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ABSTRACT 

LONGITUDINAL ANALYSES OF EPIGENTIC CORRELATES OF 

EXTERNALIZING AND INTERNALIZING DISORDERS 

Izabela Milaniak

Sara R. Jaffee

Statement of Problem: In the field of developmental psychopathology, there has been a 

historical debate colloquially referred to as “nature versus nurture” in the continued 

pursuit of understanding the genetic and environmental origins of mental illness. The 

emergent field of behavioral epigenetics has posited that the underlying dichotomy and 

conceptual separation between gene and environment influences itself is false. Epigenetic 

processes show that environmental influences act on genes mechanistically as 

environmental inputs biologically influence the expression of key genes in vital systems. 

In translating technological advances in epigenetics from the biomedical world, 

developmental psychopathologists have largely contextualized psychological phenotypes 

within the same biomedical disease model. However, psychological phenotypes are not 

automatically amenable to the same methodological framework, as they are uniquely 

complex in their classification and measurement and are best understood to be calibrated 

in early life during crucial periods of development. Methods and Procedures: 

Therefore, the central aim of this thesis was to apply epigenetic theory, methodology, and 

technology to clinically relevant psychological phenotypes in methodologically novel 

ways that take into account phenotypic complexity and developmental context. Using a 

longitudinal design from the Avon Longitudinal Study of Parents and Children 

(ALSPAC), this thesis explored the epigenetic underpinnings (i.e. DNA methylation) of 
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risk and resilience for internalizing and externalizing disorders during sensitive periods of 

development. Results: Study 1, published in Development and Psychopathology in 2017, 

used a candidate gene approach examining epigenetic changes in the oxytocin receptor 

gene (OXTR) to study resilience to prenatal stress. Results showed that children who 

were resilient in the conduct problem domain only had differential DNA methylation 

profiles at birth than those who were not resilient. Study 2 used an epigenome-wide 

approach to explore potential novel epigenetic correlates of depression trajectories in 

adolescence with follow-up bioinformatic analyses. Results did not show any fetal 

programming effects when assessing DNA methylation at birth, but several novel genes 

were identified when DNA methylation was measured in adolescence. Conclusion: 

Because these epigenetic changes are heritable and potentially reversible, insights from 

epigenetic research have profound implications in the classification, identification, and 

treatment of mental illness. 
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INTRODUCTION 

In the field of developmental psychopathology, there has been a historical debate 

colloquially referred to as “nature versus nurture” in the continued pursuit of 

understanding the genetic and environmental origins of mental illness. A strong research 

base of twin and adoption studies supports the heritability of psychological disorders (e.g. 

Larsson et al., 2014; Lohoff, 2010; Verhulst et al., 2015). At the same time, a wealth of 

research supports the strong impact of environment (i.e. trauma, maltreatment, poverty) 

on the development of psychopathology, especially in early sensitive periods of 

development (e.g. Carr et al., 2013; McCrory et al., 2012; McLaughlin & Lambert, 2017; 

Reiss, 2013). In the past two decades, the “nature versus nurture” debate has been 

effectively resolved with the understanding that genes and environment both play vital 

roles through dynamic interplay with one another. Gene-environment interaction research 

has shown a moderation relationship between genetic influences and the environment 

where the presence of a particular genotype influences the impact of an environmental 

stressor and vice versa (e.g. Brown & Harris, 2008; Koenen et al., 2008; Lau et al., 2007; 

Nugent et al., 2011). However, the interaction of genes and environmental exposures in 

these paradigms are purely statistical and still operate under the conceptualization that 

they are distinct and separate processes. The emergent field of behavioral epigenetics has 

posited that the underlying dichotomy and conceptual separation between gene and 

environment influences itself is false. Epigenetic processes show that environmental 

influences act on genes mechanistically as environmental inputs biologically influence 

the expression of key genes in vital systems such as the stress response and immune 
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systems. Thus, the theory underpinning behavioral epigenetics suggests that epigenetic 

mechanisms serve as the mediator of the relationship between life experiences and 

psychopathology. Because these epigenetic changes are heritable and potentially 

reversible, insights from epigenetic research have profound implications in the 

classification, identification, and treatment of mental illness.  

 Research on epigenetic changes as potential mechanistic explanations for disease 

began in the biomedical world, particularly in cancer research. In translating 

technological advances in epigenetics from the biomedical world, developmental 

psychopathologists have largely contextualized psychological phenotypes within the 

same biomedical disease model. However, psychological phenotypes are not 

automatically amenable to the same methodologic framework, as they are uniquely 

complex in their classification and measurement and are best understood to be calibrated 

in early life during crucial periods of development. Therefore, the central aim of this 

thesis was to apply epigenetic theory, methodology, and technology to clinically relevant 

psychological phenotypes in methodologically novel ways that take into account 

phenotypic complexity and developmental context. Using a longitudinal design from the 

Avon Longitudinal Study of Parents and Children (ALSPAC), this thesis explored the 

epigenetic underpinnings of risk and resilience for internalizing and externalizing 

disorders during sensitive periods of development. Study 1, published in Development 

and Psychopathology in 2017, used a candidate gene approach examining epigenetic 

changes in the oxytocin receptor gene (OXTR) to study resilience to prenatal stress. 

Study 2 used an epigenome-wide approach to explore potential novel epigenetic 

correlates of depression trajectories in adolescence.  
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 CHAPTER 1: Epigenetic Molecular Mechanisms and Bioinformatic Methods 

Molecular Mechanisms of Epigenetics 

The term “epigenetic” means “in addition to changes in genetic sequence” and the 

term “epi”-genome references the epigenetic signaling layer that sits “on top of” the 

genome. There has been much debate over the definition of “epigenetic” including what 

the term means conceptually and what processes it is describing. Over time, it has 

evolved to a broad definition to include any process that alters gene activity without 

changing the underlying DNA sequence (Weinhold, 2006).  

The term epigenetics was first introduced by Conrad Waddington in the 1940s to 

describe the process that allows genotypically identical cells to be phenotypically distinct 

and differentiate into diverse tissue types with specified functions (Waddington, 1957). 

For example, a neuron is different from a liver cell, which is different from a skin cell, 

though they all originated from the same identical nucleotide sequence. During 

embryogenesis, epigenetic mechanisms govern the process of cell differentiation, which 

results in the permanent and stable specialization of cellular function that is then “stored” 

in the transcriptional profile of every cell and maintained throughout the lifespan 

(O’Donnell & Meaney, 2020). During this process, certain aspects of a cell’s genome that 

are not needed for its specialized function are silenced at the level of transcription and 

subsequent expression due to epigenetic signaling. In this way, epigenetic mechanisms 

can be thought of as defining the bounds of cellular function for a particular cell. Today, 

we now understand that in addition to maintenance of cellular identity, epigenetic 

processes co-ordinate a wide range of biological processes including stress response, 

immune function, and neurodevelopment (Handy et al., 2011). 
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Epigenetic mechanisms regulate the process in which a DNA nucleotide sequence 

is transcribed and subsequently expressed to produce a phenotype. There are several 

interrelated molecular processes that fall under the epigenetic umbrella including histone 

modifications and chromatin remodeling, DNA methylation, and non-coding RNAs (Kim 

et al., 2008; Peschansky & Wahlestedt, 2014). The best-known epigenetic process by far 

is DNA methylation, largely because it has been the easiest and least expensive to study 

with existing technology. DNA methylation refers to the addition of a methyl group 

(CH3) to a cytosine guanine dinucleotide (CpG) at the 5-position of the pyrimidine ring 

through a covalent bond (Deaton & Bird, 2011; Klose & Bird, 2006). This process is 

catalyzed by enzymes known as DNA methyltransferases (DNMTs) that transfer methyl 

groups to CpG sites within a continuous stretch of DNA. The addition of a methyl group 

is typically associated with reduced binding access of transcription factors to the DNA 

sequence and subsequent reduction gene expression or gene “silencing”- though this is 

not always the case. In the promoter regions that are upstream from a transcription site, 

DNA methylation leads to gene suppression (Bird, 2002). However, in other regions such 

as the gene body, DNA methylation increases transcription levels and subsequent 

expression through processes that are still unknown (Maunakea et al., 2010; Shenker & 

Flanagan, 2012). 

DNA methylation only occurs at the cytosine-guanine dinucleotide (CpG site). 

CpG sites are rare in the genome due to mutation of methylated cytosine into thymine 

over evolutionary time (Saxonov et al., 2006). Therefore, CpG sites frequently cluster 

together in CpG “islands” near promoter regions of genes (i.e. areas that initiate gene 

transcriptions), particularly near the transcription start sites of housekeeping genes that 

are necessary for basic functions of the cell (Deaton & Bird, 2011). CpG islands are 
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defined as regions with at least 500bp, a CG percentage greater than 55%, and an 

observed-to-expected CpG ratio greater than 65% (Takai & Jones, 2002). CpG islands are 

largely unmethylated, do not vary across individuals, and their methylation status tends to 

be more stable over time. DNA methylation is more dynamic (i.e. prone to change) and 

variant between individuals in regions flanking CpG islands called shores and further out 

called shelves, where CpG sites are less dense (Irizarry et al., 2009; Ziller et al., 2013). 

DNA methylation can be extracted from any relevant tissue. In psychological research, 

peripheral tissues including saliva, buccal epithelial cells and most commonly blood are 

most typically used as brain tissue availability is limited to post-mortem sampling.    

DNA Methylation Bench Science 

The most common method to analyze DNA methylation is through the technique 

of bead-type hybridization using micro-arrays. The Illumina Infinium HumanMethylation 

Beadchip has become the default array of choice for DNA methylation studies across 

disciplines. The Illmunia micro-array was designed to detect levels of DNA methylation 

at CpG sites through quantitative genotyping of C/T polymorphisms (Dedeurwaerder et 

al., 2014). The following protocol information was obtained from the Infinum HD Assay 

Methylation Protocol Guide (2015) from Illumina’s website. The Beadchip is a hand-

sized silicone based array with 12 arrays (6 rows, 2 columns) each array representing one 

participant’s DNA sample. In each individual array, there are tens of thousands of grids. 

Each grid has beads that are coated with hundreds of thousands of “probes” which are 

synthetic single strands of DNA fragments, also known as oligonucleotides, each with 

their own specific DNA sequence that is designed to be complimentary to human 

genomic DNA. Extracted single strand genomic DNA from an individual will bind to 

these complimentary probes to create double stranded DNA. 



 6 

After single strand extraction, a participant’s DNA is bisulfite converted, a 

process that turns all the unmethylated cytosine bases into thymine while all the 

methylated cytosine bases are protected from the biological reaction and remain 

unchanged. The treated DNA is then transferred to the Illumina Beadchip for processing 

of DNA hybridization, where the single strand of human DNA recombines with another 

single strand of synthetic DNA by complimentary nucleotide bases. The unmethylated 

cytosines form single nucleotide polymorphisms that are identified by fluorescent 

staining that represents the level of DNA methylation in that region. The fluorescence is 

scanned using Illumina IScan and then quantified into beta values that represent the 

proportion of methylation in that genomic region using a ratio of the methylated probe 

fluorescent intensity (methylated signal) over the overall intensity (sum of methylated 

and unmethylated signal). Each CpG site has a corresponding beta value representing a 

ratio from 0 (no cytosine methylation) to 1 (complete cytosine methylation) (Bibikova et 

al., 2011). 

There are 28 million CpG sites in an individual’s epigenome and the Illumina 

interrogates a small subset of them based on theoretical functional importance selected 

with the guidance of a consortium comprised of 22 methylation researchers representing 

19 institutions worldwide (Bibikova et al., 2011). Illumina is consistently evolving its 

biotechnology to not only increase the coverage of the array but also to incorporate 

research findings into choosing more relevant regions to target. The first edition of the 

array had coverage of 27,000 CpG sites. The 450k array, which was the technology used 

to generate data for this thesis, covered 485,000 CpG sites. The new EPIC array covers 

850,000 CpG sites in the human epigenome. The Illumina 450k focuses on CpG islands 

(covers 96% of all islands in the human epigenome), shores (92%), and shelves (86%) 
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and also other functional elements including 3´- and 5´-UTRs, gene bodies, DNAse 

hypersensitive sites, miRNA promoters and other ncRNAs that also may be important 

sites for changes in DNA methylation (Bibikova et al., 2011). The 450k also covers 99% 

of the Reference Sequence (RefSeq) database, which is a comprehensive annotation of all 

nucleotide sequences and their protein products in the human genome (Pruitt et al., 2005). 

While whole-genome sequencing techniques are able to interrogate every single CpG 

site, they are often resource and cost heavy (e.g. $1,000 per participant). In addition, 

research has shown that the results from the Illumina arrays are correlated R2 = .95 with 

results drawn from whole-genome sequencing, suggesting that the arrays are efficiently 

targeting functionally important CpG sites (Bibikova et al., 2011).  

Once DNA methylation has been assayed, a matrix data file is created with each 

CpG site interrogated and its corresponding DNA methylation beta value. The data 

undergoes pre-processing which includes various quality checks and normalization to 

correct for batch effects. During the data analysis phase, any differentially methylated 

CpG sites or “hits” are annotated to their respective genes. In order to examine whether 

multiple hits are functionally related, the annotated genes are entered into a gene network 

analysis. More details on quality checks and normalization are available in Chapter 3, 

Section C. Data analysis of DNA methylation data is described further in subsequent 

empirical chapters.  

Most early DNA methylation studies in developmental psychopathology used a 

candidate gene approach where specific genes were chosen a priori due to known 

biological, physiological, or functional relevance based on theoretical importance and 

empirical evidence from genetic studies. A candidate gene approach is useful because it 

allows for researchers to understand the functional elements of epigenetic changes in a 
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larger system. The design allows a drill down approach where all parts of the biological 

cascade including DNA methylation, access to transcription factors, and gene expression 

can be studied in unison. However, a candidate gene approach is limiting in that it is only 

able to explore already identified and well-known genes. A complimentary approach is 

the epigenome-wide association study (EWAS), a “hypothesis-free” approach, where an 

individual’s whole epigenome is interrogated and CpG sites or regions that are 

differentially methylated across individuals or “hits” are annotated to nearby genes. This 

approach allows for the discovery of potentially novel biological correlates and can 

contribute to a more comprehensive and holistic understanding of etiology of 

psychopathology.  

CHAPTER 2: Application of Epigenetics to Etiology of Psychopathology 

Role of Epigenetics in Risk for Psychopathology 

Epigenetic mechanisms are normative background processes that are essential to 

many organism functions. Researchers across disciplines are studying when and how 

these processes are altered to function improperly and confer risk for disease. 

Environmental inputs have shown to be an important trigger for altered epigenetic 

signaling. It has been well documented that the epigenome is highly susceptible to 

environmental input and certain environmental exposures including cigarette smoking ( 

Lee & Pausova, 2013), pollutants or toxins (Ho et al., 2012), exercise (Voisin et al., 

2015), and diet (Anderson et al., 2012) alter DNA methylation patterns. Importantly for 

psychologists, thousands of studies in the field of behavioral epigenetics have also 

demonstrated the link between psychosocial stressors and DNA methylation across 

developmental stages (for a review of maternal prenatal stressors see Sosnowski et al., 

2018; for a review of child maltreatment see Lutz & Turecki, 2014).   
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Due to the vital role that adverse life experiences play in the development of 

mental illness, epigenetic processes present a novel way to unify the biological and 

environmental origins of risk and resilience to psychopathology. Epigenetic changes 

including DNA methylation have emerged as potential mechanisms that can both capture 

the effects of stressful early life experiences and explain their propagation into adulthood. 

The promise of a mediational model suggests that exposure to stressful early life 

experiences during crucial periods of development sets individuals on relatively stable 

biological trajectories via epigenetic mechanisms that then alter key systems such as the 

stress response and immune systems, that result in the development and maintenance of 

psychopathology later in life.  

A seminal study using an animal model done by Weaver and colleagues (2004) 

demonstrated the potential of this mediational framework in describing how early life 

experiences can lead to behavioral phenotypes via epigenetic mechanisms. Results 

showed that pups who were raised by anxious, low nurturing mothers (i.e. characterized 

by decreased pup licking, grooming, and arched-back nursing) were more likely to 

demonstrate a stable, anxious phenotype into adulthood than pups who were raised by 

nurturing mothers. Pups who were neglected had higher levels of DNA methylation in the 

region of the glucocorticoid receptor gene (NR3C1), had decreased transcription factors, 

and subsequent gene expression in the hippocampus. NR3C1 is integral in the modulation 

of the HPA axis and a key player in the stress response system. This was the first study to 

demonstrate the link between early life experiences and an animal model of 

psychopathology via epigenetic mechanisms.  

Prenatal Calibration of Risk: Fetal Programming Hypothesis 
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It is clear that adverse environmental inputs early in the lifespan have long range 

health consequences into adulthood. In the past couple of decades, researchers have been 

asking the question of exactly how early in development can risk be embedded. A vast 

empirical base suggests that prenatal exposure to environmental stress can set a child on 

disease trajectories with long lasting effects into adulthood before the child is even born. 

A seminal example of this is findings from the Dutch Hunger Winter cohort (N = 2141), 

conceived during a famine in the Netherlands in 1944 as a result of WWII and followed 

up in adulthood. Results showed that prenatal exposure to famine in general lead to 

higher rates of Type II diabetes in middle adulthood and exposure to famine particularly 

in early gestation was linked to coronary heart disease, breast cancer, increased stress 

responsiveness, and higher rates of obesity (Roseboom et al., 2006).  

The long-lasting effects of prenatal exposures have been explained by the “fetal 

programming hypothesis” which posits that risk for psychopathology later in the lifespan 

is biologically programmed in the uterine environment during a period of rapid 

neurodevelopment when the fetus is particularly susceptible to environmental influences 

(Barker, 1995). The fetus incorporates signals about the maternal environment including 

diet and stress into its developmental trajectory via epigenetic changes related to 

neurodevelopment of key brain areas and networks in an effort to most adaptively match 

development to future postnatal environment (Barker, 1995; Gluckman, Hanson, Cooper, 

& Thornburg, 2008). Within this framework, vulnerability to psychopathology has been 

described as the “three hit hypothesis.” Genetic predisposition is hit 1, the prenatal 

environment is hit 2, both calibrate susceptibility to hit 3, life experiences and exposures 

postnatally (Daskalakis et al., 2013). In recent follow up studies of the Dutch Hunger 

Winter, researchers found that even 60 years after the event, siblings who were prenatally 
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exposed to the famine showed lower DNA methylation of the insulin like growth factor 2 

(IGF2), a gene essential in fetal growth and development, compared with their unexposed 

same-sex sibling (Heijmans et al., 2008). Using an epigenome-wide approach, 

researchers identified additional differentially methylated genes associated with prenatal 

famine exposure including the insulin receptor gene (INSR), a gene involved in prenatal 

growth and insulin signaling, and the carnitine palmitoyltransferase 1A gene (CPTA1), 

which is involved in fatty acid oxidation (Tobi et al., 2014).  

The fetal programming hypothesis has also been used to understand the early 

embedding of risk for psychopathology as well. A large number of studies have shown 

that exposure to prenatal maternal psychopathology such as depression and anxiety is 

associated with both internalizing and externalizing behavioral outcomes in children such 

as depression, anxiety, ADHD symptoms, and conduct problems, above and beyond the 

quality of the child’s postnatal environment (Barker et al., 2011; O’Connor et al., 2002; 

O’Donnell et al., 2014; Van den Bergh & Marcoen, 2004). Prenatal exposure to maternal 

mood disorders may account for 10–15% of the variance in children’s behavior problems, 

accounting for concurrent levels of maternal mood symptoms (Glover, 2015). A wealth 

of research has emerged studying the process by which prenatal stressors via DNA 

methylation confer risk for psychopathology later in the lifespan. One study found that 

higher perceived maternal stress in the second trimester was associated with higher DNA 

methylation of hydroxysteroid 11-beta dehydrogenase 2 (HSD11B2), a gene that is 

integral in the deactivation of cortisol, which was in turn associated with a lower score on 

an index of fetal neurodevelopment in the third trimester (Monk et al., 2016). Another 

found that decreased prenatal maternal mood was related to increased DNA methylation 

in NR3C1 in the newborn, which was associated with increased cortisol response at 3 
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months (Oberlander et al., 2008). Utilizing the ALSPAC sample, researchers found 

variation in DNA methylation at seven loci across the epigenome in cord blood 

differentiated children who go on to develop early-onset conduct problems in middle 

childhood (Cecil et al., 2018). The prenatal period may be an essential stage of 

development in which to study epigenetic processes as embedding risk for 

psychopathology as the rate of DNA synthesis is high and the epigenetic marks needed 

for normal tissue differentiation and development are being established (Dolinoy et al., 

2007). 

