life situation. The availability of handheld Raman techniques also improve 

quick analysis in supermarkets and abattoirs but might reduce but might yield poor 

spectral data in comparison to benchtop or optical fibre coupled devices.  

2.6 Conclusion 

Raman and infrared spectral data of 90 red meat samples were obtained and analysed 

using a range of spectral preprocessing and chemometric techniques, to highlight the 

potential of vibrational spectroscopic techniques for discrimination of red meat samples. 

Optimum models were selected based on the RMSE and Raman spectroscopy in 

combination with PLSDA and SVMC were found to be most effective for discrimination 

of all meat samples. However, the SVMC tended to yield higher sensitivities for both 

Raman and infrared spectral data. The potential of Raman and infrared spectroscopy as 

an alternative technique for intact meat discrimination has been shown, with successful 

discrimination of the three meat types achieved despite their similar chemical 

composition.  
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Chapter 3 

Quality assessment of red meat 
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3.3 Introduction 

The quality of meat plays a significant role in the overall purchasing attitude and 

eating experience of consumers [131], hence, the continual pursuit for techniques capable 
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of objective and accurate quality assessment by the meat industry. Meat quality envelops 

both the sensory and nutritional values (composition) of the meat. These attributes are 

influenced by several factors including animal genetics, production systems, growth rate, 

slaughter conditions, as well as the biochemical processes taking place during the 

conversion of animal muscle to meat [155]. Several indicators have been established for 

the assessment of meat quality including pH, percentage intramuscular fat content (% 

IMF), fatty acid profile, protein content, shear force, water holding capacity, drip loss, 

colour and marbling [64, 156, 157].    

The pH value in red meat is critical as it influences the overall appearance of meat 

cut.  The ultimate pH (pHu) value of meat is widely measured at 24 hours post-slaughter 

(pH24), and is a function of the post-mortem biochemical changes which occur during the 

conversion of stored muscle glycogen to replenish cellular adenosine triphosphate (ATP) 

via glycogenolysis and glycolysis, resulting in an accumulation of lactate. Furthermore, 

the replenished ATP is subsequently hydrolysed to generate energy (conserving cellular 

processes), liberating H+ ions responsible for reducing the pH of meat after slaughter 

[158]. Broadly speaking, the desired pH values of red meat range from 5.4 - 5.8, with the 

resulting red meat often appearing reddish-firm-non exudative (RFN) [157, 159]. 

Nevertheless, possible deviation in glycogenolysis and glycolysis could lead to variation 

in the ultimate pH value. This deviation is commonly a function of the impact of pre-

slaughter stress on the animal. Accelerated and delayed glycolytic processes could lead 

to the formation of pale-soft-exudative (PSE) meat (pH < 5.4) and dark-firm-dry (DFD) 

meat (pH > 5.8), respectively, resulting in meat with poor physical appearance and eating 

quality [160]. Hence, there is a need to assess the pH value and lactate concentration of 

red meat.  

The % IMF impacts on the nutritional value, sensory characteristics (flavour) and 

shelf life of meat [156]. Among other factors, the animal genetics and rearing conditions 

play significant roles in the fat composition of red meat [161, 162]. The dietary benefits 

of fat and fatty acid composition in meat including palmitic acid, stearic acid, linoleic 

acid, linolenic acid, eicosapentaenoic acid and docosapentaenoic acid have been 

investigated [163, 164]. 



Chapter 3 Quality assessment of red meat| 69 

 

Conventional methods of meat quality assessment include chromatographic methods 

for the determination of fatty acid composition, solvent extraction or iodometric titration 

for determining fat content [165] and electrochemical methods for determining pH [166]. 

However, these methods are destructive and can require time-consuming sample 

preparation. Spectroscopic methods such as near-infrared, mid-infrared, hyperspectral 

imaging, visible, fluorescence and Raman spectroscopy have been explored for meat 

quality assessment [167]. Research involving the use of spectroscopic techniques as 

alternatives for conventional methods have soared in the last two decades. This has been 

mainly due to advancements in optical technologies and the potential advantages of 

minimal sample preparation, short analysis time, ease of use, cost effectiveness, non-

destructiveness, the possibility of automation, miniaturization, on-line/in-line integration, 

as well as the ability to build quantitative and qualitative models [64].  

Vibrational spectroscopic techniques like Raman and infrared spectroscopy provide 

complementary information on the structure and molecular interactions within a system. 

A combination of data from these techniques could provide deeper understanding into the 

nature, structure and interactions within such system; this is commonly referred to as data 

(or sensor) fusion. Data fusion techniques involve the combination of data from multiple 

instruments such as ultraviolet/visible (UV/Vis), near infrared, mid infrared, Raman, 

nuclear magnetic resonance (NMR), mass spectrometry and other  physio-chemical 

measurements to achieve optimal information for the sample of interest [168, 169].  

Fusion aims to exploit the potential synergistic effect on the combination of more than 

one technique; culminating in the enhancement of information quality [170, 171]. Data 

fusion is a recent trend in analytical chemistry and has been applied in the discrimination 

of alcoholic beverages [172], meat authentication [168], honey discrimination and 

prediction of meat spoilage [173]. 

Data fusion can be performed at three levels; low-level (LLF), mid-level (MLF) and 

high-level (HLF) [172]. LLF, also referred to as measurement level fusion, involves the 

combination of pre-processed spectral data (measurements) from various instruments into 

a single matrix. This matrix is further used in building qualitative or quantitative models 

[174]. Unlike LLF, MLF (feature level fusion) strategy integrates a feature extraction 
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step, which can hold adequate original information, with the extracted features combined 

to build quantitative or qualitative models.  The MLF are easily adaptable with established 

feature extraction steps such as principal component analysis (PCA) or multivariate curve 

resolution (MCR) [169, 174].  In HLF (decision level fusion), classification or regression 

models are built using data from individual techniques and the model predictions further 

fused to obtain a final outcome. HLF is the least explored of all three data fusion strategies 

and susceptible to significant information loss, owing to the use of model outputs for final 

predictions [168, 171, 172]. Data from both instruments are not utilised in developing a 

single model rather their outputs are combined based on some assumptions. For example, 

majority voting is adopted for HLF in classification studies. This entails the assignment 

of a sample to a class based on the majority of the individual instrument assignments. 

This might not be accurate as individual techniques can also yield wrong classification.   

For the purpose of this work, the model performance was assessed with respect to 

the determination coefficient (𝑅2) and root mean square error for the training (𝑅𝑀𝑆𝐸𝐶), 

cross-validation (𝑅𝑀𝑆𝐸𝐶𝑉) and test sets (𝑅𝑀𝑆𝐸𝑃). A normalized root mean square error 

of prediction (𝑁𝑅𝑀𝑆𝐸𝑃) was calculated using 𝑅𝑀𝑆𝐸𝑃 and the observed range of the 

reference measurement. The 𝑁𝑅𝑀𝑆𝐸𝑃 can be obtained by the expression in equation 

[175].  

 

                                                      𝑁𝑅𝑀𝑆𝐸𝑃 =
𝑅𝑀𝑆𝐸𝑃

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
                                                   3. 1 

 

where, RMSEP is the root mean square error of prediction and 𝑦𝑚𝑎𝑥  − 𝑦𝑚𝑖𝑛  is the range 

of the values in reference measurements (y matrix). In general terms, a low 𝑅𝑀𝑆𝐸𝑃 as 

well as a high 𝑅2 value suggest a good predictive ability for the model [48].  

In the present study, I set out to show the performance of Raman and infrared 

spectroscopy to predict pH and % IMF meat quality parameters, and also to evaluate the 

performance of three data fusion strategies in predicting these meat quality indicators.   
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3.4 Materials and methods  

Detailed description of the sample collection, reference chemical measurements, 

spectroscopic analysis and spectral preprocessing have been presented in the materials 

and methods section in chapter 2.  

 Data fusion strategies 

Data fusion can be performed at three different levels: low, mid and high-level 

fusion. In the present study, the potential of all three fusion strategies to predict pH and 

% IMF quality parameters was investigated. An illustration of data fusion strategies is 

presented in Figure 3.1. 

3.4.1.1 Low-level fusion (LLF)  

LLF is achieved by concatenating preprocessed data from individual sources to form 

a single matrix, X. The matrix comprises of m-rows (individual samples) and n-columns 

(measurement variables from each source). In this study, fusing the data at the low-level 

yielded 713 n-variables, with the Raman and infrared instruments contributing 314 and 

399 variables, respectively.  

3.4.1.2 Mid-level fusion (MLF) 

MLF strategy entails concatenating extracted features from different analytical 

sources. The spectral data from each technique are independently preprocessed and data 

reduced using techniques such as PCA and MCR. The obtained features like scores (PCA) 

or component concentrations (MCR) from both instruments are concatenated sample-

wise to form a single matrix. The feature extraction step allows for data reduction without 

substantial loss of information as well as the adequate representation of information from 

each data block unlike the low-level fusion [174]. For example, in the LLF, Raman and 

infrared instruments contributed 314 and 399 variables, respectively, giving the infrared 



Chapter 3 Quality assessment of red meat| 72 

 

data block a greater variable contribution in the model. However, using PCA and MCR 

data reduction techniques, representative features were extracted from each block and 

utilised in forming a single matrix. The Raman and infrared instruments contributed 5 

and 6 principal components (PC), respectively (for PCA data reduction), whereas each of 

the instrument contributed 7 components using MCR data reduction technique. This 

yielded a total of 11 PCs (PCA) and 14 components (MCR) as the extracted features. 

Lesser number of PCs was selected for Raman to avoid inclusion of noise component.   

3.4.1.3 High level fusion (HLF) 

Data fusion at a high level or decision level entails fusing outcomes of classification 

or regression models from individual techniques to identify the best outcome. In HLF, 

each individual technique is treated independently; as such, poor performance from one 

technique does not worsen the overall performance unlike other fusion strategies.  For the 

purpose of this study, independent model predictions were first calculated using the 

Raman and MIR spectral data, and the outputs for each sample averaged (n = 3) prior to 

calculating the HLF. The final outcome was then calculated using central limit theorem 

(CLT), taking the standard deviation as the weightings as described in the equations  

 

        𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐶𝐿𝑇,    𝑋𝑅𝑎𝐼𝑅  =  𝜎𝑅𝑎𝐼𝑅
2 [ 𝑋̅𝑅𝑎 ∙ 𝜎𝑅𝑎

−2 +   𝑋̅𝐼𝑅 ∙ 𝜎𝐼𝑅
−2 ]                          3. 2 

 

                                                          𝜎𝑅𝑎𝐼𝑅
2 = [𝜎𝑅𝑎

−2  +  𝜎𝐼𝑅
−2]−1                                                  3. 3 

 

where 𝑋𝑅𝑎𝐼𝑅  is the prediction from the fused outcomes, 𝑋̅𝑅𝑎 is the average estimated 

pH or % IMF for an observation (sample) using Raman, 𝑋̅𝐼𝑅 is the average estimated pH 

or % IMF for the same observation (sample) using MIR, 𝜎𝑅𝑎
2  and 𝜎𝐼𝑅

2  are the variances 

from the Raman and FTIR instruments, respectively and  𝜎𝑅𝑎𝐼𝑅
2  is the combined variances 

for the observation from both sensor [176].  
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Figure 3.1: A simplified representation of low-level (top), mid-level (middle) and high-level 

(bottom) data fusion strategies. 

 

 Multivariate analysis  

Reference pH and % IMF (y-matrix) were used in building quantitative models 

against acquired spectroscopic data (X-matrix). Preprocessed spectral data were 



Chapter 3 Quality assessment of red meat| 74 

 

correlated against the reference using partial least squares (PLS) in The Unscrambler X 

10.3 (CAMO, Oslo, Norway).  

The building of predictive models using PLS has been widely applied in analytical 

chemistry.  For the purpose of this study, the PLS models were calculated using a 

segmented k-fold cross-validation approach, where k replicates (k = 3) from the training 

set formed a segment and on cross-validation each excluded segment is predicted using 

the training model. The cross-validation technique despite giving an estimate of the 

model’s predictive ability is limited, in that prediction is performed on samples belonging 

to the training set. The use of an independent test set provides better insight into the 

model’s robustness in predicting unknown samples.  

3.5 Results and Discussion  

The results and discussion are divided into two main components: initial exploratory 

analysis, regression analysis using individual instruments and data fusion strategies. 

 Exploratory analysis  

Table 3.1 presents the values of the mean and standard deviation (SD) including 

minimum and maximum values for pH and % IMF content of the red meat samples. The 

mean pH varied from a minimum of 5.27 ± 0.07 for venison to a maximum 5.91 ± 0.46 

for beef. The pH range across the beef samples is 5.1 - 6.8, with the 1.7 pH unit difference 

being the largest between samples of same meat specie. The % IMF content showed 

greater variability across the samples evident in the wider range and coefficient of 

variation (CV) values. The variation in the % IMF was expected as several factors 

including animal genetics, breed, sex, age at slaughter and rearing conditions play a role 

in the overall fat content in meat [161, 162]. However, the individual meat species did 

not provide sufficient variability in their quality traits (pH and % IMF inclusive) to build 

a robust predictive model, hence the use of three red meat species to cover a wider 

reference range.  
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Table 3.1: Mean and standard deviation values of pH and percentage intramuscular fat content 

(% IMF) in venison, beef and lamb 

aSD = Standard deviation 
bCV = Coefficient of variance (

100𝑆𝐷

𝑚𝑒𝑎𝑛
) 

 

 Spectral data analysis  

The Raman spectral data were acquired over a spectral range of 313-1895 cm-1, 

and further analysis performed using the selected region (750-1750 cm-1).  The observed 

spectral data showed little difference in their Raman signatures across the three red meat 

species, which suggests similarity in their chemical composition, although minor 

differences are detectable [177]. The mean spectrum of the Raman data with the 

corresponding standard deviation is shown in Figure 3.1a.  The dominant bands appear at 

933, 1075, 1316, 1451 and 1660 cm-1. The observed bands have been assigned based on 

literature as summarised in Table 3.1. The most intense band at 1451 cm-1 can be 

attributed to CH2 and CH3 bending vibration in lipids and protein, whereas the band at 

1660 cm-1 is consistent with the amide I band. The broad features in the region 850-933 

cm-1 can be attributed to polypeptide backbone, amino acid residues and fats [128, 131, 

133, 135].   

