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ABSTRACT 

The study was directed towards enhancing Functional Electrical Stimulation (FES) for 

sit-to-stand movement restoration in paraplegia subjects. The scarcity of FES assistive 

devices was due to the inability of the developed equipment to attain clinical 

acceptance. Applications of control systems have shown fruitful results. And based on 

the literature, further improvements in model, trajectory and control systems are 

needed. Model with a higher level of accuracy and continuous as well as bump-free 

trajectories are essential ingredients for better control systems. The control systems 

can be enhanced by giving considering to changes in mass of the subject, disturbance 

rejection and stability. Hence, the comprehensive control scheme is necessary for this 

application as well as a better model and trajectory. In modelling an additional joint 

has been considered to improve the accuracy. In trajectory planning, the six-order 

polynomial has been used to refine the desired trajectory. The comprehensive control 

systems have been designed with consideration of robustness, disturbance rejection, 

and stability. Three nonlinear control approaches have been investigated; the Sliding 

Mode Control (SMC), Feedback Linearisation Control (FLC), and Back-Stepping 

Control (BSC). Results reveal improvements in the accuracy of the kinematic model 

by 24%, and the dynamic model by 47%. The trajectory planning parameters are 

continuous, and not susceptible to jerks or spikes. Execution time enhanced by 11%, 

the upper and lower terminal velocities improved by 16.9% and 20.9% respectively. 

The system response without disturbance shows good results with the SMC, FLC, and 

BSC. Revelations by robustness examination also maintain remarkable enhancements 

in the parameters with both 53% and 126% mass. The results for disturbance rejection 

examinations with fatigue, spasm, tremor, and combined disturbance effects showed 

sustenance of refinement in the response parameters. Therefore, indicating 

improvements despite the changes to the system. The BSC showed the best 

performance, followed by the FLC, and the SMC. Hence, the BSC is recommended 

for such systems.  
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ABSTRAK 

Kajian ini bertujuan meningkatkan keupayaan Stimulasi Elektrik Fungsional (FES) 

untuk memulihkan pergerakan duduk dan berdiri untuk subjek paraplegia. Kekurangan 

alat bantuan FES adalah kerana ketidakupayaan pembangunan peralatan untuk 

memenuhi keperluan klinikal semasa. Aplikasi sistem kawalan telah menunjukkan 

hasil yang memuaskan. Berdasarkan kajian terdahulu model, trajektori dan sistem 

kawalan perlu penambahbaikan. Model dengan tahap ketepatan tinggi dan trajektori 

yang berterusan seperti bebas-lantunan merupakan aspek penting untuk sistem 

kawalan yang lebih baik. Sistem kawalan boleh ditingkatkan dengan memberi 

penekanan dalam aspek perubahan jisim pada subjek, pengatasian gangguan dan 

kestabilan. Oleh itu, skim kawalan yang komprehensif serta model dan trajektori yang 

lebih baik diperlukan untuk aplikasi ini. Dalam pemodelan, tambahan sendi dianggap 

mampu meningkatkan ketepatannya. Dalam perancangan trajektori, polinomial 

tingkat-keenam digunakan untuk memperbaiki trajektori yang dikehendaki. Sistem 

kawalan komprehensif telah direka dengan menekankan aspek keteguhan, pengatasian 

gangguan, dan kestabilan. Tiga pendekatan kawalan tidak tegak disiasat; Kawalan 

Mod Gelongsor (SMC), Kawalan Penegakan Suap-balik (FLC), dan Kawalan Jangkau 

Belakang (BSC). Keputusan menunjukkan ketepatan model kinematik dan model 

dinamik masing-masing meningkat sebanyak 24% dan 47%. Parameter perancangan 

trajektori adalah berterusan, dan tidak terdedah kepada sentakan atau lonjakan. Masa 

pelaksanaan ditambah baik sebanyak 11%, halaju terminal atas dan bawah masing-

masing meningkat sebanyak 16.9% dan 20.9%. Tindak balas sistem tanpa gangguan 

menunjukkan hasil yang luar biasa dengan SMC, FLC, dan BSC. Ujian kekukuhan 

juga menunjukkan peningkatan luar biasa dalam parameter tersebut, kedua-duanya 

sebanyak 53% dan 126%. Keputusan ujian penolakan gangguan bersama keletihan, 

kekejangan, gegaran dan gabungan kesan gangguan menunjukkan penambahbaikan 

pada tindakbalas parameter-parameter. Oleh yang demikian, ia menunjukkan 

penambahbaikan walaupun terdapat perubahan kepada sistem. BSC menunjukkan 
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prestasi paling baik, diikuti dengan FLC dan SMC. Oleh itu, BSC disyorkan untuk 

sistem seperti ini. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background information 

The nervous system (NS) performs the coordination of the human body. The 

associated signals being electrical; the origin of which is ionic currents, this property 

made the utilisation of electrical signals crucial for so many medicinal purposes. 