Applying Epigenetics to Psychological Phenotypes 

The study of epigenetic alterations as mechanisms for disease was first 

appreciated in cancer research where DNA methylation is among the most common 

somatic errors involved in carcinogenesis and accounts for a high proportion of tumor 

suppressor gene inactivation. Momentum has also been building in studying DNA 

methylation in the context of aging and other disease including autoimmune disorders, 

cardiovascular diseases, diabetes, and neurodegenerative disorders. Epigenetic research 

in the biomedical world commonly employs the case-control study design where a 

population is divided into a “disease” group and a “non-disease” group to examine 

epigenetic differences between the two. In translating technological advances in 

epigenetics from the biomedical world, developmental psychopathologists have largely 

contextualized psychological phenotypes within the same biomedical disease model, 

frequently using convenience sampling of adults (i.e. dividing a sample into individuals 

that meet criteria for depression and comparing their epigenetic profiles to controls). Due 

to their heterogeneity and comorbidity, psychological phenotypes are uniquely complex 

in their classification and measurement and are not automatically amenable to the same 
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methodologic framework. Many psychological disorders are better understood as 

occurring on a continuity of “normative” human experiences rather than discrete disease 

entities and psychological disorders have more complex continuity and discontinuity over 

time. 

It is clear that the roots of both psychological and biomedical disorders can be 

traced back to early life development. However, unlike most biomedical disorders studied 

through the lens of epigenetic alterations, many psychological disorders have their initial 

onset in childhood. According to the World Health Organization, externalizing or 

impulse-control disorders across the world have the earliest onsets with median 7-9 years 

for ADHD, 7-15 for Oppositional Defiant Disorder (ODD), 9-14 years for conduct 

disorder. Research has shown that specific phobias tend to being in early to middle 

childhood, social anxiety in early to mid-adolescence, obsessive compulsive disorder in 

mid to later adolescence, and panic disorder in early adulthood (Kessler et al., 2005). 

Studies on depression have shown that the prevalence rates are generally low in children 

and grow to near-adult prevalence levels in adolescence (Merikangas et al., 2010). 

Because most adult psychopathology has its origins in childhood, it is imperative that in 

seeking biological mechanisms for the origins of psychological disease, researchers must 

examine epigenetic mechanisms early in the lifespan and in the developmental contexts 

in which these disorders initially occur. Utilizing longitudinal designs not only allows 

researchers to study epigenetic changes in a relevant sensitive period, they also have the 

advantage of establishing temporal order of epigenetic changes and disease outcome. In 

case-control designs, DNA methylation and disease outcome is usually measured 

concurrently, which limits interpretations of epigenetic changes as causative as it is 

equally reasonable to assume that epigenetic changes can be interpreted as a biomarker of 
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“wear and tear” of a debilitating and often chronic mental illness rather than a causal 

mechanism that explains its origin.  

Therefore, the central aim of this thesis was to apply epigenetic theory, 

methodology, and technology to clinically relevant psychological phenotypes in a 

longitudinal framework that take into account phenotypic complexity and developmental 

context. 

CHAPTER 3: Description of the Study Population 

Description of the Avon Longitudinal Study of Parents and Children (ALSPAC) 

cohort 

The Avon Longitudinal Study of Parents and Children (ALSPAC) also known as 

“Children of the 90s” is an ongoing epidemiological study of children born in the city of 

Bristol in the United Kingdom in the 1990s (see cohort profiles Boyd et al., 2013; Fraser 

et al., 2013). The recruitment sample (N=14, 541) was all women residing in the Avon 

county catchment area with an expected date of delivery between April 1, 1991 and 

December 31, 1992. Data collection is still ongoing as ALSPAC participants transition 

into adulthood as well as efforts to gain information on the next generation.. Recruitment 

for the multi-generational cohort ALSPAC-G2 or “Children of Children of the 90s” 

began in 2012 and aimed to recruit all children of the (now adult) original ALSPAC 

children to continue recurring biological, psychosocial, and physiological assessments on 

the next generation and examine intergenerational connections to health and disease.  

 The families have been followed up with frequently, with 68 data collection time 

points between birth and age 18 including self, mother, father, and teacher reports. Self-

reported questionnaire measures focused on mother’s health included mental health 

(focusing largely on anxiety and depression), reproductive health (e.g. contraception, 
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menstrual patterns, repeatedly assessed pregnancies), cardiometabolic health (e.g. 

hypertension, cholesterol, musculoskeletal health (e.g. falls and fractures, arthritis), 

respiratory health (e.g. asthma, bronchitis), and health-related behaviors including 

substance use, diet, physical acitviity. Environmental measures include life course 

characteristics (e.g. retrospective measures of their child abuse and/or neglect, parental 

socioeconomic status and childhood housing conditions) and current life stressors 

including social support networks and romantic relationship functioning.  

 Self-reported child questionnaires included environmental measures assessed 

throughout the lifespan include diet, physical activitiy, hosuing, socioeconomic 

background, life stressors, air polluants (e.g. cigarette smoking in the home, home close 

to heavy traffic), and school environment. Physiological measures include 

anthropometry, blood pressure, pulse rate, lung function, fitness, skin, eye, and dental 

observations. Cognitive measures include IQ, speech and language ability, motor skills, 

and reading abiliy. As the ALSPAC children matured into pre-adolescennce, puberty and 

mensutration measures were collected. Psychosocial questionnaires focused on gender 

bhavior, self-esteem, peer relationships, romantic relationships, eating disorders, and 

alcohol and drug use. Psychopathology information was also collected assessing 

internalizing symptoms (e.g. mood and anxiety disorders), externalizing symptoms (e.g. 

ADHD, conduct and impulse control diosrders), as well as symptoms related to bipolar 

disorder and psychosis. The study website contains details of all the data that is available 

through a fully searchable data dictionary: http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary/.  

 Like with all longitudinal cohorts, attrition over the years has been a challenge. 

Attrition rates were highest in the early neonatal stage of the study (66%) and decreased 
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over time, ranging from 48%-60% in childhood, 49% in adolescence, and 39.44% in 

transition to adulthood. However, mean attrition rates largely exaggerate the numbers of 

pariticpants lost to follow up due to the high volume and frequency of data collection 

points and different response patterns across nearly three decades. For example, some 

participants return to the study after years of no follow up. In fact, it seems that ALSPAC 

has a core of 3,000 devoted families that have completed all possible assessments, with 

close to 5,777 families completing 75% of all assessments throughout a 30 year period.  

The ALSPAC cohort presents an unprecedented breadth and depth in assessment 

of health across the lifespan in an epidemiological cohort. One major limitation of the 

cohort, however, is the under-representation of non-White minority ethnic groups (2.2% 

of ALSPAC mothers were non-white) which limits external validity when generalizing 

findings to other populations. Under-representation is laregly due to the demographic 

profile of the original catchment area of Avon (4.4% non-White mothers) as well as the 

effects of differential attrition based on socioeconomic status. Children lost to follow-up 

are more likely to have a lower educational attainment, are more likely to be eligible for 

free school meals, and are more likely to be male. In order to address differential attrition 

and enhance the data resource, researchers used data linkage to link participants to 

publically available public health and administrative records including medical records, 

education records, economic, emplyment and social support records, criminal 

convictions, and neighborhood data. 

Description of the Data Resource Profile: Accessible Resource for Integrated 

Epigenomic Studies (ARIES) 

 In 2012, a sub-project of ALSPAC named the Data Resource Profile: Accessible 

Resource for Integrated Epigenomic Studies (ARIES), was established to create a 
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population-based resource of DNA methylation data with the aim to understand the role 

of DNA methylation in health and development in the ALSPAC cohort (see cohort 

profile Relton et al., 2015). Based on available retrospective DNA sampling, 1,018 

mother-child dyads (50% female offspring) from the original ALSPAC cohort were 

chosen to obtain epigenome-wide DNA methylation samples using the Illumina Infinium 

HumanMethylation450 BeadChip (450 K) array. DNA samples for offspring were 

available at three separate time points: at birth and extracted from cord blood drawn from 

the umbilical cord upon delivery, at mean age 7.5 years, and at mean age 15.5 years, both 

extracted from peripheral blood. Maternal samples were collected during pregnancy at 

mean 26 weeks gestation and again approximately 15-17 years later. The ARIES sub-

sample is considered to be reasonably representative of the main study population. 

Though mothers included in ARIES were slighltly older, more likely to have a non-

manual occupation, and are less likely to have smoked during pregnancy.  

 The ALSPAC cohort sample is one of a kind as its large scale and in-depth rich 

analysis of mental and physical health across the lifespan is unprecedented in 

epidemiological studies. Due to recurrent measuring of key phenotyoes and genetic and 

biological samples at multiple time points, this data set is uniquely suited to explore 

questions of epigenetic origins of risk and resilience for psychopathology within a 

developmental and ecological framework.  

Processing of the ARIES DNA Methylaton Data  

DNA methylation data processing using the Illumina 450k array was conducted at 

the University of Bristol. DNA samples from all participant ages (cord, middle 

childhood, adolescence) were distributed across slides using a semi-random approach to 

minimize the possibility of confounding due to batch effects. DNA methylation data went 
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through several quality checks to ensure accuracy. In order to remove sample 

mismatches, genotype probes were compared with SNP data from the same indidivudal 

in the ALSPAC sample and samples were flagged if there was a sex mismatch based on 

X-chromosome methylation. The Illumina 450k array also has 850 quality control probes 

on each array that asses various aspects of the data collection process to determine the 

status of staining, extension, hybridization, target removal, bisulfite conversion, 

specificity, non-polymorphic and negative controls. Samples failing quality control were 

repeated and, if unsuccessful, excluded from further analysis. Micro-arrays have been 

shown to have very strong batch effects that can mask true biological differences between 

samples. Statistical controlling for batch effects during the data analysis phase is not 

sufficient and data needs to be initially normalized to remove any artificial variation 

between samples. There are several statistical methods that can be used to normalize the 

450k array using packages in R.  

There are two confounders present in the set-up of the Illumina microarray: 

polymorphic probes and cross-reactive probes. Polymorphic probes are probes that target 

CpG sites that are on or near SNPs. Since the Illumina platform uses quantitative 

genotyping of C/T SNPs, probes with polymorphisms at the target C or G have the 

potential to confound a difference in genotype rather than a difference in DNA 

methylation. By utilizing genotype and DNA methylation information from the same 

individuals, researchers have found that DNA methylation profiles of probes located on 

or near a SNP were typically explained by patterns of the SNP genotype and do not 

reflect any underlying epigentic mechanisms (Chen et al., 2013; Price et al., 2013). 

Cross-reactive probes are probes that hybridize to multiple genomic locations that are 

similar. The level of DNA methylation at these probes likely reflects a combination of 
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DNA methylation at the various locations to which they hybridize (Chen et al., 2013; 

Price et al., 2013) . Both polymorphic and cross-reactive probes have been annotated by 

researchers who recommend removal of these probes for analyses examining differences 

in DNA methylation.  

Like most exisitng cohort studies, ALSPAC has been utilizing stored whole blood 

samples for DNA methylation analyses. Whole blood is a heterogenuous collection of 

different cell types, which carry their own unique DNA methylation profile as a blueprint 

for cell differentiation (Reinius et al., 2012). For each individual, the proportion of cell 

types within their specific blood sample can vary widely, which in turn can confound 

DNA methylation measurement. The overwhelming majority of the ALSPAC DNA 

samples did not have whole blood cell counts assessed prior to DNA extraction and 

therefore a post hoc correction is necessary. First, the fraaction of CD8, CD4, NK, B, 

monocyte, and granulocyte cells in each individual is estimated and those estimated cell 

type proportions serves as covariates in any subsequent analyses. For cord blood obtained 

at birth, the Bakulsi method was used (Bakulski et al., 2016). For peripheral blood 

obtained in adolescence, the Houseman method was utilized (Houseman et al., 2016).  

Introduction to Empirical Chapters 

 

The first study describes a manuscript titled “Variation in DNA Methylation of 

the Oxytocin Receptor Gene Predicts Children's Resilience to Prenatal Stress” published 

in Development and Psychopathology in 2017. It is a candidate gene approach examining 

epigenetic changes in the oxytocin receptor gene (OXTR) as it relates to resilience to 

prenatal stress. It is an early training step into behavioral epigenetic research, theory, and 

methods. The second, not yet published, study represents a more in-depth and 
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methodologically sophisticated epigenome-wide approach examining epigenetic 

correlates of depression trajectories in adolescence and follow up gene annotation, gene 

network analyses, and regional analyses.  

CHAPTER 4: Variation in DNA Methylation of the Oxytocin Receptor Gene 

Predicts Children's Resilience to Prenatal Stress 

Introduction  

Resilience is defined as successful emotional, behavioral, or social adaptation or 

adjustment despite experience of significant adversity, stress, or trauma (Luthar et al., 

2000; Rutter, 2012). In children, researchers have operationally defined this adaptation in 

a myriad of ways such as mastering normative developmental tasks (Luthar et al., 2015), 

absence of psychopathological outcomes (Martinez-Torteya et al., 2009) or functioning 

that is “better than expected” given a level of exposure to risk (Kim-Cohen et al., 2004). 

Some children show resilience across multiple domains of functioning. More commonly, 

however, at-risk children show resilience in one domain of functioning but not in others 

or they may be resilient at one time period but not another (Masten, 2013). Thus, 

resilience as a construct may be better defined as a dynamic process (not a trait or 

characteristic) that depends on the balance of risk and protective factors available to an 

individual at a given point in time (Jaffee et al., 2007; Rutter, 2006, 2012). Understanding 

the mechanisms that promote resilient functioning in addition to the processes that confer 

risk for psychopathology, and the dynamic balance between them, is essential to 

understanding how normative and maladaptive developmental trajectories form.  

Researchers have long posited the importance of adverse life events during early 

critical periods in understanding risk and resilience. The prenatal period, specifically, is 

one in which the fetus is especially vulnerable to a wide range of environmental 
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exposures that have the potential to confer risk for emotional, cognitive, and behavioral 

problems in childhood (Braithwaite et al., 2014; Rice et al., 2007). A large number of 

studies have shown that exposure to prenatal maternal psychopathology such as 

depression and anxiety is associated with both internalizing and externalizing behavioral 

outcomes in children such as depression, anxiety, ADHD symptoms, and conduct 

problems (Barker et al., 2011; O’Connor et al., 2002; O’Donnell et al., 2014; Van den 

Bergh & Marcoen, 2004). Prenatal exposure to maternal stressful life events, such as 

death of a close relative or friend, divorce, marital problems, and job loss, has also been 

linked to ADHD, behavioral problems, and internalizing symptoms (Laucht et al., 2000; 

Pawlby et al., 2009; Ronald et al., 2010). It is clear that a range of stressors during the 

prenatal period increases risk for child psychopathology. However, not all children 

exposed to environmental stressors in utero go on to develop psychopathology and some 

children seem to be less vulnerable than others. There are several hypotheses that can 

potentially account for this differential vulnerability. One possibility is that a supportive 

postnatal environment can attenuate or reverse the effects of prenatal stress. For example, 

researchers have found that sensitive caregiving moderates the effect of prenatal maternal 

stress on infant fearfulness (Bergman et al., 2008) and cognitive outcomes (Bergman et 

al., 2010) 

A second possibility is that individual differences in genotype confer protection 

against prenatal stressors. For example, researchers have found that variation in the 

glucocorticoid receptor gene (NR3C1), a gene integral to the functioning of the 

hypothalamic-pituitary-adrenal (HPA) axis which is involved in stress reactivity, 

moderated the effect of prenatal maternal psychological symptoms on later emotional and 

behavior problems, such that children whose mothers were depressed or anxious when 
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they were pregnant with the child had an increased risk of emotional and behavioral 

problems at age 3 if they possessed the minor allele C (CC or CG), but not if they were 

homozygous for the major allele (GG) (Pluess et al., 2011). Using data from 1513 

children in the Generation R cohort, Pluess and colleagues (2011) found that infants 

whose mothers were more anxious during pregnancy had higher scores on a measure of 

negative emotional temperament than infants whose mothers were not anxious and this 

effect was significantly stronger for infants who carried the short ‘s’ form of the serotonin 

transporter gene (5-HTTLPR) compared with infants who carried two copies of the long 

‘l’ form of the gene. In addition, Oberlander and colleagues (2010) found that prenatal 

exposure to maternal anxiety predicted internalizing symptoms in children with 2 copies 

of the 5-HTTLPR ‘s’ allele (but not in children who carried the ‘l’ allele). In contrast, a 

mother’s anxiety during pregnancy predicted her child’s externalizing problems only if 

her child had 2 copies of the ‘l’ allele and not if the child carried at least one ‘s’ allele 

(Oberlander et al., 2010). 

In addition to identifying structural variants in the genome that buffer against the 

effects of prenatal stress, new research in the field of behavioral epigenetics has started to 

elucidate the underlying biological mechanisms of the relationship between stress 

exposure and later developmental outcomes, including emotional and behavioral 

problems. Epigenetic research sits at the intersection of social and biological explanations 

for developmental psychopathology and has enormous potential for describing how 

stressful life events “get under the skin” and have lasting effects on mental and physical 

health. The epigenome describes the chemical switches that sit on top of genes and 

modulate gene expression. Stress-induced epigenetic modifications are typically 

measured by examining DNA methylation, where methyl groups are added to cytosine-
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guanine-phosphate (CpG) sites on the regulatory or promoter regions of genes to silence 

transcription factors or block access to recognition elements of a gene (Bick et al., 2012). 

DNA methylation is typically related to lower gene expression in promoter regions. 

However, DNA methylation in other genomic regions can have the opposite effects on 

expression (e.g. gene body) and there is little known about the functional role of DNA 

methylation in other locations such as the intergenic region (Jones, 2012). Studies have 

shown that DNA methylation patterns are under significant control – as evidenced by the 

discovery of a large number of methylation quantitative trait loci (mQTL; Gaunt et al., 

2016; Jones, 2012) – but are also sensitive to environmental influences (McGowan & 

Roth, 2015). Although the environment modifies the epigenome throughout the lifespan, 

there is some evidence that the in utero environment has the largest effect (Billack et al., 

2012). These prenatal effects have been largely interpreted in terms of the fetal 

programming hypothesis in which the fetus adapts its phenotype – such as stress 

reactivity or metabolism – to what it anticipates its postnatal environment to be on the 

basis of the biological cues from the mother’s environment (Gluckman et al., 2008b). 

The majority of studies investigating the association between prenatal exposure to 

maternal stress and methylation have focused on NR3C1. Prenatal stressors such as 

maternal depression (Conradt et al., 2013a; Hompes et al., 2013), exposure to intimate 

partner violence (Radtke et al., 2011) and exposure to war (Mulligan et al., 2012) have 

been associated with increased methylation of NR3C1 at birth. There is, however, 

variability in these methylation profiles, even among newborns whose mothers reported 

high levels of stress and this variability may be predictive of children’s risk for emotional 

or behavioral health problems versus their resilience. To date, few biologically informed 
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prospective studies have explored gene-specific methylation patterns in the context of 

resilience. We focus on methylation of the oxytocin receptor gene (OXTR). 

Oxytocin is an essential neuropeptide and hormone in the regulation of social and 

affiliative behavior such as empathy, attachment, bonding, emotion recognition, and 

processing of social stimuli (Jack et al., 2012). Oxytocin has also been shown to have 

anxiolytic effects by dampening physiological, hormonal, and brain-level responses to 

stressful or aversive signals (Heinrichs et al., 2009). Thus, stress-related epigenetic 

changes in the oxytocin system may confer risk for the development of psychopathology 

by shaping socio-emotional, socio-cognitive, and stress response systems that underlie 

temperament and children’s relationships with peers and adults.  

It is biologically plausible to predict that prenatal (or postnatal) stressors would be 

associated with increased DNA methylation and, in turn, increased emotional and 

behavioral problems. That is, if DNA methylation acts as a gene silencer, increased 

methylation in the promoter region of the gene would result in lower messenger RNA 

(mRNA) levels, blocking of transcription factors, and in turn, decreased gene expression 

and decreased circulating oxytocin in the blood. Indeed, a number of studies have found 

evidence for these relationships. For example, increased OXTR methylation leads to 

decreased OXTR mRNA expression in hepatoblastoma human cells (Kusui et al., 2001) 

and in murine cells (Mamrut et al., 2013) in the promoter region of the gene. Gregory and 

colleagues found increased promoter region OXTR methylation in peripheral blood as 

well as in temporal cortex tissue in individuals with autism compared with controls. 