The MIR spectral data were collected over a spectral range of 400 – 4000 cm-1 

and the selected regions (3025-2760 cm-1, 1780-1710 cm-1 and 1485-1055 cm-1) were 

Parameter Meat specie Minimum Maximum Mean SDa CV (%)b 

 

pH 

Venison 5.10 5.44 5.27 0.07 1.33 

Beef 5.10 6.8 5.91 0.46 7.78 

Lamb 5.49 5.92 5.61 0.11 1.96 

 

% IMF 

Venison 1.12 2.05 1.48 0.24 16.2 

Beef 0.64 3.23 1.30 0.67 51.5 

Lamb 1.00 4.18 2.17 0.95 43.8 
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used for further analysis.  The strongest bands were observed at 1546, 1634 and 3275 cm-

1 whereas weaker bands appeared at 2924 cm-1, 2850 cm-1, 1736 cm-1, 1453 cm-1, 1396 

cm-1, 1242 cm-1, 1170 and 1161 cm-1. The band assignments suggest fat, protein and water 

to be the major components of the red meat samples detected. A summary of the band 

assignments is presented in Table 3.2. The 1485-1710 cm-1 region was excluded due to 

interfering water signals. Also, the broad absorption features around 3100 – 3600 cm-1 

corresponding to the O-H stretching vibrations of water molecules and NH stretching of 

amide in proteins, were not considered in predicting the pH and % IMF due to the 

interfering water signal as well as the larger variability in this region compared to others 

[145]. The mean spectrum of the IR data with the corresponding standard deviation is 

shown in Figure 3.1b. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Mean spectra and standard deviation of preprocessed spectral data collected using (a) 

1064 nm fibre optic – coupled Raman instrument (b) ATR – FTIR instrument  

Wavenumber / cm-1 

Wavenumber / cm-1 
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Table 3.2: Spectral bands assignment for the chemical functional groups in venison, lamb and beef according to literature

Raman (cm-1) IR (cm-1) Origin Assignments References 

850 - 933  Amino acid (glutamic acid, 

lysine) and polypeptide 

C-CN stretching [131, 136] 

977  Protein =C-H wag [134] 

1316  Protein  Amide III fibrous -helix [86, 129, 144]  

1451  Lipid CH2 and CH3 bending [74, 132, 137] 

1556  Tryptophan Bending vibrations of pyrrole and benzene 

rings 

[74, 129, 134]  

1660  Peptide backbone Amide I [86, 131, 133] 

 1161 Lipids C-O stretching and CH2 bending  [145, 146] 

 1170 Lipid  C-O-C asymmetric stretching (of esters) [145] 

 1242 Protein, Phospholipids CN stretching and NH bending (amide III), 

PO2
- asymmetric stretching 

[147, 148] 

 1396 Lipid COO- stretching and amino side chains [146, 149] 

 1453 Lipid CH2 and CH3 scissoring  [36, 150] 

 1546 Protein NH bending and CN stretching (amide II) [151] 

 1634 Protein  CN stretching, C=C stretching (olefins), C=O 

stretching (amide I) 

[146, 148, 152, 153] 

 1736 Lipid C=O stretching of ester, aldehyde, ketone: 

free fatty acids 

[146, 148] 

 2850 Lipid CH2 symmetric stretching [145, 153] 

 2924 Lipid CH2 asymmetric stretching  [145, 153] 

 3275 Protein  NH asymmetric and symmetric stretching   [145, 151] 
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 Correlation of spectral data to meat quality 

parameters 

The output of the PLS models are presented as a plot of the predicted values versus 

the observed reference values. A summary of all PLS model performances are shown in 

Table 23.  The number of factors introduced in each model was determined by the 

RMSECV. In all cases, no more than seven factors were necessary for a rational PLS 

model. The optimal PLS model was adopted after removal of spectral data points with 

potential bias (outliers), with model improvement observed in most cases.  

 Individual spectroscopic instrument  

3.5.4.1 Estimation of pH  

The pH of samples utilized in this study ranged from 5.1 – 6.8 pH units (SD = 

0.05), covering a range common to various meat classifications including pale-soft-

exudative (PSE), dark-firm-dry (DFD) and red-firm-non exudative (RFN) meat [178].   

The Raman spectral region (750-1750 cm-1) was deemed the most informative and 

was correlated to the observed pH and % IMF measurements. Figure 3.3 shows the 

correlation between the predicted pH values against the reference measurements using 

the Raman spectral data. The pH PLS model was created using seven factors accounting 

for 83 % of the variance in the data set. The model yielded a determination coefficient 

(𝑅𝐶
2) of 0.84 and 𝑅𝑀𝑆𝐸𝐶 of 0.14. Results obtained on cross-validation of the model 

yielded 𝑅𝐶𝑉
2  and 𝑅𝑀𝑆𝐸𝐶 values of 0.64 and 0.22, respectively. This shows a positive 

correlation between the predicted and observed pH values. Upon validation of the model 

against an independent test set, a 𝑅𝑀𝑆𝐸𝑃 of 0.36 corresponding to a 𝑁𝑅𝑀𝑆𝐸𝑃 of 21.1 

%, highlighting the model’s ability to predict unknown samples. Based on data from 

previous studies on pH prediction using Raman, we observed two peaks that have been 
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associated with phosphate (875 cm-1) and inosine monophosphate (1573 cm-1) in the 

regression coefficient plot [179-181]. Other observable peaks at 1115, 1360, 1477, 1573, 

and 1618 cm-1 have been associated with tryptophan [137, 182]. The regression 

coefficient plot is shown in Figure 3.4.  

 

 

 

 

 

 

 

 

Figure 3.3: Regression line showing correlation of observed pH values with Raman spectral 

measurements. 

 

 

 

 

 

 

 

 

 

Figure 3.4: Regression coefficient showing spectral features influencing the pH prediction of red 

meat using Raman spectral data. 
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 The performance of the model was consistent with a study by Scheier and 

Schmidt [181] for the prediction of pH in pork  (𝑅𝐶 
2 = 0.87 and 𝑅𝑀𝑆𝐸𝐶 = 0.22), 

corresponding to a 𝑁𝑅𝑀𝑆𝐸𝐶 of 18 % [175]. It is important to note that this study was 

performed on a smaller dataset and the model not validated against an independent test 

set. Similarly, a study involving the prediction of 𝑝𝐻24 in pork on a larger dataset by 

[157] yielded an 𝑅𝐶𝑉 
2  = 0.68 and 𝑅𝑀𝑆𝐸𝐶𝑉 = 0.09, corresponding to a 𝑁𝑅𝑀𝑆𝐸𝐶𝑉 of 

about 10 % using 8 factors [175].  

The model obtained using the MIR spectral data showed good predictive values 

for pH, with a  𝑅𝐶 
2  and 𝑅𝑀𝑆𝐸𝐶 of 0.78 and 0.20, respectively on the training set. 

Validation of the model against an independent test set yielded a 𝑅𝑃
2 and 𝑅𝑀𝑆𝐸𝑃 of 0.82 

and 0.20, respectively. This error corresponds to a 𝑁𝑅𝑀𝑆𝐸𝑃 of 11.8 %. These values 

show a positive relationship between predicted and observed 𝑝𝐻 measurements.  The 

regression coefficient for the pH prediction shows major contribution from peaks at 1068, 

1082, 1125, 1220, 1400, 1458 and 2918 cm-1. The strongest peaks at 1082 and 1125 cm-

1 have been assigned to PO2
- symmetric stretching and C-O/C-C stretching vibrations, 

respectively [145] whereas the bands between 1440 to 1458 cm-1 are consistent with 

complex CH bending pattern associated with lactate [183] . In literature, both the 

phosphate and lactate bands have been correlated with actual pH content in meat [180, 

183], which means that the variables used by these model are chemically meaningful. The 

regression plot and regression coefficient are shown in Figure 3.5 and 3.6, respectively.  

Both the Raman and FTIR systems showed positive correlations in predicting the 

observed pH values, however, the MIR spectral data offered better prediction results upon 

validation against an independent test set which could partly be attributed to the reduced 

noise contribution (𝑅𝑀𝑆𝐸𝑃 = 0.2, 𝑁𝑅𝑀𝑆𝐸𝑃 = 11.8 %). A summary of the model 

performance parameters is shown in Table 3.3. 
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Figure 3.5: Regression line showing correlation of observed pH values with IR spectral 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Regression coefficient showing spectral features influencing the pH prediction of red 

meat using IR spectral data 
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3.5.4.2 Percentage Intramuscular fat (% IMF) 

The % IMF of samples used in this study ranged from 0.6 % - 4.2 %. As with the pH 

models, model calculation was performed using a k-fold cross-validation technique. 

Predicting the % IMF using the Raman data showed a strong positive correlation with the 

observed % IMF values (𝑅𝐶
2 = 0.75), as shown in Figure 3.7. The 𝑅2 value slightly 

reduced on cross-validation (𝑅𝐶𝑉
2  = 0.72) with a corresponding 𝑅𝑀𝑆𝐸𝐶𝑉 of 0.26 

obtained. Validation on an independent test set yielded a reduced 𝑅𝑃
2  and 𝑅𝑀𝑆𝐸𝑃 of 0.60 

and 0.30, respectively. The error corresponds to a 𝑁𝑅𝑀𝑆𝐸𝑃 of 8.5 %. The performance 

of the model was consistent with a previous study for prediction of different fatty acid 

composition in intact adipose tissues (𝑅2 > 0.73, average 𝑅𝑀𝑆𝐸𝑃 = 11.9 %) by [128], 

but higher for % IMF prediction in lamb samples using 2 factors (𝑅𝐶𝑉
2  = 0.02, 𝑅𝑀𝑆𝐸𝐶𝑉 

= 1.12) [156]. The improved performance could be due to the larger number of latent 

variables introduced in the current model. However, model overfitting was prevented by 

visualising the explained variance and loadings plot, ensuring that the additional factors 

contributed to the total variance. The regression coefficient features show that the main 

bands of influence appear around 886, 990, 1116, 1445 and 1640 cm-1. Despite the subtle 

changes in the peaks, the band at 1445 cm-1 is consistent with lipid modelling in red meat 

[137]. 
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Figure 3.7: Regression line showing correlation of observed % IMF values with Raman spectral 

measurements. 

 

 

 

 

 

 

 

 

Figure 3.8: Regression coefficient showing spectral features influencing the % IMF content 

prediction in red meat using Raman spectral data. 

 

A plot correlating the observed % IMF with IR spectral data is shown in Figure 3.9. 

The training model yielded a 𝑅𝐶
2 and 𝑅𝑀𝑆𝐸𝐶 value of 0.70 and 0.35, respectively. On 

Wavenumber / cm-1 
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validation against an independent test set a 𝑅𝑃
2 and 𝑅𝑀𝑆𝐸𝑃 of 0.67 and 0.40, respectively. 

This corresponds to a 𝑁𝑅𝑀𝑆𝐸𝑃 of 11.3%; this error is rather low considering it was 

obtained using an external test set. A similar study performed using MIR spectral regions 

at 3000-2800, 2300-1850 and 981-489 cm-1 yielded an 𝑅𝐶𝑉
2  value of 0.92 and 𝑅𝑀𝑆𝐸𝐶𝑉 

of 0.71 using 11 factors, which is rather high considering that a cross-validation was 

performed on same set of data belonging to the training set [114]. The regression 

coefficient plot shows that IR peaks at 1153, 1174, 1726, 1750, 2848, 2916 and 2931cm-

1 are major contributors to the prediction plot (Figure 3.10). These bands despite slight 

shifts have been associated with lipid composition in the meat samples [114, 145], which 

means that the variables used by these models are chemically meaningful.  The bands at 

1153, 1750 and 2931 cm-1 were positively correlated to the % IMF content in the red 

meat. 

 

 

 

 

 

 

 

Figure 3.9: Regression line showing correlation of observed % IMF values with IR spectral 

measurements. 
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Figure 3.10: Regression coefficient showing spectral features influencing the % IMF content 

prediction in red meat using IR spectral data 

 Sensor (Data) fusion  

3.5.5.1 Low-level fusion (LLF) 

Preprocessed Raman and IR spectral data were concatenated to form a single matrix, 

then further utilized in building quantitative model for both pH and % IMF predictions. 

For pH assessment, the LLF model yielded a 𝑅𝐶
2 and 𝑅𝑀𝑆𝐸𝐶 value of 0.78 and 0.17, 

respectively. However, on validation against an independent test set, there was an increase 

in the 𝑅𝑀𝑆𝐸𝑃 to 0.30, which is equivalent to an 𝑁𝑅𝑀𝑆𝐸𝑃 of 17.6 % (Figure 3.11). 

Comparison of the model performance of the LLF strategy to individual Raman and 

infrared models were performed to observe any possible improvement.  The LLF model 

(𝑅𝑃
2

 = 0.65, 𝑅𝑀𝑆𝐸𝑃 = 0.30, 𝑁𝑅𝑀𝑆𝐸𝑃 = 17.6 %) performed slightly better than the Raman 

technique (𝑅𝑃
2

 = 0.67, 𝑅𝑀𝑆𝐸𝑃 = 0.36, 𝑅𝑀𝑆𝐸𝑃 = 21.1 %) but not as well as the IR 

technique (𝑅𝑃
2

 = 0.82, 𝑅𝑀𝑆𝐸𝑃 = 0.20, 𝑅𝑀𝑆𝐸𝑃 = 11.8 %). This may be attributed to the 

presence of data not directly associated with the prediction, which in turn could worsen a 

model [173].  

Wavenumber / cm-1 
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Figure 3.11: Regression line showing correlation of observed pH values with low-level fused 

Raman and IR spectral measurements. 

 

For % IMF assessment, the combination of Raman and IR data at a low-level showed 

slight model improvement for the training set as shown in Table 3.3. Validation of the 

model against the test set yielded a 𝑅𝑀𝑆𝐸𝑃 of 0.30, corresponding to an 𝑁𝑅𝑀𝑆𝐸𝑃 of 8.5 

%. This marks an improved performance for predicting external samples. The low level 

fusion model performed similarly to the Raman data but better than the IR model in 

predicting % IMF on external samples. This fusion strategy looks promising for 

predicting pH and % IMF in intact meat samples.   
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Figure 3.12: Regression line showing correlation of observed % IMF values with low-level fused 

Raman and IR spectral measurements. 

