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Abstract	

The introduction of Zika virus (ZIKV) and chikungunya virus (CHIKV) into the Americas in the 

mid-2010s triggered large epidemics across the region fueled by high population-level 

susceptibility. Colombia was one of the most affected countries, reporting approximately 

413,000 cases of chikungunya fever (CF) and 106,000 cases of Zika virus disease (ZVD) in 

only three years. In this thesis, mathematical models were used to estimate key 

epidemiological parameters from cases of CF and ZVD that were reported to Colombia’s 

national population-based surveillance system on a weekly basis from 2014-2017.  

Both epidemics spread widely throughout the country. Out of 32 departments, all reported 

ZVD cases, while 31 departments reported CF cases. Females of child-bearing age comprised 

a large proportion of reported ZVD cases, most likely due to increased reporting linked to 

the risk of congenital birth defects associated with ZIKV infection during pregnancy. Of the 

418 reported cases of ZIKV-associated neurological complications in the country, most were 

diagnosed with Guillain-Barré syndrome.  

The estimated reporting rate of CHIKV was higher than that of ZIKV according to models 

based on the renewal equation. This result was expected due to the higher rate of 

asymptomatic ZIKV infection compared to that of CHIKV. Basic reproduction number 

estimates at the department level were similar for CHIKV compared to ZIKV. Reassuringly, 

estimates of the time-varying reproduction number from the parametric model were in 

good agreement with those obtained from the software EpiEstim.  

ZIKV infection attack rates, reporting rates of ZVD, and the risk of ZIKV-associated 

neurological complications were estimated for 28 Colombian capital cities by incorporating 

multiple data types into a Bayesian hierarchical model. ZIKV infection attack rates varied 

considerably across cities. The overall estimated reporting rate for ZVD was similar to that 

estimated previously. Results also showed a low estimated risk of ZIKV-associated 

neurological complications. Important differences in estimated ZVD reporting rates and the 

risk of ZIKV-associated neurological complications between sex and age group were found 

for some cities.  
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Finally, gravity models, Stouffer’s rank models, and radiation models were used to 

investigate the spatial and temporal invasion dynamics of CHIKV and ZIKV. Both geographic 

distance and travel time between cities were evaluated. Invasion risk was best captured by 

a gravity model which accounted for geographic distance and intermediate levels of density 

dependence. Results also showed that Stouffer’s rank model with geographic distance 

performed well. Short-distance transmission played an important role in spatial spread, and 

a few long-distance transmission events were identified. Jointly fitted models highlighted 

similarities between the epidemics. However, ZIKV spread faster than CHIKV. 

With new interventions on the horizon, including vaccines and novel methods of vector 

control, as well as the emergence of new arboviral diseases, having robust estimates of 

epidemiological parameters will be important for informing surveillance and preparedness 

for future epidemics.   
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Resumen	

La aparición del virus de Zika y el virus de chikungunya en América a mediados de la década 

de 2010 desencadenó grandes epidemias a lo largo de la región alimentado por altos niveles 

de susceptibilidad en la población. Colombia fue uno de los países más afectados, 

reportando aproximadamente 413,000 casos de fiebre de chikungunya y 106,000 casos de 

enfermedad de Zika en solo tres años. En esta tesis, modelos matemáticos fueron usados 

para estimar los parámetros epidemiológicos claves en casos de fiebre de chikungunya y 

enfermedad de Zika que fueron reportados al sistema nacional de vigilancia poblacional de 

Colombia semanalmente desde 2014-2017.  

Ambas epidemias se propagaron ampliamente a través del país. De los 32 departamentos, 

todos reportaron los casos de enfermedad de Zika, mientras 31 departamentos reportaron 

los casos de fiebre de chikungunya. Las mujeres en edad reproductiva constituyeron una 

proporción grande de los casos reportados de enfermedad de Zika, probablemente debido 

al reportaje elevado relacionado con el riesgo de los defectos congénitos asociados con la 

infección de Zika durante el periodo de embarazo. De los 418 casos reportados con 

complicaciones neurológicas asociadas al virus de Zika en el país, la mayoría fue 

diagnosticado con el síndrome de Guillain-Barré.  

La tasa de reporte estimado del virus de chikungunya fue más alta que la de Zika según unos 

modelos basados en la ecuación de renovación. Este resultado fue esperado debido a una 

mayor tasa de infección asintomática del virus de Zika en comparación con la de 

chikungunya. Las estimaciones del número de reproducción básico al nivel del 

departamento para el virus de chikungunya fueron parecidos comparado con las de Zika. 

Tranquilizadoramente, las estimaciones del número de reproducción variable en el tiempo 

obtenidas del modelo paramétrico estuvieron acorde con las obtenidas del software 

EpiEstim.  

Las tasas de ataque de infección del virus de Zika, las tasas de reporte de enfermedad de 

Zika y el riesgo de complicaciones neurológicas asociadas con el virus de Zika fueron 

estimadas para 28 de las ciudades capitales de Colombia incorporando varios tipos de datos 

en un modelo Bayesiano jerárquico. Las tasas de ataque de infección del virus de Zika 

variaron considerablemente a través de las ciudades. La tasa de reporte total por 
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enfermedad de Zika fue parecida a la estimación previa. Los resultados también 

demostraron un riesgo bajo de las complicaciones neurológicas asociadas con el virus de 

Zika. Diferencias importantes en las tasas estimadas de reporte de enfermedad de Zika y el 

riesgo de las complicaciones neurológicas asociadas con el virus de Zika entre el sexo y 

grupo de edad fueron descubiertos en algunas ciudades.  

Finalmente, modelos de gravitación, modelos de oportunidades interpuestas de Stouffer y 

modelos de radiación fueron usados para investigar las dinámicas de invasión a través del 

espacio y tiempo de los virus de chikungunya y Zika. Tanto la distancia geográfica como el 

tiempo para viajar entre las ciudades fueron evaluados. El riesgo de invasión fue capturado 

de mejor manera por un modelo de gravitación que incluyó la distancia geográfica y los 

niveles intermedios de la dependencia de densidad. Los resultados además mostraron que 

el modelo de oportunidades interpuestas con la distancia geográfica funcionó bien. La 

transmisión de corta distancia jugó un rol importante en la propagación espacial y algunos 

eventos de transmisión de larga distancia fueron identificados. Los modelos ajustados 

conjuntamente destacaron las similitudes entre las epidemias. Sin embargo, el virus de Zika 

se propagó más rápido que el virus de chikungunya. 

Con nuevas intervenciones en el horizonte, incluyendo vacunas y nuevos métodos para el 

control de vectores, además de la aparición de nuevas enfermedades por arbovirus, tener 

estimaciones robustas de los parámetros epidemiológicos será importante para mejorar la 

vigilancia y preparación frente a epidemias futuras.  
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Chapter	1:	Introduction	

1	Background	

1.1	Zika	

Zika virus disease (ZVD) is an emerging infectious disease caused by Zika virus (ZIKV), a 

single-stranded RNA virus that belongs to the genus Flavivirus [1]. Flaviviruses are mainly 

spread by arthropods, especially ticks and mosquitoes; hence, they are also called 

“arboviruses.” The clinical presentation of acute flavivirus infection in humans is typically 

mild but can be life-threatening: hemorrhagic fever, shock, encephalitis, paralysis, 

congenital defects, and liver failure have been reported [1]. These complications can result 

in death or long-term disability in survivors. Other flaviviruses include yellow fever virus, 

dengue virus (DENV), West Nile virus, Powassan virus, and Japanese encephalitis virus [1]. 

The geographical range of flaviviruses is wide and covers most of the tropics. In fact, about 

half of the world’s population is estimated to live in areas at risk of DENV transmission [2].   

ZIKV is transmitted to humans according to two ecological cycles. The bite of infected Aedes 

spp. mosquitoes, particularly Ae. aegypti, is the main route of ZIKV transmission in urban 

epidemics (Figure 1.1) [3]. Human-to-human transmission can occur through sex and 

transfusion of infected blood products as well as from mother to child during or after 

pregnancy [4-6]. In Africa, an enzootic cycle occurs in which the virus circulates between 

non-human primates and sylvatic (forest-dwelling) mosquitoes with occasional spillover into 

humans [7].  
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Figure 1.1 A female blood-fed Aedes aegypti mosquito. Reproduced from [8]. 
 

Symptoms of ZVD include fever, rash, joint pain, muscle aches, conjunctivitis, and headache. 

Severe cases and deaths are rarely reported [9], and only about 20%-25% of persons 

infected by ZIKV show symptoms [10]. Clinical diagnosis of ZIKV infection can only be made 

reliably in the absence of other circulating arboviruses [11]. In some regions, ZIKV co-

circulates with both chikungunya virus (CHIKV) and DENV, which are transmitted by the 

same vectors and cause similar symptoms [12]. For these reasons, outbreaks of ZIKV can be 

difficult to detect.  

Laboratory confirmation of ZIKV infection can take the form of viral culture, molecular 

assays, or serological assays. Once considered the gold standard, viral culture is no longer 

routinely used for diagnostic purposes due to long turnaround times and the need for 

specialized equipment and skilled laboratory staff [13]. 

Molecular assays for viral RNA, such as reverse transcriptase polymerase chain reaction (RT-

PCR), can be performed during the acute phase of ZIKV infection and up to two weeks after 

symptom onset [14]. Different types of bodily fluids can be tested using molecular methods 

including serum, whole blood, urine, cerebrospinal fluid, and amniotic fluid. Unfortunately, 

PCR-based tests are not always available in resource-limited settings due to costly 

equipment and lack of trained personnel.  
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Serological assays test for the presence of ZIKV specific immunoglobulin (Ig) M or IgG 

antibodies and are performed on serum, whole blood, or plasma. IgM antibodies can be 

detected with enzyme-linked immunosorbent assays (ELISAs) approximately one week to 

two months after ZIKV infection [14]. Testing for IgG antibodies, which rise soon after IgM 

and can persist for years to decades, can reveal ZIKV infections that occurred in the past. 

The gold standard for this test is the plaque reduction neutralization test [14]. However, the 

interpretation of ELISAs and plaque reduction neutralization tests are not always 

straightforward, especially in patients with prior exposure to DENV, due to cross-reactivity 

between antibodies elicited by different flavivirus infections or by vaccination [14].  

No approved medical countermeasures exist to prevent or treat ZIKV infection [12], but 

several vaccine candidates are being evaluated in pre-clinical through phase 2 studies [15]. 

ZIKV was first isolated from rhesus monkeys in the Zika forest in Uganda in 1947 [3]. In 

1952, the first cases of ZVD in humans were discovered in Uganda and present-day 

Tanzania. Sporadic cases were reported in humans from the 1950s through the end of the 

twentieth century in Africa and Asia [3]. In 2007, the first major outbreak of ZIKV occurred 

on Yap Island, Federated States of Micronesia [16]. Five years later, genetic sequences of 

ZIKV strains isolated from various countries were analyzed. The resulting phylogenetic trees 

uncovered two main lineages (African and Asian) [17]. Between 2013 and 2014, a 

neurological condition known as Guillain-Barré syndrome (GBS) was linked to ZIKV during an 

outbreak in French Polynesia [3]. In May 2015, the first cases of ZVD were reported in Brazil. 

However, genetic analyses have suggested that the virus may have been introduced as early 

as 2013 and that the Asian lineage was responsible [18].  

In October 2015, Brazil reported an association between ZIKV infection during pregnancy 

and microcephaly [3]. Microcephaly is a birth defect characterized by head size that is 

smaller than expected based on age and sex (Figure 1.2). Head size is related to underlying 

brain size in infants diagnosed with microcephaly. The health consequences of small head 

size may include seizures, issues with vision or hearing, and developmental disabilities [19]. 

Cases of microcephaly were also identified retrospectively following the outbreak in French 

Polynesia [20]. Microcephaly is now recognized as a feature of congenital Zika syndrome 

(CZS), a pattern of birth defects found among fetuses and newborns of ZIKV-infected 

mothers [19].  
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Figure 1.2 Microcephaly and measuring head circumference in newborns. Reproduced from [19]. 
 

From Brazil, ZIKV spread widely throughout Latin America and the Caribbean, and in 

February 2016, the World Health Organization (WHO) declared the cluster of microcephaly 

and other neurological complications a Public Health Emergency of International Concern 

[21]. By January 2018, 583,451 confirmed and suspected cases of ZVD had been reported in 

the Americas, of which 223,477 were confirmed cases [22]. However, these numbers are 

likely underreported due in part to the high rate of asymptomatic infections, and modeling 

studies have suggested that ZIKV continued to spread in the region until the number of 

susceptible individuals declined sufficiently for herd immunity to be reached [23].  

As of February 2020, 91 countries and territories were listed as having current or previous 

ZIKV transmission in all WHO regions [24]. 

1.2	Chikungunya	

CHIKV is a single-stranded RNA virus that is spread by several species of mosquitoes [25]. 

The virus causes chikungunya fever (CF) and belongs to the genus Alphavirus which also 

includes Eastern equine encephalitis virus, Western equine encephalitis virus, Madariaga 

virus, Ross River virus, Sindbis virus, Mayaro virus (MAYV), and O’nyong-nyong virus. As 

their names imply, some of these viruses cause encephalitis in humans which can be fatal 

[26]. Most commonly, alphaviruses manifest as a febrile disease accompanied by severe 

pain in one or more joints. Although alphaviruses have been isolated from every continent 
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except Antarctica, individual viruses in this genus tend to have a more limited geographical 

distribution [26]. 

Similar to ZIKV, CHIKV is maintained in enzootic and epidemic transmission cycles. In Asia 

and the Americas, Ae. aegypti and Ae. albopictus are the principal vectors in the epidemic 

cycle (Figure 1.3). Enzootic CHIKV is present in Africa and is not well understood. 

Transmission is likely maintained by several species of mosquitoes, including Ae. africanus 

and Ae. furcifer [27]. Non-human primates may act as amplification hosts [28] with other 

animals such as rodents, bats, birds, and reptiles serving as reservoir hosts [29-32].   

 

Figure 1.3 An Aedes albopictus mosquito. Reproduced from [8]. 
 

Unlike ZIKV, which is named after a place, chikungunya is a descriptive word. From the 

Makonde language, “chikungunya” can be roughly translated as the “disease that bends up 

the joints” [33]. The name refers to the clinical presentation of CF, which includes sudden 

onset of fever followed by crippling joint pain, headache, muscle aches, and rash.  

Although symptoms of the acute infection typically subside in a week, some patients 

progress to chronic joint pain which can last for weeks or months [25]. Previously healthy 

individuals have experienced cardiovascular disorders, such as arrythmias, myocarditis, and 

myocardial infarction, as well as neurological disorders, including encephalitis and 

meningoencephalitis, following CHIKV infection [34]. These complications are rare. 

Nevertheless, young children and the elderly, especially those with underlying medical 
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conditions, are at high risk of developing severe disease [25]. In contrast to ZIKV, 75%-97% 

of persons infected by CHIKV exhibit symptoms [35].  

CHIKV infection can be confirmed through viral culture, molecular assays, or serological 

assays, and a combination of the latter two approaches is most commonly used. As with 

ZIKV, the interpretation of serological assays for CHIKV is problematic due to cross-reactivity 

with other alphaviruses, including MAYV and O’nyong-nyong virus [36].  

Although there are no licensed drugs to treat or prevent CHIKV infection [37], several 

vaccine candidates are currently under investigation [38]. As of April 2020, three CHIKV 

vaccines had completed phase 2 clinical trials [39]. In September 2020, Valneva became the 

first company to initiate a phase 3 clinical trial of a CHIKV vaccine [40]. Recruitment of over 

4,000 adults across the United States of America (USA) was completed in April 2021 [41]. 

Positive results from the trial would be expected to support the licensure of the live-

attenuated, single dose vaccine. The target population will include travelers, military 

personnel, and people living in endemic regions [40].  

At least four lineages of CHIKV have been proposed in the literature: Indian Ocean, East 

Central and South African (ECSA), Asian Urban, and West African. In 2019, a phylogenetic 

analysis incorporating new virus isolates suggested that the ECSA lineage should be further 

divided into Eastern African, South American, Middle African, and African/Asian lineages 

and that the Asian Urban lineage should be further divided into Asian Urban and American 

lineages [42]. 

The first CHIKV outbreak may have occurred as early as the seventeenth century in Cairo, 

Egypt [43]. Due to non-specific symptoms and lack of laboratory-based diagnostic tools, 

many historical CHIKV outbreaks, including the 1827-1828 outbreaks in the West Indies and 

southern USA, were classified under the umbrella of dengue-like syndromes [43, 44].  

In 1952, CHIKV was first isolated during an outbreak in present-day Tanzania [25]. Over the 

next several decades, it caused large epidemics throughout Africa and Asia as well as islands 

in the Indian Ocean [45]. In 2006, India experienced an outbreak of CHIKV with nearly 1.4 

million cases; although no attributable deaths were officially reported, one study estimated 

nearly 3,000 excess deaths in the city of Ahmedabad alone [46]. CHIKV outbreaks have also 

occurred in Europe, including a 2007 outbreak in Italy with 205 cases and one death [47].  
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CHIKV returned to the Caribbean in December 2013 with local transmission first reported in 

St. Martin. The virus belonged to the Asian lineage and was likely imported from Southeast 

Asia or Oceania [27]. Within a year over one million cases were reported in the region, along 

with severe cases and deaths [37]. By the end of 2017, 2,225,014 suspected cases of CF had 

been reported in the Americas, including 338,963 confirmed cases [48]. 

The expansion of CHIKV into new territories over the last few decades has been attributed 

to adaptive mutations in the virus that improved transmission by Ae. albopictus mosquitoes 

[25]. According to a recent modeling study, 215 countries have potentially suitable habitat 

for Ae. aegypti and/or Ae. albopictus mosquitoes (Figure 1.4) [49]. The range of these 

mosquitoes is increasing, and this trend is predicted to continue through at least 2050 as a 

result of urbanization and climate change [50]. 

As of October 2020, CHIKV cases had been reported in 115 countries and territories in all 

WHO regions [51].  

 

Figure 1.4 Predicted habitat suitability of Aedes aegypti and Aedes albopictus. Reproduced from 
[49]. 
 

1.3	Colombia	

Colombia is located in the northwest corner of South America, where it borders Ecuador, 

Peru, Panama, Brazil, and Venezuela (Figure 1.5) [52]. The climate is tropical along the coast 
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and cooler at high elevations. The Andes Mountains pass through the southwest corner and 

cross diagonally through the center of the country. The elevation of Colombia varies 

considerably, from sea level at the Pacific Ocean to 5,730 meters above sea level at Pico 

Cristobal Colon [52]. About half of the country’s population of nearly 48 million lives in areas 

of high elevation [53]. Seventy-seven percent of Colombians reside in urban areas, and the 

three largest cities are Bogotá (the capital), Medellín, and Cali [52]. The country is organized 

into 32 departments (administrative level 1) and 1,122 municipalities (or cities, 

administrative level 2) [54]. The Archipelago of San Andrés, Providencia and Santa Catalina, 

commonly referred to as San Andrés and Providencia, is the only department that is not 

attached to the mainland. The islands are located in the Caribbean Sea, 645 km northwest 

of Colombia.   

 

Figure 1.5 Terrain maps of Colombia. (A) Colombia’s location in the Americas. (B) A close-up map 
showing the major cities. Both maps were made in R using ggmap (version 3.0.0) with data from 
Google [55]. 
 

Civil war and armed conflict have been ongoing in Colombia for over 50 years, resulting in at 

least 260,000 deaths, tens of thousands of kidnappings, and high levels of population 

displacement [56]. In 2016, the government signed a historic peace deal with the country’s 

largest armed group, the Revolutionary Armed Forces of Colombia, formally ending the 

A B
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conflict. Despite the agreement, other armed groups such as the National Liberation Army 

continue to operate in the country [57]. Natural disasters, including earthquakes, landslides, 

and floods, have also contributed to internal displacement. At the end of 2019, an 

estimated 5.6 million Colombians were internally displaced [57], with women, children, 

adolescents under 14, and ethnic minorities being the groups most affected [58].  

Since 1991, healthcare in Colombia has been a fundamental right that is protected by the 

constitution [59]. The country’s healthcare system, known as the System of Comprehensive 

Social Security in Health (SGSSS), is composed of two main parts, the contributory regime 

and the subsidized regime. The contributory regime applies to workers, whereas the 

subsidized regime applies to those who cannot afford to pay [58]. Special regimes apply for 

other groups, such as teachers and the military. Membership in the SGSSS is mandatory, and 

over half of Colombians are subsidized by the government. By 2016, healthcare coverage in 

Colombia reached about 96% [59]. Healthcare delivery is performed by institutional health 

service providers, who can be either public or private [58]. These providers are contracted 

by the insurers.  

Economic inequality is rife in Colombia. The Gini index, which is based on primary household 

survey data, measures income inequality among individuals or households within countries. 

It ranges from 0 to 100 with a value of 0 meaning income is distributed equally among the 

population and 100 meaning one person earns all of the income in the country. According to 

the World Bank, Colombia’s estimated Gini index of 51.3 in 2019 was the 12th highest (most 

unequal) out of 164 countries [60]. Income inequality is associated with worse health 

outcomes at the population level, and evidence suggests that the relationship may even 

meet epidemiological criteria for causality [61].   

There is a high risk of major infectious diseases in Colombia, including bacterial diarrhea 

from food or water as well as vector-borne diseases [52]. Each year, Colombia endures 

DENV epidemics caused by one or more of the four known viral serotypes. Malaria 

transmission is also recorded annually, with epidemic cycles of two to seven years [58]. In 

addition to infectious diseases, Colombia is experiencing a “double burden” of non-

communicable diseases due to demographic changes that have occurred over the last 

several decades. Declines in fertility and population growth rates, as well as increases in the 
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average life expectancy at birth, have begun to shift long-term patterns in morbidity and 

mortality [62]. This shift, whereby chronic diseases such as cardiovascular disease and 

cancer replace infectious diseases as the primary causes of death and disability, is also 

known as the epidemiological transition and is occurring in many low- and middle-income 

countries across the developing world.  

1.4	Public	health	surveillance	

Public health surveillance is defined as “the ongoing, systematic collection, analysis, and 

interpretation of health-related data essential to planning, implementation, and evaluation 

of public health practice, closely integrated with the timely dissemination of these data to 

those responsible for prevention and control” [63]. The goal of these activities is to provide 

actionable information to guide public health decisions. Disease prevention, program 

planning and management, health promotion, quality improvement, and resource allocation 

are all areas that can be informed by public health surveillance [64].  

The practice of gathering and utilizing morbidity and mortality data to improve population 

health has existed for hundreds of years in high-income countries [65]. One of the earliest 

examples of surveillance was for plague in the seventeenth century. The number of burials 

and causes of death for the City of London and surrounding areas were collected, analyzed, 

and published in the weekly Bills of Mortality to track the course of the epidemic [65]. In the 

nineteenth century, surveillance systems were put in place to monitor smallpox, influenza, 

and cholera in the United Kingdom (UK) [66]. The adoption of the International Classification 

of Diseases (ICD) around the turn of the twentieth century represented a major 

development in public health surveillance. ICD established an international standard for 

disease reporting, allowing disease trends to be compared across time and between 

countries [67].    

WHO’s legally-binding International Health Regulations require 196 countries to maintain 

national systems for public health surveillance and response [68]. The systematic 

monitoring of infectious diseases is especially important for events that may constitute 

Public Health Emergencies of International Concern, such as the ZIKV epidemic in the 

Americas and the COVID-19 pandemic. For some countries, the establishment and 

maintenance of surveillance systems can be accomplished through legislation [63, 69]. 
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Ideally, surveillance activities would also be coordinated at the regional level through 

intergovernmental agreements and the WHO’s regional offices [70].  

There are two main types of public health surveillance, passive and active [63]. Passive 

surveillance relies on healthcare providers to regularly report notifiable conditions to public 

health authorities. A notifiable infectious disease is one that must be reported in a timely 

manner in order to prevent and control the disease. Examples include anthrax, botulism, 

human immunodeficiency virus (HIV), rabies, and Ebola [71]. Passive surveillance is 

inexpensive but may result in incomplete data [72]. In contrast, active surveillance involves 

public health authorities contacting healthcare providers to request reports for specific 

health conditions. This approach is more costly than passive surveillance but ensures more 

complete reporting [63]. In addition to surveillance systems for human diseases, there are 

also surveillance systems for plant and animal diseases [73].  

Figure 1.6 shows a flow chart of a traditional surveillance system for a health condition in 

humans [74]. The process starts when a person experiences a health event of interest and 

seeks medical attention. Healthcare providers then use clinical symptoms and/or laboratory 

tests to confirm a diagnosis. They may also ask the patient about risk factors, such as 

international travel or exposure to sick people or animals [69]. Next, healthcare providers 

are responsible for reporting the case to the surveillance system and notifying the 

appropriate health jurisdiction. The lowest level of jurisdiction is typically notified first; 

however, there may be exceptions for diseases that pose a risk to national security [75, 76]. 

The data users are in charge of managing, cleaning, and storing data, as well as analyzing 

and interpreting it. Maintaining patient confidentiality is essential at this step and 

throughout the reporting process. Patient data can be protected by assigning unique ID 

numbers to each case and only sharing anonymized or aggregated data for legitimate 

research purposes [77]. Finally, information from the data users and reporting bodies feeds 

back to the general public and policymakers.   

Data generated from surveillance systems are used to describe the distribution of health 

conditions in a population and are analyzed in terms of person, place, and time [65]. Across 

time, long-term trends, cyclic trends, seasonal trends, and epidemic occurrences should be 

considered [65]. The analysis of surveillance data by demographic characteristics (“person”) 
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can help identify risk groups. While datasets categorized by sex and age are most common, 

other variables, such as socioeconomic status, race/ethnicity, occupation, risk factors, and 

hospitalization, may also be available [65]. Geographical analysis can identify areas where 

disease is increasing or decreasing. In doing so, the use of rates is imperative to adjust for 

the effects of population density on disease incidence [65].  

Surveillance data are often presented in tables, graphs, charts, and maps. Statistical tests 

may be used to determine whether trends are significant [72]. In addition to descriptive 

epidemiological methods, more complex mathematical and statistical models are 

increasingly employed. These new methods are possible in part due to the availability of 

new data streams and tools, including electronic health records, medical claims data, and 

digital disease surveillance [66, 78].    

Ideally, surveillance systems are representative of the population, timely, flexible, useful, 

and cost effective [63, 65]. They should be evaluated on a regular basis to ensure their 

objectives are being met and sources of error and delays are minimized [65].  

In Colombia, the national population-based surveillance system, known as Sivigila, is 

operated by the Instituto Nacional de Salud (National Institute of Health, INS). Individual 

notifications of events of public health interest, including conditions with infectious, non-

communicable, and environmental etiologies, have been reported to Sivigila since 2007 

[79].  

As mentioned in section 1.3, insurers contract with specific healthcare institutions in the 

Colombian health system. As a result, individuals may have to travel long distances for 

treatment. This means that Colombians living in rural areas with limited options for 

transportation may seek healthcare less frequently compared to those living in large, urban 

cities, potentially biasing the surveillance data.  
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Figure 1.6 Flow chart of a traditional surveillance system. Adapted from [74]. 
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1.5	Models	in	infectious	disease	epidemiology	

Models are mathematical tools used to describe the behavior of systems or phenomena. 

We rely on information from models for many aspects of everyday life, including weather 

forecasts and trip or commute planning. Models are also used to predict the outcome of 

elections and stock market prices as well as study linguistics [80] and music [81]. 

Mathematical models are expressed using mathematical concepts or language, which allows 

the objects under study to be quantified and facilitates rigorous analysis [82]. 

Models range in complexity from simple “toy” models to highly complex models. The most 

complicated models may be developed over a period of years by teams of experts. The level 

of complexity for a particular problem depends on three main factors: (i) the precision 

required, (ii) available data, and (iii) how quickly the results are needed [83]. There is an 

adage that all models are wrong, but some are useful. Indeed, building a model involves 

tradeoffs between accuracy, transparency, and flexibility [83]. Accuracy refers to a model’s 

ability to reproduce observed data and predict future dynamics. Transparency means to 

what extent the model components can be understood, and flexibility describes how easily 

the model can be adapted to different situations.  

Prediction and understanding are two main purposes of models. While accuracy is 

considered important for predictive models, transparency is paramount for increasing 

understanding [83]. Predictive models can be used to identify epidemics early and guide 

policy decisions. Models can also explain how an infectious disease spreads in a population 

as well as reveal gaps in knowledge. Although all models have limitations, good models are 

only as complicated as they need to be and ideally can be fully parameterized from available 

data [83].  

Several different model types are often encountered in infectious disease epidemiology. In 

general, they can be classified into stochastic and deterministic. Stochastic models capture 

the randomness associated with infectious processes, and a different result is obtained each 

time the model is run. In contrast, deterministic models represent the expected behavior on 

average and always produce the same result [82]. Deterministic models are more popular in 

the literature due to their simplicity and minimal computational requirements, yet 
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stochastic models are better suited for studying outbreaks and transmission of infectious 

diseases in small populations [82].  

Examples of models used in infectious disease epidemiology include simple epidemic 

models, agent-based models, network models, spatial models, and multi-pathogen/multi-

host models [83]. All of these models must account for changes in the infection status of 

individuals in the population but differ in how the population is represented and how 

individuals interact within the population [82]. In compartmental models, such as the 

susceptible-infected-recovered (SIR) model, the population is categorized by infection 

status, and the numbers in each group are tracked over time (Figure 1.7). Agent-based 

models, conversely, represent each person as an individual and can incorporate individual-

level characteristics and behaviors [82].    

 

 

 

 

Figure 1.7 Susceptible-infected-recovered (SIR) model. The population is divided into three 
compartments based on whether individuals are susceptible to infection, are infected and infectious, 
or have recovered from infection and are therefore immune. Individuals become infected at the rate 
of b and move from the box on the left-hand side to the middle box. Infected individuals recover at a 
rate determined by g, moving from the middle box to the box on the right-hand side. 
 

1.6	Model	fitting	

1.6.1	 Classical	and	Bayesian	inference	

Statistical inference is a framework which can be used to test beliefs about the world 

against data [84]. Beliefs are represented by models of probability. The models are 

probabilistic due to incomplete understanding of a system’s complexity [84].  

There are two main approaches to statistical inference, classical (or “frequentist”) and 

Bayesian. In classical statistics, events occur according to probabilities. These probabilities 

are seen as the long-term frequencies with which a particular result would be obtained in an 

infinite number of identical experiments [84]. In Bayesian statistics, on the other hand, 
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probabilities are used to convey subjective beliefs. Intuitively, these beliefs can be revised 

when new data become available [84]. The goal of both classical and Bayesian statistics is to 

estimate parameters, or unknown quantities of interest.   

In some situations, classical and Bayesian analyses can produce nearly identical results. 

However, there are some problems that are more suited to one approach over the other. 

Classical inference involves summarizing data [85]. It should produce estimates that are 

correct on average (unbiased) with the true parameter values covered by confidence 

intervals (CIs) 95% of the time. Weaknesses of this approach become apparent when 

applied to small studies and data that are indirect or highly variable [85].   

Bayesian inference is capable of much more than simply summarizing data. Some claim that 

this approach gives the best predictions about future outcomes and about the results of 

future experiments [84]. Compared to confidence intervals, credible intervals (CrI) are easier 

to interpret. Bayesian statistics may also be more appropriate for fitting complex models. A 

controversial aspect of Bayesian statistics is that prior information must be specified [85]. 

Bayesian statistics will be used throughout this thesis. 

1.6.2	 Bayesian	statistics	

Bayesian inference begins with a probabilistic description of beliefs, otherwise known as a 

prior distribution. After the data are collected, the prior distribution and the data are 

combined in a model. The result is called the posterior distribution, which is used to test 

hypotheses. Parameters are estimated during this process [84]. 

Bayes’ rule provides the basis for updating beliefs about a parameter or model structure in 

the context of new data. It is used to estimate a probability distribution for parameters after 

the sample of data is observed [84]. The rule is named for Thomas Bayes, an English 

clergyman who developed a mathematical theory about cause and effect in the eighteenth 

century. Bayes never published these ideas, but after he died, the work was rediscovered, 

corrected, and published by the Welsh minister Richard Price. Additional contributions from 

French mathematician Pierre Simon Laplace led to the modern version of Bayes’ rule that is 

used today [84]. 

Bayes’ rule is written as, 
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!(#|%&'&) = !(%&'&|#) × !(#)
!(%&'&) , 

where # represents the parameters and ! is a probability distribution [84]. In the numerator 

on the right-hand side of the equation, !(%&'&|#)	is the likelihood, which is the probability 

of generating the data if the parameters in the model were equal to #.	The term next to the 

likelihood in the numerator is !(#), the prior distribution of #. It is a probability distribution 

which expresses the beliefs about the model parameters before the data are considered. 

The term !(%&'&)	in the denominator is the probability of obtaining the data if a particular 

model and prior distribution are assumed. Finally, !(#|%&'&) on the left-hand side of the 

equation is the posterior probability distribution, which is the probability of obtaining the 

model parameters given the data. The posterior distribution is used for predictions and 

model testing [84].  

1.6.3	 MCMC	

Markov chain Monte Carlo (MCMC) methods consist of algorithms that are used to estimate 

parameters of complex models by sampling from a probability distribution. Several different 

MCMC algorithms have been developed, the most popular of which include Gibbs, 

Metropolis-Hastings, and Hamiltonian [84]. Although MCMC is most often associated with 

Bayesian statistics, it can also be used in classical statistics [86]. “Monte Carlo,” as in the 

famed Monegasque casino [84], refers to the randomness of the algorithms. Markov chains 

are named after Russian mathematician Andrey Markov, who researched stochastic 

processes in the late 1800s [84].  

The role of the Markov chain in MCMC is to generate the random samples [86]. It does this 

by exploring all of the possible parameter values via a directed random walk through the 

parameter space. The random walk is “directed” because some values are more likely to be 

chosen than others [86]. Parameter values are sampled in a way that is proportional to their 

probability, which is contingent on the data and, if the analysis is Bayesian, the prior 

distribution. If there is more statistical support for a proposed parameter, it will be 

“accepted.” Otherwise, it will be “rejected” and the current value in the chain will be carried 

through to the next iteration. The posterior distributions of the parameters are the end 

result of this process [86].  
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To initiate an MCMC, the user must specify (i) a starting point for each of the parameters, 

(ii) the length of the Markov chains (number of iterations), (iii) proposal distributions for the 

parameters, and (iv) standard deviations for the proposal distributions (the size of the jump 

between the current and proposed parameter values).  

The starting points are usually chosen at random. Consequently, they should not be used to 

summarize the posterior distribution and are discarded, along with the samples at the 

beginning of the Markov chain. This period is called the “burn-in” and occurs during the 

initial phases of parameter space exploration. Both the number of iterations and the burn-in 

are often determined through trial and error as there are no fixed rules [86].  

The distribution for the likelihood function defines the parameters in the model and should 

reflect the model assumptions. Some typical likelihood distributions include Bernoulli, 

binomial, Poisson, negative-binomial, and gamma [84].  

In a similar way, prior distributions describe how the parameters behave in the likelihood 

function. Whether the parameters are constrained or unconstrained must be considered 

when choosing a prior distribution. An unconstrained parameter can be any real number, 

whereas a constrained parameter may be limited to only non-negative values or between 

certain bounds, such as a proportion [84].  

Examples of typical prior distributions include uniform, normal, Student-t, Cauchy, and 

gamma. A uniform distribution is considered uninformative because it assumes all possible 

values of the parameter are equally likely. This means that the shape of the posterior 

distribution is completely determined by the likelihood [84].   

After performing MCMC, the user needs to assess model convergence, which is achieved 

when the posterior distribution converges at its final distribution. To this end, the following 

visual diagnostics are routinely evaluated: trace plots, correlation plots, and density plots.  

Trace plots show the magnitude of the posterior samples on the y-axis for each iteration of 

the MCMC procedure (x-axis). When the chain finds the stationary distribution of samples, 

subsequent samples will seem to be randomly drawn from around the same height of the y-

axis [86]. The result looks like a fuzzy caterpillar.  
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There are two types of correlation plots. Autocorrelation plots show dependence in the 

chain of samples (when the current value in the chain is correlated with the previous value). 

Lower autocorrelation is preferred because it means that the Markov chain is closer to 

generating independent samples [84]. The second type of correlation plot shows the 

correlation between pairs of parameter values. Ideally, the points on these scatterplots 

should be randomly distributed, and there should not be high correlation or any strange 

patterns. 

Density plots show the distribution of the sampled parameter values. They resemble 

smoothed histograms. As with correlation plots, strange shapes can be a sign of problems 

with model convergence. Density plots can also help visualize the amount of uncertainty 

around the parameter values; narrow plots are indicative of less uncertainty, whereas wide 

plots represent greater uncertainty.   

Another typical check for model convergence involves running multiple chains from 

different starting points [86]. If the chains do not arrive at the same posterior distribution, 

then the model did not converge.   

The acceptance rate, which is the number of times that a parameter is accepted over the 

total number of iterations, should also be calculated for each parameter. Numerical studies 

have shown that asymptotic acceptance rates of about 0.44 and 0.23 lead to optimal 

convergence for one-dimensional and multi-dimensional models, respectively [87, 88]. The 

target acceptance rate for a parameter can be achieved by tinkering with the standard 

deviation of the proposal distribution. 

Once model diagnostics are completed, the fit of the model to the data should be 

evaluated. The process of checking model fit is also known as posterior predictive checks in 

Bayesian statistics [84]. Posterior predictive checks involve using the posterior distribution 

to generate samples from the posterior predictive distribution, which is defined as the 

probability distribution over possible values of future data. The posterior predictive 

distribution is used to generate simulated data samples, which are compared to the 

observed data. Graphical visualizations are typically used for the comparisons. If key aspects 

of the observed data are captured by the simulated data, then the model is a good fit [84].         
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In addition to posterior predictive checks, there are several ways to choose between 

different Bayesian models, including the Akaike information criterion (AIC), deviance 

information criterion (DIC), Widely Applicable Information Criterion, and leave-one-out 

cross-validation [84].  

Finally, all models rely on assumptions which should be checked through sensitivity 

analyses. Sensitivity analyses evaluate whether different assumptions change a model’s 

conclusions in meaningful ways. They are particularly important when data are few or there 

is uncertainty about the choice of model [84]. Common methods of conducting sensitivity 

analyses include repeating the analysis with different prior distributions and considering 

different classes of likelihoods.    

2	Motivation	

Colombia was one of the countries most affected by the ZIKV and CHIKV epidemics in the 

Americas [22, 48]. Between June 2014 and July 2016, Colombia reported 412,915 suspected 

and confirmed CF cases (INS data). This number included a total of 85 deaths by the end of 

2017 [48], but deaths were likely underreported. Although excess mortality due to CHIKV 

has not yet been estimated for Colombia [89], studies in Puerto Rico and northeastern Brazil 

estimated excess deaths as 42 and 60 times greater, respectively, than deaths identified 

through official surveillance systems during the recent epidemics [90, 91].  

There is increasing evidence of long-term health effects following infection with CHIKV. One 

study found about one-fourth of 485 patients with serologically confirmed CHIKV infection 

and joint pain in Colombia continued to experience joint pain after 20 months of follow-up 

[92]. Medical care, loss of productivity, and absenteeism from work and school contributed 

to substantial economic costs. One study estimated the cost per CF case in Colombia at 

$152.90 (interquartile range $101.00 - $539.60) with higher costs for pediatric patients 

compared to adults. The total cost of the CHIKV epidemic in Colombia was estimated at 

about $67 million [93]. Notably, impacts on tourism were not factored into the analysis, and 

therefore the actual cost of the epidemic could have been much higher. 

From August 2015 to June 2017, Colombia reported 106,033 suspected and confirmed ZVD 

cases (INS data). By early 2018, 248 cases of confirmed congenital syndrome associated with 
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ZIKV infection had been reported to the Pan American Health Organization (PAHO) [22]. In 

addition, 418 cases of neurological complications among suspected or confirmed ZVD cases 

had been identified (INS data).  

The costs associated with these complications are staggering. A United Nations 

Development Program report estimated that the lifetime cost per case of ZIKV-related 

microcephaly in Colombia was $690,000, and the lifetime cost per case of GBS was 

estimated at $176,000 [94]. Estimated short-term costs associated with diagnosing and 

treating patients, lost productivity, declines in tourism, and annualized costs of 

microcephaly and GBS ranged from about $456 million in the baseline scenario to about 

$1.4 billion in the high (worst-case) scenario for three years of the epidemic in Colombia 

[94].  

3	Data	and	ethics	

This thesis relies on four datasets from Colombia’s INS which were shared through a 

Memorandum of Understanding with Imperial College London. The technical and ethical 

endorsement of the study was provided by the Comité de Ética y de Metodologías de 

Investigación of the INS (project number 35-2017).  

3.1	ZIKV,	CHIKV,	and	DENV	surveillance	datasets	

Three of the datasets include anonymized line lists on ZVD, CF, and dengue fever (DF) 

suspected and laboratory-confirmed cases reported to Sivigila between 2010 and 2017. 

Event codes included 895 for suspected or confirmed ZVD, 725 for neurological syndrome 

probably associated with ZIKV, 549 for extreme maternal morbidity associated with ZIKV, 

910 for suspected or confirmed CF, 210 for DF, 220 for severe dengue, and 580 for death 

due to DENV. Suspected cases included individuals who were reported to Sivigila with 

symptoms of ZVD, CF, or DF. Laboratory-confirmed cases were patients who had clinical 

symptoms and tested positive for ZIKV, CHIKV, or DENV on RT-PCR assay [95]. Information 

related to public health events in Colombia is generated from the local levels by health 

service providers. There are about 14,000 institutional, municipal, departmental, or national 

reporting bodies in the country. In 2014, CF was added to the list of notifiable conditions, 
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and ZVD was added the following year. Each week these data are aggregated and published 

[95]. 

The location used in this thesis corresponds to the location of likely infection, which was 

decided by the clinician who reported the case. The location of likely infection is preferred 

over residence because it accounts for human movements to areas with higher risk of 

arbovirus transmission. Information on 106,033 ZVD, 412,915 CF, and 647,665 DF cases was 

available at administrative level 1 (departments) after removing cases that had Bogotá 

recorded as the location of likely infection (extremely unlikely, due to high altitude and low 

temperature) or missing.  

Data were further aggregated by week based on either date of symptom onset or date of 

notification. There were 365 weeks of DENV data, from the week ending January 3, 2010 to 

that ending December 25, 2016. For CHIKV, data encompassed a 110-week interval, from 

the week ending June 7, 2014 to that ending July 9, 2016, and for ZIKV, a 97-week interval, 

from the week ending August 15, 2015 to that ending June 17, 2017. Figure 1.8 shows the 

epidemiological curves for ZVD, CF, and DF at the country level.    
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Figure 1.8 Weekly reported cases of CF, DF, and ZVD in Colombia, January 2010-June 2017. 

3.2	ZIKV-associated	neurological	complications	dataset	

The fourth dataset consists of an anonymized line list on 418 patients with neurological 

complications and recent history of febrile illness compatible with ZVD. It includes those 

with GBS as well as similar conditions such as myelitis and meningoencephalitis but excludes 

cases with microcephaly and other congenital defects. Four cases in this dataset were 

laboratory-confirmed for ZIKV infection by RT-PCR. Although CHIKV has also been associated 

with neurological complications [34], a comparable dataset for patients with neurological 

complications and history of CF from Colombia was not available. 

The number of cases with neurological complications here is a few hundred smaller than 

previously published data from Colombia [96, 97]. Throughout the epidemic, cases of 

neurological complications associated with previous ZIKV infection were reported in the INS 

Weekly Epidemiological Bulletin. This information was made publicly available with the 

caveat that cumulative case numbers could change following a verification process [97].  
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Medical records of patients with neurological complications were reviewed using case 

definitions from the Brighton Collaboration Working Group for GBS, myelitis, encephalitis, 

and acute disseminated encephalomyelitis [98, 99]. With the goal of improving 

comparability of vaccine safety data, the Brighton Collaboration developed standard case 

definitions and guidelines for neurologic adverse events following immunization. The 

criteria could be applied to a range of settings, including across geographical regions as well 

as different levels of healthcare quality and access. Case definitions are organized according 

to three levels of diagnostic certainty, from Level 1 (most certain) to Level 3 (least certain) 

[100]. Patients that did not meet Brighton case definition criteria 1-3 were removed from 

the dataset.  

Both date of symptom onset of neurological complications and date of notification were 

available for all cases in the neurological complications dataset. Dates corresponding to 

symptom onset spanned 122 weeks, from the week ending July 4, 2015 to that ending 

October 28, 2017 (epidemiological week 26 of 2015 to epidemiological week 43 of 2017). 

Notification dates spanned 108 weeks, from the week ending October 17, 2015 to that 

ending November 4, 2017 (epidemiological week 41 of 2015 to epidemiological week 44 of 

2017). Data were aggregated by week.  

4	Objectives	

The aim of this thesis is to improve understanding of the ZIKV and CHIKV epidemics in 

Colombia using surveillance data. This thesis is divided into six chapters which are ordered 

by increasing methodological complexity and spatial resolution. Following this introductory 

chapter, 

1. Chapter 2: biases in surveillance of ZVD were exposed using line list data and a 

dataset on ZIKV-associated neurological complications.  

2. Chapter 3: reporting rates and reproduction numbers of ZIKV and CHIKV were 

analyzed.  

3. Chapter 4: a Bayesian hierarchical model was used to estimate ZIKV attack rates and 

risk of ZIKV-associated neurological complications in capital cities as well as quantify 

biases in the ZIKV surveillance data.  
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4. Chapter 5: a suite of spatial interaction models was used to study the spatial and 

temporal invasion dynamics of the ZIKV and CHIKV epidemics.  

5. Chapter 6: a discussion chapter summarizing the key findings of the thesis and 

directions for future research.
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Chapter	2:	Descriptive	analysis	of	surveillance	data	for	Zika	

virus	disease	and	Zika	virus-associated	neurological	

complications	in	Colombia	

Work in this chapter formed the basis of a manuscript that has been published in PLOS ONE 

[101].  

Abstract	

In this chapter, a descriptive analysis was performed on approximately 106,000 suspected 

and laboratory-confirmed cases of ZVD that were reported during the 2015-2017 epidemic 

in Colombia. A dataset containing patients with neurological complications and recent 

febrile illness compatible with ZVD was also analyzed. Females had higher observed attack 

rates of ZVD than males. Compared to the general population, cases were more likely to be 

reported in young adults (20 to 39 years of age). The observed attack rate of ZVD in 

pregnant females was estimated at 3,120 reported cases per 100,000 population (95% CI: 

3,077-3,164), which was considerably higher than the observed attack rate in both males 

and non-pregnant females. ZVD cases were reported in all 32 departments. Four-hundred 

and eighteen patients suffered from ZIKV-associated neurological complications, of which 

85% were diagnosed with GBS. The median age of ZVD cases with neurological 

complications was 12 years older than that of ZVD cases without neurological complications. 

ZIKV-associated neurological complications increased with age, and the highest observed 

attack rate was reported among individuals aged 75 and older. Even though neurological 

complications and deaths due to ZIKV were rare in this epidemic, better risk communication 

is needed for people living in or traveling to ZIKV-affected areas. 

1	Introduction	

1.1	Background	

From 1952, when cases of ZVD were first reported in humans, until about the last decade, 

ZIKV was thought to cause only mild illness [3]. Following major epidemics in Micronesia, 

French Polynesia, the Caribbean, and Latin America in the 2010s, it became clear that a 

small proportion of individuals infected with ZIKV experience serious disease.  
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GBS is an autoimmune condition with a global annual incidence estimated at 1.1 to 1.8 

cases per 100,000 population [102]. It is typically preceded by a viral or bacterial infection, 

especially Campylobacter jejuni and is the most common cause of non-poliovirus acute 

flaccid paralysis globally [103]. On rare occasions, GBS has also been associated with certain 

vaccines, including vaccines for rabies, tetanus, and influenza [103]. In 2013-2014, an 

unusual number of GBS cases were detected in French Polynesia during the largest 

documented ZIKV outbreak at that time [104]. Since then, evidence of an association 

between ZIKV infection and GBS has continued to increase [105, 106].  

Symptoms of GBS include tingling, numbness, or pain in the limbs as well as limb weakness. 

Most patients with GBS require hospitalization and some require intensive care and 

ventilatory support [107]. Between 3-10% of GBS patients die [108]. Although most patients 

fully recover, some may experience long-term morbidity, including depression and disability 

[109, 110]. Treatment for acute GBS involves the administration of intravenous 

immunoglobulin and plasma exchange [110].  

Research suggests that the risk of GBS tends to be higher for males than females and 

increases with age [103]. According to a meta-analysis that used population-based studies 

of GBS in North America and Europe, the risk ratio (RR) for males versus females was 

estimated at 1.78 (95% CI: 1.36-2.33). The study also found that GBS incidence increased 

20% for each 10-year increase in age [103].  

There is evidence of seasonal variation in GBS with most published studies indicating higher 

incidence during winter (January to March) compared to the other three seasons [111]. 

However, heterogeneity between regions has been noted. According to a meta-analysis, 

greater incidence in winter was found for Western countries (incidence rate ratio, IRR=1.28, 

95% CI: 1.11-1.48), the Far East (IRR=1.20, 95% CI: 1.00-1.44), and the Middle East 

(IRR=1.12, 95% CI: 0.89-1.42), while lower incidence was found for the Indian subcontinent 

(IRR=0.86, 95% CI: 0.66-1.13) and Latin America (IRR=0.75, 95% CI: 0.46-1.24)1 [111]. This 

result could be due to regional differences in the seasonality of infections that trigger GBS. 

 
1Season was defined by the reporting study, or where monthly data were reported, winter: 
January-March, spring: April-June, summer: July-September, autumn: October-December. 
Seasons were inverted for countries in the southern hemisphere. 
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In addition to GBS, ZIKV infection during pregnancy has been associated with CZS in fetuses 

and newborns. CZS is characterized by microcephaly, decreased brain tissue, eye damage, 

limited range of motion in the joints, and excessive muscle tone that restricts movement 

[19]. Most newborns with prenatal exposure to ZIKV do not develop clinical signs of CZS 

[112]. However, cohort studies have shown that children without birth defects who were 

exposed to ZIKV in utero can still experience neurological problems and developmental 

delays during the first two years of life [113, 114]. Infants and children can also become 

infected with ZIKV during the postnatal period through mosquito bites and possibly breast 

milk; however, few studies have evaluated postnatal ZIKV infection prospectively [115].  

In Colombia, surveillance for ZVD began in August 2015. By December 2015, GBS cases and 

other neuroinflammatory disorders began to rise in the country [106]. From the end of 

January to mid-November 2016, the number of reported microcephaly cases in Colombia 

increased fourfold compared to the same time period in 2015 [116].  