Examples of which include: pain suppression wound healing and muscle conditioning 

[1-3]. In functional electrical stimulation (FES) usually, electrical signals of individual 

characteristics are used (generally of low amplitudes). It helps to revert or reduce 

abnormalities in utterances or responses of the human body parts due to ailments, 

injury or complications (examples are: spinal cord injury, head injury, stroke and other 

neurological disorders) which are usually controlled by the central nervous system 

(CNS) [4]. The function reversal/revival of the affected body part is achieved by 

systematically applying the desirable electrical signals to the appropriate 

muscles/nerves [5-7]. Figure 1.1 is a brief demonstration of how the functional 

electrical stimulation (FES) is accomplished. In reality, it is usually connected to the 

muscle group responsible for the target activity. 
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Figure 1.1: FES and the NS interaction 

As demonstrated by Figure 1.1 FES has numerous applications some of which 

include: in the remedy of loss in urine control, in hearing restoration, in viewing 

disorders and in alleviating or solving problems of moving the parts of the body. The 

issue of urinary incontinence can be mitigated by applying the signals to the nerves 

responsible for bladder control which are found in the peritoneum. Hearing problems 

are also reduced with the aid of microphone as a transducer of the received audio 

signals to electrical signals after which they are converted to suitable signals that are 

used to stimulate the nerves inside the ear for audio. FES signals are also used to solve 

viewing problems with the aid of human-made retina. The cells responsible for 

viewing are stimulated with a proper signal after being processed from a camera. In 

human body joint movements, suitable FES signals are applied to the appropriate 

muscles via electrodes mounted on them. It could be internal or external which are 

technically known as implant or surface mount respectively [8].  
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1.2 FES induced movement 

Restoration of different functions to some extent have been achieved with the aid of 

functional electrical stimulation (FES) in people with nervous system impairment due 

to spinal cord injuries (SCIs), brain injuries, strokes and related diseases. 

Reestablishment of skeletal movements to a certain degree such as abilities to grasp, 

cycle, reach and walk were some of the accomplishments of FES [9-12]. The nervous 

system manages and controls all protocols and actions executed by the body. It 

comprised up of the central and peripheral nervous systems. The first comprises of the 

brain and the spinal cord; the brain is the centre of management and control, and it 

connects to other body parts through the spinal cord, and the latter provides a platform 

for interconnections to the central nervous system [13]. The active cells of the nervous 

system used for movement coordination are the sensory and motor neurons. Records 

gave credit to the work of Liberson et al. in 1961 as the earliest practical application 

of FES as walking aid and the device produced was for foot drop disorder management. 

High level of success was attained in electro-neuroprosthesis applications from the 

1980s due to the emergence of microprocessors which gave room for reduction in sizes 

and higher level devices multiplexing [14]. Walking is a movement activity that is 

facilitated in a regular repeated manner, and it has two primary components: the stance 

and swing. The stance action has to do with standing and related manoeuvres while 

the swing involves changes in joint(s) angles and utterances related to the angular 

rotation of joints [15-17]. 

FES is employed for therapeutic purpose in conditions where recovery is 

possible such as cerebral palsy and stroke; it is used mainly to train the nerves which 

eventually lead to their recovery [18-20]. It is also applied for movement restoration 

usually in cases where recovery is not possible as in the case of the majority of spinal 

cord injuries, achieved by initially training the nerves until eventually, they respond 

very well to the stimulation signals [21-29]. FES could be implemented individually, 

but usually, for active movement applications such as walking and rigorous exercise, 

it is employed with other assistive devices. 
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1.3 FES with emphasis on lower limb and SCI 

FES is achieved by mimicking the operations of the nervous system due to its inability 

to send desired signals as results of the ailments. Suitable electrical signals are 

transmitted to the appropriate muscular nerves by the functional electrical stimulators 

via electrodes [30, 31], as described in Figure 1.2. 

 

Figure 1.2: Movement restoration using FES 

Figure 1.2 is an illustration of the process where the crossing is an arbitrary point 

indicating the area where discontinuity or the problem occurs on the central nervous 

system, and usual activities below the point are impaired. It is arbitrary in the sense 

that in some cases the problem might be in the brain itself. So, also the point of 

stimulation as earlier mentioned it has to be selected depending on the function 

restoration required.  

SCI can be classified as complete or partial. In the case of complete SCIs, both 

sensory and motor functions are lost, while in partial SCIs one of the two is partially 

or wholly impaired. Figure 1.3 is an illustration of how the SCI is classified.  
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Figure 1.3: Classification of SCIs [32]. 

Another category is based on a portion of the lesion, and a brief explanation is as 

indicated in Figure 1.3. The vertebral column houses the spinal cord and gives it 

protection. The vertebral column consists of 31 bones, and it can be sub-classified into 

the cervical vertebra, thoracic vertebra, lumbar vertebra, the sacral vertebra bones and 

the coccyx accordingly. Quadriplegia results when the SCI occurs at the first bone of 

the thoracic vertebra or above, motion and sensing capability below the point of injury 

is lost; both the arms and legs cannot be moved intentionally. Paraplegia, on the other 

hand, occur when the damage occurs below the first bone in the thoracic vertebra. 