3.5.5.2 Mid-level fusion (MLF) 

As initially described, two data reduction techniques, PCA and MCR were utilized 

in extracting features for the mid-level data fusion. With the PCA data reduction step, a 

total of 11 PCs were extracted from the PCA scores plot of the individual instruments (6 

and 5 PCs from the Raman and infrared instrument, respectively). This was concatenated 

into a single matrix and subsequently utilized in building PLS models. In the case of 

MCR, a total of 14 components were used as the extracted feature and utilized in building 

predictive models. Ideally, a larger number of latent variables should be utilised owing to 

the potential loss of information during the data reduction step, however, only 4 variables 

were selected based on the RMSECV to avoid overfitting of the models.  Results obtained 

for the prediction of pH irrespective of the data reduction step did not yield a strong 

positive correlation with the observed reference values (𝑅𝐶
2 = 0.52). Further validation of 

the models against the test set showed limited reliability with a 𝑅𝑃
2 values of 0.42 (PCA) 

and 0.33 (MCR). A plot of the MLF analysis is shown in Figure 3.13.  
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Figure 3.13: Regression line showing correlation of observed pH values with mid-level fused data 

extracted from Raman and IR spectral measurements using (a) PCA (b) MCR. 

 

Similarly, the determination coefficient of the MLF models were not high enough to 

consider the model accurate for % IMF prediction (𝑅𝐶
2

 = 0.48 for PCA, 𝑅𝐶
2

 = 0.48 for 

MCR). The outputs were worse on validation using both the cross-validation and test sets. 

The poor correlation exhibited by the MLF could be due to substantial loss of useful 

information during the feature extraction step. A summary of the model performance is 

presented in Table 3.3. 

 

Figure 3.14: Regression line showing correlation of observed % IMF values with mid-level fused 

data extracted from Raman and IR spectral measurements using (a) PCA (b) MCR. 
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3.5.5.3 High-level fusion (HLF) 

Independent model predictions were first calculated using the Raman and MIR 

spectral data, and the outputs for each sample averaged prior to performing the HLF. 

Results of the HLF strategy showed an improved predictive model particularly for pH 

predictions, with a 𝑅𝑃
2

 and 𝑅𝑀𝑆𝐸𝑃 of 0.76 and 0.15, respectively. Interestingly, the 𝑅𝑃
2 of 

the HLF strategy was less than that of the independent IR predictions (𝑅𝑃
2 = 0.82, 𝑅𝑀𝑆𝐸𝑃 

= 0.20), yet had better 𝑅𝑀𝑆𝐸𝑃 for predicting external samples.  This highlights that a 

larger 𝑅2 doesn’t always indicate a better model. The HLF strategy had the best 

performance of all data techniques employed for predicting pH, suggesting possible 

enhancement of information upon combination of the prediction outputs of the Raman 

and infrared systems for pH prediction.  

The HLF strategy for predicting the % IMF in red meat yielded a 𝑅𝑃
2 of 0.46 

(𝑁𝑅𝑀𝑆𝐸𝑃 = 17.2 %), which is a better performance over the MLF strategy (𝑅𝑃
2  = 0.11, 

𝑁𝑅𝑀𝑆𝐸𝑃 = 20.9 %). However, it was worse on comparison to predictions by the 

individual instruments as well as LLF strategy.   

Figure 3.15 suggests a possible non-linear relationship between the spectral data 

and the observed quality parameters. Description of this relationship would require the 

use of non-linear algorithms such as artificial neural network, support vector machine 

regression and local weighted regression. This was not carried out in the current study.  
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Figure 3.15: Regression line showing correlation of high-level fusion strategy of Raman and IR 

data to observed (a) pH values (b) % IMF values.  

 

 Attempts to improve the HLF model by improving individual instrument 

models was performed using a subset of the dataset. Ten (10) samples were selected at 

random and p models were developed using both Raman and IR spectral data. These 

models yielded improved performance statistics. HLF analysis was then performed using 

the improved predictions from both models, resulting in an improved performance 

(Figure 3.16). This suggests that HLF performance is only as good as the individual 

technique performances. 

 

 

 

 

 

 

Figure 3.16: Illustration of improvement in the HLF strategy for prediction of pH. Improvement 

in individual spectroscopic models resulted in improvements in the HLF strategy 

Overall, the data fusion strategies showed some improvements for quantifying pH 

and %IMF over single instruments particularly Raman. All possible fusion strategies were 

evaluated and their prediction performance summarised. Among the possible fusion 

strategies, the low-level fusion strategy worked the best, which could suggest modelling 

of more information. For example, it is difficult to detect the amide II Raman band in 

non-resonant conditions; however, this band can easily be detected using the ATR-FTIR 

instrument. Thus, this combination with additional information might lead to an 

improvement in model accuracies, although at the cost of a possible increase in noise 
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contribution. This can be avoided by selecting an adequate number of latent variables 

assessed using the RMSE. 

 

 

Table 3.3: Results of PLSR models developed for predicting the pH and % IMF content of 

venison, beef and lamb using Raman, FTIR and data fusion strategies.  

  

 

Technique R2 
C RMSEC R2

CV RMSECV R2p RMSEP NRMSEP 

(%) 

LV 

pH 

Raman 0.84 0.14 0.64 0.22 0.67 0.36 21.1  7 

Infrared 0.78 0.20 0.59 0.27 0.82 0.20 11.8 7 

Low – level  0.78 0.17 0.63 0.22 0.65 0.30 17.6 6 

Mid – level (PCA) 0.52 0.23 0.42 0.26 0.42 0.34 20.0 4 

Mid – level (MCR) 0.52 0.24 0.40 0.27 0.33 0.35 20.6 4 

High – level (CLT) 0.89 0.09 0.77 0.12 0.76 0.15 8.80 7 

% IMF 

Raman 0.75 0.22 0.72 0.26 0.60 0.30 8.47 4 

Infrared 0.70 0.35 0.62 0.44 0.67 0.40 11.3 4 

Low – level  0.78 0.08 0.77 0.11 0.65 0.30 8.47  5 

Mid – level (PCA) 0.48 0.60 0.40 0.69 0.13 0.63 17.8 4 

Mid – level (MCR) 0.51 0.58 0.40 0.66 0.11 0.74 20.9 4 

High level (CLT) 0.72 0.27 0.58 0.33 0.46 0.61 17.2 7 

   

3.6 Conclusion 

This study investigated the ability of Raman and infrared spectroscopy as well as 

data fusion strategies to predict the quality of red meat (pH and % IMF). Sample datasets 

representative of pH and % IMF ranges observed in New Zealand meat industry were 

utilized in building training models which were subsequently validated against an 

independent test set. Results obtained in this study yielded a 𝑁𝑅𝑀𝑆𝐸𝑃 below 25 % for 

all techniques and parameters considered, despite some poor correlation particularly with 

the mid-level fusion strategy. The high-level fusion strategy had the best performance in 

predicting unknown red meat samples for pH, with a 25 % improvement in the 𝑁𝑅𝑀𝑆𝐸𝑃 

whereas the results for the low-level fusion strategy was comparable to the Raman results 
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for predicting the % IMF quality trait.  Although significant model improvements were 

not observed upon concatenating the Raman and infrared data, the reduced 𝑁𝑅𝑀𝑆𝐸𝑃 

gives promise for the use of data fusion in future meat quality and discrimination studies.
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Chapter 4 

Isothermal dehydration of crystalline hydrates  
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4.3 Introduction 

Active pharmaceutical ingredients (APIs) exist in different solid-state forms such as 

crystalline, amorphous, solvate, hydrate and salt forms [184]. These solid-state forms 

possess unique physiochemical and structural properties and are capable of undergoing 

transformations from one form to another. It is important to understand these 

transformations, as the presence of unwanted solid-state transformations in 

pharmaceutical products can lead to their poor therapeutic performance [185, 186]. 

Approximately one-third of existing crystalline APIs can incorporate water in their 

crystal lattice resulting in the formation of crystalline hydrates [185, 187]. Crystalline 

hydrates can possess different physiochemical properties from their anhydrous 

counterparts including density, free energy, thermodynamic activity, dissolution rate, 

stability and bioavailabilty [185, 188]. Also, the unique lattice framework in crystalline 

hydrates make them susceptible to changes including possible transformation to other 

solid-state forms [189]. The frequent use of water and heat in the drug manufacturing 

process facilitates solid-state transformation through hydrate formation and dehydration 

processes [43, 189-191]. It is therefore imperative to monitor these changes during the 

manufacturing process to ensure the target solid-state form in a specific drug product is 

present.  

Several analytical techniques including powder X-ray diffraction (PXRD), solid-

state nuclear magnetic resonance (ssNMR), differential scanning calorimetry (DSC), 

thermal gravimetric analysis (TGA), infrared spectroscopy (IR) and Raman spectroscopy 

(RS), have been utilized in investigating crystalline hydrates [192, 193]. Vibrational 

spectroscopy (infrared and Raman spectroscopy) can provide molecular level 

information, making these techniques potent for understanding and monitoring the 

hydration/dehydration processes. The sensitivity of Raman spectroscopy to changes in 

molecular arrangement and conformation as well as the negligible contribution of water 

to the Raman signal makes Raman ideal for application in hydrate formation and 

dehydration studies [194, 195]. Other advantages of Raman spectroscopy include the ease 
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of use, little to none sample preparation requirement, non-destructiveness and spectral 

specificity [196].  

Conventional Raman instruments involve detection in the mid to high-frequency 

regions, typically around 200 – 4000 cm-1, which are mainly associated with the 

intramolecular interactions within the molecule [197]. More subtle changes involving the 

intermolecular interactions occur at the low-frequency Raman region (<10 – 200 cm-1) 

and cannot be observed using conventional Raman instruments. This is due to the over 

compensation of the optical method (e.g. notch filters) removing the low-frequency 

Raman signals during filtering of the extremely dominant Rayleigh scattering signal. 

However, advances in ultra-narrow optical filter technology (particularly volume Bragg 

gratings) have increased the application of low-frequency Raman (LFR) instruments, as 

they permit the Rayleigh scattering to be easily filtered without interfering with signals 

associated with vibrations in the LFR region [194, 195, 198, 199].  

Vibrational spectra below 200 cm-1 posit great advantage for understanding phase 

transformation, crystallization and solid dosage formulation [197, 200]. The LFR region 

provides insight relating to intermolecular interactions like hydrogen bonding, π – π 

stacking in aromatic rings and phonon modes that exist within the crystal lattice [197, 

198, 201], explaining the growing interest in pharmaceutical applications including 

dehydration of crystalline hydrates [202, 203], solid-state dosage forms [13], phase 

transformation [204-207] and in-situ solubilisation [198, 208, 209].   

Despite the increasing application of LFR, interpretation of the observed modes 

remains somewhat challenging and requires detailed theoretical calculations. This is 

further complicated by the molecular complexities and intricacies within the crystal 

structure as highlighted by Bērziņš et al. [210]. Notwithstanding these challenges, Raman 

spectroscopy and computational tools like density functional theory (DFT) continue to 

prove crucial in understanding physio-chemical and structural properties of compounds 

[211, 212]. The DFT computational models augment spectroscopic methods by providing 

assignments to vibrational modes below 200 cm-1 in organic molecules [213]. The 
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combination of the LFR and mid-frequency Raman (MFR) regions provides insight into 

solid-state transformation, owing to the availability of information relating to intra and 

intermolecular vibrations of the molecule.  

In this study, piroxicam and theophylline were utilized as the model drugs in 

understanding dehydration of crystalline hydrates. Piroxicam (4-hydroxy-2-methyl-N-

pyridin-2-yl-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) is a poorly water-soluble 

nonsteroidal anti-inflammatory drug used in the treatment of arthritis [214]. Six solid-

state forms of piroxicam have been identified in the Cambridge structural database (CSD) 

including five anhydrous and one monohydrate crystalline forms [215]. The published 

crystal structure of piroxicam monohydrate has been shown to have a more complex 

hydrogen-bonding network compared to the anhydrous forms. The solid-state forms used 

in this study were the piroxicam anhydrous form 1 (CSD: BIYSEH13) [216] (hereby 

denoted as PXA form I) and the monohydrate (CSD: CIDYAP02) [216] (hereby denoted 

as PXM).  

Theophylline (1,3-dimethyl xanthine) is a widely prescribed respiratory drug for the 

treatment of asthma or chronic obstructive pulmonary disease [217] . Like piroxicam, 

theophylline exists in different solid-state forms, with four anhydrous and one 

monohydrate form already reported [218]. The solid-state forms used in this study were 

the anhydrous form II (CSD: BAPLOT01) [219] (hereby denoted as TPAH form II) and 

the monohydrate (CSD: THEOPH02) [220] (hereby denoted as TPMH). TPAH form II 

has been reported to be stable at room temperature whereas anhydrous form I is stable at 

high temperatures [221].  The structure of piroxicam and theophylline monohydrates is 

shown in Figure 4.1. 

Analysis of large spectral data is made feasible with the use of various multivariate 

analytical tools including PCA [192], PLSR [13], window factor analysis [222] and MCR 

[50]. The MCR approach has garnered increased attention in spectral analysis as it offers 

the advantage of decomposing complex spectral mixtures into pure component spectra as 

well as providing the concentration profiles. This allows for both qualitative and 
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quantitative analysis [50]. MCR has been successfully applied in solid-state 

transformation studies involving powder X-ray powder diffraction [223] and Raman 

spectroscopy [224].  

In the present study, the LFR and MFR regions as well as theoretical calculations 

were utilized to gain insight into the dehydration of crystalline hydrates. The 

simultaneous access to the LFR and MFR regions was made feasible by utilising a 

custom-built Raman instrument. Isothermal kinetic analysis was performed using MCR 

to highlight the solid-state forms (and/or metastable states) upon dehydration of the 

monohydrates, and DFT simulations were used to better understand the nature of the 

vibrational modes. 

 

 

 

Figure 4.1: Molecular structures of (a) piroxicam monohydrate and (b) theophylline monohydrate. 

4.4 Materials and methods  

 Sample preparation 

Piroxicam (USP grade) was used as received (Hawkins Inc., Roseville, Minnesota, 

USA). Piroxicam monohydrate (PXM) was prepared by dissolving 1.5 g of anhydrous 

piroxicam in 1.5 L of distilled water and heating to 80 °C with stirring at 450 rpm for 
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approximately one hour, until fully dissolved. The solution was cooled overnight in a 

fume hood and vacuum filtration carried out to harvest the monohydrate.  Characterisation 

of PXM was carried out by X-ray powder diffractometry (XRPD) as described by 

Lipiäinen et al. [13]. Further characterization was performed by comparing the MFR data 

to published references.  