1.2	Aims	

The aim of this chapter is to describe epidemiological trends of ZVD and ZIKV-associated 

neurological complications in Colombia. Sex, age, temporal, and geographic trends among 

reported ZVD cases were investigated. Observed attack rates, RRs, and tests for statistical 

significance were estimated for high-risk groups.   

Understanding risk factors for neurological complications could inform prevention efforts 

and improve interpretation of ZIKV surveillance data.    

2	Data	

2.1	Epidemiological	data	

Two main datasets were used in this chapter which were both described in chapter 1: the 

ZIKV line list from Sivigila and the dataset on ZIKV-associated neurological complications. As 

mentioned previously, dates for the ZIKV line list ranged from the week ending August 15, 

2015 to that ending June 17, 2017, which correspond to epidemiological week 32 of 2015 

and epidemiological week 24 of 2017. Similarly, for the neurological complications dataset, 

dates corresponding to symptom onset spanned 122 weeks, from the week ending July 4, 

2015 to that ending October 28, 2017 (epidemiological week 26 of 2015 to epidemiological 
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week 43 of 2017), and notification dates spanned 108 weeks, from the week ending October 

17, 2015 to that ending November 4, 2017 (epidemiological week 41 of 2015 to 

epidemiological week 44 of 2017). The dataset for CF did not have detailed information 

about both sex and age group of cases, and as mentioned in chapter 1, a dataset on CHIKV-

associated neurological complications was not available. Therefore, ZIKV is the main focus of 

this chapter. 

2.2	Demographic	data	

Population projections derived from the 2005 Census were obtained for 2016 from DANE, 

Colombia’s National Administrative Department of Statistics.  

3	Methods	

Observed attack rates rather than infection attack rates were estimated in this chapter. The 

observed attack rate is the number of reported cases divided by the population. In contrast, 

the infection attack rate is the number of infections divided by the population. Observed 

attack rates of ZVD were estimated using DANE population projections for 2016 as the 

denominator. Unless otherwise noted, the observed attack rates of ZIKV-associated 

neurological complications were estimated using reported cases of ZVD as the denominator. 

For observed attack rates by geographic location, the total population was included for each 

reporting area regardless of altitude (except for the capital city of Bogotá, whose population 

was excluded from the department of Cundinamarca). Confidence intervals were calculated 

using the binomial exact function in the R package epitools (version 0.5-10.1). RRs and 95% 

confidence intervals were calculated using the riskratio function in the R package fmsb 

(version 0.7.0).  

In order to estimate the observed attack rate of ZVD by pregnancy status, it was necessary 

to estimate the number of pregnant females and non-pregnant females in Colombia. In 

2017, the Colombian Ministry of Health and Social Protection (MOH) estimated the annual 

number of pregnant females for 2017-2019. The mean estimate of 822,396 for 2017 was 

multiplied by ¾ (females are only pregnant for ¾ of the year on average) to obtain the 

number of pregnant females in the population at any time (616,797). To obtain the number 
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of females who were not pregnant at any time, this number was subtracted from the 

projected total number of females in the population in 2016 (24,678,673, from DANE).   

4	Results	

4.1	ZVD	

4.1.1	 Sex	and	age	trends	

More ZVD cases were reported in females than males each year from 2015-2017 (Table 2.1). 

Overall, females represented two-thirds (66.2%) of reported cases, which differs 

significantly from the general population of Colombia (50.6% female [exact binomial test, p 

< 0.001]). The RR of ZVD in females was nearly two times higher than in males (1.91, 95% CI: 

1.88-1.93). 

The median age of ZVD cases in Colombia was 29 years (range 0 to >100 years). Nearly half 

(49.0%) of cases were reported in individuals between the ages of 20 and 39. Compared to 

the general population, the number of cases reported in this age range was significantly 

different than expected (31.2% [exact binomial test, p < 0.001]). 

Figure 2.1 shows the age distribution of Colombia by sex. In contrast, the age distribution of 

ZVD cases for each sex is shown in Figure 2.2. The observed attack rate of ZVD was 

significantly higher for females compared to males across all age groups except 0-4 years 

and those 80 years and over (Figure 2.3). Among those 15 to 29 years of age, the risk of ZVD 

was about three times higher in females compared to males. The highest RR of female to 

male cases was observed in the 20 to 24-year age group (3.16, 95% CI: 3.04-3.28). 

 
Table 2.1 Number of ZVD cases by sex in Colombia. Epidemiological week 32 of 2015 – 
epidemiological week 24 of 2017. 
 

 Female Male Total 

 N % N % N % 

2015 8,940 63.7 5,085 36.3 14,025 13.2% 
2016 60,494 66.7 30,153 33.3 90,647 85.5% 
2017 738 54.2 623 45.8 1,361 1.3% 
Total 70,172 66.2 35,861 33.8 106,033 100% 
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Figure 2.1 Population of Colombia by age group in 2016. (A) Females and (B) males. 
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Figure 2.2 Frequency of ZVD cases by age group and sex in Colombia. (A) Females and (B) males. 
Epidemiological week 32 of 2015 – epidemiological week 24 of 2017. 
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Figure 2.3 Observed attack rate of ZVD per 100,000 population by age group and sex in Colombia. 

Epidemiological week 32 of 2015 – epidemiological week 24 of 2017. 
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Year’s Day (epidemiological week 52 of 2015) and Easter (epidemiological week 12 of 2016) 

and then sharply increased. This trend is less noticeable for pregnant females. 

 

 

Figure 2.4 Frequency of female ZVD cases by age group and pregnancy status in Colombia. 

Epidemiological week 32 of 2015 – epidemiological week 24 of 2017. 
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Figure 2.5 ZVD over time by sex and pregnancy status in Colombia. (A) Number of cases and (B) 
observed attack rate per 100,000 population. N = 104,3972. Dotted line marks the week preceding 
Easter 2016 (epidemiological week 12). Solid line marks the week preceding New Year’s Day in 2016 
(epidemiological week 52 of 2015). Epidemiological week 32 of 2015 – epidemiological week 24 of 
2017. 
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4.1.3	 Temporal	trends	

Epidemiological curves of ZVD cases are shown for all departments in Figures 2.6-2.7. Most 

departments had one epidemic peak between about January and April of 2016 but some 

appeared to have two (Bolívar and Cundinamarca). Chocó, Guainía, Nariño, Vaupés, and 

Vichada had irregular time series due to small numbers of reported cases. 
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Figure 2.6 ZVD cases over time by department for 16 departments. The remainder are in Figure 2.7. 
Dotted lines mark the week preceding Easter 2016 (epidemiological week 12). Solid lines mark the 
week preceding New Year’s Day in 2016 (epidemiological week 52). Y-axes are different, and x-axes 
are the same. Epidemiological week 32 of 2015 – epidemiological week 24 of 2017. 
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Figure 2.7 Number of ZVD cases over time by department for 16 departments (continued). The 
remainder are in Figure 2.6. Dotted lines mark the week preceding Easter 2016 (epidemiological 
week 12). Solid lines mark the week preceding New Year’s Day in 2016 (epidemiological week 52). Y-
axes are different, and x-axes are the same. Epidemiological week 32 of 2015 – epidemiological 
week 24 of 2017. 
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Figure 2.8 shows the epidemiological curves for ZVD and CF cases. Similar to the trend for 

ZVD, there is a decrease in reported CF cases in the week prior to both New Year’s Day and 

Easter in 2015 followed by a sharp increase.  

 
 

 
 
 

Figure 2.8 Number of cases of CF and ZVD over time in Colombia. Dotted lines mark the weeks 
preceding Easter in 2015 (epidemiological week 13) and 2016 (epidemiological week 12). Solid lines 
mark the weeks preceding New Year’s Day in 2015 (epidemiological week 53 of 2014) and 2016 
(epidemiological week 52 of 2015). Epidemiological week 23 of 2014 – epidemiological week 24 of 
2017. 
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of neurological complications was 44% higher in males than females (RR=1.44, 95% CI: 1.18-

1.75). Among reported ZVD cases, the risk of neurological complications was 174% higher in 

males compared to females (RR=2.74, 95% CI: 2.26-3.33). 

For both sexes, the greatest number of complications was reported in middle-aged groups. 

Observed attack rates of neurological complications per 1,000 cases of ZVD by age and sex 

are shown in Figure 2.12. For both sexes, observed attack rates of neurological 

complications increased with age. Males aged 75 and older had the highest observed attack 

rate but also the most uncertainty, which is reflected in the wide confidence intervals. 
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Figure 2.9 Frequency of ZIKV-associated neurological complications by age group in Colombia. 

 

Figure 2.10 Observed attack rate of ZIKV-associated neurological complications per 100,000 

population by age group in Colombia. 
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Figure 2.11 Frequency of ZIKV-associated neurological complications by age group in Colombia. (A) 
Females and (B) males.  
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Figure 2.12 Observed attack rate of ZIKV-associated neurological complications per 1,000 cases of 

ZVD by age group and sex in Colombia. 
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Although the distribution of neurological complications by sex did not vary across time, 

more cases were consistently reported in males than in females throughout the epidemic 

(Figure 2.14).
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Figure 2.13 Number of cases of ZVD and ZIKV-associated neurological complications over time in 

Colombia. The dotted line marks the week preceding Easter 2016 (epidemiological week 12), and 
the solid line marks the week preceding New Year’s Day in 2016 (epidemiological week 52 of 2015). 
For cases of ZIKV-associated neurological complications, (A) uses dates of symptom onset, whereas 
(B) uses dates of notification. The blue line is the same in both (A) and (B) as symptom onset was not 
available for all ZVD cases. 
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Figure 2.14 Number of ZIKV-associated neurological complications cases by sex and week of 

symptom onset in Colombia. Epidemiological week 26 of 2015 – epidemiological week 43 of 2017.  
 

4.2.3	 Diagnosis	and	final	condition	

The majority of ZIKV-associated neurological complications cases had a diagnosis of GBS 
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respectively (Figure 2.15).  
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Figure 2.15 Final diagnosis for cases of ZIKV-associated neurological complications completed by a 

neurologist. 

 

4.2.4	 Geographic	distribution	

Twenty-eight out of 32 departments in Colombia were reported as the location of likely 

infection for at least one case of ZIKV-associated neurological complications (Figure 2.16). 

The highest number of cases was reported in Atlántico followed by Norte de Santander and 
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followed by Chocó and Atlántico (Table 2.2 and Figure 2.16). However, 24 departments had 

10 cases or fewer, and the estimated attack rates should therefore be interpreted with 

caution. 

At the city level, Barranquilla was reported as the location of likely infection for the highest 

number of ZIKV-associated neurological complications with 80, followed by Cúcuta with 44 

and Cali with 23. Cases were spread out geographically and tended to cluster in large cities 

(Figure 2.17).  
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In contrast, the departments with the highest number of reported ZVD cases included Valle 

del Cauca with 27,712 (26%), followed by Santander with 10,374 (10%) and Norte de 

Santander with 10,361 (10%). The highest observed attack rate of ZVD per 100,000 

population was reported in San Andrés and Providencia (1,489), followed by Casanare 

(1,087) and Norte de Santander (758) (Figure 2.18). 
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Figure 2.16 Maps of ZIKV-associated neurological complications. (A) Map of the number of cases with ZIKV-associated neurological complications by 
department. (B) Map of the observed attack rate of ZIKV-associated neurological complications per 1,000 ZVD cases by department. N = 406 observations 
with non-missing location at department (administrative 1) level. Maps produced from SIG-OT shapefiles [117].  
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Table 2.2 Observed attack rate and 95% confidence intervals of ZIKV-associated neurological 
complications per 1,000 ZVD cases by department. 
 

 
 
 
 
 
  

Department  Observed attack rate of ZIKV-
associated neurological 

complications per 1,000 ZVD 
cases 

95% CI  

Nariño 63.2 23.5 132.4 

Chocó 15.4 0.4 82.8 

Atlántico 15.3 12.6 18.6 

Vichada 12.8 0.3 69.4 

Boyacá 10.9 3.0 27.7 

Antioquia 10.3 6.7 15.1 

Caquetá 7.0 3.0 13.8 

San Andrés & Providencia 7.0 3.0 13.7 

Sucre 6.1 2.9 11.2 

Caldas 6.0 0.7 21.5 

Putumayo 6.0 1.2 17.4 

Norte de Santander 5.9 4.5 7.6 

Amazonas 5.8 0.7 21.0 

Cauca 5.6 0.7 20.2 

Bolívar 5.2 2.5 9.6 

Córdoba 5.1 3.0 8.2 

Huila 3.4 2.2 5.1 

Cesar 3.1 1.0 7.3 

Meta 2.8 1.4 4.8 

Quindío 2.5 0.1 13.6 

Magdalena 2.2 0.9 4.5 

Arauca 2.1 0.6 5.5 

Casanare 1.8 0.7 3.7 

Santander 1.7 1.0 2.7 

Cundinamarca 1.7 0.8 3.2 

Valle del Cauca 1.6 1.2 2.1 

La Guajira 1.4 0.0 7.9 

Tolima 1.3 0.6 2.4 

Guainía 0.0 0.0 231.6 

Vaupés 0.0 0.0 185.3 

Guaviare 0.0 0.0 17.6 

Risaralda 0.0 0.0 2.8 
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Figure 2.17 Map of the number of ZIKV-associated neurological complications cases by city. N = 
398 observations with non-missing location at city (administrative 2) level. The island municipalities 
of San Andrés and Providencia are not shown (San Andrés reported 8 cases, whereas Providencia 
reported 0). Map produced from SIG-OT shapefiles [117].
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Figure 2.18 Maps of ZVD. (A) Map of the number of cases and (B) map of the observed attack rate per 100,000 population. N = 106,033 observations. Maps 
produced from SIG-OT shapefiles [117]. 
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5	Discussion	

This work builds on a preliminary report of ZVD cases in Colombia that also used data from 

the national population-based surveillance system [95]. The earlier report was published 

just after the peak of the epidemic and included 65,726 cases reported between August 9, 

2015 and April 2, 2016. This analysis adds an additional 40,307 cases reported until mid-

June 2017 and data on severe cases with neurological complications, including GBS. 

5.1	ZIKV	

Compared to the general population of Colombia, ZVD cases were more likely to be 

reported in individuals in their 20s and 30s. Several factors can affect the age distribution of 

cases found through epidemic surveillance, including age-related variation in susceptibility, 

reporting bias, pre-existing immunity, the age distribution of the population, and level of 

exposure to infection [118].  

Seroprevalence studies, which test for antibodies indicative of past infection, can be used to 

assess age-related variation in susceptibility. Although at least one such study found a 

positive association between ZIKV infection and age, several studies have found no 

significant association [16, 119-123].  

Based on the timings and origins of ZIKV arriving in the Americas from Southeast Asia and 

the Pacific [18], no immunological protection for ZIKV was assumed at the population level 

prior to this epidemic. If there was pre-existing immunity, lower infection rates would have 

been expected in older age groups that had been exposed in the past assuming long-lasting 

immunity. 

Risk factors for ZIKV infection are poorly understood [120]. On Yap Island, Duffy et al. found 

no behavioral risk factors for ZIKV infection [16]. In contrast, Lozier et al. found higher 

prevalence of ZIKV among those who reported being bitten by mosquitoes at home in 

bivariate analyses, but the association was not statistically significant in multivariable 

analysis [119].  

In this study, females had higher observed attack rates of reported ZVD than males. Case 

ascertainment was likely higher in females of child-bearing age due to concerns about birth 
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defects. However, reporting bias does not explain the elevated risk in females versus males 

between the ages of 45 and 79. This result could be explained by differences in susceptibility 

or exposure. If females in this age range spend more time at home than their male 

counterparts, they might experience higher exposure to Ae. aegypti mosquitoes, which tend 

to live in and around people’s homes in urban areas [124, 125]. The higher observed attack 

rates of ZVD in females are consistent with ZIKV epidemics in other locations such as Brazil, 

Puerto Rico, and Yap Island [16, 119, 126]. Spending more time at home might also increase 

the risk of exposure to mosquito bites and therefore ZIKV infection in young children, which 

could explain the higher incidence of ZVD in the youngest age group (0-4 years) compared 

to older children in this study. 

Reporting of ZVD cases decreased during Christmas/New Year and Easter holidays in 2015-

2016. This trend could be seen at the national and subnational level as well as during the 

CHIKV epidemic. However, the pattern was less discernable for reports of ZVD in pregnant 

females and in those with neurological complications. Changes in the number of patient 

consultations for general practice services on and immediately after public holidays have 

been observed in several countries, including the UK. This has been called the “public 

holiday effect” [127]. In Colombia, where 93% of the population identifies as Christian, 

surveillance for notifiable diseases is likely impacted by religious holidays [52].    

5.2	ZIKV-associated	neurological	complications	

Despite higher observed attack rates of ZVD cases in females compared to males, higher 

observed attack rates of neurological complications were observed in males, a finding which 

is consistent with GBS epidemiology and other studies [128, 129]. 

The median age of ZVD cases with neurological complications was 12 years older than that 

of ZVD cases. Observed attack rates of ZIKV-associated neurological complications increased 

with age, and the highest observed attack rate was reported among individuals aged 75 and 

older. The positive association between age and neurological complications here is also 

consistent with GBS epidemiology [128].  

An unexpected finding from this analysis was that neurological complications peaked before 

ZVD cases. According to a 2016 study of 71 patients in Puerto Rico, the median time 

between onset of ZIKV infection symptoms and GBS was 7 days (range 0-21 days) [105]. 
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Similarly, a 2015-2016 study reported that the median time between onset of ZIKV infection 

symptoms and GBS symptoms was 7 days (interquartile range, 3-10 days) for 66 patients 

from six Colombian hospitals [106]. Given these statistics, neurological complications would 

be expected to peak about one week after ZVD cases; however, the number of reported 

ZIKV-associated neurological complications in this study was small, and a formal correlation 

analysis was not undertaken. As part of future work, an Auto Regressive Integrated Moving 

Average model could be used to determine the reliability of the spatiotemporal association 

between ZVD and neurological complications [130]. The relationship could also be explored 

using another data source such as the Individual Records of Health Services Provision (RIPS). 

RIPS is a national registry of health interventions that was created in 2000. It contains basic 

information such as age, sex, and medical diagnosis for patients treated by public and 

private providers within the Colombian healthcare system [131]. Although RIPS is used most 

commonly for billing services, it can also be used for public health surveillance [132]. The 

number of patients hospitalized with any neurological disease, including GBS, could be 

obtained for 2015-2017 and compared to the trends presented here. 

The most common diagnosis among cases in this dataset was GBS. However, six other 

neurological conditions were also documented, including encephalitis, myelitis, facial 

paralysis, meningitis, meningoencephalitis, and optic neuritis. Although some studies have 

focused exclusively ZIKV-associated GBS [105, 106, 133], others have considered a wider 

range of neurological conditions linked to recent ZIKV infection [134, 135]. Case reports 

have described ZIKV-associated myelitis [136], encephalitis [137, 138], meningoencephalitis 

[139], acute disseminated encephalomyelitis [140], Miller-Fisher syndrome [141], and 

myasthenia gravis [142]. Some of these reports involved fatalities, young people, and 

previously healthy individuals. In addition to patients with ZIKV-associated neurological 

complications and CZS, studies using human and animal models have accumulated broader 

evidence that ZIKV is neurotrophic. The virus targets neuronal cell types, including neural 

progenitor cells and mature neurons, as well as the brain [143]. ZIKV infection of the central 

nervous system has been found in both young and adult animals such as mice and non-

human primates [143].  

Reports of neurological complications associated with ZVD were reported in nearly every 

department and tended to cluster in large cities with better access to healthcare. This 



Page 79 of 391 
 

pattern reflects the widespread dissemination of ZIKV throughout Colombia. The city of 

Barranquilla had the highest number of reported neurological complications. While there 

was a large ZIKV epidemic in Barranquilla, the city was also subjected to more intensive 

surveillance for ZIKV-associated neurological complications compared to other cities [144].    

There is some agreement between locations with the highest number of ZVD cases and 

locations with the highest number of ZIKV-associated neurological complications. However, 

the locations with the highest observed attack rates of ZIKV per 100,000 population and 

locations with the highest observed attack rates of neurological complications per 1,000 

ZVD cases are discordant. This mismatch could be due to randomness associated with 

reporting small numbers of rare events or differences in reporting mild versus severe ZVD 

cases across the country.  

5.3	CHIKV	

Although it was not possible to examine the epidemiological trends of CHIKV in as much 

detail as ZIKV in this analysis, a recent study in Barranquilla, Colombia found that 64.5% of 

1,160 patients who were clinically diagnosed with CHIKV infection during weeks 36 to 52 of 

2014 were female [145]. A statistically significant difference in the distribution of cases by 

sex was found using chi-square test (p < 0.0001). Results also showed a statistically 

significant difference across age groups: 11.1% of patients were children under the age of 

15, 28.7% were 15-29 years of age, 46.1% were 30-59 years of age, and 14.1% were 60 years 

of age or older (chi-square test, p < 0.0001) [145]. The study also identified important 

differences in the patterns of symptoms exhibited by female patients compared to male 

patients with females showing a wider array of symptoms [145]. Based on their findings, the 

authors suggested that females should be considered an at-risk population for CHIKV 

infection.  

Data regarding CHIKV-associated neurological complications in Colombia are scarce. A 2018 

systematic review identified four case studies describing a total of only five cases, three of 

which were perinatally acquired infections [146]. One neonate with congenital CF in Neiva 

was diagnosed with meningoencephalitis [147], along with two newborns in Sincelejo [148]. 

There was also a report of a three-week old infant who developed encephalitis following 
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CHIKV infection in Santander [149] and a report of a 77-year-old woman in Sincelejo with 

laboratory-confirmed CHIKV infection who was later diagnosed with GBS [150].  

5.4	Conclusions	and	limitations	

A strength of this analysis is the quality of the datasets. The ZIKV dataset encompasses the 

entire duration of the epidemic in Colombia, and all individuals in the neurological 

complications dataset were checked against standardized case definitions. Limitations 

include lack of detailed clinical information and lack of laboratory confirmation for most ZVD 

cases. This report does not include neurological complications in newborns. However, a 

recently published report found that out of 5,673 pregnancies with laboratory-confirmed 

ZVD in Colombia, 2% of infants or fetuses had neurological or eye complications [151]. 

Another recent study from Colombia found that nine out of 60 children (15%) with 

laboratory-confirmed ZIKV infection at ages 1-12 months had adverse outcomes on 

neurologic, hearing, or eye examinations at 20-30 months of age. Six of the remaining 47 

children (12.8%) had an alert score in the hearing-language domain [152].  

Another limitation of this analysis is the reliability of the demographic data as the 

population projections for 2016 were based on the 2005 Census. Inaccuracy in these data 

would affect the denominators of the observed attack rates as well as the risk ratios in this 

chapter. As a result, some departments or groups of individuals with certain combinations 

of sex and age may have had higher or lower risk of disease than what was estimated here. 

Other data sources were not considered but could have included WorldPop [153] or DANE’s 

retrospective projections for 2016 based on the 2018 Census [154].  

Neurological complications and deaths due to ZIKV were rare in this epidemic. However, 

more awareness about these risks is needed for people living in or traveling to ZIKV-affected 

areas. While GBS is relatively easy for non-neurologists to identify, variants such as Miller-

Fisher syndrome may not be [141]. Future research should investigate long-term patient 

outcomes as well as the pathophysiology of these conditions, which can improve treatment 

strategies [137]. To fully understand the burden of ZIKV, surveillance should encompass a 

broader spectrum of neurological symptoms of ZVD beyond GBS and microcephaly. 

Surveillance should also focus on young children, considering the neurotropism of the virus 

and its effects on postnatal development.  
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Chapter	3:	Impact	of	climactic	and	socioeconomic	factors	on	

reporting	rates	and	basic	reproduction	numbers	of	Zika	and	

chikungunya	viruses	in	Colombia	

Abstract	

Reporting rates (!s) and basic reproduction numbers (R0s) are key epidemiological 

parameters. In this chapter, both were estimated for the CHIKV and ZIKV epidemics at the 

department level in Colombia from surveillance data using parametric and non-parametric 

models based on the renewal equation. Rough approximations of ! and R0 were obtained 

non-parametrically by fitting linear regression models to the relationship of the time-varying 

reproduction number Rt and cumulative incidence divided by population size for each 

department. The estimated !s for CF and ZVD were different (0.044, 95% CI: 0.032-0.056 

and 0.015, 95% CI: 0.012-0.018 respectively), but the estimated R0s were comparable (1.71, 

95% CI: 1.54-1.88 and 1.69, 95% CI: 1.59-1.78 respectively). Temperature and 

socioeconomic factors, including the percentage of households with overcrowded 

conditions and the percentage of households with inadequate exterior walls, were 

identified as potentially important covariates in arbovirus transmission using generalized 

additive models. For both viruses, the best-fitting parametric model allowed for different 

R0s across departments and showed significant evidence for overdispersion in incidence (i.e. 

a negative binomial likelihood was preferred over Poisson). The estimated ! for CF was 

higher than that for ZVD (0.045, 95% CrI: 0.042-0.049 and 0.016, 95% CrI: 0.015-0.017, 

respectively). Estimates of R0 across departments showed some heterogeneity, ranging 

from 0.96-2.93 for CHIKV and 0.98-5.87 for ZIKV. From models with a Poisson likelihood, 

weather covariates improved the fit, i.e. transmission of ZIKV was highest at a higher mean 

temperature and lower cumulative rainfall compared to CHIKV. Socioeconomic factors 

appeared uncorrelated with arbovirus transmission in the parametric models.  

1	Introduction	

1.1	Reproduction	numbers	

The reproduction number, R, is an epidemiological parameter used to quantify the average 

number of secondary infections resulting from one typically infected individual [155]. The 
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value of R is positive and unitless as well as a threshold: once established, if R > 1, then an 

epidemic will continue, whereas if R < 1, then an epidemic will eventually end [156]. 

Estimates of R for the same pathogen tend to vary by geographic location and over time due 

to differences in contact patterns, demographic rates, population immunity, and other 

factors [83]. 

There are different names for R depending on the context in which it is estimated. The basic 

reproduction number, R0, applies to situations in which a pathogen is introduced into an 

entirely susceptible and infinite population [157]. In the presence of population-level 

immunity, this parameter is considered an effective reproduction number, Re [158]. Both R0 

and Re provide information about a pathogen’s transmission potential [158]. The 

instantaneous, or time-varying, reproduction number, Rt, is obtained when R is monitored 

over the course of an epidemic [159]. Once an epidemic is underway, Rt can be reduced 

through public health interventions, i.e. social distancing for respiratory diseases such as 

COVID-19 [160] and enhanced vector control combined with community engagement for 

mosquito-borne diseases such as ZVD [161]. Rt can also be reduced by the exhaustion of 

susceptible individuals in the population resulting from either widespread transmission or 

vaccination efforts [162]. 

Reproduction numbers can be estimated using a variety of mathematical and statistical 

methods [163-168]. Examples include exponential growth methods, branching processes, 

and compartmental models. Data type and availability play important roles in the choice of 

method. In general, more complex methods can be used with increasing amounts of data. 

The types of data that can be used to estimate R include chains of transmission (“who 

infected whom”), cluster size of cases, and epidemic time series [169].  

The renewal equation, derived from branching processes, is an example of a method that 

can be used to estimate R from time series data [170]. In this model, past infections give rise 

to future infections according to a Poisson process. The link between renewal processes and 

modeling epidemics comes from work on compartmental models, the Euler-Lokta equation 

in ecology, and age-dependent branching processes [171]. In epidemiology, the standard 

equation is: 
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"($) = 	()($, +)"($ − +)-+

!

"

(3.1) 

where " is the mean incidence at time $ and )($, +) denotes transmissibility, which is a 

function of calendar time $ and time since infection +. Here, the number of newly infected 

individuals is proportional to the number of past and current cases times their 

infectiousness [170]. The renewal equation has been used to estimate R in a variety of 

contexts, including the 1918 influenza pandemic, the ZIKV epidemic in the Americas, and the 

HIV epidemic in Europe [172-174].  

EpiEstim is a method based on the renewal equation [159]. It was used to assess changes in 

transmissibility of Ebola virus during the West Africa epidemic and is currently being used 

during the ongoing COVID-19 pandemic [175, 176]. Although EpiEstim was originally 

developed to estimate Rt, it can also be used to estimate R0. This method models 

transmission as a Poisson process with the mean case incidence, µt, equal to 1# ∑ "#$%3%
#
%&'  

where "# is the observed incidence at time $ and 3% is a probability distribution 

characterizing the generation time distribution (the average time between the time of 

infection in a primary case and the time of infection in a secondary case infected by the 

primary case) [159]. The likelihood of the incidence "# follows: 

4("#|"", … , "#$', 3, 1#) = 	
(1#Λ#)

(!8$)!*!

"#	!
(3.2) 

with Λ# = ∑ "#$%3%
#
%&' . Rt can be estimated in a Bayesian framework with a user-specified 

prior distribution (the default in EpiEstim is a gamma prior distribution with mean 5 and 

standard deviation 5) [159]. In practice, the distribution of the serial interval (time between 

onset of symptoms in the primary case and onset of symptoms in their secondary cases) 

may be used to approximate 3% [159]. Also, a time window rather than a single time step is 

often used in order to decrease variability and increase precision of the Rt estimates [159]. 

Software to implement EpiEstim has been developed with versions available in R and 

Microsoft Excel.  
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1.1.1	 Estimated	reproduction	numbers	for	CHIKV	in	Colombia	

Peña-García and Christofferson used the White and Pagano maximum likelihood method to 

estimate R0 for CHIKV in 85 Colombian cities [177]. These cities, which accounted for just 

over 65% of all reported cases in the country, were selected based on having an apparent 

epidemic peak and reporting more than 150 cases. A serial interval of one or two weeks was 

assumed. Estimates ranged from 1.11-9.53, and 76% of cities had estimated R0 values 

between 1-2 [177].  

1.1.2	 Estimated	reproduction	numbers	for	ZIKV	in	Colombia	

Compared to CHIKV, there are many more estimates of reproduction numbers in the 

literature for the ZIKV epidemic in Colombia. The studies employed a variety of methods, 

and while some studies focused on specific cities, most studies estimated countrywide 

reproduction numbers. 

Rojas et al. used maximum likelihood methods to fit a chain-binomial model to daily 

incidence data from the Colombian cities of Girardot and San Andrés [178]. Data included 

probable and laboratory-confirmed cases reported to Sivigila between September 2015 and 

January 2016. R0 was defined as the median effective reproduction number during the 

growth phase of the epidemic after adjusting for early reporting delays. Due to uncertainty 

in the natural history of ZIKV in mosquitoes and humans, three sensitivity settings (short, 

medium, and long) were considered for the incubation period in humans, infectious period 

in humans, and infectious period in mosquitoes, resulting in a range of serial intervals. A 

mean serial interval of 22 days was assumed. The estimated R0  was 1.41 (95% CI: 1.15-1.74) 

in San Andrés and 4.61 (95% CI: 4.11-5.16) in Girardot [178].  

Towers et al. estimated R0 in the city of Barranquilla by analyzing 359 clinically identified 

cases reported during the exponential growth phase of the ZIKV epidemic (until the end of 

November 2015) [179]. After obtaining the rate of exponential rise in cases, they fitted a 

mathematical model with compartments for Susceptible, Exposed, Infected, and Recovered 

humans and well as Susceptible, Exposed, and Infected mosquitoes (SEIR/SEI model). An 

estimated average R0 of 3.8 (95% CI: 2.4-5.6) was obtained. They also estimated that the 

fraction of R0 due to human-to-human sexual transmission was 0.23 (95% CI: 0.01-0.47) 

[179].  
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Ospina et al. estimated R0 for 20 cities in the department of Antioquia by fitting an SIR 

model with implicit vector dynamics [180]. Epidemic parameters were estimated by fitting 

the expression for recovered individuals per unit time to the daily cumulative number of 

suspected and laboratory-confirmed cases of ZVD according to symptom onset date relative 

to the index case. The number of cases in each city ranged from 17 to 347 from January 1 to 

April 11, 2016. R0 was estimated to be greater than 1 for 15 cities and less than 1 for five 

cities. The median R0 estimate across all cities was 1.12 [180]. 

Chowell et al. estimated R0 for the department of Antioquia using daily counts of suspected 

ZVD cases by date of symptom onset reported from January 2016 to April 2016 [174]. They 

applied the renewal equation to incident cases simulated from a generalized-growth model. 

The generalized-growth model describes the initial growth phase of an epidemic; it has two 

parameters, the growth rate, r, and a “deceleration of growth” parameter, p, which allows 

the model to capture sub-exponential growth patterns [181]. Assuming a gamma 

distributed generation time with mean 14 days and standard deviation 2 days, they 

estimated an R0 of 10.3 (95% CI: 8.3-12.4) after 14 days of the epidemic and 2.2 (95% CI: 1.9-

2.8) after 28 days of the epidemic [174]. 

Hsieh used the Richards growth model to estimate the R0 of ZIKV for 13 countries and 

territories, including Colombia [182]. The Richards model is a modified version of the logistic 

growth model. It has three parameters: the growth rate, r, the size of the epidemic, K, and a 

parameter, a, which captures how much the epidemic dynamics differ from the S-shape of 

the classic logistic growth model [183]. Data for the 11 countries in the Americas were 

obtained from PAHO and consisted of weekly laboratory-confirmed cases reported until 

epidemiological week 18 of 2016. The estimated mean R0 for Colombia was 1.75 (95% CI: 

1.34-2.16) when the model was fitted to data from epidemiological weeks 32-43 of 2015 

and 1.79 (1.29-2.30) when fitted to data from epidemiological week 49 of 2015 to 

epidemiological week 16 of 2016 [182].  

Nishiura et al. used maximum likelihood estimation and early exponential growth rate 

methods to estimate a countrywide R0 of ZIKV for Colombia [184]. ZVD cases were first 

reported in epidemiological week 32 of 2015. They fitted their model to laboratory-

confirmed cases reported from epidemiological week 35 of the epidemic after which 
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exponential growth in the number of cases was observed. Assuming that the exponential 

growth continued for 3, 4, and 5 weeks from week 35, the following estimates of R0 were 

obtained: 3.9 (95% CI: 2.4-5.7), 6.6 (95% CI: 5.5-7.7), and 3.0 (95% CI: 2.5-3.6), respectively 

[184].  

Rocklöv et al. used a temperature-driven vectorial capacity model to estimate R0 and assess 

the risks of ZIKV introduction and spread in Europe [185]. Vectorial capacity quantifies the 

relationship between arthropod vectors and their hosts and is a function of vector 

competence, vector lifespan, and the extrinsic incubation period. In mosquitoes, the 

extrinsic incubation period is the time it takes for a mosquito to become infectious after 

ingesting a pathogen. The model was validated with surveillance data from the epidemics in 

the Americas. “Observed” R0 values were estimated from weekly case count data during the 

initial phases of the epidemics using the exponential growth rate method [165]. Cases were 

assumed to be Poisson distributed with a serial interval distribution of mean 16 days and 

standard deviation 3 days. Estimates at the subnational level were aggregated to national 

averages. Surveillance data for Colombia included 1,593 confirmed cases in 15 subnational 

administrative regions from January 1, 2016 to March 13, 2016. The nationwide average R0 

was estimated to be 3.2 [185]. The predicted R0 from the best-fitting vectorial capacity 

model (model 1) had mean 3.0 and 2.7 for Ae. aegypti and Ae. albopictus mosquitoes, 

respectively.  

Majumder et al. used the Incidence Decay and Exponential Adjustment model to estimate 

the R0 of ZIKV in Colombia from both digital disease surveillance data and traditional (INS) 

surveillance data [186]. After reported cases of ZVD were obtained from HealthMap, 

comprising nongovernmental media alerts between October 16, 2015 and April 16, 2016, 

Google search data were used to smooth the curve of cumulative reported cases over time. 

Nonlinear optimization was used to minimize the sum of squared differences between 

observed and modeled cumulative incidence curves [186]. Across 14 serial interval lengths 

ranging from 10 to 23 days, the authors estimated a mean R0 of 2.56 (range 1.42-3.83) using 

the smoothed HealthMap data and a mean R0 of 4.82 (range 2.34-8.32) using the INS data. 

They also estimated Robs, the observed transmission given existing interventions, which is 

similar to Rt. Results showed a mean Robs of 1.80 (range 1.42-2.30) and 2.34 (range 1.60-

3.31) for the HealthMap data and INS data, respectively [186].  
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Sasmal et al. estimated R0 by fitting five different compartmental models of ZIKV 

transmission, including both vector-borne and sexual routes of transmission, to the number 

of reported suspected and laboratory-confirmed cases of ZVD in pregnant women in 

Colombia [187]. Data were obtained from PAHO and ranged from epidemiological week 42 

of 2015 to epidemiological week 33 of 2016. The best-fitting model stratified each gender 

into high- and low-risk groups according to sexual behavior. The estimated R0 for this model 

had mean 1.89 (95% CI: 1.21-2.13) [187]. They also estimated that human-to-human sexual 

transmission contributed 15.36% (95% CI: 12.83-17.14) to R0 on average. 

O’Reilly et al. used a spatiotemporal dynamic transmission model for ZIKV infection in 90 

cities within 35 Latin American and Caribbean countries to estimate R0(t), the time-varying 

reproduction number in a completely susceptible population. Five Colombian cities were 

included in their analysis: Barranquilla, Bucaramanga, Cali, Cartagena, and Medellín. A 

deterministic meta-population model was used to model ZIKV transmission between cities 

with migration between cities represented by a gravity model. They fitted the model to 

summary statistics related to the timing of peak incidence rather than weekly incidence of 

ZIKV cases. For Colombia, their results estimated that there were 314 days (95% CrI: 311-

315) when R0(t) > 1 with an average R0(t) during a typical year of 1.94 (95% CrI: 1.87-2.01). 

A summary of the R0 estimates for CHIKV and ZIKV in Colombia from the literature can be 

found in Table 3.1. 
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Table 3.1 R0 estimates for CHIKV and ZIKV in Colombia from the literature. 
 

Ref Virus Location Study year Method R0 estimates 
(95% CI) 

[177] CHIKV 85 cities 2014-2016 White and Pagano  Range: 1.11-9.53 
[178] ZIKV Girardot 2015-2016 Maximum likelihood to 

fit chain-binomial model 
4.61 (4.11-5.16) 

[178] ZIKV San Andrés 2015-2016 Maximum likelihood to 
fit chain-binomial model 

1.41 (1.15-1.74) 

[179] ZIKV Barranquilla 2015 SEIR/SEI model 3.8 (2.4-5.6) 
[180] ZIKV 20 cities in 

Antioquia 
2016 SIR model with vector 

dynamics 
1.12 

[174] ZIKV Antioquia 2016 Generalized-growth 
model 

Range: 2.2-10.3 

[182] ZIKV National 2015-2016 Richards model Range: 1.75-1.79 
[184] ZIKV National 2015 Maximum likelihood 

estimation and early 
exponential growth rate 
model 

Range: 3.0-6.6 

[185] ZIKV National 2016 Exponential growth rate 
method 

3.2 

[186] ZIKV National 2015-2016 Incidence Decay and 
Exponential Adjustment 
model 

Range: 2.56-4.82 

[187] ZIKV National 2015-2016 Compartmental models 1.89 (1.21-2.13) 

 

1.2	Reporting	rates	

In addition to reproduction numbers, the reporting rate (!), or the proportion of infections 

that are ultimately reported as cases of the disease, is of considerable interest during and 

after an epidemic. As mentioned in chapter 1, surveillance systems do not capture all cases 

which leads to uncertainty in the “true” incidence of disease. Cases can be missed due to (i) 

under ascertainment of infections at the community level and (ii) underreporting of 

infections at the healthcare level [188]. Under-ascertained infections occur in individuals 

who do not seek healthcare, whereas underreported infections occur in individuals that do 

seek healthcare but whose health event is not reported. Factors influencing whether an 

individual seeks healthcare include symptom severity and health literacy as well as culture, 

religion, and cost [188]. Underreporting can occur when infections are undiagnosed or 

misdiagnosed and also when infections are correctly diagnosed but not appropriately 

reported [188]. As surveillance data are used to guide resource allocation and estimate 

epidemiological parameters, it is important to understand how accurately they reflect the 
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true burden of disease in populations and adjust observed incidence with multiplication 

factors as needed. Several methods and study designs can be used to estimate under 

ascertainment and underreporting in surveillance systems, including community-based 

studies, serological surveys, returning traveler studies, capture-recapture studies, and 

modeling [188].  

	1.2.1	 Estimated	reporting	rates	for	CF	in	Colombia	

Reporting rates for the CHIKV epidemic in Colombia have been estimated from community-

based studies and serological surveys.  

A retrospective, community-based study was performed by the INS in the city of Girardot, 

Cundinamarca to estimate reporting rates of CF between November 2014 and May 2015 

[189]. The study design involved community- and institutional-based active case-finding 

among inhabitants of the city’s urban areas. At the community level, surveys were 

administered to all households in blocks that were selected by simple random sampling. At 

the institutional level, all RIPS were reviewed as well as the number of cases reported to the 

national surveillance system (Sivigila). The case definition was based on clinical diagnosis 

and self-reported symptoms (fever, joint pain, and rash during the study period) [189]. 

There were 8,788 cases of CF reported in Girardot during the study period. An infection 

attack rate of 0.648 (95% CI: 0.631-0.664) was estimated from a sample size of 3,380 survey 

participants. Considering the urban population size (101,610), the investigators estimated 

that 87.1% (95% CI: 86.8-87.3) of symptomatic CHIKV infections in the city were not 

reported to the surveillance system (! = 0.129, 95% CI: 0.127-0.132), of which 36.1% (95% 

CI: 34.1-38.1) could be explained by individuals not seeking health services and 24.8% (95% 

CI: 23.7-25.8) could be explained by underreporting. The remaining 26.2% of underreporting 

was not explained in the study. Among those surveyed, the most frequently cited reason for 

not seeking care was self-medication (55%) followed by the collapse of the healthcare 

system (28%) [189]. A limitation of this study is the case definition, which could have 

increased the number of perceived cases in the community (i.e., if the symptoms were 

caused by a different virus) and would have excluded asymptomatic cases. 

Another community-based study was conducted in the city of El Espinal, Tolima using a 

similar study design as in Girardot for the period from October 2014 to June 2015 [190]. 
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Sivigila was notified of 3,794 cases in El Espinal during the study period. The estimated 

infection attack rate was 0.670 (95% CI: 0.666-0.674) among those surveyed (N=5,774). 

Considering the urban population size (58,367), the number of affected individuals was 

estimated at 39,106 (95% CI: 38,872-39,339) with a symptomatic reporting rate of 0.097 

(95% CI: 0.096-0.098). Of 3,872 cases that were identified through active case-finding in the 

community, 46.6% (95% CI: 45.5-48.5) did not seek health services and 94.7% (95% CI: 93.9-

95.3) were not registered in either RIPS or Sivigila databases. As in Girardot, the main 

motivation for not seeking care among survey participants was self-medication (53.5%). At 

the institutional level, of 3,052 patients that received a diagnosis of CF at San Rafael 

Hospital, 44.8% (95% CI: 43.6-46.0) were not reported to Sivigila.  

Nouvellet et al. conducted a household-based seroprevalence study in four cities located in 

different transmission areas from October to December of 2016 [191]. Using multistage 

probabilistic sampling, they obtained a total sample size in excess of 2,400 participants 

between 2-45 years of age. Past infection by CHIKV, ZIKV, and DENV was determined by 

testing for IgG antibodies using a multiplex recombinant antigen-based microsphere 

immunoassay. The estimated post-epidemic seroprevalence from the study can be found in 

Table 3.2. The last column in the table shows the reporting rates which were estimated 

from the study results. Estimated reporting rates for CHIKV ranged from <0.001 in Medellín 

to 0.099 in Neiva.   
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Table 3.2 Reporting rates derived from multisite seroprevalence study of ZIKV and CHIKV in 
Colombia [191]. 
 

Virus City Population Reported 
suspected 
and 
laboratory-
confirmed 
cases 

Raw 
attack 
rate 
(cases/ 
pop.) 

Estimated post-
epidemic 
seroprevalence 
and 95% CI 

Multiplication 
factor 

(Seroprevalence/ 
raw attack rate) 

Reporting rate 
(1/ 

multiplication 
factor) 

CHIKV Cúcuta 656,380 26,512 0.040 0.723  
(0.687-0.758) 

17.9 0.056 

Medellín 2,486,723 17 <0.001 0.071  
(0.052-0.094) 

10,386 <0.001 

Neiva 344,026 19,751 0.057 0.580  
(0.539-0.619) 

10.1 0.099 

Sincelejo 279,031 12,342 0.044 0.606  
(0.566-0.644) 

13.7 0.073 

ZIKV Cúcuta 656,380 6,485 0.010 0.479  
(0.440-0.519) 

48.5 0.021 

Medellín 2,486,723 549 <0.001 0.067  
(0.048-0.090) 

303 0.003 

Neiva 344,026 3,409 0.010 0.578  
(0.538-0.618) 

58.3 0.017 

Sincelejo 279,031 856 0.003 0.659  
(0.620-0.696) 

215 0.005 

 

1.2.2	 Estimated	reporting	rates	for	ZVD	in	Colombia	

Reporting rates for the ZIKV epidemic in Colombia have been estimated from modeling 

studies, community-based studies, and serological surveys.  

The O’Reilly et al. modeling study from section 1.1.2 also estimated country-specific 

reporting rates for ZIKV. Results for Colombia estimated a median ! of 0.017 (95% CrI: 

0.013-0.025) [23].  

Mier-y-Teran-Romero et al. used a Bayesian inference model to estimate the probability of 

ZIKV infection, the proportion of ZIKV infections that are reported as suspected/laboratory-

confirmed ZVD cases, and the risk of ZIKV-associated GBS for nine locations in the Americas 

plus Yap Island and French Polynesia [133]. The data consisted of the cumulative number of 

reported GBS cases and suspected ZVD cases during the outbreaks as well as seroprevalence 

data from Yap Island and French Polynesia. The probabilities of interest were related to the 

observed data through a binomial sampling process. Results for Colombia showed a 

probability of ZIKV infection with mean 0.09 (95% CrI: 0.03-0.23) and a ! with mean 0.03 

(95% CrI: 0.01-0.07) [133]. 
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Moore et al. used multiple publicly available data sources within a Bayesian hierarchical 

model framework to estimate national and subnational reporting rates, the fraction of 

symptomatic infections, and subnational infection attack rates for 15 Latin American 

countries and territories [192]. The primary analysis only included locations with 

subnational data available for at least one of the following data types: suspected and 

laboratory-confirmed ZVD cases in pregnant woman and in the total population, ZIKV-

associated GBS cases, and cases of CZS. For Colombia, the estimated infection attack rate 

was 0.19 (95% CrI: 0.15-0.23) resulting in 9,302,116 (95% CrI: 7,133,364-11,360,866) 

infections [192]. The estimated probability that a symptomatic ZIKV infection is reported as 

a suspected and laboratory-confirmed ZVD case had an overall mean of 0.036 (95% CrI: 

0.018-0.070) and 0.004 (95% CrI: 0.002-0.007), respectively, and at the department level, 

the probability of reporting a suspected case ranged from mean <0.001 (95% CrI: <0.001-

<0.001) in Bogotá to 0.145 (95% CrI: 0.061-0.304) in Cundinamarca3. Compared to the other 

locations analyzed, Colombia was found to have the greatest variation in reporting 

probabilities within administrative units for suspected cases with 70.2% of the variance 

explained by between-administrative unit variance [192]. The probability of reporting a 

confirmed case varied from mean <0.001 (95% CrI: <0.001-0.001) in Bogotá to 0.011 (95% 

CrI: 0.004-0.024) in Boyacá. 

A community-based study was carried out in Girardot, Cundinamarca to estimate ZVD 

reporting rates between October 2015 and May 2016 [193]. Similar methodology was used 

as in the CHIKV studies previously conducted in Girardot and El Espinal [189, 190]. A total of 

1,256 cases were reported to Sivigila during the study period. At the community level, the 

estimated infection attack rate was 0.152 (95% CI: 0.142-0.161) among 5,542 survey 

respondents. Accounting for the urban population of the city (102,225 in 2015), an 

estimated 91.9% (95% CI: 91.4-92.4) of symptomatic ZIKV infections were not reported to 

the surveillance system (! = 0.081, 95% CI: 0.076-0.086). Nearly half (49.1%, 95% CI: 45.7-

52.5) of 845 individuals who met the case definition (presence of fever, red eyes, headache, 

 
3 The estimates in both this sentence and the last sentence of the paragraph were not 
reported in the paper by Moore et al. Rather, they were obtained from the posterior 
samples of the model, which were kindly provided by Dr. Sean Moore in personal 
communication.  
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musculoskeletal pain, light sensitivity, itching, arthralgia, or rash during the study period) 

did not seek health services. Similar to the results of the CHIKV studies, the primary reason 

given for not seeking healthcare was self-medication (40.0%) [193]. At the institutional level, 

83.3% (95% CI: 80.1-86.2) of 594 patient records identified through RIPS that met the case 

definition for ZVD were not reported to Sivigila. In particular, 81.7% (95% CI: 78.1-85.0) of 

520 patients that received a diagnosis of ZVD were not reported to Sivigila, along with 94.4% 

(95% CI: 86.2-98.4) of 71 patients that received a diagnosis other than ZVD but met the case 

definition [193]. 

As discussed in section 1.2.1, the seroprevalence study by Nouvellet et al. also included 

ZIKV, and the reporting rates estimated from their results are presented in Table 3.2. 

Estimated reporting rates for ZVD ranged from 0.003 in Medellín to 0.021 in Cúcuta [191]. A 

summary of reporting rates for CF and ZVD in Colombia from other studies in the literature 

can be found in Table 3.3. 

 
Table 3.3 Estimates of reporting rates from modeling and community-based studies for CF and 
ZVD in Colombia from the literature. 
 

Ref Disease Location Study year Study type ! estimates (95% CI or 
95% CrI) 

[190] CF El Espinal 2014-2015 Community-based 0.097 (0.096-0.098)* 
[189] CF Girardot 2014-2015 Community-based 0.129 (0.127-0.132)* 
[193] ZVD Girardot 2015-2016 Community-based 0.081 (0.076-0.086)* 
[192] ZVD All departments 2015-2018 Modeling Range: <0.001-0.145** 
[192] ZVD National 2015-2018 Modeling 0.036 (0.018-0.070)** 
[23] ZVD National 2015-2017 Modeling 0.017 (0.013-0.025) 
[133] ZVD National 2015-2016 Modeling 0.03 (0.01-0.07) 

*Symptomatic reporting rate. 
**Probability that a symptomatic ZIKV infection is reported as a suspected ZVD case. 