Increased methylation resulted in a 20% reduction in mRNA expression (Gregory et al., 

2009) . 
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Consistent with the possibility that OXTR methylation may be a mechanism by 

which prenatal exposures increase risk for psychopathology, Dadds and colleagues (2014) 

found that elevated methylation in OXTR in a sample of 4- to 16-year-olds was associated 

with lower levels of circulating oxytocin and higher levels of callous-unemotional traits. 

Similarly, in a sample of youth with early-emerging and persistent conduct problems, 

Cecil and colleagues found that higher methylation at birth at the OXTR locus was 

associated with higher levels of callous-unemotional traits at age 13, although the effect 

was only observed in youth with low levels of internalizing problems (Cecil et al., 2014). 

Moreover, mothers’ reports of behaviors that might have caused stress to themselves or 

the fetus (e.g., their own criminal behavior, their partner’s criminal behavior, their own 

psychopathology and substance use) were associated with elevations in OXTR 

methylation at birth.  

Despite the plausibility of a pathway by which prenatal stressors lead to increased 

OXTR methylation, a number of studies have found the inverse relationship between 

OXTR methylation and prenatal stress as well as psychological outcomes. For example, 

one study focusing on prenatal stress found that the more life-changing stressful events a 

mother experienced when she was pregnant, such as being a victim or witness of assault 

or experiencing the severe illness or death of a loved one, the lower the OXTR 

methylation levels in cord blood at birth (Unternaehrer et al., 2015). Reiner and 

colleagues found that depressed women had lower OXTR exon 1 DNA methylation levels 

compared to non-depressed women (Reiner et al., 2015). Moreover, Ziegler and 

colleagues found in a sample of adults that decreased OXTR methylation was associated 

with a diagnosis as well as symptoms of social anxiety disorder, increased cortisol 

responses to a stress test, and increased amygdala responsiveness during social anxiety 
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word processing (Ziegler et al., 2015). In addition, in a brain imaging study, researchers 

found that higher OXTR methylation was related to increased brain activity in areas 

associated with social perception such as the temporoparietal junction and the dorsal 

anterior cingulate cortex (Jack et al., 2012). Thus, the evidence is mixed as to whether 

prenatal stressors are associated with increased or decreased OXTR methylation and 

whether individual differences in OXTR methylation are associated with positive or 

negative child (or adult) outcomes. Direction of effects could be highly dependent on the 

location of the probes examined.  

 The present study is the first to make use of a longitudinal design to examine if 

OXTR methylation at birth can differentiate resilient and non-resilient youth as measured 

by hyperactivity, conduct problem, and emotional problem outcomes in mid-childhood. 

Additionally, a strength of the study is that only children with pre- and post-natal 

adversity were included which ensures that resilience is not driven by differences in the 

quality of the postnatal environment. Given mixed findings in the literature about the 

direction of the relationship between stress in pregnancy and methylation levels at birth 

as well as the relationship between methylation levels and later behavior, we do not 

propose a directional hypothesis. Understanding plasticity at this critical period in 

development can help us examine how early stress can “get under the skin” and alter 

developmental trajectories. We hypothesize that this variability will be predictive of 

which newborns grow up to have low levels of psychopathology, despite their exposure 

to prenatal risk factors. 

Methods   

Participants 
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 The Epigenetic Pathways to Conduct Problems Study consists of a subsample of 

youth (n = 339, 50% female) nested within ALSPAC and ARIES with established 

trajectories of conduct problems from ages 4 to 13 (Barker & Maughan, 2009) and have 

epigenetic data at birth and/or childhood. This subsample is comparable to the full 

trajectory sample (n = 7,218) in terms psychiatric comorbidity (Barker et al., 2010). 

DNA methylation measures were available for 326 youth at birth. Children with missing 

ethnicity information were removed, leaving a total sample of 321. Except for factor 

analyses, in which we used data from all youth, the present study only included youth 

who scored above the sample average on our measure of prenatal and postnatal (birth to 

age 7) environmental risk exposure. Although exposure to prenatal risk was the focus of 

our study, we wanted to ensure that differences in the postnatal environment did not 

account for any observed associations between methylation profiles at birth and resilience 

in middle childhood. These measures of prenatal and postnatal risk are described below 

in the section “Environmental Risk.” The final analytic sample was n = 91, all of whom 

had complete data including DNA methylation at birth, had been exposed to pre- and 

post-natal adversity, and for whom information on emotional and behavioral outcomes 

was collected. See Figure 1 for a flow chart representing which youth were included in 

the analysis sample.  

Measures 

   DNA Methylation data at Birth. DNA methylation was assayed according to 

standard protocol described in the Introduction section of this thesis (p. 19-22). Samples 

were quantile normalised using the dasen function within the wateRmelon package 

(wateRmelon_1.0.3; 19) in R and batch corrected using the ComBat package (Johnson et 

al., 2007).  
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              We extracted data for probes located within the OXTR CpG island (n = 12), as 

this area has been previously investigated and shown to play a key role in modulating the 

transcriptional activity of OXTR (Kusui et al., 2001). For each probe, methylation levels 

were indexed by beta values (corresponding to the ratio of methylated signal divided by 

the sum of the methylated and unmethylated signal). Factor analysis was used to reduce 

the 12 OXTR probes into a smaller set of factors, which accounted for shared variance 

between them. A 3-factor solution showed the best fit to the data as well as good 

temporal stability. See Supplement 1 and 2. We present findings relating specifically to 

Factor 1, three probes located in the 5'UTR region – Probe 1 (cg00078085), Probe 5 

(cg03987506), and Probe 10 (cg12695586) – because Factor 2 and 3 scores were not 

significantly associated with any type of resilience.  

 Environmental Risk. The prenatal risk score comprised items that were 

reported by mothers and summed to create 4 conceptually distinct but related domains: (i) 

Life events (e.g. death in family, accident, illness), (ii) Contextual risks (e.g. poor housing 

conditions, financial problems), (iii) Parental risks (e.g. maternal psychopathology, 

criminal involvement and substance use), (iv) Interpersonal risks (e.g. intimate partner 

violence, family conflict). Measures of post-natal environmental risk were created for the 

early childhood (birth-age 7) and middle childhood (age 8-9) periods. These included all 

domains represented in the prenatal risk composite as well as a measure of Direct 

victimization (e.g. child bullied by peers or physically hurt; available only postnatally).  

 Risk domains were positively and significantly correlated, both within and 

between developmental periods, with the majority of correlations ranging from r =.20-

.40. For the prenatal and postnatal periods, we used confirmatory factor analyses (CFAs) 

to assess the internal reliability of the risk domains and to extract one global cumulative 
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risk score for each developmental period, showing good model fit. Higher scores indicate 

greater environmental risk exposure. See Supplement 3 for full item descriptions, details 

of inter-correlations between risk domains and factor analysis fit indices. To ensure that 

youth who were defined as resilient or non-resilient had been exposed to at least some 

moderate level of environmental risk, the sample was restricted to youth who scored 

above the mean on the measures of prenatal and postnatal cumulative environmental risk, 

as described in the Participants section.  

 Internalizing and Externalizing Problems. Repeated assessments of conduct 

problems, hyperactivity, and emotional problems were made at ages 4, 7, 8, 10, 12, and 

13 via maternal reports on the Strengths and Difficulties Questionnaire (SDQ) 

(Goodman, 1997). The SDQ is a widely used screening instrument with reliability and 

validity demonstrated in a large national sample (Goodman, 2001). The SDQ comprises 

five subscales, each consisting of five items rated by mothers as ‘certainly true’, 

‘somewhat true’, or ‘not at all true’. In the current study, we utilized the conduct 

problems subscale (e.g., ‘often fights with other children or bullies them’, ‘often lies or 

cheats’), the hyperactivity/inattention subscale (e.g., ‘restless, overactive, cannot stay still 

for long’, ‘constantly fidgeting or squirming’) and the emotional problems subscale (e.g., 

‘often unhappy, down-hearted or tearful’, ‘many worries, often seems worried’). In order 

to obtain more robust and reliable estimates of symptomatology, we performed a 

confirmatory factor analysis for each of the three subscales that included data from age 4 

to 13, so as to generate a single factor score for each subscale that accounted for shared 

variance across time points. We also created a ‘global symptomatology’ factor score 

combining all three SDQ subscales as a measure of more general overall functioning. See 

Figure 2 for summary statistics as well as full details of the confirmatory factor analysis.  
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Psychosocial Functioning. We used factor scores from the peer problems (e.g. 

‘rather solitary and tends to play alone’, ‘generally liked by other children’) and prosocial 

behavior (e.g. “considerate of other people’s feelings’, ‘kind to younger children’) 

subscales from the SDQ. We also utilized a six item callous-unemotional traits 

questionnaire completed by mothers when the child was 13 (e.g., ‘makes a good 

impression at first but people tend to see through him/her after they get to know him/her’, 

and ‘shallow or fast changing emotions’) (Moran et al., 2008). Items were rated on a 

three-point scale ranging from ‘not true’ to ‘certainly’ true. Social cognition was assessed 

using the 12-item Social Communication Disorder Checklist (Skuse et al., 2005) 

completed by mothers when the child was 7 years old. Items included for example: ‘not 

aware of other people’s feelings’, ‘does not notice the effect of his/her behavior on other 

members of the family’. Higher scores indicate lower social cognition.  

 Classification of Resilience. In order to classify the sample into resilient (1) and 

non-resilient (0) groups, we conducted four ordinary least squares regressions to predict 

(i) global, (ii) conduct problems, (iii) hyperactivity, and (iv) emotional problems, 

respectively, from the prenatal cumulative risk factor score. We utilized residuals from 

these regressions to classify youth into resilient and non-resilient groups in each domain. 

Specifically, youth with negative residual scores were classified as resilient (indicating 

that they had lower-than-predicted levels of psychopathology, given their exposure to 

prenatal risk) and youth with non-negative residual scores were classified as non-resilient 

(indicating that they had predicted or higher-than-predicted levels of psychopathology, 

given their exposure to prenatal risk). One subject with conduct, hyperactivity, and global 

symptomatology residual scores > 3 s.d. from the mean was removed from all the 

analyses.  Retention of the outlier results in a non-normal distribution of resilience 
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residuals although findings remain unchanged with the subject’s inclusion. For all 

domains, the distributions of the residuals were normal. See Figure 3 for resilience 

classification. 

 For resilience as defined by global problems, n = 44 (48%) youths were classified 

as resilient and n = 47 (52%) were not resilient. For resilience as defined by conduct 

problem scores, n = 44 (48%) youth were classified as resilient and n = 47 (52%) were 

not resilient. For resilience as defined by hyperactivity scores, n = 50 (55%) youth were 

classified as resilient and n = 41 (45%) were not resilient. Finally for resilience as defined 

by emotional problem scores, n = 50 (55%) youth were classified as resilient and n = 41 

(45%) were not resilient.  

Data Analysis 

Factor analyses were conducted in Mplus version 6.1.128 and all other analyses in 

SPSS 21. Regression analyses were conducted to test whether resilience (defined globally 

and in terms of specific domains) was associated with the Factor 1 methylation score. 

Post-hoc analyses were conducted to test whether resilience was associated with the 

individual probes (Probes 1, 5, 10) that make up Factor 1. Covariates in all models 

included sex and cell-type composition, estimated using the approach described in 

Houseman and colleagues (2012). Analyses were bootstrapped 10,000 times. 

Bootstrapping is advantageous with small samples as it derives an approximation of the 

sampling distribution via repeated resampling of the available data to yield bias corrected 

95% confidence intervals (CI). Significant associations were only presented if they 

survived bootstrapped confidence intervals. Then, further analysis on any resilient 

domains that had significant methylation results was conducted. Resilient and non-
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resilient groups in that domain were compared on additional psychosocial functioning 

factors.  

Results 

 As shown in Table 1, children who had lower conduct problem scores than 

predicted given their exposure (to pre-natal environmental risk; i.e. resilient group) had a 

higher OXTR methylation Factor 1 score than non-resilient children. In contrast, when 

resilience was defined globally or in terms of hyperactivity or emotional problems, 

resilience scores were not associated with OXTR methylation.  

When examining the individual probes that make up the OXTR methylation factor 

(Probes 1, 5, and 10), we found that youth who were resilient in terms of conduct 

problems had significantly higher methylation levels across all three probes compared to 

the non-resilient group. Interestingly, resilience as defined in terms of global problems 

and hyperactivity problems predicted increased methylation only within one probe (Probe 

5). Figure 4 highlights percent methylation differences across groups who were resilient 

versus non-resilient in terms of conduct problems.  

 Table 2 provides descriptive information regarding the groups who were resilient 

and non-resilient in terms of conduct problems. The groups did not differ in terms of 

gender or in environmental risk at any developmental period (prenatal – age 9). 

Furthermore, in an ANCOVA controlling for sex, we found that youth who were resilient 

in terms of conduct problems also had lower hyperactivity, emotional problems and 

callous-unemotional traits, higher prosocial behavior and better social cognition as 

compared to youth who were non-resilient in terms of conduct problems. Thus, youth 

who were resilient to prenatal risk in terms of having relatively low levels of conduct 
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problems were functioning well across multiple domains that are typically compromised 

when youth have conduct problems. 

Post-hoc Analysis: Exploring Potential Genetic Influences. We explored 

potential genetic factors that may influence the DNA methylation sites associated with 

resilience to conduct problems. Because our sample was underpowered to directly 

examine genetic polymorphisms (SNPs) affecting DNA methylation, we used the 

mQTLdb resource (http://www.mqtldb.org/) to search for known methylation quantitative 

trait loci (mQTLs) associated with our methylation sites of interest. The mQTLdb 

database contains the results of a large-scale study based on the ARIES sample in 

ALSPAC (from which our subsample is derived), characterizing genome-wide significant 

cis effects (i.e. SNP within ±1000 base pairs of the DNA methylation site) and trans 

effects (i.e. ±1 million base pairs) on DNA methylation levels across Illumina 450k 

probes at five different life stages, including cord blood DNA methylation at birth (Gaunt 

et al., 2016). Here, we searched for mQTLs based on results from the conditional 

Genome-wide Complex Trait Analysis (GCTA), which was used to identify mQTLs with 

the most representative, independent effect on each DNA methylation site in order to 

account for linkage disequilibrium (Gaunt et al., 2016). Based on mQTLdb search, we 

found that 2 out of 3 of Factor 1 probes (Probe 1 and Probe 10) were associated with 

known cis SNPs, suggesting that DNA methylation levels across these sites are likely to 

be under considerable genetic control. Interestingly, Probe 1 and Probe 10 are specific to 

conduct problems, while Probe 5 was significant in both hyperactivity and global 

problems. This suggests that these probes are likely to be influenced by genetic factors as 

well as environmental adversity and may suggest a specific GxE effect for conduct 

problems. See Table 3 for more details on SNP influences on Probe 1 and 10. 
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Discussion 

Our goal in this study was to examine whether variability in OXTR DNA 

methylation profiles at birth predicted resilience as defined by psychopathological 

outcomes that were better than expected based on prenatal risks. Consistent with our 

hypothesis, Factor 1 methylation – as well as methylation of the individual probes (1, 5, 

10) that make up the factor – was predictive of resilience to conduct problems in mid-

childhood. In contrast, OXTR DNA methylation profiles did not predict resilience in 

domains of emotional, hyperactivity, and global symptomatology suggesting a potential 

role for OXTR in the development of conduct problems in particular. This is consistent 

with the fact that many social-cognitive processes such as empathy, attachment, bonding, 

and emotion recognition are disturbed in children with conduct problems. In addition, 

problems in social cognition associated with conduct-disordered behavior are typically 

marked by deficits in oxytocin levels.  

Children who were resilient in the conduct problems domain in mid-childhood 

also had significantly fewer hyperactivity, emotional, and peer problems, higher levels of 

prosocial behavior, better social cognition, and lower scores on a measure of callous-

unemotional traits compared with non-resilient youth. Thus, the group that was resilient 

to conduct problems was broadly resilient across multiple domains. However, this was 

probably not due to OXTR methylation profiles, which were not predictive of resilience 

as defined by emotional or hyperactivity problems. One possibility is that children who 

have fewer-than-expected conduct problems get along better with their peers, are both 

innately more prosocial and observe higher levels of prosocial behavior in their 

interactions with peers, and are thus buffered against the emergence of other forms of 

psychopathology relative to children with higher levels of conduct problems (Oland & 
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Shaw, 2005; Patterson et al., 1989). The role of OXTR DNA methylation in resilience 

beyond the conduct problems domain remains unclear. 

It is important to note that there were no significant differences between resilient 

and non-resilient youths in levels of environmental risk in any of the developmental 

periods from prenatal to age 9. This rules out the possibility that resilient youth exhibited 

fewer conduct problems than non-resilient youth because they were exposed to less 

environmental risk after they were born. If epigenetic modifications in OXTR are 

consequences of exposure to stress, why would youth with similar levels of exposure to 

prenatal adversity vary in terms of OXTR methylation profiles? Recently, researchers 

have recognized that DNA methylation patterns may be allele-specific and the 

relationship between exposure to stress and DNA methylation may be moderated by gene 

variants. For example, one study found that adolescents that were homozygous for the l-

allele of 5HTTLPR and experienced more stressful life events had higher levels of 

5HTTLPR methylation. Stressful life events were not associated with methylation for s-

allele carriers (van der Knaap et al., 2015). Another study found that decreased DNA 

methylation in the FK506 binding protein 5 (FKBP5) gene depended on early childhood 

abuse and the rs1360780 risk allele (Klengel et al., 2013). Although we could not 

examine direct SNP effects because of small sample size, our post-hoc analyses using the 

mQTLdb demonstrated that methylation of Probes 1 and 10 is significantly influenced by 

SNPs rs62243375 and rs237900 respectively. Interestingly, our results showed that 

Probes 1 and 10 were only related to conduct problems, while Probe 5 was related to 

global problems and hyperactivity. This provides indirect evidence for OXTR genotype 

moderating the relationship between adversity and DNA methylation in conduct 

problems. However, studies examining allele specific DNA methylation effects earlier in 
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child development, especially in the prenatal/neonatal period are lacking. More research 

is needed to examine the integrative effects of OXTR genotype and DNA methylation on 

the oxytocin pathway, especially during the critical prenatal period.  

Increased methylation of OXTR is associated with decreased gene transcription 

and protein expression, which theoretically represents the molecular building blocks for 

behavioral phenotypes (Kumsta et al., 2013; Kusui et al., 2001; Mamrut et al., 2013).  

Interestingly, our results showed that higher levels of DNA methylation of OXTR at birth 

predicted resilience to conduct problems in mid-childhood. This pattern was unexpected 

in light of results showing that elevations in OXTR methylation are also associated with 

relatively high levels of callous-unemotional traits (Dadds et al., 2014; Cecil et al., 2014).  

However, this traditional view has been recently challenged with more and more studies 

finding an inverse relationship, highlighting the complexities in predicting behavioral 

phenotypes from DNA methylation (Jack, Conolley, & Morris, 2012; Reiner et al., 2015; 

Ziegler et al., 2015). In a human cohort, researchers found that only a minority of 

individual CpG sites had significant negative correlations with mRNA signaling across 

individuals and in a number of genes, higher DNA methylation was associated with 

higher gene expression (Lam et al., 2012). This can also be because the relationship 

between methylation, transcription, and expression can vary depending on the location of 

the CpG site. Of note, the three probes in our study mapped onto the 5’ UTR region of 

gene, where an inverse correlation between DNA methylation and mRNA expression has 

previously been reported (Eckhardt et al., 2006). Thus, although we might theoretically 

predict that higher methylation would be associated with a lack of resilience to conduct 

problems, the mechanics of methylation are likely to be more complex than this. 

Interestingly, our findings conflict with Cecil and colleagues (2014) work also 
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using data from the ALSPAC sample in which they found that higher OXTR methylation 

at birth was associated with higher callous-unemotional traits at age 13. Of note, Cecil et 

al (2014) found this relationship in OXTR probes that make up Factor 2, while Factor 1 

probes were not associated with callous-unemotional traits in their study. Furthermore, 

the sample (N=39) was highly selected to include only youth who had early-onset and 

persistent conduct problems and the relationship between higher OXTR methylation at 

birth and callous-unemotional traits was only observed in the subgroup with low levels of 

internalizing profiles. Thus, although our analysis sample and Cecil et al’s ostensibly 

come from the same cohort, they reflect very different groups of children.   