Theophylline monohydrate (TPMH) was prepared by dissolving 0.5 g of anhydrous 

theophylline in 50 mL distilled water at 60 oC using a stirring rate of 450 rpm for 30 min, 

until the anhydrous theophylline was fully dissolved. The solution was cooled overnight 

and the needle-shaped crystals of TPMH were harvested after 72 hours. Characterisation 

was carried out by comparing the conventional Raman spectrum to published references.  

 Isothermal dehydration of crystalline hydrates 

Piroxicam and theophylline monohydrate samples, approximately 0.1 μm (PXM) 

and 10 μm (TPMH) sizes, were contained within a Tzero pan (TA Instruments Ltd, DE) 

and secured to the PE120 stage using a small amount of thermal paste. The temperature 

was altered using a PE95 controller, LinkPad PE120 variable-temperature stage and an 

ECP water supply (Linkam Scientific Instruments Ltd, UK). Isothermal dehydration was 

carried out at 95, 100, 105 and 110 oC for 6 hours (PXM) and at 50, 60, 70 and 80 oC for 

90 minutes (TPMH); using a heating rate of 20 oC/min to reach the desired temperature. 

 Low-frequency Raman (LFR) spectroscopy 

Raman spectra were acquired using a custom built LFR system (LFR – 785) that 

allows for simultaneous collection of data in both, the LFR and MFR [195]. The LFR 

setup included an excitation source from a 785 nm laser module (Ondax, Inc. Monrovia, 

CA, USA) which was filtered by BragGrate bandpass filters (OptiGrate Corp. Oviedo, 

FL, USA) to remove amplified spontaneous emission before irradiating the sample. 

Backscattered light from the sample was collected and filtered through a set of volume 

Bragg gratings (Ondax Inc., Monrovia, CA) and focused into an LS 785 spectrograph 
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(Princeton Instruments, Trenton, NJ, USA) where the light was dispersed onto a CCD 

detector (PIXIS 100 BR CCD, Princeton Instruments, Trenton, NJ, USA). The Raman 

data were calibrated using sulfur, 1,4 bis (2-methylstyryl) benzene (BMB), toluene and 

acetonitrile solvent (1:1) standards. Spectra were collected over the spectral window -365 

to 2030 cm−1 with 5-7 cm−1 resolution, with a sample spot size of approximately 500 μm. 

Each spectrum consisted of 60 scans recorded with an integration time of 0.1 s each, 

accounting for a total readout time of 7.35 s. Dehydration measurements were carried out 

in triplicate for each dehydration temperature.   

 Reference measurements  

Reference Raman data were collected using the LFR setup described above. An 

LNP95 liquid nitrogen cooler controlled variable temperature stage (THMS600; Linkam 

Scientific Instruments Ltd., UK) was used to horizontally hold the sample, which was 

secured in a quartz sample holder. Data collection was carried out at two different 

temperatures, initially at 20 oC then rapidly cooled to -190 oC. At each temperature point, 

the sample was held for at least 5 min to allow for temperature stabilization before 

acquiring the spectral data. Spectral acquisition was performed using the same setup 

described above and each spectrum consisted of 300 scans with a 1 s integration time.  

4.5 Spectral data and multivariate analysis 

 Spectral pre-processing  

Spectral data were pre-processed by performing cosmic spike removal across the full 

spectral region (-365 cm-1 to 2030 cm-1) in the optical spectroscopy software 

Spectragryph v1.2.14 (Friedrich Menges, Germany); with further pre-processing carried 

out in The Unscrambler X 10.5 (CAMO, Norway). The LFR (20 - 300 cm-1) and MFR 

(330 - 1800 cm-1) regions were baseline corrected using linear baseline correction, with 
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standard normal variate (SNV) performed to normalise the intensity variations in the 

spectral measurements. Baseline offset was then performed on the normalised data to 

ensure non-negative variables were obtained for further analysis. The TPMH spectral data 

were further averaged (five spectra point) and Savitzky-Golay smoothing was performed 

using a first order polynomial and seven-point filter window to reduce the noise 

(particularly in the MFR region).  

 Multivariate analysis (chemometrics) 

4.5.2.1 Principal component analysis (PCA) 

Preliminary spectral data analysis was performed using PCA in The Unscrambler X 

10.5 (CAMO, Norway). PCA was performed on data from both the LFR and MFR regions 

independently as well as in combination.  PCA model was calculated using spectral data 

acquired at isothermal conditions.  

4.5.2.2 Multivariate curve resolution (MCR)  

Kinetic data analysis was carried out using multivariate curve resolution (MCR) in 

The Unscrambler X 10.5 (CAMO, Norway). MCR is a mathematical technique that 

resolves multicomponent mixture systems through a bilinear modelling of the pure 

component contributions. It resolves spectra mixtures (X) by decomposing them as a 

product of the component spectra (S) and contribution profiles (C).[225] MCR analysis 

was performed on the isothermal spectral data using different constraints including non-

negativity and closure. These constraints were applied to optimize the MCR model and 

reduce the number of responses with chemical significance. Model specific settings 

(sensitivity to pure components: 50 and maximum number of alternating least square 

iterations: 100) were adopted.    
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4.6 Computational details 

Theoretical solid-state density functional theory (DFT) calculations were performed 

using the fully periodic CRYSTAL17 [226] software package to model vibrational 

modes. A generalized gradient approximation Perdew-Burke-Ernzerhof (PBE) [227] 

functional with Van der Waals interactions treated according to the Grimme D3 [228] 

method was used, and all of the atoms were described with Ahlrichs’ TZVP[229] basis 

set. The crystal structures of PXM (CSD ref: CIDYAP02),[216]  PXA form I (CSD ref: 

BIYEH13) [216], TPMH (CSD ref: THEOPH02) [220] and TPAH form II (CSD ref: 

BAPLOT01) [219]  were fully optimized with no implied restrictions on atom positions 

or lattice parameters, and the dielectric tensor and Raman intensities were calculated 

analytically using the coupled-perturbed Hartree-Fock/Kohn-Sham (CPHF/CPKS) 

approach [230]. Energy convergence criteria was set to E ≤ 10-8 and 10-10 Hartree for 

the geometry optimization and vibrational calculations, respectively. The calculated 

vibrational modes were visualized using the MOLDRAW 2.0 (version H1) software 

[231].  

4.7 Results and discussion  

The results and discussion are divided into four main components: exploratory 

analysis with PCA for PXM, MCR derived kinetics for dehydration of PXM, exploratory 

analysis with PCA for TPMH and MCR derived kinetics for dehydration of TPMH.  

 Exploratory analysis  

An initial characterisation of PXM and TPMH was conducted in order to identify 

and monitor their solid-state forms. The commonly used MFR spectral data collected at 

~20 oC were compared to published data in literature [13, 192]. Piroxicam showed 

characteristic Raman bands at 1400 cm-1, 1464 cm-1 (PXM) and 1522 cm-1 (PXA form I) 

[232]. The observed signatures have been associated with various intramolecular 
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vibrational modes including conjugated CO moieties (1400 and 1464 cm-1) and C-N 

stretch and N-H deformation (1522 cm-1) (Figure A.2 in supplementary information).  

Comparison of the MFR spectral data of the different forms of theophylline showed bands 

at 1174, 1685 cm-1 (TPMH) and 1665, 1706 cm-1 (TPAH form II); which were consistent 

with those reported in literature [233, 234]. Peak assignment showed that the bands at 

1653-1685 cm-1 is associated with carbonyl stretching modes in TPMH whereas the 

corresponding mode in TPAH form II appeared at 1665 and 1706 cm-1 [235]. Solid-state 

characterisation in the MFR region commonly involves peak shifts due to similarity in 

chemical composition of the different forms, however, geometry differences could result 

in the appearance of unique peaks which can facilitate characterisation [200].   

In contrast to the MFR region, the LFR region probes lattice vibrational modes that 

are dependent on the long range order (i.e., crystallinity) and intermolecular interactions 

between participating molecules [193]. This interaction varies across different solid-state 

forms; as such, the LFR offers a unique way of identification and characterisation of 

different solid-state forms [197]. Comparison of the LFR and MFR reference data reveals 

that the bands in the LFR region had greater intensity and were distinctly different for the 

two crystalline forms of each of piroxicam and theophylline. The intense bands have been 

attributed to sizeable changes in the polarizability for these low-wavenumber vibrations 

[197, 236]. In the LFR region, the largest spectral difference in the four crystal forms 

were observed at Raman shift < 100 cm-1. The lattice vibrations are expected to be 

observed in this region, and are dependent on a number of factors including the molecular-

site symmetry and intermolecular forces. The number of symmetry-independent 

molecules in a crystal structure is represented as Z’ [237, 238]. More defined peaks were 

observed for crystal phases with Z’ = 1 (PXA, TPAH and TPMH) in contrast to broader 

peaks observed for PXM which has a Z’ =2 [216, 219, 220]. This could be due to the 

complex nature of the packing in PXM as shown Figure A.1 in supplementary 

information.  

TPAH form II and TPMH have been reported to exhibit an ordered arrangement with 

the hydrogen-bonded network stacked over one another to form a π- π aromatic ring 
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stacking. In TPAH form II, the amine (NH) group and N atoms of the purine ring are 

involved in the hydrogen bond interaction whereas in TPMH, the NHO bonds involving 

the NH group of the purine and one of the lactam CO groups result in dimer formation. 

These dimers are linked by the water molecules through an OHN hydrogen bond with 

a N atom in the purine ring [197]. Conversely, the LFR signature of caffeine, a structural 

analogue of theophylline, is characterised by the absence of phonon peaks as reported by 

Hédoux et al [202]. This has been highlighted to be due to the orientational disorder 

around the C6 molecular axis in caffeine [202, 204].  

Investigation into the nature of vibrational frequencies and consequently Raman 

activities of piroxicam and theophylline solid-state forms was carried out in the 

CRYSTAL17 software environment. Comparison of the experimental and theoretical 

results are presented in Figure 4.2 and Figure 4.3. The theoretical results were in good 

agreement with the experimental data (especially with spectra obtained at -190 oC due to 

the nature of the theoretical simulations - full relaxation of atom positions and lattice 

parameters were carried out during the geometry optimization step which better represent 

the crystal structure near absolute zero). Information on the specific mode assignments 

for all four solid-state forms used in this study is presented in Table A1 – A4 in the 

supplementary information section.  

Interestingly, the PXM model showed uncharacteristically low predicted Raman 

intensities for the modes in the LFR region, which could be related to their experimentally 

observed intrinsic similarity to the bands in the higher wavenumber domain.  

Nevertheless, it is important to note that while DFT-simulations for the optimized solid-

state structures of PXM and TPAH yielded generally valid models. PXA and TPMH 

exhibited several (small) imaginary frequencies (one and three, respectively). Occurrence 

of such ambiguities for periodic calculations is not uncommon considering the 

complexity of these simulations (for example, PXM structure optimization and frequency 

analysis took approximately 51 days using 276 processor cores in parallel from Intel® 

Xeon® E5-2695 v4 CPUs), which typically appear due to numerical errors.  

Conceptually, these irregularities can be treated differently to in vacuo counterparts due 
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their often localized nature in periodic systems, i.e., negligible impact on the rest of the 

data. It is important to note that attempts to further optimize the structures with tighter 

convergence criteria to resolve the negative frequencies were unsuccessful. Additionally, 

the use of an alternative crystal structure (for example, THEOPH01) [239] for the 

geometry input, not only generated similar problems for the simulation, but also inherited 

lesser accuracy for the respective peak positions and Raman intensities.   

 

 

 

Figure 4.2: Experimental and DFT-simulated LFR spectra of (a) PXA form I (b) PXM (c) TPAH 

form II (d) TPMH. The theoretical data were in good agreement with experimental results 

particularly spectral data acquired at -190 oC. 
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Figure 4.3: Experimental and DFT-simulated MFR spectra of (a) PXA form I (b) PXM (c) TPAH 

form II (d) TPMH. The experimental and theoretical results show good agreement particularly at 

-190 oC.  

 Dehydration of piroxicam monohydrate  

To investigate the dehydration of PXM, multiple isothermal experiments were 

carried out between 95 – 110 oC for 6 hours using a low-frequency Raman setup. This 

system was capable of the simultaneous acquisition of the LFR and MFR regions, as such 

allowed investigation of both the intra- and intermolecular interactions within the crystal 

lattice of the solid-state forms. Complete dehydration of PXM was accompanied by a 

colour change of the starting material from yellow to white which was visually observed. 

Figure 4.4 shows representative Raman spectral data collected on dehydration of PXM at 
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110 ℃. Initial spectral assessment reveals that Raman signatures of the final spectral data 

for all temperatures were consistent with PXA form I (Figure A.2 in supplementary 

information). The presence of the characteristic PXA form I bands at 1522 cm-1 and a 

shoulder peak at 1475 cm-1 highlight that PXM dehydrates to PXA form I, which is in 

agreement with studies conducted by Sheth et al. and Kogermann et al. [192, 240].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Representative LFR (top) and MFR (bottom) spectral data acquired during the 

isothermal dehydration of PXM at 95 oC for 120 min.  
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In the low wavenumber domain, PXM showed strong peaks at 60 cm-1 and 85 cm-1. 

Less intense peaks were observed at higher wavenumber domain (120 – 270 cm-1). During 

dehydration, the intensity of the Raman band at 60 cm-1 decreased until it completely 

disappeared by the end of the experiment. This peak has no correspondence in the spectra 

of PXA form I, and could be attributed to vibrations involving water molecules.[241] 

Spectral changes in the MFR showed decrease in intensities of the PXM peaks at 1400 

cm-1 and 1464 cm-1 until complete disappearance, with the formation of a shoulder peak 

at 1475 cm-1.   

PCA was carried out to better elucidate the dehydration behaviour of PXM and 

TPMH in isothermal conditions.  PCA models were calculated using the LFR and MFR 

spectral data separately as well as in combination (LFR-MFR). As expected, faster 

dehydration was observed at higher temperatures.  Examination of the loadings and scores 

plots using the conventional MFR region highlighted that 87 % of the total spectral 

variance was explained in the first principal component (PC1). The PC1 loadings plot had 

spectral contributions from both PXM (positive PC1 space) and PXA form I (negative 

PC1 space) (Figure 4.5), suggesting that the dehydration involves two solid-state forms. 