 

1.3	Weather	and	arbovirus	transmission	

Weather is an important driver of arbovirus transmission due to its impacts on mosquito 

ecology. For example, temperature has been shown to affect mosquito survival, larvae 

development, and adult feeding behavior [194]. In general, the effect of temperature on 

arbovirus transmission is unimodal: transmission is optimized at a particular temperature 

and tends to decline at extreme temperatures [195]. Similarly, while mosquitoes need 

enough rainfall for breeding and larvae development, excessive amounts of rainfall can 
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wash away breeding sites, causing larvae mortality [196, 197]. Several study designs have 

been used to assess the relationships between weather and arbovirus transmission, 

including experimental studies in laboratories and in the field as well as mathematical 

modeling approaches. Additionally, some studies have focused on the influence of weather 

on the life history traits of the mosquito vectors.  

Brady et al. used generalized additive models (GAMs) to study survival of adult Ae. aegypti 

and Ae. albopictus at different temperatures under laboratory conditions and in the field 

[198]. GAMs are non-parametric models that apply smoothing functions to explanatory 

variables. In this way, they are capable of capturing unknown and non-linear effects of 

covariates. Data from 351 published studies on adult Ae. aegypti and Ae. albopictus survival 

experiments in the laboratory were used to build models for each species across a range of 

temperatures. These models were then adapted to estimate the effects of temperature on 

survival of Ae. aegypti and Ae. albopictus in the field using data from 59 experiments. They 

found that although Ae. albopictus tended to survive longer than Ae. aegypti in the 

laboratory and in the field, Ae. aegypti could withstand a wider range of temperatures, 

including lower temperatures [198]. A limitation of the study was that few field experiments 

were conducted at extreme temperatures. Also, few experiments on mosquito mortality in 

the field were available.  

Riou et al. used a hierarchical time-dependent SIR model to jointly analyze CHIKV and ZIKV 

transmission in French Polynesia and the French West Indies [199]. Their model 

incorporated a disease-specific serial interval and accounted for effects of virus, location, 

and weather. The model was fitted to weekly case data spanning the entire duration of the 

outbreaks with the exception of the ZIKV outbreaks in the French West Indies which were 

still ongoing at the time of the analysis. Results showed that mean temperatures in the 

range of 22-29°C did not impact transmission. However, a 1 cm increase in average weekly 

rainfall led to a 10% decrease in transmission after one to two weeks; after four to six 

weeks, transmission increased by about 20-40% [199].  

Mordecai et al. developed mechanistic transmission models to study the effects of mean 

temperature on transmission of DENV, CHIKV, and ZIKV by Ae. aegypti and Ae. albopictus 

mosquitoes [195]. The models incorporated empirical estimates of the unimodal effects of 
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temperature on mosquito and pathogen characteristics, such as survival, development, and 

biting rates, and were validated by fitting country-level human case incidence data from 

2014-2016 for all countries in the Americas. Results showed that transmission of the three 

viruses was possible between 18-34°C and optimal between 26-29°C [195]. According to the 

study, “the thermal response curve for Ae. albopictus is shifted towards lower temperatures 

than Ae. aegypti, so that Ae. albopictus transmission is better suited to cooler 

environments.” A limitation of the study was that thermal response data for CHIKV and ZIKV 

were not available. 

Tesla et al. used mechanistic R0 models parameterized with data from laboratory 

experiments with Ae. aegypti to estimate the effects of temperature on ZIKV transmission 

[200]. Vector competence, extrinsic incubation period, and mosquito survival were assessed 

at eight different temperatures. Strong, unimodal effects of temperature were observed for 

each of the life history traits considered. Thermal response data were then fed into a 

previously developed temperature-dependent model. Results showed that the optimal 

temperature for ZIKV transmission was 29°C and ranged from 22.7°C to 34.7°C. Notably, the 

authors found that the predicted thermal minimum for ZIKV transmission is 5°C warmer 

than that of DENV [200]. This means that models that assume ZIKV behaves similarly to 

DENV may over-predict environmentally suitable areas at risk of ZIKV. 

Kakarla et al. used a mathematical model to study the effects of temperature on CHIKV 

transmission in India [201]. Their model was a temperature-dependent dynamical 

transmission model based on R0. R0 as a function of temperature was related to the relative 

density of mosquitoes per human, the biting rate, vector to host infection probability, the 

mortality rate of the vector, the extrinsic incubation period, and viremia. Equations for the 

temperature-dependent parameters were obtained from the literature; however, most of 

them were actually specific to DENV rather than CHIKV. They used a dataset consisting of 

station observation-based global land monthly mean surface air temperature from 1948 to 

2016 as well as gridded monthly rainfall data for the same period. Results showed that the 

optimal temperature for peak CHIKV transmission was 29°C. Temperatures greater than 

24°C and less than 34°C were also favorable for transmission (mean R0 > 1) [201]. 
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Harris et al. used a time-varying SIR model to study how climate factors may have 

influenced the emergence and intensity of the ZIKV epidemic in Latin America [202]. 

Epidemiological data included weekly suspected and laboratory-confirmed cases of ZVD 

between November 2015 and November 2017 for 127 provinces across six countries. 

Weather data, including daily mean relative humidity and total rainfall as well as mean, 

minimum, and maximum temperatures, were used to calculate climate metrics with time 

lags relevant to ZIKV spread via Ae. aegypti. They found that the force of infection for ZIKV 

was highest in provinces with temperatures of 23.6°C (95% CI: 22.2-25.5) [202]. Important 

predictors of ZIKV presence were temperature, temperature range, and rainfall. ZIKV 

intensity and burden were best explained by rainfall, relative humidity, and a nonlinear 

effect of temperature. However, climate factors were not strong predictors of ZIKV 

epidemic dynamics across weeks.   

Chien et al. used a Bayesian structured additive regressive modeling approach to assess the 

risk of ZIKV across Colombian departments according to weather factors [203]. Weekly 

reported cases of ZVD were obtained from the INS Epidemiological Bulletins for week 39 of 

2015 until the last week of 2017. The study considered the effects of temperature, dew 

point temperature, relative humidity, sea-level pressure, wind speed, and total rainfall. A 

zero-inflated Poisson model was chosen to account for excess zeros in the data. The model 

included spatial interaction terms with weather factors as well as a geospatial function 

intended to capture spatial variation of ZIKV that could not be explained by weather factors. 

Results showed that the best-fitting model according to DIC included average temperature 

and total rainfall. An increase in rainfall of 1 inch was associated with an increase in the 

logarithm of relative risk of ZIKV of no more than 1.66 (95% CrI: 1.09-2.15), and an increase 

of 1°F of mean temperature was associated with no more than 0.79 (95% CrI: 0.12-1.22) 

increase in the logarithm of relative risk of ZIKV [203].  

1.4	Aims	

The aim of this chapter is to analyze the drivers of CHIKV and ZIKV transmission in Colombia 

using two approaches based on the renewal equation. Disease incidence was modeled 

parametrically and non-parametrically. The proportion of infections that were reported as 

cases to the surveillance system was estimated as well as reproduction numbers for each 
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department. The effects of temperature, rainfall, and socioeconomic status were also 

considered.  

2	Data		

2.1	Epidemiological	data		

This chapter utilized the CHIKV and ZIKV surveillance datasets from Sivigila that were 

described in chapter 1. Specifically, suspected and laboratory-confirmed cases with missing 

information on city (administrative level 2) location were included in this analysis, resulting 

in 412,915 CF cases and 106,033 ZVD cases. As previously stated, dates for the CHIKV 

dataset span 110 weeks, from the week ending June 7, 2014 to that ending July 9, 2016, 

while dates for the ZIKV dataset span 97 weeks from the week ending August 15, 2015 to 

that ending June 17, 2017. Also, the location of cases refers to location of likely infection, 

which is determined by the clinician who reported the case. 

2.2	Demographic	data	

As before, population projections for 2016 were obtained from DANE. 

2.3	Socioeconomic	data	

Multidimensional poverty data for the year 2018 were downloaded from DANE at the 

department level. These data come from the Encuesta Nacional de Calidad de Vida (National 

Quality of Life Survey), which collects data on Colombians’ living and housing conditions. 

Three variables that might be relevant to arbovirus transmission, including the percentage 

of households in each department with overcrowded conditions, inadequate exterior walls, 

and inadequate floors, were obtained. Overcrowding was defined in terms of the number of 

people sleeping per room excluding the kitchen, bathroom, and garage and including the 

living room and dining room. A house was considered overcrowded if there were three or 

more people sleeping per room in an urban area and at least four people per room in a rural 

area. In an urban area, exterior walls made from unfinished wood, boards, planks, bamboo 

or other vegetation, zinc, fabric, and cardboard were defined as inadequate, along with 

damaged walls or no walls. In a rural area, walls constructed of bamboo or other vegetation, 

zinc, fabric, and cardboard were considered inadequate as well as damaged walls or no 

walls. Inadequate floors were those that were made of dirt in both urban and rural areas.  
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2.4	Weather	data	

Weekly mean temperature data for Colombia from January 1, 2014 to October 1, 2016 were 

downloaded from Dryad Digital Repository [204]. These data were weighted by the 

population and aggregated at the department and city levels. However, ZVD cases were 

reported through mid-2017. To obtain temperature data after October 1, 2016, daily 

meteorological station readings were downloaded from the National Oceanic and 

Atmospheric Administration (NOAA)’s Climate Data Online [205]. This website contains past 

weather and climate data that are publicly and freely available to download.  

PERSIANN-Cloud Classification System (PERSIANN-CCS) satellite precipitation data for 

Colombia were downloaded at daily time steps from the Center for Hydrometeorology and 

Remote Sensing (CHRS) Data Portal from January 1, 2014 to December 31, 2017 [206]. This 

source of meteorological data was chosen over NOAA’s Climate Data Online based on the 

work of Siraj et al. [207]. They found large spatial variability in the NOAA data, and as a 

result, they obtained substantially different estimates of precipitation from spatial models 

compared to the observed values of the weather stations. Instead, they used satellite-based 

data from NOAA’s Center for Satellite Applications and Research. However, a third data 

source was sought for this thesis as the resulting Siraj et al. datasets contained one outlier 

for the city of San Andrés (915 mm on the week ending July 23, 2016) and two outliers for 

the department of San Andrés and Providencia (771 mm and 823 mm on the weeks ending 

on August 30, 2014 and July 23, 2016, respectively) that could not be explained by extreme 

weather events such as hurricanes.  

WorldPop Project data were downloaded from [204] as the weighting variable for the 

spatial aggregation of weather covariates. These data consist of 2015 estimates of the 

number of people per pixel with national totals adjusted to match the United Nations 

Population Division estimates. They were subset and resampled by Siraj et al. to match 

other climate variables considered in their database (~93 m resolution) [207].  



Page 99 of 391 
 

3	Methods	

3.1	Processing	weather	data	

3.1.1	 Mean	temperature	

The data processing workflow from Siraj et al. [207] was used to generate the mean 

temperature at the department and city level of Colombia from January 1, 2016 through 

January 31, 2017. In general, spatial models (kriging) were used on readings from 

meteorological stations in Colombia. A model is needed to interpolate the data over the 

parts of the country that do not have stations. This particular model with altitude and 

secondary temperature data as covariates was selected over (i) kriging without covariates 

and (ii) non-parametric surface fitting with thin-plate splines with or without covariates, 

based on leave-one-out cross validation. After kriging, the data were rasterized. Daily 

gridded data were generated from the raster files, which were then aggregated by week 

and multiplied by the population.  

Siraj et al. used the first version of NOAA’s Climate Data Online tool, the Legacy Climate 

Data Online [208]. From the Global Summary of the Day data product, they extracted the 

minimum daily temperature, maximum daily temperature, mean daily temperature, and 

relative humidity from 30 stations between January 1, 2016 and December 31, 2016. The 

dataset containing mean temperature that they downloaded for 2016 was obtained from 

the GitHub repository linked to their paper (https://github.com/asiraj-nd/zika-colombia) as 

well as the Global 30 Arc-Second Elevation dataset, the WorldClim dataset, and NOAA’s 

Climate Prediction Center surface air temperature dataset. Here, the Daily Summaries data 

product from the current version of NOAA’s Climate Data Online tool was selected to obtain 

2017 station readings [205]. Five stations were missing from the new data. However, these 

stations had relatively few observations in the data originally downloaded by Siraj et al.; the 

five stations had between seven and 362 observations over three years (1,096 days) 

compared to the other 25 stations, which had between 1,078 and 1,096 observations. 

Figure 3.1 shows the locations of the 30 weather stations in Colombia.  
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Figure 3.1 Map of 30 weather stations in Colombia. Data from all stations were obtained by Siraj et 
al. from the National Oceanic and Atmospheric Organization’s Legacy Climate Data Online tool 
between 2014 and 2016. Blue points are stations that also appear in the newly downloaded data for 
2017, while red points are those that were missing. The map was created from SIG-OT shapefiles 
[117]. 

The 2_KRG_predict_tmean.R file in the above GitHub repository was used to perform the 

kriging on the mean temperature data for 2016 and 2017, resulting in one .bil file for each 

day. These files were read back into R as rasters. The daily data were aggregated at weekly 

time steps by taking the average of each consecutive seven raster layers. Next, the 

WorldPop layer was subset and resampled to match the spatial extent and resolution of the 

temperature layers (4.65 km x 4.65 km resolution). The weekly temperature layers were 

then multiplied by the WorldPop layer as in [207]. The resulting weekly layers and the 

WorldPop layer were exported to Python (version 3.8.2). 

In Python, the QgsZonalStatistics.Sum function from the qgis.analysis module was used to 

spatially aggregate the temperature data. This function calculates the sum of the raster 

values for a polygon and appends the results as attributes. For the city level, shapefiles from 

Colombia’s Sistema de Información Geográfica para la Planeación y el Ordenamiento 

Territorial (SIG-OT) were used for the year 2018 [117]. To be consistent with the data from 

Siraj et al., in which the capital of Bogotá is separate from the department of Cundinamarca, 

department level shapefiles were used from the Humanitarian Data Exchange [209] (the 

only shapefiles currently available from SIG-OT combine the two). Spatial aggregation by 
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summing was performed on the weekly temperature layers that had been multiplied by the 

WorldPop layer as well as the WorldPop layer. The resulting shapefiles were re-imported 

into R, where the aggregated mean temperature values were divided by the aggregated 

population values for each spatial scale.  

The new 2016-2017 population weighted weekly time series of mean temperature were 

compared to the 2014-October 2016 data from Siraj et al. There was good agreement for 

2016, and seasonal trends were consistent in the 2017 data. The final temperature datasets 

consist of the mean temperature from Siraj et al. for 2014-October 2016 and the newly 

processed data for the remaining two months of 2016 and 2017. 

3.1.2	 Precipitation	

Daily satellite precipitation data were read into R as rasters. Missing values were re-coded 

from -99 to 0. As with the temperature data, the spatial extent and resolution of the 

WorldPop layer was subset and resampled to match the precipitation data (4 km x 4 km 

resolution). Next, the daily data were aggregated at weekly time steps by taking the sum of 

each consecutive seven raster layers, resulting in cumulative precipitation for each week (if 

the missing values are not re-coded, then negative rainfall can be obtained for some 

locations and weeks as a result of this step). These layers were multiplied by the WorldPop 

layer and were exported to Python.  

Spatial aggregation of the precipitation data was performed with the same shapefiles and 

Python code as the temperature data. The final precipitation datasets consist of only the 

population weighted weekly time series generated from the PERSIANN-CCS data. The new 

data overlapped well with the corresponding time series from Siraj et al., except for the 

aforementioned outliers. 

3.2	Inclusion	criteria	and	level	of	analysis	determination		

In order to decide whether to perform the analysis at the city or department level, it was 

necessary to develop inclusion criteria for geographic location. Departments that reported 

at least 50 cases of CF or 50 cases of ZVD were considered. The use of this cut-off resulted in 

29 departments for CHIKV (Amazonas, Guainía, and Vaupés were dropped) and 30 

departments for ZIKV (Guainía and Vaupés were dropped). At the city level, cities that 
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reported fewer than 20 cases of CF or cities with fewer than six weeks of observations were 

dropped, leaving 321 cities for CHIKV. Similarly, cities that reported fewer than 30 cases of 

ZVD or cities with fewer than six weeks of observations total were dropped, leaving 288 

cities for ZIKV. Time series with more weekly cases and fewer gaps are preferred as more 

precise estimates of the reproduction numbers can be obtained from them [164]. 

As the impact of weather on arbovirus transmission was of primary interest, the between- 

and within-department standard deviations of weather covariates were calculated over 

relevant time periods for CHIKV and ZIKV. Following Harris et al.’s work on ZIKV transmission 

in Latin America, temperature was defined as mean weekly temperature in °C averaged over 

three weeks followed by a time lag of six weeks prior to case reporting. They defined rainfall 

as cumulative weekly rainfall in mm summed over six weeks followed by a three-week lag 

using the rationale that a larger window for rainfall compared to temperature could better 

account for the effect of water accumulation over time [202]. For within-department 

standard deviation, the variance was calculated first: temperature (or rainfall) at the 

department level was subtracted from temperature (or rainfall) at the city level and squared 

for each week. The results were added together and divided by the number of observations 

(number of cities within each department times number of weeks) minus 1. Similarly, to 

calculate between-department variance, temperature (or rainfall) at the national level was 

subtracted from temperature (or rainfall) at the department level, squared, summed 

together, and divided by the number of observations minus 1. Temperature and rainfall at 

the national level was first computed as the mean and sum, respectively, across all 

departments on a weekly basis before taking the three-week average, or six-week sum, and 

accounting for the time lags. For CHIKV and ZIKV, the mean between-department standard 

deviation across departments was greater than the mean within-department standard 

deviation for both temperature and rainfall, making the department level the preferred 

spatial scale (Table 3.4).  

 

 

 

 



Page 103 of 391 
 

Table 3.4 Mean within- and between-department standard deviation (sd) of temperature and 
rainfall for CHIKV and ZIKV. 
 

Virus Temperature (°C) Rainfall (mm) 
CHIKV Mean within-department sd: 2.65 

Mean between-department sd: 3.39 
Mean within-department sd: 120 
Mean between-department sd: 8,218 

ZIKV Mean within-department sd: 2.27 
Mean between-department sd: 3.39 

Mean within-department sd: 96 
Mean between-department sd: 8,819 

 

3.3	Weekly	time-varying	reproduction	numbers	from	EpiEstim	

The EpiEstim package in R was used to estimate weekly Rts for the CHIKV and ZIKV 

epidemics at the department level over 5-week sliding windows [164]. Time windows of 2, 

3, 4, 5, 6, 7, and 8 weeks were considered, and a sliding window of 5 weeks was chosen for 

both viruses, which was also used by Ferguson et al. for the ZIKV epidemic in the Americas 

[210]. The “parametric_si” method was selected in the function estimate_R() using 

estimates of the generation time distributions obtained from the literature (Table 3.5), and 

the default prior distribution for Rt with mean 5 and standard deviation 5 was used. Rt 

estimates were removed if the mean was greater than 100 or highly uncertain (coefficient 

of variation greater than 0.5).  

The generation time distribution for an arbovirus consists of two main components: the 

human-to-mosquito generation time distribution and the mosquito-to-human generation 

time distribution [211]. There are few estimates of the generation time distribution for 

CHIKV and ZIKV in the literature, partly due to the types of data sources required. Data to 

estimate the generation time distribution include viral load data in humans, human case 

reports with time of exposure and symptom onset (typically for travelers), mosquito daily 

mortality rate, and the number of mosquitoes testing positive each day after being 

experimentally infected with the virus in the laboratory [211]. The serial interval distribution 

can be estimated using similar data sources or, alternatively, as the difference in symptom 

onset between isolated pairs of confirmed cases [212]. The serial interval distribution can 

also be estimated as a function of temperature, as temperature affects parameters related 

to the mosquitoes, such as the mosquito mortality rate [199]. Table 3.5 includes estimates 

of the generation time distribution and serial interval distribution of CHIKV and ZIKV from 

the literature.  
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Table 3.5 Estimates of the mean and standard deviation of the generation time distribution (GTD) 
and serial interval distribution (SID) for CHIKV and ZIKV from the literature. All values have units in 
days. The estimates used in this thesis are in bold. 
 

Virus GTD or SID Mean Standard deviation Reference 
CHIKV  GTD 14.0 6.2 [213] 
CHIKV SID 23 6 [214] 
CHIKV SID Range: 10.5-18.9 Not reported [199] 
CHIKV SID 11.2 4.2 [215] 
ZIKV  GTD 20.0 7.4 [210] 
ZIKV SID 7.4 (95% CI: 4.6-10.2) Not reported [212] 
ZIKV SID Range: 10-23 Not reported [216]  
ZIKV SID Range: 15.4-32.9 Not reported [199] 
ZIKV SID 17.5 4.9 [215] 

 

3.4	Non-parametric	models	of	arbovirus	transmission	

For each epidemic, linear regression models were fitted to the relationship of the median 

Rts obtained from EpiEstim and the cumulative incidence at the end of each sliding window 

divided by the population size of the department. In theory,  

1# = 1" × <1 −
=>?(")

@
A (3.3) 

where " is the incidence of disease, and @ is the population size. However, not all cases 

were observed in the epidemics. Therefore, equation (3.3) becomes  

1# = 1" × B1 −

=>?("+,%)
@
!

C (3.4) 

where "+,% is the observed cases, and ! is the proportion of infections that are reported as 

cases to the surveillance system (reporting rate). The first week of cases was not included in 

the calculation of cumulative incidence as this week is not used by EpiEstim to estimate Rt. 

When plotting Rt against the observed attack rate (%-.(("#$)
1

), the y-intercept of the linear 

regression models can be interpreted as a rough approximation of R0 across all departments 

(equation (3.5)), and the ratio of the estimated R0 by the absolute value of the slope is a 

rough approximation of ! (equation (3.6)): 

1" ≅ FG$8HI8J$ (3.5) 
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! ≅
1"

LM=(=NOJ8)
(3.6) 

Linear regression was performed using the lm function in R. The 95% confidence interval for 

the y-intercept was obtained by using the confint function on the model output. The 95% 

confidence interval for the ratio of the y-intercept and minus the slope was obtained by 

using the Delta Method [217]. Because these quantities are not independent, the point 

estimate was calculated as the absolute value of 

Q R
S

T
U ≡ QWX(S, T)Y ≈

[2

[3
−
Cov(S, T)

([3)
4 +

Var(T)[2

([3)
5 (3.7) 

where X and Y are random variables representing the y-intercept and slope respectively, 

Cov is the covariance of the variables, Var is the variance, and [ is the mean. The variance-

covariance matrix was obtained by using the vcov function. To calculate the variance of the 

ratio, equation (3.8) was used, 

Var R
S

T
U =

([2)
4

([3)
4 d
Var(S)

([2)
4 − 2

Cov(S, T)

[2[3
+
Var(T)

([3)
4 e (3.8) 

The 95% confidence interval was then calculated as the point estimate ±	1.96 ∗ √Var(2
3
). 

The residuals from the linear regression models were then plotted against covariates 

thought to be associated with arbovirus emergence and spread, including mean 

temperature and cumulative rainfall as well as the percentage of households in each 

department with overcrowded conditions, inadequate materials for exterior walls, and 

inadequate floors. Time lags were considered for temperature and rainfall due to the delay 

between changes in weather and resulting changes in transmission [202]. The delay is 

typically assumed to vary between one and two months [199, 202]. Temperature and 

rainfall were defined as in section 3.2. GAMs were fitted to the plots of the residuals versus 

covariates using the R package mgcv (version 1.8-28) [218]. Smoothness estimation was 

done by restricted maximum likelihood by selecting “REML” for the method. Smooth terms 

for each predictor were added to the models one at a time and kept if they were significant 

at the 0.05 level. The estimated degrees of freedom (edf) describe the curviness of the lines; 

higher values of edf are associated with more bends, while edfs close to 1 approximate 

linear terms. The basis dimensions (k) for smooth terms were adjusted as needed. k sets the 
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upper limit on the degrees of freedom associated with a smooth term. A low k value is 

indicated by a low p value in the model diagnostics output. If k is too small, it can force 

oversmoothing [219]. AIC was used to compare models. AIC is a method of determining a 

model’s predictive accuracy. Lower values are preferred, and a difference of more than two 

is considered important [220].  

3.5	Parametric	models	of	arbovirus	transmission	

In the parametric model approach, the renewal equation was used to model the number of 

reported cases of CF and ZVD separately according to a Poisson distribution: 

"#,7 	~	4 l1#,7(m"%,73#$%n

#

%&"

o (3.9) 

where "#,7  is the number of reported cases in location i at time t, 1#,7  is the time-varying 

reproduction number in location i at time t, 3 is the generation time distribution (see 

section 3.3). The methods underlying the models described in this section are the same as 

those used by EpiEstim with the difference that Rt is parametrically constrained. Following 

Riou et al. [199], a negative binomial model was also considered to account for 

overdispersion in the data (as shown by equation (3.10)), 

"#,7 	~	@8pqFG l1#,7(m"%,73#$%n, r	

#

%&"

o (3.10) 

where r is the overdispersion parameter. Overdispersion is caused by variation in the 

number of secondary cases resulting from each case of CF or ZVD [221]. As r increases (> 5), 

the discrete probability distribution of the negative binomial model converges on a Poisson 

distribution [176]. Rt is influenced by (i) saturation due to the rise in cumulative cases and 

decline in the number of susceptible individuals, (ii) environmental conditions, namely 

temperature and rainfall, and (iii) socioeconomic factors. Saturation, denoted by t, is 

represented by equation (3.11), 

t7,# = 1 −
∑ "%,7
#
%&" 	

	@7 	!
(3.11) 
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where ! is the reporting rate and @7  is the population size at location i. Simple gaussian 

(symmetric or asymmetric) functions were considered for the dependence of 

transmissibility on rainfall and temperature. The effects of temperature and rainfall on 

transmission ()) are represented by equation (3.12), 

)7,# = )7,#
8 )7,#

) (3.12) 

)7,#
8  or )7,#)  is equal to )7,#2 : 

)7,#
2 = expl−

WS7,# − S
,9%#Y

4

(2 ∗ x4)
o (3.13) 

where S,9%# is the optimal weather condition (either temperature or rainfall) for 

transmission, x2 is the standard deviation associated with this optimal condition, and 

XWS7,#; 	[ = 	S
,9%# , x2Y is the density of the normal distribution at condition S7,#. At the 

optimal temperature (or rainfall) for pathogen transmission, ) = 1. At less optimal weather 

conditions, 0 < ) < 1. For models with a single standard deviation for temperature or 

rainfall, transmission declines symmetrically above and below the optimal weather 

condition. Models that included two standard deviations for temperature were also 

considered in which transmission declines asymmetrically around the optimal temperature. 

 
 

)7,#
2(#9.:)

= exp<−
;2%,!

(!()*)$2#($!(!()*)<
,

;4∗>!()*-, <
A if S7,#

(#9.:)< S,9%#(#9.:) 

)7,#
2(#9.:)

= exp<−
;2%,!

(!()*)$2#($!(!()*)<
,

;4∗>!()*,, <
A if S7,#

(#9.:)> S,9%#(#9.:) 

 

	
	
(3.14)	

Unlike weather covariates, which are believed to have a unimodal relationship with 

arbovirus transmission (see section 1.3), there is evidence that worse housing conditions are 

associated with greater risk of arbovirus infection [222, 223]. Consequently, socioeconomic 

status covariates represented by z	were considered in the following way:   

z7 = 8∑ ,%(2%$2@).
% (3.15) 



Page 108 of 391 
 

with S{ denoting the mean value of S across the dataset. This expression assumes a log-

linear effect of the covariates on transmissibility. Unlike ), z is not limited to 0 and 1, but it 

must be positive, and z = 1 when S7 = S{. The final model for Rt is shown by equation (3.16): 

1#,7 = 1"	t7,#	)7,#	z7 (3.16) 

The mean of the Poisson and negative binomial models equals transmissibility multiplied by 

infectiousness (equations (3.9) and (3.10)). In other words, the number of newly reported 

cases is modeled as the number of past and current cases weighted by their infectiousness 

(see section 1.1).  

For the Poisson models, the following parameters were estimated: R0, !, S,9%#(#9.:), 

S,9%#(AB7C), standard deviation of temperature (x#9.:), standard deviation of rainfall 

(xAB7C),	M7(7CBD9E-B#9	GBHH%), and M7(+I9AJA+GD7CK). In models with two standard deviations for 

temperature, x#9.:' is the standard deviation of temperatures below the optimal 

temperature, and x#9.:4 is the standard deviation of temperatures that are greater than or 

equal to the optimum. Different definitions of and time lags associated with temperature 

and rainfall were tested separately in addition to those used in the covariate exploration. 

For temperature, mean weekly temperature in °C averaged over i) five weeks, ii) four weeks, 

and iii) three weeks as well as mean weekly temperature averaged over three weeks 

followed by a iv) three-week lag and v) four-week lag, all prior to case reporting, were 

modeled. For rainfall, cumulative weekly rainfall in mm summed over six weeks followed by 

a two-week lag prior to case reporting was tested. After the best-fitting definition of each 

weather covariate was identified, parameters related to temperature and rainfall were 

estimated together in the same models. For the negative binomial models, R0, !, and r 

were estimated along with the weather and socioeconomic status covariates. Both Poisson 

and negative binomial models that estimated a different R0 for each department were also 

considered.  

The CHIKV data for some departments, particularly Antioquia, Caldas, and Nariño, suffer 

from substantial censoring, because the epidemics were underway for some time before 

cases were reported [170]. This issue can pose problems for estimating reproduction 

numbers. Another department, Chocó, had a jagged epidemic curve, which can cause 

similar problems. To address these issues and smooth the reproduction number estimates, 
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a threshold was used to prevent outliers in the distribution of incidence divided by 

infectivity from contributing to the likelihood. This ratio is given by equation (3.17), 

FGIF-8GI8 − $O − FGX8I$F|F$} =
"#,7

∑ m"%,73#$%n
#
%&"

(3.17) 

Weeks in which the incidence-to-infectivity ratio was above 20 were ignored. This threshold 

was determined by examining the distribution of the ratios (Figure 3.2). Ninety-nine percent 

of the values for both viruses were below 55; 98% of the values were below 20, and 97% 

were under 15. Two sensitivity analyses were performed. First, model fits of the best-fitting 

Poisson and negative binomial models were assessed with and without the thresholds. 

Secondly, model fits of the overall best-fitting models were assessed using thresholds of 15 

and 55.   
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Figure 3.2 Boxplots of incidence divided by infectivity in each department for all weeks for CHIKV 
and ZIKV. The x-axis is plotted on a log10 scale. The black dotted lines indicate the thresholds of 15, 
20, and 55. Weeks in which the ratio was above 20 (to the right of the middle black line) did not 
contribute to the likelihood in the main analysis.  
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3.6	Model	estimation	and	computing	

Metropolis-Hastings MCMC was used to estimate the model parameters for the parametric 

approach described in section 3.5 [224, 225]. Parameter values were sampled from a log 

normal distribution, and the Metropolis accept-reject rule was corrected for the asymmetry 

of the proposal distribution. Parameters were updated one at a time. Each model was run 

three times with different starting values, and chains were visually checked for convergence 

after 100,000 iterations with a burn in of 0.2 times the length of the chains (iterations times 

number of parameters). After removing the burn-in period, median parameter estimates 

and 95% credible intervals were calculated from the posterior distributions.  

The coda package (version 0.19-4) in R was used to calculate the Gelman-Rubin statistic for 

each best-fitting model. This statistic assesses model convergence by comparing the 

variance between- versus within-MCMC chains. Lack of convergence is indicated by values 

above one [86, 226]. The coda package was also used to calculate the effective sample size 

using the effectiveSize function. The effective sample size is the sample size of the 

parameters adjusted for autocorrelation [226]. Dependence in MCMC samples tends to be 

more important for complex models; as more parameters are estimated, larger sample sizes 

are required to approximate the posterior distribution. For these models, an effective 

sample size of less than 10% of the actual sample size is not uncommon, but even this level 

can indicate problems with a particular model [84].  

Uniform prior distributions were used for all parameters (Table 3.6). The range of the prior 

distributions for S,9%#(#9.:) and S,9%#(AB7C) were informed by the range of the data and 

mosquito biology. The lower limits on the prior distributions for ! were calculated for each 

virus as the maximum of the cumulative incidence in department i divided by the population 

size of department i for all departments (the maximum observed attack rate). Values of ! 

lower than the limits would result in negative values of t for some locations which means 

that the number of infections exceeds the population size for a given !. The maximum 

observed attack rate of CHIKV was observed in Casanare with about 0.037. For ZIKV, San 

Andrés and Providencia had the highest observed attack rate with about 0.015 (Table 3.6).  

Model comparison was performed with DIC. Lower values of DIC indicate better model fit, 

and a difference of about 5 is important [227]. DIC was calculated using the medians of the 
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posterior distributions of the parameters due to non-normality of the likelihood. Although 

model comparison statistics other than DIC were not examined, AIC, Widely Applicable 

Information Criterion, and leave-one-out information criterion could have been used in 

conjunction with DIC or as an alternative. DIC was emphasized as it is easy to calculate when 

using MCMC sampling and widely used. 

All analyses were performed in R version 4.0.3. 

 
Table 3.6 Prior distributions for parameters in the parametric model based on the renewal 
equation. 
 

Parameter Prior distribution Range 
R0 Uniform (0, 10)* 
" (reporting rate) Uniform CHIKV: (0.037, 1)** 

ZIKV: (0.015, 1)** 
#!"#$($"&') Uniform (0, 50) 
$$"&') (< optimum) Uniform (0, 50) 
$$"&'* (> optimum) Uniform (0, 50) 
#!"#$(+,-.) Uniform (0, 1000) 
$+,-. Uniform (0, 1000) 
%-(-.,/"01,$"	3,44#) Uniform (0, 100) 
%-(56"+7+53/-.8) Uniform (0, 100) 
& Uniform (0, 10) 

*For the negative binomial models with multiple R0s, the upper limits on the prior distributions were increased 
to 15 to account for overdispersion in the data.  
**Lower limit rounded to nearest thousandth. 

  

3.7	Validation	of	parametric	model	fit	and	parameter	fitting	procedure		

Parametric model fits were validated by comparing the Rts for each department and virus 

with the Rts obtained from EpiEstim. One Rt matrix was calculated by the model for each of 

100,000 iterations. After removing a burn-in of 20,000, the remaining matrices were 

thinned by taking every 80th matrix (keeping 800 total). The median values of the thinned 

matrices were plotted with the median Rt estimates from EpiEstim. EpiEstim Rts were 

plotted in the center of the 5-week sliding window used to compute each estimate. 

As an additional check, the infection attack rates for CHIKV and ZIKV were estimated for 

each department and compared to available seroprevalence estimates using the estimate 

for ! from the best-fitting models and the cumulative incidence. As the seroprevalence 

estimates from Nouvellet et al. [191] correspond to the city level, the seroprevalence data 
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were compared to the estimated infection attack rate for the department in which the city 

is located.  

The parameter fitting procedure was validated by creating one simulated dataset for each of 

two Poisson models (the Poisson model with weather covariates and the Poisson model 

with multiple R0s and rainfall). A third simulated dataset was created from a negative 

binomial model with multiple R0s. The simulated datasets used observed population sizes 

for 29 departments, observed weather data (for the Poisson models), and the generation 

time distribution for CHIKV. The inference procedure was re-run on the simulated datasets 

to check that the true parameter values could be recovered.  

3.8	Comparing	parameter	estimates	across	departments	

The posterior probability that the R0 value for CHIKV was greater than the R0 value for ZIKV 

(and vice versa) was estimated for each department. Each best-fitting model was run for 

500,000 iterations. After removing the burn-in (0.2 times the number of parameters times 

the number of iterations), the chains were thinned by saving every 100th value. For CHIKV, 

this resulted in 124,000 posterior samples for each parameter. There were 128,000 

posterior samples for ZIKV. The last 100,000 samples of each R0 were taken, and as above, 

the proportion of times that the estimated R0 was higher for CHIKV than ZIKV (and vice 

versa) was determined.  

The same method was used to compare ! for CHIKV and ZIKV as well as the modeled attack 

rates. 

4	Results	

4.1	Weather	data	

Figures 3.3-3.4 show the weekly time series of population weighted mean temperature and 

cumulative precipitation, respectively, aggregated at the department level. While 

temperature is relatively constant throughout the year in most departments, there are 

strong seasonal trends in rainfall. 
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Figure 3.3 Weekly time series of population weighted mean temperature in °C by department. 
Data before the vertical black lines are from [207]. Bogotá (not shown) was considered separately 
from Cundinamarca. 
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Figure 3.4 Weekly time series of population weighted cumulative precipitation in mm by 
department. Bogotá (not shown) was considered separately from Cundinamarca. 
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4.2	Epidemiological	data	

Table 3.7 shows the total number of suspected and laboratory-confirmed cases of CF and 

ZVD reported to Sivigila from June 2014-June 2017. Most departments did not vary greatly 

in the proportion of cases reported across diseases. Valle del Cauca reported more cases 

than any other department (27% and 26% for CF and ZVD, respectively). As mentioned in 

chapter 1, cases that had Bogotá recorded as the location of likely infection were 

considered extremely unlikely and were removed from the data. 
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Table 3.7 Cumulative incidence of suspected and laboratory-confirmed cases of CF and ZVD in 
Colombia, 2014-2017. 
 

  CF cases ZVD cases 
Department Population in 2016 Number  % Number  % 
Amazonas 77,088 10 <1% 342 <1% 
Antioquia 6,534,764 13,911 3% 2,523 2% 
Arauca 265,190 5,335 1% 1,875 2% 
Atlántico 2,489,709 12,381 3% 6,778 6% 
Bogotá 7,980,001 0 0% 0 0% 
Bolívar 2,122,021 22,810 6% 1,914 2% 
Boyacá 1,278,061 398 <1% 366 <1%  
Caldas 989,942 2,886 1% 334 <1% 
Caquetá 483,834 6,404 2% 1,142 1% 
Casanare 362,698 13,366 3% 3,942 4% 
Cauca 1,391,889 3,253 1% 355 <1% 
Cesar 1,041,203 3,813 1% 1,605 2% 
Chocó  505,046 479 <1% 65 <1% 
Córdoba 1,736,218 16,932 4% 3,327 3% 
Cundinamarca 2,721,368 17,464 4% 5,272 5% 
Guainía 42,123 10 <1% 14 <1% 
Guaviare 112,621 1,867 <1% 208 <1% 
Huila 1,168,910 29,493 7% 6,966 7% 
La Guajira 985,498 10,464 3% 699 <1% 
Magdalena 1,272,278 9,935 2% 3,232 3% 
Meta 979,683 18,020 4% 4,323 4% 
Nariño 1,766,008 2,179 1% 95 <1% 
Norte de Santander 1,367,716 29,137 7% 10,361 10% 
Putumayo 349,537 894 <1% 502 <1% 
Quindío 568,473 4,265 1% 406 <1% 
Risaralda 957,250 5,266 1% 1,296 1% 
San Andrés and 
Providencia 

77,101 1,482 <1% 1,148 1% 

Santander 2,071,044 10,900 3% 10,374 10% 
Sucre 859,909 20,636 5% 1,639 2% 
Tolima 1,412,230 38,901 9% 7,122 7% 
Valle del Cauca 4,660,438 109,935 27% 27,712 26% 
Vaupés 44,079 0 0% 18 <1% 
Vichada 73,702 89 <1% 78 <1% 
Total 48,747,632 412,915 100% 106,033 100% 

	

4.3	Weekly	time-varying	reproduction	numbers	from	EpiEstim	

A total of 1,938 weekly estimates of Rt were obtained from EpiEstim for CHIKV, while 1,977 

were obtained for ZIKV. The number of Rt estimates for each virus is shown in Figure 3.5 as 

well as the number of weeks during which estimated Rt > 1. For CHIKV, Valle del Cauca and 
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Córdoba had the greatest number of Rt estimates with 87 each. For ZIKV, Norte de 

Santander had the greatest number of Rt estimates with 90, followed by Atlántico with 87. 

Meta and Santander had the greatest number of weeks where estimated Rt > 1 for CHIKV 

with 39 each. For ZIKV, Casanare had the greatest number of weeks where estimated Rt > 1 

with 45.  

The number of weeks with Rt estimates varied by department because the duration of the 

epidemic varied in each location; for each department, Rt was estimated from the week 

when cases were first reported until the week when cases were no longer reported. 

Departments could also lose Rt estimates for certain weeks if the estimates were highly 

uncertain (see section 3.3).  
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Figure 3.5 Histograms showing (A) the number of Rt estimates and (B) the number of weeks where 
estimated Rt > 1 by department. 

 

4.4	Non-parametric	models	of	arbovirus	transmission	
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lines. The y-intercept from the linear regression model, which is a rough approximation of 

the overall R0, was 1.71 (95% CI: 1.54-1.88) for CHIKV and 1.69 (95% CI: 1.59-1.78) for ZIKV. 

The slope was -39.8 (95% CI: -53.2 - -26.4) for CHIKV and -113.0 (95% CI: -135.8 - -90.2) for 

ZIKV. For CHIKV, the corresponding estimate of the reporting rate was 0.044 (95% CI: 0.032-

0.056), and for ZIKV, it was 0.015 (95% CI: 0.012-0.018). 

	

Figure 3.6 Rt estimates versus cumulative incidence divided by population size of each 
department. (A) CHIKV and (B) ZIKV. The black line is the fitted linear regression line, and the shaded 
line represents the 95% CI. The y-axis is plotted on a log10 scale to better visualize trends.  
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Linear regression models were also fitted to the relationship between the EpiEstim Rts and 

cumulative incidence divided by population separately for each department (Figures 3.7-

3.8). The estimated R0s across departments ranged from 0.13 to 8.07 for CHIKV and from 

1.59 to 8.22 for ZIKV, while the estimated !s across departments ranged from 0.001 to 

0.053 for CHIKV and from <0.001 to 0.017 for ZIKV. The uncertainty of these estimates was 

high, as indicated by the 95% confidence intervals in Figures 3.7-3.8. 
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Figure 3.7 Rt estimates versus cumulative incidence divided by population size by department for 
CHIKV. The black line is the fitted linear regression line, and the shaded line represents the 95% CI. 
The estimated R0 and " are shown in the upper right corner of each plot. 
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Figure 3.8 Rt estimates versus cumulative incidence divided by population size by department for 
ZIKV. The black line is the fitted linear regression line, and the shaded line represents the 95% CI. 
The estimated R0 and " are shown in the upper right corner of each plot. 
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4.5	Fitting	GAMs	to	the	residuals	of	the	linear	regression	models	

GAMs were fitted to the residuals of the linear regression models which were fitted to all 

departments. The best-fitting GAM to the residuals of the linear regression models versus 

covariates for CHIKV included mean weekly temperature averaged over three weeks 

followed by a six-week lag prior to case reporting. Although this model did not have the 

lowest AIC overall, the differences in AIC between this model and the others were all less 

than two (Table 3.8). Therefore, the simplest model is preferred. The smooth effect plot is 

shown in Figure 3.9. The edf of the smooth term for temperature was 1.00 in the best-fitting 

CHIKV model, and the effect of temperature was significant (p = 0.003). The model reached 

full convergence after seven iterations. The k value was not too low for the smooth term (p 

= 0.09). Model diagnostics are shown in Figure 3.10. They show that the model does not fit 

well, likely due to several outliers. The Q-Q plot in the top-left is curved rather than forming 

a straight line; the histogram of the residuals is skewed toward zero rather than forming a 

bell curve; while many of the residual values appear to cluster around zero, there are some 

that are much higher; and many of the points in the plot of response versus fitted values do 

not lie along the line y=x. The AIC values for all of the fitted GAMs for CHIKV can be found in 

Table 3.8. 

 
Table 3.8 AIC values of fitted GAMs for CHIKV. Best-fitting model in bold. 
 

Model Degrees of freedom AIC 
Temperature 3.0 9,385.0 
Temperature and rainfall 7.9 9,384.8 
Temperature and overcrowding 4.0 9,386.7 
Temperature and inadequate 
floors 

4.0 9,386.7 

Temperature and inadequate 
exterior walls 

4.0 9,383.8 
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Figure 3.9 Smooth effect plot of mean weekly temperature in °C averaged over three weeks 
followed by a six-week lag prior to case reporting from best-fitting GAM for CHIKV. The x-axis 
limits were set to show the range of the most biologically plausible values. The estimated degrees of 
freedom (edf) of the smooth term can be found on the y-axis label. Edf values around 1 approximate 
linear terms.  
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Figure 3.10 Diagnostics of best-fitting GAM for CHIKV. A Q-Q plot is shown on the top-left. It 
compares the model residuals to a normal distribution. The residuals of a model that has a good fit 
will be close to a straight line, as indicated by the red line. The bottom left plot is a histogram of the 
residuals, which should resemble a symmetrical bell curve. The residual values are plotted in the 
top-right plot and should be equally distributed around zero. On the bottom-right, a plot of response 
versus fitted values is shown. The points lie along the line y=x in a perfect model. 
 

The best-fitting GAM for ZIKV included mean weekly temperature averaged over three 

weeks followed by a six-week lag prior to case reporting, the percentage of households with 

overcrowded conditions, and the percentage of households with inadequate exterior walls. 

Model diagnostics indicated that the default k value was too low for all three covariates. 
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which the default values of k were used for overcrowding and inadequate exterior walls and 

a k value of 25 was used for temperature (Table 3.9). Smooth effect plots are shown in 

Figure 3.11. The edf of the smooth term in the model with the lowest AIC was 16.7 for 

temperature, 1.01 for overcrowding, and 3.00 for inadequate exterior walls. All variables 

were significant (p value <0.0001 for both temperature and overcrowding and 0.04 for 

inadequate exterior walls). The model reached full convergence after six iterations. Model 

diagnostics are shown in Figure 3.12. The model fit for ZIKV is better than that for CHIKV; 

the Q-Q plot is closer to a straight line, though it is still curved; the histogram of the 

residuals is still skewed but is closer to a bell curve; the plot of the residuals versus the 

linear predictors has more residual values clustered around zero; and the points in the plot 

of response versus fitted values lie closer to the ideal of y=x. The AIC values for all of the 

fitted GAMs for ZIKV can be found in Table 3.9. 

 
Table 3.9 AIC values of fitted GAMs for ZIKV. Best-fitting model in bold. 
 

Model Degrees of freedom AIC 
Temperature 9.6 7,390.9 
Temperature and rainfall 14.9 7,388.1 
Temperature and overcrowding 10.7 7,369.7 
Temperature, overcrowding, and 
inadequate floors 

13.5 7,370.8 

Temperature, overcrowding, and 
inadequate exterior walls 

14.4 7,367.3 

Temperature (higher k), 
overcrowding, and inadequate 
exterior walls 

25.1 7,324.0 
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Figure 3.11 Smooth effect plots from best-fitting GAM for ZIKV. (A) mean weekly temperature in °C 
averaged over three weeks followed by a six-week lag prior to case reporting, (B) percentage of 
households with overcrowded conditions, and (C) percentage of households with inadequate exterior 
walls. The x-axis limits for (A) were set to show the range of the most biologically plausible values. The 
estimated degrees of freedom (edf) of the smooth term can be found on the y-axis label. Edf values 
around 1 approximate linear terms. 
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Figure 3.12 Diagnostics of the best-fitting GAM for ZIKV. A Q-Q plot is shown on the top-left. It 
compares the model residuals to a normal distribution. The residuals of a model that has a good fit 
will be close to a straight line, as indicated by the red line. The bottom left plot is a histogram of the 
residuals, which should resemble a symmetrical bell curve. The residual values are plotted in the 
top-right plot and should be equally distributed around zero. On the bottom-right, a plot of response 
versus fitted values is shown. The points lie along the line y=x in a perfect model. 
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Table 3.10 Testing the effect of mean weekly temperature in the weeks prior to case reporting on 
CHIKV and ZIKV transmission with Poisson models. Best-fitting model in bold for each virus. 
 

Virus Model parameters LogL DIC # 
Params 

Eff 
params 

CHIKV ", R0 -62,201 124,405 2 1.38 
", R0, #!"#$($"&') averaged over 5 
weeks, $$"&' 

-61,273 122,553 4 3.37 

", R0, #!"#$($"&') averaged over 4 
weeks, $$"&' 

-61,289 122,585 4 3.31 

", R0, #!"#$($"&') averaged over 3 
weeks, $$"&' 

-61,307 122,620 4 3.36 

", R0, #!"#$($"&') averaged over 3 
weeks followed by 3-week lag, $$"&' 

-61,160 122,327 4 3.35 

!,	R0, )9:;<(<:=>) averaged over 3 
weeks followed by 4-week lag,  *<:=> 

-61,152 122,310 4 3.26 

", R0, #!"#$($"&') averaged over 3 
weeks followed by 6-week lag,  $$"&' 

-61,275 122,558 4 3.31 

ZIKV ", R0 -22,238 44,479 2 1.35 
", R0, #!"#$($"&') averaged over 5 
weeks, $$"&' 

-22,097 44,200 4 3.29 

", R0, #!"#$($"&') averaged over 4 
weeks, $$"&' 

-22,078 44,162 4 3.33 

!, R0, )9:;<(<:=>) averaged over 3 
weeks, *<:=> 

-22,061 44,129 4 3.34 

", R0, #!"#$($"&') averaged over 3 
weeks followed by 3-week lag, $$"&' 

-22,145 44,298 4 3.33 

", R0, #!"#$($"&') averaged over 3 
weeks followed by 4-week lag, $$"&' 

-22,155 44,316 4 3.36 

", R0, #!"#$($"&') averaged over 3 
weeks followed by 6-week lag, $$"&' 

-22,151 44,308 4 3.38 

LogL: log likelihood, Params: parameters, Eff params: effective number of parameters, !/012(2034): optimal 
temperature for transmission, "2034: standard deviation of !/012(2034) 

 

Similarly, Table 3.11 shows the results of testing different definitions of rainfall with Poisson 

models. The rainfall model with the lowest DIC for CHIKV used the definition of cumulative 

weekly rainfall summed over a six-week period followed by a two-week lag prior to case 

reporting. The lowest DIC model for ZIKV was the one that defined rainfall as the cumulative 

weekly rainfall summed over a six-week period followed by a three-week lag prior to case 

reporting.  
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Table 3.11 Testing the effect of cumulative weekly rainfall in the weeks prior to case reporting on 
CHIKV and ZIKV transmission with Poisson models. Best-fitting model in bold for each virus. 
 

Virus Model parameters LogL DIC # Params Eff params 

CHIKV ", R0 -62,201 124,405 2 1.38 
!, R0, )9:;<(?@AB) summed over 6 
weeks followed by 2-week lag, 
*?@AB 

-60,086 120,178 4 3.31 

", R0, #!"#$(+,-.)summed over 6 
weeks followed by 3-week lag, 
$+,-. 

-60,561 121,129 4 3.29 

ZIKV ", R0 -22,238 44,479 2 1.35 
", R0, #!"#$(+,-.) summed over 6 
weeks followed by 2-week lag, 
$+,-. 

