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SUMMARY 

Since the 1980’s, researchers have developed a variety of air pollution microscale 

dispersion models to predict potential public exposure to harmful transport emissions 

immediately downwind from freeways and arterials. However, when these tools are applied 

at regional and sub-regional scales, critical concerns arise due to computational efficiency. 

Current dispersion models require extremely long runtimes for larger roadway networks 

when high-resolution pollutant concentrations are needed in space and time (e.g., hourly 

predictions for thousands of receptor sites). Motivated by the challenges encountered in the 

previous efforts, this study develops an advanced modeling framework for a regional-level 

line source dispersion modeling that employs several innovative modeling techniques. 

The first part of this dissertation proposes a strategic receptor placement method 

that minimizes the number of receptors across a region, without undermining the pollutant 

high-resolution concentration profile generated with dense receptor placement. A dynamic-

receptor-grid approach places receptor locations with respect to each link’s geometry and 

emissions characteristics. The modeling results suggest that the optimal receptor placement 

using the dynamic receptor-grid models readily approximates the PM2.5 concentration 

profiles predicted by dense-receptor-grid models. 

As an innovative way to significantly improve modeling efficiency, the second part 

of this dissertation develops a methodology to screen roadway link sources from the 

analyses that do not significantly contribute to pollutant concentrations at a particular 

receptor, based upon mass flux from the roadway and distance to receptor (i.e., methods to 

exclude insignificant link-receptor pairs from the analyses). The link screening models are 



 xiii 

developed by a supervised machine learning Random Forest (RF) classification model with 

a parsimonious variable selection process. The link screening model identifies roadway 

links that do not contribute significantly to receptor concentration with a high classification 

accuracy (greater than 95%), and significantly reduces the total dispersion modeling run-

time (98.9% - 99.8% reduction in model run-time). 

The third part of this dissertation proposes advanced techniques to efficiently 

prepare the extensive input datasets needed for line source modeling over entire 

metropolitan areas and addresses the technical issues associated with expanding the line 

source dispersion model from project-level to regional-level. For example, this study 

proposes the integration of MOVES-Matrix and regional travel demand models (TDMs) to 

efficiently estimate the link emissions at regional-scale, and demonstrates how to integrate 

road grade profiles generated by U.S. Geological Survey Digital Elevation Model. The 

research also demonstrates how to streamline data processing through a distributed 

computing cluster to boost modeling speed. 

Lastly, a case study for the 20-county metropolitan Atlanta area, which accounts 

for an extremely large number of link-receptor pairs (161,188 links and 1,163,958 

receptors), demonstrates that the developed modeling system generates reliable pollutant 

concentration estimates with high computational efficiency. The total processing time for 

running AERMOD was only 10 days which is a substantial improvement over traditional 

methods (which would take more than one year). The improvement in dispersion modeling 

efficiency is attributed to 1) the dynamic grid-receptor model that minimizes the number 

of receptors across a region, 2) the employment of link screening model that objectively 

excludes all irrelevant link sources that do not significantly affect the pollutant 
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concentration of each receptor, 3) the streamlined connection between regional TDM and 

MOVES-Matrix in the emissions calculation, and 4) the use of PACE clustering system, 

where multiple AERMOD simulation jobs are split and simultaneously processed to reduce 

total run-time.
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CHAPTER 1. INTRODUCTION 

1.1 Background 

Clean Air Act Section 176(c) (42 U.S.C. 7506(c)), otherwise known as transportation and 

air quality conformity, requires all federal transportation projects to be properly 

incorporated into state/regional air quality planning. That is, transportation programs, 

plans, and projects must conform with statewide air quality management plans (known as 

state implementation plans (SIPs)). The Clean Air Act and U.S. Environmental Protection 

Agency (USEPA) regulations for transportation and air quality conformity require that 

federal transportation projects will not cause new air quality violations, worsen existing 

violations, or delay attainment of the National Ambient Air Quality Standards (NAAQS) 

(USEPA, 2006). In 2015, the USEPA published transportation conformity guidance for 

hot-spot analysis in particulate matter (PM) and carbon monoxide (CO) nonattainment and 

maintenance areas (USEPA, 2015a). The hot-spot analysis aims to compare future local 

pollutant concentrations with current pollutant concentrations and the NAAQS, and 

requires detailed modeling of the impacts of transportation project emission sources on the 

surrounding environment (i.e., downwind from transportation facilities) using microscale 

dispersion modeling. 

The conformity guidance requires that the MOVES (Motor Vehicle Emission 

Simulator) model be used to estimate mobile source emissions for use in air quality analysis 

(USEPA, 2015a), and that the U.S. States should use MOVES to develop their SIPs 

(USEPA, 2014). The USEPA also recommends multiple models including AERMOD, 

CALINE3, CAL3QHCR, etc. for use in air quality dispersion modeling (USEPA, 2019a). 
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Because California operates a different on-road vehicle fleet, due to more stringent new 

vehicle certification standards in California, the USEPA guidance for California requires 

the use of the EMFAC emission rate model (Caltrans, 2019).  

CALINE4 is currently used for CO hot-spot analysis in California (Caltrans, 2019), 

while USEPA’s preferred and recommended model (i.e., AERMOD) should be used for 

analyzing other pollutants (USEPA, 2015a). R-LINE, which is specifically designed to 

simulate line-type source emissions and address previous issues with pollutant 

concentrations at low wind speeds and when wind runs parallel to roadways (Snyder, et 

al., 2013a), was developed by USEPA to provide “analytical solution” for quicker 

simulation under acceptable ranges of errors (Snyder and Heist 2013b). R-LINE is 

expected to supersede or be integrated into AERMOD (USEPA, 2019b). 

Because emissions are a complex function of many local conditions (i.e., local fleet, 

operations, fuel supply, and I/M strategy), the interface is complex and requires numerous 

inputs to properly characterize any specific emission scenario modeled by a user. Thus, 

significant labor is required to prepare MOVES input files. In addition, running MOVES 

is time-consuming, because emission calculations always begin with base emission rates 

that are internally adjusted by various correction factors such as temperature, humidity, 

and fuel properties. Hence, MOVES is difficult to use for large-scale transportation 

networks that experience dynamic changes in on-road fleet composition and operating 

conditions that affect model outputs (e.g., impacts of speed and acceleration, temperature). 

Similarly, complex setup procedures for dispersion modeling also have a high 

potential for introducing analytical error. Vallamsundar and Lin (2012) showcased the use 



 3 

of MOVES and AERMOD for transportation conformity analysis in accordance with 

EPA’s guidance as an example for others to better understand the proposed process of 

conformity analysis and model setup. The case study conducted by Vallamsundar and Lin 

(2012) showed that concentrations were found to be high 1) near the sources and gradually 

decreased as the distance from the source increases, 2) at locations where the traffic 

volumes are high, and 3) at locations where prevailing winds are blowing. Wu and 

Niemeier (2016) highlighted potential issues associated with excluding zones and 

improperly setting up receptors. 1  The dynamics and fluctuation of traffic flow and 

meteorology suggested a need for a better connection between traffic, emission rate, and 

dispersion models. Hence a systematic and automatic process for microscale line-source 

dispersion modeling for air quality analysis seems a reasonable goal. An automated method 

coupled with iterative modeling efforts to assess sensitivity analysis, should help to identify 

modeling uncertainties that arise from the dynamic nature of traffic and the near-roadway 

atmospheric environment. 

1.2 Research Objectives 

Motivated by the need to quickly provide fleet emission rates for the thousands of modeling 

scenarios required to assess model performance, this dissertation research uses MOVES-

Matrix (Guensler, et al., 2016), a high-performance emission rate lookup system, with the 

USEPA recommended dispersion models for use in a large-scale air quality impact 

analysis. The primary goal of using MOVES-Matrix is to increase modeling efficiency and 

                                                 
1 The term “receptor” refers to the geographic location in which pollutions emitted from emission 

source (e.g., roadway, plant) are concentrated.  
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speed while ensuring that the resulting pollutant concentration results are exactly the same 

as when MOVES is applied directly to the dispersion model for each link-receptor pair. 

MOVES-Matrix is essentially a multidimensional array containing emission rate 

outputs from tens of thousands of MOVES model runs conducted on the Partnership for an 

Advanced Computing Environment (PACE) high-performance computing (HPC) cluster. 

MOVES is a USEPA’s motor vehicle emission simulator, which is a state-of-the-science 

emission modeling system to estimate emissions for mobile sources at the national, county, 

and project levels for criteria air pollutants, greenhouse gases, and air toxics (USEPA, 

2019c). MOVES-Matrix generates exactly the same emission rates as running MOVES for 

each application, but using MOVES-Matrix is more than 200 times faster than 

implementing the MOVES model, on a case-by-case basis (Guensler, et al., 2016). 

MOVES-Matrix has proven its capability in analyzing project-level air quality impact 

assessments with efficiency, by connecting MOVES-Matrix outputs with multiple air 

dispersion models such as AERMOD and CALINE4 (Liu et, al., 2017; Xu, et al., 2016; 

Xu, et al., 2018a; Kim, et al., 2019a; Kim, et al., 2019b).  

Because the transportation and air quality conformity requires a demonstration that 

future transportation plans (and all of the incorporated projects) will not violate the 

NAASQ, planners and analysts have sought methods to demonstrate conformity in a single 

process. That is, if planners can demonstrate that no NAAQS violations will occur 

anywhere in the region when all of the projects in the 2040 transportation plan are 

integrated into the transportation network, case-by-case project-level assessments will no 

longer need to be conducted (and staff time associated with undertaking such planning 

assessments would be significantly reduced). However, modeling the microscale 
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dispersion impacts associated with all of the roadways across an entire region on all 

potential receptor locations within a region (known as regional-level microscale dispersion 

modeling) has been computationally challenging, given the huge number of link source 

and receptor combinations. For example, a preliminary study conducted for major interstate 

highways in the Atlanta metropolitan area, Georgia, USA, showed that predicting PM2.5 

concentrations for a total of 1,163 miles of road networks and 57,017 receptors would take 

around 600 days on a regular desktop computer through AERMOD simulation. (Kim, et 

al. 2019c). Distributed computing can significantly reduce computational time. For 

example, the study by Kim, et al. (2019c) showed that the AERMOD simulation through 

a distributed computing cluster (Georgia Tech’s PACE) could reduce the total simulation 

time to 7 days (around 85-times faster than using a single desktop computer). However, 

the receptor grid employed in this study was somewhat sparse, and future research still 

remains to enhance model performance and efficiency when conducting air quality 

dispersion modeling for large roadway networks (freeways and arterials). 

This dissertation research aims to develop a regional-level microscale dispersion 

modeling system, which 1) improves the efficiency of the present modeling system 

regarding modeling speed, while preserving the spatial resolution of model outputs, 2) 

develops a streamlined program to automate the connection among travel demand model 

outputs, emissions modeling (through MOVES-Matrix), and dispersion modeling, 3) 

builds a user-friendly interface with minimal data input requirements. In developing the 

modeling system, the dissertation research will connect MOVES-Matrix directly with 

ARC-ABM15 (Atlanta Regional Commission Activity-Based Model 2015) travel demand 
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model outputs and then with dispersion models as a case study, to evaluate model 

performance. 

1.3 Dissertation Outline 

The chapters in the dissertation are organized as follows. Chapter 2 provides a literature 

review on various topics related to the development of a regional-level microscale 

dispersion modeling system, including the review of line source dispersion models, the 

previous modeling frameworks for regional-level traffic-related air quality analysis, and 

spatial and temporal resolution requirements for modeling input data.  

 Followed by Chapter 3 that addresses the modeling overview, Chapter 4 proposes 

a strategic receptor placement method that minimizes the number of receptors across a 

region, without undermining the pollutant high-resolution concentration profile generated 

with dense receptor placement. A dynamic grid-receptor approach identifies optimal 

receptor locations with respect to each link’s geometry and emissions characteristics.  

Chapter 5 introduces a state-of-the-art link screening model that significantly 

increases the modeling efficiency, which is developed as part of this dissertation research. 

The link screening model, developed based on a supervised machine learning classification 

algorithm (random forest), aims to identify and remove roadway links with negligible 

concentration contributions for each receptor with high precision. The new link screening 

method is also applied to the metropolitan Atlanta area to demonstrate the promising 

performance of supervised link screening for regional-scale applications of microscale 

dispersion modeling. 
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Chapter 6 addresses the system features of a streamlined processor that automates 

individual modeling steps ranging from data preparation, travel demand model (TDMs) 

connectivity, emissions calculations, and dispersion modeling. This chapter measures the 

model’s performance by applying the developed model to the 20-county Metropolitan 

Atlanta Region in predicting PM2.5 concentrations across the area, as a case study. The case 

study uses MOVES-Matrix emission rates coupled with outputs from the ARC-ABM15, 

and the pollutant concentrations were predicted by AERMOD. 

The last chapter concludes the dissertation, by giving an overview of the 

contributions and a discussion for future research. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Dispersion Models 

Since the 1980’s, a number of line-source microscale dispersion models have been 

developed to model the downwind impacts of transportation facilities, including 

AERMOD, CALINE3/4, CAL3QHC/CAL3QHCR, R-LINE, and ADMS, are available for 

air quality dispersion modeling for traffic-related emissions (USEPA, 2015b; USEPA, 

2019a). Over time, each of these models evolved to incorporate as research provided a 

better understanding of theoretical background, impacts of formulation, results from model 

application, and assessment of comparative model performance. All of these dispersion 

models are capable of predicting concentrations at selected downwind receptor locations, 

based on existing data on emissions and meteorological and topologic conditions 

(Bellander, et al., 2001).  