PC2 loadings was dominated by signals of PXA form I, which emphasises the final form 

of PXM dehydration. This finding was consistent on investigation of the LFR and the 

combined LFR-MFR spectral data. The loadings in the MFR was flipped on comparison 

to the LFR and LFR-MFR, with the PXM bands appearing in the negative PC space and 

the PXA form I bands appearing in the positive PC space. This is likely due to the way 

the algorithm models the different data regions.  The loadings and scaled scores plots 

from the PCA analysis are presented in Figure 4.5. The PCA scores were scaled by 

performing mean normalisation on the data in The Unscrambler X software environment.  
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Figure 4.5: PC1 scores and loadings plot showing dehydration profiles of PXM in the LFR 

(top), MFR (middle) and both regions combined (bottom).  
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 Multivariate curve resolution derived dehydration 

kinetics of piroxicam monohydrate  

MCR analysis was performed to identify the contributing pure components within 

the acquired spectral data matrix as well as their concentration profiles. Like PCA, MCR 

was performed using the LFR and MFR data separately and in combination. MCR 

analysis was performed using different optimization techniques to facilitate complete 

resolution of spectra components.  The MCR concentration profiles and component 

spectra are presented in Figure 4.6. The MCR model using the conventional MFR regime 

suggests the dehydration of PXM to be a two-component system. The MCR output shows 

the first spectral component (C1) to be consistent with Raman signatures of PXM whereas 

the second component (C2) resembles PXA form I. The concentration profile showed full 

resolution for the two components at all temperatures considered, with a decrease in C1 

(PXM) from 1 to 0 associated with a corresponding increase in C2 (PXA form I) from 0 

to 1. Similarly, the LFR MCR modelling revealed the dehydration to be a single-step 

process, with C1 having spectral features characteristic of PXM and C2 having features 

associated with PXA form I. However, the concentration profile was not sufficiently 

resolved at lower dehydration temperatures (particularly 95 and 100 oC).  Optimization 

of the MCR analysis by introducing initial estimates of PXM and PXA form I yielded no 

improvement in the model output.  Combination of LFR and MFR (LFR-MFR) spectral 

regions yielded improvements in the model output, with full resolution of C1 and C2 

which could be indicative of an enhanced information obtained on combination of both 

regions.   

Further investigation showed that the onset of dehydration of PXM was detected at 

different timescales by each of the LFR and MFR regions. The LFR region identified the 

onset of dehydration by approximately 2 min before the MFR. A representative plot is 

shown in Figure 4.7.  This could be indicative of the increased sensitivity of the LFR 

region to solid-state changes compared to the MFR region. This sensitivity can be related 

to the complex hydrogen-bonding network present in PXM as shown in Figure A.1 
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(supplementary information), wherein the four molecules of piroxicam forms two 

hydrogen bonded dimers and the water molecules for a central tetrameric structure that 

connects the two dimers. 

Many factors can influence the dehydration kinetics, with the crystal structure being 

the most important. Knowing the crystal structure and the energy of interactions between 

the water and host molecules facilitates the explanation of the dehydration process [242]. 

PXA form I exists in a dimer form, where the intermolecular hydrogen bonding occurs 

between an amide NH group and oxygen in sulfoxide group [243] whereas PXM forms a 

central tetrameric structure involving two piroxicam dimers bridged by a hydrogen bond 

network involving the water molecule and the amide carbonyl group. Two of these dimers 

are connected by the independent water molecules forming a tetramer [244].  It was thus 

considered that the low-frequency region is detecting the increasing initial mobility (and 

therefore lack of order) in the “columns” of H-bonded water molecules within the crystal 

framework. However, investigation into the crystal structure of PXM revealed the 

absence of channels, layers or tunnels that can accommodate water molecules, as such, 

preferential escape of water molecules of a crystalline hydrate along tunnels could not be 

used to explain the dehydration of PXM. The dehydration process of PXM has been 

reported to occur as a result of hydrogen-bond dissociation corresponding to inward 

advance of the phase boundary from the surface to the center of the crystal, explaining 

the isothermal fit to a two-dimensional phase boundary reaction model (R2) [240].  
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Figure 4.6: MCR analysis results showing the concentration profiles and component spectra on 

dehydration of PXM at different temperatures for LFR (top), MFR (middle) and both regions 

combined (bottom).  
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Figure 4.7: Representation of the dehydration kinetics for the low and mid-frequency regions 

showing detection of changes at different timescales (a) PXM (110 oC)  (b) TPMH (80 oC). 

 Dehydration of theophylline monohydrate  

Dehydration of TPMH was monitored at four different temperatures (50, 60, 70 and 

80 oC). Figure 4.8 shows the acquired Raman spectral data in both the LFR and MFR 

regions for the dehydration of theophylline monohydrate at 60 oC. Evaluation of the 

acquired spectral data reveals the formation of TPAH form II on complete dehydration 

(as shown in Figure D3 in supplementary section). In the LFR region, TPMH showed 

bands at 26, 42 and 94 cm-1 which diminished in intensity and disappeared completely by 

the end of the experiment. This was associated with an appearance of a shoulder at 115 

cm-1, growing into a defined TPAH form II band. Other LFR bands were observed at 19, 

33, 65 and 81 cm-1 which were consistent with the signatures of TPAH form II [245].  

Observation into the conventional MFR region reveals the formation of characteristic 

TPAH form II carbonyl bands at 1667 and 1704 cm-1, with the corresponding mode in the 

monohydrate form appearing at 1686 cm-1 [235].  

The dehydration behaviour of TPMH was evaluated using PCA, with the scores and 

loadings plots presented in Figure 8. In the LFR domain, 95 % of the total variance was 

explained by the first principal component. PC1 loadings showed Raman signatures 
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corresponding to both TPMH and TPAH form II highlighting the composition of the 

dehydration process. PC1 scores plot shows the dehydration kinetics on conversion of 

TPMH.  As expected, faster dehydration was observed at higher temperatures. In the MFR 

region, PC1 explained 64 % of the total spectral variance with the loadings plot having 

features associated with both TPMH (positive PC space) and TPAH form II (negative PC 

space) suggesting the dehydration of TPMH to be a two component system. A similar 

observation was made upon combination of both LFR and MFR regions. The PCA scores 

and loadings plots are shown in Figure 4.9. 

 Multivariate curve resolution derived dehydration 

kinetics of theophylline monohydrate  

Isothermal dehydration kinetic modelling using MCR was utilized to resolve the 

spectral matrix into respective pure components. The MCR concentration profile (Figure 

4.10) using the MFR and combined LFR-MFR regions suggest the dehydration of TPMH 

to be a multi-component system at 50 oC. It is of note that using only the LFR region, the 

dehydration kinetics implies a 2-component system for all temperatures considered. In 

the MFR and combined LFR-MFR regions, an intermediate state (denoted as TPMS) 

could be detected 50 oC but was absent for other temperatures. The absence of any 

intermediate state at higher temperatures could be attributed to a faster dehydration [246]. 

The loadings plot indicates that the first and third component can be associated with 

TPMH and TPAH form II, respectively. Whereas the second component corresponds to 

the intermediate state. Conversely, MCR resolved spectral data from the LFR region to 

consist of only two components. This might be indicative of the absence of adequate long-

range order in the intermediate state as to be detected in the LFR spectral range.  
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Figure 4.8:  Representative Raman spectral data acquired during the isothermal dehydration of 

theophylline monohydrate at 60 oC for 100 min. 
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Figure 4.9: PC1 scores and loadings plot showing dehydration profile of TPMH in the LFR, MFR 

and both regions combined.  

Similar to PXM, early onset of dehydration was first observed in the LFR region by 

approximately 1.5 min before the MFR (Figure 4.7b) which could be suggestive of the 

increased sensitivity to changes in the hydrogen bonding network and the disappearance 

of the water molecules. Studies involving direct process measurements during 
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fluidization with in-line near infrared (NIR) spectroscopy coupled with in-line Raman 

spectroscopy suggest dehydration of TPMH involving the disappearance of water 

detected with NIR a few minutes prior to structural rearrangements observed with Raman 

spectroscopy [247].  TPAH form II and TPMH have been reported to exhibit an ordered 

arrangement with the hydrogen-bonded network stacked over one another to form a π- π 

aromatic ring stacking. In TPAH form II, the amine (NH) group and N atoms of the purine 

ring is involved in the hydrogen bond interaction whereas in TPMH, the NHO bonds 

involving the NH group of the purine and one of the lactam CO groups result in a dimer 

formation. These dimers are linked by the water molecules through an OHN hydrogen 

bond with a N atom in the purine ring [197].  

A different mechanism has been reported for the dehydration of TPMH which could 

be suggestive of the complexities of this process. Dehydration of TPMH has been 

reported to occur via a two-step process depending on the experimental conditions 

(including dehydration temperature) [234, 248-250]. Duddu et al. [251] reported the 

dehydration of TPMH to occur via a two-step process at 40 oC and a one-step process at 

47 oC, while Karjalainen et al. (2005) reported the appearance of intermediate state for 

dehydration at temperatures above 40 oC [251, 252].  
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Figure 4.10: MCR analysis output showing the contributing concentration profiles and component 

spectra on dehydration of TPMH. 
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4.8 Conclusions 

Isothermal dehydration of PXM and TPMH was performed using low frequency 

Raman spectroscopy, with multivariate analysis carried out using PCA and MCR. 

Dehydration changes showed the formation of anhydrous form I and anhydrous 

theophylline form II on complete dehydration of the monohydrates, which were 

consistent with literature. MCR kinetic analysis highlighted that the dehydration of PXM 

involves a two-component system (one-step dehydration) whereas the dehydration of 

TPMH suggests a multi-step process in the MFR at 50 oC and single-step process at higher 

temperatures may be indicative of the considerable influence of dehydration conditions 

as well as the heating method on the kinetics.  In addition, the probing technique allowed 

for detection of different information with the LFR region identifying early onset of 

dehydration and loss of water molecules whereas the MFR highlighted structural 

rearrangement in the molecules. DFT calculations were informative on the nature of the 

vibrations and Raman bands particularly below 200 cm-1. Based on the results, the use of 

both the LFR and MFR proved more informative and showed complete resolution upon 

MCR analysis as compared to the use of individual regions. This chapter highlights the 

importance of understanding the dehydration process in crystal hydrates, to ensure the 

presence of target solid-state form.  The use of both the LFR and MFR regions facilitated 

the probing of both the intra- and intermolecular interactions within the molecule. 
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Chapter 5 

Discrimination of phenotypes of immune cells  
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5.3 Introduction  

Raman spectroscopy (RS) has garnered increased attention as a rapid and non-

destructive diagnostic tool for uncovering molecular basis of diseases as well as for evaluating 

treatment therapies [253]. The contention for this method in biological and clinical 

spectroscopy is considerably justified owing to its non-invasiveness, label-free requirement 

and negligible interference with water molecules. RS probes the vibration of bonds in a sample 

yielding molecular specific information on the composition/structure of the molecule; which 

can be utilized for qualitative and quantitative analysis [5, 254]. RS is a two-photon process 

involving the inelastic scattering of an incident photon from a monochromatic light source 

(laser) on interaction with a sample. The resulting energy difference between the incident and 

scattered photon referred to as Raman shift provides information on the vibration of the 

chemical bonds present in a sample [113].  A typical Raman spectrum of a biological cell 

comprises different overlapping peaks relating to the composition of macromolecules like 

nucleic acids, lipids, protein, carbohydrates and other metabolites [255, 256]. 

RS has been widely applied in clinical spectroscopy, particularly in cancer diagnosis 

and discrimination, with several studies reporting the sensitivity of RS to changes in molecular 

conformation and composition in both cells and tissues owing to carcinogenesis [83, 84, 257, 

258]. The biochemical changes resulting on transition of normal to malignant tissue 

(glioblastoma) have been investigated using RS [259-261], with increased cholesterol (-esters) 

levels reported in the necrotic tissue [261]. RS has also been utilized in the discrimination of 

normal and malignant cells (tissues) in brain tumour, with some studies reporting an accuracy 

of over 98 % [262, 263].  

Despite the apparent applicability of RS in biological cell (tissue) studies, the inherent 

weak nature of Raman scattering limits its application in clinical settings. However, recent 

advancements in optical technologies allowing for integration of RS and confocal microscopy 

have led to improvements in spectral resolution as well as the possibility for live cell imaging 

[264, 265]. 
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Glioblastomas (GBMs) are the most common and malignant primary brain tumours 

with an extremely aggressive clinical phenotype and very poor prognosis [266, 267]. One of 

the biggest challenges in GBM’s effective treatment is the presence of highly invasive tumour 

cells called glioblastoma stem-cells (GSCs) that disseminate into the normal brain parenchyma 

and lead to tumour recurrence [268]. GSCs are enriched by the molecular pathway called 

epithelial to mesenchymal-like (EMT-like) transition and its activator, Zinc Finger E-Box 

Binding Homeobox 1 (ZEB1), plays a key role in glioma cell invasion [269, 270]. Most 

recently, an ecto-5’-nucleotidase (NT5E) known as CD73, that catalyses the conversion of 

adenosine mono phosphate (AMP) to adenosine (ADO), has been shown to regulate EMT in 

cancers [271]. Both CD73 and the EMT status have been shown to regulate cancer cell 

immunogenicity [272, 273].  

The immune system and its responses can be broadly divided into two parts - innate 

and adaptive immunity with these two branches interacting closely to efficiently clear the body 

of invading pathogens and malignant cells.  Innate immune cells, such as monocytes, are able 

to detect and phagocytose cancerous cells [274]. Monocytes can differentiate into macrophages 

(MΦs) and dendritic cells (DCs), which play important roles in priming antigen-specific 

adaptive immune responses [275]. Adaptive immune responses, mediated by B- and T-cells, 

develop more slowly than innate immune responses. They provide antigen-specific responses 

and are associated with immunological memory, leading to enhance response to subsequent 

encounter of same pathogen [276]. This is the basis of vaccination and an important mechanism 

to prevent cancer recurrence.  