The present findings should be interpreted in light of a number of limitations. This 

study focused specifically on DNA methylation of annotated probes located within the 

CpG island of OXTR and it is likely that differences across groups may be found in other 

genes (i.e. glucocorticoid or serotonergic pathways). Future studies may employ an 

epigenome-wide approach that would enable researchers to examine group differences in 

DNA methylation across the genome. In addition, we did not examine RNA expression 

and cannot explore the functional relevance of the probes in regards to gene expression 

and downstream biological mechanisms. However, we did select a region of OXTR that 

has previously demonstrated to be functional in utero. Although we provided indirect 

evidence for a potential GxE effect on DNA methylation via the mQTLbase data, we 

could not directly test it due to sample size. In general, the findings are based on a 

relatively small sample of youth, which limits statistical power to detect effects.  

In summary, this is the first longitudinal study to examine the role of OXTR 

methylation in resilience across multiple domains. Our findings show that OXTR 

methylation at birth is exclusively related to resilience in the conduct problems domain in 
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middle childhood. This may be potentially reflective of a GxE effect where genotype 

moderates the relationship between environmental stressors and DNA methylation. These 

findings highlight the importance of the prenatal period for the development of childhood 

psychopathology and suggest a potential mechanism by which early experiences may be 

biologically embedded. Because of the important role of oxytocin in social impairment, 

understanding individual variations in OXTR methylation patterns might increase insight 

into risk and resilience factors that can bridge translational efforts in treatment and 

intervention approaches. 

CHAPTER 5: A Longitudinal Epigenome-wide Analysis of Depression Trajectories 

in Adolescence (Part 1) 

Introduction 

Major Depressive Disorder (MDD) in children and adolescents represents a major 

worldwide public health burden. In the US, an estimated 3 million adolescents 

experienced an episode of depression in 2017, representing around 13% of the US 

population aged 12 to 17 (National Survey on Drug Use and Health, 2017). According to 

the Centers for Disease Control and Prevention, in 2014 rates of death by suicide 

surpassed deaths by traffic accidents among adolescents for the first time ever (Morbidity 

and Mortality Weekly Report-MMWR, 2016). The suicide rates among even younger 

youths (age 10 to 14) has doubled in the US between 2007-2014 (MMWR, 2016). 

Depression in adolescence predicts major depressive disorder in adulthood, other mental 

health disorders, substance abuse, suicide attempts, educational underachievement, 

unemployment, and early parenthood (Fergusson & Woodward, 2002).  

The etiology of depression is still not fully understood. Genetic factors confer risk 

for the disorder with heritability of MDD estimated to be around 40%; but genetic 
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variants explain only a small proportion of heritability (for reviews of GWAS depression 

studies see Dunn et al., 2015; Tsang et al., 2017). Research has also shown that stressful 

life events also confer risk for depression above and beyond heritability (Kendler, 

Thornton, & Gardner, 2001; Kendler, Karkowski, & Prescott, 1999). Recent work 

utilizing the UK BioBank (N = 126, 522) found that the SNP-based heritability of MDD 

stratified by reported trauma exposure (24%) was much greater than MDD without 

reported trauma exposure (12%) suggesting a complex relationship between genetic risk, 

stressful life events, and MDD (Coleman et al., 2020).  

Epigenetic research sits at the intersection between biological and environmental 

explanations for the development of depression. Although the human genome is static, 

the epigenome is dynamic and highly responsive to environmental input. The epigenome 

describes the chemical switches that sit on top of genes and modulate gene expression by 

either silencing or activating certain genes. Stress-induced epigenetic modifications are 

typically measured by examining DNA methylation, where methyl groups are added to 

cytosine-guanine-phosphate (CpG) sites (Jaenisch & Bird, 2003). Because the epigenome 

is highly responsive to stress signals from the environment, modifications that produce 

enduring changes in gene expression are a possible biological mechanism by which 

stressful life events increase risk for depression. Our study aims to examine the etiology 

of depression using epigenetic mechanisms through a developmental lens focusing on 

two sensitive periods: in utero and adolescence.  

Heterogeneity in Depression 

Major Depressive Disorder is a heterogenous phenotype across many domains. 

There is heterogeneity in presenting symptoms, both in terms of the type and 

combination. For example, researchers found over a 1,000 unique depression symptom 
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profiles in individuals diagnosed with MDD (N = 3707), representing only 3.6 patients 

per profile (Fried & Nesse, 2015). Depression is also heterogenous in severity and is 

better understood as a dimension ranging from normative response to life stress to a 

severe disorder (Beach & Amir, 2003; Ruscio & Ruscio, 2000). Finally, depression is 

also heterogeneous in clinical prognosis over time. Research has shown that depression 

can be both a time-limited, single episode phenomenon and a recurring and chronic 

lifetime disorder (Lorenzo-Luaces, 2015). It is clear that depression is better understood 

as a heterogenous symptom cluster rather than a discrete, underlying condition with 

demarcated boundaries and a homogeneous group of patients (Monroe & Anderson, 

2015). However, in the search for biological vulnerabilities to MDD, research has largely 

relied on a categorical, disease model when operationalizing depression. As a result, 

despite decades of genetic, neurological, and biological research, slow progress has been 

made in identifying reliable biomarkers for MDD. In an effort to take this phenotypic 

heterogeneity into account, our study is the first to utilize a more dynamic measure of 

depression using trajectories that reflect severity and course over time.  

Sensitive Periods of Development 

Adolescence. Although depression in childhood is rare (less than 3% prevalence 

rate), there is a dramatic surge in depression rates during ages 13-17, with 17% of 

individuals experiencing a depressive episode before the age of 18 (Ge et al., 1994; 

Merikangas et al., 2010). There is a strong continuity of depression from adolescence into 

adulthood, while most depressed pre-pubertal children do not grow up to be depressed 

adults (Hankin et al., 2015a; Pine et al., 1999; Rutter et al., 2006). Therefore, adolescence 

represents a particularly significant developmental stage in which to study biological 

mechanisms underlying the development of depression.  
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In utero. Researchers have long posited that the risk for psychopathology can be 

embedded as early as the uterine period of development. With regards to depression 

research, a consistent finding is that maternal depression during pregnancy significantly 

increases risk for depression in offspring above and beyond postnatal maternal 

depression, contextual factors, and overall postnatal environment (Barker et al., 2011; 

Pawlby et al., 2009; Pearson et al., 2013; Plant et al., 2015) suggesting that the risk for 

depression could be traced back to prenatal development.  

Our study is able to assess the biological programming of depression risk through 

a more developmentally relevant framework by examining epigenetic changes in 

sensitive periods of development (in utero and adolescence) that have the biggest 

potential to help us understand the causes of depression.  

Literature Review of Epigenetics and Depression.  

 In the past ten years, there has been an explosion of DNA methylation studies 

examining the depression phenotype. In the nascent stages of behavioral epigenetics as a 

field, candidate gene approaches were most common. However, as the need for less 

biased and more comprehensive approaches grew, epigenome-wide studies have become 

more frequent, especially in the last five years. There are a number of reviews that 

describe this vast literature. For a comprehensive systematic review of approximately 70 

depression EWAS and candidate gene studies published before 2018 see Li and 

colleagues (2019). For a systematic review more focused on work stress, burnout, and 

depression see Bakusic and colleagues (2017). For a narrative review focusing on seven 

specific candidate genes of depression see Chen and colleagues (2017). Finally, for a 

more focused systematic review of monozygotic twin DNA methylation studies see 
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Palma-Gudiel and colleagues (2020). Findings from some of these studies are broadly 

summarized below.  

Candidate Gene Studies. For candidate-gene approaches, using case-control 

designs, the most frequently studied genes include brain derived neurotrophic factor 

(BDNF), the glucocorticoid receptor gene (NR3C1), and the serotonin transporter gene 

(SL6A4). The most robust candidate gene has been the BDNF with the majority of 

studies finding hypermethylation of BDNF to be associated with depression (e.g. 

Chagnon, Potvin, Hudon, & Préville, 2015; Choi et al., 2015; Fuchikami et al., 2011; Na 

et al., 2016; Roy et al., 2017).. The BDNF gene provides the instructions for making 

proteins often in the brain and spinal cord and are involved in promoting the growth, 

maturation, and maintenance of neurons as well as regulating synaptic plasticity. There 

have also been consistent associations of hypermethylation of SLC6A4 (e.g. Bayles et al., 

2013; Philibert et al., 2008; Shi et al., 2017; Zhao, Goldberg, Bremner, & Vaccarino, 

2013) and NR3C1 (e.g. Roy, Shelton, & Dwivedi, 2017; Bustamante et al., 2016; Na et 

al., 2014; Nantharat, Wanitchanon, Amesbutr, Tammachote, & Praphanphoj, 2015) and 

depression. SLC6A4 codes for a protein that is involved in the regulation of serotonergic 

signaling and NR3C1 is the receptor to which cortisol and glucocorticoids bind; both 

have been implicated in mood and anxiety disorders. Other, less typically studied 

candidate genes have also shown differences in DNA methylation in depressed 

individuals including oxytocin receptor (OXTR; Chagnon et al., 2015; Reiner et al., 

2015), monoamine oxidase A (MAOA; Melas & Forsell, 2015), tescalin (TESC; Han et 

al., 2017), and synapsin II (SYN2; Cruceanu et al., 2016). 

Epigenome-wide Association Studies (EWAS). In the past few years, there has 

been a substantial increase in EWAS depression studies. The majority of studies are 
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cross-sectional, use the case-control design, and study populations in Western developed 

countries. Most studies use whole blood sampling (Byrne et al., 2013; Davies et al., 2014; 

Córdova-Palomera et al., 2015; Numata et al., 2015; Uddin et al., 2011), while a small 

handful examined brain tissue from deceased individuals (Kaut et al., 2015; Nagy et al., 

2015; Sabunciyan et al., 2012). Sample sizes range from N = 12 to 473. The number of 

significant hits varies widely based on methodology from zero to 115; there are no 

specific genes that stand out as frequent replications. This lack of overlap may be due to 

the complexity of the depression phenotype as well as methodological differences in 

study design, technology platforms, type and timing of tissue sampling, assessment of 

depression symptoms including different measures at different stages in the lifespan, and 

small sample sizes. 

Almost all epigenome-wide studies utilize convenience sampling of adults, most 

often in middle to late adulthood, making it difficult to disentangle DNA methylation 

changes as causes or consequences of depression. Only two cross-sectional studies 

conducted an EWAS in an adolescent sample (Boström et al., 2017; Dempster et al., 

2014). Dempster and colleagues (2014) utilized 18 pairs of monozygotic twins discordant 

for depression and did not find any differentially methylated regions (DMR) that survived 

corrections for multiple testing. However, in a recent study, Bostrom and colleagues 

(2017) found that hypomethylation of a CpG site located on the promoter region of micro 

RNA 4646 (MIR4646) was related to an increased risk of depression. This finding was 

replicated in a validation sample and in a sample of post-mortem frontal cortex tissue in 

deceased subjects with a history of major depression. Genes related to MIR4646 play a 

major role in the conversion of omega-3 fatty acids, which have been previously 

associated with MDD (for a meta-analytic review see Lin & Su, 2007). 



 44 

There has been one small longitudinal analysis examining DNA methylation in 

adolescence (N=23 cases and N=36 controls, Mage = 18.6) that attempted to identify 

epigenome-wide associations between changes in depression risk and changes in DNA 

methylation levels from baseline to 1 year follow up (Ciuculete et al., 2019). After FDR 

correction, no significant CpG probes were identified; however, there were 9 nominally 

significant probes. The largest methylation difference was detected at cg24627299 within 

the hepatocyte growth factor receptor (MET) gene, a gene involved in sending signals 

within cells and in cell growth and survival.  

Fetal Programming Studies. There are a handful of longitudinal studies of DNA 

methylation assessed at birth predicting outcomes later in childhood that typically focus 

on externalizing disorders including ADHD (Neumann et al., 2019; van Mil et al., 2014), 

ODD (E. D. Barker et al., 2018), conduct problems (Cecil et al., 2018) and substance use 

(Cecil et al., 2016); these studies typically show robust DNA methylation differences. 

Although there is evidence that prenatal stress predicts internalizing outcomes later in 

childhood, less is known about the role of DNA methylation in this pathway. A small 

handful of studies have examined more proximal infant behavioral phenotypes in the 

context of prenatal stress and DNA methylation including cortisol reactivity (Oberlander 

et al., 2008) and aspects of neurobehavior such as self-regulation, hypotonia, lethargy, 

habituation, and reflexes (Appleton et al., 2015; Conradt et al., 2013b; Monk et al., 2016) 

but none have assessed more specific depression symptomatology later in life. To our 

knowledge, this is the first study (candidate gene or EWAS) to examine DNA 

methylation at birth and a depression phenotype later in childhood. 

Current Study 
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We build upon previous epigenome-wide studies of depression in the following 

ways: (1) Studies in behavioral epigenetics continue to operationalize depression as a 

categorical construct assessed at a single time point. Researchers typically create two 

comparison groups based on a clinically significant cut-off point of a sum score of 

symptoms. We were able to utilize repeated measures of depression symptoms from early 

to late adolescence to identify groups that are homogenous in terms of their initial levels 

of symptomatology at the beginning of adolescence and the slope of their symptoms over 

time. In addition to providing novel insights into the biological mechanisms of depression 

over time, the ability to reduce heterogeneity in the depression phenotype may boost 

power to detect epigenetic changes. (2) We examine depression in early to late 

adolescence at a time that is developmentally relevant in understanding the causative 

mechanisms in the onset of depression. Most studies examine depression in mid to late 

adulthood, where it is unclear whether DNA methylation changes reflect a causal 

mechanism or instead represent the “wear and tear” that chronic depression and its 

accompanying sequela including substance use and health problems has on the 

epigenome throughout the lifespan. (3) The longitudinal nature of this study allows us to 

also examine depression through the fetal programming framework where we are able to 

examine whether epigenetic changes present at birth can set developmental trajectories 

that confer risk for depression later in adolescence. Moreover, the design allows us to test 

whether the same genes or genetic networks are implicated in depression at different 

sensitive periods potentially pointing to distinct pathways by which epigenetic 

modifications at different points in development increase risk for depression. (4) We 

utilize the largest sample size in an EWAS of depression to date.  

Methods 
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Participants 

 The ARIES subsample of ALSPAC was used. Final analytic samples for analyses 

included only participants who had both depression and methylation data available (N = 

830 for prenatal analyses and N= 893 for adolescent analyses). Analyses at birth and 

adolescence largely included the same participants (90% match across data sets, N = 801 

participants present in both sets of analyses). DNA methylation in adolescence was 

measured either at age 15 (n = 222, 25% of the participants) or at age 17 (n = 671, 75% 

of the participants). See Figure 5 for descriptive flowchart of sample.  

Measures 

 Depression Trajectories. Depression was assessed using The Short Moods and 

Feelings Questionnaire (SMFQ; Angold, Costello, Messer, & Pickles, 1995), a 13-item 

child self-report questionnaire that enquired about the occurrence of depressive 

symptoms over the past 2 weeks. Scores range from 0-26. A cut-off of 11 and above has 

been used to describe clinically significant symptoms (Joinson et al., 2012). The SMFQ 

has been validated as a tool for assessing depressive symptoms in adolescence (Turner et 

al., 2014) and distinguishes children with depression from those who are not depressed in 

general population samples (Sharp et al., 2006). Previous studies done with ALSPAC 

data have shown that the mean SMFQ score and variability increase from childhood to 

adolescence (Niarchou, Zammit, & Lewis, 2015; Sequeira, Lewis, Bonilla, Smith, & 

Joinson, 2017). By the age of 18, 8% of the sample meets ICD-10 criteria for depression 

(Niarchou et al., 2015). This study uses SMFQ data collected at mean ages 12.5, 13.5, 16, 

and 17.5.  

DNA Methylation. DNA methylation was assayed according to standard protocol 

described in the Introduction to the thesis (p. 19-22). In an attempt to reduce non-
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biological differences between probes, samples were functional normalized using 10 

principal components derived from control probes using the “meffil” package in R.  

Covariates for DNA Methylation at Birth. Research has shown that a number 

of prenatal environmental factors impact differential DNA methylation in newborns 

including infant birthweight (Filiberto et al., 2011), infant gestational age or pre-term 

birth (H. Lee et al., 2012; Schroeder et al., 2011), and maternal age (Adkins et al., 2011). 

In addition to these covariates, we also controlled for maternal substance use including 

smoking cigarettes, marijuana use, and alcohol use. Mothers were asked about substance 

use at different time points throughout pregnancy.  

Cigarette Use. Smoking is considered one of the most powerful environmental 

modifiers of DNA methylation across the lifespan. Research has shown that mother’s 

prenatal smoking has large effects on infant DNA methylation in cord blood (Küpers et 

al., 2015; Lee et al., 2015). Mothers were asked how many times per day did they smoke 

cigarettes at three time points (first, second, and third trimester). Data from each time 

point was entered into the model as a separate continuous covariate. 

Alcohol Use. Chronic alcohol use in pregnancy has a number of deleterious 

developmental effects on the fetus, often culminating in fetal alcohol syndrome (FAS). 

Some research has shown differential methylation profiles in infants who were born with 

FAS (Laufer et al., 2015; Portales-Casamar et al., 2016). However, research has shown 

that there are no consistent adverse developmental consequences of low to moderate 

alcohol use during pregnancy (see for review Henderson, Gray, & Brocklehurst, 2007). 

Mothers were asked to rate on a 6-point scale, how often they used alcohol ranging from 

“none” to “greater than 9 glasses daily” during the first and third trimesesters of 



 48 

pregnancy. Data from each time point was entered into the model as a separate 

continuous covariate. 

Marijuana Use. To our knowledge there is no research examining the effects of 

marijuana use on epigenetic changes in human offspring. However, numerous animal 

models have shown that chronic prenatal exposure to cannabinoids triggers epigenetic 

changes that have suppressive immunological effects on offspring (see Zumbrun, Sido, 

Nagarkatti, & Nagarkatti, 2015 for a review). Therefore, as a precaution, we included 

marijuana use as a covariate in our analyses due to its potential influence on 

development. Mothers were asked to rate on a 6-point scale, how often they used 

marijuana or any cannabis products ranging from “none” to “every day” at the same time 

points they were asked about cigarette smoking. Data from each time point was entered 

into the model as a separate continuous covariate. 

Data were available regarding illicit drug use during pregnancy (e.g. cocaine, 

heroin). However, none of the mothers in our analytic sample indicated any illicit drug 

use during pregnancy. Tables 4 and 5 show descriptive statistics for EWAS analyses at 

birth and in adolescence, respectively broken down by depression trajectories.  

 Covariates for DNA Methylation in Adolescence  

Substance Use. Research has shown a robust link between depression and 

substance use in adolescence (Armstrong & Costello, 2002; Kandel et al., 1999). 

Research has also shown that chronic substance use is related to individual differences in 

DNA methylation patterns (Parira, Laverde, & Agudelo, 2017; Rotter et al., 2013). 

Therefore, we included cigarette smoking and marijuana use as covariates. Covariate 

time points were matched with available DNA methylation time points. For example, 

adolescents with methylation data collected at age 15 had corresponding covariates 
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measured at age 14.5 years, while adolescents with DNA methylation data collected at 

age 17 had corresponding covariates measured at 16.5 years. At age 14.5 and 16.5, 

adolescents were asked about the frequency of their cigarette smoking ranging from “I 

have only ever tried smoking cigarettes once or twice” to “I usually smoke one or more 

cigarettes every day.” At the same time points, adolescents were asked about the 

frequency of their marijuana use similarly ranging from “I have only ever tried cannabis 

once or twice” to “I usually use or take cannabis every day.” 

 Data regarding illicit drug use was available but was focused on whether or not an 

adolescent had experimented with drugs and did not reflect problematic or chronic use. 

Data regarding alcohol use was only measured at age 14.5 years and not at 16.5 years. 

Because the majority of our sample had DNA methylation data at age 17, alcohol use was 

not included as a covariate.  

Data Analysis Plan 

The subsequent three chapters will describe the methods, results, and discussion points 

for (1) latent class growth curve modeling of depression trajecotries in MPLUS (2) 

epigenome-wide analyses of depression trajectories and gene annotation, and (3) follow-

up regional and gene network analyses. 