Line source microscale dispersion models are generally based upon a generalized 

Gaussian plume equation (Bellander, et al. 2001), where pollutants dispersing in the y and 

z axes via normal distributions as a function of distance along the x-axis, as described in 

Equation (1) and Figure 1 (Turner, 1994; Vallero, 2014; Hanna, et al., 1984). As such, air 

pollutant concentration at specific receptor site is basically a function of pollutant emission 

rate from source, and the stability of atmosphere which is depicted by wind speed and 

horizontal and vertical deviation of the emission distribution, in the Gaussian plume-based 

modeling framework.  
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𝐶(𝑥, 𝑦, 𝑧; 𝐻) =  
𝑄

2𝜋𝑢𝜎𝑦𝜎𝑧

∙ 𝑒𝑥𝑝 [−
𝑦2

2𝜎𝑦
2

] {𝑒𝑥𝑝 [−
(𝐻 − 𝑧)2

2𝜎𝑧
2

] + exp [−
(𝐻 + 𝑧)2

2𝜎𝑧
2

]} (1) 

Here, 

𝐶 = air pollutant concentration in mass per volume, in g/m3, 

𝑄 = source pollutant emission rate, in g/s, 

𝑢 = wind speed at the point of release, in m/s,  

𝜎𝑦 = horizontal standard deviation of the emission distribution (in m), that is, standard 

deviation of horizontal distribution of plume concentration, which is evaluated at the 

downwind distance x and for the appropriate stability 

𝜎𝑧 = vertical standard deviation of the emission distribution (in m), that is, standard 

deviation of vertical distribution of plume concentration, evaluated at the downwind 

distance x and for the appropriate stability, and 

𝐻 = height of emission plume centreline above ground level, in m. 

Some line source dispersion models including CALINE, AERMOD, and R-LINE 

assumed that a line source is structured as a finite number of point sources. For example, 

CALINE4 models each line source as an equivalent finite line element positioned normal 

to the wind direction and centered at the element midpoint (Figure 2), and the contributions 

from each element are summed to predict net concentration. Similar approaches were also 

applied to R-LINE and AERMOD where the concentration from a finite line source is 

estimated by approximating the line as a series of point sources (Snyder, et al., 2013a; 

Cimorelli, et al., 2005). As such, those models for dispersion of roadway emissions are 

analytical approximations to the integral associated with modeling a line source as a set of 
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point sources. Then, the contributions along the line source are computed with the 

Gaussian, steady-state plume formulation. 

For those dispersion models, an estimate of 𝜎𝑦  or 𝜎𝑧  in the Gaussian plume 

formulation (equation (1)) is often explained by atmospheric fluctuation measurements 

(Pasquill and Michael 1977). In the early stage of air pollution research, Pasquill’s 

dispersion parameters restated by Gifford (1961) were introduced, by allowing their use in 

the Gaussian plume equations, where the parameters 𝜎𝑦 and 𝜎𝑧  are found by estimation 

from the graphs (Figure 3) as a function of the distance between source and receptor, from 

the appropriate curve, one for each stability class. For this, the necessary parameters for 

the scheme consist of wind speed, insolation, and cloudiness, which are basically 

obtainable from routine observations (Table 1) (Pasquill, 1976).  
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Note: The figure on top is amended based on Vallero (2014), and the figure on the 

bottom is retrieved from Hanna, et al. (1984). 

Figure 1 – Concept of Gaussian Plume Dispersion 
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Table 1 – Pasquill Stability Categories 

Surface 

wind speed 

(m/s) 

Isolation Night 

Strong Moderate Slight 

Thinly 

overcast or 

≥ 4/8 low 

cloud 

≤ 3/8 

Cloud 

<2 A A-B B - - 

2–3 A-B B C E F 

3–5 B B-C C D E 

5–6 C C-D D D D 

>6 C D D D D 

Source: Pasquill (1976). 

Over time, line source dispersion models have distinguished in terms of the 

estimation of horizontal and vertical spread parameters. For example, CALINE4 uses a 

modified version of the Pasquill-Smith vertical dispersion curves (Pasquill, 1974) to 

describe the Gaussian vertical dispersion parameter, 𝜎𝑧, and uses a method developed by 

Draxler (Draxler, 1976) to compute values for the Gaussian horizontal dispersion 

parameter, 𝜎𝑦 . AERMOD has evolved with a similar theoretical background of the 

Gaussian formulation, while concerns regarding plume interaction with terrain, surface 

releases, building downwash, and urban dispersion were addressed in AERMOD to 

improve planetary boundary layer (PBL) parameterizations (Cimorelli, et al., 2005). In this 

regard, AERMOD characterizes the boundary layer with computation of the Monin–

Obukhov length, surface friction velocity, surface roughness length, sensible heat flux, 

convective scaling velocity, and both the shear- and convection-driven mixing heights. 

These parameters are used in conjunction with meteorological measurements to 
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characterize the vertical structure of the wind, temperature, and turbulence. R-LINE has 

evolved based on the CALINE3 and AERMOD formulations, while also incorporating 

some new features that distinguish it from other models (Snyder, et al., 2013a). R-LINE 

includes new formulations for the vertical and horizontal plume spread of near-surface 

releases based on historical field data (Barad, 1958) as well as a tracer field study (Finn, et 

al., 2010) and recent wind tunnel studies (Heist, et al., 2009). Also, R-LINE contains a 

wind meander algorithm that accounts for dispersion in all directions during light and 

variable winds. 

 

Source: Benson (1984). 

Figure 2 – Element Series Represented by Series of Finite Line Sources 
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Source: Gifford (1961). 

Figure 3 - Stability Classes (A) 𝝈𝒚 and (B) 𝝈𝒛 

2.1.1 AERMOD 

AERMOD (American Meteorological Society (AMS)/EPA Regulatory Model) is the U.S. 

EPA’s preferred and recommended steady-state plume model for use in demonstrating 

compliance with environmental regulatory programs, including transportation facility line 

sources (USEPA, 2019b). The USEPA recommends using either AERMOD or 

CAL3QHCR for highway and intersection projects, but using only AERMOD for transit, 

freight, and terminal projects and projects that involve highway intersections and terminals, 

nearby sources, or both (USEPA, 2015a). AERMOD was developed as a replacement for 

EPA’s industrial source complex model (i.e., ISC3) by incorporating the planetary 

boundary layer, which is the turbulent air layer next to the earth’s surface affected by 

surface heating, drag, turbulence, and friction because of its contact with the planetary 



 15 

surface (USEPA, 2019b). There are two types of planetary boundary layer: convective 

boundary layer, driven by surface heating, and stable boundary layer, driven by surface 

cooling. AERMOD utilizes a Gaussian distribution in both horizontal and vertical 

directions in the stable boundary layer, but in the convective boundary layer, AERMOD 

uses a Gaussian distribution in the horizontal direction and a bi-Gaussian one in the vertical 

direction; the AERMOD concentration is calculated as a weighted average of two 

distributions in the convective boundary layer (USEPA, 2019d). 

While AERMOD is a comprehensive model for various types of sources including 

point, area, line, and volume source (USEPA, 2019b), USEPA (2018) recommends 

modeling the roadway line source as a series of volume or area sources when using 

AERMOD (Figure 4). AERMOD is capable of modeling a number of sources and 

receptors, processing multiple years of meteorological data simultaneously, and providing 

the option of varying emission factors by different time scales, such as by season, month, 

and hour-of-day. (USEPA, 2019b).  
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Source: USEPA (2018). 

Figure 4 – Representation of Roads in AERMOD 

2.1.2 CALINE 

CALINE4 is a line source dispersion model based on the Gaussian diffusion equation, 

developed by the California Department of Transportation for estimating air pollution 

levels within 500 meters of roadways (Benson, 1984; 1992). CALINE4 represents a line 

source as a series of finite length elements each oriented perpendicular to the wind, and it 

employs a mixing zone concept to characterize pollutant dispersion over the roadway. To 

improve computational efficiency, the length of each element is determined based on its 

distance from the receptor of interest (the further the element is from the perpendicular line 

from source to receptor, the larger the element, because any error associated with the larger 

element size will have very little impact on predicted receptor concentrations). CALINE 

uses Pasquill Gifford categories to characterize the stability of the atmosphere and uses a 

modified version of the Pasquill-Smith vertical dispersion curves (Benson, 1982) and 

horizontal dispersion estimates based on Draxler (1976). CALINE4 has algorithms to 
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model the effects of the mixing zone over the roadway and certain aspects of roadway 

geometry such as depressed and elevated sections, among others. CALINE4 can also be 

used in screening analysis, if permission is obtained from the USEPA Regional Office (40 

CFR Appendix W). 

CALINE3 is a steady-state Gaussian dispersion model designed to determine air 

pollution concentrations at receptor locations downwind of highways located in relatively 

uncomplicated terrain (Benson, 1979). CALINE3 is incorporated into the more refined 

CAL3QHC and CAL3QHCR models for regulatory use in specific roadway applications 

for CO and PM. The primary differences in the model formulations of CALINE3 and 

CALINE4 are related to the lateral dispersion curves and the introduction of vehicle-

induced turbulence in CALINE4 (Heist, et al., 2013). 

2.1.3 CAL3QHC/CAL3QHCR 

CAL3QHC is a CALINE3 based CO model with queuing and hot spot calculations and 

with a traffic model to calculate delays and queuing using highway-capacity methods (the 

QHC portion of the acronym) that occur at signalized intersections. CAL3QHCR is a more 

refined model based on CAL3QHC that requires local meteorological data (USEPA, 

2019a). Similar to other models, CAL3QHC/CAL3QHCR also uses Gaussian formulation. 

CAL3QHCR updated CAL3QHC by incorporating daily to seasonal runs, whereas 

CAL3QHC was designed to process one hour of traffic and meteorological data (Eckhoff 

and Braverman, 1995). While AERMOD was initially developed for industrial source 

applications and its use has been extended to highways, CAL3QHCR was specifically 

developed for highway applications based on research conducted near highways. As stated 
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earlier, USEPA recommends using either AERMOD or CAL3QHCR for highway and 

intersection projects, but CAL3QHCR is not recommended for use in transit, freight, and 

terminal projects and projects that involve highway intersections and terminals, nearby 

sources, or both (USEPA, 2015a). CAL3QHCR remains the model of choice by many State 

Departments of Transportation because of: 1) their familiarity with the CALINE series of 

models; 2) consistency with other dispersion modeling conducted in the highway air 

quality analysis; 3) the computational efficiency of CAL3QHCR over AERMOD 

(CAL3QHCR runs approximately six times faster); and 4) CAL3QHCR typically provides 

lower results – a factor of two lower than AERMOD for some applications (Vallamsundar 

and Lin, 2012). 

2.1.4 R-LINE 

R-LINE is a research dispersion modeling tool under development by the US EPA’s Office 

of Research and Development, which is specifically designed to model roadways as line 

segments (Snyder et al, 2013a; Venkatram et al., 2013). The model uses Gaussian, steady-

state plume-dispersion formulation that incorporates new algorithms for predicting 

concentrations from road sources at receptors near roads by numerically integrating point 

source emissions. The model uses the surface meteorology provided by the AERMET 

model (the meteorological pre-processor for AERMOD) and simplified road-link 

specifications. The model computes concentrations by integrating point sources along a 

source line and has been formulated for appropriate simulation for receptors very near the 

source line. The current beta version of the model is designed for flat roadways (no 

surrounding complexities), though the model framework is designed to accommodate 
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future algorithms for simulating the near-source effects of complex roadway configurations 

(noise barriers, depressed roadways, etc.) (Snyder and Heist, 2013b). 

2.1.5 ADMS 

ADMS (atmospheric dispersion modeling system) is a Gaussian plume air dispersion 

model for modeling point, line, area and volume source types in a variety of atmospheric 

conditions, which is developed by Cambridge Environmental Research Consultants 

(CERC) and the United Kingdom (UK) Meteorological Office (Carruthers et al., 1994; 

McHugh et al., 1997). It uses the Monin-Obukhov similarity to define the structure of the 

boundary layer and computes steady-state Gaussian solutions to describe the diffusion of 

pollutants. For line sources, ADMS decomposes the source into a series of elements whose 

spacing depends on the source-receptor distance. ADMS-Roads is a version of ADMS, 

which is specifically developed for simulating traffic sources. In terms of air quality 

modeling for transportation emissions sources, ADMS-Roads has incorporated new 

features, including algorithms that account for traffic-produced turbulence, and the 

presence of roadside noise barriers, and has an integrated street canyon model (CERC, 

2019). It also includes modules that account for the spatial variation of terrain height and 

surface roughness, NOx and sulfate chemistry, and dry and wet deposition of pollutants. 