Also, sensation and motion below the point are hindered; both legs cannot be moved. 

Triplegia is a condition whereby sensory and motion in a single arm and both of the 

lower limbs are impaired. Hemiplegia occurs due to the impairment of movement and 

sensation in an arm and a leg in the same half of the body [32, 33]. 
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1.4 The justification for the research 

FES assisted sit-to-stand movement is achieved merely by providing support for the 

subject which will create more self-sufficiency (independence). Even though the 

majority of FES control systems for movement restoration in the lower limb are an 

open loop, but due to the requirement for performance which goes along with safety, 

the closed loop become the viable option [34, 35].  

In the current world, records indicate high figures in occurrences of nervous 

system disorders. For instance, data showed that Denmark had between 10,000 to 

15,000 new cases of stroke with a survival rate of one-fifth within the first month and 

a half within four years [36]. In North America, over a million individuals living with 

spinal cord ailments [37]. In the United States, there are about a quarter of a million 

SCI patients and about 12,000 of recent incidence occurrences. The record also eighty 

percent occur in the masculine gender with a mean age of forty years, with 

approximately forty-two percent from automobile accidents, twenty-seven percent 

from accidental fallings, fifteen percent from unrests and eight percent from sports 

activities [38]. The figures for new stroke cases is up to the tune of or more significant 

than 700,000 per year [39]. Ireland and the United Kingdom have an average of 45,000 

spinal cord injury subjects with annual increments greater than 1,000. Highest figures 

of victims fall within 18 and 35 years age groups [40].  Reports by the World Health 

Organization (WHO) also indicate a global rise in neurological disorder cases as well 

as projections [41, 42].  

Scanty amount of devices available for helping the patient group with a nervous 

disorder. For instance, according to the decision of the Centers for Medicare & 

Medicaid Services (CMS) (which is part of ‘the Department of Health and Human 

Services (HHS), United States of America (USA)’) on the use of FES devices for 

spinal cord injury subjects in order to improve functional abilities, only the Parastep-I 

system was approved [43]. And no new decision on the matter was issued up to date. 

It also states that just that device was approved by the US Food and Drug 

Administration (FDA) agency to aid in standing and to walk. The Parastep-I system 

was classified as a Class III system, and it has not gone through the Premarket 

Approval Application (PMA) process. Such category of FES devices (that is for 

standing and walking) is to undergo more severe checks on efficiency as well as safety 

compared to their counterparts.  
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Artificially stimulated muscles tend to fatigue faster than when naturally 

stimulated [44-51]. It contributes to time the dependent and nonlinear nature of the 

plant/system (neural-muscular-skeletal plant/system) [52, 53] and this presents a 

severe challenge in FES application. Of course, other additional complexities include 

the time delay from the nervous system, spasticity, tremors and others. An option for 

subsiding the effect of fatigue is the use of a closed-loop control system/control 

technique [54, 55]  which is sufficiently adaptive and robust [56, 57]. Using feedback 

with predictive knowledge could also be beneficial for alleviating the problem of 

fatigue [58, 59]. Further suppression of other issues, e.g. spasticity, tremors are part of 

the current challenges. So also the question is re-tuning for each subject and of course 

the issue stability whose requirement is very stringent. Solving these persistent 

problems could lead to attaining clinical acceptance by more devices [54, 60-67].  

Application of FES induced movements from all indication is promising. It is 

not only limited to restoration of movements alone but also for rehabilitation and 

therapeutic purposes. Existing systems are designed to operate open loop 

configurations. Efforts were made to shift to closed-loop systems for the FES in other 

to reap the benefits of automation but are yet to attain clinical approval. Linear control 

techniques were applied, but the results seem to be unsatisfactory which could be due 

to the nature of the plant and available sensors. Intelligent approaches were proposed, 

and results were hopeful in achieving clinical acceptability, but the absence of 

mathematical models in dealing with such techniques makes information/analysis on 

stability and robustness lacking, which may be produced using the nonlinear approach. 

Nonlinear control could suppress the issues regarding the plant as well, and the 

schemes have been proposed for the closed loop FES assisted movement systems, the 

results were encouraging. Therefore, these control strategies can be explored as the 

basis for controlling the neural-muscular-skeletal plant, with the strong expectations 

that could lead to obtaining/ascertaining the facts necessary which other techniques 

are deficient of or have failed to provide efficiently. For instance, the stability issue 

could be determined or improved from information on operational bandwidth or limits, 

and hence control scheme improvement. Knowledge of how to test for stability when 

the intelligent techniques are employed may also emerge. Therefore, it could lead to 

simplification of other things more especially integration with the intelligent approach 

which portrays proficiency and it’s not limited to that, others are optimising power 

consumption as well as learning capability. 
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