CHAPTER  6: A Longitudinal Epigenome-wide Analysis of Depression Trajectories 

in Adolescence (Part 2) 

Latent Class Growth Curve Modeling of Depression Trajectories 

Methods 

  Due to the heterogeneous nature of the course of depression over time, we 

utilized a latent class growth curve model in MPLUS to extract homogenous subgroups 

of adolescents with distinct developmental trajectories of depressive symptoms. We 
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utilized the full ALSPAC sample (N = 15,445) to retain power and controlled for sex. It 

is well-known that females are at twice the risk for developing depression compared to 

males. Therefore, it is likely that sex has significant effects on the growth factors of the 

model including the intercept and slope as well as trajectory classification (i.e. 

classification into one trajectory class over another may be due to sex and not depression 

score). Only participants who had depression data available from at least one time point 

were included in the analysis (N = 8,360). Mplus handles missing data by the standard 

approach of Missing At Random (MAR) under Maximum Likelihood (ML). This means 

that it uses all the data that is available to estimate the model using full information 

maximum likelihood where each parameter is estimated directly without filling in 

missing data values for each individual (Muthén & Muthén, 1998). Previous research 

deriving depression trajectories from the ALSPAC cohort has demonstrated little 

difference on the shape of trajectories, distribution of trajectory membership, or 

associations of trajectories with outcomes when comparing individuals with at least 1 

measurement of depression symptoms with participants with at least 3 or more measures 

(Kwong et al., 2019). 

 Following guidelines in the field based on simulation studies (Nylund et al., 

2007), number of classes were determined by the following fit indices: Lo-Mendell-

Rubin adjusted likelihood ratio test (LMR-LRT) and the bootstrap likelihood ratio test 

(BLRT), where significant p-values prompt the rejection of the k-1 model in favor of the 

K-class model. Other considerations also included model convergence, lower Bayesian 

Information Criterion values, higher entropy values (near 1.0), no less than 1-2% of 

participants in a class, and higher posterior probabilities (values > 70% indicating good 

model fit) (Jung & Wickrama, 2008).  
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Extracting Depression Class Trajectories  

  Class solutions were examined in a sequential order starting from a two-class 

structure.  The two-class model indicated a “low” (N = 7087; 85%) and a “high” (N = 

1273; 15%) depression group (LMR-LRT, p = 0.000; BLRT, p = 0.000; Entropy = 0.83; 

BIC=296434.645). Because significant LMR-LRT and BLRT values prompt the rejection 

of the k-1 model in favor of the k model, this meant that a two-class solution was a better 

model fit than a one-class solution. The three-class model indicated a “low” (N = 6732; 

77%), “increasing” (N = 949; 14%), and “moderate/decreasing” (N = 679; 9%) group 

(LMR-LRT, p = 0.000; BLRT, p = 0.000; Entropy = 0.80; BIC = 248937.648). Again, 

significant p-values indicated that a three-class solution was a better model fit that a two-

class solution. The four-class model yielded a “low” (N = 6350; 76%), “increasing” (N = 

775; 9%), “moderate/decreasing” (N = 978; 12%), and always high (N = “257”; 3%) 

group (LMR-LRT, p = 0.000; BLRT, p = 0.000; Entropy = 0.79; BIC = 294141.890). 

Although the four-class model converged and p-values were significant, the results were 

unreliable due to solutions being local maxima that did not resolve with increased 

random starts. In MPLUS, the estimation algorithm attempts to converge on the globally 

best solution with the largest loglikelihood – one set of parameter values. However, 

sometimes it converges on a local maximum solution, which is the best solution around 

the parameter, but not the best one. This coupled with increased BIC value, decreased 

entropy, only 3% of participants in one class, and posterior probabilities dropping to 

70%, the three-class solution was chosen as the most reliable model fit for the analyses. 

Depression trajectories were classified on the entire ALSPAC sample. See Figure 6 for 

visual representation of depression trajectories. When applied to the ARIES DNA 

methylation subset, the final analytic sample retained similar class proportions. In the 
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birth EWAS, 80% of participants were classified in the low trajectory (n = 662), 11% in 

the increasing trajectory (n = 94), and 9% in the moderate/decreasing trajectory (n = 74). 

In the adolescent EWAS, 80% of participants were classified in the low trajectory (n = 

720), 11% in the increasing trajectory (n = 77), and 9% in the moderate/decreasing 

trajectory (n = 64).   

 There is a vast literature examining longitudinal depression trajectories in 

adolescence. Using various trajectory modeling techniques, the number of unique class 

trajectories range from 3 to 6 with usually a consistent “low” group and variations of 

“increasing”, “high”, “moderate”, and “decreasing” groups (for a review see Schubert et 

al., 2017). In a recent meta-analysis examining 20 longitudinal studies published in the 

past 20 years, a random pooled effect estimate identified a consistent “no or low” group 

(56% of the sampled study populations), a consistent “moderate” group (26%) and a 

variations of “high”, “increasing” or “decreasing” groups (12%) (Shore et al., 2017). 

Regarding the ALSPAC cohort specifically, the number and types of depression class 

trajectories has also varied. Using 7543 adolescents with data between 10.5 years and 

18.5 years of age, 3 trajectory classes were identified using a dichotomous depression 

score (i.e. using the SMFQ clinical cut-point of 11): “persistently low” (74%), “later-

adolescent onset” or “increasing” group (17%) and an “early-adolescence onset” or 

“stably moderate/high” group (9%) (Frances Rice et al., 2002). These trajectory groups 

closely match our classifications. On the other hand, using a sample of 3525 ALSPAC 

individuals with measurements extending into adulthood (i.e. mean age 24), 5 trajectories 

were identified: “low” (71%), “early-adult-onset” (11%), individuals who started with 

low depression symptoms that increased during adolescence and young adulthood, 

“adolescent-limited” (9%),  individuals who experienced elevated levels of depression 
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symptoms only during adolescence, “childhood-limited” (6%), individuals who started 

with elevated levels of depression symptoms in childhood that decreased. and 

“childhood-persistent” (3%) individuals with moderate levels of depression symptoms 

that continued to increase and stay high during adolescence and into young adulthood 

(Kwong et al., 2019). Although there are differences likely due to the result of extending 

measurements well into young adulthood, Kwong and colleagues’ results are still broadly 

comparable to the three-class solutions.  

Describing the Depression Class Trajectories.  

 Descriptive statistics for the depression trajectories for the analytic sample for the 

birth EWAS and for the adolescence EWAS sample were near identical and are discussed 

here more broadly. See Tables 4 and 5 for more specific descriptive statistics of 

depression trajectories separated by EWAS analytic sample. The majority of the 

increasing trajectory (70%) and the moderate/decreasing trajectory (around 65%) was 

made up of females. Females made up less than half of the low trajectory group (around 

48%). For the low depression trajectory, mean depression scores (i.e. SMFQ; total 26, 

clinical cut-off 11) stayed in the 2-6 range across all 4 times points. For the increasing 

trajectory, mean depression scores started low (M = ~ 5), increased by age 13 (M = ~10), 

and continued to increase into late adolescence (M= ~15). For the moderate trajectory, 

mean depression scores were clinically significant at age 12 (M= ~13) and slightly 

decreased in later adolescence to be below the clinical cut-point (M= ~9). 

 An ANOVA with Tukey HSD was used to assess any potential mean differences 

in covariates across the three trajectory groups. For the birth analytic sample, the three 

trajectories did not significantly differ on most covariates including gestation length, 

maternal age at birth, birth weight, mother’s alcohol use and mother’s smoking during 
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pregnancy. Individuals in the increasing trajectory had mothers with increased use of 

marijuana, though this was only a significant difference compared to the low group and 

only in the 3rd trimester.  

 For the adolescent analytic sample, individuals in the increasing and moderate 

trajectories had significantly higher levels of adolescent cigarette smoking compared to 

the low group. Individuals in the increasing and moderate trajectories had higher levels of 

adolescent marijuana use compared with the low group, though differences were only 

significant in the moderate vs. low group. Results regarding cigarette smoking are 

consistent with a robust literature describing increased smoking by depressed adolescents 

and adults (see reviews e.g. Chaiton et al., 2009; Fluharty et al., 2017; Lee & Pausova, 

2013; Weinberger et al., 2017) with less robust results describing increased marijuana use 

(Brook et al., 2011; Passarotti et al., 2015) 

CHAPTER 7: A Longitudinal Epigenome-wide Analysis of Depression Trajectories 

in Adolescence (Part 3) 

Epigenome-Wide Analyses (EWAS) of Depression Trajectories 

EWAS Methods 

For our EWAS analyses, we were particularly interested in the increasing trajectory as 

those individuals show a dramatic increase in depression symptoms from very low during 

pre-adolescence to more severe levels by age 18. In order to test whether youth whose 

symptoms of depression increased across adolescence were biologically distinct from 

those with stable low or moderate symptoms, we compared patterns of DNA methylation 

(1) at birth and (2) in adolescence for the increasing versus low trajectories and for the 

increasing versus moderate trajectories. In order to increase power in our EWAS 

analyses, we also combined the increasing and moderate/decreasing trajectories to form a 
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high group and compared patterns of DNA methylation to the low group. Thus, we 

conducted 6 EWAS in total. In addition, as supplementary analyses, we also ran a more 

“traditional” case-control design EWAS using depression at a fixed time point (age 17.5). 

We used the clinically significant SMFQ cut point of 11 to categorize participants into 

depressed (N = 173) and non-depressed groups (N = 567) and compared patterns of DNA 

methylation at birth and in adolescence.  

 Due to the large size and subsequent processing burden of the data (i.e. 485,000 

data points per individual for 1,000 individuals across 2 time points), initial data cleaning 

and variable derivation was conducted using the University of Pennsylvania School of 

Arts and Sciences high performance computing cluster in which “jobs” were submitted 

using Linux code to run on multiple computers simultaneously. Once data were cleaned 

and processed, EWAS analyses were able to run on a personal computer. EWAS analyses 

were performed using a general linear model using the ‘CpG assoc’ package 

implemented in R. All analyses controlled for sex, cell type proportion (as described in 

the Introduction), and sample ID for additional batch effect controls. As described in the 

Introduction, probes known to be polymorphic or cross-reactive were removed prior to 

analysis. In addition, participants with non-Caucasian or missing ethnicity (based on self-

reports, n = 28) were removed prior to the analysis to control for race/ethnicity effects on 

DNA methylation. Analyses using DNA methylation at birth included the following 

covariates that potentially have effects on DNA methylation levels in cord blood: infant 

birthweight, mother’s age, infant gestation length, mother’s alcohol, marijuana, and 

cigarette use during pregnancy. Analyses using DNA methylation in adolescence 

included the following covariates: adolescent marijuana and cigarette use.  
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  An EWAS essentially entails conducting hundreds of thousands of linear 

regressions at one time. If 485,000 CpG sites are being interrogated, around 1/20 or 

20,000 can be false positives (i.e. significant hits that are significant by chance and not 

due to underlying biological differences) due to Type 1 error if using traditional α = 0.05 

thresholds. The multiple comparison problem in epigenome-wide analyses is most often 

addressed through Benjamini & Hochberg’s (1995) false discovery rate (FDR) 

correction, which estimates and controls for the proportion of false positives in an 

analysis. We utilized the FDR correction in all our analyses (q <.05). Because DNA 

methylation analyses yield very small effect sizes, statistical power to detect those small 

effects is always a concern. It is likely that low statistical power results in some number 

of relevant CpG hits that do not cross the threshold of significance after FDR correction. 

Therefore, many researchers report hits that are approaching significance. We used the 

most liberal genome-wide threshold proposed in the literature ( ) to identify hits 

we label as nominal (Rakyan et al., 2011). Hits below this liberal threshold are less likely 

to be true hits not detected due to power concerns. Once FDR-corrected differentially 

methylated CpG sites or “hits” are identified, individual linear regressions are performed 

comparing mean methylation levels on that CpG site between trajectory groups to extract 

more specific regression statistics including standardized betas, standard error, and 

adjusted R values. CpG hits are then mapped to their respective gene sites through 

extensive probe annotation available from Illumina that includes probe location within 

genes (annotated by University of California, Santa Cruz (UCSC) Genome Browser 

(http://genome.ucsc.edu; UCSC Genome Bio- informatics, Santa Cruz, CA, USA), CpG 

islands and shores, and regulatory features.  
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 As with genome-wide association studies, epigenome-wide statistical inflation 

resulting in increased rates of false positive is also of concern. High genomic inflation is 

thought to be caused by population stratification, technical batch effects, sample quality, 

and unknown relatedness between samples (Devlin & Roeder, 1999). Usually, the 

inflation is quantified using the genomic inflation factor (λ), which is defined as the ratio 

of the median of the empirically observed distribution of the test statistic to the expected 

median. Therefore, the lambda is used to calculate the deviation of a distribution of 

residuals from a null distribution. A genomic inflation factor of 1.0 or lower reflects no 

evidence of inflation while increasing values reflect inflation. Researchers also often 

visually inspect quantile-quantile (QQ) plots that are able to graph the deviations of the 

observed distribution from the expected null distribution.  

Results: DNA Methylation at Birth.  

High Versus Low Trajectories. At birth, no probes were differentially 

methylated 

between the high (increasing + moderate) versus low trajectories after FDR correction, 

nor were any probes approaching significance.  

 Increasing Versus Low Trajectories. At birth, no probes were differentially 

methylated between the increasing and low trajectories after FDR correction when 

controlling for smoking, alcohol, and marijuana use during pregnancy as well as birth 

characteristics, sex, cell type, and plate number. One probe, cg08214693 was 

approaching significance but still did not meet nominal significance cut-offs. 

Cg08214693 was hypomethylated in the increasing trajectory and was annotated to 

SCRIB (scribbled planar cell polarity protein). See Table 6 for more details. Absolute 

mean percentage methylation between the increasing and low trajectory groups was 
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1.3%. Inspection of the QQ plot (Supplementary Figure 4) and a lambda statistic of 0.79 

provided little evidence of inflation of test statistics. See Figure 7 for manhattan plot of 

EWAS. 

 Increasing Versus Moderate Trajectories. At birth, no probes were 

differentially methylated between the increasing versus moderate trajectories after FDR 

correction, nor were any probes approaching significance. 

Supplementary Analyses. When examining depression at a single time point at 

age 17.5, there were no probes differentially methylated between the depressed and non-

depressed groups after FDR correction, nor were any probes approaching significance. 

Results: DNA Methylation at Adolescence 

 High Versus Low Trajectories. In adolescence, one probe was differentially 

methylated between the high (increasing + moderate) and low trajectories after FDR 

correction when controlling for covariates (See Table 7 for more details). Cg06758781 

was hypomethylated in the high group (q = 0.02) and was annotated to AACS (Activates 

acetoacetate to acetoacetyl-CoA). Inspection of the QQ plot (Supplementary Figure 5) 

and a lambda statistic of 0.856 provided little evidence of inflation of test statistics. See 

Figure 8 for Manhattan graph of results. 

 Increasing Versus Low Trajectories. In adolescence, one probe was 

differentially methylated between the increasing and low trajectories after FDR 

correction when controlling for smoking, marijuana use, cell type, sex, and plate number 

while 6 probes were approaching significance (See Table 8 for more details). 

Cg06460328 was hypermethylated in the increasing group (q = 0.030) and was annotated 

to CBFA2T3 (CBFA2/RUNX1 translocation partner 3). Absolute mean percentage 

methylation between the increasing and low trajectory groups was 2%. All 6 nominal hits 
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were also hypermethylated in the increasing group with methylation differences ranging 

from 1% - 2.5%. See Table 8 for further details. Inspection of the QQ plots 

(Supplementary Figure 6) and lambda statistic of 1.09 provided evidence of some mild 

inflation of test statistics. See Figure 9 for Manhattan graph of results.  

 Increasing Versus Moderate Trajectories. In adolescence, no probes were 

differentially methylated between the increasing versus moderate trajectories after FDR 

correction.  

 Supplementary Analyses. When examining depression at a single time point at 

age 17.5, there were no probes differentially methylated between the depressed and non-

depressed groups after FDR correction, nor were any probes approaching significance. 

Follow-up Regional Analyses 

Data Analysis Plan 

EWAS studies typically interrogate DNA methylation at the individual CpG level. 

Although this is very informative, it does not take into account the broader context of the 

DNA methylation status of its neighboring CpG sites, as sometimes a gene is not turned 

on and off by the action of a single CpG site but rather a cluster of CpG sites in close 

proximity to one another through co-methylation. Results have shown moderate levels of 

correlations (0.25-0.40) in proximal CpG sites up to a distance of 1kb apart and no 

significant correlations once inter-pair distances reach around 2kb (Saffari et al., 2018). 

Therefore, researchers have started to additionally interrogate differentially 

methylated regions (DMRs) as complementary analyses to EWAS. This region-based 

approach is statistically more powerful with a lower rate of false positive findings and has 

the potential to be more biologically informative than individual CpGs. Many 

bioinformatic packages to interrogate DMRs are available. We utilized the DMRcate 
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package in R (Peters et al., 2015), which identifies and ranks the most differentially 

methylated regions across the genome. It is a data-driven agnostic approach that does not 

favor known annotated genomic regions (i.e. known CpG islands) and has the ability to 

assess all 450k probes.  

First, estimates of differential methylation at individual CpG sites are derived 

using the limma package in R (this package is similar to CpGassoc used for the single 

CpG site EWAS). Identical covariates to the EWAS were used in all regional analyses. 

The corresponding t-statistic obtained with each probe’s beta value is utilized in the 

DMR-finding function to which a Gaussian kernel smoothing method is applied. A kernel 

smoother is a statistical technique used to estimate the real value of a function as the 

weighted average of neighboring observed data. The weight is defined by the kernel, 

meaning that closer points are given higher weights. A Gaussian kernel is a kernel with 

the shape of a Gaussian or normal distribution curve. The length of the nucleotide region 

can be user specific, though the authors of the package suggest a bandwidth of 1000 

nucleotides (lambda = 1000) and a scaling factor of 2 (C = 2; at least 2 CpG sites in a 

region). Significant p-values were again FDR-corrected for multiple testing. Data output 

consists of significant regions ranked by their corresponding p-values as well as genomic 

coordinates and gene associations.  

Results: Regional Analyses with DNA Methylation at Birth 

            Using DNA methylation analysed at birth, no regions were differentially 

methylated in either high (moderate + high) versus low, increasing versus low, or 

increasing versus moderate analyses.  

Results: Regional Analyses with DNA Methylation in Adolescence 
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 High Versus Low Trajectories. In adolescence, regional analyses identified 1 

differentially methylated region using the fully adjusted model (q <0.05). See Table 9. 

This region was mapped to the Small Nucleolar RNA (SnoRNA) family of non-coding 

RNAs.  

           Increasing Versus Low trajectories. In adolescence, regional analyses identified 

3 differentially methylated regions using the fully adjusted model (q <0.05). See Table 

10. These regions were mapped to Zinc Finger and BTB Domain Containing 44 

(ZBTB44), Bladder Cancer-Associate Protein (BLCAP), and the Small Nucleolar RNA 

(SnoRNA) family of non-coding RNAs. 

           Increasing Versus Moderate Trajectories. No regions were differentially 

methylated between the increasing and moderate trajectories.  

Discussion of Genes Implicated in EWAS and Regional Analyses  

Utilizing the ALSPAC longitudinal cohort to extract latent class trajectories of 

depression symptoms, we conducted EWAS analyses using DNA methylation obtained at 

birth and during mid-adolescence. To examine potential fetal programming effects, we 

assessed whether DNA methylation patterns present at birth differentiated the increasing 

trajectory class compared to the low and moderate/decreasing trajectory classes. In our 

birth EWAS analyses, the closest hit to significance (q = .074) was annotated to the 

SCRIB gene and hypomethylated in the increasing group compared to the low depression 

group. The SCRIB gene is a scaffold protein that is part of a pathway of genes called the 

Scribble complex that is involved in cell migration, cell polarity (i.e. spatial differences in 

shape, structure, and function of a cell), and cell proliferation in epithelial cells (Anastas 

et al., 2012). Loss of cell polarity is a hallmark of epithelial cancers and therefore 

regulators of polarity are hypothesized to play a major role in suppression of 
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tumorigenesis. Recent studies have shown that increased expression on SCRIB is related 

to adverse clinical outcomes in breast cancer and that reducing its expression reduced the 

growth of human breast cancer cells (Anastas et al., 2012). A recent EWAS of depression 

symptomatology measured in an elderly cohort of 742 monozygotic Danish twins, also 

identified 3 CpG sites mapped to the SCRIB gene in regional analyses that were 

differentially methylated in the depressed group (Starnawska et al., 2019). Interestingly, 

the SCRIB gene was not in our top 50 hits in our EWAS using DNA methylation in 

adolescence. Results of this hit are presented for informational purposes. However, this 

CpG site did not reach even more liberal nominal level of significance and therefore 

should be interpreted with caution.  