-21,965 43,936 4 3.29 

!,	R0, )9:;<(?@AB)summed over 6 
weeks followed by 3-week lag, 
*?@AB 

-21,818 43,642 4 3.25 

LogL: log likelihood, Params: parameters, Eff params: effective number of parameters, !/012(5678): optimal 
rainfall for transmission, "5678: standard deviation of !/012(5678) 

 

Due to large estimated standard deviations for the temperature function, models with two 

standard deviations were also tested. Table 3.12 shows that two standard deviations are 

preferred over one for the temperature function in both CHIKV and ZIKV Poisson models 

that also estimate reporting rate ! and a single R0.   

 
Table 3.12 Testing whether two standard deviations instead of one better describe the effect of 
temperature on CHIKV and ZIKV transmission in the weeks prior to case reporting with Poisson 
models. “Best temperature” uses the best-fitting definition of temperature for each virus from Table 
3.10. For both CHIKV and ZIKV, the best-fitting model included two standard deviations for the effect 
of temperature. 
 

Virus Model parameters LogL DIC # Params Eff params 

CHIKV ", R0, #!"#$($"&'), $$"&') -61,152 122,310 4 3.26 

", R0, #!"#$($"&'), $$"&'), 
$$"&'*  

-60,944 121,897 5 4.31 

ZIKV ", R0, #!"#$($"&'), $$"&')  -22,061 44,129 4 3.34 

", R0, #!"#$($"&'), $$"&'), 
$$"&'*  

-21,952 43,913 5 4.25 

LogL: log likelihood, Params: parameters, Eff params: effective number of parameters,	!/012(2034): optimal 
temperature for transmission, "20349: standard deviation associated with temperatures below !/012(2034), 
"2034:: standard deviation associated with temperatures greater than or equal to !/012(2034) 



Page 132 of 391 
 

Results from Poisson models with socioeconomic covariates can be found in Table 3.13. The 

percentage of households with inadequate exterior walls as well as those with overcrowded 

conditions appeared uncorrelated with CHIKV and ZIKV transmission dynamics as indicated 

by the low effective number of parameters relative to the actual number of parameters in 

each model. DIC values were also similar across models. Although the ZIKV model with 

inadequate exterior walls had a change in DIC of 7, the effect size of the parameter was 

extremely small (0.004, 95% CrI: 0.001-0.006), resulting in a multiplication factor (z7) 

ranging from 0.98 to 1.07 across departments at the median estimate. 

 
Table 3.13 Effect of socioeconomic factors on CHIKV and ZIKV transmission using Poisson models. 
 

Virus Model parameters LogL DIC # Params Eff params 

CHIKV ", R0  -62,201 124,405 2 1.38 
", R0, inadequate exterior walls  -62,202 124,407 3 1.96 
", R0, overcrowding -62,202 124,407 3 1.98 

ZIKV ", R0  -22,238 44,479 2 1.35 
", R0, inadequate exterior walls  -22,234 44,472 3 2.38 
", R0, overcrowding -22,239 44,482 3 1.94 

LogL: log likelihood, Params: parameters, Eff params: effective number of parameters 

 

Tables 3.14-3.15 show results of Poisson models with weather covariates as well as multiple 

R0s for CHIKV and ZIKV. Figures 3.13-3.14 show the relationship between predicted Rt and 

weather using results from the Poisson model with weather covariates. The predicted Rt for 

CHIKV appears to be above the threshold of 1 for a larger range of temperature and rainfall 

combinations compared to ZIKV. 
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Table 3.14 Estimated R0s and reporting rate of CHIKV from Poisson models with weather 
covariates and multiple R0s. Posterior median and 95% credible interval presented for each 
parameter. Best-fitting model in bold. 
 

 Poisson Poisson with 
weather covariates 

Poisson with 
multiple R0s 

Poisson with 
multiple R0s and 
rainfall  

DIC 124,405 119,056 113,042 108,106 
Number of 
parameters 

2 7 30 32 

" (reporting rate) 0.051 
(0.050-0.052) 

0.049 
(0.048-0.049) 

0.041 
(0.040-0.041) 

0.041 
(0.041-0.042) 

R0 1.23 
(1.23-1.24) 

1.49 
(1.48-1.50) 

Range: 0.66-2.02 Range: 0.92-2.89 

#!"#$($"&') (°C)*  25.3 
(25.1-25.5) 

  

$$"&') (°C)**  15.1 
(14.4-15.7) 

  

$$"&'* (°C)**  5.9 
(5.6-6.3) 

  

#!"#$(+,-.) 
(mm)*** 

 477 
(470-484) 

 747 
(712-788) 

$+,-. (mm)  562 
(549-576) 

 701 
(671-734) 

*The best-fitting temperature !/012(2034) uses the mean weekly temperature averaged over three weeks 
followed by a four-week lag prior to case reporting. 
∗∗ "20349: standard deviation associated with temperatures below !/012(2034), "2034:: standard deviation 
associated with temperatures greater than or equal to !/012(2034). 
***The best-fitting rainfall !/012(5678) uses cumulative weekly rainfall summed over six weeks followed by a 
two-week lag prior to case reporting. 
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Table 3.15 Estimated R0s and reporting rate of ZIKV from Poisson models with weather covariates 
and multiple R0s. Posterior median and 95% credible interval presented for each parameter. Best-
fitting model in bold. 
 

 Poisson Poisson with 
weather covariates 

Poisson with 
multiple R0s 

Poisson with 
multiple R0s and 
rainfall 

DIC 44,479 43,090 42,234 41,471 
Number of 
parameters 

2 7 31 33 

" (reporting 
rate) 

0.015 
(0.015-0.015) 

0.015 
(0.015-0.015) 

0.015 
(0.015-0.015) 

0.015 
(0.015-0.015) 

R0 1.25 
(1.24-1.25) 

1.47 
(1.46-1.49) 

Range: 0.89-3.06 Range: 1.05-3.16 

#!"#$($"&') (°C)*  27.2 
(27.0-27.3) 

  

$$"&') (°C)**  14.0 
(13.3-14.8) 

  

$$"&'* (°C)**  3.5 
(3.2-3.9) 

  

#!"#$(+,-.) 
(mm)*** 

 310 
(302-319) 

 345 
(333-359) 

$+,-. (mm)  434 
(418-452) 

 467 
(445-492) 

*The best-fitting temperature !/012(2034) uses the mean weekly temperature averaged over three weeks prior 
to case reporting. 
∗∗ "20349: standard deviation associated with temperatures below !/012(2034), "2034:: standard deviation 
associated with temperatures greater than or equal to !/012(2034). 
***The best-fitting rainfall !/012(5678) uses cumulative weekly rainfall summed over six weeks followed by a 
three-week lag prior to case reporting.  
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Figure 3.13 Rt as a function of temperature and rainfall from Poisson models with weather 
covariates. (A) CHIKV and (B) ZIKV. The orange bars show the distribution of the data, and the gray 
lines show the interquartile range of the temperature and rainfall data. The horizontal dashed line 
shows the threshold Rt = 1. Predictions were made by simulating the model with 5,000 parameter 
sets randomly sampled from the posterior distribution. The blue line is underneath the green line in 
(B). 

B 

A 
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Figure 3.14 Heatmap showing predicted Rt as a function of temperature and rainfall from Poisson 
models with weather covariates. (A) CHIKV and (B) ZIKV. The vertical and horizontal dotted lines 
show the interquartile range of the temperature and rainfall data, respectively. Predictions were 
made by simulating the model with 1,000 parameter sets randomly sampled from the posterior 
distribution and averaging across the simulations. 
 

The best-fitting Poisson model for both viruses is the one that estimates !, one R0 for each 

department, and rainfall with one standard deviation (Tables 3.14-3.15). The estimate for ! 

was 0.041 (95% CrI: 0.041-0.042) for CHIKV compared to 0.015 (95% CrI: 0.015-0.015) for 

ZIKV. Estimates of R0 ranged from 0.92-2.89 for CHIKV and 1.05-3.16 for ZIKV. Optimal 

conditions for CHIKV transmission occurred when the cumulative weekly rainfall summed 

over six weeks was 747 mm (95% CrI: 712-788) followed by a two-week lag prior to case 

reporting with a standard deviation of 701 (95% CrI: 671-734). Similarly, ZIKV transmission 

was optimal when the cumulative weekly rainfall summed over six weeks was 345 mm (333-

359) followed by a three-week lag prior to case reporting with a standard deviation of 467 

(95% CrI: 445-492). For both CHIKV and ZIKV, the parameters for rainfall vary considerably 

between the Poisson with weather covariates model and the Poisson model with multiple 

R0s and rainfall. Estimates of the rainfall parameter and its standard deviation were both 

higher in the latter model, suggesting that transmission of CHIKV and ZIKV is optimized at 

higher levels of cumulative rainfall regardless of temperature and at lower levels of 

cumulative rainfall when temperature is considered. For Poisson models with multiple R0s 
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and temperature, neither the CHIKV model nor the ZIKV model converged after 100,000 

iterations. When the ZIKV model was run for 200,000 iterations, the model converged, but 

the prior distribution was returned for S,9%#(#9.:). Similarly, running the CHIKV model for 

300,000 iterations was necessary for it to reach convergence; however, the prior 

distribution was returned for S,9%#(#9.:), and the mixing of the chains was slow, especially 

for S,9%#(#9.:) and x#9.:. 

Figures 3.15-3.16 show how the estimated Rts from the best-fitting Poisson models compare 

to the Rts obtained from EpiEstim. The relationship is positive and statistically significant for 

both viruses, but the 95% credible intervals of the Poisson model estimates are very narrow.



Page 138 of 391 
 

 

Figure 3.15 Comparing median estimates of Rt from the best-fitting Poisson model for CHIKV 
(Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines). EpiEstim Rts are plotted 

in the center of the 5-week window used to compute each estimate. Shaded areas represent 95% 
CrI. There is a positive statistically significant correlation of 0.21 (Pearson’s correlation coefficient, 
95% CI: 0.16-0.25, p < 0.0001). 
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Figure 3.16 Comparing median estimates of Rt from the best-fitting Poisson model for ZIKV (Rt
Model, 

blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines). EpiEstim Rts are plotted in the 

center of the 5-week window used to compute each estimate. Shaded areas represent 95% CrI. 
There is a positive statistically significant correlation of 0.32 (Pearson’s correlation coefficient, 95% 
CI: 0.28-0.36, p < 0.0001). 
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4.7	Fitting	negative	binomial	models	of	arbovirus	transmission	

Table 3.16 shows the results of fitting negative binomial models with and without 

socioeconomic covariates. The model DIC does not change in a meaningful way when the 

percentage of households with inadequate exterior walls and those with overcrowded 

conditions are added to the models with !, a single R0, and overdispersion, r. Negative 

binomial models with !, a single R0, r, and weather covariates (temperature plus its 

standard deviation or rainfall plus its standard deviation) converged, but the prior 

distribution was returned for at least one weather parameter in each model.  

 
Table 3.16 Effect of socioeconomic factors on CHIKV and ZIKV transmission using negative 
binomial models. 
 

Virus Model parameters LogL DIC # Params Eff params 
CHIKV ", R0, & -9,341 18,688 3 2.41 

", R0, &, inadequate exterior walls  -9,341 18,689 4 3.08 
", R0, &, overcrowding -9,341 18,688 4 2.98 

ZIKV ", R0, & -7,056 14,117 3 2.38 
", R0, &, inadequate exterior walls  -7,057 14,119 4 2.89 
", R0, &, overcrowding -7,057 14,119 4 2.97 

LogL: log likelihood, Params: parameters, Eff params: effective number of parameters 

 

Table 3.17 shows the results of fitting negative binomial models to estimate ! and R0s for 

CHIKV and ZIKV. For both viruses, the model with the lowest DIC was the negative binomial 

model with multiple R0s. The estimated ! for CHIKV was 0.045 (95% CrI: 0.042-0.049), and it 

was 0.016 (95% CrI: 0.015-0.017) for ZIKV. Estimated R0s ranged from 0.96-2.93 (median 

1.30) for CHIKV and 0.98-5.87 (median 1.33) for ZIKV. r was lower for CHIKV compared to 

ZIKV (1.44, 95% CrI: 1.34-1.55 for CHIKV versus 1.80, 95% CrI: 1.66-1.95 for ZIKV). Low 

estimates for this parameter suggest high overdispersion in the data. This means that a 

small proportion of cases are responsible for causing a greater proportion of secondary 

cases. Similar to the models with a single R0 and weather covariates, negative binomial 

models with multiple R0s and temperature or rainfall converged, but the prior distribution 

for one of the weather parameters was returned in each model.  
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Table 3.17 Estimated R0s and reporting rate of CHIKV and ZIKV from negative binomial models 
with multiple R0s. Posterior median and 95% credible interval presented for each parameter. Best-
fitting models in bold. 
 

 CHIKV ZIKV 
Model Negative 

binomial 
Negative 
binomial with 
multiple R0s 

Negative 
binomial 

Negative 
binomial with 
multiple R0s 

DIC 18,688 18,645 14,117 14,040 
Number of 
parameters 

3 31 3 32 

Effective 
parameters 

2.41 30.28 2.38 31.39 

" (reporting rate) 0.068 
(0.059-0.081) 

0.045 
(0.042-0.049) 

0.021 
(0.019-0.023) 

0.016 
(0.015-0.017) 

R0 1.28 
(1.22-1.34) 

Range: 0.96-
2.93 

1.37 
(1.31-1.43) 

Range: 0.98-5.87 

& (overdispersion) 1.38 
(1.28-1.48) 

1.44 
(1.34-1.55) 

1.68 
(1.55-1.82) 

1.80 
(1.66-1.95) 

 

Figures 3.17-3.18 show the estimated Rts from the best-fitting negative binomial models 

versus the Rts obtained from EpiEstim. The model fits are good. A version of Figure 3.18 with 

a different y-axis that shows the full 95% credible interval of the model estimate for San 

Andrés and Providencia can be found in Appendix S1. 

For CHIKV, the correlation between the EpiEstim Rts and the model Rts was lower for the 

best-fitting negative binomial model compared to the best-fitting Poisson model (0.16 

versus 0.21 respectively). However, the corresponding correlations for ZIKV were similar 

(0.31 versus 0.32). While the Poisson models capture the general trends of the EpiEstim Rts 

better than the negative binomial models, the negative binomial models better characterize 

the uncertainty in the Rt estimates. This increased uncertainty is statistically favored by the 

DIC. Additionally, the low estimates for r from the negative binomial models suggest that 

Poisson models may not be appropriate due to overdispersion in the data.  

 



Page 142 of 391 
 

 

Figure 3.17 Comparing median estimates of Rt from the best-fitting negative binomial model for 
CHIKV (Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines). EpiEstim Rts are 

plotted in the center of the 5-week window used to compute each estimate. Shaded areas represent 
95% CrI. There is a positive statistically significant correlation of 0.16 (Pearson’s correlation 
coefficient, 95% CI: 0.12-0.21, p < 0.0001). 
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Figure 3.18 Comparing median estimates of Rt from the best-fitting negative binomial model for 
ZIKV (Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines). EpiEstim Rts are 

plotted in the center of the 5-week window used to compute each estimate. Shaded areas represent 
95% CrI. There is a positive statistically significant correlation of 0.31 (Pearson’s correlation 
coefficient, 95% CI: 0.27-0.35, p < 0.0001). 
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Table 3.18 shows the estimated R0 values for CHIKV and ZIKV from the best-fitting negative 

binomial models across departments. Out of 29 departments that were modeled for both 

CHIKV and ZIKV, the estimated R0s for only four departments had substantially different 

posterior probabilities that the R0 for one virus was higher than that for the other virus. Of 

these, all but one department (San Andrés and Providencia) had a higher estimated R0 for 

CHIKV compared to ZIKV. A plot comparing the posterior densities of the estimated R0s for 

CHIKV and ZIKV by department can be found in Figure 3.19.   
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Table 3.18 Estimated R0 values of CHIKV and ZIKV for each department from the best-fitting 
negative binomial models. Median posterior and 95% CrI shown. 
 

Department R0 CHIKV R0 ZIKV Posterior 
probability 

that  
R0,CHIKV > R0,ZIKV 

Posterior 
probability  

that  
R0,CHIKV < R0,ZIKV 

Amazonas  1.41 (1.07-1.85)   
Antioquia 0.96 (0.79-1.16) 1.16 (0.98-1.39) 0.08 0.92 
Arauca 1.49 (1.20-1.88) 1.57 (1.27-1.96) 0.37 0.63 
Atlántico 1.31 (1.09-1.59) 1.39 (1.17-1.67) 0.32 0.68 
Bolívar 1.28 (1.04-1.61) 1.15 (0.95-1.40) 0.76 0.24 
Boyacá 1.26 (1.00-1.61) 1.20 (0.96-1.50) 0.61 0.39 
Caldas 1.02 (0.83-1.27) 1.30 (1.04-1.63) 0.06 0.94 
Caquetá 1.48 (1.20-1.84) 1.33 (1.06-1.69) 0.74 0.26 
Casanare 2.93 (2.21-3.96) 2.18 (1.79-2.66) 0.95 0.05 
Cauca 1.04 (0.85-1.28) 1.14 (0.91-1.44) 0.28 0.72 
Cesar 1.08 (0.89-1.32) 1.16 (0.96-1.42) 0.30 0.70 
Chocó 1.35 (1.02-1.79) 0.98 (0.68-1.42) 0.91 0.09 
Córdoba 1.25 (1.05-1.52) 1.47 (1.20-1.82) 0.13 0.87 
Cundinamarca 1.14 (0.95-1.37) 1.33 (1.12-1.60) 0.11 0.89 
Guaviare 1.57 (1.23-2.06) 1.13 (0.85-1.52) 0.95 0.05 
Huila 2.10 (1.74-2.57) 1.56 (1.31-1.89) 0.99 0.01 
La Guajira 1.25 (0.97-1.63) 1.32 (1.03-1.71) 0.37 0.63 
Magdalena 1.49 (1.20-1.86) 1.44 (1.18-1.78) 0.58 0.42 
Meta 1.41 (1.18-1.72) 1.58 (1.31-1.92) 0.21 0.79 
Nariño 1.25 (0.95-1.68) 1.13 (0.84-1.50) 0.70 0.30 
Norte de 
Santander 

1.71 (1.40-2.11) 1.75 (1.47-2.10) 0.44 0.56 

Putumayo 1.28 (1.03-1.60) 1.31 (1.05-1.65) 0.43 0.57 
Quindío 1.30 (1.05-1.61) 1.14 (0.89-1.46) 0.78 0.22 
Risaralda 1.16 (0.96-1.43) 1.20 (0.99-1.47) 0.41 0.59 
San Andrés & 
Providencia 

1.61 (1.30-2.04) 5.87 (4.18-8.31) <0.0001 >0.9999 

Santander 1.22 (1.02-1.46) 1.50 (1.27-1.80) 0.05 0.95 
Sucre 2.15 (1.76-2.65) 1.38 (1.12-1.70) 0.999 0.001 
Tolima 2.11 (1.72-2.60) 1.57 (1.32-1.88) 0.98 0.02 
Valle del Cauca 1.69 (1.40-2.04) 1.86 (1.57-2.20) 0.23 0.77 
Vichada 1.26 (0.88-1.80) 1.09 (0.78-1.54) 0.71 0.29 
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Figure 3.19 Comparison of the posterior densities of estimated R0s for CHIKV and ZIKV by 
department from the best-fitting negative binomial models. 
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Using the incidence of disease and the estimates of ! from the best-fitting negative 

binomial models, the estimated infection attack rate for each department and week were 

calculated (Figures 3.20-3.21). For CHIKV, estimated infection attack rates after 110 weeks 

ranged from 0.01 in Boyacá to 0.82 in Casanare with a median of 0.17. Estimated infection 

attack rates of ZIKV after 97 weeks ranged from 0.003 in Nariño to 0.93 in San Andrés and 

Providencia with a median of 0.12.  

For departments with available post-epidemic seroprevalence estimates for their capital 

cities [191], estimated infection attack rates for CHIKV were 0.05, 0.47, 0.56, and 0.53 for 

Antioquia, Norte de Santander, Huila, and Sucre, respectively. For ZIKV, the estimates were 

0.02, 0.47, 0.37, and 0.12, respectively. Compared to the seroprevalence estimates from 

Nouvellet et al. [191], the estimated infection attack rate of CHIKV for the department of 

Huila was within the 95% confidence interval for its capital city of Neiva, while the estimates 

for Norte de Santander, Huila, and Sucre were outside that for their capital cities (all lower). 

For ZIKV, only the estimated infection attack rate for Norte de Santander was within the 

95% confidence interval for the estimated seroprevalence of its capital city of Cúcuta, while 

estimates for Antioquia, Huila, and Sucre were all lower than their respective capital cities.  

A hexagon map comparing the modeled attack rates for CHIKV and ZIKV is shown in Figure 

3.22. Of the 29 departments with estimates for both viruses, only two had similar posterior 

probabilities that the infection attack rate for one virus was higher than the other. The 

posterior probability that the infection attack rate of CHIKV was higher than that of ZIKV 

was 0.65 for Arauca and 0.54 for Norte de Santander. Similarly, the posterior probability 

that the infection attack rate of ZIKV was higher than that of CHIKV was 0.35 for Arauca and 

0.46 for Norte de Santander. The posterior probability that the infection attack rate of 

CHIKV was higher than that of ZIKV was 0.98 for Magdalena (0.02 that ZIKV was higher than 

CHIKV), while the remaining departments had posterior probabilities of either <0.0001 or 

>0.9999.  
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Figure 3.20 Modeled and observed attack rates of CHIKV by department. Yellow lines show the 
observed attack rates, while purple lines show the estimated infection attack rates, which were 
obtained by adjusting the observed attack rates by the estimated reporting rate. The reporting rate 
was estimated from the best-fitting negative binomial model. Purple shading represents the 95% CrI 
associated with this estimate. 
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Figure 3.21 Modeled and observed attack rates of ZIKV by department. Yellow lines show the 
observed attack rates, while purple lines show the estimated infection attack rates, which were 
obtained by adjusting the observed attack rates by the estimated reporting rate. The reporting rate 
was estimated from the best-fitting negative binomial model. Purple shading represents the 95% CrI 
associated with this estimate. 
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Figure 3.22 Hexagon map of modeled attack rates of CHIKV and ZIKV. Estimated infection attack 
rates (IARs) were obtained by adjusting the observed attack rates by the estimated reporting rate. 
The reporting rates were estimated from the best-fitting negative binomial models. The color 
gradient represents the mean IAR across viruses. Note that the island department of San Andrés and 
Providencia is attached to the upper left side of the map. 
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4.8	Validation	of	parameter	fitting	procedure	

Accurate parameter estimates were recovered from the Poisson model with weather 

covariates fitted to a simulated dataset created by simulating the epidemic with observed 

population sizes of 29 departments, observed weather data, and the generation time 

distribution for CHIKV (Table 3.19). Accurate parameter estimates were also recovered from 

the Poisson model with multiple R0s (Figure 3.23 and Table 3.20) as well as from the 

negative binomial model with multiple R0s (Figure 3.24 and Table 3.20), each fitted to one 

simulated dataset. It is unclear why the models with multiple R0s are not able to recover all 

parameter estimates used to generate the data. It does not appear to be due to small 

sample sizes.  

 
Table 3.19 True values and median parameter estimates obtained from a single dataset simulated 
from the Poisson model with weather covariates as well as observed population sizes for 29 
departments, observed weather data, and the generation time distribution for CHIKV. 
 

Parameter True values Estimated values from 
simulated data (95% CrI) 

" (reporting rate) 0.05 0.050 
(0.050-0.051) 

R0 1.50 1.50 
(1.49-1.51) 

#!"#$($"&')  (°C)* 26.0 25.9 
(25.4-26.3) 

$$"&') (°C)** 15.0 14.9 
(13.2-16.8) 

$$"&'* (°C)** 8.0 8.0 
(6.9-9.5) 

#!"#$(+,-.)  (mm)*** 480 483 
(478-488) 

$+,-. (mm) 500 507 
(499-515) 

*Mean weekly temperature averaged over three weeks followed by a three-week lag prior to case reporting. 
∗∗ "20349: standard deviation associated with temperatures below !/012(2034), "2034:: standard deviation 
associated with temperatures greater than or equal to !/012(2034). 
***Cumulative weekly rainfall summed over six weeks followed by a two-week lag prior to case reporting.  
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Table 3.20 True values and median parameter estimates obtained from a single dataset simulated 
from either the Poisson model with multiple R0s or the negative binomial model with multiple R0s. 
Data were simulated using the observed population sizes for 29 departments and the generation 
time distribution for CHIKV. 
 

 Poisson with multiple R0s Negative binomial with multiple R0s 
 True values  Estimated values 

from simulated 
data (95% CrI)  

True values  Estimated values 
from simulated 
data (95% CrI)  

" (reporting rate)  0.04 0.04 (0.04-0.04) 0.03 0.03 (0.03-0.03) 
R0, range 1.07-3.45 0.85-3.44 1.11-4.66 1.10-9.98 
& 
(overdispersion) 

  1.5 1.45 (1.33-1.58) 
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Figure 3.23 Histograms of the posterior distribution of parameters obtained from a single dataset 
simulated from a Poisson model allowing for different R0s across departments. Observed 
population sizes for 29 departments and the generation time distribution for CHIKV were used to 
simulate the data. In each plot, the red line is the true value used to simulate the data. The blue text 
in the upper right corner of each plot is the simulated number of cases. 
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Figure 3.24 Histograms of the posterior distribution of parameters obtained from a single dataset 
simulated from a negative binomial model allowing for different R0s across departments. 
Observed population sizes for 29 departments and the generation time distribution for CHIKV were 
used to simulate the data. In each plot, the red line is the true value used to simulate the data. The 
blue text in the upper right corner of each plot is the simulated number of cases. 
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4.9	Sensitivity	analysis	of	outlier	thresholds	

Figures 3.25-3.26 show estimated Rts from the best-fitting Poisson models when no 

threshold is used to exclude outliers in the distribution of incidence divided by infectivity 

from contributing to the likelihood. These plots are nearly identical to Figures 3.15-3.16. 

Figures 3.27-3.28 show estimated Rts from the best-fitting negative binomial models that 

did not use thresholds to ignore the outliers. The plots for CHIKV in Figure 3.27 appear 

noticeably different compared to those in Figure 3.17. In particular, Antioquia, Caldas, 

Chocó, and Nariño all have much higher Rts that consistently remain above 1 throughout the 

epidemic. After excluding the outliers from fitting, the correlation between the EpiEstim Rts 

and the Rts from CHIKV’s best-fitting negative binomial model increased from 0.06 to 0.16. 

In contrast, the plots for ZIKV in Figure 3.28 closely resemble those shown in Figure 3.18. 

Exceptions include Bolívar and Cundinamarca; in Figure 3.28, the model Rts for these 

departments do not decrease below the threshold of 1 at the end of the epidemic in 

contrast with those in Figure 3.18.  

Plots of the estimated Rts from the best-fitting negative binomial models using thresholds 

for the incidence-to-infectivity ratio of 15 and 55 can be found in Appendix S1. For CHIKV, 

55 was too high as the model Rts for some departments were above 1 at the end of the 

epidemic. Rt estimates from models that used thresholds of 15 and 20 respectively are 

nearly indistinguishable, so the more conservative threshold of 20, which includes 98% of 

the data, was preferred. Similar to CHIKV, the ZIKV model that used a threshold of 15 had 

similar results compared to the model that used a threshold of 20. With a threshold of 55, 

model estimates were slightly worse, with a higher Rt initially estimated for San Andrés and 

Providencia. Also, Bolívar and Cundinamarca have slightly higher final estimated Rts, which 

are above 1.  
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Figure 3.25 Comparing median estimates of Rt from the best-fitting Poisson model for CHIKV 
(Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines) when no threshold is 

used to prevent outliers in the distribution of incidence divided by infectivity from contributing to 
the likelihood. EpiEstim Rts are plotted in the center of the 5-week window used to compute each 
estimate. Shaded areas represent 95% CrI. There is a positive statistically significant correlation of 
0.20 (Pearson’s correlation coefficient, 95% CI: 0.16-0.24, p < 0.0001). 
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Figure 3.26 Comparing median estimates of Rt from the best-fitting Poisson model for ZIKV (Rt
Model, 

blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines) when no threshold is used to 

prevent outliers in the distribution of incidence divided by infectivity from contributing to the 
likelihood. EpiEstim Rts are plotted in the center of the 5-week window used to compute each 
estimate. Shaded areas represent 95% CrI. There is a positive statistically significant correlation of 
0.33 (Pearson’s correlation coefficient, 95% CI: 0.29-0.37, p < 0.0001). 
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Figure 3.27 Comparing median estimates of Rt from the best-fitting negative binomial model for 
CHIKV (Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines) when no 

threshold is used to prevent outliers in the distribution of incidence divided by infectivity from 
contributing to the likelihood. EpiEstim Rts are plotted in the center of the 5-week window used to 
compute each estimate. Shaded areas represent 95% CrI. There is a positive statistically significant 
correlation of 0.06 (Pearson’s correlation coefficient, 95% CI: 0.01-0.10, p = 0.01). 
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Figure 3.28 Comparing median estimates of Rt from the best-fitting negative binomial model for 
ZIKV (Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines) when no threshold 

is used to prevent outliers in the distribution of incidence divided by infectivity from contributing 
to the likelihood. EpiEstim Rts are plotted in the center of the 5-week window used to compute each 
estimate. Shaded areas represent 95% CrI. There is a positive statistically significant correlation of 
0.29 (Pearson’s correlation coefficient, 95% CI: 0.25-0.33, p < 0.0001). 
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4.10	MCMC	testing	

The diagnostics in this section correspond to each individual virus’ best-fitting negative 

binomial model from Table 3.17. Model diagnostics for the best-fitting Poisson models can 

be found in Appendix S2. 

4.10.1	Convergence	diagnostics	

The models were run from three different starting points to ascertain convergence. Table 

3.21 shows the Gelman-Rubin statistic for each of the best-fitting negative binomial models 

after removing the burn-in. All point estimates and 95% CI equal 1, suggesting model 

convergence. Figures 3.29-3.30 show the posterior distributions of one MCMC chain for 

each parameter after removing the burn-in. All the distributions are close to normal, 

suggesting that the chains converged.  

 
Table 3.21 Gelman-Rubin statistic for each of the best-fitting negative binomial models (after 
removing the burn-in). 
 

 CHIKV ZIKV 
Parameter Point estimate Upper CI Point estimate Upper CI 
" (reporting rate) 1 1 1 1 
R0 (all) 1 1 1 1 
& (overdispersion) 1 1 1 1 
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Figure 3.29 Histograms of the posterior distributions of the best-fitting negative binomial model 
for CHIKV. 
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Figure 3.30 Histograms of the posterior distributions of the best-fitting negative binomial model 
for ZIKV. 
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4.10.2	Traces 

Figures 3.31-3.32 show the MCMC traces for three chains of the CHIKV and ZIKV models, 

respectively. Mixing is good for all parameters based on visual assessment. 
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Figure 3.31 MCMC traces for the CHIKV model. Three chains run using different start values are 
shown. 
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Figure 3.32 MCMC traces for the ZIKV model. Three chains run using different start values are 
shown. 
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4.10.3	Acceptance	rate	and	effective	sample	size	

Table 3.22 shows the acceptance rate of parameters for the CHIKV and ZIKV models. Both 

models have good acceptance rates. Table 3.23 shows the calculation of the effective 

sample size for each parameter after removing the burn-in. All parameters have good 

effective sample sizes (most are at least 10% of the total number of iterations). 

 
Table 3.22 Acceptance percentages for parameters of the best-fitting negative binomial models for 
CHIKV and ZIKV (after removing the burn-in). 
 

Parameter CHIKV ZIKV 
" (reporting rate) 34.2 32.4 
Department-specific R0, range 27.2-35.1 25.9-37.4 
& (overdispersion) 18.0 24.5 

 

Table 3.23 Effective sample sizes from one chain for each of the best-fitting negative binomial 
models (after removing the burn-in). 

Parameter CHIKV ZIKV 
" (reporting rate) 4,660 7,537 
Department-specific R0, 
median (range) 

13,794 (6,182-15,071) 18,070 (8,038-21,078) 

& (overdispersion) 8,597 14,422 

 

5	Discussion	

In this chapter, reporting rates and reproduction numbers from the ZIKV and CHIKV 

epidemics in Colombia were estimated with non-parametric and parametric models based 

on the renewal equation. Both approaches incorporated the effects of weather and 

socioeconomic status and were conducted at the department level.  

The largest proportions of CF and ZVD cases during the epidemics were reported in Valle del 

Cauca. This department reported 27% of CF cases and 26% of ZVD cases despite making up 

less than 10% of the country’s population. According to a systematic review, only 13% of DF 

cases in Colombia between 2000-2011 were reported in the Pacific Coastal region with Valle 

del Cauca accounting for most of those cases [228]. Cali, the capital of Valle del Cauca, is 

considered hyperendemic for DENV [229] which could explain the discrepancy. High levels 

of herd immunity in areas that are mesoendemic or hyperendemic for DENV would be 
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expected to decrease transmission even during years with major national outbreaks, such as 

2010. Another explanation could be that Valle del Cauca had a higher reporting rate of CF 

and ZVD compared to other departments.  

5.1	Non-parametric	models	of	arbovirus	transmission	

As the non-parametric approach relied on median Rts from EpiEstim, uncertainty 

surrounding Rt was not accounted for in the initial estimates of R0 and the reporting rate	!.  

From the linear regression models of the Rt estimates versus the cumulative incidence of 

reported cases divided by the population of each department, rough approximations of the 

R0 across all departments were obtained from the estimated y-intercepts. An estimated R0 

of 1.71 (95% CI: 1.54-1.88) for CHIKV is consistent with results from Peña-García and 

Christofferson who found that 76% out of 85 Colombian cities in their analysis had 

estimated R0 values for CHIKV between 1-2 [177]. An estimated R0 of 1.69 (95% CI: 1.59-

1.78) for ZIKV was similar to some estimates in the literature (1.41, 95% CI: 1.15-1.74 in San 

Andrés [178] and 1.89, 95% CI: 1.21-2.13 nationally [187]) but lower than several others (for 

example, 4.61, 95% CI: 4.11-5.16 in Girardot [178]; 3.8, 95% CI: 2.4-5.6 in Barranquilla [179]; 

10.3, 95% CI: 8.3-12.4 and 2.2, 95% CI: 1.9-2.8 in the department of Antioquia, depending 

on assumptions [174]). Depending on model assumptions, the estimate here was similar or 

lower than estimates from two studies [182, 186]. Only one study had an estimated R0 

lower than that presented here, with a median of 1.12 across 20 cities in the department of 

Antioquia [180]. Again, differences could be related to different spatial and temporal scales 

used in the analyses.  

Rough approximations of the national ! of CHIKV and ZIKV infections were also obtained 

from the linear regression models with 0.044 (95% CI: 0.032-0.056) for CHIKV and 0.015 

(95% CI: 0.012-0.018) for ZIKV. A lower ! for ZIKV would be expected due to a much higher 

rate of asymptomatic infection compared to CHIKV [10, 35]. Riou et al. found that only 19% 

of ZVD cases were reported compared to 40% of all CF cases in French Polynesia and the 

French West Indies [199]. In Colombia, two community-based studies estimated a 

symptomatic reporting rate for CHIKV more than two times higher than the estimated ! in 

this study (0.129, 95% CI: 0.127-0.132 in Girardot and 0.097, 95% CI: 0.096-0.098 in El 

Tolima). This finding is expected as symptomatic reporting rates do not account for 
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asymptomatic infections, which comprise 3%-25% of all CHIKV infections [35]. The CHIKV 

estimate here was consistent with the results from Nouvellet et al.’s study which reported 

seroprevalence estimates that implied ! between <0.001 in Medellín and 0.099 in Neiva 

with mean 0.057 [191]. The estimated ! for ZIKV in this study was lower than that reported 

by O’Reilly et al. and Mier-y-Teran-Romero et al. (0.017, 95% CrI: 0.013-0.025 and 0.03, 95% 

CrI: 0.01-0.07, respectively) [23, 133]. As expected, it was also lower than the symptomatic 

reporting rates estimated by Martínez Duran et al. and Moore et al. (0.081, 95% CI: 0.076-

0.086 and 0.036, 95% CrI: 0.018-0.070, respectively) [192, 193]. The estimate here was 

similar to that implied by the seroprevalence estimates reported by Nouvellet et al., ranging 

from 0.003 in Medellín to 0.021 in Cúcuta (mean 0.012) [191]. 

When GAMs were fitted to the residuals of the linear regression models, the best-fitting 

model for CHIKV only included temperature. In addition to temperature, the percentage of 

households with overcrowded conditions and the percentage of households with 

inadequate exterior walls were significant covariates in the best-fitting ZIKV model. A 

unimodal effect of temperature was seen for ZIKV but not CHIKV with edfs of 16.7 and 1.00, 

respectively.  

5.2	Parametric	models	of	arbovirus	transmission	

The best-fitting Poisson models that estimated !, R0, and a function for temperature used 

different definitions of temperature for CHIKV and ZIKV (four-week lag for CHIKV versus no 

lag for ZIKV). Similarly, models that estimated !, R0, and a function for rainfall also defined 

rainfall slightly differently for CHIKV compared to ZIKV (two-week lag for CHIKV versus 

three-week lag for ZIKV). Given that urban epidemics of CHIKV and ZIKV are typically 

associated with different species of mosquitoes (Ae. albopictus and Ae. aegypti, 

respectively) [25, 230], differences could be attributed to different life history traits of the 

vectors. The plots of predicted Rt as a function of temperature and rainfall from the Poisson 

models with weather covariates showed that Rt > 1 for a larger range of temperature and 

rainfall combinations for CHIKV compared to ZIKV. In contrast, Brady et al. found that Ae. 

aegypti could withstand a greater range of temperatures, including lower temperatures, 

compared to Ae. albopictus [198].   
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From the overall best-fitting models (negative binomial model with multiple R0s), 

department-specific R0s ranged from 0.96-2.93 for CHIKV and 0.98-5.87 for ZIKV with 

median 1.30 and 1.33, respectively. Compared to the single R0s estimated for each virus in 

the non-parametric approach, the medians of the R0s are lower. The estimated ! was 0.045 

(95% CrI: 0.042-0.049) for CHIKV compared to 0.016 (95% CrI: 0.015-0.017) for ZIKV. 

Although the point estimates for both viruses are slightly higher than those from the non-

parametric approach, they are consistent with a higher ! for CHIKV compared to ZIKV.  

While some of the departments’ estimated infection attack rates were within the 95% 

confidence interval of the seroprevalence estimates for their corresponding cities, others 

were mostly lower. This result could be related to the different spatial scales considered in 

the studies. A range of infection attack rates between cities would be expected due to 

within-department heterogeneity in elevation and climate [52], factors that are associated 

with arbovirus transmission [203, 231]. Higher estimated infection attack rates in some 

departments are consistent with other studies in the Americas that have reported high 

seroprevalence following CHIKV and ZIKV epidemics [232]. At the same time, lower 

estimated infection attack rates could be attributed to more people living in areas at high 

elevation with negligible risk of arbovirus transmission, such as Antioquia.     

As expected, 25 out of 29 departments had similar estimated R0s across viruses. Riou et al. 

found no significant difference in the transmissibility of CHIKV and ZIKV in French Polynesia 

and the French West Indies (relative transmission of ZIKV compared to CHIKV of 1.04, 95% 

CrI: 0.97-1.13) [199]. Funk et al. also found that the R0s for ZIKV and DENV were similar 

when estimated in the same location (7.6, 95% CrI: 4.8-14 and 11, 95% CrI: 8.0-16 for ZIKV 

and DENV respectively on the Yap Main Island) [233]. Future work could involve jointly 

fitting a model that estimates a single R0 across viruses for each department. 

The finding that models with multiple R0s fitted better than models with a single R0 was 

expected because this parameter is context specific. In particular, the contact rate between 

humans and vectors influences R0 [234] and likely varies across Colombian departments due 

to differences in factors such as altitude, population density, and seasonality. The fact that 

weather parameters became more difficult to estimate in models with multiple R0s was also 
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expected as between-department differences in these parameters are considerably greater 

than within-department differences.  

The negative binomial models were more sensitive to the thresholds for outliers in the 

distribution of incidence divided by infectivity than the Poisson models. This finding is likely 

due to the estimation of overdispersion. The Poisson models assume no overdispersion (the 

mean equals the variance). For CHIKV, the estimate for r from the negative binomial model 

with multiple R0s more than doubles when the threshold is used to remove the outliers 

from 0.62 (95% CrI: 0.58-0.66) to 1.44 (95% CrI: 1.34-1.55), suggesting less overdispersion. 

The estimated r for ZIKV similarly increases from 1.44 (95% CrI: 1.33-1.56) to 1.80 (95% CrI: 

1.66-1.95) with the threshold. Without the thresholds, the model must allow a few cases to 

give rise to many secondary cases to account for such outliers. Consequently, the estimates 

for R0 were higher, and the estimates for r were lower. 

5.3	Conclusions	and	limitations	

Two approaches for exploring predictors of R0s and !s were used in this chapter. As the 

methods for both approaches are based on the renewal equation, similar estimates were 

expected and obtained for both CHIKV and ZIKV. Given that uncertainty in the Rt estimates 

was not taken into account in the EpiEstim approach, the parametric model approach is 

likely more accurate.  

One limitation of this analysis was that it was not possible to estimate both department-

specific !s and department-specific R0s in the parametric models as there was not enough 

power. Consequently, the same ! was assumed for all departments. Although both 

parameters were estimated for each department from linear regression models, uncertainty 

was high. Moore et al. found a moderate amount of variability in the reporting rate of 

symptomatic ZIKV infection across Colombian departments. Their estimates were as low as 

<0.001 (95% CrI: <0.001-<0.001) in Bogotá and as high as 0.145 (95% CrI: 0.061-0.304) in 

Cundinamarca compared to an overall estimate of 0.036 (95% CrI: 0.018-0.070) for 

Colombia. Reassuringly, the estimated ! from the best-fitting negative binomial models 

here were similar to the observed reporting rates from the four Colombian cities with 

available seroprevalence estimates, which had mean 0.057 for CHIKV and 0.012 for ZIKV 

[191].  
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In the parametric models, the reporting rate does not affect the estimate of Rt in the first 

week; however, in subsequent weeks, a higher reporting rate would lead to higher 

estimates of Rt over time because 1#~1 −
'
L

. Similarly, regional variation in reporting would 

lead to lower or higher Rt estimates depending on whether reporting was lower or higher, 

respectively, in each department.  

The parametric model assumption of a single ! across departments also carries over to the 

estimation of the infection attack rate from the number of reported cases. An additional 

assumption involved in estimating the infection attack rate (and Rt) is that the reporting rate 

did not change over time. The reporting rate could have changed during the epidemics if, 

for example, hospital capacity was reached or public health policies changed. Moreover, 

reporting rates could have increased as more healthcare providers became aware of the 

new diseases.  

Missing early CHIKV incidence data posed problems for estimating R0s and Rts. Model fits 

were improved by excluding outliers in the ratio of incidence and infectivity. Without these 

exclusions, the model had no way of smoothing over the data unlike EpiEstim, which can do 

so with longer user-specified window lengths. Another way to address the missing infection 

dates problem is to characterize a distribution of the time from infection to being reported 

as a case. Using the symptom onset of cases and the incubation period distribution, the 

incidence time series can be back-calculated [170]. However, the resulting time series may 

be over-smoothed compared to the observed time series, and unfortunately, symptom 

onset was not known for all CF cases. The method also does not solve the problem of 

missing case data.  

This analysis was conducted at the department level rather than at the city level to better 

understand the effects of weather on CHIKV and ZIKV transmission as well as avoid issues 

related to estimating parameters from irregular time series with low case numbers. 

However, using data aggregated at the department level may mask important spatial 

variation in disease dynamics. Using a variation of the Disease Transmission Kernel (DTK)-

Dengue model, Moore et al. modeled CHIKV transmission at three different spatial scales 

across Colombia. They fitted versions of the model to department- and national-level 

weekly case report data and found the models performed better at finer spatial scales [235]. 
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Future research could involve conducting the analysis at the city level and comparing the 

results across spatial scales. 
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Chapter	4:	Estimating	Zika	virus	attack	rates	and	risk	of	Zika	

virus-associated	neurological	complications	in	Colombian	

capital	cities	with	a	Bayesian	hierarchical	model	

Abstract	

Reporting rates as well as biases in ZIKV surveillance data were explored in previous 

chapters. Here, multiple data sources were combined to improve estimates of ZIKV infection 

attack rates, reporting rates of ZVD, and the risk of ZIKV-associated neurological 

complications in Colombia. ZVD surveillance data were combined with post-epidemic 

seroprevalence data and a dataset on ZIKV-associated neurological complications in a 

Bayesian hierarchical model for 28 capital cities. Models were also fitted by sex and by two 

age groups. Substantial heterogeneity was observed for the ZIKV infection attack rates 

across cities, ranging from 0.03 (95% CrI: 0.00-0.10) in Quibdó to 0.80 (95% CrI: 0.56-0.99) in 

San Andrés. The overall estimated infection attack rate for ZIKV across the 28 cities was 0.38 

(95% CrI: 0.17-0.92). The estimated reporting rate for ZVD was 0.013 (95% CrI: 0.004-0.024), 

and 0.51 (0.17-0.92) cases of ZIKV-associated neurological complications were estimated to 

be reported per 10,000 ZIKV infections. When the same ZIKV infection attack rate was 

assumed across sex, females were more likely to be reported as ZVD cases to the 

surveillance system and less likely to be reported as ZVD cases with neurological 

complications compared to males. Similarly, when the same ZIKV infection attack rate was 

assumed across age group, younger individuals were more likely to be reported as ZVD 

cases to the surveillance system and less likely to be reported as ZVD cases with 

neurological complications compared to older individuals. Important differences in these 

estimates were also found for some cities. These results highlight how additional data 

sources can be utilized to overcome biases in surveillance data and estimate key 

epidemiological parameters.  
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1	Introduction	

1.1	Background	

The epidemiology of GBS in Latin America and the Caribbean is not well understood [236]. A 

recent systematic review on the incidence of GBS in the region identified only 10 papers 

with primary data from 1980 to 2014. An additional 21 papers related to the ZIKV epidemic 

were found between 2015 and 2018 [236]. Data were not pooled to estimate the annual 

incidence rate of GBS in Latin America due to substantial heterogeneity across studies. Only 

one study estimated background rates of GBS in Colombia. Although the estimate was not 

provided in the original study, the study authors reported in personal communication an 

annual incidence rate of 0.95 (95% CI: 0.73-1.22) per 100,000 persons [236]. They also 

estimated that GBS diagnoses more than doubled during the peak of the ZIKV epidemic (IRR 

2.29, 95% CI: 1.69-3.14) compared to baseline rates [236]. Five studies from Colombia 

estimated the incidence rate of GBS during the ZIKV epidemic. Those estimates ranged from 

0.31 (95% CI: 0.23-0.41) per 100,000 per year among children aged one month to 18 years 

nationally to 7.63 (95% CI: 6.16-9.35) per 100,000 per year among both children and adults 

in the city of Barranquilla [236]. 

As mentioned in chapter 1, Colombia’s INS collated data on ZIKV-associated neurological 

complications reported during the ZIKV epidemic. Unlike the ZIKV surveillance data, which 

was biased toward pregnant females and females of child-bearing age, data on ZIKV-

associated neurological complications were expected to be more reliable due to the severity 

of symptoms and the fact that cases’ medical records were reviewed against standardized 

case definitions. These data could be used in combination with other data, such as 

seroprevalence data and the number of CZS cases, to estimate key epidemiological 

parameters that are difficult to quantify, such as the ZIKV infection attack rate and the risk 

of ZIKV-associated neurological complications. 

As mentioned in the introduction to chapter 3, Mier-y-Teran-Romero et al. used publicly 

available data on suspected ZVD and GBS cases for 11 countries or territories as well as 

post-epidemic serosurveys from two locations (Yap Island and French Polynesia) to estimate 

the probability of ZIKV infection (infection attack rate), the proportion of ZIKV infections 

that are reported as suspected ZVD cases (reporting rate), and the risk of ZIKV-associated 
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GBS [133]. This study used cumulative data on reported GBS cases and ZVD cases 

aggregated at the country level. Due to limited data, associations between GBS risk and 

other factors such as age and sex were not explored. Also, the results were sensitive to 

omitting data from Yap Island and French Polynesia, the only two locations for which 

serological data were available.  

A 2020 study by Moore et al. was also introduced in chapter 3. Similar to Mier-y-Teran-

Romero et al., they also used a variety of data types to estimate reporting rates, ZIKV 

infection attack rates, the probability of reporting symptomatic ZIKV infections with GBS, 

and the probability that a ZIKV infection during pregnancy results in a reported 

microcephaly case [192]. A limitation of their study was that their infection attack rate 

estimates did not agree with estimates from seroprevalence studies for some locations such 

as Bahia, Brazil. One possible explanation for this result is that their estimate was for the 

state level, while the seroprevalence data corresponded with a particular city within the 

state. Other estimates from the study should also be approached with caution. For example, 

the estimated reporting probabilities for ZIKV-associated microcephaly were much lower 

than the risk of CZS during pregnancy from other published studies [192]. However, the 

main aim of their analysis was to estimate the total number of ZIKV infections rather than 

individual epidemiological parameters.     

1.2	Aims	

In chapter 2, the analysis of the ZIKV line list data showed that compared to males, females 

had higher risk of being reported as a ZVD case but lower risk of being reported as a ZVD 

case with neurological complications. In chapter 3, rough estimates of the reporting rate of 

ZVD cases were obtained. Following from those chapters, the aim of this chapter is to use a 

Bayesian hierarchical model to estimate ZIKV infection attack rates, reporting rates of ZVD, 

and the risk of neurological complications following ZIKV infection in capital cities of 

Colombia. A secondary aim is to assess how these estimates vary by age and sex. As 

mentioned in previous chapters, neurological complications from ZIKV infection are severe 

and costly [107]. Having reliable estimates of the number of expected cases could improve 

resource allocation for future outbreaks.  
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2	Data	

Three different datasets were used for this chapter. They are summarized in Table 4.1. 

 
Table 4.1 Data sources for chapter 4. 
 