2.1.6 Summary 

The literature review identified that several models are capable of modeling microscale air 

pollutant dispersion for line source emissions (e.g., mobile sources along roadways) at 

regional and sub-regional scales. Based on the literature review, this study adopted three 

models (AERMOD, CALINE4, and R-LINE) into the regional-level microscale dispersion 
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modeling framework. AERMOD was chosen for the representative model in the model 

development as it is the USEPA’s preferred and recommend model for use in transportation 

project evaluations under the guidance of project-level conformity and hot-spot analyses. 

In addition, AERMOD is also one of the well-maintained dispersion models with periodical 

model updates by the efforts of USEPA (e.g., R-LINE is also integrated into AERMOD 

beginning with AERMOD version 19191 in 2019).  

CALINE4 was also chosen for its model performance in terms of model runtime. 

Because CALINE4 requires minimal data, such as simplified roadway configuration and 

meteorological data (e.g., fewer parameters than other models, and a categorized 

atmospheric stability condition), CALINE4 significantly reduces total model runtime. 

CALINE4 also tends to over-predict observed concentrations in field studies (Heist, et al., 

2013). Thus, CALINE4 may be a viable option for identifying potential hot-spots with the 

minimum requirement for input data preparation, while minimizing the total model runtime 

(i.e., can be put into service as a rapid screening tool in hot-spot assessment work). 

R-LINE is also a good option for simulating line source emissions. While the 

theoretical background and model application of R-LINE are quite similar to AERMOD, 

R-LINE has unique modules for formulating near-surface releases and vertical plume 

buoyancy. The R-LINE algorithms account for particular roadway configurations: roadside 

barriers (e.g., noise barriers) and depressed roadways. In addition, the analytical option in 

R-LINE runs more quickly than any other line source dispersion models, while producing 

comparable results. 
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Through this dissertation research, the application of each of these models to the 

developed modeling system will be addressed. In this regard, this study develops a 

streamlined data processing model to generate a shared database containing various data 

sources required for dispersion modeling, and to process the input data to be used in each 

of these dispersion models. 

2.2 Regional-level Microscale Dispersion Modeling 

Motor vehicles are one of the major sources of urban air pollution and are increasingly 

important contributors to carbon dioxide and other greenhouse gases (HEI, 2010). Traffic-

related air pollutants are emitted at or near ground level and mostly in urban areas where 

they can cause locally-elevated concentrations (USEPA, 2008). The short- and long-term 

human exposure to traffic-related primary air pollutants, such as carbon monoxide (CO) or 

diesel particulate matter (DPM), can cause adverse health outcomes, including respiratory 

and heart disease, impaired lung development, premature mortality, and reduced life 

expectancy (Bernstein, et al., 2004; Tainio, et al., 2016; Brook, et al., 2010, Kampa and 

Castanas, 2007). 

Historically, a number of modeling tools have been developed to predict potential 

public exposure to harmful transport emissions at the regional and sub-regional scales, 

using the outputs from line source pollutant dispersion modeling to represent the spatial 

structure of the dynamics of ambient pollutant concentrations (Guensler, et al., 2000; 

Guensler, et al., 2008; Kall, et al., 2008; Vallamsundar and Lin, 2012; D'Onofrio, et al., 

2016; Wu, 2018; Zhai, et al., 2016; Zhai, et al., 2019; Liu, et al., 2017). A recent body of 

research on pollutant dispersion modeling has further incorporated USEPA’s 
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recommended emissions (i.e., MOVES) and dispersion models (e.g., AERMOD) for air 

quality assessment at regional scales in accordance with the U.S. Environmental Protection 

Agency (USEPA)’s transportation conformity regulations as outlined in the paragraphs that 

follow. 

Vallamsundar and Lin (2012) showcased the use of MOVES and AERMOD for 

transportation conformity analysis with details about the setup and running of the models 

with respective data inputs in accordance with the transportation conformity guidance. The 

study addressed the complexity of emissions modeling using MOVES and dispersion 

modeling using AERMOD for given traffic data, pointing out the challenges involved with 

the input data preparation and the importance of the interagency consultation process. 

Wu (2018) focused on the health impact assessment of regional transportation 

system at a fine spatial scale, examining the spatial and demographic variations in human 

exposure to near-road pollutions. The study developed a modeling system that predicts 

traffic-related air pollutant concentration levels based on MOVES and AERMOD, by 

integrating an activity-based model (ABM) developed for the City of Sacramento, 

California. The analysis applied medium-spatial-resolution data of around 7,000 links 

representing 1,600 miles of major roadways in the City of Sacramento. To estimate the 

PM2.5 emission rates for each link, the model performed a number of MOVES runs (16 

model runs for four seasons and four time periods) to estimate the annual average emission 

rates. For the AERMOD modeling, the study applied uniform-grid receptor locations at 

medium-level spatial resolution (100 m to 200 m resolution, depending on the proximity 

to roadways, resulting in a total of 18,175 receptors). The modeling approaches applied in 

this study considered annual average traffic conditions and medium-spatial-resolution of 



 23 

receptor locations appeared to help understand the overall human exposure levels to traffic-

related air pollution, while a more high-resolution data (regarding time-dependent traffic 

and meteorology conditions) is required to estimate varied human exposure levels, which 

may be more concerned by governmental officials and urban planners. 

Atlanta Roadside Emissions Exposure Study (AREES) (D'Onofrio, et al., 2016) is 

another example that modeled traffic-related air pollutant dispersion at a regional-scale. 

The study estimated PM2.5 concentrations emitted from road traffic sources in the 20-

county metropolitan Atlanta area. AREES estimated annual average PM2.5 emissions for 

each link (approximately 25,000 roadway segments in total) through iterative MOVES runs 

by linking data from Atlanta Regional Commission (ARC)’s 4-step travel demand model 

to MOVES model. The dispersion modeling was conducted with the R-LINE model. To 

reduce model run-time, AREES reduced the domain of each individual R-LINE run by 

dividing the entire 20-county Atlanta area into a number of grid areas, where only a sub-

set of roadway links belonging to each of the grid areas was considered in the R-LINE 

modeling (which can undermine pollutant concentration predictions in certain areas). 

A major obstacle to using spatially-realistic and temporally-realistic data for 

regional-scale dispersion modeling has been the difficulty of integrating the outputs from 

more sophisticated modeling tools with the USEPA’s regulatory-required and 

recommended emission rate and dispersion models (MOVES and AERMOD respectively) 

for transportation conformity and hot-spot analysis in the United States (USEPA, 2015a). 

The MOVES modeling runs for a regional transportation network can take days to process 

and are prone to input errors, due to the complex nature of model input parameters (Liu, et 

al., 2017). Similarly, the complex setup procedures required for AERMOD have a high 
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potential for introducing analytical errors (Liu, et al., 2017). Even if the model setups are 

successful, running dispersion models for a large geographic region still poses significant 

computational challenges, requiring an impractically large processing time. For instance, a 

case study conducted for major interstate highways in the metropolitan Atlanta area 

showed that the total run-time for predicting PM2.5 concentrations for the 20-county area 

would take more than one year on a typical desktop computer (Kim, et al., 2019c). 

This situation recalls the use of a high-performance emission model and distributed 

computing for line source dispersion modeling (Liu, et al., 2017). Liu, et al. (2017) 

introduced a distributed computing method for line source dispersion modeling that 

integrates MOVES-Matrix, a high-performance emission modeling tool, with the 

microscale dispersion models CALINE4 and AERMOD. The modeling system built on 

MOVES-Matrix that generates exactly the same emission rates as using MOVES, but the 

approach is more than 200 times faster than using the MOVES graphical user interface 

(Guensler, et al., 2016). The study also pointed out the significant reduction in dispersion 

modeling run-time by running multiple dispersion models simultaneously on a distributed 

computing cluster. 

2.3 Spatial and Temporal Resolution for Dispersion Modeling 

The integration of models is complex, and computational efficiency is of critical concern 

in designing modeling tools for use in conducting federal/state air quality impact 

assessment. To date, the temporal/spatial resolution of receptor location and transportation 

sources (links) used in impact assessment modeling has been low (Zhai, et al., 2016; Xu, 

et al., 2019; D'Onofrio, et al., 2016; Wu, 2018) to limit the need for access to large 
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computational resources. In predicting pollutant concentration profiles over an entire 

region or sub-region, receptor grid spacing is typically greater than 200 meters between 

each receptor on all sides (e.g., Zhai, et al., 2016; D'Onofrio, et al., 2016; Wu, 2018). While 

uniform grids of receptors at low-spatial-resolution may be useful in exploring overall 

spatial distributions of pollutant concentrations, the resulting concentration predictions are 

necessarily biased, because each receptor’s concentration is sensitive (in a non-linear 

fashion) to the distance between receptor and pollutant source links (Wu and Niemeier, 

2016). Because road network density and facility configuration vary across a region, the 

locations of receptors must reflect this complex spatial distribution of mass flux from the 

nearby roadway links for receptor predictions to accurately reflect local pollutant 

concentrations.  

In terms of temporal resolution, most previous models also assumed static traffic 

operation conditions (e.g., annual average daily traffic, see the examples of Zhai, et al., 

2016; D'Onofrio, et al., 2016; Wu, 2018). However, traffic volumes and on-road operating 

conditions, which generate emissions, vary significantly by hour of day, day of week, and 

season of year (traffic operations are quite dynamic). In this regard, Samaranayake, et al. 

(2014) and Aziz and Ukkusuri (2012) assumed dynamic traffic conditions in estimating 

on-road vehicle emissions at small time intervals, but the computational efficiency of these 

models in predicting near-road pollutant concentration was not validated for a large-scale 

road network. Furthermore, vehicle fleet compositions also vary in time and space. For 

example, weekend fleets operating on local roadways look very different than morning 

commute fleets on freeways, which tend to be composed of newer vehicles (Granell, et al., 
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2002; Bachman, et al., 1998). Finally, meteorological conditions also vary in time and 

space throughout the year. 

2.4 Practical Modeling Implementation for Regional-level Microscale Dispersion 

Modelling 

Because temporal and spatial resolutions of dispersion model inputs have consistently been 

a concern regarding model runtime and predicted concentration accuracy, the previous 

efforts have tried to conceive some methods that address these challenges. This chapter 

particularly focuses on addressing the modeling techniques addressed in previous region-

wide line source dispersion modeling. From this review, the study will also address some 

of the potential solutions that improve model predictions and computational efficiencies. 

2.4.1 Integration of Traffic Data into Dispersion Modelling 

Traditional dispersion modeling for transportation emission sources (e.g., roadway traffic-

related pollutants) has used varying forms of transportation data for calculating emission 

inputs for dispersion models. Depending on the scope of the research and data availability, 

the level of aggregation for traffic data has varied from study to study. For project-level 

analyses, microscopic traffic simulation data can be used to estimate vehicle emissions 

based on individual vehicle’s trajectories, providing a better understanding of vehicle 

characteristics and operating conditions and resultant pollutant concentrations (e.g., Kim, 

et al., 2019b; Xu, et al., 2016). However, this approach has rarely been used in a regional 

or sub-regional analysis because it requires tremendous computational time to integrate 

link-by-link traffic operations at such large scales and for calculating emissions for a large 

number of individual vehicle source types. 
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Thus, a body of traditional modeling methods have linked travel demand model 

data to mobile source emission calculator such as MOVES to estimate link-level emissions 

(Batterman, et al., 2014; Zhai, et al., 2016; Hartley, et al., 2009; Wu, 2018). Travel demand 

models can provide travel activity data for a large-scaled area with a certain degree of 

aggregation (e.g., annual average link traffic volumes and speeds), making it possible to 

efficiently estimate regional-scale link-by-link emissions. However, it is important to note 

that all emission calculations depend on the travel data predicted by the travel demand 

model. For example, Zhai, et al. (2016) estimated annual average link emissions for the 20-

county metropolitan Atlanta network in 2010 based on 2010 ARC-ABM outputs and 

MOVES2010b model, and simply scaled to annual average levels for other years. 

Aggregation of such activity data tends to ignore operational variability. 

Such approaches provide modeling efficiency in calculating link emissions for a 

large-scale area. However, the use of aggregated traffic data may underestimate the impacts 

of seasonal peak emissions, introduced by the dynamic traffic characteristics across the 

hour, day, and year. In addition, rather simplified vehicle fleet composition defined in 

general travel demand models has undermined the predicted emissions calculation results 

because the vehicle emission rates vary significantly depending on the vehicle types 

(Bachman, et al., 2000; Guensler, et al., 2017; Liu, et al., 2015; Liu and Kim, 2019a). In 

this regard, some studies including Liu, et al. (2017) introduced the use of the local fleet 

and operation data (e.g., defining local fleets based upon license-plate data from video data 

collection matched to vehicle registration database, highway performance monitoring 

system data, USEPA certification data for light-duty vehicles, national vehicle sub-fleet 

composition data for heavy-duty vehicles). The study suggested that such various 
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supplementary data can be linked to travel demand model outputs, to improve the 

emissions calculation predictions. 

In addition, the previous models have rarely tested the impacts of road grades in 

vehicle emissions and resultant pollutant concentrations, potentially due to the lack of road 

grade profile covering the whole study area. For example, Liu, et al. (2018) introduced the 

development of road grade using the United States Geological Survey (USGS) digital 

elevation model that can be used for regional-scale line source dispersion modeling. The 

model results suggested that near-road pollutant concentrations are affected by road grades 

to some extent, depending on the degree of road grade and fleet composition. 