Although research on externalizing disorders such as ADHD, conduct problems, 

and ODD (Barker et al., 2018; Cecil et al., 2018; Neumann et al., 2019; van Mil et al., 

2014) have shown robust association with DNA methylation at birth, much less is known 

about fetal programming effects of internalizing disorders  To our knowledge, this was 

the first study to assess whether DNA methylation profiles at birth can predict depression 

outcomes later in development. Interestingly, our analyses did not show any potential 

fetal programming effects. It is possible that prenatal risks may be embedded more 

broadly as traits and predispositions (i.e. emotional reactivity) that may be exacerbated by 

the psychological, behavioral, and physiological consequences of the trait including 

emotion dysregulation, difficulty in social relationships, and unhealthy coping behaviors 

throughout childhood. This can culminate in development of depression in adolescence 

triggered by more specific developmental demands during this sensitive period, which 

includes a multitude of neural and hormonal changes. This is supported by the fact DNA 

methylation studies examining prenatal stress and more trait-like features in infancy find 
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robust results (Appleton et al., 2015; Conradt et al., 2013b; Monk et al., 2016), and the 

fact that the prevalence rates of depression in childhood is rare and increases dramatically 

in adolescence (Hankin et al., 2015b). In addition, disorders like ADHD and ODD 

manifest much earlier in childhood, while the incubation period for depression is much 

longer, and therefore may include more downstream cascading effects that are 

unmeasured. More research is needed to elucidate the potential fetal programming effects 

that underlie internalizing disorders via DNA methylation mechanisms. 

 Given the dearth of EWAS studies of depression occurring in adolescence, we 

also examined whether DNA methylation in mid-adolescence predicted depression 

trajectory groups. When collapsing the two clinically significant depression groups 

(increasing and moderate/decreasing) into one “high” category and comparing it to the 

low group for a more powerful analysis, one CpG hit annotated to the AACS gene was 

significant even after correction for multiple testing and hypermethylated in the “high” 

group. No other depression EWAS has identified this gene. AACS is hypothesized to be 

involved in utilizing ketone body (i.e. energy source that is mainly produced in the liver) 

for fatty acid-synthesis during adipose tissue development (Hasegawa et al., 2012). High-

fat diet obesity has been shown to induce unusual metabolism of ketone bodies through 

inflammatory mechanisms (Puchalska & Crawford, 2017). Research on the expression of 

AACS is scant and exclusively has been assessed in animal models. Interestingly, one 

study has shown increased expression of AACS as a result of inflammatory mechanisms 

due to a high fat diet (Yamasaki et al., 2016) 

 Our results did not show DNA methylation differences between the increasing 

and moderate trajectory. There was one CpG site that was nominally significant but not 
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annotated to a specific gene and therefore the function of this differential methylation in 

largely unknown.  

When comparing the increasing trajectory group to the low group, one CpG hit 

annotated to the CBFA2T3 gene was significant even after correction for multiple testing 

and was hypermethylated in the increasing group. No other depression EWAS has 

identified this gene. The CBFA2T3 gene is responsible for transcription repression. 

Research has shown that the expression of CBFA2T3 was significantly reduced in breast 

cancer cell lines and breast tumors and CBFA2T3 has emerged as a candidate gene of 

breast cancer tumor suppression (Kochetkova et al., 2002; Kumar et al., 2006).  

Additionally, there were 6 CpG hits that were nominally significant (p < 1 x 106) 

that were annotated to 6 genes: LRTOMT (Leucine Rich Transmembrane And O-

Methyltransferase Domain Containing), NUMA1 (Nuclear Mitotic Apparatus Protein 1), 

LDB1 (LIM Domain Binding 1), USF2 (Upstream Transcription Factor 2, C-Fos 

Interacting), HEY2 (Hes Related Family BHLH Transcription Factor With YRPW Motif 

2), and BLCAP (BLCAP Apoptosis Inducing Factor). Not much is known about the 

specific biological mechanism of LRTOMT except that it is an O - methyl transferase 

heavily implicated in the morphology and physiology of ear development and its 

mutation has been consistently studied as leading to autosomal recessive non-syndromic 

hearing loss (i.e. non-specific genetic hearing loss) (Charif et al., 2012; Taghizadeh et al., 

2013; Vanwesemael et al., 2011). NUMA1 is also an understudied gene that codes for the 

spindle protein NuMA; spindle fibers form a protein structure that divides the genetic 

material in a cell (Quintyne et al., 2005). Only one study has assessed expression of 

NUMA1 directly and linked increased expression to epithelial ovarian cancer due to its 

role in aneuploidy (i.e. presence of an abnormal number of chromosomes in a cell, as 



 65 

often seen in cancer cells) (Brüning-Richardson et al., 2012). However, more research 

needs to be done to elucidate whether NUMA1 is consistently involved in carcinogenesis. 

LDB1 is a transcription cofactor (i.e. modulates the effects of transcription factors 

by recruiting other proteins for binding). It is part of a complex that maintains the 

function of erythroid cells (i.e. most common blood cell and principal means of 

delivering oxygen to the body tissues via blood flow through the circulatory system) 

through transcription activation (Matthews & Visvader, 2003). Due to its role in 

modulation of transcription factors it has been studied in the context of cancer 

progression. Studies have shown that overexpression of LDB1 is associated with negative 

prognosis factors in colorectal, head, and neck cancer (García et al., 2016; Simonik et al., 

2016).  

USF2 (and its counterpart USF1) are transcription factors (i.e. proteins that bind 

to the DNA sequences of their target genes and participate in the regulation of a large 

number of genes) and part of the basic helix-loop-helix (bHLH) class. USF2 in particular 

appears to be crucial for embryonic development, brain function, metabolism, iron 

homeostasis and fertility while USF1 has more specific roles in metabolism and immune 

system functioning (Horbach et al., 2015). Recent research suggests that deregulation of 

transcription factors can cause tissue damage and suggests a major role for transcription 

factors in the inappropriate growth of cancer cells. In fact, the USF genes seem to exhibit 

a tissue protective and tumor suppressive function in several cancer types (Horbach et al., 

2015). Most consistently, downregulation of USF2 has been linked to the proliferation of 

breast and prostate cancer (Chen et al., 2006; Ismail et al., 1999; Kivinen et al., 2004; Tan 

et al., 2019). Similarly to USF2, HEY2 is a bHLH transcription factor, involved primarily 

in the regulation of cell differentiation of the cardiovascular system and the heart itself 
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(Iso et al., 2002). Increased expression of HEY2 has been linked to the progression of 

prostate, liver, and pancreatic cancer (Cavard et al., 2009; Tradonsky et al., 2012; Wu et 

al., 2016). One 

EWAS comparing 20 medication free patients with MDD and 19 control subjects (Mage 

= 44) found 363 differentially methylated CpG sites after FDR correction for multiple 

testing, one of which was annotated to HEY2. However, it is important to note that the 

study did not correct for cigarette smoking and most importantly did not control for cell-

type heterogeneity which greatly limits our ability to identify this as a true replication.  

 Finally, the BLCAP gene encodes a protein that reduces cell growth by 

stimulating apoptosis (i.e. cell death) and is hypothesized to play a major role in the 

regulation of tumor cell proliferation and survival. Studies have shown that decreased 

expression of the BLCAP gene was associated with the progression of cervical, renal, 

bladder, and tongue cancer tissue, and conversely increased expression in breast cancer 

tissues (Gromova et al., 2012). This gene was also implicated in regional analyses (6 

CpG sites) comparing the increasing to low trajectory group suggesting that it may be the 

most consistent finding in our EWAS though it only reached nominal significance in the 

single CpG site analysis.  

In addition to BLCAP, two other differentially methylated regions were identified 

in regional analyses. Two CpG hits were identified on the ZBTB44 gene. Not much is 

known about the ZBTB44 gene, except that it is primarily involved in transcription 

regulation and nucleic acid binding (www.genecards.org). Four CpG sites were identified 

in a region composed of several small nucleolar RNAs (snoRNAs). snoRNAs are a type 

of non-coding RNA (i.e. RNA transcripts that never get translated to protein and 

consequently are never expressed). For a long time, non-coding RNA have been 
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considered as cellular housekeeping maintenance molecules or “junk DNA” due to their 

non-coding nature. However, recent research has demonstrated that in addition to DNA 

methylation and histone modification, non-coding RNAs are essential mechanisms of 

epigenetic changes and function as post-transcriptional modulators of gene expression, 

especially during development and disease progression (Peschansky & Wahlestedt, 2014; 

Watson et al., 2019; Wei et al., 2016). snoRNAs are crucial for ribosomal RNA (rRNA) 

maturation and functionality (Gaviraghi et al., 2019). Because hyperactive ribosomal 

biogenesis is widely observed in cancer, an increasing body of work has linked increased 

expression of snoRNAs to renal, colorectal, lung, prostate, and breast cancer (Baral et al., 

2018; Gao et al., 2015; Mannoor et al., 2014; Martens-Uzunova et al., 2015; Okugawa et 

al., 2017; su et al., 2013). 

CHAPTER 8: A Longitudinal Epigenome-wide Analysis of Depression Trajectories 

in Adolescence (Part 4) 

Gene Networks and Functional Enrichment Analyses 

Methods 

 After decades of genomic research, it is now best understood that genes often act 

in concert with each other rather than in isolation. It has been increasingly apparent that 

the function of a single gene cannot explain genetic liability for phenotypically complex 

biomedical and psychological disorders that are most likely the result of polygenic 

interactions. A list of differentially methylated genes or regions, although informative, 

does not describe how genes may be acting in unison with each other and other 

unidentified genes to confer risk. To assess whether the genes identified in our analyses 

are related to one another, we inputted them in a bioinformatic webserver called 

GeneMANIA (http://www. genemania.org). GeneMANIA mines all publicly available 
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biological datasets of all mapped genes in the human genome to create genetic networks. 

Researchers can input a list of genes into the server to examine any possible connections 

between genes using this comprehensive literature review. Gene networks are compiled 

based on several categories including: (1) co-expression; genes are linked if their 

expression levels are similar across conditions in gene expression studies, (2) physical 

interaction; genes are linked if their proteins are known to physically interact, (3) gene 

interaction; genes are linked if the expression of one gene depends on the 

presence/absence of another, (4) shared protein domains; genes are linked if they code for 

the same protein domain, (5) co-localization; genes are linked if they are both expressed 

in the same tissue or if their gene products are both identified in the same cellular 

location, (6) pathways; genes are linked if they participate in the same reaction within a 

pathway, and finally (7) predicted; genes are linked if they have similar functional 

mechanisms. Once a list of genes is inputted into the server, a network is created based 

on those seven categories. The weighting of connections between genes is chosen 

automatically using linear regression to make genes on the inputted list interact as much 

as possible with each other, and as little as possible with genes not in the inputted list. 

The network weighting prioritizes gene-ontology, where genes are connected based on 

similar biological functions. For more detailed description of network bioinformatics see 

Mostafavi et al., 2008 and Warde-Farley et al., 2010. 

In order to better understand the underlying biological processes of the gene 

network, GeneMANIA also provides functional enrichment analyses using Gene 

Ontology (GO) categories. Similarly, GeneMANIA mines the GO database, which is a 

bioinformatics initiative to categorize a vocabulary of known genes and their products 

into an organized graph structure describing what is known about the biological function 
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of known genes. GeneMANIA compares the functional profile (i.e. biological pathway 

describing the cellular or physiological role) of the inputted gene set to the functional 

profiles described by GO to examine whether the network is significantly enriched for 

particular functions. Functional enrichment analyses also use the FDR (q < .05) 

correction for multiple testing.  GO analyses provide the number of genes in the network 

that are implicated in a biological process out of the total number of genes identified in 

that process in the literature (i.e. coverage).  

The comparison of DNA methylation values in adolescence in the increasing 

versus low trajectories produced multiple hits that were annotated to multiple genes (1 

FDR corrected significant, 6 nominally significant). We ran gene network and functional 

enrichment analyses using genes obtained from these comparisons. snoRNAs are not 

genes and therefore were not inputted in the analysis. In exploratory analyses, we wanted 

to examine the addition of AACS, a significant hit in the combined “high” versus low 

trajectory groups to assess whether it is biologically connected to those genes annotated 

in the increasing versus low trajectory group analyses.  

Results: Description of the Gene Network 

Results of inputting annotated genes into the network analysis showed that rather 

than acting in isolation, these genes form a compact cluster network based on known 

genetic and physical interactions, shared pathways and protein domains as well as protein 

co-expression data. See Figure 10 for visual representation of the gene network. In gene 

ontology analyses, the most enriched gene ontology biological functions were related to 

sequencing specific DNA binding, bhlh transcription factor binding, and cardiac 

development, which corresponds to our literature review of annotated genes. See Table 

11 for comprehensive gene ontology descriptions.  
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Interestingly, ZBTB47, a gene identified in regional analysis but not the EWAS, 

emerged as part of this network though a physical reaction with CBFA2T3. LRTOMT 

and NUMA1 were only tangentially related to the network while CBFA2T3, HEY2, 

USF2, BLCAP, and LDB1 formed a tighter “cancer gene” cluster. This makes sense as 

the biological function of LRTOMT and NUMA1 is still largely unknown. Because 

network analyses use existing data to create connections between genes, this does not 

necessarily mean that LRTOMT and NUMA1 are unrelated to this cancer network, but 

rather more research is necessary to elucidate their function. LRTOMT and NUMA1 

were related through co-expression which is consistent with our data as a single CpG hit 

was annotated to both genes suggesting they are in close proximity. They are connected 

to the network through NUMA1 and LDB1 co-expression, which suggests that they are 

potentially biologically relevant to the cancer network. Interestingly CBFA2T3, the only 

FDR corrected significant hit, appeared to be central to the 5-gene cancer network and 

was connected to USF2, BLCAP, LDB1 through predicted connections. HEY2 is 

connected to the network through genetic interactions with BLCAP and USF2, which 

makes sense as HEY2 and USF2 both regulate transcription factors.  

In exploratory analysis, we assessed the role of AACS, the FDR corrected 

significant hit from analyses comparing the combined “high” group to the low trajectory 

group, in the gene network. AACS did not appear to be relevant to the cancer gene 

network and was only related to CBFA2T3 through a small genetic interaction (See 

Figure 11). The fact that AACS was not part of the cancer gene network associated with 

the increasing trajectory could suggest that epigenetic correlates of depression that 

increases throughout adolescence are distinct from epigenetic correlates of symptoms of 

depression that are moderately high throughout adolescence (as seen in the combined 
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increasing and moderate/decreasing groups). On the other hand, there is much less 

research on the biological function of AACS compared to other genes in the network and 

AACS may be more centrally implicated than these analyses show.  

Broader Discussion of EWAS, Regional, and Gene Network Analyses 

 Overall, our results demonstrated a link between genes implicated in cancer 

genesis and progression and individuals who demonstrated increasing levels of 

depression symptoms as they progressed through adolescence. The prevalence of 

depression in patients with various types of cancer exceeds that observed in the general 

population and is associated with a poorer prognosis and higher mortality rate Pasquini & 

Biondi, 2007). This of course makes intuitive sense; individuals faced with a life-

threatening illness and painful treatment would be more likely to develop depression as a 

result. However, there is a body of research that suggests that increased depression 

prevalence is not solely a reaction to the socioemotional and physical stress after a cancer 

diagnosis and posits that there may be a bi-directional relationship between depression 

and cancer with common underlying pathophysiology.  

Whether depression earlier in life can be conceptualized as a risk factor for 

developing cancer later on has long been debated. Several large-scale longitudinal 

epidemiologic studies have reported significant associations between depression 

symptoms and subsequent development of cancer (Dalton et al., 2002; Penninx et al., 

1998), and some have not (Kaplan & Reynolds, 1988; Zonderman et al., 1989). A meta-

analysis using eight longitudinal, population-based studies found a small but significant 

increased risk for cancer among depressed individuals (relative risk = 1.19) (Oerlemans 

et al., 2007). The most dominant theory of shared underlying pathophysiology is chronic 

inflammation, followed by lesser studied hypotheses of malfunctions in DNA repair.  
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 Chronic inflammation propagates increased wear and tear on several biological 

systems in the body impairing their functions. In terms of cancer, impaired functioning of 

immune cells, most specifically, natural killer (NK) cells creates a immunosuppressive 

environment that promotes tumor growth; it has now been evident that an inflammatory 

microenvironment is an essential component of all types of tumors (Baniyash et al., 2014; 

Grivennikov et al., 2010). Because pro-inflammatory responses over-activate the HPA, 

the main mechanism through which cortisol shuts down and inflammatory response, 

chronic inflammation has been widely studied as both a result of and precursor to 

depression (Miller et al., 2009; Moriarity et al., 2020; Raison & Miller, 2011, 2013; Su, 

2012). For example, one meta-analysis found that chronic inflammation preceded the 

development of depression even after controlling for a wide range of factors associated 

with risk for depression (Valkanova et al., 2013).  

 It has also been hypothesized that psychosocial stress may have a negative impact 

on DNA repair and cell apoptosis which leads to the initiation and production of 

abnormal cells, a primary drive of induction of tumor growth and spread (Kiecolt-Glaser 

et al., 2002). Stress may decrease the ability of DNA repair enzymes, like 

methyltransferase, in carrying out maintenance tasks of tumor suppression.  

 Our pattern of results potentially supports both of these two theorized biological 

mechanisms in different ways. The implication of the AACS gene (with a theorized 

critical function in adipose tissue development and consequently obesity) when 

comparing individuals with any depression in adolescence compared to individuals with 

none suggests that underlying inflammatory mechanisms may differentiate the two 

groups broadly. This is supported by a vast literature demonstrating the link between 

obesity and depression (for several reviews and meta-analyses see: (Atlantis & Baker, 
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2008; Blaine, 2008; de Wit et al., 2010; Luppino et al., 2010). This pattern of results may 

be due to the addition of the moderate/decreasing group whose sustained high levels of 

depression even pre-adolescence may better predict or reflect more chronic activation of 

the immune system. However, it is important to note that no other genes directly related 

to the immune system were implicated suggesting more research needs to be done on the 

function of AACS in the context of depression.  

When examining the increasing group specifically, no genes directly implicated in 

inflammatory processes were identified and instead a cluster of genes heavily implicated 

in cancer genesis emerged. Many of the biological function of those genes were DNA 

repair and apoptosis and several have been identified as tumor suppressing genes. 

However, these results should not serve as a definite evidence for the implication of 

cancer related processes underlying the development of depression. The relationships 

between inflammation, DNA repair processes, depression, and cancer are likely to be 

infinitely complex as both disorders involve the maladaptive disruption of multiple 

biological systems and can reflect a wide range of risk factors. In addition, our analyses 

used peripheral blood to obtain DNA methylation levels and most studies assessing 

expression of our identified genes used target tissues (colon, pancreas, breast). DNA 

methylation patterns are tissue-specific (see broader discussion on page 78) and therefore 

we cannot make definitive conclusions on the concordance of DNA methylation and 

expression of these genes in the blood versus in target tissue during tumor growth. 

However, based on review of gene databases (e.g. genecards), all genes annotated in our 

analyses are as expressed in the blood as in other tissues and are hypothesized to have 

immune system functioning roles. Most importantly, gene annotations are only as 

comprehensive as the research that informs them. Cancer research dominates the research 
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on the functional role of thousands of genes including the ones identified in our analyses. 

It is possible that annotated genes have other functions that many be related to 

psychological phenotypes in different ways. More research on the functional role of 

genes beyond the context of cancer is necessary for more comprehensive understanding 

of novel hits in EWAS.  

Limitations 

There are several additional limitations of the EWAS design that should be noted. 

EWAS is frequently underpowered due to a combination of very small effect sizes (see 

more in-depth discussion on page 80), punitive multiple test corrections, and small 

sample sizes due to data availability and the cost of microarray assays. No formal power 

analyses for EWAS exist, however, some studies have tried to estimate sufficient sample 

size for adequate power using data stimulations. Tsai and Bell (2015) found that in a 

case-control design, N = 1,000 (or 500 pairs) was necessary to detect DNA methylation 

differences between 0-5% in terms of genome-wide significance at 80% power; N = 200 

was necessary in monozygotic twin designs. Our sample size is one of the largest seen in 

EWAS (birth EWAS: low = 662, increasing = 94, moderate/decreasing = 74; adolescent 

EWAS: low = 720, increasing = 77, moderate = 64). However, group membership was 

heavily skewed towards the low depression trajectory and therefore, our analyses might 

not have been adequately powered. Issues of power likely contribute to EWAS 

replication difficulties similar to those seen in GWAS.  

There are also several limitations of our specific study in particular. First, we 

were unable to control for antidepressant use in our study. Research has shown that 

antidepressants may affect DNA methylation of certain sites in candidate genes such as 

BDNF, SLC6A4, HTR1A and HTR1B (Serotonin receptor 5HT1A subtype variants), 
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IL11 (interleuken-11), as well as more global whole genome changes (for recent 

systematic review see Webb et al., 2020). It is possible that individuals in the increasing 

group trajectory were more likely to use antidepressants throughout adolescence. 