B- and T-cells are types of white blood cells, named after the organs where they 

develop, thymus gland (for T-cell) and bursa of Fabricius in birds (for B-cell) [277]. Two 

subtypes of T-cells carry out immune-mediated cell death, which is one of the main function 

of T-cells. These subtypes are CD8+ (“killer”) and CD4+ (“helper”) T-cells, with the names 

highlighting the cell surface protein present (CD8 or CD4).  The CD8+ T-cells are cytotoxic, 

which entails that they directly kill virus-infected cells as well as cancer cells; whereas, CD4+ 

T-cells function by signalling other part of the immune system (by secreting cytokine) to a 

specific, perceived threat [278, 279].   
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In GBM patients, circulating monocytes express higher programmed death-ligand 1 

(PD-L1) levels compared to healthy controls, which leads to suppression of T-cell responses 

[280]. This is the down-regulation of the response of the immune system to the cells of the 

human body by promoting self-tolerance and suppressing T-cell inflammation. It is responsible 

for preventing autoimmune diseases but can prevent the immune system from killing cancer 

cells. Furthermore, it has been shown that CD8+ and CD4+ T-cells are exhausted in GBMs and 

are incapable of driving an effector immune response [281].  

Given the urgent need of developing techniques for cancer screening, diagnosis, and 

intraoperative surgical guidance, Raman spectroscopy has emerged as a non-invasive therapy 

guidance and diagnostic tool and has been used to define invasive margin of GBMs [282, 283]. 

The entire Raman spectra of a single cell referred to as “ramanome” is informative on the 

composition of all the molecules present in the cell. It is expected that different treatment of 

the cells will lead to changes in physiological and morphological features, such as distinct 

Raman spectrum [284]. Interpretation of Raman spectra for qualitative purposes have involved 

both univariate and multivariate approaches. The univariate approach entails visual inspection 

of one or few Raman peaks belonging to specific chemical components; and making 

comparison on the intensity changes in such peaks. This technique howbeit informative, results 

in loss of spectral information in the unselected regions. This challenge can be overcome by 

utilizing a global spectral (multivariate) approach  using a single or combination of 

chemometric tools such as principal component analysis (PCA) [285], linear discriminant 

analysis (LDA) [286], K-means clustering [287] and support vector machine classification 

(SVMC) [288]. These tools allow for reduction in dimensionality in large datasets; facilitating 

interpretability while minimizing loss of information [289].  

Linear discriminant analysis (LDA) is a supervised feature extraction tool utilized for 

qualitative studies. The LDA algorithms provide linear transformation of n-dimensional feature 

vectors (samples) into an m-dimensional space usually called discriminant variables (where m 

< n), such that the distance between-class variance is maximized relative to the within-class 

variance [38].  The requirement of samples in the training set being larger than the number of 
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variables poses a challenge to the use of LDA. This constraint however is overcome by utilizing 

PCA-LDA, where PCA calculations are performed for reduction of data dimensionality prior 

to LDA calculation. The first four PCs were utilized in performing the PCA-LDA calculations 

in this study. In PCA-LDA, samples are grouped into predefined classes prior to model 

creation.  Similarly, SVM classification is supervised classification technique, with samples 

assigned to predefined groups prior to model creation.  

In the present study, confocal Raman micro-spectroscopy in combination with two 

chemometric tools (PCA-LDA and SVMC) was utilized to detect molecular differences of 

monocytes and T-cells from a single blood donor after incubation with TCM of GSCs upon 

ZEB1 inhibition and, therefore, EMT modulation, or CD73 inhibition. Furthermore, since EMT 

and CD73 are critical in cancer progression and chemoresistance [270, 290], confocal Raman 

micro-spectroscopy in combination with two chemometric tools were utilized to detect 

differences of the cells upon ZEB1 and CD73 inhibition. The differences in the phenotype of 

the immune cells were also assessed by flow cytometry but not discussed, as it is outside the 

scope of this thesis [37].  

5.4 Materials and methods 

 Cell culture  

Cell samples were utilized as received from the Department of Pathology, University 

of Otago, New Zealand. Three human glioblastoma cell lines were used in this study. JHH520 

cells were provided by G. Riggins (Baltimore, USA), GBM1 by A. Vescovi (Milan, Italy) and 

the paediatric GBM cell line SF188 was provided by E. Raabe (Baltimore, USA).   

 Raman instrument and cell measurements 

Raman spectral data were collected using an Alpha 300R+ confocal Raman microscope 

controlled with Project 5.1 software (WITec GmbH, Ulm, Germany). Daily instrument 

calibration was performed using a silicon wafer sample with Raman peak position at 
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approximately 520.6 cm-1. Measurement parameters included a laser excitation wavelength of 

532 nm (Coherent, California) at 20 mW power, with the 50x dry objective (Zeiss, Oberkocken, 

Germany) resulting in a laser spot size of 412 nm (refer to Equation 1.3). Single cell (spot) 

measurements were randomly collected from the cytoplasm of live non-fixed cells dispersed 

in phosphate buffer saline (PBS) on a glass slide. The cells and PBS were kept on ice prior to 

acquisition of spectral data in order to avoid metabolic changes. Additionally, the drop of cells 

in PBS placed on the glass slide was renewed within 10 min of measurements. Each spectrum 

consisted of 60 scans recorded with an integration time of 1 s over a spectral window of -55 to 

3789 cm-1 resulting in a read out time of 63 s.  Twenty (20) cells were measured for each 

treatment condition. The laboratory temperature was maintained at ~20 oC. 

 Spectral preprocessing 

Spectral data were pre-processed in the Project 5.1 software environment (WITec, Ulm, 

Germany). Spectral data were first corrected for cosmic spikes using the cosmic ray removal 

tool (filter size = 4, dynamic factor = 4). The obtained spectra were background subtracted 

using the dynamic ‘shape’ background algorithm (shape size = 300) to remove any 

fluorescence contribution. Standard normal variate (SNV) transformation was performed over 

the selected spectral region (725 to 1825 cm-1) in The Unscrambler X v10.5 (CAMO, Norway) 

to account for intensity variations across the collected spectral data.  

 Multivariate data analysis (chemometrics) 

In the present study, PCA was utilized as an unsupervised exploratory analysis tool 

whereas PCA-LDA and SVMC were employed as a supervised multivariate analysis tool for 

discrimination of the cells. All data analysis was performed in The Unscrambler X v10.5 

(CAMO, Norway) using the pre-processed spectral data region (725 to 1825 cm-1). 
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5.4.4.1 Exploratory analysis - Principal component analysis (PCA) 

The PCA model was calculated using a k-fold (k=3) random cross validation procedure 

and the nonlinear iterative partial least squares (NIPALS) algorithm to enhance model 

optimization. PCA was carried out on T-cells and monocytes (after incubation with TCMs) 

independently.  

Discrimination of phenotypes of immune cells were performed using two MVA tools 

including PCA-LDA and SVMC, which have been described in the introduction. Hence, only 

a brief review is presented herein.  

 

5.4.4.2 Principal component-Linear discriminant analysis (PCA-LDA) 

Principal component - Linear discriminant analysis (PCA-LDA) is a supervised feature 

extraction tool utilized for qualitative studies. The PCA-LDA model was created using 67 % 

of the dataset (training set) and the model validated against 33 % of the remaining dataset (test 

set). PCA-LDA was performed on each of the three cell lines with their respective control and 

knockdowns (pLKO.1, shCD73 and shZEB1) for both T-cells and monocytes. Model 

performance was evaluated with respect to the prediction accuracy, sensitivity and specificity. 

5.4.4.3 Support vector machine classification 

In this study, a linear kernel SVMC function was utilized in creating the model and the 

model performances were assessed as a function of accuracy, sensitivity and specificity. In all 

cases, the SVMC models were created using 67 % of the dataset (training set) and validated 

against 33 % of the dataset (test set). Like PCA-LDA, SVMC classification was performed on 

T-cells and monocytes after incubation with the genetically modified (pLKO.1, shCD73 and 

shZEB1) and WT GSCs. 

Model performances were evaluated with respect to the prediction accuracy, sensitivity 

and specificity. Sensitivity is the ability of the model to detect true positives based on all 
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samples classified as positive whereas specificity is the ability of a model to detect true 

negatives based on all samples classified as negative in a class [291]. 

5.5 Results and discussion 

To assess the ability of RS to distinguish between monocytes and T-cells after incubation with 

TCMs from GSCs with blocked ZEB1 or CD73, a minimum of twenty (20) cells were 

measured for each treatment condition. There were three human cell lines (GBM1, JHH520 

and SF188) and four treatment conditions for each cell line (pLKO.1, WT, shCD73 and 

shZEB1). Spectra visualization was performed manually to select only spectra data with lesser 

noise contribution. Upon removal of poor spectral data, a total of 214, 156 and 220 spectral 

data was obtained for T-cell, monocyte and GSC groups, respectively. This was obtained as 

the sum of all spectral data collected across the treatment conditions and cell lines for a 

particularly cell type (say T-cell). Figure 5.1A-C shows the mean ± standard deviation of 

preprocessed Raman spectral data collected from T-cells, monocytes and GSC cells, 

respectively. 

Reference spectrum obtained for PBS displayed a strong band around 3100 – 3500 cm-1 (O-H 

stretching) and a weaker band around 1640 cm-1 (O-H bending vibration). No visible band was 

observed for phosphate group (typically around 1093 cm-1). The observed Raman spectra for 

the cells were dominated by bands at 754, 787, 938, 1003, 1093, 1258, 1303/1310, 1332, 1450, 

1578, 1657, 1754, 2934, 3262 and 3416 cm-1.  Broadly speaking, the observed bands were 

consistent with Raman signatures reported for proteins, lipids and nucleic acids as shown in 

Table 5.1 [292-298]. The sharp band at 1003 cm-1 can be associated with phenylalanine ring 

breathing mode [285, 299] whereas other nucleic acid vibrations could be observed at 787 cm-

1 (cytosine and uracil residues), 1093 and 1578 cm-1 (PO2
– nucleic acids) [293, 296, 298]. The 

bands at 1258 cm-1 and 1303/1310 cm-1 are usually assigned to amide III (β-sheet) vibrations 

in protein and CH2 twisting mode in lipids, respectively [292, 294, 295, 298]. The amide I band 

was observed at 1657 cm-1 [300]. Similar Raman bands were observed for the immune cells 

and GSCs as shown in Figure 1.  The number of overlapping components in the spectral 

features for the three cell types limits the use of univariate analysis method; hence three 
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multivariate techniques including PCA, SVMC and LDA, was employed for better spectral 

visualisation and interpretation.  

 

 Table 5.1: Peak assignments for Raman spectra of T-cells and monocytes incubated with TCMs 

 

 

 

 

 

 

 

 

Bands (cm-1) Origin Assignments Reference 

754 Nucleic acids Tryp breathing [297, 299] 

781/787 Nucleic acids PO2
- symmetric stretching [292, 294] 

938 Protein C-C backbone stretching α-helix [292, 294] 

1001/1003 Phenylalanine Phe ring breathing [285, 292, 294, 

298, 299] 

1093 DNA backbone PO2
- stretching [293, 295, 301] 

1258 Protein Amide III (β-sheet) [294, 298] 

1303/1310 Lipid / protein / 

nucleic acids 

CH2 twisting [292, 295, 302] 

1332 Nucleic acids CH3 CH2 wagging [292, 295, 303] 

1450 Lipids/proteins CH2 bending [294-296] 

1578 Protein / nucleic 

acids 

Pyrimidine ring (nucleic acids) stretching 

and heme protein 

[296, 298, 302] 

1657 Peptide backbone Amide I (α-helix), C=C stretch (lipids) [292, 298, 304] 

1754  C=O stretching [292] 

2934 Protein CH3 stretching [292, 305] 

3262 PBS O-H symmetric stretching [285] 

3416 PBS O-H antisymmetric stretching [285] 
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Figure 5.1: Mean Raman spectra with standard deviation of different cells after incubation with TCMs 

A) T-cells and B) monocytes and C) GSCs. 
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  Exploratory analysis - PCA 

PCA was carried out on both T-cells and monocytes incubated with TCMs of three 

GSC lines (GBM1, JHH520 and SF188) with their controls (WT and empty vector pLKO.1) 

and respective knockdowns (shZEB1 and shCD73). The PCA model was built using a random 

cross-validation technique on data collected from each the GSC cell lines separately. A 

breakdown of the groupings for the PCA is as follows: (GBM1-WT, GBM1-shCD73, GBM1-

pLKO.1 and GBM1-shZEB1), (JHH520-WT, JHH520-shCD73, JHH520-pLKO.1 and 

JHH520-shZEB1) and (SF188-WT, SF188-shCD73, SF188-pLKO.1 and SF188-shZEB1).  

In all instances, the early PCs describe variance associated with relative signal 

contribution from the PBS sample medium and cell samples. From herein the latter PCs, which 

describe variances between the cell-types and exposure conditions, are discussed.  

5.5.1.1 T-cells 

In the T-cells incubated with TCM GBM1, 98 % of the total variance was explained in the first 

four principal components (PCs). Both PC3 and PC4 show contributions relating to the 

separation of T-cells GBM1 group. Figure 5.2 shows the scores and loadings plot for the PCA 

on the T-cells. The cluster of T-cells with TCM GBM1-pLKO.1 is seen in the positive PC4 

space, which describes 2 % of the variability within the dataset. T-cells incubated with TCM 

GBM1-WT, TCM GBM1-shZEB1 and GBM1-shCD73 clustered in the negative PC4 space. 

The PC4 loadings plot indicates that delineation of T-cells with TCM pLKO.1 was due to 

contributions from proteins (1010, 1260 and 1676 cm-1) and nucleic acids (796, 956, 1108, 

1134, 1322 and 1348 cm-1) spectral features [292, 294, 296, 299, 306] as shown in Figure 5.2B. 

The negative PC4 loadings show higher lipid contribution (1294 and 1435 cm-1) [292, 306] in 

T-cells with TCM GBM1-WT, TCM GBM1-shZEB1 and GBM-shCD73.  

The separation of T-cells incubated with TCM JHH520 was seen in PC3 score, 

accounting for 11 % of the variability in the dataset.  The cluster of T-cells incubated with 
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TCM JHH520-pLKO.1 and JHH520-shZEB1 was observed in the negative PC3 space whereas 

the T-cells with TCM JHH520-WT and JHH520-shCD73 clustered positive PC3 space (Figure 

5.2C). The loadings plot showed similar trends as that of the GBM1 cell line, with separation 

of pLKO.1 and shZEB1 arising from proteins and lipids (1010, 1260, 1464 and 1676 cm-1) and 

nucleic acids (800, 962, 1108, 1134, 1322 and 1348 cm-1) spectral features [292, 294, 296, 299, 

306] as shown in Figure 5.2D. Unlike T-cells with TCM GBM1 and JHH520, the PCA of T-

cells with TCM SF188 showed separation along the PC2 axis, which describes 20 % of the 

explained variance within the dataset. T-cells with TCM SF188-pLKO.1 clustered in the 

positive PC2 space. Examination of the loadings plot show that major contributions from 

proteins and lipids (1450 and 1657 cm-1) and nucleic acids (1089 cm-1) spectral features were 

responsible for the delineation of the T-cells with TCM SF188-pLKO.1.   