As such, there has been a concern about estimating accurate vehicle emissions 

profiles for a regional-scale analysis. However, the modeling complexity and the limited 

input datasets have constrained modelers from estimating more refined traffic-related 

emissions profiles. This situation suggests that streamlined data processing that combines 

multiple data sources, thereby efficiently estimating much more refined emissions profiles. 

2.4.2 Emission Source Type 

Dispersion models provide several types of sources to represent a road emission source. 

For example, AERMOD can consider roadway as various types, including AREA 

(rectangle-shaped line source), VOLUME (three-dimensional space), AREAPOLY (area 

source as an irregularly-shaped polygon of 3 to 20 sides), and any of these options are 

allowed for transportation conformity analysis (USEPA, 2018). However, the results and 

computation time depend to some extent on the source type. Wu and Niemeier (2016) 

addressed that VOLUME source in AERMOD has a faster runtime than AREA source, but 
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it is likely to introduce analytical errors largely due to the effects of exclusion zones. In the 

meantime, generating source geometry based on VOLUME source is likely to significantly 

increase the total model runtime because it decomposes a single line source into many 

small VOLUME sources that need to be modeled separately. On the other hand, the AREA 

source in AERMOD has a limitation in that it does not have a horizontal meander algorithm 

that decreases the likelihood of introducing a coherent plume after long travel times 

(USEPA, 1995). All these aspects require a balance in choosing a proper source type when 

using AERMOD for line source dispersion modeling. 

2.4.3 Receptor Siting 

The receptor placement for evaluating traffic-related pollutant concentrations has been one 

of the major concerns because concentrations of traffic-related air pollutants show dramatic 

temporal and spatial variation in on-road and near-field environments. For example, some 

traffic-related pollutions of particulate matters, volatile organic compounds (VOCs), and 

nitric oxide (NO) demonstrate steep gradients in concentrations, with elevated levels near 

and on roads, and remain as background levels at distances of roughly 150 meters to 200 

meters (Barzyk et al., 2009; Hagler et al., 2009; Hu et al., 2009). The great variation leads 

to significant uncertainty in evaluating near-road concentrations and human exposures 

(HEI, 2010). 

To address this issue, traditional region-wide dispersion analyses have contrived 

some strategic methods based on a grid receptor approach with varying resolution in 

relation to roadway characteristics. Wu (2018) suggested two-layered receptor placements 

with 100 m resolution receptors within 1000 m of the major corridors and downtown area 
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for the city of Sacramento, and with 200 m spacing for the rest of the study area. Hartley, 

et al. (2009) spaced receptors at Census block centroids and adjacent to the midpoints of 

major link sources, accounting for around 750 m receptor resolution for modeling 

metropolitan Atlanta area. Batterman, et al. (2014) undertook a much more intensive 

analysis of the impacts of receptor grid density, evaluating pollutant concentration profiles 

using receptor grids with decreasing spatial resolution (10, 20, 40, 80 and 160 meters 

spacing), suggesting that near-road pollutant concentration profiles depend on the receptor 

grid resolution. In particular, the study suggested that interpolations between receptors and 

points of interest should not exceed about 40 m near major roads, and 100 m at larger 

distances. 

Receptor density has always been a concern with respect to computational 

resources and time for conducting dispersion modeling, because model runtime tends to 

increase linearly with the number of link-receptor pairs (Kim, et al, 2019c; D'Onofrio, et 

al., 2016). In addition, low-density gridded receptor grid approaches introduce biased 

concentration profiles, because predicted pollutant concentrations are highly affected by 

the proximity to link sources (the distance between the source and grid receptor are 

necessarily random). Previous modeling efforts have suggested that dense receptor 

placement should be used near major roads, but that these densities can decrease further 

from the roadway sources given the non-linear basis of Gaussian dispersion. Thus, this 

situation calls for the development of an advanced receptor placement method to predict 

an optimal number and placement of receptors, relative to road geometry, roadway 

emissions, and meteorological conditions.  
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2.4.4 Meteorological Inputs 

The performance of the dispersion models depends on the type of meteorological data 

(Cimorelli, et al., 1998). USEPA’s preferred and recommended models such as AERMOD 

processes hourly meteorological data which is normally generated using AERMOD 

meteorological processors, AERMET (USEPA, 2004) and AERMINUTE (USEPA, 

2015c). USEPA (2015a) emphasized that one of the key factors in producing credible 

results in a hot-spot analysis is the use of meteorological data that is as representative as 

possible of the project area. The USEPA PM hot-spot guidance (USEPA, 2015a) 

recommends using at least one year of site-specific data or five consecutive years of the 

most recent representative meteorological data (e.g., from National Weather Service), 

preferably in consultant with respective state and local air quality agencies for choosing 

representative meteorological data. 

Traditional regional-level dispersion modeling efforts have balanced the temporal 

resolution of meteorological data regarding the desired modeling computation time and 

resources. For sub-regional transportation network or relatively low-resolution receptor 

settings, a body of studies applied hourly meteorological data through the modeling year 

(e.g., Batterman, et al., 2014; Hartley, et al., 2009). Meanwhile, some research has tried to 

reduce the temporal resolution by categorizing the hourly meteorological data into several 

categories, in a way to minimize model runtimes for analyses with a large-scaled network 

(Zhai, et al., 2016). This approach appears to be effective to predict pollutant 

concentrations in a worst-case scenario, by introducing the worst-case meteorological 

condition in the analysis. 
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Worst-case meteorological conditions have also been used for the purpose of 

screening analysis. Some dispersion models (e.g., CALINE3/4, AERMOD) embedded 

screening modes to find the worst-case wind direction for each receptor (Benson, 1984; 

USEPA, 2016). CALINE3/4 searches the worst-case wind angle for each source, by 

cycling through wind directions (Benson, 1984). In the case of AERMOD, it embeds an 

internal screening mode that forces the model calculations to represent values for the plume 

centerline, regardless of the source-receptor-wind direction orientation (USEPA, 2016). 

This option is included in AERMOD to facilitate the use of the model in a screening mode 

to estimate worst-case impacts. Although the screening options are not recommended by 

the USEPA for use conformity analysis (USEPA, 2015a), the screening options are an 

effective way to identify potential hot spots while minimizing the model runtime because 

these options do not necessarily perform the calculations considering dynamic meteorology 

conditions (Liu, et al., 2017). As such, the screening options may help reducing total model 

runtimes, while suggesting the areas for further investigation. 

2.4.5 Model Calibration 

Dispersion models have been widely used to model concentrations of primary pollutants 

for regional-scale. The widely-used dispersion models such as AERMOD and R-LINE 

formulate pollutant dispersion by solving a simplified form of the pollutant transport 

equation (e.g., Gaussian models) and have limited descriptions of chemical transformation 

(Zhai, et al., 2016). (Meanwhile, chemical transformation is occasionally considered for 

some reactive plume chemistries, e.g., NO2 in CALINE (Benson, 1984).) However, 

previous research addressed that dispersion models tend to overestimate for high 
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concentrations and underestimate for the lower range of concentrations (Venkatram et al., 

2004). 

To address model over-prediction, a few studies such as Zhai, et al. (2016) and 

Venkatram, et al. (2004) have focused on model calibration by comparing dispersion model 

predictions with observed concentration profiles obtained from on-sites. The study by Zhai, 

et al. (2016) revealed that the trends of R-LINE estimates and pollutant concentrations at 

monitor locations are similar (Pearson R2 are 0.64 to 0.83), while the R-LINE estimates 

are overestimated as compared to the observational data. Thus, the study proposed a 

calibrated R-LINE model developed based on the trend lines accounting for the 

relationship between the R-LINE estimates and observational data. Venkatram, et al. 

(2004) particularly suggested that onsite turbulence information in a simple model for 

meandering can lead to adequate estimates of observed concentrations. 

These calibration methods showed availability to calibrate modeled concentrations 

with efficiency (simply applies the scaling factors), but this approach is limited due to its 

dependence on available monitor data in developing the calibration models. Depending on 

regions, monitor data may not be sufficient to calibrate regional-level microscale 

dispersion modeling outputs. In addition, it should be noted that the calibrated dispersion 

models may also depend on the site-specific monitor data, suggesting that the scaling factor 

can overestimate or underestimate the calibrated model concentrations. In particular, 

Hodan and Barnard (2004) suggested that understanding the characteristics of pollutant 

concentrations is essential for proper model calibration. For example, PM2.5 concentrations 

measured from monitoring stations are attributed to: 1) primary PM2.5 emissions emitted 

from vehicle tailpipes,  and 2) secondary PM2.5 formation from precursor emissions such 
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as sulfur dioxide, nitrogen oxides, volatile organic compounds, and ammonia. In practice, 

the primary PM2.5 emissions can be modeled by dispersion models; however, most 

dispersion models do not account for secondary PM2.5 formation. Thus, understanding of 

potential gaps between modeled and monitored pollutant concentrations is essential for 

proper processes of calibrating the predicted concentrations modeled by dispersion models. 

Meanwhile, all these aspects suggest that attention must be paid to interpreting the pollutant 

concentrations predicted by the line source dispersion models. 

2.5 Summary of Regional-Level Microscale Dispersion Modeling Issues 

Research has relied on microscale dispersion models such as AERMOD to evaluate the 

short- and long-term human exposure to traffic-related primary air pollutants. While 

microscale dispersion models have shown the capability of predicting concentrations 

supported by its theoretical background, refined formulation, and model application, a 

number of challenges in modeling traffic-related pollutant dispersion have been addressed 

in the literature, especially for large-scale analysis. The complex setup procedures for 

required emissions calculation (e.g., using MOVES) and microscale dispersion modeling 

have a high potential for introducing analytical errors. In addition, running dispersion 

models for a large geographic region has demanded an extremely large computation, 

requiring an impractically large processing time.  

In particular, the computational issues in dispersion modeling have restrained 

practitioners from conducting detailed analyses with high temporal and spatial resolution 

data. For example, previous studies have often ignored the operational variability in on-

road traffics to boost modeling speed for link emissions calculation; however, it is likely 
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to underestimate the impacts of seasonal variations in predicted emissions. In addition, 

some studies have reduced the meteorological variability, in a way to minimize model 

runtimes for dispersion modeling with a large-scale network. Although such approaches 

have been considered as an effective way for screening analysis, they are limited in 

transportation conformity analysis (the USEPA guidance requires to process at least one 

year of hourly meteorological data). In this regard, some recent studies have introduced 

some advanced methods that could improve the efficiency of regional-level dispersion 

modeling, e.g., MOVES-Matrix, dispersion modeling through a distributed computing, 

link screening, etc., which will be addressed through this dissertation.  

In particular, receptor placement has also been one of the major concerns in the 

dispersion analysis because it is highly related to an increase in computational time. For 

example, research indicated that the dispersion model runtime tends to increase linearly 

with the number of link-receptor pairs. Meanwhile, literature also addressed that careful 

selection of receptor locations is important to predict precise near-road concentration 

profile (predicted pollutant concentrations are highly affected by the proximity to link 

sources). Thus, this situation calls for the development of an advanced receptor placement 

method to predict an optimal number and placement of receptors, relative to road geometry, 

roadway emissions, and meteorological conditions.  

  



 36 

CHAPTER 3. MODELING OVERVIEW 

The literature review addressed that previous modeling efforts for predicting potential 

public exposure to harmful transport emissions at regional and sub-regional scales have 

posed a concern regarding model prediction and computational efficiency in the design of 

modeling tools. Motivated by the challenges encountered in the previous modeling efforts, 

this work focused on developing an advanced modeling framework for region-wide 

applications of line source dispersion models that employs a number of innovative 

modeling techniques.  

 As a part of this dissertation, Chapter 4 proposes a strategic receptor placement 

method, called dynamic grid-receptor model, that determines the optimal placements of 

receptors with respect to each link’s geometry and emissions characteristics. The dynamic 

grid-receptor model is developed based on training data sets from numerous R-LINE runs 

simulated under diverse scenarios. The dynamic grid-receptor model is incorporated into 

the region-wide line source dispersion modeling system in a way to reduce the total 

modeling run-time (by minimizing the number of receptors across a region), without 

undermining the pollutant concentration profile.  

 As an innovative way to significantly improve the modeling efficiency, the second 

part of this dissertation addressed in Chapter 5 develops a methodology to screen roadway 

link sources that do not significantly contribute to pollutant concentrations at a particular 

receptor. The link screening method is developed by a supervised machine learning 

Random Forest (RF) classification model from the analysis conducted by AERMOD 

simulations. The link screening model is also incorporated into the modeling system. 
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 Incorporating the dynamic grid-receptor and supervised link screening models as 

well as some advanced techniques into the modeling framework, Chapter 6 streamlines the 

data processing that efficiently prepares the extensive input datasets needed for line source 

modeling over entire metropolitan areas (Figure 5). In particular, this work proposes the 

integration of MOVES-Matrix and regional travel demand models (TDMs) to efficiently 

estimate the link emissions at regional-scale, and demonstrates how to integrate road grade 

profiles generated by U.S. Geological Survey Digital Elevation Model. The work also 

demonstrates how to streamline data processing through a distributed computing cluster to 

boost the modeling speed. Lastly, a case study for the 20-county metropolitan Atlanta area, 

which accounts for an extremely large number of link-receptor pairs (161,188 links and 

1,163,958 receptors), is conducted to validate the developed modeling system regarding its 

model prediction and efficiency.  
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Figure 5 – Overview of Modeling Processes 
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CHAPTER 4. DYNAMIC GRID RECEPTOR METHOD FOR 

REGIONAL-LEVEL NEAR-ROAD AIR QUALITY ANALYSIS 

4.1 Introduction 

Computational efficiency has been a major concern in previous studies of near-road air 

quality impact assessment conducted over large geographic scales. Most metropolitan area 

or regional applications of microscale models have employed simplified sets of model 

assumptions, with fairly low-resolution receptor grids (e.g., 200 m by 200 m resolution). 