Therefore, DNA methylation differences found in the increasing symptom trajectory may 

be confounded by anti-depressant effects on DNA methylation. Second, we measured 

DNA methylation at age 15.5 and did not have DNA methylation data available at 

baseline at age 12.5. This may be especially important for the increasing trajectory group, 

where individuals were not experiencing clinical symptoms of depression at ages 12.5 

and 13.5. Although it can be argued that we may be tapping into an epigenetic pathway 

that has already been calibrated earlier on, we could not completely rule out issue of 

reverse-causation. Third, depression is a heterogenous disorder that is often co-morbid 

with other psychological disorders. Because we did not assess for co-morbidity, it is 

unclear if our trajectory groups differed on prevalence of related psychopathology further 

obscuring DNA methylation results. Future epigenetic research should focus less on 

specific psychiatric diagnoses and instead emphasize broad trait-level vulnerabilities, 

such as emotion dysregulation or impulsivity. Further discussion on clinical phenotypes 

in behavioral epigenetic research is on page 81. Fourth, we did not control for the 

presence of other biomedical disorders especially those related to inflammatory processes 

including cancer, Type II diabetes, or cardiovascular disorder, though prevalence rates of 

diseases associated with aging in adolescence is very low. Finally, due to issues of power, 

we were not able to stratify our sample by gender though it was controlled for at every 

level of analysis. Given the 2:1 depression gender ratio that emerges in adolescence and 

the differential hormonal changes related to puberty for teenage girls, it is highly likely 

that underlying epigenetic mechanisms for depression may be gender-specific, especially 
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for those girls with increasing depression symptoms over time. The need for higher-

powered gender specific EWAS for depression is compounded by the fact that our most 

significant hit, that was also central to the cancer gene network, has been consistently 

identified as a breast cancer tumor suppressor.  

CHAPTER 9: Thesis Discussion 

The Tissue Issue 

One of the most salient debates in the viability of using DNA methylation to 

understand complex psychological phenotypes is the “tissue issue.’ DNA methylation 

profiles are tissue-specific, which means that each tissue (e.g. blood, brain, skin) has its 

own unique DNA methylation profile as part of normative tissue differentiation. Since 

most behavioral epigenetic studies utilize peripheral tissue, most commonly blood, a 

major debate is whether peripheral tissue samples have utility for the study of disorders 

that are thought to be primarily manifest in the brain. Simply put, does DNA methylation 

that we observe in the blood, have anything to do with what is going on in the brain? One 

study sought to characterize intra- and inter-individual methylome variation across whole 

blood and multiple regions of the brain (Davies et al., 2012). They found that DNA 

methylation at CpG island around promoter sites was largely conserved between blood 

and brain regions, while CpG shores and intragenic regions showed tissue-specific DNA 

methylation differences. Most strikingly, inter-individual DNA methylation differences 

found in the blood were correlated (p < 0.001) with inter-individual differences in the 

brain (correlation = 0.76 in the cerebellum and 0.66 in the cortex). This means that 

differential DNA methylation patterns between two individuals that are detected in 

peripheral blood are also present in the brain suggesting that peripheral tissues are still 

relevant despite tissue-specific DNA methylation patterns. Similarly, another study found 
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that interindividual variation in DNA methylation are highly correlated between whole 

blood and brain when probes are in CpG promoter regions (Hannon et al., 2015). 

However, they found that interindividual variation in DNA methylation between blood 

and brain exists in 1-3% of 450k probes and warned against using blood DNA 

methylation patterns as proxies for DNA methylation in the brain. It is important to note 

that DNA methylation differences as assessed by candidate gene studies are often 

substantiated with similar patterns in post-mortem brain samples, albeit not within the 

same individual (e.g. Keller et al., 2010; Labonte et al., 2012; McGowan et al., 2009; 

Stenz et al., 2015) 

Although DNA methylation patterns in the blood may not always be aligned with 

DNA methylation patterns in the brain, we argue that peripheral tissues can still provide 

useful information about etiology of psychopathology. Peripheral tissue types may seem 

irrelevant under the assumption that psychological disorders are primarily disorders of 

the brain and are the result of dysfunction of neural circuitry. However, there has recently 

been an explosion of research exploring the connection between the immune system, 

chronic inflammation, and psychological disorders beyond depression (for various 

reviews see Mitchell & Goldstein, 2014; Renna et al., 2018, 2018; Su, 2012; Monica 

Uddin & Diwadkar, 2014). Similarly, a new research base focusing on the 

gastrointestinal system has linked altered gut microbiome functioning to psychological 

disorders as well (for reviews see Groen et al., 2018; Mayer & Hsiao, 2017; Nguyen et 

al., 2018). Perhaps psychological disorders are caused by disruptions in multiple body 

systems in addition to the brain and the traditional dichotomy between mind and body 

should be reconceptualized when thinking about disease etiology. Peripheral tissue may 

not be an exact proxy for brain processes but can instead be thought of as a window to 



 78 

disrupted pathways in other body systems that interact with, are a consequence to, or a 

precursor to processes in the brain.  

Furthermore, even if large scale access to post-mortem brain tissue was easier and 

sample size was not an issue, there are other considerations to take into account about the 

limitations of brain tissue sampling. First, one cannot rule out the profound effects that 

death can have on DNA methylation patterns in the brain, especially if death was 

traumatic or due to illness. Second, post-mortem samples will not tell us anything about 

the etiology of psychological disorders and how they unfold over time during sensitive 

periods of development. Third, if the hope is that DNA methylation will one day be a 

biomarker for either the onset of psychological disorders or as evidence of wear and tear, 

it must be easily and reliably accessed. It is likely that blood-based epigenetic studies will 

continue, and emerging evidence suggests that limitations to this approach can be 

surmountable, though confirmation in brain tissue remains important.  

Effect Size 

 While epigenetic studies in cancer and other disorders typically manifest DNA 

methylation differences of ~20% when comparing cases and controls, studies in 

behavioral epigenetics examining psychological phenotypes often have effect sizes 

ranging from 1-10% and sometimes even smaller differences are reported. Similarly, our 

studies reported mean DNA methylation differences in the range of 1-2%. It has been 

posited that large changes in DNA methylation as a result of stress would hinder any 

possible social-emotional development in the same way that DNA methylation leading to 

cancer renders the tissue completely lost of its normative function and as a result, large 

effect sizes are not to be expected when assessing stress and psychopathology (Breton et 

al., 2017).  
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Furthermore, is important to note that there is usually a strong statistical 

significance reported with these small differences, suggesting that even though the effects 

are small, there is little variability in the measured values. An important example of this 

is the robust literature linking maternal smoking during pregnancy and DNA methylation 

in infant blood where effect sizes range from 1-13% (Breton et al., 2017). It is perhaps 

also useful to recategorize what we see as small effects. Very small changes in DNA 

methylation can have large effects on transcriptional activity. For example, one study 

analyzing the DNA methylation of the imprinted insulin-like growth factor II (IGF2) 

gene in umbilical cord blood, found that for every 1% difference observed in DNA 

methylation, there was a doubling or halving of IGF2 transcription (Murphy et al., 2012). 

Effect sizes are also isolated to DNA methylation differences in one CpG site and the 

collective effect of multiple CpG sites on one gene or across many genes is largely 

unmeasured (to our knowledge, there is no capacity to estimate regional effect sizes. 

Though it is always imperative to question the clinical significance of effect sizes, 

researchers must take into account the context in which they are being examined to truly 

determine if they are relevant. The best way to assess the implications of a difference in 

methylation is to further examine downstream processes such as level of gene expression; 

though this was not available in the ALSPAC cohort.  

Psychological Phenotypes in Behavioral Epigenetics  

Difficulties with EWAS replication have historically been discussed in terms of 

issues with power, technology, and statistical analysis. Less discussed is the likelihood 

that the lack of replication and consequently, any meaningful biological understanding of 

epigenetic pathways that underlie mental health disorders is due to the manner in which 

psychological phenotypes are conceptualized in behavioral epigenetic studies. 



 80 

Psychological constructs are typically treated as categorical disease categories in the 

same vein as biomedical disorders like cancer, but there is little evidence to suggest that 

the actual underlying structure of psychological phenotypes matches that 

conceptualization. In fact, this has been an important debate in the field of clinical 

psychology where the current DSM-5 (Diagnostic and Statistical Manual of Mental 

Disorders – 5) classification of psychological disorders in terms of a categorical disease 

model has been vehemently criticized as ultimately failing to “carve nature at its joints”. 

Extensive heterogeneity and comorbidity demonstrate that diagnoses are more like 

heterogeneous constellations of features in multidimensional space within the context of 

normative human experience and processes (Lilienfeld, 2014). Limiting samples to 

individuals who only meet criteria for one particular psychological disorder or other ways 

to methodologically obtain a “cleaner” experimental phenotype is not reflective of the 

true nature of psychopathology where individuals often meet criteria for multiple 

disorders at one time or have a lifetime history of multiple diagnoses. Our current 

classification of psychological phenotypes may have utility in terms of reliable 

identification and treatment, but it is severely limiting in its ability to study biological 

pathology and etiology and should not be used as the default operationalization of 

phenotypes in behavioral epigenetic studies. If psychological research in epigenetics is to 

be elucidating and fruitful, as much care is to be taken in understanding and 

conceptualizing the phenotype as has been taken to understand epigenetic methodology. 

In these two studies we have attempted to remedy this somewhat by moving 

beyond a case-control design. In study 1, we conceptualized psychopathology using 

confirmatory factor analysis to extract conduct, hyperactivity, emotion problems factors 

as well as a global psychopathology score. In study 2, we conceptualized depression 
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using longitudinal trajectories that take into account change in symptoms over time. 

There are many ways in which the psychological phenotype can be refined in future 

studies for an increased possibility in finding underlying biological pathways. First, as we 

attempted in our first study, psychological phenotypes can be broadened to get at more 

meaningful underlying factors. Research in clinical psychology has found that the 

structure of mental disorders can be potentially summarized by three core 

psychopathological dimensions: internalizing (i.e. liability towards mood disorders like 

depression and anxiety), externalizing (i.e. liability towards impulse and behavioral 

control disorders like ADHD and substance use), and thought disorders (i.e. liability 

towards disordered and disorganized thinking and symptoms of psychosis like 

schizophrenia and bipolar disorder) (Caspi et al., 2014). In behavioral epigenetics, 

psychological phenotypes may be expanded upon into these dimensions with the additive 

bonus of increased sample size and statistical power.  

Disorders can also be grouped in other meaningful ways, for example, 

neurodevelopmental disorders such as autism, ADHD, and schizophrenia may have 

similar underlying epigenetic mechanisms as research has already identified overlap in 

genetic risk among these disorders (Owen et al., 2011). It would also be interesting to 

examine DNA methylation variation on an even broader scale of those who have 

psychopathology and those who have less or not at all. Researchers have posited some 

evidence pointing to one general underlying dimension dubbed the “p factor” that 

described an individual’s propensity to develop psychopathology period, where 

individuals are classified on a low to high psychopathology dimension (Caspi et al., 

2014). It is plausible that epigenetic changes confer risk for psychopathology on a 
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broader scale and lack of replicability may be due to the mistaken assumption that 

different psychological disorders emerge from different epigenetic underpinnings.  

On the other hand, psychological phenotypes could also be narrowed into 

transdiagnostic endophenotypes that are “closer” to underlying epigenetic vulnerability in 

the lengthy pathway between DNA methylation and complex behavioral and emotional 

phenotypes. Endophenotypes can be described as constructs that provide the means for 

identifying the downstream trait or facets of more complex observable behaviors as well 

as the upstream consequences of genetic and epigenetic processes (Gottesman & Gould, 

2003). Although endophenotypes have been more traditionally thought of as simpler 

underlying biological processes (e.g. cortisol reactivity, sensory motor gazing, eye-

tracking, reward learning), that definition has been expanded to include transdiagnostic 

personality traits that underpin psychopathology (e.g. neuroticism, impulsivity). 

Endophenotypes are particularly useful due to the recurring nature of psychopathology in 

a lifespan perspective as they are not state dependent and are more stably manifested in 

the individual whether the psychological disorder is currently present or not (Gottesman 

& Gould, 2003). The endophenotype concept fits within the Research Domain Criteria 

(RDoC) framework, which was developed as an alternative to the DSM classification 

system as a way to organize psychological disorders on transdiagnostic dimensional 

domains (e.g. arousal and regulatory systems, cognitive processes) that focus on 

pathophysiology across several units of analysis (e.g. genetics, physiology, behavior) 

(Insel & Cuthbert, 2009). As discussed previously, studies examining prenatal stress, 

DNA methylation, and infant neurobehavioral outcomes have utilized endophenotypes 

such as cortisol reactivity (e.g. Houtepen et al., 2016; Oberlander et al., 2008; Tf et al., 

2008). There are a few studies who have also examined DNA methylation and its relation 
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to cortisol reactivity later in development (Alexander et al., 2014, 2014; Ouellet-Morin et 

al., 2013). For example, in one EWAS, researchers found that the methylation of one 

locus in the Kit ligand gene (KITTLG) in adults mediated the relationship between 

childhood trauma and cortisol stress reactivity (Houtepen et al., 2016). Although 

endophenotype outcomes in behavioral epigenetic should also be expanded to include 

other measures of cognitive, physiological, and biological functioning, it would also be 

interesting for DNA methylation studies to examine transdiagnostic trait-like 

endophenotypes such as neuroticism (i.e. the tendency to exhibit frequent and intense 

negative emotions) or impulsivity instead of traditional disease model approaches.  

Another consequence of overreliance on the disease model in studying 

psychological phenotypes, is the lack of research on epigenetic pathways that promote 

resilience as well as risk. It is likely that epigenetic mechanisms such as DNA 

methylation play a major role not only in elucidating why some individuals go on to 

develop psychopathology as a result of environmental stress but also why some do not. 

Study 1 of this thesis is an attempt to begin to understand the biological underpinnings of 

resilience to psychopathology in a sensitive period of development, but much more work 

needs to be done in this area. Contrast to the thousands of EWAS and candidate gene 

studies focusing on risk for negative outcomes, there is a lack of a substantial literature in 

understanding the epigenetics of protective factors and resilience to psychopathology. 

There have been a few studies examining the role of DNA methylation to resilience to 

acute stress in animal models (Elliott et al., 2010; Taff et al., 2019; Uchida et al., 2011; 

Wang et al., 2018), but very few exist in humans. There is some preliminary work 

examining resilience to PTSD in combat soldiers. For example, one study found that in 

soldiers with a diagnosis of PTSD, resilience, as measured by a range of coping 
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strategies, was associated with DNA methylation age acceleration suggesting that aspects 

of resilience may come at a biological cost (Mehta et al., 2018). To our knowledge, no 

studies have examined epigenetic mechanisms of resilience to psychopathology in 

childhood and much more work is needed to be done in this area. It would also be 

interesting to examine how protective factors such as social support and maternal warmth 

may alter epigenetic signaling pathways to promote resilience, especially early on in 

development.  

Future Research Directions  

 In addition to more refined clinical phenotypes as outcomes measures and a 

greater focus of resilience and protective factors, more developmentally relevant 

longitudinal designs are needed to push the field forward. However, this is easier said 

than done as most longitudinal cohorts established decades ago could not have foreseen 

the need for more frequent extractions of blood samples to assess temporal timing of 

DNA methylation. Research utilizing longitudinal designs, including the ALSPAC cohort 

in this thesis, is greatly limited by needing to make do with what existing data is 

available. Future launches of longitudinal cohorts may have the benefit of establishing 

designs and timing of assessments that may be more conducive to hypotheses of 

underlying biological mechanisms. Studies with more frequent sampling of DNA 

methylation across a period of time are greatly needed, not only to better establish 

temporal order, but to gain better understanding the timing of epigenetic changes. How 

quickly after stressors can DNA methylation changes be identified? Are they temporary 

fluctuations or more permanent cellular reprogramming phenomena?  

 Additionally, innovated epigenetic designs beyond the traditional candidate gene 

and EWAS case-control samples are necessary. Epigenetic research will be most robust 
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when integrating multiple levels of analysis. The distance between DNA methylation and 

a complex behavioral phenotype is vast and in between lies a number of cascading 

processes. Future research should continue to include multi-omics measures including 

genomics, transcriptomics, metabolomics, proteomics, and imaging data (Lin & Tsai, 

2019).  Furthermore, the polygenic risk score approach that has been utilized in 

application of GWAS data should also be adapted to epigenetic research, given that 

multiple CpG sites of multiple genomic regions are likely acting and interacting in 

accordance with one another.  

 Finally, the interpretation of EWAS is often limited by how little is actually 

known about the biological functioning of newly identified genes as much of what is 

known about gene function is through cancer research. In theory, EWAS are hypothesis 

generating analyses where novel genes implicated in psychological phenotypes are 

discovered. However, there is very little if any follow-up (for example, candidate gene 

analyses) on novel hits in the field of behavioral epigenetics. There are a large number of 

novel genes in many EWAS that have not been more closesly examined. If the field is to 

continue to grow, researchers must conduct more in-depth follow-up analyses on how 

these genes are related to psychological phenotypes.  

Clinical Implications  

The seminal study conducted by Weaver and colleagues (2004), demonstrated in 

an animal model that early life experience became embedded through DNA methylation 

of the GR gene to propagate an anxious phenotype later in life. Perhaps the most striking 

result of this study was that the epigenetic changes were reversible. Central infusion of a 

histone deacetylase inhibitor into the brain effectively removed the methyl tags on the 

GR gene and removed group differences in DNA methylation, GR transcription and 
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expression, hypothalamic-pituitary adrenal (HPA) responses to stress, and most 

importantly, the actual anxious phenotype. Previously anxious mice were now not 

distinguishable from their non-anxious control counterparts. While epigenetic 

pharmacotherapy is an exciting concept in treatment of mental illness, these results 

demonstrate more of a proof of principle rather than possible reality in human 

psychopathology. Current epigenome-editing technology uses DNA methyltransferase 

(DNMT) inhibitors acting on DNA methylation and histone deacetylase (HDAC) 

inhibitors targeting histone post-translational modification (i.e. another mechanism of 

epigenetic mechanisms not discussed in this thesis) (Kular & Kular, 2018). However, in 

humans these modifiers affect DNA methylation globally, exerting broad effects on the 

epigenome, and current technology cannot target individual loci. And even if that 

technology comes to fruition, it would be unclear which loci to safely target and in what 

tissue without adverse pleiotropic side-effects. Unlike in cancers where malignant tumors 

can be localized and targeted with global methylation changes, it remains to be seen how 

this would be possible in complex psychological phenotypes that have social, emotional, 

cognitive, and behavioral components.  

Although direct biological intervention may not be possible, epigenetic research 

has the potential to inform the classification and treatment of mental health disorders in 

other ways. The most obvious utility is the central aim of this thesis: to better understand 

the etiology and mechanisms of psychopathology. In addition, DNA methylation changes 

can also serve as potential biomarkers that can predict and track clinical outcomes as well 

as potentially classify particular subtypes of a disorder. For example, one longitudinal 

study assessing postpartum depression identified 116 transcripts, related to estrogen 

signaling, that were differentially expressed between cases and controls during the 3rd 
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trimester that then predicted with 88% accuracy who went on to develop postpartum 

depression in two separate sample cohorts (Mehta et al., 2014). Similarly, another study 

posited the predictive utility of DNA methylation of HP1BP3 and TTC9B, both of which 

are regulated by estrogen with 80% accuracy (Guintivano et al., 2014). Another study 

using an epigenome-wide approach examined DNA methylation in the context of 

treatment response to antidepressant medication. Results identified differential DNA 

methylation in two genes, CHN2 and JAK2, that distinguished responders from non-

responders with CHN2 being replicated in an independent sample (Ju et al., 2019). 

The future of behavioral epigenetics, aided by strides in technological advances, 

improved bioinformatic methods, more meaningful and developmentally relevant 

phenotypes, and innovative research designs, looks bright. However, the field is still in its 

infancy and researchers must use caution in overinterpreting new discoveries. The more 

that novel discoveries of the epigenome are uncovered, the more of our ignorance of the 

complexities in relationships between genes and environments is revealed. It is unlikely 

that epigenetics, like genetics before it, will be the final piece of the puzzle in solving the 

disease burden of mental illness. However, it continues to hold enormous potential for 

better understanding of the etiology of psychopathology and for better, more precise 

treatment of it.  
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Table and Figures from Study 1: Variation in DNA Methylation of the Oxytocin 
Receptor Gene Predicts Children's Resilience to Prenatal Stress (2017) 
 

 
 
 
 
Figure 1. Flowchart of sample selection from ALSPAC cohort. 
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Figure 2. Confirmatory factor analysis of Strengths and Weaknesses Questionnaire 
(SDQ) subscales of conduct problems, hyperactivity, and emotional problems and global 
problems.  
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Figure 3. Linear Regression models used to classify resilient and non-resilient groups to global, conduct, hyperactivity, and 

emotional problems. Red (top half) dots represent the non-resilient group while the blue (bottom half) represent the resilient 
group. 