Chapter 5 Discrimination of phenotypes of immune cells| 131 

 

 

Figure 5.2: PCA scores and loadings plot for T-cells analysis after incubation with TCMs of three GSC 

lines with their controls and knockdowns (WT, pLKO.1, shCD73 and shZEB1) A) GBM1 scores plot 

B) GBM1 loadings plot C) JHH520 scores plot D) JHH520 loadings plot E) SF188 scores plot and F) 

SF188 loadings plot.  
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5.5.1.2 Monocytes 

Figure 5.3 shows the scores and loadings for the PCA of monocytes. Data from the 

pLKO.1 knockdown were excluded from the analysis because they exhibited a very poor signal 

to noise ratio, which negatively affected the analysis. This was associated to poor extraction 

during the sample preparation, as such the spectral quality could  not be improved using 

preprocessing.  In Figure 5.3C, discrimination of monocytes was along the PC3 axis describing 

3 % of the variance in the dataset. The majority of monocytes incubated with TCM JHH520-

shZEB1 clustered in negative PC3 space whereas TCM JHH520-shCD73 and JHH520-WT 

clustered in positive PC3 space. The loading plot suggests major contribution of proteins and 

lipids (1122, 1251, 1468 and 1675 cm-1) [130, 294, 306] in monocytes incubated with TCM 

JHH520-shZEB1 whereas monocytes incubated with TCM JHH520-shCD73 and JHH520-WT 

had more contributions from nucleic acids (806, 942 and 1175 cm-1) [294, 306].  Discrimination 

in GBM1 cell line was observed along PC2 axis describing 27 % of the variance in the dataset. 

Clusters of monocytes treated with TCM GBM1-shZEB1 was seen in the PC2 positive space 

whereas majority of monocytes incubated with TCM GBM1-shCD73 and GBM1-WT 

clustered in the negative PC2 space. The loading features showed that samples clustering in 

the positive PC2 space (TCM GBM1-shZEB1) had higher relative contributions from bands at 

1450 and 1657 cm-1, which are consistent with lipids and protein content, respectively [130, 

292, 294, 306]. In monocytes with SF188 cell line, spectral data from TCM SF188 shZEB1 

and SF188 WT separated along PC3 axis describing 4 % of the variability in the sample set. 

Samples from TCM SF188 shCD73 were seen in the positive PC3 space. The overlap in the 

scores plot contributes to difficulty in identifying the chemical constituents responsible for the 

separation of the cell groups, hence the use of other classification technique such as PCA-LDA 

and SVMC for better interpretation. 

The observed clusters in the above PCA models could be explained by the differences 

in cytokine profile of the immune cells indicating the presence of the mixed populations 

including pro-inflammatory and anti-inflammatory MΦs and DCs as well as CD4+ and 

CD8+ T-cells. The results indicate that GSCs with ZEB1 and CD73 inhibition can actively 
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influence the phenotype of T-cells and monocytes and these differences in cell state can be 

visualised by Raman spectral analysis. 

 

Figure 5.3: PCA scores and loadings plot for monocytes analysis after incubation with TCMs of three 

GSC lines with their controls and knockdowns (WT, shCD73 and shZEB1) A) GBM1 scores plot B) 

GBM1 loadings plot C) JHH520 scores plot D) JHH520 loadings plot E) SF188 scores plot and F) 

SF188 loadings plot.  
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5.5.1.3 Glioma cells 

PCA scores plot of the glioma cells, do not show distinct separation for all three GSC lines 

considered (Figure 4), which might be suggestive of similarity in the largest source of variance 

in the cell lines and their respective knockdowns. The observable spectral feature for the GSC 

(GBM1 and JHH520) is seen at 1090/1098 and 1445 cm-1, which is indicative of the lipids and 

nucleic acid contribution in the cells samples.  
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Figure 5.4: PCA scores for GSCs with their controls and knockdowns (WT, pLKO.1, shCD73 and 

shZEB1) A) GBM1 B) JHH520 and C) SF188 scores plot. 
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  Discrimination of T-cells/monocytes after incubation with 

TCMs from GSCs with respective knockdowns  

PCA-LDA and SVMC have successfully been applied to Raman data for the 

classification of cells [303, 307]. Unlike PCA, PCA-LDA and SVMC techniques are 

supervised classification techniques which require assignment of the dataset into predefined 

groups prior to model training.  For T-cells incubated with TCM from the GBM1 cell line, the 

classes were defined as: class 1 (GBM1-WT), class 2 (GBM1-shCD73), class 3 (GBM1-

pLKO.1) and class 4 (GBM1-shZEB1). Similar groupings were adopted for JHH50 and SF188 

cell line. However, only three classes were required for monocytes for the three cell lines owing 

to the exclusion of dataset from the pLKO.1 knockdowns. These data had very poor signal: 

noise ratios, which negatively affected the analysis.  

Building of the PCA-LDA model utilised the use of the first four PCs from the PCA. 

Model performances are presented in terms of accuracy, sensitivity and specificity in Table 3. 

The PCA-LDA model yielded a sensitivity and specificity between 78 - 100 % and 85 - 100 

%, respectively for the T-cells after incubation with TCM of all three GSCs lines. Validation 

of this model against an independent test set yielded a maximum sensitivity of 100 %. The 

PCA-LDA model worked best for the T-cells treated with TCM of GBM1 with both sensitivity 

and specificity of 100 % for all cell groups considered upon validation against the test set. 

Improved sensitivity and specificity could be achieved using the SVMC model on the training 

set, with validation on an independent set yielding similar results as the PCA-LDA models. 

The SVMC models yielded a 100 % accuracy on the training set for all cell lines considered 

whereas cell group sensitivities ranged between 67 - 100 %. Specificity of over 78 % was 

achieved for individual cell groups. The T-cells with TCM SF188-shZEB1 group had the most 

misclassification with a sensitivity of ~67 % for both SVMC and PCA-LDA model. This is not 

surprising, as they had the least clear separation of the four groups in the PCA (Figure 2E).  

Discriminatory analysis performed using the monocytes also highlighted the model’s 

ability to classify cell groups. Both PCA-LDA and SVMC models yielded a classification 
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sensitivity over 67 % on validating the model against an independent test set, with specificity 

over 73 %. The SVMC models tend to have better performance for both T-cells and monocytes.  

For GSC classification, the PCA-LDA model yielded sensitivity and specificity of 

between 40 - 78 % and 56 - 67 %, respectively on validation against an independent test set 

(Table 3). The PCA-LDA had highest sensitivity and specificity for the JHH520 cell line. 

Improved sensitivity and specificity was observed on the SVMC model using the training set. 

Validation against the test set yielded sensitivity and specificity of 33 - 88 % and 53 - 70 %, 

respectively. On comparison to the immune cells, the glioma cells had the worse classification 

performance. The PCA of the glioma cells showed the major overlap across all cell-line 

considered, as such not surprising that the classification of the spectral data did not work so 

well. Despite this, the discrimination of the cell lines and their knockdown treatments were not 

random with sensitivities over 25 % (4 classes) for all cell groups considered.  

Overall, it is difficult to make comparison to the established literature owing to the 

differences in treatment conditions of the immune cells, however, the performance of our 

analyses were similar to the work exploring the discrimination of different immune cells with 

sensitivities in the range of 86-100% achieved [254]. A more closely related study using RS 

and PCA-LDA, was successfully employed in the discrimination of active and naïve T-cells, 

with an increased cytochrome c levels observed for the activated T-cells [308]. 

The combination of Raman and multivariate analysis techniques yielded good 

classification result for both the PCA-LDA and SVMC models in discriminating differences 

of monocytes and T-cells after incubation with TCMs. These differences could be present due 

to the involvement of ZEB1 and CD73 in monocytes and T-cells activation and differentiation.  

This can offer accurate and fast alternative for non-invasive screening in clinical diagnosis. 

Results from the flow cytometry analysis were in agreement with the Raman 

spectroscopic analysis [37]. However, these results have not been presented in this thesis as 

they were outside the scope of the thesis.  
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Table 5.2: Summary of model performance illustrating the efficiency of RS to discriminate monocytes / T-cells for the training (in black) and test sets (in red). 

T-cells  

PCA-LDA 

 

Cell line 

 

Accuracy 

(%) 

Sensitivity (%) Specificity (%) 

WT shCD73 pLKO.1 shZEB1 WT shCD73 pLKO.1 shZEB1 

GBM1 WT v shCD73 v 

pLKO.1 v shZEB1 

90.4 (100) 100 (100) 87.5 (100) 100 (100) 77.9 (100) 85.3 (100) 94.3 (100) 88.6 (100) 93.0 (100) 

JHH520 WT v shCD73 v 

pLKO.1 v shZEB1 

95.7 (91.7) 100 (100) 83.3 (71.4) 100 (100) 100 (100) 92.9 (85.7) 100 (100) 95.0 (90.0) 94.7 (90.5) 

SF188 WT v shCD73 v 

pLKO.1 v shZEB1 

88.6 (79.2) 78.9 (70.0) 88.9 (100) 100 (80.0) 100 (66.7) 96.0 (85.7) 88.6 (72.2) 85.3 (78.9) 86.8 (90.0) 

SVMC 
GBM1 WT v shCD73 v 

pLKO.1 v shZEB1 

100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 100 (100) 

JHH520 WT v shCD73 v 

pLKO.1 v shZEB1 

100 (87.5) 100 (100) 100 (71.4) 100 (75.0) 100 (100) 100 

(78.6) 

100 

(94.1) 

100 

(90) 

100 

(85.7) 

SF188 WT v shCD73 v 

pLKO.1 v shZEB1 

100 (91.7) 100 (100) 100 (100) 100 (80.0) 100 (66.7) 100 

(85.7) 

100 

(88.9) 

100 

(94.7) 

100 

(95.7) 

Monocytes  

PCA-LDA 
GBM1 WT v shCD73 v 

pLKO.1 v shZEB1 

84.9 (87.5) 100 (100) 66.7 (71.4) - 100 

(100) 

77.3 

(81.8) 

100 

(100) 

- 80.8 

(87.5) 

JHH520 WT v shCD73 v 

pLKO.1 v shZEB1 

73.2 (85.7) 88.9 (100) 72.7 (100) - 77.8 (100) 68.8 (93.8) 73.3 (93.3) - 71.9 (92.9) 

SF188 WT v shCD73 v 

pLKO.1 v shZEB1 

86.7 (80) 76.9 (66.7) 100 (80) - 88.9 (100) 94.1 (88.9) 81.8 (80) - 85.7 (72.7) 

SVMC 
GBM1 WT v shCD73 v 

pLKO.1 v shZEB1 

100 (93.8) 100 (100) 100 (100) - 100 (75) 100 (100) 100 (100) - 100 (100) 

JHH520 WT v shCD73 v 

pLKO.1 v shZEB1 

100 (95.2) 100 (100) 100 (100) - 100 (50) 100 (90.5) 100 (86.7) - 100 (86.7) 

SF188 WT v shCD73 v 

pLKO.1 v shZEB1 

100 (88.6) 100 (83.3) 100 (80) - 100 (100) 100 (87.5) 100 (88.9) - 100 (81.8) 
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Table 5.3: Summary of model performance illustrating the efficiency of RS to discriminate 

GSCs for the training (in black) and test sets (in red) 

 

5.6 Conclusion  

This study shows the ability of RS in combination with chemometrics to 

discriminate T-cells and monocytes upon incubation with TCM of GSCs in different 

conditions, therefore, to detect glioma associated neuroinflammation caused by molecular 

differences. A previous study has shown the ability of RS to detect even minor changes 

such as variations in keratin expression levels in cancer cells [309]. Using both the PCA-

LDA and SVMC techniques the different phenotype of the immune cells could be 

GSCs 

PCA-LDA 

Cell line Accuracy Sensitivity Specificity 

WT CD73 pLKO.1 shZEB1 WT CD73 pLKO.1 shZEB1 

GBM1 WT 

vs CD73 vs 

pLKO.1 vs 

shZEB1 

63.4 (61) 40 (56.3) 100 

(75) 

91.7 

(66.7) 

41.6 

(50) 

80.5 

(65) 

51.9 

(57) 

57.6 

(60) 

67.8 

(63.3) 

JHH520 WT 

vs CD73 vs 

pLKO.1 vs 

shZEB1 

59.4 

(73.5) 

56.8 

(77.8) 

69.6 

(63.6) 

56 

(53.8) 

56.3 

(50) 

60.9 

(56.3) 

56.4 

(64.1) 

60.5 

(67.6) 

60 

(66.7) 

SF188 WT 

vs CD73 vs 

pLKO.1 vs 

shZEB1 

69.2 

(61.8) 

61.5 

(58.3) 

80 

(40) 

62.5 

(66.7) 

84.6 

(62.5) 

74.4 

(59) 

67.3 

(62) 

71.4 

(56) 

65.4 

(57.7) 

SVMC 

GBM1 WT 

vs CD73 vs 

pLKO.1 vs 

shZEB1 

100 (64) 100 

(62.5) 

100 

(87.5) 

100 

(66.7) 

100 

(33.3) 

100 

(65) 

100 

(57) 

100 

(63) 

100 

(70) 

JHH520 WT 

vs CD73 vs 

pLKO.1 vs 

shZEB1 

98 (62) 100 

(77.8) 

100 

(45.5) 

96 

(46.2) 

93.8 

(75) 

96.9 

(53) 

97.4 

(66.7) 

98.7 

(67.6) 

98.8 

(59.5) 

SF188 WT 

vs CD73 vs 

pLKO.1 vs 

shZEB1 

96.9 

(61.8) 

96.2 

(58.3) 

100 

(40) 

93.8 

(77.8) 

100 

(62.5) 

97.4 

(68.2) 

96.4 

(65.5) 

98 (56) 96.2 

(61.5) 
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discriminated and the results were in agreement with the flow cytometry analysis of the 

same samples [37]. The flow cytometry analysis suggests that the GSCs with ZEB1 and 

CD73 inhibition can actively influence the phenotype of T-cells and monocytes driving 

their differentiation into a population of mixed pro-inflammatory and anti-inflammatory 

MΦs and DCs. 
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Chapter 6 

Conclusions and Future Work  

The turning point in the development of any vibrational spectroscopic method for routine 

analysis is in the art of building a robust and accurate chemometric model to predict the 

sample properties. Prior to the development of a prediction model, several key factors 

need to be considered as they directly influence on the overall performance quality and 

applicability. Specification of the responses alongside the range of variation should be 

the first step; this would determine the choice of instrument, configuration and sampling 

method. Subsequent steps would include selecting a representative calibration set 

covering the expected variation range, collection of spectral data, selection of appropriate 

preprocessing techniques based on the quality of spectral data, variable selection based 

on the chemical properties to be modelled and development of the chemometric model 

that is tested using cross-validation and an independent test set. Each of the identified 

steps play a crucial role in the model performance, however, a well-selected calibration 

set is key to a well performing model, as it determines the spectral data that is further 

utilised in building the model.  