While gridded and sparse receptor placement helps reduce computational complexity and 

model run time, it can lead to biased concentration profiles (over-prediction or under-

prediction), because predicted concentration estimates are very sensitive to the distance 

from receptor to the nearest roadway links and each link’s mass flux. In this regard, some 

recent studies have used the state-of-the-practice methodology recommended by USEPA 

to assess near-road pollutant concentration profiles (USEPA, 2015b), by spatially adjusting 

the density and location of receptors in proximity to link emission sources in all directions, 

based upon the spatial layout of the roadway network. However, this approach necessarily 

requires a great number of near-road receptors to be processed, increasing the total 

processing time as a function of the number of link-receptor pairs. Motivated by the 

challenges identified in previous studies, this study aims to develop a strategic receptor 

placement method that minimizes the number of receptors without undermining the 

pollutant high-resolution concentration profile that is generated with dense receptor 

placement. 



 40 

4.2 Model Development Process 

This study proposes a dynamic grid-receptor modeling approach in the placement of 

receptor locations with respect to link geometry (e.g., proximity to link emission source) 

and metrological conditions. In developing the dynamic grid-receptor model, the study runs 

numerous R-LINE models to generate training and testing datasets where each model 

predicts PM2.5 concentration profile originated from a hypothetical freeway corridor with 

a dense grid receptor setting. For each model run, this work applied varying PM2.5 link 

emission rates, link lengths and meteorological conditions to identify overall trends in 

PM2.5 concentration profiles under varying conditions. 

4.2.1 Hypothetical Network 

The study estimated the PM2.5 concentrations at numerous receptor sites along a 

hypothetical freeway network (Figure 6). The hypothetical network consists of three 

consecutive roadway segments with varying PM2.5 emissions rates for each R-LINE run. 

The link segment of focus (Link 2 in Figure 6) is located between its adjacent link segments 

(Link 1 and Link3). Above those link segments, numerous receptors are placed at high-

spatial-resolution (every 5m) on the X- and Y-plane (dots in Figure 6), and the receptor 

height is set to 1.5m for human nose height. For model development, the receptor area is 

set between both ends of the focused link segment.  

As shown in Figure 6, the design of the hypothetical network is rather simple than 

practical transportation network (e.g., curved roadways, complex intersections, etc.). 

However, the simplified network appears to be more convenient to figure out the direct 

relationship between the receptor settings and its predicted concentration profiles. As such, 
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the work first aims to identify the optimal receptor settings under simplified network 

conditions, and apply them to practical transportation network with some treatments on a 

case-by-case basis, which will be addressed in the following sections.  

 

 

Figure 6 – Examples of Hypothetical Networks 
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To link the developed dynamic grid-receptor model to general transportation 

network composed of links of varying length, the length of the focus link segment in each 

run is randomized from 100m and 1,000m (uniformly distributed at one-meter resolution), 

accounting for the link length distribution of ARC-ABM15 network (99% of the link 

lengths are less than or equal to 1,000 m) (Figure 7).  

 

Figure 7 – ARC-ABM Network’s Link Length Distribution 

For each link segment, the PM2.5 link emission rates are assigned based on the PM2.5 

link emissions rates estimated by ARC-ABM15 traffic data. The work streamlined the 

processes of connecting the detailed link traffic data (e.g., volumes, speed, fleet 

composition) provided by ARC-ABM15 to a high-performance emissions calculator (i.e., 

MOVES-Matrix) to estimate the link-by-link PM2.5 emission rates (see the section 3.4 for 

more details). Because ARC-ABM15 covers the whole metropolitan Atlanta network, and 

the work addressed in section 3.4 conducted PM2.5 emissions calculations for every link 

in ARC-ABM15 under dynamic traffic and meteorological conditions across hours of the 
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year, the estimated PM2.5 emission rates can provide a sufficient variability in link 

emissions reflecting the real-world traffic conditions. For R-LINE simulation, the work 

assigns the randomized PM2.5 emission rates, ranging between the upper and lower limits 

of the link PM2.5 emission rates identified by the emissions calculation processes, to each 

link segment in the hypothetical network. 

4.2.2 Simulation Inputs 

Each model run generates the PM2.5 downwind concentration profiles for the given link 

lengths, emission rates, and meteorological conditions. Table 2 shows the limits of the 

input parameters for the R-LINE simulations. In generating R-LINE simulation input files, 

input values for each R-LINE run are randomly chosen based on the uniformly-distributed 

random values ranging between the pre-set limits in Table 2.  

• The link lengths for the focused link segment (the link located between the two 

adjacent links in the hypothetical network) is set ranging from 100 m and 1,000 m, 

uniformly distributed in 1-meter unit increments.  

• The upper and lower limits for PM2.5 emission rates were established from the PM2.5 

link emissions rates estimated for use with ARC-ABM15 data. The upper limit of 

PM2.5 emission rates is set to 0.000122 g/m/s which was identified as the highest 

link emission rates among all links in the metropolitan Atlanta network. The lower 

limit of PM2.5 emission rates is set to 0.0 g/m/s reflecting some of the links that 

traffic volumes are not assigned from the ARC-ABM15. The PM2.5 emission rate 

for each link segment is randomly assigned between the limits (uniformly-

distributed continuous values). Note that the R-LINE emission rate input is 
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specified in grams/meters/second and used by R-Line with the road width input 

parameter to automatically generate mass flux.  

• In terms of wind direction, the range is set considering the effect of downwind in 

relation to the hypothetical network, which ranges from 90° (west-bound), 180° 

(north-bound), and 270° (east-bound), at a one-degree interval.  

• The ranges of some meteorological conditions, wind speed, mixing height, and 

temperature, are taken from meteorological processor data, which is processed for 

the metropolitan Atlanta area by Georgia EPD (2019). 

Table 2 – Ranges of Input Parameters for R-LINE Simulations 

Description Min Max Interval 

Link length (m) 100.0 1,000.0 1.0 

PM2.5 emission rates (g/m/s) 0.000000 0.000122 Continuous 

Wind direction (°) 90.0 (west-bound) 270.0 (east-bound) 1.0 

Wind speed (m/s) 0.5 20.0 Continuous 

Mixing height (m) 100.0 3,000.0 1.0 

Temperature (°C) -10.0 40.0 1.0 

 

4.2.3 R-LINE Simulation  

The PM2.5 concentrations were estimated by R-LINE. R-LINE was chosen for this analysis 

among other USEPA’s recommended dispersion models because it is easy to control the 

meteorology file, and maintain the direct relationship between the meteorological 
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parameters and predicted pollutant concentration. R-Line employs similar theoretical 

Gaussian dispersion equations (Snyder, et al., 2013a; Snyder and Heist 2013b) to USEPA’s 

current preferred/recommended model (AERMOD), but R-LINE is running faster than 

AERMOD and was more practical for this effort. Using R-LINE in this manner can help 

researchers to better understand the fundamental relationship between dispersion model 

input parameters and model-predicted pollutant concentration profiles. 

Because this study conducts dispersion modeling for a large number of input 

scenarios, it requires a huge computation resource and time. The study performs a total of 

1,300 R-LINE runs (1,000 runs for training samples and 300 runs for testing samples), and 

each simulation predicts PM2.5 concentration at a total of 24,340 receptor sites. In this 

circumstance, the study utilized the Georgia Tech’s PACE computing cluster by submitting 

multiple jobs simultaneously, thereby reducing the total processing time.  

Figure 8 shows some examples of the PM2.5 concentration profiles predicted by the 

R-LINE modeling runs. (Each colored point represents the predicted PM2.5 concentration 

at each receptor site.) The figures show the predicted PM2.5 concentrations for the high-

resolution grid of receptor sites, where darker colors represent higher PM2.5 concentrations. 

The results suggest that line source pollutant concentration profiles vary depending on 

source emission rates and meteorology conditions. Further analysis regarding the 

relationship between various input parameters and predicted PM2.5 concentration will be 

addressed in the following sections. 
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Figure 8 – Examples of PM2.5 Concentration Profiles (µg/m3)  

Predicted by R-LINE under Varying Conditions 
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4.3 Simulation-informed Fundamental Relationship among Predicted Pollutant 

Concentration Profile and R-LINE Input Parameters 

Understanding the relationships between the spatial distribution of predicted pollutant 

concentrations and related input parameters is essential to identify the optimal locations of 

receptors that could capture the well-distributed pollutant concentration profile. Equations 

governing the atmospheric flow are represented in many earth and environmental science 

references and help readers to understand the fundamental relationships among 

meteorological conditions and surface pollution levels. However, given the complexity of 

the equations (and interactions across such equations), it is somewhat challenging to 

identify the optimal locations of receptors for line source dispersion modeling using 

equations alone. In this regard, the simulation-informed fundamental relationship among 

the predicted pollutant concentration profile and its dispersion model input parameters can 

help to identify the optimal receptor locations. 

This study specifically conducted the sensitivity analysis for the PM2.5 

concentration profile to R-LINE input parameters (see Figure 9 through Figure 11). The 

sensitivity analysis results indicate that the spatial distribution of PM2.5 concentrations 

depends on some of the R-LINE input parameters including wind direction, wind speed, 

and link emissions. For example, the wind direction was found to be one of the most 

influential parameters that affect the spatial distribution of PM2.5 concentrations (Figure 9). 

As expected, the predicted PM2.5 concentrations are higher in the areas that are downwind 

of the line source. The near-road PM2.5 concentrations are also significantly affected by 

wind speed (Figure 10). Lower wind speed is associated with higher PM2.5 concentration 
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levels near road areas. As such, the changes in PM2.5 concentrations with the distance from 

the link segment is greater when the wind speed is lower. 

These findings suggest that the optimal receptor placements are required to better-

capture the dynamic characteristics of pollutant concentration profiles depending on link 

emissions and meteorological conditions. For example, relatively dense receptors need to 

be set near road areas to better-capture the steep gradients in pollutant concentrations under 

low wind speed conditions. In addition, more receptor placements may be required at the 

sections where two link meet (high variability in concentrations is found, potential due to 

the change in the link emission rates).  
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Wind Direction: 

90° (West bound) 

 

Wind Direction: 

180° (North bound) 

 

Wind Direction: 

270° (East bound) 

 

Figure 9 – Sensitivity Results of PM2.5 Concentration Profile (µg/m3) to Wind Direction 
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Wind Speed:  

1.0 m/s 

 

Wind Speed:  

5.0 m/s 

 

Wind Speed:  

20.0 m/s 

 

Figure 10 – Sensitivity Results of PM2.5 Concentration Profile (µg/m3) to Wind Speed 
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PM2.5 Emission 

from Link 2:  

0.000017 g/m/s 

 

PM2.5 Emission 

from Link 2:  

0.000044 g/m/s 

 

PM2.5 Emission 

from Link 2:  

0.000122 g/m/s 

 

Figure 11 – Sensitivity Results of PM2.5 Concentration Profile (µg/m3) to Link Emission 
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4.4 Step-wise Searching Method for Optimal Receptor Locations 

For the training samples from 1,000 R-LINE runs, optimal receptor locations are identified 

through a systematic receptor search algorithm. The algorithm applied in this study utilizes 

a step-wise search method where each step finds the receptor that best-fits the PM2.5 

concentration profile that is predicted by the dense receptor model (5m resolution). To 

implement this algorithm, the method sets a total of 121 candidate receptor sites (11 by 11) 

for each training sample, where a combination of optimal receptor locations is identified 

within the candidate receptor sites. For each step, the PM2.5 concentration profile predicted 

by the dense receptor model is compared with the PM2.5 concentration profile predicted by 

the model with the sub-set of receptors. In this case, the PM2.5 concentration profile 

predicted by the dense receptor model is generated by a heatmap with 100 by 100 grid 

spaces. Then, the method tests each of the candidate receptors, and selects the best receptor 

that minimizes the error in the PM2.5 concentration profiles as compared to the PM2.5 

concentration profile predicted by the dense receptor model. The comparison is performed 

based on the PM2.5 concentration heatmaps, which are generated based on a linear 

interpolation method, mapped onto a 100 by 100 grid space. In particualr, the PM2.5 

concentration heatmaps were generated using the python module “LinearTriInterpolator” 

that performs linear interpolation on a triangular grid where each triangle is represented by 

a plane so that an interpolated value at point (x, y) lies on the plane of the triangle 

containing (x, y). As such, the interpolated values are therefore continuous across the 

triangulation, but their first derivatives are discontinuous at edges between triangles.2 The 

                                                 
2 The program used in this study can be found at: 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html  
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linear interpolation method was used to generate PM2.5 concentration profiles throughout 

this chapter because the method requires signfiicantly less computational resources and 

time due to its simpler technical formations compared to other more advanced interpolation 

methods such as Kriging. As such, the method efficiently conducts numerous concentration 

profile predictions that can be used for developing an optimal receptor placement model. 