Dataset Definition Level Data type Data 
availability  

Time period 

ZVD Suspected and 
laboratory-
confirmed 

Line list Weekly case 
counts  

All cities  2015-2017 

ZIKV Age-stratified 
IgG 
seroprevalence 

5-year age 
groups  
(range 2-45) 

Cross-sectional 
post-epidemic 
seroprevalence 

4 cities Dec. 2016 

 ZIKV-associated 
neurological 
complications 

Suspected Line list Weekly case 
counts 

All cities 2015-2017 

 

2.1	Epidemiological	data	

This chapter utilized the same Sivigila surveillance dataset as in previous chapters. A full 

description of these data can be found in chapter 1. Suspected and laboratory-confirmed 

cases with missing information on city location were excluded, resulting in 105,152 ZVD 

cases. As seroprevalence data were only available for four capital cities, the analysis was 

restricted to capital cities at risk of arbovirus transmission. A report by Colombia’s MOH on 

the patterns of dengue endemicity in the country was used to determine which cities were 

at risk of arbovirus transmission. Criteria for level of dengue endemicity included trends of 

reported cases over time, number of circulating serotypes, age range of cases, and the 

presence of dengue hemorrhagic fever (severe dengue) from 2008 to 2013 [229]. Based on 

the classification of Tunja, Bogotá, Pasto, and Manizales as not endemic, they were 

excluded from the present analysis. All four cities have elevations between 2,160-2,810 m. 

There were 28 cities remaining for the analysis, with 54,737 cumulative ZVD cases (Table 

4.2). As stated previously, the location of cases refers to location of likely infection, which is 

determined by the clinician who reported the case.  

A dataset consisting of an anonymized line list on 418 patients with neurological 

complications and recent history of febrile illness compatible with ZVD was also used. A full 

description can be found in chapter 1. Briefly, medical records of patients with neurological 
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complications were reviewed using case definitions from the Brighton Collaboration 

Working Group for GBS, myelitis, encephalitis, and acute disseminated encephalomyelitis  

[98, 99]. Patients that did not meet Brighton case definition criteria 1-3 were removed from 

the dataset. After removing imported cases and cases with unknown department location, 

406 patients remained for analysis. After further restricting the data to capital cities at risk 

of arbovirus transmission, 212 patients remained (Table 4.2). As mentioned in chapters 1 

and 2, an equivalent dataset was not available for CHIKV. 

2.2	Serological	data	

As discussed in the introduction to chapter 3, a household-based multisite seroprevalence 

study of arboviruses was conducted by Nouvellet et al. in the Colombian cities of Cúcuta, 

Medellín, Neiva, and Sincelejo between October and December 2016 [191]. Although the 

seroprevalence estimates from the study were sex-specific, no differences were found 

between males and females, and sex was not significant in a statistical analysis of risk 

factors (personal communication). No relationship between age and exposure to CHIKV or 

ZIKV was found. Table 4.2 shows key information about the four cities, including the 

estimated post-epidemic seroprevalence of ZIKV, as well as information about the other 24 

capital cities.   

2.3	Demographic	data	

As in previous chapters, population projections for 2016 based on the 2005 Census were 

obtained from DANE, including breakdowns by sex and age group. The population sizes of 

the 28 cities considered comprise 28% of Colombia’s total population of about 49 million in 

2016 (Table 4.2).  
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Table 4.2 Epidemiological and demographic data for 28 Colombian capital cities. 
 

City Department Population 
in 2016 

Reported 
cases of ZIKV-
associated 
NC* 

Reported 
suspected and 
laboratory-
confirmed cases 
of ZVD 

Estimated post-
epidemic 
seroprevalence and 
95% CI 

Arauca Arauca 89,712 1 788  

Armenia Quindío 298,199 0 189  

Barranquilla Atlántico 1,223,616 80 4,665  

Bucaramanga Santander 528,269 8 4,322  

Cali Valle del Cauca 2,394,925 23 16,279  

Cartagena Bolívar 1,013,389 4 1,021  

Cúcuta 
 

Norte de 
Santander 

656,380 44 6,485 0.479 (0.440-0.519) 

Florencia Caquetá 175,407 3 663  

Ibagué Tolima 558,805 3 4,076  

Inírida Guainía 19,983 0 12  

Leticia Amazonas 41,639 0 278  

Medellín Antioquia 2,486,723 8 549 0.067 (0.048-0.090) 

Mitú Vaupés 31,861 0 17  

Mocoa Putumayo 42,882 1 57  

Montería Córdoba 447,668 4 1,785  

Neiva Huila 344,026 13 3,409 0.578 (0.538-0.618) 

Pereira Risaralda 472,000 0 463  

Popayán Cauca 280,054 0 51  

Puerto Carreño Vichada 16,000 0 17  

Quibdó Chocó 115,907 0 14  

Riohacha La Guajira 268,712 0 279  

San Andrés 
 

San Andrés & 
Providencia 

71,946 0 1,109  

San José del 
Guaviare 

Guaviare 65,611 0 154  

Santa Marta Magdalena 491,535 2 1,913  

Sincelejo Sucre 279,031 6 856 0.659 (0.620-0.696) 

Valledupar Cesar 463,219 2 788  

Villavicencio Meta 495,227 5 2,377  

Yopal Casanare 142,979 5 2,121  

*Neurological complications 

 

3	Methods	

3.1	Bayesian	hierarchical	model	

Following Mier-y-Teran-Romero et al., a Bayesian hierarchical model was used to estimate 

the following probabilities from observed data via a binomial sampling process: (i) the 
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probability of ZIKV infection  JMH, or infection attack rate, (ii) the probability of reporting a 

case of ZVD per ZIKV infection JNH, or reporting rate, and (iii) the probability of reporting a 

case of ZVD with neurological complications JOMH, or reporting rate of ZIKV-associated 

neurological complications, where N denotes location (city) [133]. The probabilities of 

interest were estimated for the four cities with seroprevalence data as well as 24 other 

capital cities. Overall (non-location specific) estimates of the probabilities were also 

produced.  

The total number of ZIKV infections ~H 	and the number of infections that go on to be 

reported as either suspected or laboratory-confirmed cases �H  in each city N are binomially 

distributed as 

~H~Bin(JMH , @H), 

�H~Bin(JNH , ~H), 

where @H  is the population size of each city. For cities with seroprevalence data, the prior 

distributions for JMH  were  

JMH~Beta(LMH , MMH) 

where the method of moments was used to determine LMH  and MMH. Means and variances 

corresponding to a uniform random variable with the possible range of infection attack 

rates were selected using the optim function in R. The range of infection attack rates was 

defined by the 95% CI of the post-epidemic seroprevalence (Table 4.2). In this way, the 

seroprevalence data informed the prior distributions while still permitting values outside 

the observed ranges. The following prior distribution were used (rounded to the nearest 

tenth), 

JM,OúJ-#B~Beta(294.2, 320.0)  JM,197IB~Beta(337.6, 246.5) 

JM,Q9D9HHíC~Beta(36.9, 513.2)                         JM,N7CJ9H9S+~Beta(393.5, 203.6)  

For cities without serological data and the overall probability of ZIKV infection (JM), LMH  and 

MMH  were both set to 1 which is equivalent to a uniform distribution between 0 and 1. In 

other words, the proportion of the population infected by ZIKV was considered unknown 

and was allowed to vary between 0 and 100%. The model was also run using a Beta(2,2) 
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prior distribution for JMH  in cities with no seroprevalence data. This prior distribution lightly 

constrains the estimates as 50% of the expected values are between 0.33 and 0.67.  

The risks of developing symptoms and neurological complications following ZIKV infection 

were assumed to be similar across cities; however, reporting rates were expected to differ. 

The model accounted for these differences by assigning hyperprior distributions to JNH  and 

JOMH: 

JNH~Unif(JN	.7C, JN	.BT),  JOMH~Unif(JOM	.7C, JOM	.BT), 

JN	.7C~Unif(0,1),  JOM	.7C~Unif(0,1), 

JN	.BT~Unif(JN	.7C, 1),  JOM	.BT~Unif(JOM	.7C, 1), 

The bounds of the hyperprior distributions (JN	.7C, JN	.BT, JOM	.7C, and JOM	.BT) are 

independent of city location and were estimated by the framework. They were also used to 

estimate the overall risk of being reported as a ZVD case (JN) and a ZVD case with 

neurological complications (JOM), respectively.  

�~Bin(JN ∗ JM , @)	

Ü~Bin(JOM ∗ JM , @)	

where Ü is the total number of ZIKV-associated neurological complications that were 

reported during the epidemic. Finally, the following equation estimated the total number of 

neurological complications due to ZIKV infection in each city: 

ÜH~Bin(JOMH ∗ JMH , @H) 

There were 91 total parameters in the model (87 excluding the hyperprior distributions).  

After performing the analysis on all data from the 28 cities, the data were classified by sex 

and age group (data can be found in Appendix S3). Age was dichotomized into 0 to 39 years 

and > 40 years (the median age of patients with ZIKV- associated neurological complications 

was 41 years). Although the seroprevalence estimates for Cúcuta, Neiva, Medellín, and 

Sincelejo were sex-specific, the study by Nouvellet et al. found no differences between 

males and females (personal communication). Consequently, the model here was fitted to 

both sexes simultaneously assuming the same infection attack rate for each sex. The model 

was fitted by age group in the same way. There are 153 parameters in each of these models.  
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The posterior probability that each parameter estimate for males was greater than that for 

females (and vice versa) was estimated for each city. Similarly, the posterior probabilities 

were estimated for each age group. After removing the burn-in and merging all four MCMC 

chains, the proportion of times that the estimated parameter was higher for one sex (or age 

group) than the other (and vice versa) was determined.  

As the seroprevalence study only included participants between ages 2-45 years, a 

sensitivity analysis was performed by re-fitting the model separately for each age group. For 

the younger age group, the prior distributions for JMH  in Cúcuta, Medellín, Neiva, and 

Sincelejo came from the post-epidemic seroprevalence as described above, and Beta(1,1) 

prior distributions were used for the remaining cities. For the older age group, Beta(1,1) 

prior distributions for JMH   were used for all cities. 

3.2	Expected	number	of	excess	neurological	complications	reported	per	10,000	

reported	cases	of	ZVD	

Using the posterior samples of JOM and JN, the number of ZIKV-associated neurological 

complications reported per 10,000 reported ZVD cases was estimated for each city and 

overall. The four MCMC chains for each parameter were merged after removing the burn-in. 

Then, the merged samples of JOMH  were divided by those of JNH  for each city, and the result 

was multiplied by 10,000. For the overall estimate, the samples of each parameter were 

pooled across all cities before the division step. 	

3.3	Model	estimation	and	computing		

Parameters were estimated in Stan using the R package rstan (version 2.21.2) [237]. Stan is 

based on the No-U-Turn Sampler which is a type of Hamiltonian MCMC. Hamiltonian MCMC 

is capable of exploring the posterior distribution of parameters more efficiently compared 

to other MCMC algorithms [84]. Four Markov chains were run from different starting points 

for 2,000 iterations with a burn-in of 1,000. Maximum treedepth was increased from 10 to 

15 to improve efficiency of the sampler. Convergence of the chains was checked visually. R-

hat values and effective sample sizes were also checked for each parameter. R-hat 

compares the between- and within-chain estimates for model parameters, and values 

around 1 indicate that chains have mixed well [238]. It is related to the Gelman-Rubin 

statistic, which was calculated in the previous chapter. The effective sample size estimates 
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the number of independent samples after accounting for dependence in the MCMC chains 

[84]. Higher autocorrelation in the chains leads to lower effective sample sizes. Larger 

effective sample sizes are preferred, and when running four chains, a total effective sample 

size of at least 400 is recommended [238]. Stan code can be found in Appendix S3. All 

analyses were conducted in R version 4.0.3. 

3.4	Sensitivity	analysis	

Following [133], the sensitivity of model results to data from different cities was explored. 

Parameters were re-estimated after removing data one at a time from the cities with 

available seroprevalence data (Cúcuta, Medellín, Neiva, and Sincelejo) as well as 

Barranquilla, which was subjected to more intensive surveillance of ZIKV-associated 

neurological complications compared to other cities [144]. Parameters were also re-

estimated after removing all four cities with seroprevalence data from the model. 

4	Results	

4.1	Bayesian	hierarchical	model	

Eleven out of 28 capital cities reported zero cases of ZIKV-associated neurological 

complications: Armenia, Inírida, Leticia, Mitú, Pereira, Popayán, Puerto Carreño, Quibdó, 

Riohacha, San Andrés, and San José del Guaviare. Barranquilla reported the highest number 

of cases with 80. As expected, cities that reported more ZVD cases also tended to report 

more cases of ZIKV-associated neurological complications (Figure 4.1). Pearson’s correlation 

coefficient for the relationship is 0.51 (95% CI: 0.17-0.74, p = 0.006).  
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Figure 4.1 Number of reported cases of ZIKV-associated neurological complications (NC) and ZVD 
on a linear and a log-log scale for 28 capital cities. There is a positive statistically significant 
correlation of 0.51 (Pearson’s correlation coefficient, 95% CI: 0.17-0.74, p = 0.006) on the linear scale 
and 0.70 (95% CI: 0.32-0.88, p = 0.002) on the log10 scale. 
 

The ZIKV infection attack rate, reporting rate of ZVD, and reporting rate of ZIKV-associated 

neurological complications were estimated for each city and overall (Figure 4.2). There was 

substantial heterogeneity in estimates across cities, especially for infection attack rates. The 

overall estimate for the ZIKV infection attack rate had mean 0.38 (95% CrI: 0.17-0.92). Both 

the reporting rate of ZVD and the risk of reporting a case of ZIKV-associated neurological 

complications per 10,000 ZIKV infections were low (mean 0.013, 95% CrI: 0.004-0.024 and 

mean 0.51, 95% CrI: 0.17-0.92 respectively). Overall, 54 (95% CrI: 5-210) cases of ZIKV-

associated neurological complications were expected to be reported for every 10,000 

reported cases of ZVD on average. Figure 4.3 shows the mean and credible intervals of this 

estimate for all cities as well as the point estimates and 95% binomial confidence intervals 

calculated from the raw data. The point estimate falls outside of the 95% credible interval 

for 12 cities, 11 of which reported zero cases of ZIKV-associated neurological complications.  
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Figure 4.2 Estimated ZIKV infection attack rates, ZVD reporting rates, and number of ZIKV-
associated neurological complications (NC) cases reported per 10,000 ZIKV infections. 
Seroprevalence data were incorporated into the analysis for Cúcuta, Neiva, Medellín, and Sincelejo. 
Posterior mean (points) and 95% credible interval (error bars) are shown for each city and overall.  
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Figure 4.3 Reported cases of ZIKV-associated neurological complications (NC) per 10,000 reported 
cases of ZVD. Posterior mean (green points) and 95% credible interval (green error bars) are shown 
for each city. Black points correspond to the point estimates calculated from the raw data, while the 
black error bars correspond to the 95% binomial confidence intervals.  
 

Across cities, mean estimates for the infection attack rate ranged from 0.03 in Quibdó and 

Popayán to 0.82 in San Andrés (Table 4.3). Mean estimates for the reporting rate ranged 

from 0.004 in Medellín to 0.020 in Cúcuta. The mean estimated number of ZIKV-associated 

neurological complications reported per 10,000 ZIKV infections was lowest in Ibagué (0.17) 

and highest in Cúcuta (0.93). Estimates of the hyperprior distributions for JN and JOM are 

shown in Table 4.4. 

Removing data from Barranquilla and each of the four cities with seroprevalence data did 

not have any major impacts on parameter estimates (Figure 4.4). Also, the model has power 

to estimate the ZIKV infection attack rates even without serological data. When all the cities 

with serological data are removed from the model (Appendix S3), the point estimates for 

ZIKV infection attack rates for the remaining cities are slightly higher, and the estimates for 

the reporting rates of ZVD are slightly lower. However, the credible intervals are similar for 

both parameters across cities. The estimates for the number of neurological complications 
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reported per 10,000 ZIKV infections are also lower without the serological data, and the 

upper limits of credible intervals are lower.  

Parameter estimates from the model fitted with Beta(2,2) prior distributions for the ZIKV 

infection attack rates in cities without seroprevalence data can be found in Appendix S3. 

Compared to the model that used Beta(1,1) prior distributions, the estimated ZIKV infection 

attack rates are shifted slightly toward 0.5, and the overall estimate across all cities is 

similar.
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Table 4.3 Estimated ZIKV infection attack rates, ZVD reporting rates, and number of ZIKV-
associated neurological complications (NC) cases reported per 10,000 ZIKV infections by city. Mean 
posterior and 95% CrI are presented. 
 

City Estimated ZIKV 
infection attack rate 

Estimated ZVD 
reporting rate 

Estimated ZIKV-
associated NC cases 
reported per 10,000 

ZIKV infections 
Arauca 0.60 (0.34-0.96) 0.016 (0.009-0.026) 0.37 (0.07-0.89) 
Armenia 0.08 (0.03-0.23) 0.012 (0.003-0.025) 0.38 (0.04-0.94) 
Barranquilla 0.79 (0.54-0.99) 0.005 (0.004-0.007) 0.81 (0.59-1.13) 
Bucaramanga 0.56 (0.32-0.96) 0.016 (0.009-0.026) 0.33 (0.12-0.68) 
Cali 0.50 (0.26-0.95) 0.015 (0.007-0.026) 0.23 (0.10-0.44) 
Cartagena 0.13 (0.04-0.42) 0.011 (0.002-0.023) 0.47 (0.09-1.00) 
Cúcuta 0.49 (0.46-0.53) 0.020 (0.019-0.022) 0.93 (0.70-1.23) 
Florencia 0.41 (0.16-0.91) 0.012 (0.004-0.023) 0.52 (0.14-1.03) 
Ibagué 0.50 (0.27-0.93) 0.016 (0.008-0.027) 0.17 (0.05-0.43) 
Inírida 0.12 (0.02-0.46) 0.009 (0.001-0.023) 0.51 (0.07-1.06) 
Leticia 0.52 (0.25-0.95) 0.015 (0.007-0.026) 0.38 (0.05-0.92) 
Medellín 0.06 (0.04-0.08) 0.004 (0.003-0.005) 0.57 (0.26-0.95) 
Mitú 0.10 (0.02-0.37) 0.009 (0.002-0.023) 0.50 (0.06-1.08) 
Mocoa 0.28 (0.06-0.78) 0.007 (0.002-0.021) 0.59 (0.13-1.09) 
Montería 0.37 (0.16-0.90) 0.014 (0.004-0.025) 0.36 (0.08-0.84) 
Neiva 0.58 (0.54-0.62) 0.017 (0.016-0.018) 0.66 (0.38-0.99) 
Pereira 0.10 (0.04-0.31) 0.014 (0.003-0.026) 0.29 (0.03-0.85) 
Popayán 0.03 (0.01-0.10) 0.010 (0.002-0.024) 0.47 (0.06-1.04) 
Puerto Carreño 0.19 (0.04-0.67) 0.009 (0.002-0.023) 0.51 (0.06-1.06) 
Quibdó 0.03 (0.00-0.10) 0.009 (0.001-0.023) 0.51 (0.07-1.08) 
Riohacha 0.11 (0.04-0.36) 0.013 (0.003-0.024) 0.35 (0.04-0.94) 
San Andrés 0.80 (0.56-0.99) 0.020 (0.015-0.027) 0.23 (0.03-0.68) 
San José del Guaviare 0.26 (0.09-0.78) 0.012 (0.003-0.025) 0.41 (0.05-0.99) 
Santa Marta 0.33 (0.15-0.86) 0.014 (0.005-0.027) 0.24 (0.05-0.64) 
Sincelejo 0.66 (0.62-0.69) 0.005 (0.004-0.005) 0.38 (0.14-0.70) 
Valledupar 0.19 (0.07-0.58) 0.012 (0.003-0.025) 0.40 (0.07-0.93) 
Villavicencio 0.41 (0.19-0.91) 0.014 (0.005-0.025) 0.35 (0.10-0.81) 
Yopal 0.80 (0.55-0.99) 0.019 (0.015-0.027) 0.51 (0.18-0.93) 

 
 

Table 4.4 Estimated hyperprior distributions (per 10,000). Mean posterior and 95% CrI are 
presented. 
 

Parameter Estimates 

+C	&-. 0.0022 (0.0002-0.0040) 
+C	&,D 0.024 (0.020-0.032) 

+EF	&-. 0.058 (0.002-0.171) 

+EF	&,D 1.00 (0.75-1.34) 
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Figure 4.4 Effect of removing data on estimated ZIKV infection attack rates, ZVD reporting rates, 
and number of ZIKV-associated neurological complications (NC) cases reported per 10,000 ZIKV 
infections. Posterior mean (points) and 95% credible interval (error bars) are shown for each city 
and overall. 
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4.2	Bayesian	hierarchical	model	by	sex	

Overall parameter estimates for the ZVD reporting rate and the number of ZIKV-associated 

neurological complications cases reported per 10,000 ZIKV infections by sex can be found in 

Table 4.5. When the same ZIKV infection attack rate is assumed for males and females, 

females were more likely to be reported as ZVD cases compared to males but less likely to 

be reported as cases with neurological complications. The estimates for all cities are shown 

in Figure 4.5. A comparison of the posterior probabilities by sex for each city is shown in 

Table 4.7 as well as in Figures 4.6-4.7. Important differences in the posterior probabilities 

for ZVD reporting rates were identified in nearly all cities, but there were no major 

differences in the risk of ZIKV-associated neurological complications. The estimated 

hyperprior distributions and the overall ZIKV infection attack rate are shown in Table 4.6. 

 
Table 4.5 Overall estimated ZVD reporting rate and number of ZIKV-associated neurological 
complications (NC) cases reported per 10,000 ZIKV infections by sex. Mean posterior and 95% CrI 
are presented. The posterior probabilities (PP) are shown in the final two columns. 
 

Parameter Males Females PP 
males > females 

PP  
males < females 

Estimated ZVD reporting 
rate 

0.011 
(0.005-0.016) 

0.020  
(0.009-0.029) 

<0.0001 >0.9999 

Estimated number of 
ZIKV-associated NC cases 
reported per 10,000 ZIKV 
infections  

0.69 
(0.30-1.01) 

0.53  
(0.23-0.81) 

0.97 0.03 

 
 

Table 4.6 Estimated hyperprior distributions (shown per 10,000) by sex and overall ZIKV infection 
attack rate for both males and females. Mean posterior and 95% CrI are presented. 
 

Parameter Males Females 

Estimated ZIKV infection attack rate 0.28 (0.18-0.59) 
+C	&-. 0.002 

(0.001-0.003) 
0.004 
(0.001-0.006) 

+C	&,D 0.016 
(0.013-0.021) 

0.030 
(0.026-0.038) 

+EF	&-. 0.15 
(0.01-0.37) 

0.062 
(0.002-0.177) 

+EF	&,D 1.00 
(0.73-1.35) 

0.91 
(0.66-1.28) 
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Figure 4.5 Estimated ZVD reporting rate and number of ZIKV-associated neurological complications 
(NC) cases reported per 10,000 ZIKV infections by sex. The same ZIKV infection attack rate was 
assumed for males and females. Seroprevalence data were incorporated into the analysis for Cúcuta, 
Neiva, Medellín, and Sincelejo. Posterior mean (points) and 95% credible interval (error bars) are 
shown for each city and overall.  
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Table 4.7 Comparison of the posterior probabilities (PP) of estimated ZVD reporting rate and 
number of ZIKV-associated neurological complications (NC) cases reported per 10,000 ZIKV 
infections by sex for each city. 

City Estimated ZVD reporting rate Estimated ZIKV-associated NC 
cases reported per 10,000 ZIKV 

infections 

PP 
males > females 

PP  
males < 
females 

PP  
males > females 

PP  
males < 
females 

Arauca <0.0001 >0.9999 0.74 0.26 
Armenia <0.0001 >0.9999 0.60 0.40 
Barranquilla <0.0001 >0.9999 0.84 0.16 
Bucaramanga <0.0001 >0.9999 0.93 0.07 
Cali <0.0001 >0.9999 0.74 0.26 
Cartagena <0.0001 >0.9999 0.57 0.43 
Cúcuta <0.0001 >0.9999 0.57 0.43 
Florencia <0.0001 >0.9999 0.69 0.31 
Ibagué <0.0001 >0.9999 0.77 0.23 
Inírida 0.17 0.83 0.59 0.41 
Leticia <0.0001 >0.9999 0.60 0.40 
Medellín <0.0001 >0.9999 0.77 0.23 
Mitú 0.07 0.93 0.59 0.41 
Mocoa 0.01 0.99 0.71 0.29 
Montería <0.0001 >0.9999 0.81 0.19 
Neiva <0.0001 >0.9999 0.52 0.48 
Pereira <0.0001 >0.9999 0.63 0.37 
Popayán 0.001 0.999 0.60 0.40 
Puerto Carreño 0.05 0.95 0.58 0.42 
Quibdó 0.10 0.90 0.60 0.40 
Riohacha <0.0001 >0.9999 0.60 0.40 
San Andrés <0.0001 >0.9999 0.63 0.37 
San José del Guaviare 0.0005 0.9995 0.60 0.40 
Santa Marta <0.0001 >0.9999 0.85 0.15 
Sincelejo <0.0001 >0.9999 0.93 0.07 
Valledupar <0.0001 >0.9999 0.30 0.70 
Villavicencio <0.0001 >0.9999 0.46 0.54 
Yopal <0.0001 >0.9999 0.86 0.14 
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Figure 4.6 Comparison of the posterior densities of estimated ZVD reporting rate by sex for each 
city. 



Page 193 of 391 
 

 

 

Figure 4.7 Comparison of the posterior densities of estimated number of ZIKV-associated 
neurological complications (NC) cases reported per 10,000 ZIKV infections by sex for each city. 
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4.3	Bayesian	hierarchical	model	by	age	group	

Overall parameter estimates for the ZVD reporting rate and the number of ZIKV-associated 

neurological complications cases reported per 10,000 ZIKV infections by age group can be 

found in Table 4.8. When the same ZIKV infection attack rate is assumed for all ages, 

younger individuals were more likely to be reported as ZVD cases compared to older 

individuals but less likely to be reported as cases with neurological complications. The 

estimates for all cities are shown in Figure 4.8. A comparison of the posterior probabilities 

by age group for each city is shown in Table 4.10 as well as in Figures 4.9-4.10. Important 

differences in the posterior probabilities for ZVD reporting rates were identified in several 

cities, but there were only a couple of cities with major differences in the risk of ZIKV-

associated neurological complications. The estimated hyperprior distributions and the 

overall ZIKV infection attack rate are shown in Table 4.9. 

 
Table 4.8 Overall estimated ZVD reporting rate and number of ZIKV-associated neurological 
complications (NC) cases reported per 10,000 ZIKV infections by age group. Mean posterior and 
95% CrI are presented. The posterior probabilities (PP) are shown in the final two columns. 
 

Parameter 0-39 years 40 or more 
years 

PP 
0-39 >  

40 or more 

PP  
0-39 <  

40 or more 
Estimated ZVD reporting 
rate 

0.018  
(0.008-0.026) 

0.012 
(0.005-0.017) 

>0.9999 <0.0001 

Estimated number of 
ZIKV-associated NC cases 
reported per 10,000 ZIKV 
infections  

0.44 
(0.19-0.66) 

0.93 
(0.40-1.39) 

<0.0001 >0.9999 

 
 

Table 4.9 Estimated hyperprior distributions (shown per 10,000) by age group and ZIKV infection 
attack rate for all ages. Mean posterior and 95% CrI are presented. 
 

Parameter 0-39 years 40 or more years 

Estimated ZIKV infection attack rate 0.28 (0.18-0.59) 
+C	&-. 0.004 

(0.001-0.005) 
0.0017 
(0.0004-0.0028) 

+C	&,D 0.025 
(0.022-0.032) 

0.018 
(0.015-0.024) 

+EF	&-. 0.065 
(0.002-0.189) 

0.17 
(0.01-0.41) 

+EF	&,D 0.69 
(0.50-0.95) 

1.50 
(1.08-2.10) 
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Figure 4.8 Estimated ZVD reporting rate and number of ZIKV-associated neurological complications 
(NC) cases reported per 10,000 ZIKV infections by age group. The same ZIKV infection attack rate 
was assumed for all ages. Seroprevalence data were incorporated into the analysis for Cúcuta, 
Neiva, Medellín, and Sincelejo. Posterior mean (points) and 95% credible interval (error bars) are 
shown for each city and overall.  
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Table 4.10 Comparison of the posterior probabilities (PP) of estimated ZVD reporting rate and 
number of ZIKV-associated neurological complications (NC) cases reported per 10,000 ZIKV 
infections by age group for each city.  

City Estimated ZVD reporting rate Estimated ZIKV-associated NC 
cases reported per 10,000 ZIKV 

infections 

PP 
0-39 >  

40 or more 

PP  
0-39 <  

40 or more 

PP  
0-39 >  

40 or more 

PP 
 0-39 <  

40 or more 
Arauca 0.12 0.88 0.08 0.92 
Armenia 0.92 0.08 0.20 0.80 
Barranquilla >0.9999 <0.0001 <0.0001 >0.9999 
Bucaramanga >0.9999 <0.0001 0.37 0.63 
Cali >0.9999 <0.0001 0.002 0.998 
Cartagena >0.9999 <0.0001 0.12 0.88 
Cúcuta >0.9999 <0.0001 0.0002 0.9998 
Florencia >0.9999 <0.0001 0.18 0.82 
Ibagué >0.9999 <0.0001 0.03 0.97 
Inírida 0.33 0.67 0.17 0.83 
Leticia 0.41 0.59 0.18 0.82 
Medellín >0.9999 <0.0001 0.07 0.93 
Mitú 0.96 0.04 0.16 0.84 
Mocoa 0.74 0.26 0.07 0.93 
Montería >0.9999 <0.0001 0.13 0.87 
Neiva >0.9999 <0.0001 0.33 0.67 
Pereira >0.9999 <0.0001 0.22 0.78 
Popayán >0.9999 <0.0001 0.17 0.83 
Puerto Carreño 0.12 0.88 0.18 0.82 
Quibdó 0.21 0.79 0.16 0.84 
Riohacha 0.70 0.30 0.18 0.82 
San Andrés 0.98 0.02 0.23 0.77 
San José del Guaviare 0.19 0.81 0.16 0.84 
Santa Marta >0.9999 <0.0001 0.15 0.85 
Sincelejo 0.9998 0.0002 0.13 0.87 
Valledupar >0.9999 <0.0001 0.37 0.63 
Villavicencio >0.9999 <0.0001 0.43 0.57 
Yopal >0.9999 <0.0001 0.35 0.65 
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Figure 4.9 Comparison of the posterior densities of estimated ZVD reporting rate by age group for 
each city. 
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Figure 4.10 Comparison of the posterior densities of estimated number of ZIKV-associated 
neurological complications (NC) cases reported per 10,000 ZIKV infections by age group for each 
city. 
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When a Beta(1,1) prior distribution was used for the ZIKV infection attack rate in the older 

age group in Cúcuta, Medellín, Neiva, and Sincelejo, the uncertainty of that parameter 

increased substantially for those cities and also affected the reporting rates to some degree 

(Figure 4.11).   
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Figure 4.11 Sensitivity of the prior distributions for ZIKV infection attack rates across age groups 
on estimated ZIKV infection attack rates, ZVD reporting rates, and number of ZIKV-associated 
neurological complications (NC) cases reported per 10,000 ZIKV infections by age group. In Cúcuta, 
Medellín, Neiva, and Sincelejo, different prior distributions were used for individuals between 0 and 
39 years and those 40 years or more. Posterior mean (points) and 95% credible interval (error bars) 
are shown for each city and overall.  

4.4	Model	convergence	and	diagnostics	

Model convergence and diagnostics in this section correspond to the first model which 

includes all the data. Model diagnostics were also checked for the sex and age models. 

Although some divergent transitions occurred after the warm-up period for the combined 

age model with 153 parameters, the warning message was eliminated by increasing 

adapt_delta (the target acceptance rate) from the default of 0.8 to 0.95. No other issues 

with these models were identified. 

4.4.1	 Distributions	

Figures 4.12-4.14 show violin plots of the posterior distributions of the parameters after 

removing the burn-in and merging all four chains. Violin plots are a type of density plot; the 

peak of the plot has the most support from the data and the prior distribution. Although 

density plots are not a formal way of determining model convergence, unusual shapes can 

indicate poor convergence [86].  
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Figure 4.12 Violin plots of the posterior distribution of ZIKV infection attack rate for all cities. All 
four chains were merged after removing the burn-in. 
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Figure 4.13 Violin plots of the posterior distribution of ZVD reporting rate for all cities. All four 
chains were merged after removing the burn-in. 
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Figure 4.14 Violin plots of the posterior distribution of the number of ZIKV-associated neurological 
complications (NC) cases reported per 10,000 ZIKV infections for all cities. All four chains were 
merged after removing the burn-in. 
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4.4.2	 Convergence	diagnostics	

The R-hat values for all parameters were very close to 1, suggesting model convergence. All 

parameters also had good effective sample sizes, and no warnings about divergent 

transitions were produced.   

4.4.3	 Traces	

Figures 4.15-4.17 show the MCMC traces for four chains after removing the burn-in period. 

Mixing is good for all parameters based on visual assessment.  
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Figure 4.15 MCMC traces for the ZIKV infection attack rate for all cities. 
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Figure 4.16 MCMC traces for the ZVD reporting rate for all cities. 
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Figure 4.17 MCMC traces for the number of ZIKV-associated neurological complications (NC) cases 
reported per 10,000 ZIKV infections for all cities. 
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5	Discussion	

In this chapter, estimates of ZIKV infection attack rates, ZVD reporting rates, and risk of 

ZIKV-associated neurological complications were refined for Colombia using surveillance 

data stratified by age and sex, seroprevalence data from four cities, and a dataset on ZIKV-

associated neurological complications. Estimated ZIKV infection attack rates were 

heterogeneous across cities, and differences in reporting ZVD cases and ZVD cases with 

neurological complications were quantified for each sex and two age groups.  

The overall estimate of the ZIKV infection attack rate for the 28 capital cities analyzed was 

0.38 (95% CrI: 0.17-0.92), which is higher than that reported by both Mier-y-Teran-Romero 

et al. (0.09, 95% CrI: 0.03-0.23) and Moore et al. (0.19, 95% CrI: 0.15-0.23) [133, 192]. 

Moore et al. used a Beta(1,2) prior distribution to lightly constrain the infection attack rate; 

however, their result from using a Beta(1,1) prior distribution was more similar (0.26, 95% 

CrI: 0.21-0.31) to the one presented here. Differences in the estimates could be attributed 

to the different spatial scales considered: while this study focused on capital cities, Moore 

et al. used department-level data and Mier-y-Teran-Romero et al. used national-level data. 

Moreover, all 28 cities in this study were at risk of arbovirus transmission and reported ZVD 

cases. In contrast, many locations which were included in the other two studies were not at 

risk and did not report ZVD cases, including Bogotá, with a population of about eight million. 

Higher overall infection attack rates would be expected from an analysis that only included 

at-risk locations.  

The credible intervals for the overall estimate of the infection attack rate were wider 

compared to those reported by both Mier-y-Teran-Romero et al. and Moore et al. and likely 

reflect heterogeneity in infection attack rates across cities. The post-epidemic 

seroprevalence estimates, which informed the prior distributions for four cities in this study, 

ranged from about 0.07 in Medellín to between 0.48-0.66 in Cúcuta, Neiva, and Sincelejo. 

There is evidence that high infection attack rates resulting in herd immunity brought an end 

to the ZIKV epidemic in the Americas [23]. Seroprevalence studies conducted in other large 

cities in Latin America have also reported high infection attack rates such as 0.46 (95% CI: 

0.44-0.48) in Managua, Nicaragua [239] and 0.73 (95% CI: 0.70-0.76) in Salvador, Brazil 

[120]. However, infection attack rates were not uniform even at small spatial scales, leaving 
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pockets of susceptible populations [120, 232]. This heterogeneity may not have been 

captured as well by Mier-y-Teran-Romero et al. and Moore et al., who used coarser 

surveillance data and did not incorporate seroprevalence data from Colombia.  

The estimated reporting rate of ZVD across cities was 0.013 (95% CrI: 0.004-0.024). This 

estimate is similar to the reporting rate which was obtained in chapter 3 from the best-

fitting negative binomial models fitted to department-level data (0.016, 95% CrI: 0.015-

0.017). In contrast, Mier-y-Teran-Romero et al. estimated a reporting rate over two times 

larger (0.03, 95% CrI: 0.01-0.07) [133]. Moore et al. also obtained a larger result for this 

parameter. They estimated both the probability that a symptomatic ZIKV infection is 

reported as a suspected ZVD case and the probability that a symptomatic ZIKV infection is 

reported as a laboratory-confirmed ZVD case [192]. The probability that a symptomatic ZIKV 

infection is reported as a suspected or confirmed ZVD case had mean 0.040 (95% CrI: 0.019-

0.077)4. Again, the difference in estimates could be explained by the use of seroprevalence 

data in this study to estimate infection attack rates. More precise estimates of reporting 

rates would be expected from better estimates of the infection attack rates, which could 

explain why the credible intervals here are narrower than those reported by the other 

studies.  

The overall estimate of the number of ZIKV-associated neurological complications reported 

per 10,000 ZIKV infections was 0.51 (95% CrI: 0.17-0.92). This estimate is lower than that 

reported by Mier-y-Teran-Romero et al. (2.0, 95% CrI: 0.6-4.6) [133] and Moore et al. (2.9 

GBS cases per 10,000 symptomatic ZIKV infections, 95% CrI: 1.4-5.55) [192] for Colombia. 

One possible reason for the discrepancy is that three different datasets for ZIKV-associated 

neurological complications were used by the studies. Mier-y-Teran-Romero et al. used a 

total of 677 cumulative cases, which were reported in the INS Weekly Epidemiological 

Bulletin at the end of 2016, and Moore et al. used 773 cases which were reported to PAHO. 

Although these were the only case numbers available at the time, they were nevertheless 

 
4 This estimate was not reported in the paper. It was obtained from the posterior samples of 
the MCMC. After removing the burn-in, the four chains of each parameter were merged. 
Then, the posterior samples for the relevant overall probabilities for Colombia were 
summed. 
5 This estimate was also not reported in the paper and was obtained from the posterior 
samples of the MCMC for the overall probability for Colombia as above.  
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subject to misclassification. Here, 418 cases remained following a verification process. 

Another contributing factor is that higher infection attack rates were found in this study 

compared to those reported by Mier-y-Teran-Romero et al. and Moore et al. Higher 

estimated infection attack rates would lead to lower estimates of the risk of neurological 

complications following ZIKV infection.  

The model estimated that there are 54 (95% CrI: 5-210) reported cases of ZIKV-associated 

neurological complications for every 10,000 reported cases of ZVD on average. This estimate 

is less than half that from Mier-y-Teran-Romero et al.’s study (111, 95% CrI: 0-567),  but the 

two findings are not inconsistent according to the credible intervals. Their estimate 

incorporated baseline levels of GBS for all locations except Colombia and Puerto Rico. They 

assumed that GBS cases occur at a mean rate of 1.1 cases per 100,000 population per year 

[133]. Thus, the interpretation of their estimate more closely aligns with the total expected 

number of reported GBS cases from all causes for every 10,000 reported ZVD cases, while 

the estimate here can be interpreted as excess cases of neurological complications due to 

ZIKV per 10,000 reported ZVD cases.  

Interestingly, the point estimates from the raw data (calculated as reported cases of ZIKV-

associated neurological complications divided by ZVD cases) for 12 out of 28 cities in this 

study fell outside of their 95% credible interval. Eleven of those cities reported zero cases of 

ZIKV-associated neurological complications. Based on the number of reported ZVD cases in 

those cities, the model predicted there would be reported ZVD cases with neurological 

complications. It is possible that ZVD cases with neurological complications were not 

reported because they did not occur due to chance. Thirteen out of seventeen cities that did 

report ZVD cases with neurological complications reported fewer than 10, making it a rare 

event. Another possible explanation is that severe cases of ZVD were under-ascertained 

because of barriers to healthcare access, particularly in rural areas. A study on the 

availability and distribution of medical specialists offering high and medium complexity 

services in Colombia estimated that the country had only one neurologist and one 

neurosurgeon for every 100,000 population in 2011 [240]. Together, these indicators are 

lower than the global median of the total neurological workforce (comprising the total 

number of adult neurologists, neurosurgeons, and pediatric neurologists), which was 

estimated by the WHO at 3.1 per 100,000 population from data collected between 2014 and 
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2015 [241]. Among World Bank income groups, high-income countries reported the largest 

number with a median of 7.1 per 100,000 population, which were followed by upper-

middle-income countries (including Colombia) with a median of 3.1 [241]. In Colombia, 

medical specialists tend to be concentrated in the capital cities. Despite this fact, capital 

cities located in predominately rural departments struggle with lack of specialists. According 

to one hospital manager in Leticia, a major limitation faced by specialists is work-related 

travel. For every three weeks that a specialist works, another specialist must agree to 

replace them for one week while they rest [240].  

The models for sex and age group quantified the biases in the ZIKV surveillance data that 

were explored in chapter 2. Important differences in overall ZVD reporting rates and the risk 

of being reported as a ZVD case with neurological complications were found by comparing 

the estimated posterior probabilities. Overall, female cases of ZVD were more likely than 

male cases to be reported to the surveillance system but less likely to be reported as cases 

with neurological complications, assuming the same infection attack rates. These findings 

are consistent with the results in chapter 2, which showed that more ZVD cases were 

reported in women of child-bearing age than expected based on the age distribution of the 

population and males have higher risk of neurological complications. The same trend in 

reporting rates was found for most cities, but no important differences in the risk of 

neurological complications by sex were found at the city level (possibly due to lack of 

power). Overall, younger individuals had higher ZVD reporting rates than older individuals 

assuming the same infection attack rates, while older individuals were more likely to be 

reported as cases with neurological complications. These findings are also expected based 

on the results in chapter 2 and GBS epidemiology. Similar results were obtained at the city 

level for reporting rates by age, but few cities had important differences in the risk of 

neurological complications, which, again, could be related to small sample sizes and lack of 

power. Interestingly, the cities with important differences in estimates by sex and age group 

tended to include those with more available data, including seroprevalence data and 

reported cases of ZIKV-associated neurological complications.   

ZVD is not the only disease for which multiple data types have been employed to overcome 

biases or gaps in surveillance data. For example, Watson et al. used community-uploaded 

obituary certificates to validate a mathematical model of COVID-19 transmission dynamics 
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in Damascus, Syria [242]. The model, which was fitted to reported COVID-19 deaths, 

estimated that only 1.25% of deaths (sensitivity range 1%-3%) from COVID-19 were 

reported in Damascus between July 2020 and August 2020. The alternative data source 

confirmed substantial under ascertainment of mortality over that time period [242]. 

Another example comes from the Global Polio Eradication Initiative, which began in 1988 

after the WHO declared poliovirus a target for eradication [243]. Surveillance of acute 

flaccid paralysis (AFP) is the primary means by which poliovirus is monitored globally. 

However, as only one in 200-1,000 individuals infected by poliovirus becomes paralyzed, the 

majority of infections are not detected by AFP surveillance, leaving gaps. Consequently, 

both environmental sampling of sewage and genetic sequencing of polioviruses have been 

employed to improve the identification of poliovirus outbreaks, understanding of their 

spread, and determination of the appropriate vaccination response [243].    

A limitation of this analysis is that seroprevalence data were only available for four cities. 

Cities without these data had much wider credible intervals, especially for ZIKV infection 

attack rates and ZVD reporting rates. Although removing data from the four cities did not 

seem to greatly affect parameter estimates for the remaining cities, the estimated infection 

attack rates for some cities were nonetheless surprising. For example, Barranquilla and 

Cartagena are located just 100 km apart along Colombia’s Caribbean coast and have similar 

altitudes. Yet, the estimated infection attack rate for Barranquilla was much higher than 

Cartagena (0.79, 95% CrI 0.54-0.99 versus 0.13, 95% CrI 0.04-0.42). Estimated infection 

attack rates for Pereira and Riohacha were also lower than expected, given that both cities 

are considered hyperendemic for DENV [229]. Seroprevalence data from these cities would 

help improve these estimates.  

As mentioned in chapter 2, inaccuracy in population projections from DANE would also 

affect the results in this chapter and in the previous one, namely impacting the estimated 

reporting rates. For example, if a particular city or department had a smaller population size 

than the projected population size, then the observed reporting rate would appear to be 

smaller. Given that a single reporting rate was estimated across all departments in chapter 

3, it is unclear whether ! would have been over- or under-estimated.  
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All available data from Colombia, including 50,415 additional cases of ZVD and 194 

additional cases of ZIKV-associated neurological complications, were not used in this 

analysis due to restricting to capital cities. Also, because reporting rates are expected to be 

higher in capital cities compared to non-capital cities and departments, the findings here 

may not be generalizable to the rest of the country. A strength of this analysis is the fine 

spatial scale of the available data and the fact that the neurological complications dataset 

was checked against standardized case definitions. Future research should investigate ZIKV 

surveillance biases in other countries; however, comparable datasets may not be available. 

Some countries such as Ecuador reported very few cases of ZIKV-associated neurological 

complications to PAHO [244].  

In conclusion, the need for additional data sources to overcome biases in surveillance data 

was highlighted in this chapter. Differences in ZIKV infection attack rates and reporting of 

ZVD cases were observed across capital cities and across sex and age groups. The risk of 

ZIKV-associated neurological complications was also estimated. These severe ZVD cases may 

have been under ascertained in rural cities, where greater incentives are needed to attract 

and retain medical specialists.  
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Chapter	5:	Spatial	and	temporal	invasion	dynamics	of	the	

2014-2017	Zika	and	chikungunya	epidemics	in	Colombia	

Work in this chapter formed the basis of a manuscript that has been published in PLOS 

Computational Biology [245].  

Abstract	

Understanding the spatial and temporal dynamics of Zika virus (ZIKV) and chikungunya virus 

(CHIKV) at the subnational level is key to informing surveillance and preparedness for future 

epidemics. In this chapter, surveillance data were used to analyze transmission between 

cities using a suite of (i) gravity models, (ii) Stouffer’s rank models, and (iii) radiation models 

with two types of distance metrics, geographic distance and travel time between cities. 

Invasion risk was best captured by a gravity model when accounting for geographic distance 

and intermediate levels of density dependence; Stouffer’s rank model with geographic 

distance performed similarly well. Although a few long-distance invasion events occurred at 

the beginning of the epidemics, an estimated distance power of 1.7 (95% CrI: 1.5-2.0) from 

the gravity models suggests that spatial spread was primarily driven by short-distance 

transmission. Similarities between the epidemics were highlighted by jointly fitted models, 

which were preferred over individual models when the transmission intensity was allowed 

to vary across arboviruses. However, ZIKV spread considerably faster than CHIKV. 

1	Introduction	

1.1	Spatiotemporal	epidemiology	

Spatiotemporal epidemiology is the study of the distribution and determinants of health-

related states or events across time and geographic space. Since at least the 1800s, maps 

have been used to study the causes of infectious disease outbreaks. Early notable examples 

include yellow fever in the southern USA and cholera in London, England [246]. Since then, 

computers, modern statistics, and geographic information systems have greatly increased 

researchers’ capacity to investigate factors involved in the geographic variation of disease, 

infectious disease transmission, and control strategies [247].  
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Methods for analyzing spatiotemporal data tend to fall into one of two categories, spatial 

statistical modeling and spatial transmission dynamic (mathematical) modeling [248]. 

Spatial statistical methods involve finding relationships between space-time patterns in 

infectious diseases and aspects of the host or environment, creating maps of incidence or 

prevalence, and identifying hotspots or clusters of disease [248]. In contrast, mathematical 

models are helpful for understanding the mechanisms underlying disease transmission and 

may be used to envisage alternative scenarios of potential epidemic trajectories, describe 

and forecast outbreaks, and evaluate interventions [248].  

Over the last two decades, several infectious disease epidemics have been analyzed using 

spatiotemporal methods. In 2001 during the foot-and-mouth disease epidemic in the UK, 

mathematical models accounting for spatial contact patterns between farms were used to 

estimate the impact of interventions, including culling, vaccination, and movement 

restrictions [249]. Spatial transmission models of the 2014-2016 Ebola virus epidemic in 

West Africa were used to compare the effectiveness of local versus long-range interventions 

such as quarantine and border closures [250]. Spatiotemporal models are currently being 

used in conjunction with mobility data to estimate transmission intensity of COVID-19 and 

the impact of social distancing measures on the pandemic [251]. 

1.2	Human	movements	and	disease	spread		

As recently as three or four generations ago, it was not uncommon for individuals to live 

their entire lives within a few tens of kilometers from where they were born [252]. Over the 

last two centuries human mobility is estimated to have increased by over 1,000-fold in 

western countries [253]. The rise in mobility has been associated with elevated risk of 

infectious disease spread. Before the twentieth century, travel via walking, horseback, and 

ships was implicated in spreading devastating epidemics of plague, cholera, and smallpox. 

The movement of these and other diseases had profound effects on the course of human 

history [254]. In the twentieth century, commercial aviation dramatically decreased the 

amount of time needed to travel from one place to another; people, and they diseases they 

carry, began to move with unprecedented speed. Consequently, air travel has played an 

important role in the spread of influenza, HIV, and novel coronaviruses over the last few 

decades [254]. In 2003, the year in which the SARS epidemic occurred, individuals took 
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about 1.7 billion journeys by plane. By 2018, that number more than doubled to 4.2 billion 

[255]. Today, infections introduced by travelers continue to pose risks ranging from sporadic 

cases of infectious diseases, such as monkeypox introduced into the UK [256], to epidemics 

and pandemics that can lead to new areas of endemicity [257]. 

The study of human movements is relevant to several areas of research and is carried out by 

geographers, ecologists, engineers, epidemiologists, and others. The types of movements 

under investigation can include trips to work, tourism, and migration [258]. Economic and 

social activities are key drivers of human mobility. Movement patterns are based on a 

population’s transportation network, which can include road and rail routes as well as air 

and sea corridors [258]. Sources of mobility data include census data and surveys, currency 

tracking, mobile phone records, GPS on cars and mobile phones, and location-based social 

network data [259]. Understanding human movements can improve traffic forecasting, 

urban planning, and epidemic modeling [259].  

Population movements can be modeled as flows between distinct locations that are 

connected by a network. A spatial kernel defines how the different subpopulations interact. 

In infectious disease epidemiology, a spatial transmission kernel is the probability 

distribution of distances between the location of a donor and recipient of an infection [260]. 