Table 1. Multiple Linear Regression Predicting Factor 1 Methylation and Individual Probes at Birth by Types of 
Resilience  

        Global       Conduct      Hyperactivity        Emotional 
Parameter β    95% CI      β   95% 

CI 
    β    95% CI     β 95% CI 

Factor 1 Methylation .220   .000-
.025 .323*

*

.006-
.031 

.154 -.006-
.024 

.015 -.013-
.013 

    Probe 1 .153 -.009-
.040 

.245* .003-
.051 

.051 -.022-
.033 

.022 -.022-
.025 

    Probe 5 .274   .004-
.041 

.283* .006-
.042 .280

*

 .005-
.042 

.027 -.018-
.020 

    Probe 10 .073      -.012-
.021 

.244* .002-
.035 .055 

-.015-
.024 

-
.042 

-.021-
.014 

Note:  β = Beta Weights; CI = Bootstrapped Confidence Intervals; Analyses controlled for sex and cell type 
*p < .05, **p < .01, ***p < .001.
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Figure 4. This figure shows mean methylation percentages at each individual probe that makes up Factor 1 controlling for sex 
and estimated cell–type composition. *p < .05, **p < .01, ***p < .001. 

Resilient 
(N = 44) 

Non-
Resilient 

     (N = 47) 

Probes % M SD M SD 
Average 2.2 .19 .04 .17 .06 

    Probe 1 2.5 .18 .05 .15 .04 
    Probe 5 2.3 .14 .04 .12 .03 
    Probe 10 1.7      .17 .04   .15 .02 
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Table 2. Descriptive Statistics of Resilient and Non-Resilient groups in Conduct Problems 
      Resilient 
       (N = 44) 

Non-Resilient 
(N = 47) 

    N (%) N (%) 
Gender 
     Male     20 (46.5) 23 (53.5) 
     Female 24 (50.0) 24 (50.0) 

      M (SD) M (SD) T-test
 Environmental Risk 
     Prenatal 0.54 (0.46) .047 (.429) -0.750
     Ages 0-7 5.96 (4.46) 6.58 (5.80) 0.564
     Ages 8-9 0.85 (1.81) 0.99 (1.76) 0.387

      M (SD) M (SD) F-test
Psychopathology 
     Hyperactivity -0.55 (1.10) 0.45 (1.22)     16.56*** 
     Emotional Problems 0.00 (0.67) 0.31 (0.70)  4.90* 
     Peer Problems -0.10 (0.67) 0.17 (0.63) 3.72t 
     Prosocial Behavior 0.61 (0.64) -0.40 (1.03)         31.18*** 
     Social Cognition (Age 7) 2.24 (2.33) 5.16 (3.65)      18.14*** 
     Callous-Unemotional Traits (Age 13) 1.79 (0.54) 2.33 (0.61)      16.87*** 

*p < .05, Note: All psychopathology outcomes controlled for sex
*p < .05, **p < .01, ***p < .001.
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Table 3. OXTR Single Nucleotide Polymorphism (SNP) effects on Probe 1 and Probe 10 

Timepoint SNP SNP 
chr SNP pos A1 A2 CpG site CpG 

chr CpG pos Beta T-stat Effec
t Size

Birth (Probe 1) rs62243375 3 8810462 T C cg00078085 3 8810592 0.613 0.00 0.008 

Birth (Probe 10) rs237900 3 8808696 A G cg12695586 3 8810077 -0.328 0.00 0.004 

Note: chr = chromosome, pos = position  



95 

Table and Figures from Study 2: A Longitudinal Epigenome-wide Analysis of Depression Trajectories in Adolescence 

Figure 5. Flowchart of sample selection from ALSPAC cohort 
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Figure 6. Depression trajectories (measured with Short Moods and Feelings Questionnaire; SMFQ) obtained through latent 
class growth curve modeling using the full ALSPAC sample (N = 8,360).   



97 

Table 4. Descriptive Statistics for EWAS analyses at birth broken down by depression 
trajectories. 

Low Increasing    Moderate/ 
  Decreasing 

Birth EWAS (N = 830) 
N (%)  662 (80) 94 (11) 74 (9) 
N (%) female 311 (47) 66 (70) 48 (65) 

Birth covariates  M (SD) M (SD) M (SD) 
Maternal smoking freq 
   1st trimester  0.93 (3.46)    1.71 (5.04)   1.32 (4.49) 
   2nd trimester  0.60 (2.69)    1.04 (3.65)  1.16 (3.87) 
   3rd trimester  0.70 (2.98)    1.55 (4.75)  1.28 (4.69)  
Maternal marijuana freq 
   1st trimester  0.02 (0.19)    0.05 (0.43)   0.01 (0.12) 
   2nd trimester  0.01 (0.16)    0.05 (0.43)   0.03 (0.17) 
   3rd trimester   0.02 (0.22)a     0.10 (0.62)ab   0.03 (0.17)b
Maternal alcohol use freq 
   1st trimester  0.77 (0.81)   0.84 (0.86)   0.64 (0.69) 
   3rd trimester  0.80 (0.79)   0.79 (0.88)   0.81 (0.81) 
Child gestation length (weeks)    39.60 (1.48) 39.33 (1.56) 39.68 (1.45) 
Maternal age at birth (years)    29.65 (4.27) 29.49 (4.71) 29.88 (5.17) 

Child birthweight (grams) 
      3509.50 
      (476.92) 

3372.17 
(480.59) 

3472.26 
(461.89) 

Adolescent Dep (age 12.5) 2.94 (2.34)    5.31 (2.56)  12.80 (3.64) 
   N (%) clin sig dep   2 (.03) 2 (2) 57 (77) 
Adolescent Dep (age 13.5) 3.59 (2.93)    9.34 (5.19)  11.64 (4.53) 
   N (%) clin sig dep 20 (3) 34 (36) 39 (53) 
Adolescent Dep (age 16) 5.40 (3.22) 15.49 (5.78)  10.15 (5.72) 
   N (%) clin sig dep 53 (8) 73 (78) 30 (41) 
Adolescent Dep (age 17.5) 5.06 (3.85) 14.41 (5.11)    8.75 (4.66) 
   N (%) clin sig dep 73 (11) 73 (78) 25 (34) 
Note: M = Mean, SD = Standard Deviation; ANOVA with Tukey HSD was used to assess mean 
differences in covariates, columns with different superscripts are significantly different from each 
other; Dep = SMFQ Depression score; freq = frequency; clin sig dep = clinically significant 
depression;  Range of values for smoking, marijuana, and alcohol use are 0 (none) to 6 (frequent daily 
use) 
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Table 5. Descriptive Statistics for EWAS analyses at adolescence broken down by 
depression trajectories. 

Low Increasing    Moderate/ 
  Decreasing 

Adolescent EWAS (N = 893) 
N (%) 720 (80) 77 (11) 96 (9) 
N (%) female 346 (48)  54 (70) 61 (64) 

M (SD) M (SD) M (SD) 
Adolescent Age 17.14 (1.03) 17.15 (1.06) 17.10 (1.08) 
Adolescent Smoking    0.85 (1.46)a   1.68 (1.99)b     1.62 (1.80)b
Adolescent Marijuana  0.42 (0.97)a   0.75 (1.37)ab     0.93 (1.48)b

Adolescent Dep (age 12.5) 2.86 (2.30)   5.27 (2.52) 12.69 (3.47)
N (%) clin sig dep (SMFQ > 11) 2 (.03) 2 (2) 56 (77) 
Adolescent Dep (age 13.5) 3.53 (2.89)   9.49 (5.20) 11.73 (4.56) 
   N (%) clin sig dep 20 (3) 32 (39) 39 (53) 
Adolescent Dep (age 16) 5.35 (3.21) 14.88 (5.89)   9.87 (5.39) 
   N (%) clin sig dep 43 (8) 53 (73) 21 (39) 
Adolescent Dep (age 17.5) 4.99 (3.77) 14.83 (5.22)   8.93 (4.79) 
   N (%) clin sig dep 72 (10) 58 (82) 35 (36) 
Note: M = Mean, SD = Standard Deviation; ANOVA with Tukey HSD was used to assess mean 
differences in covariates, columns with different superscripts are significantly different from each 
other; Dep = SMFQ Depression score; freq = frequency; clin sig dep = clinically significant 
depression; Range of values for smoking and marijuana are 0 (none) to 6 (frequent daily use) 
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Table 6. EWAS comparing increasing (N = 94) to low (N = 662) groups using DNA methylation obtained at birth 

CpG Gene Chr Position 

Location 

details b (SE) p q 
Adj 

R 

M 

(SD) 

low 

M (SD) 

increasing 

Meth 

diff 

cg08214693 SCRIB 8 144885540 

Island, 

5’ UTR, 

promoter 

-2.12e-

02

(3.80e-

03) 

7.44e-

06 
0.074 0.025 

0.965 

(0.018) 

0.952

(0.049) 
1.3%

Note: Chr = chromosome; b = unstandardized beta; SE = standard error, q = adjusted FDR value; Adj = 
Adjusted; M = mean; SD = standard deviation.  
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Figure 7. Manhattan plot of EWAS comparing increasing (N = 94) to low (N = 662) groups using DNA methylation obtained 
at birth. Red line represents FDR significance.  
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Table 7. EWAS comparing combined high (N = 173) to low (N = 720) groups using DNA methylation obtained at 
adolescence 

CpG Gene Chr Position 

Location 

Details b (SE) p q 
Adj 

R 

M 

(SD) 

low 

M (SD) 

increasing 

Meth 

diff 

cg06758781 AACS 12 125570653 

South 

Shore;  

Body 

-1.23e-

02

(2.21e-

03) 

3.53e-

08 
0.015 0.021 

0.136 

(0.048) 

0.156 

 (0.042) 

2% 

Note: Chr = chromosome; b = unstandardized beta; SE = standard error, q = adjusted FDR value; Adj = Adjusted; M 
= mean; SD = standard deviation; Location details = location in genomic space, location on the gene, and whether 
CpG is near the promoter region 
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Figure 8. Manhattan plot of EWAS comparing combined high (N = 173) to low (N = 720) groups using DNA methylation 
obtained at adolescence. Red line represents FDR significance.  



1
0
3
 

Table 8. EWAS comparing increasing (N = 96) to low (N = 720) groups using DNA methylation obtained at 
adolescence 

CpG Gene Chr 
Location 

Details 
b (SE) p q 

Adj 

R 

M(SD) 

low 

M(SD) 

inc 

Meth 

 dff 

cg06460328 CBFA2T3 chr16 North 
Shelf; 
5’UTR; 
Body 

-2.64e-02
(4.85e-03)
hhhhhhhh

7.17e-
08 

0.030 0.296 0.136 
(0.048) 

0.156 
(0.042) 

2% 

cg15414828 LRTOMT/ 

NUMA1 

chr11 Island; 

5’UTR, 

1st exon; 

promoter 

-1.36e-02

(2.62e-03)

2.77e-

07 

0.059 0.061 0.080 

(0.021) 

0.090 

(0.021) 

 1% 

cg00624332 LDB1 chr10 Island; 

TSS200; 

promoter 

-1.48e-02

(2.94e-03)

6.75e-

07 

0.060 0.046 0.062 

(0.023) 

0.074 

(0.027) 

1.2% 

cg14558639 USF2 chr19 Island; 

Body; 

promoter 

-2.58e-02

(5.16e-03)

7.18e-

07 

0.060 0.052 0.080 

(0.040) 

0.100 

(0.044) 

2% 

cg05901451 HEY2 chr6 Island; 

5’UTR, 

1st exon 

-2.97e-02

(5.95e-03)

7.79e-

07 

0.060 0.062 0.224 

(0.048) 

0.242 

(0.049) 

1.8% 

cg18786593 -- chr2 South 

Shore 

-0.020

(4.14e-03)

9.61e-

07 

0.060 0.078 0.096 

(0.034) 

0.106 

(0.034) 

1% 
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cg21772776 BLCAP chr20 Island; 

5’UTR, 

1st exon; 

promoter 

-2.87e-02

(5.80e-03)

9.81e-

07 

0.060 0.075 0.138 

(0.047) 

0.163 

(0.042) 

2.5% 

Note: Chr = chromosome; b = unstandardized beta; SE = standard error, q = adjusted FDR value; Adj = 
Adjusted; M = mean; SD = standard deviation; inc = increasing; Meth diff = percentage methylation 
difference.  Location details = location in genomic space, location on the gene, and whether CpG is near the 
promoter region  
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Figure 9. Manhattan plot of EWAS comparing increasing (N = 96) to low (N = 720) groups using DNA methylation obtained 
at adolescence. Red line represents FDR significance.  



1
0
6
 

Table 9. Regional analyses comparing combined high (N = 173) to low (N = 720) groups using DNA 
methylation obtained at adolescence 

DMR position (hg19) Number of probes in the 

DMR 

        DMR p-value                Gene 

Chr3:127347876-

127347978 

4 0.000 SNORA33, SNORA81, 

SNORD66, SNORD2, 

SNORD5, SNORD63, 

SNORD61, SNORA24, 

SNORA18 

Note: DMR. = differentially methylated region 
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Table 10. Regional analyses comparing increasing (N = 96) to low (N = 720) groups using DNA 
methylation obtained at adolescence 

DMR position (hg19) Number of probes in the 

DMR 

        DMR p-value Gene 

Chr3:127347876-

127347978 

4 0.000 SNORA33, SNORA81, 

SNORD66, SNORD2, 

SNORD5, SNORD63, 

SNORD61, SNORA24, 

SNORA18 

Chr11:130184046-

130184122 

2 0.000 ZBTB44 

Chr20:36155925-

36156146 

6 0.000 BLCAP 

Note: DMR. = differentially methylated region 
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Figure 10. GeneMANIA gene network analysis using significant and nominal hits from increasing versus low groups EWAS 
using DNA methylation in adolescence. Striped black circles represent genes associated with the probes found to be related to 
depression trajectories in the EWAS. Solid black circles represent additional genes predicted by GeneMANIA based on genetic 
and physical interactions, shared pathways and protein domains as well as protein co-expression data.
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Table 11. Gene ontology analyses from GeneMANIA gene network analysis using significant and 
nominal hits from increasing versus low groups EWAS using DNA methylation in adolescence. 
Function FDR Coverage 
sequence-specific DNA binding 1.60e-8 10/255 
bHLH transcription factor binding 2.79e-7 5/18 
cardiac septum morphogenesis 0.000002 5/27 
cardiac septum development 0.000007 5/37 
cardiac ventricle development 0.00005 5/56 
cardiac chamber morphogenesis 0.00006 5/60 
muscle structure development 0.00009 7/244 
cardiac chamber development 0.00009 5/70 
regulatory region DNA binding 0.0001 7/268 
transcription regulatory region DNA binding 0.0001 7/267 
regulatory region nucleic acid binding 0.0001 7/268 
RNA polymerase II transcription factor binding 0.0001 5/74 
sequence-specific DNA binding RNA polymerase 
II transcription factor activity 

0.0004 6/200 

cardiac right ventricle morphogenesis 0.0004 3/10 
cardiac ventricle morphogenesis 0.0006 4/47 
heart morphogenesis 0.0007 5/120 
histone deacetylase binding 0.0007 4/51 
chordate embryonic development 0.0007 5/125 
embryo development ending in birth or egg 
hatching 

0.0007 5/125 

aorta morphogenesis 0.0008 3/14 
ventricular septum morphogenesis 0.0008 3/14 
aorta development 0.0009 3/15 
embryonic organ development 0.001 5/144` 
transcription factor complex 0.002 5/155 
mesenchymal cell differentiation 0.002 4/68 
smooth muscle cell differentiation 0.002 3/19 
ventricular septum development 0.002 3/21 
mesenchyme development 0.003 4/80 
regulation of neuron differentiation 0.004 5/188 
E-box binding 0.004 3/27 
heart development 0.005 5/203 
artery morphogenesis 0.006 3/30 
RNA polymerase II activating transcription factor
binding

0.007 3/32 

outflow tract morphogenesis 0.007 3/33 
artery development 0.007 3/33 
regulation of neurogenesis 0.007 5/228 
regulation of nervous system development 0.01 5/256 
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regulation of binding 0.01 4/127 
regulation of DNA binding 0.02 3/46 
in utero embryonic development 0.02 3/47 
activating transcription factor binding 0.02 3/48 
muscle cell differentiation 0.02 4/151 
mesenchymal cell development 0.03 3/60 
negative regulation of binding 0.04 3/61 
blood vessel morphogenesis 0.04 4/170 
regulation of vasculogenesis 0.04 2/10 
stem cell differentiation 0.04 4/171 
cardiocyte differentiation 0.04 3/64 
cardiac epithelial to mesenchymal transition 0.05 2/12 
endocardial cushion morphogenesis 0.05 2/12 
cardiac left ventricle morphogenesis 0.05 2/12 
protein heterodimerization activity 0.05 4/191 
blood vessel development 0.05 4/193 
Note: Coverage = how many genes in this network/how many genes identified in this process 
overall in the literature 
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Figure 11. GeneMANIA gene network analysis using significant and nominal hits from increasing versus low groups EWAS 
using DNA methylation in adolescence with the addition of AACS from high versus low groups EWAS. Striped black circles 
represent genes associated with the probes found to be related to depression trajectories in the EWAS. Solid black circles 
represent additional genes predicted by GeneMANIA based on genetic and physical interactions, shared pathways and protein 
domains as well as protein co-expression data. 
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Supplementary Section 

SI 1. Factor analysis procedure for reducing OXTR methylation data and results obtained from Cecil and colleagues (2014) 
for study 1. 

Procedure: 

We used exploratory factor analysis (EFA) to examine associations between the 12 OXTR probes at birth. EFA is a data 

reduction technique that groups correlated probes into a smaller set of factors which account for shared variance between them 

– an advantageous method when the pattern of relationships between variables (i.e. probes) is not known. The optimal number

of factors was determined by comparing fit statistics between models estimating 1 to 5 factors. Model fit was first established

using the chi-square statistic, which tests the difference between observed and expected covariance matrices, producing a non-

significant value if this difference is close to zero .  In the event of a significant chi-square value, we examined additional

relative fit indices , including the mean square error of approximation (RMSEA; acceptable fit =< .08), the Comparative Fit

Index and Tucker-Lewis Index (CFI & TLI; acceptable fit => .90). As a next step, confirmatory factor analysis (CFA) was run

to validate the factor structure identified by the EFA. Once methylation factors at birth were confirmed, we tested whether they

remained consistent from birth onwards (i.e. birth vs age 7; age 7 vs age 9), by examining correlations between probes in each

factor, and mean levels of DNA methylation in probes within each factor.

Results:  

Correlations between the 12 OXTR probes at birth can be found in SI3. Using EFA, we identified 3 methylation factors at birth 

(containing 3 probes each), which showed the best model fit: X2 (33) = 41.15, p = .16. We then used CFA to validate the 3-

factor model and extract factor scores (i.e. containing shared variance between probes in each factor). Model fit was 

satisfactory (X2 (24) = 70.03 p <.01; CFI = .91; TLI = .86; RMSEA = .08, 90% CIs = .06, .10). See SI4 for probe descriptive 

statistics, standardized loadings and factor correlations. Probe correlations for each factor remained consistent between birth 

and age 7, as well as between age 7 and age 9, but mean levels varied across time (see SI5). We present findings relating to 

Factor 2 as it associated with both the environment and CU. Of note, all probes included in this factor were physically located 

on the same Exon (i.e., 2) of OXTR . Details pertaining to Factor 1 and Factor 3 are available upon request.  
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SI 2. Confirmatory Factor Model of OXTR methylation patterns at birth obtained from Cecil and colleagues (2014) for Study 1 
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SI 3. Intercorrelations between environmental risk domains across developmental periods and confirmatory factor models 
obtained from Cecil and colleagues (2014) for Study 1 
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SI 4. QQ-plot for EWAS comparing increasing (N = 94) to low (N = 662) groups using DNA methylation obtained at birth 
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SI 5. Q-Q plot for EWAS comparing combined high (N = 173) to low (N = 720) groups using DNA methylation obtained at 
adolescence 
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SI 6. Q-Q plot for EWAS comparing increasing (N = 96) to low (N = 720) groups using DNA methylation obtained at 
adolescence. 
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