Throughout this chapter, hundreds of thousands of linear interpolations were required to 

generate PM2.5 concentration profiles and support the development of optimal receptor 

placement strategy. Because linear interpolation is relatively weaker at generating smooth 

profiles than more advanced non-linear interpolation methods, future research should be 

conducted to assess whether model predictions could be improved by applying more 

computationally intense non-linear interpolation methods.  

Mean square error (MSE) is then used as the measurement of the error in the PM2.5 

concentration profiles (equation (2)).  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑃𝑀2.5 (𝑑𝑒𝑛𝑠𝑒 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 𝑚𝑜𝑑𝑒𝑙)𝑥,𝑦

𝑛

𝑥,𝑦

− 𝑃𝑀2.5 (𝑠𝑢𝑏𝑠𝑒𝑡 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟 𝑚𝑜𝑑𝑒𝑙)𝑥,𝑦)2 

(2) 

Here, 𝑥, 𝑦 indicate each grid on the 100 by 100 grid space, and 𝑛 is the number of grids 

which is 10,000 (100 × 100). 

The step-wise search algorithm is composed of three main steps: 1) set reference 

receptors, 2) a forward step to add the current best receptor, and 3) a backward step to 

remove the current worst receptor (Figure 12). The process begins with initializing 
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receptors that set four reference receptors located at the corners of the receptor area. Based 

on those four reference points, the next searches essentially find infill points to add to these 

reference points. Then, the forward search is conducted, by adding current-best receptors 

until the marginal change in the MSE becomes less than the pre-set threshold (0.001 in this 

study). Afterward, the backward step removes the current-worst receptors until the 

marginal change in the MSE does not exceed the threshold. Figure 12 shows the example 

of the step-wise receptor searching processes, suggesting that the process can select an 

optimal combination of receptors that approximates the concentration profiles predicted by 

the high dense receptor models, with only a small set of receptors. This study applied the 

algorithm to 1,000 training samples, and identified the optimal receptor locations for each 

case. The results indicate that the algorithm was able to find the optimal receptor locations, 

with only 13.2 receptors on average (vs. 11,241 receptors on average for the high-density 

PM2.5 concentration profiles). 
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Iteration 8: 

Backward 

(Deletion) 

 

 

Figure 12 – The Example of Step-wise Search  

for Selecting Optimal Receptor Locations 

4.5 Dynamic grid-receptor Model Development 

The above section addressed optimal receptor placement and demonstrated that the step-

wise receptor searching method can approximate the pollutant concentrations predicted by 

the dense receptor model with efficiency. The next stage in this study develops a model 

that selects the optimal set of receptors among candidate receptors using relevant 

explanatory variables. Hereafter, this process will be referred to as dynamic grid-receptor 

modeling. This model was developed based on the optimal receptor locations identified by 

the step-wise searching method, and corresponding R-LINE input parameters (Figure 13). 

The dynamic grid-receptor model consists of two sub-models: 1) the model that selects the 

number of optimal receptors, and 2) the model that identifies the optimal receptor locations. 
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The model is a step-by-step process that begins with selecting the number of optimal 

receptors, and then it predicts the optimal locations of receptors given the number of the 

optimal number of receptors. 

 

Figure 13 – Development of the Dynamic Grid-Receptor Model 

4.5.1 Number of Optimal Receptor Model 

The first model predicts the optimal number of receptors assigned for each link segment. 

The multiple linear regression model was developed using link emission rates and R-LINE 

meteorological parameters as potential explanatory variables (Equation (3)) (Greene, 

2012).  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 +  𝜀 (3) 
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Here, 𝑦 is the optimal number of receptors to be estimated, 𝑥𝑘 are the predictors, 𝛽𝑘 is the 

regression coefficients, and 𝜀 is an error term. 

The model results are shown in Table 3, suggesting that the difference in emission 

rates between the adjacent links and some of the meteorological parameters are important 

variables selecting the optimal number of receptors. The study first tested all variables in 

Table 3 (see the column labeled “Including all variables”). The results suggest that some 

of the variables (i.e., link emission, temperature, link length) are not of significant interest 

in identifying the number of optimal receptors, and thus they are excluded in the final 

model (the column “Excluding insignificant variables” in Table 3). 

The signs of the model coefficients appear to be intuitively correct, and the trends 

appear to be related to the fundamental relationships identified in Chapter 4.3. For example, 

the large difference in emission rates between the adjacent links requires the placement of 

more receptors, potentially because the optimal receptor setting needs more receptors to 

control for the larger variation in pollutant concentration profile derived by the emission 

difference (Figure 11). Regarding wind speed, lower wind speeds appear to require more 

receptors. This can be also explained by the relationship between the wind speed and PM2.5 

concentration profile (Figure 10), in that the changes in PM2.5 concentration profile with 

the distance from the link are greater under the lower wind speed condition, requiring more 

receptors to be placed close to the road. In terms of wind direction, under the condition that 

wind blows roughly parallel to the link (west or east winds) it requires a smaller number 

of receptors (as pollutants are carried along the roadway, and do not disperse very far north 

of the roadway). This may be because a larger variation in PM2.5 concentration exists only 

on one side (either left-end or right-end of the link segment). 
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Table 3 – Linear Regression Model for Optimal Number of Receptors 

Description 

Including all variables 

Excluding 

insignificant variables 

Estimate P-value Estimate P-value 

Intercept 10.579 0.916 10.912 0.000 

Link emission (µg/m/s) -0.676 6.249 - - 

Difference in link emissions to that of 

adjacent link (µg/m/s) 
24.039 5.270 24.942 0.000 

Temperature (°C) 0.018 0.012 - - 

Wind speed (m/s) -0.129 0.038 -0.130 0.001 

Wind direction (if 110° to 250°) 1.416 0.513 1.380 0.007 

Link length (m) 0.000 0.001 - - 

Adjusted R-squared 0.163 0.171 

 

4.5.2 Optimal Receptor Location Model 

Given the number of optimal receptors, a set of optimal receptor locations are chosen 

among the candidate receptor sites. To this end, this study developed a series of logistic 

regression models (equation (4)) to predict the probabilities of being chosen for the optimal 

location (Washington, et al., 2011; Greene, 2012). The study constructed a total of 121 

logistic regression models for each candidate receptor site, with the explanatory variables 

related to link emission and meteorological conditions. 
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𝐸{𝑦𝑖} =
exp (𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘)

1 + exp (𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑘𝑥𝑖𝑘)
 (4) 

Here, 𝑦𝑖  is an independent Bernoulli random variable for the 𝑖 th observation with an 

expected value 𝐸{𝑦𝑖}, where 𝑦 equals one if the location is chosen for the optimal location, 

and y equals zero otherwise. The logistic regression model is constructed with 𝑘 predictor 

variables, known constant 𝑥 and coefficients 𝛽 to be estimated. Here, the probability of 

being chosen as the optimal location is expressed as equation (5): 

𝑃(𝑋 = 1) =
1

1 + exp (𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘)
 (5) 

In terms of the explanatory variables, the same set of the variables used for the 

model for the optimal number of receptors was also applied to the logistic regression 

models with some variable modifications, while one more variable (the number of optimal 

receptors) is added to the variable set, assuming that the probability of each receptor being 

chosen for the optimal receptor depends on the total number of optimal receptors to be 

placed. In particular, the models considered two variables representing the emission 

differences in the adjacent links for both of the left-side (link 1 vs. link 2) and the right-

side (link2 vs. link 3) (equation (6)).  

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
|𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑙𝑖𝑛𝑘2 − 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑙𝑖𝑛𝑘1 𝑜𝑟 𝑙𝑖𝑛𝑘3|

𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑙𝑖𝑛𝑘2
 (6) 
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Although a parsimonious variable selection process is preferred to increase the 

goodness-of-fit of the models, this study included all of the considered variables in the 

logistic regression models to estimate the relative probability of one receptor being chosen 

among the others under the same conditions (the probabilities of all of the candidate 

receptors being chosen are estimated with the same set of predictors). 

As such, the dynamic grid-receptor model estimates the optimal number of 

receptors and the optimal receptor locations for each link segment. The modeling process 

is illustrated in Figure 14. As shown, the probabilities of being selected for the optimal 

receptor location are estimated for each candidate receptor site. Then, the model will select 

the receptor sites of the top N highest probabilities (where N is the optimal number of 

receptors). 

The estimated model coefficients are shown in Table 14 in Appendix A, showing 

that most of the estimated coefficients are statistically significant at a p-value of 0.001. The 

model results showed that the signs and magnitudes of the coefficients that determine the 

probability of being chosen for the optimal receptor location vary depending on X and Y 

positions of receptor sites. For example, for the location X (scaled) = -0.5 and Y= 100 m, 

the probability of being chosen as the optimal receptor site increases as the emission 

difference on the left-side (link 1 vs. link 2) increases, while the difference in the emission 

difference on the right-side does not increase the probability of being chosen for the 

receptor site. As such, the model results suggest that the optimal receptor positions are 

quite dynamic depending on the link emission profiles and meteorological conditions. 
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Figure 14 – Dynamic Grid-receptor Model Development 
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4.6 Model Verification 

The dynamic grid-receptor model is verified using the 300 test sample results generated 

from the R-LINE simulations. Figure 15 illustrates the model verification process. In this 

process, the dynamic grid-receptor model is applied to the 300 test samples, by determining 

the optimal receptor locations based on its R-LINE input parameter values. Then, the PM2.5 

concentration profiles predicted by the dynamic grid-receptor model are compared with 

those predicted by the high-density receptor model (setting receptors every 5m), to measure 

how well the dynamic grid-receptor model approximates the PM2.5 concentration profiles 

predicted by the dense receptor model using mean absolute error (MAE) (equation (7)). 

For each sample, MAE is calculated based on the PM2.5 concentration profiles (on a 100 

by 100 grid space) predicted by the high-density and dynamic-grid receptor models, and 

the average of MAEs for all test samples is calculated. Thereby, a small 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ indicates 

that the dynamic grid-receptor well approximates the PM2.5 concentration profiles as 

predicted by the high-density receptor model. 

𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ =
1

𝑛
∑ ∑|𝑃𝑀2.5 (𝑑𝑒𝑛𝑠𝑒)𝑖,𝑥,𝑦

𝑥,𝑦

𝑛

𝑖=1

− 𝑃𝑀2.5 (𝑑𝑦𝑛𝑎𝑚𝑖𝑐­𝑔𝑟𝑖𝑑 𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑐­𝑔𝑟𝑖𝑑)𝑖,𝑥,𝑦|  

(7) 

 

Here, 𝑖 refers to each test sample, and 𝑥, 𝑦 refers to each grid area in the heatmaps. 

To measure the performance of the dynamic grid-receptor model in terms of model 

prediction accuracy, the same processes are also applied to the static-grid-receptor model, 

where the number of receptors for the static-grid-receptor model is set to always higher 
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than or equal to that of the dynamic grid-receptor model (equation (8)). Then, 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ for the 

static-grid-receptor model as compared to the high-density receptor model was also 

calculated (equation (7)).  

𝑁2 = ⌈√𝑁1⌉2 (8) 

Here, N1 is the number of dynamic grid-receptors, and N2 is that for static-grid-receptors.  

The model verification results, shown in Figure 15 and Table 4, suggest that the 

dynamic grid-receptor model can approximate the PM2.5 concentration profiles predicted 

by the high-density receptor model with a small number of receptors. For example, the 

dynamic grid-receptor model selected 13.2 receptors on average to approximate the PM2.5 

concentration profiles as predicted by the dense-receptor model, which requires 11,541 

receptors on average. 

The comparison results for the 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅s of the dynamic-grid and static-grid receptor 

models show that the dynamic grid-receptor model better approximates the PM2.5 

concentration profile than the static-grid-receptor model (Table 4). For example, the 𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ 

for the dynamic grid-receptor model was 0.458 for the entire hypothetical network area (Y 

= 0 m to 500 m), which is smaller than that for the static-grid-receptor model (0.555). The 

trends become more obvious when it comes to the near-road areas (Y = 0 m to 200 m): 

0.777 for the dynamic grid-receptor model and 1.277 for the static-grid-receptor model. 

However, the prediction power of the dynamic grid-receptor appears to be lower than the 

static-grid-receptor model for areas far from the link segment (e.g., Y = 200 m to 500 m). 

This may be because the dynamic grid-receptor model tends to place more receptors near 
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the roadway segment to capture the large variations in PM2.5 concentration in the areas 

(i.e., MAE is dominated by the near-road values). However, considering that the near-road 

areas are more vulnerable to high pollution concentrations, such a receptor placement 

strategy focusing on the better prediction on the near-road areas appears to be a better 

method in identifying hot-spots. 

 

 

 

Figure 15 – Examples of Model Verification Processes 

 



 68 

Table 4 – Comparison Analysis Results between Dense-receptor vs. Dynamic-

grid/Static-grid Receptor Models 

Receptor Area  

(distance from link area) 

Dense-

receptor 

Dense-receptor vs.  

Static Grid-Receptor 

Dense-receptor vs. 