Factors that influence the shape of the spatial kernel include host behavior, mode of 

transmission, and environment [260]. For vector-borne diseases, human movements affect 

exposure to vectors and consequently the transmission of pathogens. There is considerable 

evidence that human movement is responsible for the spread of DENV across large spatial 

scales. Outbreaks in several countries including Australia, China, and Japan have been 

associated with the arrival of DENV-infected travelers from endemic regions [261]. At a finer 

spatial scale, Stoddard et al. used a case-control study with contact tracing to study human-

mediated DENV dispersal between households over two transmission seasons in Iquitos, 

Peru. They found that households visited by DENV-infected individuals had higher infection 

risk and transmission rates than those visited by uninfected individuals [262]. In other 

words, movement between a person’s residence and the households of family and friends 

was an important driver of DENV spread in the community.  
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1.2.1	 Gravity	models	

Gravity models describe movement from one location to another based on population size 

and distance [263]. The idea that humans are drawn together by a social gravitational force 

comes from sociology and dates back to at least the 1850s. Drawing from Newton’s law of 

gravitation and observations of human movement, Carey stated that “Man, the molecule of 

society,… tends of necessity to gravitate towards his fellow-man… Gravitation is here, as 

everywhere else in the material world, in the direct ratio of the mass, and in the inverse one 

of the distance” [264]. Nearly one-hundred years later, this concept was formalized in a 

mathematical equation. In the 1940s, Zipf described the movement of people between 

population centers in the USA. He proposed that the number of people that travel between 

cities 1 and 2 is proportional to P1*P2/d, where P is the population size of each city and d is 

the distance between them [265]. This formula reflects how larger population centers exert 

a greater “pull” on people than smaller ones with a penalty for distance traveled. Zipf tested 

his hypothesis with data on the circulation of newspapers, telephone calls, and bus 

passenger movements [265].  

Traditionally gravity models have been used to study the flow of goods and services in 

spatially distributed populations [263]. Over the last few decades, gravity models have been 

applied to biological systems, including the transmission of infectious diseases between 

regions, due to their simplicity and ability to capture several aspects of epidemic dynamics. 

One of the first studies to apply gravity models to infectious disease dynamics was Xia et al. 

[266]. They used a time series SIR model within a gravity model metapopulation framework 

to investigate the spread of measles outbreaks from 1944-1967 in England and Wales. Their 

model was able to reproduce key spatiotemporal features of measles dynamics during the 

pre-vaccination era, including case rates, cyclic and seasonal patterns, as well as epidemic 

extinction rates [266]. Gravity models have since been used to study the spread of a wide 

variety of human infectious diseases, including cholera [267, 268], dengue [269], Ebola [250, 

270], influenza [271-274], and yellow fever [275], among others [276].  

Although early applications of gravity models in the field of ecology assumed an inverse 

relationship between connectivity of locations and distance (a spatial kernel of 1/distance) 

[277], this assumption likely does not hold for human travel. More complex relationships 
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have been used through modifications to the gravity model, most commonly by the 

estimation of a distance exponent. This allows the model to estimate the rate at which 

movement decreases with distance [278]. Some models also include an “offset,” an 

additional parameter that limits the kernel at short distances [279]. Other distance kernels 

have been used in the literature as well as different functional forms. For example, Viboud 

et al. used different kernels above and below a distance threshold of 119 km in their study 

of influenza in the USA [274]. The distance between locations can be the Euclidean (straight-

line) distance or proxies of human mobility, including work commutes and air travel [271, 

274].   

Additional parameters, such as those allowing for spatial interaction, can be added to the 

basic gravity model. The connection between locations such as cities can be described by 

the extent of density dependence, which ranges from density dependent to density 

independent [272]. If connection is density dependent, the total connectivity of a city 

increases along with its number of neighbors according to the sizes of those cities and 

distances between them. If, however, connection is density independent, a city’s number of 

neighbors does not affect the total connectivity between that city and its neighbors. For the 

spread of infectious diseases, density-dependent transmission means that cities with many 

neighbors will experience greater total infection pressure compared to cities with few 

neighbors, and density-independent transmission means that cities with many neighbors 

will experience the same total infection pressure as more isolated cities [272]. While past 

studies tended to assume density dependence [266, 274] or density independence [267, 

280], more recent studies have estimated the level of density dependence [271-273]. 

Gravity models that estimate density dependence are also known as Fotheringham’s 

competing destinations model [281].     

Gravity models can be used to infer population mobility even when mobility data are 

unavailable [272]. Lack of movement data is common for many low- and middle-income 

countries, including Colombia [282]. Once gravity models are validated, they can predict 

changes in connectivity as populations increase or decrease, or as migration changes due to 

violence, economic crises, and natural disasters. This ability to make predictions is a clear 

advantage over movement surveys, which only provide information about a particular point 

in time [272].       
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1.2.2	 Alternative	models		

Despite their growing popularity, gravity models have clear limitations, such as analytical 

inconsistencies [283]. Bjørnstad et al. recently recommended that more than one class of 

models should be explored when attempting to predict the spatial spread of infectious 

diseases [284]. Alternative models for understanding disease spread have been proposed, 

including Stouffer’s rank model and the radiation model. Stouffer’s rank model, also known 

as the law of intervening opportunities, states that the number of people traveling a 

particular distance is proportional to the number of opportunities at that distance and 

inversely proportional to the number of opportunities along the way [285]. It was first 

suggested in 1940 by Samuel Stouffer, an American sociologist. The equation is  

∆}

∆=
=
L

à

∆à

∆=
(5.1) 

where ∆} is the number of persons moving from an origin to a circular band of width ∆=. 

Distance can be measured in units of space, time, or cost. à is the number of intervening 

opportunities, or the total number of opportunities between the origin and distance =. ∆à is 

the number of opportunities within the band of width ∆=, and L is a constant. Opportunities 

must be clearly defined and can vary depending on the study. Examples include jobs for 

people of a particular profession, such as nurses, or universities to which recent high school 

graduates could apply. Stouffer tested his theory empirically using data on residential 

mobility of families in Cleveland, Ohio [285].  

Similar to Stouffer’s rank model, the radiation model also accounts for higher-order 

interactions among population centers. It was proposed as an alternative to the gravity 

model by Simini et al. in 2012 [283] and can be used to predict commuting and mobility 

fluxes. According to the radiation model, the average flux â7S  from location i to location j is 

〈â7,S〉 = â7
@7@S

W@7 + =7,SYW@7 + @S + =7,SY
(5.2) 

where @7  and @S  are the population sizes of locations i and j, respectively, which are 

separated from each other by distance H7,S. =7,S  is the population in the circle of radius H7,S  

centered at i (the source and destination population sizes are not included). â7 = ∑ â7,SSU7  is 

the number of commuters that start their trip from location i. Therefore, â7 = @7(@J/@), 
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where @J  denotes the number of commuters and @ is the population size of the country. 

The radiation model is “parameter-free” and has been used to study epidemics such as ZIKV 

[23], Ebola virus [286], and cholera [284]. 

1.3	Spatiotemporal	analyses	of	ZIKV	and	CHIKV	

Since the 2010s, several studies have been conducted on the spatiotemporal spread of ZIKV 

and CHIKV.  

1.3.1	 Mathematical	models		

In 2015, Cauchemez et al. used a simple distance-based model to describe the spread of 

CHIKV across 40 countries and territories in the Caribbean. They estimated that the risk of 

transmission between areas was inversely proportional to distance [214]. Air passenger flow 

was a weak predictor of transmission. Roche et al. analyzed the spatiotemporal dynamics of 

CHIKV on the island of Martinique. They found that mosquito abundance and human 

behavior, as measured by textual analysis of posts on the social media site Twitter, best 

explained the spread of disease [287]. Chadsuthi et al.’s best-fitting metapopulation model 

for the spatial spread of CHIKV in Thailand included driving distance between districts, 

human movement represented by a gravity model, rubber plantation area, and three long-

distance translocation events [288].   

Using an individual-based, stochastic, and spatial epidemic model, Zhang et al. assessed the 

spatiotemporal dynamics of ZIKV for several countries in the Americas. They found that the 

epidemic moved slowly across the continent and was mainly limited by seasonality in the 

virus’ transmission [53]. Gardner et al. estimated risk factors of ZIKV spread resulting in local 

mosquito-borne transmission in the Americas using a stochastic-dynamic epidemic model. 

Mosquito abundance, incidence rate at the origin region, and human population density 

were identified as risk factors. Air passenger flows played less of a role, and the most 

important factor was an inverse relationship with regional gross domestic product per 

capita, a proxy for vector control availability [289]. O’Reilly et al. used a deterministic 

metapopulation model to project ZIKV incidence for 2018 in 90 large cities within 35 

countries in the Americas. They also estimated key transmission parameters and country-

specific disease reporting rates, as mentioned in chapter 3. They found that migration 

between cities was better captured by a gravity model than a model based on flight data 
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[23]. Prem et al. estimated an infection tree for the 2016 ZIKV outbreak in Singapore. They 

estimated 64.2% of infections occurred at workplaces and several individuals may have 

spread ZIKV over long distances [290].  

1.3.2	 Statistical	models		

Rossi et al. used boosted regression trees to analyze CHIKV outbreak data from 1959 to 

2009 in 76 countries in the Indian Ocean region. By studying pairs of countries that 

experienced outbreaks in the same year, they determined that CHIKV outbreaks were more 

likely to co-occur in countries that were near each other and had high population densities 

[291]. Nsoesie et al. performed spatiotemporal clustering analyses on data from the 2013-

2015 CHIKV outbreak in Dominica. Densely populated areas were found to have statistically 

significant clustering of cases [292]. Lizarazo et al. studied the 2014 CHIKV outbreak in 

Carabobo state, Venezuela. Using trend surface analysis and kriging, they estimated that the 

virus spread radially over a distance of 9.4 km at an average velocity of 82.9 m/day [293]. 

They also used the Knox method to identify disease clusters. The area with the most clusters 

was described as densely populated with lower socioeconomic status of residents and 

crowded living conditions [293].  

Bisanzio et al. used historical data on DENV to infer ZIKV and CHIKV introduction and spread 

in Merida, Mexico. Clustering analyses by census tract identified statistically significant 

overlap in the spatiotemporal distribution of the three viruses (Kendall’s W > 0.63, p < 0.01) 

[294]. Dalvi and Braga studied the spatial diffusion patterns of CHIKV, DENV, and ZIKV during 

the 2015-2016 epidemics in Rio de Janeiro, Brazil. The results of a suite of statistical 

analyses indicated that all three viruses followed an expansion diffusion pattern, meaning 

the diseases spread outward from the place of origin with decreasing intensity [295].   

1.4	Spatiotemporal	analyses	of	ZIKV	and	CHIKV	in	Colombia	

Given the size of the ZIKV and CHIKV epidemics in Colombia, some spatiotemporal studies 

have focused specifically on this country.  

1.4.1	 Mathematical	models		

Moore et al. fitted agent-based models to weekly case reports of CF at three different 

spatial scales (national, departmental, and municipal) in Colombia. They showed that model 
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fits improved when the model was calibrated at finer spatial scales, highlighting the role of 

heterogeneity in environmental and demographic characteristics on epidemic dynamics 

[235].  

1.4.2	 Statistical	models		

Rees et al. used two statistical models to examine the spread of ZIKV across cities in 

Colombia [296]. Using a logistic regression model, they estimated the probability of a city 

reporting at least one ZIKV case during the epidemic. They found that the probability of 

reporting ZIKV increased with warmer mean study period nighttime temperatures, higher 

connectivity between cities, a higher proportion of neighboring cities reporting ZIKV, and 

time. Factors that decreased probability of reporting ZVD cases included higher total study 

period precipitation and higher poverty (proportion of the population with Unsatisfied Basic 

Needs), especially in areas with low connectivity [296]. Maps based on this model showed 

increased risk of ZIKV in the northern and central regions of the country.  

Using an accelerated failure time survival model, Rees et al. also estimated the time to first 

reported case in week t for each city as an indicator of invasion. Connectivity between cities 

and proportion of neighbors reporting ZVD cases increased time to invasion, whereas mean 

elevation, total weekly precipitation, poverty, distance to nearest city reporting ZIKV, and 

the interaction between poverty and connectivity decreased time to invasion. When 

precipitation was assessed on a weekly scale, they found an immediate rather than a time-

lagged effect on invasion [296]. An important limitation of this analysis is that weekly data 

at the city level were not available before January 9, 2016. To obtain cases counts prior to 

January 9, they assumed cases doubled weekly since the start of the epidemic. As a result, 

their study period began on October 24, 2015, which is still 10 weeks after the first cases 

were reported in the country [296].  

Perkins et al. used an algorithm to classify proportional cumulative incidence curves for ZIKV 

at the city, department, and national levels. They also simulated data from a stochastic 

transmission model to assess the effects of environmental variables on how incidence 

curves were classified. They found that temporal incidence varied by city but were unable to 

evaluate the role of spatial interaction [297]. The study period ranged from August 2015 to 

September 2016, and missing data for 2015 was imputed. 
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Flórez-Lozano et al. used a Bayesian hierarchical model to study the spatial distribution of 

ZIKV risk in Colombia [298]. The central and southern parts of the country were found to 

have higher risk; during the peak of the epidemic, the risk in these regions was up to four 

times higher compared to the initial phase [298]. This study was limited to about 41,000 

suspected and laboratory-confirmed cases aggregated at the department level.  

Martínez-Bello et al. used the integrated nested Laplace approximation to model risk of 

DENV and ZIKV in the department of Santander and its capital city, Bucaramanga [299]. 

Their best-fitting department model indicated that the risk of DENV or ZIKV in one city was 

associated with the risk in the same city in the preceding week. At the city level, the best-

fitting model indicated that the risk of DENV or ZIKV in one census sector was associated 

with both its neighboring census sectors in the same week and in the previous week. High 

risk cities and census sectors were identified and mapped. The study period ranged from 

October 2015 to December 2016 [299]. 

McHale et al. studied the spatiotemporal heterogeneity in the ZIKV and CHIKV epidemics 

and the potential for clustering in the city of Barranquilla between 2014 and 2016 [300]. 

Hotspots for both viruses were identified using Moran’s I statistic and local indicators of 

spatial association. Multivariate conditional autoregressive models were used to identify 

risk factors for case incidences associated with living in each neighborhood [300]. They 

found higher socioeconomic stratum and proximity of neighborhood to major roads 

significantly increased the risk of ZIKV case incidences. None of the explored risk factors 

were significant to explain CHIKV case incidences. Typically, low socioeconomic status is 

associated with increased risk of arboviral infections. The authors note that their findings 

could be related to higher reporting rates in wealthier communities with better access to 

healthcare [300]. 

1.5	Aims	

With few exceptions [294, 300], the spatiotemporal spread of ZIKV [53, 289, 297] and CHIKV 

[214, 287, 293] in the Americas has been studied separately. However, the viruses share 

common vectors and were both introduced into a new region with immunologically naïve 

populations. An integrated study of these diseases in the same locations may help uncover 

similarities and differences between the two. Previous analyses of the ZIKV and CHIKV 
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epidemics in Colombia have relied on partial INS surveillance datasets [296-298]. The aim of 

this chapter was to analyze transmission between cities in Colombia by fitting a suite of 

spatial interaction models, including variations of the gravity model, Stouffer’s rank model, 

and radiation model, using the complete surveillance datasets. The invasion dynamics of 

both viruses were examined as well as the extent to which inter-city transmission depended 

on distance, population sizes of invaded and susceptible cities, and the infectivity of ZIKV 

and CHIKV. 

2	Data	

2.1	Epidemiological	data		

The ZIKV and CHIKV datasets that were described in chapter 1 were used in this chapter. 

After removing cases with missing administrative level 2 location, 105,152 ZVD and 411,789 

CF cases remained for analysis.  

Figure 5.1 shows the epidemiological curves for CF and ZVD cases at the department level. 

Most departments had some overlap in reported CF cases and ZVD cases. Although none of 

the departments had a peak in the incidence of both diseases at the same time, only eight 

weeks separated the peaks of the CHIKV and ZIKV epidemics in Putumayo. 
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Figure 5.1 Epidemiological curves of CF and ZVD cases in Colombia by department, 2014-2017. 
Departments are ordered from North to South down the columns. Y-axes are different for each plot.
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2.2	Demographic	data	

As in previous chapters, population projections derived from the 2005 Census were 

obtained for 2016 from DANE. Population sizes were re-scaled by dividing by 10,000. For 

cities included in the main analysis, population sizes ranged from 1,670 to about 2.4 million. 

2.3	Distance	metrics		

Data on two different distance metrics were obtained, (i) geographic distance and (ii) a 

proxy of human mobility. Latitudes and longitudes corresponding to the geographic center 

of each city were provided by collaborators at Colombia’s INS. For geographic distance, the 

geodesic distances between cities were calculated using the Vincenty inverse formula for 

ellipsoids using the gdist function in the R package Imap (version 1.32) [301]. 

Data on accessibility to cities in Colombia for 2015 were obtained from the Malaria Atlas 

Project [302]. The downloaded friction surface consists of average land-based travel speed, 

and units are in minutes to travel 1 meter. The costDistance function in the R package 

gdistance (version 1.2-2) was used to calculate the time to travel between cities in the 

country [303]. The islands of San Andrés and Providencia were not included in the dataset 

because they cannot be reached by land. In order to compare models across distance 

metrics, these two cities were dropped from preliminary analyses. Puerto Colombia in the 

department of Atlántico was also missing from this dataset but is not an island. Because this 

city shares a large border with Barranquilla, the same values were used for both locations, 

and the time to travel between them was assumed to be 0 minutes. 

Figure 5.2 is a map of travel times for the northern part of South America. In Colombia, the 

most accessible cities can be found in the Andean region and on the Caribbean coast. The 

least accessible parts of the country are located in the Amazon region in the south, where 

travel between cities can take up to several days. 
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Figure 5.2 Map of predicted travel time to the nearest city in minutes. Shown for the northern part 
of South America. Reproduced from [302].  
 

2.4	Data	for	analysis	of	invasion	risk	factors	

2.4.1	 Epidemiological	data	

The DENV dataset described in chapter 1 was also used to analyze risk factors of CHIKV and 

ZIKV invasion.  

2.4.2	 Elevation	

SRTM 90m Digital Elevation Data for Colombia were downloaded from the CGIAR-CSI 

GeoPortal. The altitude of each city in meters was extracted according to its latitude and 

longitude [304]. To better approximate human risk of vector-borne disease, coordinates 

corresponding to the population weighted centroids were used for most cities (n = 1,047). 

Due to missing data, geographic center was used for some locations (n = 75). 

2.4.3	 Weather	data	

Weather data were described in chapter 3. They consist of population weighted weekly 

mean temperature and population weighted weekly cumulative rainfall at the city level.   

2.4.4	 Socioeconomic	data	

Multidimensional poverty data for Colombia were downloaded from DANE at the city level 

for the year 2018 [305]. The source of information for the calculation of multidimensional 
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poverty at the department level is the Encuesta Nacional de Calidad de Vida (Quality of Life 

Survey). The annual Quality of Life Survey gathers information about Colombians’ living and 

housing conditions. DANE used information collected from the 2018 Censo Nacional de 

Población y Vivienda (the Census) to approximate multidimensional poverty at the city level. 

The calculations are based on households that were effectively censused. The definitions of 

each variable can be found in chapter 3.  

3	Methods	

The methods in this chapter involve performing a descriptive analysis and fitting spatial 

interaction models. Both rely on the estimated invasion week in each administrative level 2 

unit, denoted here as "cities." After the virus is introduced into a city, the invasion week 

represents the time in which an epidemic begins, allowing the city to spread the virus to 

other cities. In the descriptive analysis, the geographic origin of the epidemics will be 

estimated, long-distance transmission events will be identified, and the elevation of invaded 

and uninvaded cities will be compared. For the spatial interaction models, four types of 

models will be considered as well as two distance metrics. The results of a sensitivity 

analysis and validation of the parameter fitting procedure will also be presented. Finally, risk 

factors of CHIKV and ZIKV invasion will be determined. 

3.1	Invasion	weeks	

3.1.1	 Determination	of	invasion	week	using	first	reported	cases	

Whether a city was invaded by either ZIKV or CHIKV was determined by the number of 

reported cases in each city. For ZIKV, cities that reported at least 30 cases of ZVD were 

considered to have been “invaded.” For CHIKV, the cut-off for CF cases was set at 20. Cities 

with case counts below these thresholds were not considered in the primary analysis. 

Invasion was defined as the week before cases were first reported in each city. A latent 

period of one week was assumed, after which the city is considered infectious and can 

spread the infection to other cities.  

3.1.2	 Generation	time	method	for	determining	invasion	week	

To test the sensitivity of the models to the choice of invasion weeks, an alternative method 

was explored using weekly time series of CF and ZVD cases. For each disease and city 
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separately, the first week of maximum incidence was identified. If zero cases were reported 

in the week just before (tmax – 1) and in the preceding two or three weeks, for CHIKV and ZIKV 

respectively, then this was the week of invasion. If cases were reported during this time 

period, the rule stipulated counting back one week at a time until the condition was met. 

The two and three weeks correspond to each infection’s generation time [210, 213]. If zero 

cases are reported during this time period, then there is no evidence that transmission is 

occurring, and the disease is not yet established in that place assuming complete reporting.  

Figure 5.3 shows an example of this algorithm for determining invasion week in each city. 

 

Figure 5.3 Example of algorithm used to estimate week of invasion using the generation time 
method. (A) The time series for Caucasia in the department of Antioquia during the 2015-2017 ZIKV 
epidemic. In this figure, week 1 corresponds to the week ending on August 15, 2015, and week 51 
corresponds to the week ending on July 30, 2016. The algorithm identifies the point of maximum 
incidence in the time series and counts backward one week at a time until there are no reported 
cases. If there are no cases in this week or the prior two or three weeks depending on the infection’s 
generation time, then this is the week of invasion. If not, the algorithm continues to go back in time 
until the condition is met. The part of the line in red is the period used to determine the onset of 
invasion, and the blue dashed line is the estimated invasion week. (B) The same time series as in (A) 
is shown until the point of maximum incidence (week ending on January 23, 2016). The estimated 
week of invasion is week 15 rather than week 21 because cases were reported in weeks 16-20.  
 

3.2	Elevation	

The elevation of cities that were invaded versus cities that escaped invasion were compared 

for (i) CHIKV, (ii) ZIKV, and (iii) CHIKV, ZIKV, or DENV.  
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Invasion for CHIKV and ZIKV was defined as above. Invasion by DENV was defined as cities 

with at least 98 reported cases between 2010 and 2016. Ninety-eight was used as a cut-off 

because it is the median number of cases reported among cities that reported at least one 

case during this time period. 

The Wilcoxon rank sum test was used to assess the difference in elevation between invaded 

cities and uninvaded cities.	

3.3	Potential	sources	of	the	epidemics	

The Colombian cities where the epidemics most likely began were identified. The method is 

based on the concept that epidemics spread radially from the origin. In other words, the 

relationship between invasion week and geographic distance from the source is linear [271]. 

The first 10% of invaded cities were considered as potential origins for the epidemics 

assuming a single introduction of each virus into Colombia. Pearson’s correlation coefficient 

for the relationship between the city’s invasion week and its geographic distance to the 

origin was calculated for each potential origin. The city with the highest correlation 

coefficient was identified as the most likely source. 

3.4	Long-distance	transmission	events	

The number and location of long-distance transmission events of ZIKV and CHIKV were 

identified using the invasion week in each city. The method detects outliers in the 

distribution of pairwise distances between newly invaded cities and the set of infectious 

cities at the previous time step [271]. The set of cities in the network is C. At time tj, C is 

divided into the set of invaded cities, which are capable of spreading infection, Itj and the set 

of susceptible cities, which can become invaded, Stj: 

"#; = çé: $V < $Së (5.3) 

�#; = çé: $V ≥ $Së (5.4) 

where tj is the timing of invasion of city j and tk is the timing of infectiousness (invasion 

week plus one week) in each of k cities. For city j, the minimum distance between city j and 

invaded cities in Itj was calculated as dj, the most likely route of invasion when the spatial 

dynamics are driven by distance.  
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-S =
?FG
é
-SV (5.5) 

for k ∈ Itj. Dj, the minimum distance between city j and any other city in the network, was 

also calculated: 

îS =
?FG
F
-S7 (5.6) 

for i ∈ C. If the process were entirely spatial, cities would usually be infected by their 

neighbors. Thus, the distance to the nearest city is approximated by dj – Dj ≈ 0. For each 

city, dj – Dj was calculated; those included in the 99th percentile of the distribution of dj – Dj 

were considered long-distance transmission events. 

3.5	Spatial	interaction	models	

Four main types of spatial interaction models were considered: (i) the gravity model, (ii) the 

competing destinations model, (iii) Stouffer’s rank model, and (iv) the radiation model. For 

each model type, both geographic distance and travel time between cities were considered. 

Model parameters were initially estimated independently for each virus. From the four 

best-fitting models with a common structure, joint models were run assuming the same 

parameters across CHIKV and ZIKV. Joint models in which some parameters were allowed to 

vary across arboviruses were also explored. From the first approach, the best-fitting model 

for each virus was obtained. From the second approach, the best-fitting joint model 

highlighting the commonalities in the spatiotemporal dynamics across CHIKV and ZIKV was 

obtained. 

3.5.1	 Gravity	models	

Gravity models were fitted to analyze transmission of CHIKV and ZIKV between cities that 

met the thresholds for reported cases.  

For each virus separately, N cities have an invasion week, ti, which was defined as one week 

prior to the first report of cases. Cities also have population size, Pi, which is assumed to be 

constant over time and weekly case counts weighted by the generation time distribution, 

ci,t. The geographic distance in km (or travel time in minutes) between invaded city i and 

susceptible city j is dij. For geographic distance, the geodesic distance on an ellipsoid was 
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used. This distance is the shortest path between two points accounting for the curvature of 

the Earth.  

At each time point, a city can be either “susceptible,” “latently infected,” or “infectious.” 

Once cities are invaded, they are latently infected for one week and then infectious. The 

model assumes no additional cases are imported from abroad after external seeding into 

Colombia occurs. This implies that if a city was invaded in week ti, only cities within the 

country that were infectious in the previous week could have spread the disease to that city. 

Transmission parameters were assumed to remain constant over time.     

As in Eggo et al.[272], the force of infection, l, represents the hazard of infection from an 

invaded city to a susceptible city. At time t, the force of infection from city i to city j can be 

defined as: 

ï7→S,# = 	)I7,#
X
4S
Y

47
Z

-7S
[

<ΣV,VUS
4V
Z

-VS
[ A

\ (5.7) 

Exponents n and µ are for population sizes of city i and j, respectively. The distance between 

cities is dij and g is the power parameter. b describes transmission intensity. f captures the 

relationship between infectivity of a city and its weekly case count weighted by the 

generation time distribution. Weighting was performed in R using the overall_infectivity 

function in the EpiEstim package (version 1.1-2) [164]. This function calculates the overall 

infectivity due to previously infected individuals from an incidence time series. The overall 

infectivity ï# at time t equals the sum of the previously infected individuals (from incidence 

") weighted by their infectivity at time t (from the discrete serial interval distribution 3V). In 

other words, ï# = ∑ "#$V3V
#$'
V&' . Values for the mean and standard deviation of the 

generation time distributions used for the weighting are the same as in chapter 3 (Table 3.5) 

with mean 14 days and standard deviation 6.2 days for CHIKV [213] and mean 20 days and 

standard deviation 7.4 days for ZIKV [210]. A value of f = 1 indicates that the infectiousness 

of a city at time ti is proportional to the number of cases reported in that city weighted by 

the generation time distribution at time ti. When f = 0, infectiousness does not depend on 

the number of reported cases in the source city. Values of f between 0 and 1 lead to 
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infectiousness profiles that vary according to weekly case counts. Parameter e characterizes 

the density dependence of the connection between a susceptible city and all invaded cities. 

When e = 0, transmission scales linearly with population density, and the formulation above 

reduces to a simple density-dependent model. When e = 1, transmission does not depend 

on population density, and the formulation above reduces to a density-independent model. 

When e is estimated, the model is equivalent to Fotheringham’s competing destinations 

model [281]. The total force of infection on city j at time t is defined by: 

ïS,# =(ï7→S,#"7S,#

7

7US

(5.8) 

where  "7S,# = ó
1, if	F = Infectious	and	ù = Susceptible

0, otherwise
 

The probability that a susceptible city j is invaded at time tj is  

 
4($S) = 8àJB−( ïS,]

#;$'

]&"

CR1 − 8àJ £−ïS,#;§U (5.9)	

The first part of equation (5.9) is the probability that a city escaped invasion from t = 0 until 

just before tj. The second part is the probability that the city was invaded at tj given that it 

was susceptible until that week. The conditional log likelihood is summed over all 

susceptible cities: 

 N = (ln	(4($S
S

)) (5.10)	

 

For models that were fitted to all 1,122 cities in Colombia, the probability that a susceptible 

city j is invaded at time tj was the same as above. The probability that a city escaped 

invasion was 

 4($S) = 8àJl−(ïS,]

8

]&"

o (5.11)	
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where the force of infection for city j is summed over the entire duration of the epidemic 

(from week 0 to T). 

Null models that only included b were fitted first. Additional parameters were added to test 

for a spatial effect in transmission, the role of population size of invaded and susceptible 

cities, and infectivity. Except for b, which is always estimated by MCMC, parameters can be 

fixed at 0, at 1 (not g), or estimated by MCMC.  

3.5.2	 Stouffer’s	rank	model	

Following [284], population size was used as a proxy for “opportunities.” The force of 

infection from city i to city j at time t is 

 ï7→S,# = 	)I7,#
X
4S
Y
<

47
∑ 4VV∈_(S,7)

A

Z

 

 
(5.12)	

where é ∈ Ω(F, ù) is the group of cities that are closer to susceptible city j than invaded city 

i: Ω(ù, F) = {é ∶ 0 < -(ù, é) ≤ -(ù, F)}. A variant of this model in which city j is included 

among the intervening opportunities was also considered. In “Stouffer’s rank variant 

model,” Ω(ù, F) = {é ∶ 0 ≤ -(ù, é) ≤ -(ù, F)} which allows within-city opportunities to 

decrease spatial coupling. 

3.5.3	 Radiation	model	

The version of the radiation model used here is shown in equation (5.13) 

 
ï7→S,# = 	)I7,#

X
47

474S

W47 +∑ 4VV∈_(7,S) YW4S + 47 +∑ 4VV∈_(7,S) Y
 (5.13)	

where again two variants are considered, one in which city j is excluded (“radiation”) from 

the set Ω(ù, F) and one in which it is included (“radiation variant”). This model lacks a 

parameter for the spatial component.  

3.6	Model	estimation	and	computing	

As in chapter 3, Metropolis-Hastings MCMC sampling was used to investigate the posterior 

distributions of parameters [224, 225]. A log normal distribution was used as a proposal 

distribution. As this distribution is asymmetric and only allows positive parameter values, 

the Metropolis accept-reject rule was corrected for asymmetric jumping. Parameters were 
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updated one at a time. Uniform prior distributions were used for all parameters. Three 

chains were run for each model with different starting values. Chains were visually checked 

for convergence after 100,000 iterations with a burn-in of 0.2 times the length of the chains 

(iterations times number of parameters). The coda package (version 0.19-4) in R was used to 

calculate the Gelman-Rubin statistic for each best-fitting model to check convergence [86, 

226]. Median parameter estimates and 95% credible intervals were calculated from the 

posterior distributions after excluding the burn-in. 

DIC was used to compare models. Lower values of DIC are preferred, and a difference of 

about 5 is important [227]. DIC was calculated using the medians of the posterior 

distributions of the parameters due to non-normality of the likelihood.  

All analyses were performed in R version 3.5.1. Aggregated data and code are available on 

GitHub (https://github.com/kcharniga/zika_chik_invasion).  

3.7	Validation	of	gravity	model	fit	and	sensitivity	analyses	

The probability distribution of invasion week was calculated for each city based on the 

observed start of invasion in other cities up to that time. This calculation was performed for 

each virus using the median parameter estimates from the posterior distribution. The 

probability distributions were compared with the observed invasion weeks. 

Simulations were also performed to check model fit. The ZIKV and CHIKV epidemics in 

Colombia were simulated using 1,000 parameter sets sampled from the posterior 

distributions. For each set, the epidemic started in the city (or cities) invaded in the first 

week. A random variable was chosen from a uniform distribution between 0 and 1 for each 

city in each week. If the probability of tj was higher than the random variable, the city 

became invaded. Once invaded, the observed weekly case counts weighted by the 

generation time distribution were used to model that city’s infectiousness over time. 

Epidemic simulations were also used to test the sensitivity of the cut-offs used to determine 

invasion criteria for each virus and were performed for the best-fitting Stouffer’s rank 

models. 
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Gravity models were also fitted to (i) first reported cases and all 1,122 cities in Colombia and 

(ii) estimated invasion week using the generation time method rather than the method 

based on first reported cases as sensitivity analyses. 

3.8	Validation	of	parameter	fitting	procedure	

Using the framework described in the previous section, the fitting procedure for the model 

parameters was validated by simulating one dataset for each virus with the median 

parameter estimates obtained from the best-fitting models. The analysis was re-run on each 

simulated dataset to check that the fitted parameter estimates could be recovered.  

3.9	Risk	factors	of	invasion	

Logistic regression models were used to determine risk factors for invasion by CHIKV and 

ZIKV. The outcome was defined as a city reporting at least 20 cases of CF and at least 30 

cases of ZVD for each respective model. Predictors included population size, elevation, 

dengue risk, temperature, rainfall, and mean travel time as well as the percentage of 

households in each city with overcrowding, inadequate exterior walls, and inadequate 

flooring. Dengue risk was categorized into four levels as follows: cities located at or below 

1800 m of elevation that reported any cases of DF between 2010-2016 were considered “at 

risk” of dengue. The natural logarithm of the cumulative number of cases over this period 

was taken and divided into tertiles (1-3 with 3 being the highest). All other cities were 

assigned values of 0. Mean temperature for each city was obtained by taking the mean of 

the weekly population-weighted weekly time series of mean temperature over the study 

period, defined as the time during which cases were being reported in the country (110 

weeks for CHIKV and 97 weeks for ZIKV). Similarly, mean rainfall was calculated for each city 

as the mean of the population-weighted weekly time series of cumulative precipitation for 

each respective study period. As a sensitivity analysis, the mean of the weather covariates 

from the week cases were first reported until the peak of each epidemic (34 weeks for 

CHIKV and 26 weeks for ZIKV) was also considered. Mean travel time for each city was 

defined as the average time to travel from that city to all other cities, excluding the islands 

of San Andrés and Providencia.  

The predictors were first explored in a univariate analysis. Significance of difference 

between invaded and uninvaded cities was tested by chi-square tests for categorical 
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variables and Wilcoxon rank-sum test for continuous variables, none of which were 

normally distributed. P values < 0.05 were considered statistically significant. A forward 

stepwise approach was then used to build each logistic regression model: predictors were 

added to the model one at a time and only kept if they were significant at the 0.05 level. 

The units of rainfall and elevation were changed to 10 mm and 100 m, respectively, to 

improve the interpretation of the odds ratios (ORs) which were computed by 

exponentiating model coefficients. Models testing the effect of mean travel time were fitted 

to 1,120 cities for which data were non-missing. The Hosmer and Lemeshow goodness-of-fit 

test was applied to the best-fitting models using 10 groups.  

Linear regression was also performed to assess the relationship between dengue risk and 

week of invasion for CHIKV and ZIKV. 

4	Results	

4.1	Characteristics	of	invaded	cities	

Invasion criteria was met by 338 cities for CHIKV and 288 cities for ZIKV out of 1,122 total 

cities. Table 5.1 shows a summary of the population sizes of the invaded cities. The 

minimum population sizes are the same, but the quartiles, median, mean, and maximum 

are larger for ZIKV compared to CHIKV. 

 
Table 5.1 Population sizes of invaded cities. Summary statistics are given for cities invaded by either 
CHIKV or ZIKV. 
 

Virus Min 1st quartile Median Mean 3rd quartile Max 
CHIKV 1,670 13,578 26,192 72,081 55,805 2,394,925 

ZIKV 1,670 14,322 27,786 88,591 60,829 2,486,723 

 

Figure 5.4 compares the distance metrics for invaded cities with non-missing travel times 

data. The histograms show the geographic distance in km and the travel time in minutes 

between Barranquilla and all other invaded cities. There is one outlier in the travel times 

between ZIKV-invaded cities that is not shown; while the median travel time from 

Barranquilla to other invaded cities was about 580 minutes (9 hours), the estimated travel 

time to Leticia in the Amazonas department was 10,293 minutes (172 hours or about 7 

days).   
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Figure 5.4 Comparison of distance metrics for invaded cities. (A) and (B) show the geographic 
distance in kilometers and travel time in minutes, respectively, between the first city invaded by 
CHIKV and all other invaded cities. (C) and (D) show the same for ZIKV. One outlier for Leticia is not 
shown in (D). 
 

In addition to cities invaded by either ZIKV or CHIKV, 525 cities met invasion criteria for 

DENV. The number of cities invaded by any of the three arboviruses (n=591) is consistent 

with a 2013 report by Colombia’s MOH, which classified 56 cities as hyperendemic for DENV 

and 575 cities as mesoendemic [229]. As mentioned in chapter 4, the MOH criteria for level 

of DENV endemicity included trends of reported cases over time, number of circulating 

serotypes, age range of cases, and the presence of dengue hemorrhagic fever (severe 

dengue). Invaded cities were typically located below 2,000 m elevation (Figure 5.5). The 
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difference in elevation between invaded cities and uninvaded cities was statistically 

significant for each of the three sets of comparisons (p < 0.0001).  

 

Figure 5.5 City elevation. Comparison of elevation in meters between cities that were invaded 
versus cities that escaped invasion for (A) CHIKV, (B) ZIKV, and (C) CHIKV, ZIKV, or DENV. 
	

4.2	Spatiotemporal	patterns	in	invasion	weeks	

4.2.1	 Heatmaps		

Figure 5.6 shows the spread of reported CF and ZVD cases during the epidemics. 
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Figure 5.6 Heatmaps showing the spatiotemporal spread of CHIKV and ZIKV in Colombia. 
Population-weighted centroids were used to rank departments in order from North to South. Colors 
across rows represent the number of (A) CF and (B) ZVD cases for each department. Weeks are 
plotted on the x-axis starting from the first week cases were reported to the last week cases were 
reported. Dates for CHIKV (A) range from the week ending June 7, 2014 to that ending July 9, 2016, 
and dates for ZIKV (B) range from the week ending August 15, 2015 to that ending June 17, 2017. 
White rectangles are weeks with zero reported cases. 
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4.2.2	 Invasion	weeks	

Invasion weeks for a random sample of cities from the ZIKV dataset are shown in Figure 5.7. 

The results for all cities can be found in Appendix S4. Invasion weeks ranged from the week 

ending May 31, 2014 to that ending September 19, 2015 for CHIKV and from the week 

ending August 8, 2015 to that ending March 26, 2016 for ZIKV. The time for the diseases to 

invade 50% of cities ever affected was shorter for ZIKV compared to CHIKV; while invasion 

weeks for ZIKV tended to cluster within five months (from September 2015 to January 

2016), 90% of invasion weeks for CHIKV clustered within nine months (between September 

2014 and May 2015) (Table 5.2). Two-hundred and five cities experienced epidemics of both 

CHIKV and ZIKV. For these cities, invasion weeks for both viruses were significantly positively 

correlated (Pearson’s correlation coefficient 0.45, p < 0.0001). Both epidemics were first 

recorded in northern Colombia and spread from there. Early foci of disease also appeared in 

the central parts of the country (Figure 5.8). 
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Figure 5.7 Invasion weeks for a random sample of cities from the ZIKV dataset. Invasion week, 
based on the first week of reported cases, is shown by the dashed blue line. 
 
 
Table 5.2 Epidemiological characteristics of CHIKV and ZIKV epidemics in Colombia. 
 

Virus Cities (#) Time for spread 
to 50%* (weeks) 

Time for spread 
to 100%** 

(weeks) 

Calendar time for 
90% of 

spread*** 

Long-distance 
transmission 

events**** (#) 
CHIKV 338 31 68 Sept. 2014-May 

2015 (35 weeks) 
4 

ZIKV 288 16 33 Sept. 2015- 
Jan. 2016 (21 

weeks) 

3 

*Time for 50% of cities to be invaded. 
**Time from the first city to be invaded to the last city to be invaded. 
***Calendar time for 90% of cities to be invaded (5th percentile to 95th percentile). 
****More than 344.4 km for CHIKV and more than 321.2 km for ZIKV. 
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Figure 5.8 Geographic patterns of invasion weeks in studied cities in Colombia based on first 
reported cases. By 12-week period for (A) CHIKV and 6-week period for (B) ZIKV. Each circle 
represents a city. The size of the circle is proportional to population size. Each panel shows only 
cities newly invaded during the time period indicated in the upper left-hand-corner. The island of 
San Andrés is not shown but was invaded by CHIKV in week 21 and by ZIKV in week 0. Maps 
produced from GADM version 2.0. 
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4.2.3	 Comparison	of	invasion	week	methods	

Figure 5.9 shows the correlation between the generation time method of determining 

invasion week and the method based on first reported cases. 

 

Figure 5.9 Comparison of estimated invasion weeks using a method based on the first reported 
cases in each city (x-axis) and a method based on the generation time distribution of each 
infection (generation time method, y-axis). (A) CHIKV and (B) ZIKV. The black line is y = x. The two 
methods show good agreement (CHIKV: r = 0.60, ZIKV: r = 0.68). 
 

Methods for estimating invasion weeks have been developed previously to study influenza 

epidemics [272, 273]. These methods try to determine when influenza illnesses exceed 

baseline disease levels due to seasonal influenza. However, as there were no baseline levels 

of CF or ZVD in Colombia prior to 2014, even small numbers of cases are potentially 

interesting. Many of the epidemic curves at the city level do not resemble typical “bell 

curves” with reported cases rising and falling repeatedly. The proposed methods here are 

preferred over existing methods because invasion weeks more frequently come before large 

increases in cases. Additionally, vector biology is considered by including the generation 

time. 

Figure 5.10 compares invasion weeks estimated using the generation time method and a 

method from Charu et al. using linear piecewise splines [271]. There is very good agreement 

between the two. 
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Figure 5.10 Comparison of estimated invasion weeks using a method based on the generation time 
distribution (generation time method, x-axis) and a piecewise spline method (Charu method, as in 
[271], y-axis). (A) CHIKV and (B) ZIKV. 95% confidence intervals are shown for the Charu method 
only. For some cities, only the point estimate for tj fell within the 95% confidence interval; this is 
shown by a lack of vertical bar. The diagonal line is y = x. The two methods show very good 
agreement (CHIKV: r = 0.90, ZIKV: r = 0.70). 
 

4.3	Geographic	origin	of	epidemics	

The first city to report cases of CF in Colombia was Planeta Rica, Córdoba. Cases of ZVD were 

first reported in the country simultaneously by five cities: (i) Cali, Valle del Cauca, (ii) San 

Andrés, San Andrés and Providencia, (iii) Cúcuta, Norte de Santander, (iv) El Zulia, Norte de 

Santander, and (v) Puerto Santander, Norte de Santander. Assuming a linear relationship 

between invasion week and distance from the source of the epidemic, the estimated origin 

of both epidemics was Barranquilla, Colombia’s fourth most populated city located on the 

Caribbean coast (Figure 5.11). According to the line list data, Barranquilla was among the 

first five cities to report cases of CF, first reporting cases in week 12 (invaded in week 11). 

The city was also among the first 18 cities to report cases of ZVD, first reporting cases in 
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Figure 5.11 Correlations between city invasion weeks and geographic distance from first invaded 
cities for CHIKV and ZIKV. Week of invasion for each invaded city is shown on the y-axis for both 
plots. These weeks are plotted against (A) the geographic distance from the most likely origin of 
CHIKV in Colombia, Barranquilla and (B) the geographic distance from the most likely origin of ZIKV 
in Colombia, also Barranquilla. Pearson’s correlation coefficients and significance are shown above 
each plot. 
 

4.4	Long-distance	transmission	events	

The minimum distance between a newly invaded city and cities invaded earlier was used to 

create a distribution (d-D), and cities invaded in the 99th percentile were classified as being 

invaded via long-distance events. Figure 5.12 shows the distribution of (d-D) for CHIKV and 

ZIKV graphically, and Table 5.3 shows summary statistics of this distribution. 
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346 km compared to a mean distance of 25.6 km. Potential sources of the affected cities can 

be found in Tables 5.4-5.5. 

The methods for estimating the epidemic origin and long-distance transmission events are 

independent of one another. For instance, Barranquilla is estimated as both the epidemic 

origin and a long-distance transmission event of ZIKV. 

 
Table 5.3 Summary statistics of the d-D distributions showing that ZIKV and CHIKV exhibited 
similar patterns of transmission. The first six columns have units in km. The seventh column is the 
total sample size, and the last two columns contain the number of long-distance transmission events 
for two distance thresholds. 
 

(d-D) Summary Statistics 

Virus Min 1st 
quartile 

Median Mean 3rd 
quartile 

Max # cities N>99th% N>97.5th% 

CHIKV 0 0 5.00 25.72 27.00 475 337* 4 9 

ZIKV 0 0 3.50 25.60 23.00 346 280** 3 7 

*Cities invaded in week 0 were excluded. 
**Cities invaded in weeks 0 and 1 were excluded as week 1 was the first week in which any cities were 
considered infectious. 

  



Page 248 of 391 
 

 

 

Figure 5.12 Long-distance transmission events. The distribution of d-D for (A) CHIKV and (B) ZIKV in 
this study. The dashed blue lines are plotted at the 97.5th percentile (corresponding to 212.0 km and 
255.3 km for CHIKV and ZIKV, respectively) and the dashed red lines are plotted at the 99th 
percentile (corresponding to 344.4 km and 321.2 km for CHIKV and ZIKV, respectively). Long-
distance transmission events were defined as invasions that occurred in cities included in the 99th 
percentile of this distribution. 
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Table 5.4 Recipient and potential source cities of long-distance transmission events of CHIKV. 
 

Recipient cities Potential source cities 
Girardot, Cundinamarca Apartadó, Antioquia 

Planeta Rica, Córdoba 
La Primavera, Vichada Apartadó, Antioquia 

Planeta Rica, Córdoba 
Girardot, Cundinamarca 

Mocoa, Putumayo and  
Puerto Asís, Putumayo 

Apartadó, Antioquia 
Envigado, Antioquia 
Barranquilla, Atlántico 
Baranoa, Atlántico 
Campo de la Cruz, Atlántico 
Sabanalarga, Atlántico 
Santo Tomás, Atlántico 
Soledad, Atlántico 
Suan, Atlántico 
Turbaco, Bolívar 
Cartagena, Bolívar 
San Juan Nepomuceno, Bolívar 
Santa Rosa, Bolívar 
Planeta Rica, Córdoba 
Girardot, Cundinamarca 
Barranca de Upía, Meta 
Cúcuta, Norte de Santander 
Floridablanca, Santander 
Corozal, Sucre 
La Primavera, Vichada 

 
 
 
Table 5.5 Recipient and potential source cities of long-distance transmission events of ZIKV. 
 

Recipient cities Potential source cities 
Tauramena, Casanare Cúcuta, Norte de Santander 

El Zulia, Norte de Santander 
Puerto Santander, Norte de Santander 
San Andrés, San Andrés and Providencia 
Cali, Valle del Cauca 

Barranquilla, Atlántico and  
Cartagena, Bolívar 

Aguazul, Casanare 
Tauramena, Casanare 
Cúcuta, Norte de Santander 
El Zulia, Norte de Santander 
Puerto Santander, Norte de Santander 
Ocaña, Norte de Santander 
Villa del Rosario, Norte de Santander 
Mocoa, Putumayo 
San Andrés, San Andrés and Providencia 
Cali, Valle del Cauca 
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4.5	Models	of	spread	

4.5.1	 Models	fitted	independently	to	each	virus	

Models were initially fitted to cities that had available data on both distance metrics (337 

and 287 cities for CHIKV and ZIKV, respectively). The best-fitting CHIKV model was Stouffer’s 

rank model with geographic distance (Table 5.6). The next best-fitting models were 

Stouffer’s rank model and a version of the gravity model that incorporates spatial 

interaction, also known as the competing destinations model, both fitted to travel time 

between cities. The change in DIC among the first three models was not meaningful (< 4). 

The fourth best-fitting model was a gravity model (competing destinations version) 

incorporating geographic distance, with a change in DIC of 6.5 compared to the best-fitting 

model. Although some models fitted to travel time between cities had lower DIC values than 

the same model type fitted to geographic distance, the difference was only meaningful for 

the radiation variant model. The radiation and radiation variant models performed the least 

well.  

In contrast to CHIKV, the best-fitting model for ZIKV was the competing destinations version 

of the gravity model with geographic distance (Table 5.6). This model was followed by 

Stouffer’s rank model and Stouffer’s rank variant model, both incorporating geographic 

distance. Within model types, ZIKV models fitted to geographic distance were preferred 

over those fitted to travel time between cities. As with CHIKV, the models that performed 

least well were the radiation and radiation variant models. Other versions of the gravity 

models can be found in Tables 5.7-5.10. 

For both epidemics, the best-fitting gravity model (based on the lowest DIC) included the 

following parameters: a distance power, power for invaded city population size, density 

dependence, infectivity, and transmission intensity. In both instances, the population size of 

the susceptible city appeared uncorrelated with the invasion dynamics. The estimated 

distance power, g, for each model was 1.68 (95% CrI: 1.44-1.90) for CHIKV and 1.74 (95% 

CrI: 1.50-1.97) for ZIKV. Thus, the possibility that the relationship with distance was the 

same for both viruses cannot be excluded. Both models also estimated intermediate levels 

of density dependence.  
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In contrast, invasion risk was associated with the population size of the susceptible city in 

both Stouffer’s rank models. Estimates of the infectivity parameter were similar to those 

obtained from the gravity models. Although the estimates of transmission intensity were 

lower in the Stouffer’s rank models, ZIKV still had a higher estimate compared to CHIKV. 

Estimates of the effect of invaded city population size were stronger; however, because this 

parameter additionally captures spatial interaction, the interpretation is different compared 

to the gravity models. 
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Table 5.6 Comparison of alternative models of CHIKV and ZIKV spread in Colombia. Posterior median and 95% credible interval presented for each 
parameter. Models are ordered by sum of DIC and were fitted separately to 337 cities for CHIKV and 287 cities for ZIKV. 
 