Selection of the calibration set should incorporate the expected variability of future 

prediction sets. This is not limited to the prediction response (like concentration range) 

but also physical and environmental variability. Several strategies have been proposed for 

the capture of variability in the calibration set including using a pilot-plant samples 

reproducing full scale measurement conditions, however, this become problematic on 

increasing number of responses. Another strategy would be preparation of laboratory 

samples in which concentration ranges of the intended responses are varied 

simultaneously within ranges to avoid correlation. The calibration set development 
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strategy for quantitative analysis like the ones applied in this thesis depends on factors 

like sample complexity (number of interferences and responses) and intended application 

(off-line or real-time monitoring) [310]. Assuming the expected variability changes in the 

future, the calibration model would need to be updated to expand the variability and scope 

of the method.  

This thesis involved the application of different chemometric modelling techniques to 

vibrational spectroscopic data from samples like meat, pharmaceuticals and immune 

cells. The nature of information probed determined the choice of chemometric 

techniques; however, some techniques might give better approximation (performance) for 

one sample than others. For example, PCA-LDA gave better performance for the cell 

study than PLSDA. 

Prior to model development, selection of the appropriate calibration range for the intended 

responses is crucial. For the meat study, this was challenging as quality attributes (pH and 

%IMF) in single red meat type of similar breed, sex, age will have a narrow variation.  

However, this was resolved by including samples across three different meat types, 

increasing the variability as well as the robustness of the model. Spectral preprocessing 

techniques was selected based on the signal quality, for example, smoothing and 

rubberband baseline correction was applied to Raman data whereas linear baseline 

correction and no smoothing was performed on the IR data.  Issues of subsampling 

associated with the IR configuration was reduced by incorporating a raster system in the 

Raman method. Improvement in spectral quality was performed by collecting co-added 

spectra that were averaged. Predictive models were developed using PLS (quantitative 

and classification) and SVM (classification), which are linear and non-linear algorithms, 

respectively. This was to allow for modelling of linear and non-linear relationship 

between the spectral data and reference measurements. For the meat classification studies 

in chapter two, the non-linear method yielded better predictive performance on validation 

against the independent test sets. Future work in this field should involve the development 

of a robust calibration set, creation of the model and deployment of live prediction model 

alongside vibrational spectroscopy (NIR and Raman) for routine meat assessment. This 

can be incorporated in-line/at-line in meat abattoirs, alongside automatic large area 
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sampling to allow for collection of representative data. Capturing the wide variability in 

meat including animal types, breeds, age, sex, rearing condition, sample presentation and 

environmental conditions would be important to build a stable prediction model. Creation 

of spectral library using different meat types can facilitate characterisation of the meat 

species during routine monitoring of meat at supermarket and other outlets. Future 

chemometric modelling should incorporate non-linear algorithms like artificial neural 

network, local weighted regression in place of partial least square regression to account 

for non-linear relationship between the spectral data and responses.    

Classification models developed using PCA-LDA and SVM were successful in 

discriminating immune cells incubated with different tumour condition media. The choice 

of PCA-LDA and SVM was to allow comparison between the performance of linear and 

non-linear algorithms. Phenotype of T-cells and monocytes were incubated with media 

conditioned by different glioblastoma stem-cells (GSCs) showing different molecular 

background. Multivariate analysis performed using PCA-LDA and SVMC yielded 

sensitivities and specificities ≥ 70 % and ≥ 67 %, respectively. The results were in 

agreement with findings obtained using flow cytometry analysis. Future work in this field 

should entail increase in the number of participants and possible imaging of the cell 

samples. It would be interesting to see if more information could be obtained as compared 

to spot measurements.  

The choice of multivariate curve resolution for the dehydration studies was to allow the 

identification of original spectra as well as their quantification. The dehydration process 

was monitored at different temperatures in both the low- and mid-frequency Raman 

regions. The low-frequency Raman region probes the intermolecular interactions whereas 

the mid-frequency Raman region probes the intramolecular interaction in the crystals. 

DFT calculation provided insight into the vibrational modes particularly in the low 

frequency region. Kinetic analysis performed using multivariate curve resolution and 

principal component analysis revealed the formation of piroxicam anhydrous form I and 

theophylline anhydrous form II upon dehydration of their respective monohydrates. 

Detection of solid-state forms and their transformation is important from a drug 

performance and patent point of view. Low frequency Raman spectroscopy was very 



C o n c l u s i o n s  a n d  F u t u r e  W o r k | 144 

 

sensitive in identifying the changes on transformation of the monohydrates across 

different timescales observed in the low and mid-frequency regions.  

Improvement in the performance of individual models can be achieved by fusing data 

from multiple instruments. This allows for modelling of greater information, for example, 

amide II band was not observed in the Raman spectra but was observed in the IR spectra, 

thus combining both data will lead to greater information. However, the use of data from 

multiple instruments could lead problems of redundancy. This can be resolved by 

preprocessing the spectra, use of less number of instruments and adoption of mid- or high- 

level fusion strategies.  

To develop this work further, the application of vibrational spectroscopy for in-line 

monitoring should be trialled in the industry, especially for meat. This would entail the 

use of fiber optic probes connected at the interface of the different stages of the process 

to acquire spectral data at defined intervals. The response values obtained through the 

reference methods are correlated with the spectral data, considering the process time as a 

factor. Impact of sample presentation, changing process and interferences can be 

monitored to challenge the robustness of the methods. For meat assessment, fibre optic 

coupled Raman or NIR can be deployed at different stages in the process for monitoring 

of quality parameters such as %IMF, moisture content, pH and shear force, whereas 

handheld device can be utilised for routine analysis. For inline analysis in meat industry, 

automated large area scanning would facilitate acquisition of representative data, while 

chemometric models can be developed using non-linear algorithms on a wide range of 

meat samples.  Live prediction models can be held in cloud storage to ensure that 

instrument failure does not lead to loss. It would be interesting to compare the 

performance of the inline prediction to laboratory studies.
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Appendix 1 

Supplementary information for isothermal 

dehydration of crystalline hydrates  

The dehydration analysis of crystalline hydrates is given here. The initial and final spectra 

are presented to highlight solid-state forms post dehydration. The vibrational mode 

assignments and model free kinetic calculation are also presented to provide insight into 

the nature of the vibration as well as dehydration of the monohydrates. 
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A.1 Crystal structure of piroxicam  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: Crystal structures of piroxicam monohydrate (top) and piroxicam anhydrous form I 

(bottom). 
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A.1.1 Dehydration of piroxicam monohydrate (PXM) 

The initial and final spectra obtained during the dehydration of PXM was utilized to 

characterise the starting and end material over the course of dehydration. The Raman 

band assignments showed that the starting material was piroxicam monohydrate and the 

final form was anhydrous piroxicam form I.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Initial and final spectral data collected during dehydration of piroxicam monohydrate 

in the LFR (top) and MFR (bottom) at different temperatures. The initial (first) spectra acquired 

were consistent with Raman signatures of piroxicam monohydrate whereas the final spectra were 

consistent with the signatures of anhydrous piroxicam form I. 
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A.2 Dehydration of theophylline monohydrate (TPMH) 

  

 

 

 

 

 

 

 

 

 

 

 

Figure A.3: Crystal structures of theophylline monohydrate (top) theophylline anhydrous form II 

(bottom)  
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A.2.1 Dehydration of theophylline monohydrate (TPMH) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4: Initial and final spectral data collected during dehydration of theophylline 

monohydrate in the LFR (top) and MFR (bottom) at different temperatures. The initial (first) 

spectra acquired were consistent with Raman signatures of theophylline monohydrate whereas 

the final spectra were consistent with the signatures of anhydrous theophylline form II. 
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A.3 Model free kinetic analysis  

The complexity of the model fitting approach necessitated that the kinetic analysis be 

performed using a model free approach. The model free approach allows for kinetic 

analysis without prior knowledge of the reaction model as well as allowing for change in 

activation energy, Ea on changing conversion, .  Friedman analysis model free approach, 

which is based on differential data as shown in the equation, was utilized for the analysis 

[240, 311]. The kinetic analysis was calculated on data from the MCR output of the 

combined LFR and MFR regions. 

  

ln [
𝑑𝛼

𝑑𝑡
] =  ln[𝐴𝑓(𝛼)] −  

𝐸𝑎

𝑅𝑇
 

 

where 𝑓(𝛼) is the differential kinetic function and 𝐴 is the preexponential factor.   

A representative plot of α versus t curves for the dehydration of piroxicam monohydrate 

is shown in the Figure A.5. The shape of the curve highlights increasing dehydration on 

increasing temperature under isothermal conditions.   

Figure A.6 shows the variation of Ea  as a function of α.  Ea is observed to increase and 

decrease in the early stages of the dehydration (0 ≤ α ≤ 0.4), which could suggest that the 

early dehydration stages involved different processes. At later stages, Ea is approximately 

constant and decreases at 0.4 ≤ α ≤ 0.75. The region where Ea is approximately constant 

can be assumed to follow a single-step reaction under isothermal heating condition.  
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Figure A.5: Representative plot of conversion, α, against temperatures under different isothermal 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.6: Mean activation energy and standard deviation, Ea, plot against conversion, α (n = 3). 
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A.4 Vibrational mode assignments  

The calculated vibrational modes were visualized using the MOLDRAW 2.0 (version H1) 

software  

Table A.1: LFR Raman mode assignment for anhydrous piroxicam form I 

Wavenumber  

(cm-1) 

Relative intensity Vibrational mode Principal 

axis 

16 393 Torsion abc 

29 238 Torsion abc 

42 190 Torsion ab 

47 163 Torsion ab 

61 159 Translational ab 

66 137 Torsion b 

71 114 Torsion abc 

76 121 Torsion ac 

86 84.6 Torsion a 

95 259 Torsion abc 

108 115 Torsion + Methyl group stretching abc 

116 8.12 Torsion + Methyl group stretching abc 

134 74.9 Torsion ac 

143 78.0 Torsion + Methyl group rotation abc 

154 76.6 Torsion + Methyl group stretching abc 

163 41.3 Torsion + Methyl group stretching abc 

171 89.1 Torsion + Methyl group rotation abc 

182 17.4 Complex torsion abc 

212 8.63 Torsion + Methyl group rotation abc 

252 22.1 Torsion + Methyl group rotation abc 

277 27.5 Torsion + Methyl group rotation abc 

 

 

 

 

 

 

 

 

 

 



Supplementary information for isothermal dehydration of crystalline hydrates| 169 

 

Table A.2: LFR Raman mode assignment for piroxicam monohydrate 

Wavenumber 

(cm-1) 

Relative 

intensity 

Vibrational mode Principal 

axis 

31 0.56 Torsion ac 

44 2.16 Torsion abc 

53 1.50 Torsion abc 

59 2.10 Torsion abc 

71 6.54 Torsion abc 

76 3.65 Torsion a 

84 0.97 Torsion abc 

88 7.87 Torsion abc 

92 2.81 Torsion ca 

103 17.3 Torsion + methyl group rotation abc 

103 5.14 Torsion abc 

121 3.87 Torsion + methyl group rotation abc 

128 5.69 Torsion + methyl group stretching abc 

132 2.61 Torsion abc 

144 7.63 Torsion ab 

161 3.45 Torsion a 

168 1.82 Torsion (H-bond stretching) + methyl 

group rotation 

abc 

173 2.57 Torsion abc 

178  Torsion (H-bond stretching) abc 

188 5.32 Torsion abc 

191 1.29 Torsion ac 

193 7.49 Torsion ca 

227 3.82 Torsion a 

242 5.01 Torsion bc 

247 7.63 Torsion abc 

251 3.05 Torsion abc 

267 3.35 Torsion ac 

275 11.1 Torsion c 

297 4.84 Torsion abc 
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Table A.3: LFR Raman mode assignment for anhydrous theophylline form II 

Wavenumber 

(cm-1) 

Relative 

intensity 

Vibrational mode Principal 

axis 

22 206 Torsion abc 

28 1.18 Translational ac 

34 54.6 Complex torsion ab 

44 223 Torsion abc 

52 18.9 Torsion ca 

52 40.0 Torsion ac 

65 144 Complex torsion ab 

82 1000 Torsion ac 

101 264 Torsion a 

122 84.0 Torsion + Methyl group rotation abc 

131 196 Torsion a 

144 95.0 Torsion ab 

150 23.4 Torsion ab 

165 1.11 Torsion + Methyl group rotation abc 

175 89.3 Torsion + Methyl group rotation abc 

193 38.3 Torsion + Methyl group rotation abc 

219 25.1 Torsion + Methyl group rotation ab 

288 0.28 Torsion a 
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Table A.4: LFR Raman mode assignment for theophylline monohydrate 

Wavenumber 

(cm-1) 

Relative 

intensity 

Vibrational mode Principal axis 

4 1000 Torsion a 

30 11.9 Torsion ab 

53 2.47 Torsion abc 

57 3.8 Complex torsion abc 

66 16.2 Torsion ab 

76 28.2 Torsion ab 

78 25.4 Torsion ca 

105 86.6 Torsion abc 

117 14.7 Torsion + methyl group rotation abc 

129 8.94 Torsion + methyl group rotation abc 

139 6.66 Torsion abc 

148 1.1 Torsion + methyl group stretching abc 

150 1.36 Torsion + methyl group stretching abc 

158 2.31 Torsion ab 

171 2.42 Torsion ab 

181 10.5 Torsion abc 

190 2.29 Torsion abc 

195 0.97 Torsion + methyl group rotation abc 

 

222 3.12 Torsion ab 

224 6.60 Torsion ab 

291 0.07 Torsion abc 

298 1.07 Torsion abc 

 

 

 