Dynamic Grid-

Receptor 

Average number of receptors 11,541.1 16.3 13.2 

𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ (Y = 0m to 500m) - 0.555 0.458 

𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ (Y = 0m to 100m) - 1.920 1.010 

𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ (Y = 0m to 200m) - 1.277 0.777 

𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ (Y = 100m to 500m) - 0.214 0.319 

𝑀𝐴𝐸̅̅ ̅̅ ̅̅ ̅ (Y = 200m to 500m) - 0.074 0.244 

 

4.7 Case Studies 

The case studies focus on evaluating the model prediction power of PM2.5 concentrations 

with the dynamic grid-receptor model, by applying the dynamic grid-receptor model to 

practical transportation networks. To this end, the annual average PM2.5 concentration 

estimation results are obtained using both the dynamic grid-receptor model and the static-

grid-receptor model for comparison. The annual average PM2.5 concentrations for each of 

the case study areas were estimated with AERMOD, based on the Georgia meteorological 

processor data (Georgia EPD, 2019), and link emission rates estimated by ARC-ABM15 

(see Chapter 6.8). Again, because each study area (16km2) requires many receptors to be 
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processed, Georgia Tech’s PACE supercomputing cluster was used for the AERMOD 

simulations.  

The study selected three subareas in the Metro Atlanta area (Figure 16): 1) the City 

of Decatur, GA; 2) Midtown Atlanta, GA; and 3) Downtown Atlanta, GA. Each study area 

represents different levels of road network densities. For example, the City of Decatur 

accounts for the areas of low roadway density, and the downtown Atlanta accounts for the 

high roadway density area. For each of the areas, four different models are applied to 

evaluate the dynamic grid-receptor models as follows. 

• The City of Decatur, dynamic grid-receptor model (5,312 receptors, 325 links) 

• The City of Decatur, static-grid-receptor model (5,329 receptors, 325 links) 

• The City of Decatur, high-density receptor model (16,482 receptors, 325 links) 

• The City of Decatur, low-density grid-receptor model (624 receptors, 325 links) 

• Midtown Atlanta, dynamic grid-receptor model (10,441 receptors, 613 links) 

• Midtown Atlanta, static-grid-receptor model (10,609 receptors, 613 links) 

• Midtown Atlanta, high-density receptor model (8,282 receptors, 613 links) 

• Midtown Atlanta, low-density grid-receptor model (624 receptors, 613 links) 

• Downtown Atlanta, dynamic grid-receptor model (22,662 receptors, 1,632 links) 

• Downtown Atlanta, static-grid-receptor model (22,801 receptors, 1,632 links) 

• Downtown Atlanta, high-density receptor model (16,482 receptors, 1,632 links) 

• Downtown Atlanta, low-density grid-receptor model (624 receptors, 1,632 links) 
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Figure 16 – Case Study Areas for Dynamic Grid-Receptor Model Evaluation 

Figure 17, Figure 18, and Figure 19 illustrate the receptor settings for each of the 

cases. Figure 17 illustrates the receptor settings for the City of Decatur, applying the four 

different models. The figure shows that the dynamic grid-receptor model predicts the 

optimal receptor locations based on the related link emission rates and meteorology 

conditions, thereby setting a total of 5,312 receptors along the roadway network (the 

practical implementation of the dynamic grid-receptor model for the ARC-ABM15 

network is described in more detail in the following section). As shown, the dynamic grid-

receptor model tends to set relatively dense receptors near road segments (e.g., 5m away 

from the link segments), and set relatively lower-dense receptors with the distance from 

the link segments. For a fair comparison, the static-grid-receptor model set a similar 
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number of receptors (5,329 receptors, around 70m receptor resolution) to that of the 

dynamic grid-receptor model. 

This study also applied two other models, high-density receptor and low-density 

grid-receptor models to evaluate the prediction of the dynamic grid-receptor model. Figure 

17 illustrates how those models set the receptors. The high-density receptor model arbitrary 

selects a number of link segments in the study area, and sets 5m-resolution receptors along 

the line perpendicular to the link segment and within 200m from the link segment. This 

model was applied as a way to derive the elaborate near-road PM2.5 concentration profile, 

and the model results are compared with the results from the dynamic grid-receptor model. 

Lastly, the low-density grid-receptor model (200m resolution) was also applied to measure 

the difference in the prediction of the dynamic grid-receptor model as compared to the 

traditional modeling method. 
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Figure 17 – Receptor Settings for the City of Decatur 
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Figure 18 - Receptor Settings for Midtown Atlanta 
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Figure 19 - Receptor Settings for Downtown Atlanta 
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4.7.1 Practical Implementation of Dynamic grid-receptor Model to Transportation 

Network 

This study develops a streamlined PythonTM-based program to automate the processes of 

setting optimal receptors by applying the dynamic grid-receptor model coefficients to the 

link emission rates database and desired meteorology conditions. As such, setting the 

optimal receptors per link is easy to implement through the program, allowing user-specific 

input values. For example, the case study applied a wind speed of 1.0 m/s assuming for the 

worst-case scenarios in the dynamic grid-receptor model. For wind direction, the case study 

applied all wind directions (0° to 360°) at every 45°, by selecting any receptors which are 

identified by each of the wind direction values. For this, the program iteratively develops 

several dynamic grid-receptor models for each link segment, applying the wind directions 

at every 45°, and then the model extracts unique receptors identified by each of the 

modeling iterates.  

There are several programming rules embedded in the program that aim to increase 

the model prediction accuracy as well as the modeling efficiency. The rules embedded in 

the dynamic grid-receptor model are illustrated in Figure 20. First, the link segment-based 

receptor generation process tends to generate some unnecessary receptors at intersections 

or the sections where multiple links meet. For example, the dynamic grid-receptor model 

generates numerous receptors for each link connected to the intersection node, while some 

of the receptors may not be directly related to the specified link segment (rather, they are 

associated with other links belonging to the intersection). In this circumstance, the program 

sets a receptor area that is specified within the angles that are half of the angles defined by 

the two adjacent link segments (Rule 1 in Figure 20). From this, the program only assigns 
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the receptors that are directly related to the specified link segment. (The program drops the 

receptors that are not included in the receptor area.) 

Second, because the dynamic grid-receptor model is developed based on the 

hypothetical network that specifies the receptor areas within 500m away from the link 

segment, the dynamic grid-receptor model can only place receptors within the area. In this 

circumstance, some areas in the transportation network (i.e., areas more than 500m away 

from the transportation network) are not covered by the dynamic grid-receptor model. To 

make up for these areas, the program sets a minimum 200m-resolution receptor grid to 

infill in these areas (Rule 2 in Figure 20). 

Third, because the dynamic grid-receptor model is designed for the near-road 

receptors, the on-road receptors (those placed in mixing zone areas) generated by the 

dynamic grid-receptor model are checked and removed in the last step of the program (a 

supplemental analysis may be required to integrate both of the over-the-road and near-road 

receptors in the same modeling framework for exposure assessment). 
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Figure 20 – Dynamic Grid-Receptor Model Implementation for the ARC-ABM15 Network 
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4.7.2 Comparison of Dynamic grid-receptor Model and Static-grid-receptor Model 

For each of the case study areas, the annual average PM2.5 concentrations at the receptors 

governed by both of the dynamic grid-receptor and the static-grid-receptor models are 

predicted (Figure 21, Figure 22, Figure 23). As previously discussed, a similar number of 

receptors were generated by the dynamic grid-receptor and the static-grid-receptor models 

for a fair comparison: for example, 5,312 receptors were generated by the dynamic grid-

receptor model vs. 5,329 receptors were generated by the static grid-receptor model, for 

the City of Decatur. Then, the PM2.5 concentrations predicted for the receptors are used for 

generating PM2.5 concentration heatmaps onto 1,000 by 1,000 grid spaces. Overall, the two 

models appear to produce similar PM2.5 concentration profiles, identifying hot-spots at 

common geographic locations. The difference in PM2.5 concentration profiles is calculated 

by subtracting the PM2.5 concentration profile from the dynamic grid-receptor model by 

that from the static-grid-receptor model. The result shows that the PM2.5 concentration 

profiles predicted by both of the models are quite similar in most of the areas (the white-

colored areas in Figure 21-(c)). The results also suggest that the dynamic grid-receptor 

model tends to predict higher PM2.5 concentrations, particularly near the roadways. This 

may be because the dynamic grid-receptor model tends to set at least some number of 

receptors near road areas, making it possible to consider the high PM2.5 concentration 

estimates near road areas in generating the PM2.5 concentration profile. However, because 

the static-grid-receptor pays less attention to near-road pollutant concentration, and the 

distance between the receptor and the link segment is random, the static-grid-receptor 

model is less able to capture the high PM2.5 concentration in some of the near-road areas. 

The same trends were found for the other case study areas. For example, the areas with 
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red-colored in Figure 22-(c) and Figure 23-(c) appear to be consistently larger than the 

areas with blue-colored, suggesting that the dynamic grid-receptor model has a better 

prediction for high concentration areas. 
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Figure 21 – Dynamic Grid-Receptor Model vs. Static Grid-Receptor Model (City of 

Decatur, GA) 
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Figure 22 – Dynamic Grid-Receptor Model vs. Static Grid-Receptor Model 

(Midtown Atlanta, GA) 
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Figure 23 – Dynamic Grid-Receptor Model vs. Static Grid-Receptor Model 

(Downtown Atlanta, GA) 
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A supplemental analysis was conducted to evaluate the prediction of the dynamic 

grid-receptor model compared to the static-grid-receptor model, by comparing the PM2.5 

concentration profiles predicted by the two models with those predicted by the high-density 

receptor model. The analysis was conducted using the 5m-receptor site resolution set for 

the high-density receptor model. The PM2.5 concentration profiles for the dynamic grid-

receptor and static-grid-receptor models were retrieved by projecting the PM2.5 

concentration estimates onto the heatmaps generated for those models. Some examples of 

the PM2.5 concentration profiles among the models are shown in Figure 24. The results 

suggest that the dynamic grid-receptor model better-predicts pollutant concentrations than 

the static-grid-receptor model for some areas, and vice versa, depending on the geographic 

locations. This suggests that the near-road pollutant concentration profiles can be biased 

depending on the receptor placements, raising a question about which type of model can 

overall predict unbiased pollutant concentration profiles, which will be addressed in the 

following statements.  
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Figure 24 – PM2.5 Concentration Profiles for High-Density Receptor, Dynamic Grid-

Receptor, and Static-Grid-Receptor Models 

Based on the PM2.5 concentration profile charts in Figure 24, the difference in the 

PM2.5 concentrations predicted by these different models is measured by equation (9) and 

(10). Equation (9) explains the mean absolute error in the PM2.5 concentrations predicted 

by the high-density receptor model versus the dynamic grid-receptor or static-grid-receptor 

models. This measurement is adopted to identify which models better approximate the 

PM2.5 concentration profiles as predicted by the high-density receptor model. A similar 

measurement was also adopted that measures the mean absolute percentage error (equation 

(10)). 
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𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑀2.5 (ℎ𝑖𝑔ℎ 𝑑𝑒𝑛𝑠𝑒)𝑖,𝑑 − 𝑃𝑀2.5 (𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑐)𝑖,𝑑|

𝑛

𝑖=1,𝑑=1

 (9) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑃𝑀2.5 (ℎ𝑖𝑔ℎ 𝑑𝑒𝑛𝑠𝑒)𝑖,𝑑 − 𝑃𝑀2.5 (𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑜𝑟 𝑠𝑡𝑎𝑡𝑖𝑐)𝑖,𝑑

𝑃𝑀2.5 (ℎ𝑖𝑔ℎ 𝑑𝑒𝑛𝑠𝑒)𝑖,𝑑
|

𝑛

𝑖=1,𝑑=1

 (10) 

Here, 𝑖 refers to each link segment selected for high-density receptor model, and 𝑑 is the 

distance from the link segment (0 ≤ 𝑑 ≤ 200). 

The MAE and MAPE results for each case study area are summarized in Table 5. 

The results show that the dynamic grid-receptor model better approximates the PM2.5 

concentration profiles as predicted by the high-density receptor model than the static-grid-

receptor model across the three different regions, although the marginal differences 

between the dynamic grid-receptor and static-grid-receptor models are only 0.004 µg/m3 

to 0.011 µg/m3 or 0.3% to 0.6%. 