Virus Model 
type* 

Distance 
type** 

DIC Sum of DIC g (distance 
power) 

µ (susceptible 
population)*** 

n (invaded 
population) 

e (spatial 
interaction) 

f (infectivity) b (intensity) 
 

CHIKV G  GD 2329.4 4044.9 1.68 
(1.44-1.90) 

0 0.65 
(0.53-0.76) 

0.83 
(0.68-0.99) 

0.35 
(0.25-0.46) 

0.24 
(0.14-0.39) 

ZIKV G  GD 1715.5 1.74 
(1.50-1.97) 

0 0.55 
(0.41-0.69) 

0.67 
(0.50-0.83) 

0.27 
(0.13-0.40) 

1.11 
(0.68-1.81) 

CHIKV S GD 2322.9 4047.3  0.48 
(0.37-0.58) 

1.18 
(1.01-1.36) 

 0.32 
(0.24-0.42) 

0.009 
(0.005-0.015) 

ZIKV S GD 1724.4  0.43 
(0.31-0.55) 

1.37 
(1.12-1.63) 

 0.53 
(0.44-0.63) 

0.021 
(0.013-0.032) 

CHIKV S TT 2325.6 4054.8  0.47 
(0.36-0.58) 

1.16 
(0.99-1.35) 

 0.31 
(0.24-0.40) 

0.008 
(0.005-0.013) 

ZIKV S TT 1729.2  0.42 
(0.30-0.54) 

1.44 
(1.15-1.79) 

 0.48 
(0.38-0.58) 

0.023 
(0.013-0.037) 

CHIKV G TT 2326.9 4061.3 1.97 
(1.69-2.25) 

0 0.57 
(0.45-0.68) 

0.79 
(0.70-0.87) 

0.39 
(0.28-0.52) 

0.36 
(0.19-0.65) 

ZIKV G  TT 1734.4 2.06 
(1.73-2.40) 

0 0.46 
(0.33-0.59) 

0.81 
(0.71-0.90) 

0.23 
(0.11-0.36) 

1.20 
(0.72-1.97) 

CHIKV SV GD 2333.5 4062.0  0.51 
(0.40-0.61) 

1.17 
(0.99-1.35) 

 0.33 
(0.25-0.41) 

0.009 
(0.005-0.014) 

ZIKV SV GD 1728.5  0.46 
(0.34-0.57) 

1.36 
(1.10-1.66) 

 0.54 
(0.44-0.64) 

0.022 
(0.013-0.035) 

CHIKV SV TT 2333.6 4070.4  0.51 
(0.40-0.62) 

1.15 
(0.98-1.35) 

 0.33 
(0.25-0.42) 

0.008 
(0.004-0.014) 

ZIKV SV TT 1736.8  0.45 
(0.33-0.57) 

1.41 
(1.11-1.71) 

 0.49 
(0.40-0.59) 

0.022 
(0.013-0.035) 

CHIKV RV GD 2427.3 4236.2     0.29 
(0.24-0.36) 

0.034 
(0.025-0.043) 

ZIKV RV GD 1808.9     0.65 
(0.56-0.73) 

0.034 
(0.026-0.044) 

CHIKV RV TT 2421.7 4240.0     0.30 
(0.24-0.36) 

0.029 
(0.021-0.037) 
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ZIKV RV TT 1818.3     0.61 
(0.52-0.69) 

0.032 
(0.025-0.040) 

CHIKV R GD 2432.9 4246.9     0.30 
(0.24-0.36) 

0.030 
(0.023-0.038) 

ZIKV R GD 1814.0     0.65 
(0.56-0.74) 

0.032 
(0.024-0.040) 

CHIKV R TT 2431.3 4253.6     0.30 
(0.24-0.37) 

0.025 
(0.019-0.033) 

ZIKV R TT 1822.3     0.61 
(0.52-0.70) 

0.029 
(0.023-0.036) 

*G: gravity (competing destinations), S: Stouffer’s rank, SV: Stouffer’s rank variant, R: radiation, RV: radiation variant 
**GD: geographic distance, TT: travel time between cities 
***When µ is set to 0, this means that cities with large populations have the same risk of being invaded as cities with small populations. 
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Table 5.7 Parameter estimates for six models of CHIKV for 337 cities using geographic distance. 
Posterior median and 95% credible interval presented for each parameter. Bold indicates the best-
fitting model. Travel time data were only available for 337 out of 338 cities. To compare across 
distance metrics, 337 cities were also used for geographic distance models. 
 

 Distance-
only model 

Density-
dependent 
population 
model 

Density-
independent 
population 
model 

Estimated 
density 
dependence 
population 
model 

Full 
(infectivity) 
model 

Infectivity 
model with µ 
set to 0* 

DIC 2511.7 2440.7 2397.7 2396.9 2330.2 2329.4 
g (distance 
power) 

1.05 
(0.87-1.21) 

1.02 
(0.81-1.19) 

1.46 
(1.22-1.69) 

1.49 
(1.25-1.73) 

1.68 
(1.43-1.91) 

1.68 
(1.44-1.90) 

µ (susceptible 
population) 

0 0.081 
(0.004-0.328) 

0.037 
(0.001-0.164) 

0.034 
(0.002-0.146) 

0.060 
(0.002-0.201) 

0 

n (invaded 
population) 

0 0.45 
(0.34-0.55) 

0.53 
(0.42-0.64) 

0.53 
(0.41-0.64) 

0.64 
(0.52-0.76) 

0.65 
(0.53-0.76) 

e (spatial 
interaction) 

0 0 1 0.85 
(0.66-1.03) 

0.83 
(0.68-0.98) 

0.83 
(0.68-0.99) 

f (infectivity) 0 0 0 0 0.35 
(0.25-0.47) 

0.35 
(0.25-0.46) 

b (intensity) 
 

0.16 
(0.07-0.36) 

0.080 
(0.023-0.207) 

0.26 
(0.20-0.31) 

0.31 
(0.22-0.44) 

0.21 
(0.11-0.36) 

0.24 
(0.14-0.39) 

*When µ is set to 0, this means that cities with large populations have the same risk of being invaded as cities with small 
populations. 
 
 
 
Table 5.8 Parameter estimates for six models of CHIKV for 337 cities using travel time between 
cities. Posterior median and 95% credible interval presented for each parameter. Bold indicates the 
best-fitting model. Travel time data were only available for 337 out of 338 cities. 
 

 Distance-
only model 

Density-
dependent 
population 
model 

Density-
independent 
population 
model 

Estimated density 
dependence 
population model 

Full (infectivity) 
model 

Infectivity 
model with µ 
set to 0* 

DIC 2518.9 2459.4 2403.5 2395.9 2328.3 2326.9 
g (distance 
power) 

0.89 
(0.71-1.06) 

0.72 
(0.53-0.90) 

1.66 
(1.37-1.96) 

1.74 
(1.45-2.03) 

1.95 
(1.66-2.24) 

1.97 
(1.69-2.25) 

µ (susceptible 
population) 

0 0.22 
(0.01-0.50) 

0.042 
(0.002-0.187) 

0.027 
(0.001-0.127) 

0.054 
(0.002-0.203) 

0 

n (invaded 
population) 

0 0.40 
(0.30-0.51) 

0.49 
(0.38-0.60) 

0.48 
(0.37-0.59) 

0.56 
(0.45-0.67) 

0.57 
(0.45-0.68) 

e (spatial 
interaction) 

0 0 1 0.85 
(0.75-0.94) 

0.79 
(0.69-0.87) 

0.79 
(0.70-0.87) 

f (infectivity) 0 0 0 0 0.39 
(0.28-0.53) 

0.39 
(0.28-0.52) 

b (intensity) 
 

0.11 
(0.04-0.28) 

0.019 
(0.005-
0.067) 

0.24 
(0.18-0.29) 

0.41 
(0.26-0.62) 

0.30 
(0.13-0.59) 

0.36 
(0.19-0.65) 

*When µ is set to 0, this means that cities with large populations have the same risk of being invaded as cities with small 
populations. 
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Table 5.9 Parameter estimates for six models of ZIKV for 287 cities using geographic distance. 
Posterior median and 95% credible interval presented for each parameter. Bold indicates the best-
fitting model. Travel time data were only available for 287 out of 288 cities. To compare across 
distance metrics, 287 cities were also used for geographic distance models. 
 

 Distance-
only model 

Density-
dependent 
population 
model 

Density-
independent 
population 
model 

Estimated 
density 
dependence 
population 
model 

Full 
(infectivity) 
model 

Infectivity 
model with µ 
set to 0* 

DIC 1804.5 1764.7 1749.0 1737.9 1715.5 1715.5 
g (distance 
power) 

1.21 
(1.01-1.38) 

1.28 
(1.10-1.44) 

1.55 
(1.31-1.78) 

1.65 
(1.43-1.87) 

1.74 
(1.50-1.97) 

1.74 
(1.50-1.97) 

µ 
(susceptible 
population) 

0 0.021 
(0.001-0.093) 

0.026 
(0.001-0.113) 

0.018 
(0.001-0.084) 

0.053 
(0.003-0.210) 

0 

n (invaded 
population) 

0 0.37 
(0.26-0.48) 

0.46 
(0.33-0.59) 

0.47 
(0.34-0.60) 

0.55 
(0.41-0.69) 

0.55 
(0.41-0.69) 

e (spatial 
interaction) 

0 0 1 0.67 
(0.48-0.86) 

0.68 
(0.50-0.86) 

0.67 
(0.50-0.83) 

f 
(infectivity) 

0 0 0 0 0.29 
(0.16-0.42) 

0.27 
(0.13-0.40) 

b (intensity) 
 

0.73 
(0.28-1.63) 

0.69 
(0.28-1.47) 

0.40 
(0.32-0.48) 

0.86 
(0.51-1.39) 

0.93 
(0.53-1.59) 

1.11 
(0.68-1.81) 

*When µ is set to 0, this means that cities with large populations have the same risk of being invaded as cities with small 
populations. 
 
 
 
Table 5.10 Parameter estimates for six models of ZIKV for 287 cities using travel time between 
cities. Posterior median and 95% credible interval presented for each parameter. Bold indicates the 
best-fitting model. Travel time data were only available for 287 out of 288 cities. 
 

 Distance-
only model 

Density-
dependent 
population 
model 

Density-
independent 
population 
model 

Estimated 
density 
dependence 
population 
model 

Full 
(infectivity) 
model 

Infectivity 
model with µ 
set to 0* 

DIC 1828.1 1803.8 1764.9 1753.2 1735.8 1734.4 
g (distance 
power) 

0.79 
(0.52-1.02) 

0.73 
(0.44-0.97) 

1.85 
(1.49-2.19) 

1.99 
(1.66-2.31) 

2.05 
(1.71-2.39) 

2.06 
(1.73-2.40) 

µ (susceptible 
population) 

0 0.034 
(0.002-0.133) 

0.026 
(0.001-0.111) 

0.017 
(0.001-0.081) 

0.080 
(0.003-0.279) 

0 

n (invaded 
population) 

0 0.29 
(0.18-0.40) 

0.39 
(0.27-0.52) 

0.41 
(0.28-0.54) 

0.46 
(0.32-0.59) 

0.46 
(0.33-0.59) 

e (spatial 
interaction) 

0 0 1 0.82 
(0.73-0.91) 

0.82 
(0.73-0.90) 

0.81 
(0.71-0.90) 

f (infectivity) 0 0 0 0 0.27 
(0.13-0.41) 

0.23 
(0.11-0.36) 

b (intensity) 
 

0.12 
(0.02-0.44) 

0.06 
(0.01-0.23) 

0.36 
(0.29-0.44) 

0.94 
(0.57-1.55) 

0.91 
(0.42-1.69) 

1.20 
(0.72-1.97) 

*When µ is set to 0, this means that cities with large populations have the same risk of being invaded as cities with small 
populations. 
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4.5.2	 Models	fitted	jointly	to	arboviruses	

The four model variants selected for the joint analysis included the gravity model and 

Stouffer’s rank model, each with either geographic distance or travel time between cities. 

The individual and joint models for the four best-fitting model variants are shown in Table 

5.11. The difference in the individual models’ sum of DIC between the two best-fitting 

variants was only 2.4. For each model variant considered, the joint model which assumed 

the same parameters across arboviruses had a higher DIC (i.e. worse fit) than the sum of the 

individual models’ DIC. The fit of the joint models improved when the parameter for 

transmission intensity was allowed to vary across arboviruses. When both transmission 

intensity and infectivity parameters were allowed to vary across arboviruses, the DIC values 

of the joint models were only 1-2 units away from the individual models’ summed DIC. 

Overall, the most parsimonious model with the lowest DIC was the joint gravity model with 

geographic distance and two parameters for transmission intensity (Table 5.11). 
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Table 5.11 Comparison of individual versus joint models of CHIKV and ZIKV spread in Colombia. Posterior median and 95% credible interval presented for each 
parameter. Models were fitted to 337 cities for CHIKV and 287 cities for ZIKV. For the joint models that estimate different parameters across arboviruses, 
parameters with subscript a refer to CHIKV, while parameters with subscript b refer to ZIKV. 
 

Virus Model 
type* 

Distance 
type** 

DIC Sum of 
DIC 

g (distance 
power) 

µ (susceptible 
population)*** 

n (invaded 
population) 

e (spatial 
interaction) 

fa 
(infectivity) 

fb 
(infectivity) 

ba (intensity) 
 

bb (intensity) 
 
 

CHIKV G GD 2329.4 4044.9 1.68 
(1.44-1.90) 

0 0.65 
(0.53-0.76) 

0.83 
(0.68-0.99) 

0.35 
(0.25-0.46) 

 0.24 
(0.14-0.39) 

 

ZIKV G GD 1715.5 1.74 
(1.50-1.97) 

0 0.55 
(0.41-0.69) 

0.67 
(0.50-0.83) 

0.27 
(0.13-0.40) 

 1.11 
(0.68-1.81) 

 

Joint G GD 4129.0 1.69 
(1.54-1.84) 

0 0.55 
(0.47-0.64) 

0.81 
(0.71-0.92) 

0.12 
(0.07-0.16) 

 0.52 
(0.39-0.70) 

 

Joint  G GD 4042.6 1.72 
(1.56-1.89) 

0 0.61 
(0.52-0.70) 

0.76 
(0.65-0.87) 

0.32 
(0.24-0.40) 

 0.31 
(0.21-0.46) 

0.90 
(0.65-1.28) 

Joint G GD 4043.3 1.71 
(1.56-1.87) 

0 0.60 
(0.51-0.69) 

0.76 
(0.65-0.86) 

0.35 
(0.25-0.45) 

0.27 
(0.14-0.40) 

0.28 
(0.18-0.44) 

0.91 
(0.66-1.24) 

CHIKV S GD 2322.9 4047.3  0.48 
(0.37-0.58) 

1.18 
(1.01-1.36) 

 0.32 
(0.24-0.42) 

 0.009 
(0.005-0.015) 

 

ZIKV S GD 1724.4  0.43 
(0.31-0.55) 

1.37 
(1.12-1.63) 

 0.53 
(0.44-0.63) 

 0.021 
(0.013-0.032) 

 

Joint S GD 4143.5  0.43 
(0.36-0.51) 

1.31 
(1.15-1.46) 

 0.21 
(0.17-0.25) 

 0.022 
(0.016-0.028) 

 

Joint  S GD 4055.5  0.44 
(0.36-0.51) 

1.18 
(1.03-1.33) 

 0.41 
(0.34-0.49) 

 0.006 
(0.004-0.010) 

0.020 
(0.014-0.028) 

Joint S GD 4046.3  0.45 
(0.38-0.53) 

1.25 
(1.09-1.40) 

 0.31 
(0.23-0.40) 

0.54 
(0.44-0.63) 

0.011 
(0.006-0.017) 

0.017 
(0.012-0.024) 

CHIKV S TT 2325.6 4054.8  0.47 
(0.36-0.58) 

1.16 
(0.99-1.35) 

 0.31 
(0.24-0.40) 

 0.008 
(0.005-0.013) 

 

ZIKV S TT 1729.2  0.42 
(0.30-0.54) 

1.44 
(1.15-1.79) 

 0.48 
(0.38-0.58) 

 0.023 
(0.013-0.037) 

 

Joint S TT 4145.1  0.43 
(0.35-0.50) 

1.32 
(1.16-1.47) 

 0.20 
(0.16-0.24) 

 0.020 
(0.015-0.026) 

 

Joint S TT 4060.7  0.44 
(0.36-0.51) 

1.18 
(1.05-1.33) 

 0.39 
(0.32-0.46) 

 0.006 
(0.004-0.010) 

0.019 
(0.013-0.026) 

Joint S TT 4054.8  0.44 
(0.37-0.52) 

1.23 
(1.08-1.39) 

 0.30 
(0.23-0.39) 

0.49 
(0.39-0.59) 

0.010 
(0.006-0.015) 

0.016 
(0.011-0.023) 
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CHIKV G TT 2326.9 4061.3 1.97 
(1.69-2.25) 

0 0.57 
(0.45-0.68) 

0.79 
(0.70-0.87) 

0.39 
(0.28-0.52) 

 0.36 
(0.19-0.65) 

 

ZIKV G TT 1734.4 2.06 
(1.73-2.40) 

0 0.46 
(0.33-0.59) 

0.81 
(0.71-0.90) 

0.23 
(0.11-0.36) 

 1.20 
(0.72-1.97) 

 

Joint G TT 4141.9 2.02 
(1.80-2.21) 

0 0.49 
(0.40-0.57) 

0.84 
(0.77-0.90) 

0.13 
(0.08-0.17) 

 0.72 
(0.52-1.01) 

 

Joint G TT 4059.2 2.02 
(1.82-2.24) 

0 0.52 
(0.44-0.61) 

0.80 
(0.75-0.86) 

0.32 
(0.25-0.40) 

 0.43 
(0.30-0.63) 

1.20 
(0.86-1.67) 

Joint G TT 4058.8 2.01 
(1.76-2.21) 

0 0.52 
(0.43-0.61) 

0.80 
(0.74-0.86) 

0.38 
(0.27-0.49) 

0.25 
(0.12-0.37) 

0.35 
(0.20-0.58) 

1.22 
(0.86-1.75) 

*G: gravity (competing destinations), S: Stouffer’s rank  
**GD: geographic distance, TT: travel time between cities 
***When µ is set to 0, this means that cities with large populations have the same risk of being invaded as cities with small populations. 
 
 
 
 



Page 259 of 391 
 

4.6	Validation	of	model	fit	and	parameter	fitting	procedure	

4.6.1	 Gravity	models	

Model validation was performed for each individual virus’ best-fitting gravity model with 

geographic distance. As geographic distance data were available for all cities, models were 

fitted to 338 and 288 cities for CHIKV and ZIKV, respectively. The parameter values for these 

models can be found in Tables 5.12-5.13, and the distance kernels are shown in Figure 5.13. 

A version of the best-fitting models incorporating per capita infectivity rather than 

infectivity were also tested, but the DICs were higher (indicating worse fit) for both CHIKV 

and ZIKV (ΔDIC of 9.5 for CHIKV and ΔDIC of 4 for ZIKV).  
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Table 5.12 Parameter estimates for eight models of CHIKV in Colombia for 338 cities. The first seven models are variations of the gravity model. Posterior 
median and 95% credible interval presented for each parameter. Bold indicates the model variant used in the validations. 
 

 Distance-
only model 

Density-
dependent 
population 
model 

Density-
independent 
population 
model 

Estimated 
density 
dependence 
population 
model 

Full 
(infectivity) 
model 

Per capita 
infectivity 
model with µ	
set to 0* 

Infectivity 
model with µ 
set to 0* 

Stouffer’s 
rank model 

DIC 2521.0 2448.4 2403.0 2402.6 2336.1 2344.6 2335.1 2328.3 
g (distance 
power) 

1.03 
(0.83-1.21) 

1.02 
(0.84-1.17) 

1.46 
(1.22-1.70) 

1.49 
(1.25-1.72) 

1.68 
(1.43-1.90) 

1.68 
(1.47-1.88) 

1.68 
(1.44-1.90) 

 

µ (susceptible 
population) 

0 0.076 
(0.003-0.286) 

0.036 
(0.001-0.163) 

0.030 
(0.001-0.141) 

0.061 
(0.002-0.207) 

0 0 0.48 
(0.37-0.58) 

n (invaded 
population) 

0 0.45 
(0.34-0.55) 

0.54 
(0.42-0.65) 

0.53 
(0.41-0.64) 

0.64 
(0.52-0.76) 

0.67 
(0.55-0.78) 

0.65 
(0.53-0.76) 

1.19 
(1.01-1.36) 

e (spatial 
interaction) 

0 0 1 0.86 
(0.68-1.05) 

0.84 
(0.69-1.00) 

0.83 
(0.68-0.98) 

0.83 
(0.69-0.98) 

 

f (infectivity) 0 0 0 0 0.34 
(0.25-0.46) 

0.29 
(0.20-0.41) 

0.35 
(0.25-0.48) 

0.32 
(0.24-0.41) 

b (intensity) 
 

0.15 
(0.05-0.37) 

0.08 
(0.03-0.19) 

0.26 
(0.20-0.31) 

0.30 
(0.22-0.43) 

0.21 
(0.11-0.35) 

0.45 
(0.31-0.68) 

0.24 
(0.13-0.39) 

0.009 
(0.005-0.015) 

*When µ is set to 0, this means that cities with large populations have the same risk of being invaded as cities with small populations. 
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Table 5.13 Parameter estimates for eight models of ZIKV in Colombia for 288 cities. The first seven models are variations of the gravity model. Posterior 
median and 95% credible interval presented for each parameter. Bold indicates the model variant used in the validations 
 

 Distance-
only model 

Density-
dependent 
population 
model 

Density-
independent 
population 
model 

Estimated 
density 
dependence 
population 
model 

Full 
(infectivity) 
model 

Per capita 
infectivity 
model with µ	
set to 0* 

Infectivity 
model with µ 
set to 0* 

Stouffer’s 
rank model 

DIC 1803.8 1764.4 1748.7 1737.6 1716.2 1719.3 1715.3 1724.4 
g (distance 
power) 

1.19 
(0.96-1.36) 

1.27 
(1.08-1.42) 

1.55 
(1.31-1.78) 

1.66 
(1.43-1.89) 

1.75 
(1.49-1.99) 

1.71 
(1.48-1.92) 

1.74 
(1.51-1.96) 

 

µ (susceptible 
population) 

0 0.021 
(0.001-0.094) 

0.027 
(0.001-0.113) 

0.020 
(0.001-0.086) 

0.091 
(0.005-0.264) 

0 0 0.43 
(0.32-0.55) 

n (invaded 
population) 

0 0.37 
(0.26-0.48) 

0.46 
(0.3- 0.59) 

0.47 
(0.34-0.60) 

0.55 
(0.40-0.68) 

0.54 
(0.41-0.68) 

0.55 
(0.41-0.69) 

1.37 
(1.15-1.65) 

e (spatial 
interaction) 

0 0 1 0.67 
(0.47-0.84) 

0.69 
(0.52-0.84) 

0.64 
(0.46-0.81) 

0.68 
(0.50-0.84) 

 

f (infectivity) 0 0 0 0 0.30 
(0.17-0.44) 

0.16 
(0.07-0.25) 

0.27 
(0.13-0.40) 

0.53 
(0.43-0.63) 

b (intensity) 
 

0.66 
(0.22-1.53) 

0.65 
(0.25-1.35) 

0.40 
(0.32-0.48) 

0.84 
(0.52-1.41) 

0.86 
(0.42-1.52) 

1.48 
(0.89-2.60) 

1.10 
(0.68-1.77) 

0.021 
(0.013-0.033) 

*When µ is set to 0, this means that cities with large populations have the same risk of being invaded as cities with small populations. 
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Figure 5.13 Best-fitting distance kernels for CHIKV (red) and ZIKV (blue). The median of the 
posterior distribution is shown by the darker line, and the 95% credible intervals are represented by 
the shaded area (purple is where the red and blue shaded areas overlap). (A) is unlogged and (B) is 
logged (log10). 
 

For each city, the predicted invasion week given the observed invasion weeks in other cities 

up to that time was evaluated. The best-fitting model for each virus predicted distribution of 

the local start of epidemics well (Figure 5.14).  
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Figure 5.14 Probability distribution of invasion weeks. The above panels show the estimated 
probability distributions of invasion week for each city (colored lines) for (A) CHIKV and (B) ZIKV 
based on the observed start of invasion in other cities up to that time. The calculations were 
performed using the median parameter estimates from the posterior distributions of the best-fitting 
models for CHIKV and ZIKV. The black lines show the observed invasion week based on the first 
reported cases in each city. Values plotted as 0.01 represent probabilities of 0.01 or less. 
 

Excluding cities that were invaded in week 0, 304 out of 337 cities (90% of cities, 95% CI: 87-

93%) lie within the 95% interval of their expected distribution for CHIKV, and for ZIKV, 268 

out of 283 cities (95% of cities, 95% CI: 91-97%) lie within the 95% interval of their expected 

distribution. Cities that fell outside of these intervals tended to be invaded at the beginning 

or the end of the epidemics. Whereas the best-fitting ZIKV model captured the shape of the 

observed invasion week distribution well, the best-fitting CHIKV model did not capture the 

shape well at the end of the epidemic. Cities invaded late in the CHIKV epidemic (week 53 or 

later) had smaller population sizes and fewer cases compared to cities invaded earlier (up to 

week 52) (Wilcoxon rank sum tests for population size: W = 885, p = 0.004 and for 

cumulative case numbers: W = 900, p = 0.005). However, these 11 late-invaded cities 

represent a small proportion of all invaded cities (3%). Figures 5.15-5.16 show the 

probability distribution of invasion week by department.   
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Figure 5.15 Probability distribution of first reported cases by department for CHIKV. Black circles 
are cities that fall within the 95% interval of their expected distribution, and red circles fall outside 
this interval. The gray circle in the department of Córdoba represents Planeta Rica, the city that was 
invaded in week 0. 
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Figure 5.16 Probability distribution of first reported cases by department for ZIKV. Black circles are 
cities that fall within the 95% interval of their expected distribution, and red circles fall outside this 
interval. Gray circles in the departments of San Andrés and Providencia, Valle del Cauca, and Norte 
de Santander represent cities that were invaded in week 0. 
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The probability distribution for a random sample of cities for the CHIKV dataset is displayed 

in Figure 5.17. The gray bars are the expected distribution of invasion week and sum to 1. 

The blue vertical lines demark 95% of this distribution, and the red point below each plot is 

the observed invasion week. The number above each plot is the city code. The distributions 

for all cities for both CHIKV and ZIKV can be found in Appendix S5.  

 

Figure 5.17 Probability distribution of invasion week for a random sample of cities for CHIKV. The 
probability is shown in gray, 95% of the distribution is within the blue lines, and the observed 
invasion week is represented by the red points. Y-axes differ between plots. Results for all cities are 
presented in Appendix S5.  
 

Simulated epidemics from the best-fitting model for each virus were consistent with the 

observed epidemic in terms of the number of invaded cities over time (Figure 5.18). For 

CHIKV, half of the cities were invaded by week 31 of the epidemic, while 1,000 simulations 

predicted half of the cities invaded by week 34.4 on average (min. 17, mode 27, max. 66). 
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For ZIKV, half of the cities were invaded by week 16, while simulations predicted 15.7 on 

average (min. 11, mode 15, max. 23). 

 

Figure 5.18 Epidemic invasion simulations. Simulated invasion week (as week of first reported 
cases) for (A) CHIKV and (B) ZIKV from the best-fitting models. Simulated epidemics are shown in 
light gray. The dark gray lines are the average across the 1,000 simulations. The red lines show the 
observed number of cities that first reported cases in each week. 
 

For each virus, fitted parameter estimates were recovered from a model fitted to a single 

simulated dataset created by simulating the epidemic from the median parameter estimates 

(Table 5.14). 
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Table 5.14 Comparison of parameter estimates from observed data versus simulated data. 
 

 CHIKV ZIKV 

Parameters Estimates from 
observed data 

Estimates from 
simulated data 

Estimates from 
observed data 

Estimates from 
simulated data 

g (distance power) 1.68 
(1.44-1.90) 

1.61  
(1.40-1.81) 

1.74 
(1.51-1.96) 

1.80 
(1.58-2.03) 

µ (susceptible 
population) 

0 0 0 0 

n (invaded 
population) 

0.65 
(0.53-0.76) 

0.76 
(0.65-0.87) 

0.55 
(0.41-0.69) 

0.47 
(0.35-0.59) 

e (spatial interaction) 0.83 
(0.69-0.98) 

0.84 
(0.68-1.00) 

0.68 
(0.50-0.84) 

0.71 
(0.54-0.88) 

f (infectivity) 0.35 
(0.25-0.48) 

0.31 
(0.17-0.49) 

0.27 
(0.13-0.40) 

0.29 
(0.15-0.42) 

b (intensity) 
 

0.24 
(0.13-0.39) 

0.29 
(0.14-0.50) 

1.10 
(0.68-1.77) 

1.09 
(0.64-1.79) 

 

4.6.2	 Stouffer’s	rank	models	

Epidemic simulations were also performed for the best-fitting Stouffer’s rank models 

presented in Tables 5.12-5.13. Even though this model variant had a lower DIC than the 

best-fitting gravity model for CHIKV, the epidemic simulations were worse overall (Figure 

5.19). In contrast, simulations for ZIKV were comparable across model types. 
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Figure 5.19 Epidemic invasion simulations (best-fitting Stouffer’s rank models). Results correspond 
to the models presented in Tables 5.12-5.13. Simulated invasion for (A) CHIKV and (B) ZIKV from the 
models using week of first reported cases. Simulated epidemics are shown in light gray. The dark 
gray lines are the average across the 1,000 simulations. The red lines are the observed incidence 
curves. 
 

4.7	Sensitivity	analyses	on	spatial	transmission	model	

4.7.1	 Thresholds	for	cumulative	reported	cases	

Table 5.15 shows the estimated parameters of gravity models fitted to different numbers of 

cities using thresholds of 10, 20, and 30 cumulative reported cases. In each case, the best-

fitting model was the infectivity model with the µ parameter set to 0. All credible intervals 

overlap, indicating the model results are robust to the choice of threshold. Figure 5.20 

shows the results of the corresponding epidemic simulations.  
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Table 5.15 Comparison of parameter estimates from gravity models fitted to different numbers of cities using thresholds of 10, 20, and 30 cumulative 
reported cases. In each case, the model variant is the infectivity model with µ set to 0. Columns in bold correspond to main results presented in Tables 
5.12-5.13. 
 

 CHIKV ZIKV 
 Threshold of 30 

reported cases 
Threshold of 20 
reported cases 

Threshold of 10 
reported cases 

Threshold of 30 
reported cases 

Threshold of 20 
reported cases 

Threshold of 10 
reported cases 

Number of 
cities 

317 338 379 288 360 485 

g (distance 
power) 

1.67 
(1.43-1.90) 

1.68 
(1.44-1.90) 

1.64 
(1.41-1.85) 

1.74 
(1.51-1.96) 

1.85  
(1.64-2.08) 

1.93 
(1.73-2.12) 

µ 
(susceptible 
population) 

0 0 0 0 0 0 

n (invaded 
population) 

0.64 
(0.52-0.75) 

0.65 
(0.53-0.76) 

0.57 
(0.46-0.67) 

0.55 
(0.41-0.69) 

0.60 
(0.49-0.72) 

0.47 
(0.38-0.56) 

e (spatial 
interaction) 

0.86 
(0.72-1.02) 

0.83 
(0.69-0.98) 

0.75 
(0.59-0.89) 

0.68 
(0.50-0.84) 

0.70 
(0.56-0.83) 

0.70 
(0.57-0.80) 

f (infectivity) 0.32 
(0.22-0.42) 

0.35 
(0.25-0.48) 

0.35 
(0.25-0.49) 

0.27 
(0.13-0.40) 

0.32 
(0.20-0.44) 

0.27 
(0.16-0.37) 

b (intensity) 
 

0.25 
(0.16-0.40) 

0.24 
(0.13-0.39) 

0.25 
(0.13-0.42) 

1.10 
(0.68-1.77) 

1.20 
(0.78-1.88) 

1.20 
(0.83-1.72) 
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Figure 5.20 Epidemic simulations of the best-fitting gravity models showing the sensitivity of the 
thresholds used to determine invasion. 
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4.7.2	 Models	fitted	to	all	cities	

Figure 5.21 shows epidemic simulations using the first reported cases method of 

determining invasion week and all 1,122 cities in Colombia. The best-fitting model for CHIKV 

estimated the same five parameters as above, whereas the best-fitting model for ZIKV 

estimated all six parameters. As expected, the transmission intensity estimate was much 

lower for both models, and the epidemic simulations showed a very delayed and prolonged 

epidemic compared to the observed incidence of invaded cities. 

 

Figure 5.21 Epidemic invasion simulations produced from models with all cities. Simulated invasion 
for (A) CHIKV and (B) ZIKV from the models using week of first reported cases and all 1,122 cities in 
Colombia. Simulated epidemics are shown in light gray. The dark gray lines are the average across 
the 1,000 simulations. The red lines are the observed incidence curves. 
 

4.7.3	 Models	fitted	to	invasion	weeks	determined	from	generation	time	method	

Gravity models were also fitted to invasion weeks determined from the generation time 

method. Figures 5.22-5.23 show the probability distributions of invasion weeks and 

epidemic simulations, respectively, for these results which used geographic distance. The 

same number of cities were used as in section 4.6 (338 for CHIKV and 288 for ZIKV). The 

best-fitting model for CHIKV was the infectivity model (estimating six parameters), whereas 

the best-fitting ZIKV model was the one that estimated density dependence with the power 
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for susceptible city population size set to 0 (estimated b, g, n, and e). Parameter estimates 

(Figures 5.24-5.25) were similar to those presented in Tables 5.12-5.13.  

Using these estimates of invasion weeks, the CHIKV model fitted the observed data less 

well. It is possible that this method for determining invasion weeks is more sensitive to 

lower reporting at the beginning of the CHIKV epidemic compared to the first reported 

cases. When the first cases were identified in Colombia in June 2014, CF fever was not yet a 

notifiable disease. Consequently, some cities reported all of their CF cases retrospectively; 

one city reported nearly 1,400 cases in a single week. This could have caused the model to 

underestimate the infection pressure early in the epidemic.   

 

Figure 5.22 Probability distribution of estimated invasion week by generation time method 
(colored lines). (A) CHIKV and (B) ZIKV. The calculations were performed using the median 
parameter estimates from the posterior distributions of the models using estimated invasion week 
rather than first reported cases. The black lines show the estimated invasion week in each city using 
a method based on each infection’s generation time. Values of 0.01 represent probabilities of 0.01 
or less. 
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Figure 5.23 Epidemic invasion simulations (generation time method). Simulated invasion for (A) 
CHIKV and (B) ZIKV from the models using estimated invasion week by generation time method 
rather than week of first reported cases. Simulated epidemics are shown in light gray. The dark gray 
lines are the average across the 1,000 simulations. The red lines are the observed incidence curves. 
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Figure 5.24 Parameter estimates for the CHIKV model fitted using estimated invasion week by 
generation time method. The dashed red line shows the median of the posterior distribution of 
each parameter after removing the burn-in period. The blue line shows the median of the posterior 
distribution from the model fitted using first reported cases as in section 4.6.1. Only parameters that 
are estimated in both models are shown. 
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Figure 5.25 Parameter estimates for the ZIKV model fitted using estimated invasion week by 
generation time method. The dashed red line shows the median of the posterior distribution of 
each parameter after removing the burn-in period. The blue line shows the median of the posterior 
distribution from the model fitted using first reported cases as in section 4.6.1. Only parameters that 
are estimated in both models are shown. 
 

4.7.4	 Single-introduction	assumption	

The single-introduction assumption for CHIKV was relaxed to test the effect on parameter 

estimates following Eggo et al. [272]. By starting parameter estimation from week 12, five 

cities were allowed to seed the epidemic rather than one. The parameter estimate of the 

distance kernel was slightly higher, but the credible intervals largely overlapped, suggesting 

that this assumption does not greatly affect the model fit (Figure 5.26).  
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Figure 5.26 Comparison of the distance kernel obtained when running the CHIKV gravity model 
from week 12 versus the entire dataset. The distance power estimates were similar when 
parameter estimation started from week 12 (1.77, 95% CrI: 1.54-1.99) compared to week 1 (1.68, 
95% CrI: 1.44-1.90).  
 

4.7.5	 Sensitivity	of	outlier	in	the	distribution	of	travel	time	between	cities	for	

ZIKV	

The effect of the outlier in the distribution of travel time between cities for ZIKV was tested 

by re-fitting the infectivity model with μ set to 0 without the city of Leticia. These models, 

one with geographic distance and the other with travel time between cities, were each 

fitted to 286 cities. The model with geographic distance was still preferred over the model 

with travel time between cities (DIC of 1709.6 versus 1728.1 respectively). 

4.8	MCMC	testing	

The diagnostics in this section correspond to each individual virus’ best-fitting gravity model 

with geographic distance (Tables 5.12-5.13). 

4.8.1	 Correlation	and	distributions	

Figures 5.27 and 5.28 show the posterior distributions and correlation of parameters for the 

best-fitting CHIKV and ZIKV models, respectively. Scatterplots of the parameter pairs are on 

the left part of the figure. Pearson correlation coefficients are displayed on the right, and 

the posterior distributions are shown on the diagonal. Neither figure appears to show 
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problems with very high correlation, and the distributions are acceptable.  
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Figure 5.27 Posterior distributions and correlation of parameters for best-fitting CHIKV model. *** 
indicates statistical significance at the 0.001 level. 

 

Figure 5.28 Posterior distributions and correlation of parameters for best-fitting ZIKV model. *** 
indicates statistical significance at the 0.001 level. 



Page 280 of 391 
 

4.8.2	 Convergence	diagnostics	

The models were run from three different starting points to ascertain convergence. Table 

5.16 shows the Gelman-Rubin statistic for each of the best-fitting gravity models (after 

removing the burn-in). All point estimates and 95% CI bounds are one or approximately one, 

suggesting model convergence. Figures 5.29-5.30 show the MCMC traces for each model 

including the burn-in period. It does not take long for the chains to move toward the same 

values and overlap with each other. Similarly, Figures 5.31-5.32 show the posterior 

distributions of the three chains for each parameter after removing the burn-in. The 

distributions of the parameters are very similar across the three chains. This suggests that 

the chains converged.  

 
Table 5.16 Gelman-Rubin statistic for each of the best-fitting gravity models (after removing the 
burn-in). 
 

 CHIKV ZIKV 
Parameter Point estimate Upper CI Point estimate Upper CI 
g (distance 
power) 

1 1.00 1 1.00 

n (invaded 
population) 

1 1.00 1 1.00 

e (spatial 
interaction) 

1 1.01 1 1.00 

f (infectivity) 1 1.00 1 1.00 
b (intensity) 1 1.00 1 1.00 
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Figure 5.29 Three chains run using different start values for the best-fitting CHIKV gravity model. 
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Figure 5.30 Three chains run using different start values for the best-fitting ZIKV gravity model. 
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Figure 5.31 Histograms of the posterior distributions of the best-fitting CHIKV gravity model. 

 

Figure 5.32 Histograms of the posterior distributions of the best-fitting ZIKV gravity model. 
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4.8.3	 Traces 

Figures 5.33-5.34 show the MCMC traces for one chain of the CHIKV and ZIKV models, 

respectively. Mixing is good for all parameters.  

	

Figure 5.33 MCMC traces for the CHIKV model. 
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Figure 5.34 MCMC traces for the ZIKV model. 

 

4.8.4	 Acceptance	rate	

Table 5.17 shows the acceptance rate of parameters for the CHIKV and ZIKV models. Both 

models have good acceptance rates. 

 
 
Table 5.17 Acceptance percentages for parameters of the best-fitting CHIKV and ZIKV gravity 
models. 
 

Parameter CHIKV ZIKV 
g (distance power) 20.3 25.6 
n (invaded population) 22.4 26.8 
e (spatial interaction) 21.9 22.8 
f (infectivity) 19.5 27.3 
b (intensity) 22.2 24.1 

 

4.9	Risk	factors	of	invasion	

For CHIKV, the following predictors of invasion were significant at the 0.05 level in the 
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univariate analysis: population size, elevation, mean temperature during the study period, 

mean temperature up to the epidemic peak, mean rainfall over the study period, mean 

rainfall up to the epidemic peak, percentage of households with overcrowding, percentage 

of households with inadequate exterior walls, and risk of dengue (Table 5.18). Except for 

mean rainfall up to the epidemic peak, the other eight predictors were also significantly 

associated with invasion by ZIKV. In addition, the percentage of households with inadequate 

floors was almost significant (p = 0.06) (Table 5.19). 

 

Table 5.18 Univariate analysis of risk factors of CHIKV invasion. 
 

 Invaded cities (N = 338)* Uninvaded cities (N = 784)**  
 Mean SD Mean SD P value 
Population size, 
thousands 

72 180 31 300 <0.0001 

Elevation, m 585 592 1,461 1,045 <0.0001 
Mean study period 
temperature, °C 

25.5 3.3 20.5 5.8 <0.0001 

Mean temperature 
up to epidemic peak, 
°C 

25.1 3.3 19.9 5.9 <0.0001 

Mean study period 
rainfall, mm 

48.3 27.4 44.4 29.1 0.0003 

Mean rainfall up to 
epidemic peak, mm 

49.5 31.6 43.3 31.8 <0.0001 

Percentage of 
households with 
overcrowding 

12.3 7.0 10.7 7.6 <0.0001 

Percentage of 
households with 
inadequate exterior 
walls 

6.1 7.1 4.8 8.7 <0.0001 

Percentage of 
households with 
inadequate floors 

14.2 15.5 16.3 17.3 0.10 

Mean travel time, 
min. 

736 224 935 1,118 0.87 

Dengue risk, No. (%)      
   0 11 (3.3)  326 (41.6)  <0.0001 
   1 38 (11.2)  224 (28.6)  
   2 105 (31.1)  157 (20.0)  
   3 184 (54.4)  77 (9.8)  

*337 cities were included in the row for mean travel time.  

**783 cities were included in the row for mean travel time. 

 
 



Page 287 of 391 
 

Table 5.19 Univariate analysis of risk factors of ZIKV invasion. 
 

 Invaded cities (N = 288)* Uninvaded cities (N = 834)**  
 Mean SD Mean SD P value 
Population size, 
thousands 

89 241 28 278 <0.0001 

Elevation, m 577 522 1,411 1,055 <0.0001 
Mean study period 
temperature, °C 

25.4 3.2 20.9 5.7 <0.0001 

Mean temperature 
up to epidemic peak, 
°C 

25.7 3.2 21.1 5.9 <0.0001 

Mean study period 
rainfall, mm 

50.7 24.2 49.0 26.4 0.04 

Mean rainfall up to 
epidemic peak, mm 

40.3 26.4 40.1 26.7 0.36 

Percentage of 
households with 
overcrowding 

12.3 6.8 10.8 7.7 <0.0001 

Percentage of 
households with 
inadequate exterior 
walls 

5.6 6.0 5.0 8.9 <0.0001 

Percentage of 
households with 
inadequate floors 

13.5 14.5 16.5 17.5 0.06 

Mean travel time, 
min. 

769 600 912 1,038 0.86 

Dengue risk, No. (%)      
   0 5 (1.7)  332 (39.8)  <0.0001 
   1 21 (7.3)  241 (28.9)  
   2 81 (28.1)  181 (21.7)  
   3 181 (62.8)  80 (9.6)  

*287 cities were included in the row for mean travel time. 

**833 cities were included in the row for mean travel time. 

 

Four variables were included in the best-fitting logistic regression model for CHIKV invasion: 

mean temperature during the study period, mean rainfall during the study period, dengue 

risk, and mean travel time. Both rainfall and travel time were protective for invasion. In 

contrast, temperature and dengue risk were associated with increased odds of invasion. The 

odds of invasion by CHIKV were 15.5 (95% CI: 7.39-34.84) times higher among cities in the 

third tertile of dengue risk compared to cities with no risk of dengue adjusting for other 

variables in the model (Table 5.20). In the model where weather covariates were defined up 

to the epidemic peak rather than during the study period, the OR for temperature was 
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about the same (1.25), while the OR for rainfall decreased slightly to 0.86. Four variables 

were also included in the best-fitting logistic regression model for ZIKV invasion: elevation, 

mean rainfall during the study period, dengue risk, and the percentage of households with 

inadequate exterior walls. Elevation, rainfall, and inadequate exterior walls were all 

protective for invasion, while dengue risk was associated with an increase in the odds of 

ZIKV invasion. The odds of invasion were 42.3 (95% CI: 16.0-135.4) times higher among 

cities in the third tertile of dengue risk compared to cities with no risk of dengue adjusting 

for other variables in the model (Table 5.21). In the model where weather covariates were 

defined up to the epidemic peak, the OR for rainfall increased slightly to 0.84. There was no 

evidence of poor fit for either model according to the Hosmer and Lemeshow test (CHIKV: p 

= 0.56, ZIKV: p = 0.40). 
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Table 5.20 Best-fitting logistic regression model of CHIKV invasion. Models were fitted to 1,120 
cities because mean travel time between cities was not available for two island cities. 
 

 Estimate Std. error Z value P value OR (95% CI) 
Intercept -5.75 0.55 -10.52 <0.0001 0.003  

(0.001-0.009) 
Mean study period 
temperature, °C 

0.22 0.03 7.46 <0.0001 1.24  
(1.17-1.32) 

Mean study period 
rainfall, 10 mm 

-0.18 0.04 -5.00 <0.0001 0.84 
(0.78-0.90) 

Dengue tertile 1 
(ref 0) 

0.58 0.41 1.42 0.16 1.78 
(0.82-4.07) 

Dengue tertile 2 
(ref 0) 

1.58 0.40 3.99 <0.0001 4.85 
(2.30-10.97) 

Dengue tertile 3 
(ref 0) 

2.74 0.39 6.97 <0.0001 15.50 
(7.39-34.84) 

Mean travel time, 
hr 

-0.06 0.02 -3.32 0.0009 0.94 
(0.91-0.97) 

 

Table 5.21 Best-fitting logistic regression model of ZIKV invasion. Models were fitted to all 1,122 
cities in Colombia. 
 

 Estimate Std. error Z value P value OR (95% CI) 
Intercept -0.96 0.68 -1.42 0.16 0.38  

(0.09-1.38) 
Elevation, 100 m -0.11 0.02 -5.58 <0.0001 0.90 

(0.86-0.93)  
Mean study period 
rainfall, 10 mm 

-0.21 0.04 -4.99 <0.0001 0.81 
(0.74-0.88) 

Percentage of 
households with 
inadequate 
exterior walls 

-0.03 0.01 -2.58 0.01 0.97 
(0.94-0.99) 

Dengue tertile 1 
(ref 0) 

0.68 0.57 1.20 0.23 1.98 
(0.69-6.61) 

Dengue tertile 2 
(ref 0) 

2.30 0.54 4.27 <0.0001 9.96 
(3.73-31.9) 

Dengue tertile 3 
(ref 0) 

3.75 0.54 6.99 <0.0001 42.3 
(16.0-135.4) 

 

Results from linear regression models showed that the time to invasion decreased by 3.4 

(95% CI: 2.1-4.8) weeks for CHIKV and by 2.3 (95% CI: 1.3-3.4) weeks for ZIKV on average for 

each one-unit difference in dengue risk level. Figure 5.35 shows the distribution of invasion 

weeks according to dengue risk level.   
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Figure 5.35 Distribution of invasion week by dengue risk level. (A) CHIKV and (B) ZIKV. The black 
lines are the fitted linear regression models. 
 

5	Discussion 

Similarities and key differences in the spatiotemporal dynamics of the ZIKV and CHIKV 

epidemics in Colombia were identified using spatial interaction models. Spatial invasion of 

both epidemics likely began in the north (Caribbean region). From there, the Andes 

Mountains may have delayed epidemic spread southwards by serving as a natural barrier to 

human movement. The best-fitting models were different for each virus, and the ZIKV 

epidemic spread twice as fast as the CHIKV epidemic. Besides having different transmission 

intensities, parameter estimates obtained for g, n, e, and f, characterizing the effects of 

distance, population size of the invaded city, density dependence, and infectivity, 

respectively, for CHIKV and ZIKV were similar and consistent with those obtained in studies 

of seasonal and pandemic influenza spread [271, 272]. Parameter estimates for the effect of 

susceptible city population size, µ, and the effect of population sizes of invaded and 

intervening cities, n, obtained from Stouffer’s rank models were also consistent with those 

obtained in a study of measles [284]. Cities with high historical DENV transmission had 

greater odds of being invaded compared to cities with no risk of dengue, and higher levels 

of dengue risk were associated with decreased time to invasion.   
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5.1	Comparing	alternative	spatial	interaction	models	

Across model types, geographic distance was the preferred distance metric to describe 

spread of ZIKV; in contrast, geographic distance described spread similarly to travel time 

between cities for CHIKV. Although Viboud et al. found that work commutes better 

described the spread of seasonal influenza in the USA compared to geographic distance, 

Charu et al. found that geographic distance outperformed models with work commutes and 

models with air traffic [271, 274]. Geographic distance was also a better predictor of CHIKV 

spread in the Caribbean region than air traffic [214]. 

Using Stouffer’s rank models, similar estimates of µ for CHIKV and ZIKV were obtained (0.48, 

95% CrI: 0.37-0.58 and 0.43, 95% CrI: 0.32-0.55, respectively). The credible intervals for n 

also overlapped (CHIKV: 1.19, 95% CrI: 1.01-1.36, ZIKV: 1.37, 95% CrI: 1.15-1.65). The 

estimates for n in this study are similar to those reported by Bjørnstad et al. in their 

investigation of measles in England and Wales from 1944-1965. However, the estimates of µ 

here were lower; they reported 1.44 for n and 0.82 for µ. They also found that Stouffer’s 

rank model performed the best, followed by an extended version of the radiation model 

and the competing destinations model [284]. Kraemer et al. found that when used together, 

gravity and radiation models helped explain heterogeneity in the invasion process of Ebola 

virus in West Africa during the 2014-2016 epidemic [286]. 

Epidemic simulations of Stouffer’s rank models were unable to reproduce the CHIKV 

epidemic, despite this model variant having a lower DIC than the best-fitting gravity model. 

Although Stouffer’s rank model was better able to capture the beginning of the epidemic, 

the gravity model performed better in the middle and at the end of the epidemic. A possible 

reason for this finding is that radiation-type models tend to capture commuting patterns, 

while gravity models are better suited toward longer-distance movements [286]. 

5.2	Gravity	models	

5.2.1	 Distance	

The estimated power of the effect of geographic distance on spread, g, was about 1.7, 

indicating that short-distance interactions were important for transmission. Slightly higher 

estimates of about 2.0 were obtained for models using travel time between cities. Similar 
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estimates of g were expected for CHIKV and ZIKV because they were spread by the same 

vectors in the same region. Using geolocated genotype and serotype data, Salje et al. found 

evidence that short-distance interactions were important in transmission of DENV in 

Bangkok, Thailand with the majority of infection events occurring near the home [306].  

A range of estimates of g can be found in the literature. Gog et al. reported 2.6 (95% CI: 2.3-

2.8) for 2009 pandemic influenza in the USA, and Charu et al. reported a median of 2.2 

(range 2.1-2.7 with standard deviations between 0.13 and 0.33) across seven influenza 

seasons in the USA [271, 273]. However, Eggo et al. reported lower values of 1.2 and 0.86 

for 1918 pandemic influenza in England and Wales and in the USA, respectively [272]. 

Differences could be attributed, at least in part, to data being aggregated at different spatial 

scales; fewer data points in an area will lead to lower estimates of the distance power 

because locations are farther apart. 

5.2.2	 Population	

Similar values for the estimated power for the effect of invaded city population size, n, were 

produced by the best-fitting ZIKV and CHIKV models. This finding suggests that cities with 

large populations are more likely to spread disease than cities with smaller populations. Gog 

et al. did not include this parameter, and in Eggo et al., it was not selected in their best-

fitting England and Wales model. For both CHIKV and ZIKV, the null hypotheses, stating that 

the estimated powers (µ) for the effects of susceptible city population size were 0, were 

accepted. In other words, cities with large populations have the same risk of being invaded 

as cities with small populations. However, µ did appear to contribute to the fit of the 

Stouffer’s rank models, and therefore the role of susceptible city population size in the 

spread of the CHIKV and ZIKV epidemics is unclear. Low, but significant, estimates of µ were 

reported by Gog et al. (0.27, 95% CI: 0.11-0.44) and Eggo et al. (0.40, 95% CrI: 0.25-0.54) for 

seasonal and pandemic influenza, respectively.  

5.2.3	 Density	

Intermediate levels of density dependence best described transmission (e for CHIKV 0.83, 

95% CrI: 0.69-0.98 and ZIKV 0.68, 95% CrI: 0.50-0.84). This means that the connection 

between cities somewhat depended on the number and size of neighboring cities. For 
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influenza in the USA, Gog et al. and Charu et al. reported estimates of e close to 1 [271, 

273]. Eggo et al. reported e close to 1 for influenza in England and Wales but also found that 

a density-dependent model (e = 0) fit the data best for influenza in the USA [272]. Similarly, 

Salje et al. found that DENV transmission in Bangkok, Thailand was consistent with density-

dependent transmission (e=0) [306]. Differences in estimates could be due to differences in 

both coverage of datasets and spatial scales considered.   

5.2.4	 Infectivity	

Low, though significant, estimates were obtained for the infectivity parameter, f, from both 

CHIKV (0.35, 95% CrI: 0.25-0.48) and ZIKV (0.27, 95% CrI: 0.13-0.40) models. This suggests 

that cities with more reported cases were more infectious than cities with fewer reported 

cases. Low estimates could be explained by discrepancies between reported case incidence 

and the true incidence of infection in a city. For instance, if reporting varies over time or by 

location, surveillance data may not represent actual infection incidence. Eggo et al. reported 

a similar estimate of 0.24 (95% CrI: 0.03-0.47) for pandemic influenza in England and Wales 

using mortality rate (representing the fraction of travelers who are infectious) as a proxy for 

infectiousness [272]. 

5.2.5	 Transmission	intensity	

Transmission intensity, represented by b, clearly differs between the two viruses. The 

estimated b for ZIKV is significantly higher than that for CHIKV, reflecting the faster spread 

of the ZIKV epidemic. Differences in transmission intensity could be related to the 2015-

2016 El Niño. El Niño is a weather phenomenon characterized by above average sea 

temperatures in the equatorial Pacific Ocean. The warm water affects the movement of air 

and moisture around the globe, and the 2015-2016 El Niño was one of the strongest ever 

recorded [307]. As discussed in chapter 3, temperature and rainfall affect mosquito 

development and growth. Caminade et al. studied the impact of El Niño on risk of ZIKV. They 

found that increased temperatures associated with El Niño created conditions across South 

America that were favorable for ZIKV transmission in 2015 [307]. 
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5.3	Joint	models	

Joint models of CHIKV and ZIKV were preferred over models fitted to each virus separately 

when parameters for transmission intensity and infectivity were allowed to vary across 

viruses. This finding suggests that some aspects of the spatiotemporal patterns of epidemic 

arboviruses in Colombia were the same. 

5.4	Elevation	

Evidence suggests that the distribution of mosquitoes occurs across altitudinal gradients in 

South America [308]. In Colombia, Ae. aegypti, one of the primary vectors of CHIKV and 

ZIKV, is not usually found at elevations above 2,200 m due to environmental factors, 

especially temperature [309]. Consequently, cities located at high elevations have less risk 

of invasion [231]. Elevation was not incorporated into the spatial interaction models in this 

study. If there were an association between city elevation and week of invasion, there may 

not have been enough variation in elevation to explain disease spread. The models only 

included cities that met cut-offs for reported cases, almost all of which are located in low-

lying areas (under 2,200 m). Rees et al. estimated the probability of a city reporting at least 

one ZIKV case during the epidemic in Colombia and dropped mean city elevation from their 

best-fitting logistic regression model. However, they did find that mean city elevation 

significantly decreased the time to the first reported ZIKV case using accelerated failure time 

models, but the effect size was small (the expected time slowed by a factor of 1.18), and 

they assumed all cities could become infected [296]. 

5.5	Conclusions	and	limitations	

The results in this study rely on estimates of invasion week in each city. Invasion week was 

defined as the week before cases were first reported in each city. Although a few reported 

cases at the beginning of an outbreak may not be enough to sustain chains of transmission 

resulting in spread to other cities, these cases could signal previously undetected 

transmission. A genomic epidemiological study found evidence that ZIKV had been 

circulating undetected in Colombia for five to eight months before the first cases were 

confirmed in September 2015 [310]. Furthermore, it is possible that cities with better 

surveillance or healthcare infrastructure could have been the first to report cases in 
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travelers returning from cities with no prior evidence of transmission because the city of 

likely infection was modeled rather than city of notification or residence.  

The results are robust to uncertainty in invasion weeks. When models were fitted using an 

alternative definition for invasion week, CHIKV model fits were slightly worse, but ZIKV 

model fits were very comparable. Importantly, parameter estimates were similar. The 

results are also robust to the choice of threshold for the number of reported cases. For each 

virus, gravity model simulations were similar for thresholds of 10, 20, and 30 cases, and the 

credible intervals of all parameter estimates overlapped.  

Cities that did not meet the thresholds for cumulative reported cases were treated as 

missing in the analysis. Similar approaches have been utilized in the study of seasonal and 

pandemic influenza [271-273]. For example, Gog et al. included 271 cities for the USA, and 

Eggo et al. included 47 cities for the USA and 246 cities for England and Wales. Charu et al. 

included a range from 135 to 306 U.S. cities [271-273]. Here, some unaffected cities were 

not invaded because they were not at risk (due to environmental factors). Of the cities that 

were at risk, some were invaded; others appeared to have escaped invasion by chance or 

other unexamined factors. Among cities that escaped invasion, it is possible that they were 

invaded but never reported cases. Alternative study designs would be more appropriate for 

determining why some cities appeared to escape invasion. For example, a mechanistic 

model of disease transmission accounting for environmental conditions such as 

temperature and rainfall could be used to ascertain why some cities were invaded and 

others were not [53]. Also, community-based studies conducted shortly after the epidemic 

could have assessed whether a city was invaded but did not report cases. In fact, 

community-based studies were conducted in Colombia following both epidemics but only in 

cities that reported many cases [189, 190, 193].Community-based studies in rural and 

economically disadvantaged areas should be prioritized during and in the aftermath of 

future epidemics to assess surveillance effort and estimate reporting rates.  

Ninety-nine percent of CF cases and 95% of ZVD cases were clinically confirmed, rather than 

laboratory confirmed. This could have led to misclassification, especially considering DENV, 

CHIKV, and ZIKV were circulating at the same time. Also, asymptomatic infection, mild 

illnesses, and limited access to healthcare likely led to underreporting. Issues with reporting 
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and misdiagnoses may have affected the fit of the probability distribution of invasion week 

for cities invaded near the end of the CHIKV epidemic. Some of these late-invaded cities 

might have been invaded earlier but failed to report cases to the surveillance system in a 

timely manner. Another possibility is that cases reported at the end of the CHIKV epidemic 

were actually misdiagnosed ZVD cases. Oliviera et al. studied the interrelationships between 

cases of DF, CF, and ZVD in Brazil from 2015-2017. Confirmed cases included all suspected 

cases reported to the national surveillance system, while discarded cases were defined as 

suspected cases that met at least one of the following conditions: (i) negative laboratory 

diagnosis by IgM serology, (ii) laboratory confirmation of another disease, and (iii) clinical 

and epidemiological compatibility with another disease. Using an autoregressive model, 

they found that the time series of confirmed and discarded cases of DF significantly affected 

the time series of confirmed and discarded cases of ZVD, and the other way around. 

Although confirmed and discarded cases of CF were found to affect the reporting of DF, 

there was no evidence that the reporting of ZVD or DF affected reporting of CF [311]. 

Historical dengue transmission in Colombia could have played a role in the spread of CHIKV 

and ZIKV. It is unlikely that high levels of DENV would have affected susceptibility to CHIKV, 

an unrelated alphavirus; however, as mentioned in chapter 1, there is some evidence of 

cross-reactivity among flaviviruses, such as ZIKV and DENV. If pre-existing immunity for 

DENV increased the risk of symptomatic ZIKV infection, faster recognition of ZIKV in cities 

that are hyperendemic for DENV would be expected. A cohort study in Managua, Nicaragua 

found evidence that prior DENV infection was protective for symptomatic ZIKV infection 

among children (IRR 0.62, 95% CI: 0.44-0.86) adjusting for age, sex, and recent infection 

with DENV [312]. In contrast, a cohort study in Salvador, Brazil found that individuals with 

high antibody titers to DENV had less risk of ZIKV infection and symptoms [120]. In this 

study, high historical levels of DENV in a city were associated with decreased time to 

invasion for both CHIKV and ZIKV, suggesting that other factors such as environmental 

suitability of Aedes mosquitoes are more important to city invasion than potential impacts 

of cross-reactive immunity among flaviviruses. 

As mentioned in previous chapters, inaccuracy in population projections would also have 

implications for the results in this chapter, specifically estimates of the population 



Page 297 of 391 
 

parameters µ and n. If more people had migrated to large cities than predicted based on the 

2005 Census, then the estimates of µ and n may have been reduced. 

Another limitation is that the model only includes one distance metric at a time. In reality, 

the spread of ZIKV and CHIKV likely resulted from a combination of air travel, land-based 

travel, and vector movement. The model also does not account for time-varying changes in 

reporting, human behavior, or transmission. Nevertheless, these aspects could have 

changed during the epidemics, especially when the Public Health Emergency of 

International Concern was declared by the WHO in February 2016 [21].  

The model assumes that CHIKV and ZIKV were each introduced into Colombia one time. Two 

recent genomic studies suggest that this assumption holds which is why background 

importation rates of CHIKV and ZIKV were not accounted for. Black et al. found evidence of 

two separate introductions of ZIKV into Colombia; however, the majority of cases were 

associated with a single introduction [310]. Similarly, Villero-Wolf et al. found evidence of 

only three introductions of CHIKV in Colombia, suggesting that most cases resulted from 

transmission within the country, rather than repeated travel-related importations [313]. 

Also, in the ZIKV dataset used in this study, out of 105,152 cases, 93.2% (97,962) had 

matching administrative level 2 locations of likely infection and residence, meaning most 

people were infected where they live. Three-thousand and eighty-six cases (3.3%) resided in 

Bogotá, and 3,630 cases (3.5%) had different but valid within-country administrative level 2 

locations. These cases were likely infected while traveling to other Colombian cities. Only 74 

cases (0.07%) had another country listed as their residence, including the USA, Peru, France, 

Italy, Switzerland, Portugal, and Venezuela. While some of these travelers could have 

introduced ZIKV into Colombia, the possibility that they were infected while visiting cannot 

be excluded. 

The gravity model formulation used in this study works well retrospectively. Yet more work 

is needed to understand why some cities appear to escape invasion. Until this issue is 

resolved, these methods have limited use for real-time forecasting of epidemics.  

Future directions for this work include the use of this approach to understand the invasion 

dynamics of other epidemics. Further research should also focus on quantifying the relative 

contribution of human versus vector movement on spatial transmission. This would have 
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broad implications for surveillance and control for other mosquito-borne epidemics such as 

DENV, MAYV, and yellow fever virus.  
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Chapter	6:	Discussion	

The main motivation underlying this thesis has been to compare the CHIKV and ZIKV 

epidemics in Colombia with a focus on estimating reporting rates (!s), time-varying 

reproduction numbers (Rts), and basic reproduction numbers (R0s). Additionally, reporting 

gaps and biases in ZIKV surveillance data were examined and quantified by incorporating 

seroprevalence data and data on ZIKV-associated neurological complications. Finally, the 

spatial and temporal dynamics of both CHIKV and ZIKV epidemics were analyzed with 

several different spatial interaction models.   

1	Summary	of	findings	

In chapter 2, epidemiological trends of ZVD and ZIKV-associated neurological complications 

in Colombia were analyzed using surveillance data. Observed attack rates, risk ratios, and 

tests for statistical significance were estimated for high-risk groups. Approximately 106,000 

suspected and laboratory-confirmed cases of ZVD were reported. High observed attack 

rates of ZVD were reported in females and young adults. As expected, pregnant females 

were overrepresented in the data due to increased risk of CZS associated with ZIKV infection 

during pregnancy. All 32 departments in the country reported at least one case of ZVD. 

Cases of ZIKV-associated neurological complications were rarer, with only 418 reported 

cases in 28 departments. GBS was the most common diagnosis among these severe cases. 

 In chapter 3, ! and R0 were estimated for CHIKV and ZIKV from surveillance data. The 

analysis was conducted at the department level using two approaches based on the renewal 

equation. Results showed that the estimated ! for CHIKV was higher than that for ZIKV. 

However, estimated R0s were similar across viruses. Rt estimates from parametric models 

were in good agreement with Rt estimates obtained from the software EpiEstim. Reporting 

rates estimated from the best-fitting models were also consistent with those observed in a 

seroprevalence study conducted in four Colombian cities [191].  

In chapter 4, ZIKV infection attack rates, reporting rates of ZVD, and the risk of ZIKV-

associated neurological complications were estimated for 28 Colombian capital cities using a 

Bayesian hierarchical model. In addition to the datasets on ZVD and ZIKV-associated 

neurological complications that were used in previous chapters, published estimates of 
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post-epidemic seroprevalence [191] were incorporated into the model. ZIKV infection attack 

rates showed substantial variation across cities. The overall estimated reporting rate for ZVD 

was similar to that estimated in chapter 3, and the estimated risk of ZIKV-associated 

neurological complications was low. Important differences in the overall estimated ZVD 

reporting rates and the risk of ZIKV-associated neurological complications between sex and 

age group were found, assuming the same ZIKV infection attack rates. Important differences 

in the hypothesized direction were also found for some cities which tended to have more 

data.  

Finally in chapter 5, the spatial and temporal invasion dynamics of CHIKV and ZIKV were 

explored using gravity models, Stouffer’s rank models, and radiation models. Both 

geographic distance and travel time between cities were considered. Although invasion risk 

was best captured by a gravity model which accounted for geographic distance and 

intermediate levels of density dependence, Stouffer’s rank model with geographic distance 

performed similarly well. Results also showed that short-distance transmission was a main 

driver of spatial spread following a few long-distance transmission events. Jointly fitted 

models highlighted similarities between the epidemics. Yet, ZIKV spread faster than CHIKV. 

2	Future	work	and	limitations	

A major limitation of this work is that control strategies were not incorporated into any of 

the methods. Public health interventions, including vector control and education campaigns, 

were implemented during the epidemics in Colombia [314, 315]. For the first seven months 

of 2016, the MOH recommended that women residing in areas below 2,200 m consider 

delaying pregnancy, while pregnant women living at higher altitudes were advised to 

restrict their travel to areas below the cut-off [316, 317]. It would have been interesting to 

compare the effectiveness of these interventions across the CHIKV and ZIKV epidemics 

within the same country. For example, in chapter 3, changes in transmissibility of each virus 

could have been correlated with the timing of specific government recommendations or 

policy shifts. However, further data would be needed to undertake such an analysis. Once 

CHIKV and ZIKV vaccines become licensed, the potential impact of these new tools could be 

evaluated, along with that of novel vector control strategies, such as the use of Wolbachia-

infected and genetically modified mosquitoes [318].  
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Another limitation of this thesis is that seroprevalence data were only available for four 

cities in Colombia. This resulted in large amounts of uncertainty in the estimated infection 

attack rates in chapter 4; having more data would increase the precision of the estimates. In 

chapter 3, Valle del Cauca was identified as having the largest burden of CF and ZVD, 

reporting about one-quarter of all cases. However, relatively low infection attack rates were 

estimated for both viruses in this department (0.52, 95% CrI: 0.48-0.56 for CHIKV and 0.37, 

95% CrI: 0.35-0.40 for ZIKV). In chapter 4, the estimated infection attack rate for ZIKV in 

Valle del Cauca’s capital city of Cali was 0.50 (95% CrI: 0.26-0.95) (a full comparison of the 

estimated infection attack rates for ZIKV from chapters 3 and 4 at the department and city 

levels, respectively, can be found in Figure 6.1). Conducting a seroprevalence study in Cali 

would help understand whether the observed epidemic dynamics in Valle del Cauca were 

driven by differences in reporting or transmission. 

Not all departments reported similar proportions of CF and ZVD cases. For example, Bolívar 

reported 6% of all CF cases in the country compared to 2% of ZVD cases. On the other hand, 

only 3% of CF cases were reported in Santander versus 10% of ZVD cases. Relative 

differences in the burden of these diseases could be related to climactic factors, including 

the 2015-2016 El Niño. The fact that the vast majority of CF and ZVD cases were clinically 

confirmed rather than laboratory confirmed complicates the matter and highlights the need 

for increased testing capacity for arboviruses in Colombia.  
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Figure 6.1 Comparison of infection attack rates from chapters 3 and 4 in departments and capital 
cities, respectively. Mean and 95% CrI are shown for the city estimates, while median and 95% CrI 
calculated from the estimated reporting rate are shown for the estimates at the department level. 
Most locations have overlapping credible intervals. Only locations with estimates for both the capital 
city and department are shown (N = 26). 
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In chapters 2 and 4, it was not possible to investigate CHIKV-associated neurological 

complications as line list data were not available. In lieu of a specific dataset, Individual 

Records of Health Services Provision (RIPS) data could be used to assess trends in 

neurological disease over time and whether incidence increased in the country during the 

CHIKV epidemic. The number of patients hospitalized with neurological disease could be 

compiled for the years prior to, during, and after the CHIKV epidemic. RIPS data can be 

requested by Colombian citizens through SISPRO [319], an information system managed by 

the MOH. Statistical tests, such as the Farrington algorithm, could be used to ascertain the 

significance of any increases in the historical time series. The Farrington algorithm is a 

regression model that calculates the expected number of cases in a particular week based 

on the numbers of cases in past weeks [320]. Angelo et al. performed a similar ecological 

study in Rio de Janeiro, Brazil using data from the national hospitalization database for the 

years 1997-2017 [321]. They found that the incidence of GBS significantly increased in the 

city after the introduction of H1N1 influenza in 2009, DENV type 4 in 2013, and ZIKV in 

2015-2016. Although not mentioned by the authors, the increase in GBS case incidence in 

Rio de Janeiro between 2015-2016 also coincided with reports of the first locally-

transmitted cases of CF there in late 2015 [322].  

In chapter 5, invasion was defined as the week before CF and ZVD cases were first reported 

in each city. This definition was used as a proxy for the week in which the viruses were first 

introduced into each city. Although parameter estimates were robust to uncertainty in 

invasion week using an alternative definition, more accurate timing of disease introduction 

and subsequent spread could have been achieved with genetic sequence data, especially in 

locations where the epidemic was not fully observed. Genomic studies have found that ZIKV 

was circulating in the Americas several months before the first cases were detected and 

confirmed by PCR [18]. The time between the arrival and discovery of a virus is known as 

the “surveillance gap” [323]. Unfortunately, few complete genomes of CHIKV and ZIKV are 

publicly available for Colombia. As of 2019, only 16 complete genomes of CHIKV [313] and 

20 of ZIKV [310] had been sequenced from the country. It is unlikely that many more 

complete genomes from the epidemics will become available in the future due to the 

degradation of viral RNA resulting from long storage times [310]. Although validating the 

parameter estimates in chapter 5 with genomic data will likely not be possible, increasing 
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genomic surveillance could improve detection and response for future epidemics. For 

example, genomic sequencing is currently being used in numerous countries to track 

mutations of SARS-CoV-2. As of March 24, 2021, five variants of concern have been 

identified, some of which are associated with increased transmissibility and more severe 

illness [324].  

Another important area of future research involves studying how the COVID-19 pandemic 

has impacted arbovirus epidemiology. In 2020-2021, many countries implemented 

lockdowns, social distancing, and mobility restrictions in response to the pandemic. These 

measures could have disrupted vector control programs and increased exposure to 

mosquito bites in the home, while reducing social mixing between households. Surveillance 

could have been affected through decreases in both healthcare seeking behavior and 

capacity for laboratory testing [325]. Only a few studies have rigorously examined the 

impact of lockdowns on arbovirus transmission [326, 327], and the evidence is currently 

mixed. By late 2020, a higher-than-average incidence rate of DF had been reported in 

Pakistan, Peru, Singapore, Thailand, and Ecuador. Meanwhile, some countries, including 

Taiwan, Bhutan, and Sri Lanka, as well as parts of Brazil and Colombia, reported lower-than-

average case numbers [325]. The long-term impacts of the COVID-19 pandemic on DENV 

epidemiology as well as that of other arboviruses are still unknown.   

To improve arbovirus surveillance during the COVID-19 pandemic, Colombian health 

authorities should encourage individuals with arbovirus symptoms to seek healthcare. 

Patients should be triaged at healthcare facilities so that those with severe symptoms can 

be treated first and the risk of SARS-CoV-2 infection can be minimized [328]. It is also 

important to investigate the impact of stay-at-home orders on mosquito control programs 

throughout the country. One such study, which used a self-administered online survey, was 

performed in Florida, USA in June 2020 [329]. The potential interruption to mosquito 

control and surveillance activities in 2020-2021 could increase the risk of future arbovirus 

threats and epidemics. Another strategy that should be adopted by Colombian health 

authorities is to extend current seroprevalence studies for SARS-CoV-2 to include 

arboviruses. The same blood samples that are being used to test individuals for previous 

infection with SARS-CoV-2 (such as in Montería [330]) could also be tested for a panel of 

arboviruses, including CHIKV, DENV, and ZIKV.  
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Future studies could also compare the spatiotemporal dynamics and transmissibility of 

DENV with those of CHIKV and ZIKV. As mentioned in chapter 3, Funk et al. found that the 

R0s for ZIKV and DENV were similar when they were both estimated on the Yap Main Island 

[233]. Explicitly modeling vector dynamics could be another possible extension to the work 

presented in this thesis. Compartmental models, such as the SEIR/SEI model (see chapter 3), 

are often used to capture vector dynamics and could be used to further refine the R0 

estimates in chapter 3. Finally, as mentioned in chapter 1, enzootic transmission of CHIKV 

and ZIKV occurs in Africa [7, 27]; however, it is unknown whether a similar cycle has been 

established in the Americas. If these viruses have spilled over into animal reservoirs, 

epidemics in humans could return to Central and South America sooner than expected due 

to increased exposure via the animal host(s). Seroprevalence studies of potential hosts 

should be prioritized.    

3	Implications	of	research	

The research presented in this thesis focused on estimating important epidemiological 

parameters of CHIKV and ZIKV at the subnational level in Colombia. As progress continues 

toward developing the first vaccines for these viruses as well as deploying novel vector 

control measures at increasingly larger spatial scales, reliable estimates of these parameters 

can play an important role in preparedness and resource allocation. 

This work has demonstrated that data collected through passive surveillance systems can be 

used to understand the prevalence and trends of infectious diseases in populations. This 

information can then be used to better target interventions and control measures. At the 

same time, the work in chapters 2 and 4 brings attention to potential biases and gaps in 

these data. If possible, additional data sources should be used to mitigate these issues.  

The methods presented here, particularly in chapters 3 and 5, can be used to study other 

emerging arboviruses in the region, including MAYV. Despite the fact that MAYV case 

reports and outbreaks have not yet been reported in Colombia [211], a cross-sectional 

seroprevalence study conducted in 1960 in the department of Santander found 

seroprevalence of 0.22 among human study participants [331]. A similar study found 

seroprevalence of 0.19 in individuals living in the Amazonas department in 1966 [332]. By 

fitting catalytic models to these data, a recent study found that the force-of-infection in 
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1960 varied across age groups, and in 1966, the force-of-infection was constant across age 

groups [211]. These results are consistent with epidemic and endemic transmission 

patterns, respectively; however, they should be interpreted with caution as the sample size 

in the 1966 study was over two times that of the 1960 study with nearly 400 people. The 

study also estimated R0 with mean 1.23 (95% CrI: 1.04-1.66) and 2.10 (95% CrI: 1.71-2.69) 

for 1960 and 1966 respectively, highlighting the epidemic potential of this virus in the 

country [211].  

4	Challenges	

The number of infectious disease outbreaks caused by emerging and re-emerging 

pathogens has risen over the last few decades, culminating in the current COVID-19 

pandemic. The increase has been attributed to climate change, urbanization, global travel, 

and healthcare worker shortages as mentioned previously in the context of CHIKV and ZIKV. 

Additionally, increased contact between animals and humans has played a role [333]. 

Several emerging infectious diseases, such as COVID-19, Ebola, and Nipah, are zoonotic, 

meaning they originate in animals. CHIKV and ZIKV both circulate in animals and mosquitoes 

in forested areas in Africa. As humans continue to move into previously uninhabited areas 

due to population growth or displacement, there will be more opportunities for pathogens 

to “jump” the species barrier, potentially sparking an epidemic or pandemic [333]. Jones et 

al.[334] and Allen et al.[335] found that while emerging infectious disease events are mostly 

detected in developed countries with strong surveillance systems in place, the predicted risk 

of these events is highest in tropical, developing countries; both research teams identified 

hotspots in forested areas experiencing land-use changes and where wildlife biodiversity is 

high [335].  

To tackle current and future infectious disease threats, public health surveillance systems 

should be strengthened around the world. While big data has offered opportunities for 

high-income countries to integrate novel data streams, such as electronic health data, into 

traditional surveillance, many low-income countries lack core surveillance capacities [66]. 

For example, all-cause, excess population mortality has been an important source of data 

for comparing COVID-19 epidemics across countries; however, low- and middle-income 

countries may not have sufficient vital registration systems in place to produce real-time 
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estimates of these data [242]. Improvements are needed in screening and diagnostics as 

well as laboratory infrastructure. Syndromic surveillance, which uses pre-diagnostic 

indicator data and statistical algorithms, are less costly compared to diagnosis-based 

surveillance and could be used to detect outbreaks [336]. Surveillance systems in 

developing countries could also benefit from the use of a “One Health” approach in which 

the health of humans, animals, and the environment are considered [337]. Activities that 

increase the risk of zoonotic disease spillover should be closely monitored. These include 

mining, logging, and road development [335] as well as bushmeat hunting [338] and certain 

cultural practices such as harvesting date palm sap [339]. 

Investment is needed not only in healthcare infrastructure, but also in establishing and 

strengthening international research collaborations. It is now considered bad practice for 

researchers in high-income countries to extract data from low- and middle-income 

countries, analyze the data, and publish the results remotely [340]. This approach is unfair 

to local researchers and overlooks the valuable knowledge and insights that they can 

contribute to the field. Though the problem has not been completely eliminated, clear 

authorship policies from academic journals have helped ensure that collaborators from 

countries where the research is being conducted are included in publications. For example, 

the PLOS family of journals has adopted the CRediT (Contributor Roles Taxonomy) system, 

which consists of 14 categories (including those for “investigation,” and “data curation”) 

that describe each authors’ contribution to the work [341].  

In addition to recognizing the efforts of local teams through co-authorship, capacity building 

can be used to strengthen research partnerships. For example, researchers in low-resource 

settings often do not receive formal training in scientific writing [342]. Language barriers 

pose additional obstacles for non-native English speakers. Some programs, such as the Pre-

Publication Support Service, have recently been established to work with authors in low-

resource settings to improve their manuscripts for publication in peer-reviewed journals 

[343]. In terms of technical skills and tools, the R Epidemics Consortium is an example of 

one organization that has created free analytics tools and training materials for outbreak 

response, health emergencies, and humanitarian crises using the R software [344]. The R 

Epidemics Consortium is also actively involved in organizing workshops and short courses on 
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outbreak analytics and data science, having partnered with the WHO Regional Office for 

Africa and Colombia’s INS in the past [345].  

Lack of medical countermeasures to prevent or treat CF and ZVD was a main driver of 

transmission during the 2014-2017 epidemics in Latin America. As vaccines become 

available for these diseases, vaccine hesitancy may limit their effectiveness in subsequent 

outbreaks. Vaccine hesitancy is a phenomenon in which individuals choose to delay or 

refuse an available vaccine [346]. In 2019, the WHO named vaccine hesitancy as one of the 

top 10 threats to global health [347]. The issue has been exacerbated during the COVID-19 

pandemic; worries about the speed at which the vaccines were developed and tested, 

potential short- and long-term side effects, and misinformation about the pandemic, 

especially online, have all been associated with SARS-CoV-2 vaccine hesitancy [346]. In 

Colombia, vaccine hesitancy has been documented during the pandemic in indigenous 

groups and university students. Colombia is home to nearly two million indigenous people. 

Many of them have opted for traditional medicines and isolation to combat COVID-19 citing 

mistrust of the government and lack of consultation on the vaccine roll-out [348]. Among 

students at a Colombian university, one study found high levels of SARS-CoV-2 vaccine 

mistrust (79%). Pursuing a non-health science degree, rural residence, low income, and low 

pandemic-related perceived stress were all significantly associated with vaccine mistrust in 

the study [349].  

Based on the estimated R0s in this study, moderate to high vaccination coverage will be 

needed to achieve herd immunity. Given the challenges associated with vaccine hesitancy, it 

will be important to closely monitor the impact of vaccination on future outbreaks, 

particularly for ZIKV. Like congenital rubella syndrome, the risk of severe disease from ZIKV 

infection is age dependent. As vaccines decrease transmission, the mean age of first 

infection increases in the population [350]. If R0 declines but remains above 1, women are 

more likely to be infected during their childbearing years when the risk of CZS is highest.  

In addition to vaccines, increased government transparency and data sharing can also 

improve the response to future outbreaks. One study uncovered a large unreported 

outbreak of ZIKV in Cuba in 2017. By integrating surveillance of international travelers, local 

case reporting, and genomic sequencing of ZIKV from infected travelers, Grubaugh et al. 
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estimated that 5,707 (interquartile range: 1,071-22,611) ZVD cases were unreported in the 

country, nearly all of which occurred in 2017 [351]. As discussed in this thesis, many ZVD 

cases go unreported, and hence the number of ZIKV infections was likely much higher. Prior 

to this study, PAHO had no record of any cases in Cuba in 2017 or 2018. This hidden 

outbreak was likely similar in size to known outbreaks that occurred in 2016 in countries 

with similar population sizes, such as Haiti, Dominican Republic, and Jamaica, and may have 

been delayed by one year due to a successful vector control program [351]. As updates from 

PAHO and other international public health organizations are one of the main ways of 

disseminating information about infectious disease outbreaks, unreported or unrecognized 

outbreaks have the potential to spread to other countries. Following publication of the 

paper, a New York Times article reported that Cuba did in fact report 1,384 ZVD cases to 

PAHO in 2017, but due to a technical glitch, the information was not visible on the website 

[352]. Meanwhile, many travelers to Cuba could have been unwittingly exposed. Four point 

seven million foreigners visited the island that year during a record year for tourism [352].  

5	Conclusions	

CHIKV and ZIKV continue to exhibit low levels of transmission in Colombia following the 

back-to-back epidemics in 2014-2017 [353]. This suggests that after enough susceptible 

individuals have accumulated in the population due to births and immigration, these viruses 

have the potential to cause future outbreaks. Hopefully before then, new tools will become 

available to mitigate the threats posed by these neglected tropical diseases. Having robust 

estimates of the reporting rates, infection attack rates, and transmissibility associated with 

CHIKV and ZIKV as well as the patterns of their historical spatiotemporal spread will be 

important in the design of control strategies. Reporting rates of CF and ZVD could increase 

during subsequent outbreaks due to increased awareness of the diseases among healthcare 

workers and the general population. In contrast, infection attack rates and transmissibility 

would be expected to be lower due to existing population-level immunity. These 

parameters could also decrease if vaccines and novel vector control interventions are 

introduced. Climate change may shift the burden of CHIKV and ZIKV outside of the tropics 

due to rising temperatures which would further reduce future infection attack rates and 

transmission in Colombia [354]. Given that endemic transmission of CHIKV and ZIKV seems 

to have been established in the country, the spatiotemporal dynamics of subsequent 



Page 310 of 391 
 

outbreaks may not follow the same patterns of spread. However, the introduction of other 

Aedes-borne viruses could follow similar trajectories.  
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Appendix	S1:	Additional	plots	comparing	EpiEstim	Rts	and	

model	Rts	
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Figure A. Comparing median estimates of Rt from the best-fitting negative binomial model for ZIKV 
(Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines) using a different y-axis. 

Compared to Figure 3.18 in the main thesis text, the y-axes on these plots have an upper limit of 10 
to show the full 95% CrI of the prediction for San Andrés and Providencia. EpiEstim Rts are plotted in 
the center of the 5-week window used to compute each estimate. Shaded areas represent 95% CrI. 
There is a positive statistically significant correlation of 0.31 (Pearson’s correlation coefficient, 95% 
CI: 0.27-0.35, p < 0.0001). 
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Figure B. Comparing median estimates of Rt from the best-fitting negative binomial model for 
CHIKV (Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines) using a threshold 

of 15. This figure is nearly indistinguishable from Figure 3.17 in the main thesis text, so the higher 
threshold of 20 was preferred. EpiEstim Rts are plotted in the center of the 5-week window used to 
compute each estimate. Shaded areas represent 95% CrI. There is a positive statistically significant 
correlation of 0.17 (Pearson’s correlation coefficient, 95% CI: 0.12-0.21, p < 0.0001). 
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Figure C. Comparing median estimates of Rt from the best-fitting negative binomial model for 
CHIKV (Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines) using a threshold 

of 55. In contrast to Figure 3.17 in the main thesis text, the predicted values for some departments 
(especially Bolívar and Magdalena) do not cross 1 at the end of the epidemic. EpiEstim Rts are 
plotted in the center of the 5-week window used to compute each estimate. Shaded areas represent 
95% CrI. There is a positive statistically significant correlation of 0.12 (Pearson’s correlation 
coefficient, 95% CI: 0.07-0.16, p < 0.0001). 
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Figure D. Comparing median estimates of Rt from the best-fitting negative binomial model for ZIKV 
(Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines) using a threshold of 15. 

This figure is nearly indistinguishable from Figure A above, so the more conservative threshold of 20 
was preferred. EpiEstim Rts are plotted in the center of the 5-week window used to compute each 
estimate. Shaded areas represent 95% CrI. There is a positive statistically significant correlation of 
0.31 (Pearson’s correlation coefficient, 95% CI: 0.27-0.35, p < 0.0001). 
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Figure E. Comparing median estimates of Rt from the best-fitting negative binomial model for ZIKV 
(Rt

Model, blue lines) with those obtained from EpiEstim (Rt
EpiEstim, red lines) using a threshold of 55. 

Compared to Figure A above, the predictions were slightly worse, with a higher Rt initially estimated 
for San Andrés and Providencia. Also, Bolívar and Cundinamarca have slightly higher final estimated 
Rts, which are above 1. EpiEstim Rts are plotted in the center of the 5-week window used to compute 
each estimate. Shaded areas represent 95% CrI. There is a positive statistically significant correlation 
of 0.29 (Pearson’s correlation coefficient, 95% CI: 0.25-0.33, p < 0.0001). 
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Appendix	S2:	MCMC	testing	for	best-fitting	Poisson	models	

The diagnostics in this section correspond to each virus' best-fitting Poisson model from 

chapter 3. 

Convergence diagnostics 

The models were run from three different starting points to ascertain convergence. Table A 

shows the Gelman-Rubin statistic for each of the Poisson models with multiple R0s and 

rainfall after removing the burn-in. All point estimates and 95% CI are at or about 1, 

suggesting model convergence. Figures A-B show the posterior distributions of one MCMC 

chain for each parameter after removing the burn-in. All the distributions are close to 

normal, suggesting that the chains converged.  

 
Table A. Gelman-Rubin statistic for each of the best-fitting Poisson models (after removing the 
burn-in).  
 

 CHIKV ZIKV 
Parameter Point estimate Upper CI Point estimate Upper CI 
! (reporting rate) 1 1 1 1 
R0 (all)  1 1-1.01 1 1 

"#$%&('()*)  1.01 1.02 1 1 

+'()*  1.01 1.03 1 1 
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Figure A. Histograms of the posterior distributions of the best-fitting Poisson model for CHIKV.  
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Figure B. Histograms of the posterior distributions of the best-fitting Poisson model for ZIKV.  
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Traces 

Figures C-D show the MCMC traces for three chains of the CHIKV and ZIKV models, 

respectively. Although mixing is slow for the rainfall parameters in the CHIKV model (r_best 

and sigma_r), mixing is good for all other parameters based on visual assessment. 
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Figure C. MCMC traces for the CHIKV model. Three chains run using different start values are 
shown.  
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Figure D. MCMC traces for the ZIKV model. Three chains run using different start values are shown.  
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Acceptance rate and effective sample size 

Table B shows the acceptance rate of parameters for the CHIKV and ZIKV models. Both 

models have good acceptance rates. Table C shows the calculation of the effective sample 

size for each parameter after removing the burn-in. Except for the rainfall parameters in the 

CHIKV model, all parameters have good effective sample sizes (several are at least 10% of 

the total number of iterations). 

 
Table B. Acceptance percentages for parameters of the best-fitting Poisson models for CHIKV and 
ZIKV (after removing the burn-in). 
 

Parameter CHIKV ZIKV 
! (reporting rate) 20.4 18.5 
Department-specific R0, range  17.8-29.7 16.4-30.0 

"#$%&('()*)  24.3 16.9 

+'()*  15.7 19.5 

 
 
Table C. Effective sample sizes from one chain for each of the best-fitting Poisson models (after 
removing the burn-in). 
 

Parameter CHIKV ZIKV 
! (reporting rate) 5,520 6,873 
Department-specific R0, 
median (range) 

7,038 (779-17,682) 13,600 (6,908-17,257) 

"#$%&('()*)  57 1,579 

+'()*  85 1,425 
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Appendix	S3:	Data	for	sex	and	age	models,	additional	

sensitivity	analyses,	and	Stan	code	for	chapter	4	

Table A. Epidemiological and demographic data for Colombian capital cities by sex. 
 

City Department Sex Population Reported 
cases with 
ZIKV-
associated 
NC* 

Reported 
suspected and 
laboratory-
confirmed cases 
of ZVD 

Estimated post-
epidemic 
seroprevalence and 
95% CI 

Arauca 
 

Arauca F 

M 

45,119 

44,593 

0 

1 

554 

234 

 

Armenia 
 

Quindío F 

M 

154,267 

143,932 

0 

0 

149 

40 

 

Barranquilla 
 

Atlántico F 

M 

629,843 

593,773 

36 

44 

3,331 

1,334 

 

Bucaramanga 
 

Santander F 

M 

274,148 

254,121 

2 

6 

2,690 

1,632 

 

Cali 
 

Valle del Cauca F 

M 

1,250,077 

1,144,848 

11 

12 

10,072 

6,207 

 

Cartagena 
 

Bolívar F 

M 

523,353 

490,036 

2 

2 

604 

417 

 

Cúcuta 
 

Norte de 

Santander 

F 

M 

338,927 

317,453 

25 

19 

4,629 

1,856 

0.479 (0.440-0.519) 

0.479 (0.440-0.519) 

Florencia 
 

Caquetá F 

M 

89,184 

86,223 

1 

2 

452 

211 

 

Ibagué 
 

Tolima F 

M 

287,445 

271,360 

1 

2 

2,603 

1,473 

 

Inírida 
 

Guainía F 

M 

9,721 

10,262 

0 

0 

7 

5 

 

Leticia 
 

Amazonas F 

M 

20,953 

20,686 

0 

0 

172 

106 

 

Medellín 
 

Antioquia F 

M 

1,316,499 

1,170,224 

3 

5 

340 

209 

0.067 (0.048-0.090) 

0.067 (0.048-0.090) 

Mitú 
 

Vaupés F 

M 

15,911 

15,950 

0 

0 

11 

6 

 

Mocoa 
 

Putumayo F 

M 

21,864 

21,018 

0 

1 

37 

20 

 

Montería 
 

Córdoba F 

M 

230,424 

217,244 

1 

3 

1,318 

467 

 

Neiva 
 

Huila F 

M 

179,444 

164,582 

7 

6 

2,313 

1,096 

0.578 (0.538-0.618) 

0.578 (0.538-0.618) 

Pereira 
 

Risaralda F 

M 

248,342 

223,658 

0 

0 

285 

178 

 

Popayán 
 

Cauca F 

M 

144,266 

135,788 

0 

0 

37 

14 

 

Puerto Carreño 
 

Vichada F 

M 

7,580 

8,420 

0 

0 

11 

6 

 

Quibdó 
 

Chocó F 

M 

57,832 

58,075 

0 

0 

9 

5 

 

Riohacha 
 

La Guajira F 

M 

136,434 

132,278 

0 

0 

204 

75 
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San Andrés 
 

San Andrés & 

Providencia 

F 

M 

36,175 

35,771 

0 

0 

685 

424 

 

San José del 

Guaviare 

Guaviare F 

M 

32,177 

33,434 

0 

0 

93 

61 

 

Santa Marta 
 

Magdalena F 

M 

251,416 

240,119 

0 

2 

1,338 

575 

 

Sincelejo 
 

Sucre F 

M 

141,890 

137,141 

1 

5 

596 

260 

0.659 (0.620-0.696) 

0.659 (0.620-0.696) 

Valledupar 
 

Cesar F 

M 

237,186 

226,033 

2 

0 

614 

174 

 

Villavicencio 
 

Meta F 

M 

254,901 

240,326 

3 

2 

1,659 

718 

 

Yopal 
 

Casanare F 

M 

71,401 

71,578 

1 

4 

1,367 

754 

 

*Neurological complications 
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Table B. Epidemiological and demographic data for Colombian capital cities by age group. 
 

City Department Age 
(in 
years) 

Population Reported 
cases with 
ZIKV-
associated 
NC* 

Reported 
suspected and 
laboratory-
confirmed 
cases of ZVD 

Estimated post-
epidemic 
seroprevalence and 
95% CI** 

Arauca 
 

Arauca 0-39 

40+ 

66,884 

22,828 

0 

1 

572 

216 

 

Armenia 
 

Quindío 0-39 

40+ 

180,155 

118,044 

0 

0 

123 

66 

 

Barranquilla 
 

Atlántico 0-39 

40+ 

791,190 

432,426 

31 

49 

3,526 

1,139 

 

Bucaramanga 
 

Santander 0-39 

40+ 

326,377 

201,892 

5 

3 

3,070 

1,252 

 

Cali 
 

Valle del 

Cauca 

0-39 

40+ 

1,513,100 

881,825 

8 

15 

11,226 

5,053 

 

Cartagena 
 

Bolívar 0-39 

40+ 

673,499 

339,890 

2 

2 

749 

272 

 

Cúcuta 
 

Norte de 

Santander 

0-39 

40+ 

443,112 

213,268 

21 

23 

4,928 

1,557 

0.479 (0.440-0.519) 

0.479 (0.440-0.519) 

Florencia 
 

Caquetá 0-39 

40+ 

123,947 

51,460 

2 

1 

541 

122 

 

Ibagué 
 

Tolima 0-39 

40+ 

354,249 

204,556 

0 

3 

2,942 

1,134 

 

Inírida 
 

Guainía 0-39 

40+ 

15,447 

4,536 

0 

0 

8 

4 

 

Leticia 
 

Amazonas 0-39 

40+ 

32,316 

9,323 

0 

0 

213 

65 

 

Medellín 
 

Antioquia 0-39 

40+ 

1,388,651 

1,098,072 

3 

5 

409 

140 

0.067 (0.048-0.090) 

0.067 (0.048-0.090) 

Mitú 
 

Vaupés 0-39 

40+ 

24,379 

7,482 

0 

0 

16 

1 

 

Mocoa 
 

Putumayo 0-39 

40+ 

30,881 

12,001 

0 

1 

43 

14 

 

Montería 
 

Córdoba 0-39 

40+ 

309,496 

138,172 

2 

2 

1,415 

370 

 

Neiva 
 

Huila 0-39 

40+ 

224,974 

119,052 

9 

4 

2,513 

896 

0.578 (0.538-0.618) 

0.578 (0.538-0.618) 

Pereira 
 

Risaralda 0-39 

40+ 

285,659 

186,341 

0 

0 

340 

123 

 

Popayán 
 

Cauca 0-39 

40+ 

176,046 

104,008 

0 

0 

47 

4 

 

Puerto 

Carreño 
 

Vichada 0-39 

40+ 

12,968 

3,032 

0 

0 

11 

6 

 

Quibdó 
 

Chocó 0-39 

40+ 

91,447 

24,460 

0 

0 

9 

5 

 

Riohacha 
 

La Guajira 0-39 

40+ 

206,522 

62,190 

0 

0 

217 

62 

 

San Andrés 
 

San Andrés 

& 

Providencia 

0-39 

40+ 

45,576 

26,370 

0 

0 

731 

378 

 

San José del 

Guaviare 

Guaviare 0-39 

40+ 

50,430 

15,181 

0 

0 

113 

41 
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Santa Marta 
 

Magdalena 0-39 

40+ 

343,797 

147,738 

1 

1 

1,467 

446 

 

Sincelejo 
 

Sucre 0-39 

40+ 

187,975 

91,056 

3 

3 

624 

232 

0.659 (0.620-0.696) 

0.659 (0.620-0.696) 

Valledupar 
 

Cesar 0-39 

40+ 

330,123 

133,096 

2 

0 

611 

177 

 

Villavicencio 
 

Meta 0-39 

40+ 

338,247 

156,980 

4 

1 

1,847 

530 

 

Yopal 
 

Casanare 0-39 

40+ 

103,370 

39,609 

4 

1 

1,692 

429 

 

*Neurological complications 

**The same post-epidemic seroprevalence was assumed for individuals aged 40 years and older as those 

under 40 years even though only individuals up to age 45 were sampled in the serological study. This 

assumption was relaxed in a sensitivity analysis.  
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Figure A. Effect of removing all cities with serological data on estimated ZIKV infection attack 
rates, ZVD reporting rates, and number of ZIKV-associated neurological complications (NC) cases 
reported per 10,000 ZIKV infections. Posterior mean (points) and 95% credible interval (error bars) 
are shown for each city and overall. 
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Figure B. Comparison of estimated ZIKV infection attack rates, ZVD reporting rates, and number of 
ZIKV-associated neurological complications (NC) cases reported per 10,000 ZIKV infections from 
models that used either Beta(1,1) or Beta(2,2) prior distributions for the ZIKV infection attack 
rates in cities without seroprevalence data. Posterior mean (points) and 95% credible interval (error 
bars) are shown for each city and overall.  
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Code A. Stan code for hierarchical model. 

data{ 
  int<lower=0> l; //Number of cities 
  vector[l] alphaZ; // From seroprevalence estimates 
  vector[l] gammaZ; // From seroprevalence estimates 
  int N[l];    //Population size in each city 
  int S[l];   //Reported suspect ZVD cases in each city 
  int NC[l]; //Reported suspect NC in each city 
  int Sall; //Reported suspect ZVD across all cities 
  int NCall; //Reported suspect NC across all cities 
  int Nall; //total population across all cities 
} 
 
parameters{ 
  real<lower=0,upper=1> pNC_min; 
  real<lower=pNC_min,upper=1> pNC_max; 
  real<lower=0,upper=1> pS_min; 
  real<lower=pS_min,upper=1> pS_max; 
  real<lower=0,upper=1> pZ[l]; //Probability of ZIKV infection 
  real<lower=pS_min,upper=pS_max> pS[l]; //Probability that a ZIKV 
infection is reported as a case to the surveillance system 
  real<lower=pNC_min,upper=pNC_max> pNC[l]; //Probability that a 
ZIKV infection becomes reported as a case with NC 
  real<lower=pS_min,upper=pS_max> pSall; //overall risk that a ZIKV 
infection is reported as a case to the surveillance system 
  real<lower=pNC_min,upper=pNC_max> pNCall; //overall risk that a 
ZIKV infection becomes reported as a case with NC 
  real<lower=0,upper=1> pZall; 
} 
 
model{ 
   
  //Hyperpriors 
  pS_min ~ uniform(0,1); 
  pS_max ~ uniform(pS_min, 1); 
  pNC_min ~ uniform(0,1); 
  pNC_max ~ uniform(pNC_min, 1); 
   
  //Priors 
  for(i in 1:l){ 
  pS[i] ~ uniform(pS_min, pS_max); // allows reporting rate of 
symptomatic ZIKV infection to vary by city 
  pNC[i] ~ uniform(pNC_min, pNC_max); // allows reporting rate of NC 
to vary by city 
  pZ[i] ~ beta(alphaZ[i], gammaZ[i]); // representing possible 
ranges of attack rates from seroprevalence study 
  } 
   
  pSall ~ uniform(pS_min, pS_max); //overall risk 
  pNCall ~ uniform(pNC_min, pNC_max); //overall risk 
  pZall ~ beta(1, 1); 
   
  //Model 
  for (i in 1:l){ 
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    S[i] ~ binomial(N[i], pZ[i]*pS[i]); //ZIKV infections that give 
rise to suspected reported cases 
    NC[i] ~ binomial(N[i], pNC[i]*pZ[i]); //NC 
  } 
  Sall ~ binomial(Nall, pSall*pZall); 
  NCall ~ binomial(Nall, pNCall*pZall); 
} 
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Appendix	S4:	Week	of	invasion	

Invasion week, represented by a blue dashed line, is shown for all cities using a method 

based on the first reported cases for CHIKV and ZIKV, respectively. The y-axis is the number 

of reported cases, and the x-axis is weeks. Cities were sorted in ascending order by invasion 

week, and a point instead of a line was plotted for cities that reported all cases in a single 

week.  

CHIKV
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Appendix	S5:	Probability	distribution	for	week	of	invasion	by	

city	

The results in this section are from the best-fitting CHIKV and ZIKV models, respectively. The 

probability distribution of the expected invasion week for each city is shown in gray. Ninety-

five percent of the distribution is contained inside the vertical blue lines, and the red point is 

the observed week of invasion. Cities without gray bars and blue lines were invaded in week 

0. The city code is shown above each plot, and y-axes differ between plots. As in Appendix 

S4, cities were sorted in ascending order by invasion week.  

CHIKV	
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81065 81794 05490 18247 23574 23670

73408 73411 73504 73547 76111 76306
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18094 18785 63470 85162 05042 05585

23300 47720 54810 76400 76497 76563
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76233 76890 50223 50711 76036 76054
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68406 70221 70702 70771 73319 73408

44035 47798 50689 54673 54810 68001

18001 20238 23464 25035 41349 41357
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20614 23350 23686 47030 47745 50606

68669 73217 73585 81065 08634 13188

47053 47245 47960 47980 54680 68547

18256 23466 23555 23670 41206 44650
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41548 47258 50313 50680 54003 54239
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