Summarizing the results addressed in this section, the case study results suggest 

that the dynamic grid-receptor model appears to produce better predictions of potential hot-

spots than the static-grid-receptor model. The dynamic grid-receptor model also appears to 

better approximate the near-road pollutant concentration profiles as predicted by a high-

density receptor model than (or at least similar to) the static-grid-receptor. 
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Table 5 – Comparison Results of PM2.5 Concentration Profiles among High-density 

Receptor, Dynamic grid-receptor, and Static-grid-receptor Models 

Classification Description 

Dense-receptor 

vs. Dynamic 

grid-receptor 

Dense-receptor 

vs. Static-grid-

receptor 

Case 1:  

City of Decatur 

MAE 0.053 0.060 

MAPE 0.049 0.050 

Case 2:  

Midtown Atlanta 

MAE 0.073 0.081 

MAPE 0.069 0.072 

Case 3:  

Downtown 

Atlanta 

MAE 0.057 0.068 

MAPE 0.047 0.053 

 

4.7.3 Dynamic Grid-Receptor Model vs. Low-density Receptor Model 

The above section suggests that the dynamic grid-receptor model produces comparable 

PM2.5 concentration profiles to the high-density receptor model. This section focuses on 

addressing whether the dynamic grid-receptor model can produce a better pollutant 

concentration profile than the traditional low-density grid-receptor model (e.g., 200m 

resolution receptor setting). The same approach was also applied for comparing the PM2.5 

concentration profiles predicted by the dynamic grid-receptor and low-density grid-

receptor models. Figure 25, Figure 26, and Figure 27 suggest that the difference in the 

PM2.5 concentration profiles predicted by the dynamic grid-receptor and low-density grid-
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receptor model appears to be much greater than the difference between the dynamic grid-

receptor and the static-grid-receptor models. In particular, a huge difference in the PM2.5 

concentration profiles was observed for downtown Atlanta. This suggests that the low-

density grid-receptor model may produce a biased pollutant concentration profile, 

depending on the proximity between the link segments and the receptor location. 
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Figure 25 – Dynamic Grid Receptor Model vs. Low-density Grid-Receptor Model 

(City of Decatur, GA) 
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Figure 26 – Dynamic Grid-Receptor Model vs. Low-density Grid-Receptor Model 

(Midtown Atlanta, GA) 
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Figure 27 – Dynamic Grid-Receptor Model vs. Low-density Grid-Receptor Model 

(Downtown Atlanta) 
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Similar to the previous section, the difference in the PM2.5 concentrations predicted 

by the high-density receptor model and low-density grid-receptor is measured by equation 

(11) and (12). The MAE and MAPE results for each case study area are summarized in 

Table 6. Comparing the MAE and MAPE results in Table 5 and Table 6, it also suggests 

that the PM2.5 concentration profiles predicted by the low-density grid-receptor model are 

quite different from those predicted by the dynamic grid-receptor model. This also suggests 

that the dynamic grid-receptor model can produce a much more unbiased pollutant 

concentration profile than is obtained in traditional low-density grid modeling. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑀2.5 (ℎ𝑖𝑔ℎ 𝑑𝑒𝑛𝑠𝑒)𝑖,𝑑 − 𝑃𝑀2.5 (𝑙𝑜𝑤 𝑑𝑒𝑛𝑠𝑒 𝑔𝑟𝑖𝑑)𝑖,𝑑|

𝑛

𝑖=1,𝑑=1

 (11) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑃𝑀2.5 (ℎ𝑖𝑔ℎ 𝑑𝑒𝑛𝑠𝑒)𝑖,𝑑 − 𝑃𝑀2.5 (𝑙𝑜𝑤 𝑑𝑒𝑛𝑠𝑒 𝑔𝑟𝑖𝑑)𝑖,𝑑

𝑃𝑀2.5 (ℎ𝑖𝑔ℎ 𝑑𝑒𝑛𝑠𝑒)𝑖,𝑑
|

𝑛

𝑖=1,𝑑=1

 (12) 

Here, 𝑖  refers to each link segment selected for high-density receptor model, and 𝑑  is 

distance from the link segment (0 ≤ 𝑑 ≤ 200). 
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Table 6 – Comparison Results of PM2.5 Concentration Profiles among High-density 

Receptor, Dynamic grid-receptor, and Low-density grid-receptor Models 

 Description 

Dense-receptor 

vs. Dynamic 

grid-receptor 

Dense-receptor 

vs. Low-dense-

grid-receptor 

Case 1:  

City of Decatur 

MAE 0.053 0.112 

MAPE 0.049 0.314 

Case 2:  

Midtown Atlanta 

MAE 0.073 0.230 

MAPE 0.069 0.169 

Case 3:  

Downtown Atlanta 

MAE 0.057 0.340 

MAPE 0.047 0.261 

 

4.8 Chapter Summary 

This chapter focused on developing a strategic receptor placement method that could 

minimize the number of receptors (and therefore receptor-link combinations used in 

modeling) without undermining the predictive capabilities compared to high-resolution 

concentration profiles generated by dense receptor placement. The fundamental 

relationship among dispersion model input parameters and predicted pollutant 

concentration profile was identified through a huge number of R-LINE sample runs. The 

results indicate that link emission rates, wind speed, and wind direction are important 

factors determining the PM2.5 concentration profile. Based on the 1,000 R-LINE simulation 

results with randomized input settings, this work demonstrated optimal receptor locations, 
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based on a step-wise searching method developed in this study, that minimizes the errors 

in the PM2.5 concentration profiles predicted by the sub-set of receptor model as compared 

to those predicted by the high-density receptor model. The optimal receptor locations 

identified by the step-wise searching method suggests that with only a few numbers of 

receptors (around 13 receptors for each link segment), the optimal receptor model can 

approximate the PM2.5 concentration profiles as predicted by the high-density receptor 

model. 

The optimal receptor locations and its R-LINE input parameters were then used in 

developing a generalized receptor placement model (called dynamic grid-receptor model). 

The model consists of two sub-models: 1) the model for predicting the optimal number of 

receptors based on multiple linear regression, and 2) the model for predicting the optimal 

locations of receptors based on logistic regression. The dynamic grid-receptor model was 

verified with 300 R-LINE samples, by comparing the PM2.5 concentration profiles 

predicted by the dynamic grid-receptor model with those predicted by the high-resolution-

receptor model. The results suggest that the dynamic grid-receptor model can better 

approximate the PM2.5 concentration profile than the static-grid-receptor modeling 

approach used in traditional modeling methods (where the distance between receptors is 

uniform, e.g., 200m resolution). 

The dynamic grid-receptor model was then applied to three case study areas in 

metropolitan Atlanta to evaluate the model performance in the practical transportation 

network (e.g., ARC-ABM15 as in this study). The model results suggest that the dynamic 

grid-receptor model can also better approximate the PM2.5 concentration profile predicted 

by the high-density receptor model for the practical transportation network than the static-
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grid-receptor model. The greater prediction power of the dynamic grid-receptor model may 

be attributed to the strategic receptor placement that tends to set more receptors near road 

areas where higher pollutant concentrations are observed (which yields more accurate 

concentration fields). The better prediction of the high pollution areas helps to produce 

more unbiased pollutant concentration profiles. 

For researchers and practitioners who implement air quality dispersion modeling of 

traffic-related pollution at a regional-scale, setting proper locations of receptors covering 

the entire project area has been a challenge. In this regard, this study could provide an idea 

about how many receptors are required and where those receptors need to be located. Thus, 

the dynamic grid-receptor model can help minimize the regional-scale dispersion modeling 

runtime, by removing unnecessary receptors in the analysis, while not undermining the 

pollutant concentration profile as predicted by high-density receptor model. 
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CHAPTER 5. DEVELOPMENT OF ROADWAY LINK 

SCREENING MODEL 

This chapter is adopted from “Kim, D., Liu, H., Rodgers, M.O., and Guensler, R. (2020). 

Development of Roadway Link Screening Model for Regional-level Near-road Air Quality 

Analysis: A Case Study of Particulate Matter. Presentation at the 99th Transportation 

Research Board (TRB) Annual Meeting.” 

5.1 Introduction 

The impacts of traffic-generated emission sources on criteria pollution levels for project-

level conformity assessments and the National Environmental Policy Act (NEPA) analyses 

are generally assessed through the application of computer models. The U.S. 

Environmental Protection Agency (USEPA) requires that the air quality impacts of mobile 

source emissions on the surrounding environment be assessed using its recommended 

mobile source emissions and dispersion modeling tools. For example, according to 

USEPA’s conformity guidance, MOVES (MOtor Vehicle Emission Simulator) is 

designated as the official mobile source emission rate model for regulatory air quality 

analyses (USEPA, 2015a). When it comes to mobile source air dispersion modeling, 

several tools are recommended for transportation and air quality conformity assessment, 

including AERMOD and CAL3QHC/CAL3QHCR (USEPA, 2019a); CALINE4 can also 

be used in screening analysis, if permission is obtained from the USEPA Regional Office 

(40 CFR Appendix W). However, line source dispersion models employed in large-scale 

air quality impact assessments require significant computational resources. This is 
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especially true when it comes to the task of conducting air quality impact assessments for 

complex urban transportation projects consisting of numerous roadways, whose potential 

impacts on surrounding neighborhoods are affected by dynamic spatial and temporal traffic 

patterns and variable meteorological conditions. Therefore, enhancing the computational 

efficiency of microscale dispersion modeling applications makes large-scale assessments 

that employ higher-resolution receptor placement more feasible, and therefore also 

improves the reliability of assessment outcomes. 

Computational efficiency has been a major concern in previous studies of near-road 

air quality impact assessment conducted over large geographic scales (Guensler, et al., 

2000; Shafi, 2008; Guensler, et al., 2008; Kall, et al., 2008; Vallamsundar and Lin, 2012; 

D'Onofrio, et al., 2016; Wu, 2018; Zhai, et al., 2016; Zhai, et al., 2019; Liu, et al., 2017; 

Briant, et al., 2013). For example, Guensler, et al. (2000) and Vallamsundar and Lin (2012) 

proposed a streamlined modeling framework connecting emission rate models and 

dispersion models to help metropolitan planning organizations and practitioners implement 

conformity and NEPA processes within the same framework. Almost every one of the 

projects in the literature has called for future research focusing on an efficient modeling 

design to achieve high estimation precision while minimizing computational cost. 

Some prior studies were able to use simplified sets of model assumptions, with 

fairly low-resolution receptor grids (e.g., greater than 200 m by 200 m resolution) to scale 

up air quality impact assessment of transportation projects to the metropolitan or other 

regional levels (D'Onofrio, et al., 2016; Wu, 2018; Zhai, et al., 2016; Zhai, et al., 2019). 

While this regular, but sparse, receptor placement strategy helps reduce computational 

complexity and model run time, sparse receptor grids can cause estimation bias. Predicted 
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concentrations at individual receptors must properly consider the spatial distribution of all 

nearby roadways, and concentration estimates are very sensitive to the distance from 

receptor to the nearest roadway links (Wu and Niemeier, 2016) and each link’s mass flux 

(Shafi, et al., 2008). Hence, low-density grids can lead to biased results (over-prediction or 

under-prediction) depending upon the mass flux from the roadways and the distance 

separating individual link-receptor combinations. Liu, et al. (2017) and Kim, et al. (2019c) 

used the state-of-the-practice methodology recommended by USEPA (USEPA, 2015a; 

USEPA, 2018) to assess near-road pollutant concentration profiles by spatially adjusting 

the density and location of receptors in proximity to link emission sources in all directions, 

based upon the spatial layout of the roadway network. In these analyses, a distributed 

computing cluster supported the calculations for the larger number of receptors. However, 

if distributed computing technology is not available for an analysis, which is currently true 

for most public agencies and consulting firms, modeling efforts that use dense receptor 

grids encounter significant computational challenges. 

Most existing dispersion modeling studies attempt to account for all major arterial 

and freeway links included within, or located near, the transportation project to compute 

pollutant concentration (Batterman, et al., 2014; Zhai, et al., 2016; Liu, et al., 2017; Kim, 

et al., 2019c), hence, extensive computational resources are generally required when high-

resolution concentration fields are desired. The methodology usually become even more 

infeasible when applied to a large metropolitan area, because the number of roadway links 

that need to be considered for each receptor concentration computation increases 

dramatically with a wider coverage area. In a case study in Metro Atlanta, Kim, et al. 

(2019c) showed that AERMOD processing time increases with the number of links (Figure 
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28) and the number of receptors (Figure 29). In particular, Figure 28 shows that AERMOD 

processing time increases with the number of links considered, taking about 11.5 hours for 

161,188 links and a single receptor. Figure 29 shows that AERMOD processing time 

increases with the number of receptors considered, taking about 2.5 hours for a single link 

and 10,000 receptors. Combing those conditions, the model run time for AERMOD to 

compute PM2.5 concentration considering the entire Atlanta roadway network (161,188 

links) iterated across a high-resolution grid of receptors for the Atlanta Metro area 

(1,163,958 receptors) would take longer than one year when performed on a typical desktop 

computer. 
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Figure 28 – Examples of AERMOD Processing Time by Number of Links 
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Figure 29 – Examples of AERMOD Processing Time by Number of Receptors 

To address the significant computational challenge of large-scale applications of 

dispersion models, this study proposes an innovative approach, hereafter referred to as 

supervised link screening (SLS), to reduce the number of link-receptor pairs employed in 
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modeling efforts. The concept of link screening has been previously applied in CALINE4 

modeling with MOBILE model emission rate (Shafi; 2008; Guensler, et al. 2008), using a 

decision tree-based method to identify and eliminate roadway links with zero contribution 

(i.e., the receptor is upwind of the link), and minimal contribution to receptor 

concentration, using roadway mass flux and distance separation between source and 

receptor (Guensler, et al., 2008). With the advent of enhanced computational and machine 

learning techniques, and the introduction of more advanced emission models (MOVES), 

and more advanced dispersion models (e.g., AERMOD) that require much more 

complicated meteorological inputs (Georgia EPD, 2019; Texas Commission on 

Environmental Quality, 2019), the development of new link screening methods is a timely 

endeavor. In this Chapter, the machine learning classification algorithms are applied to link 

screening. A random forest (RF) classifier is used to identify and remove roadway links 

with negligible concentration contributions for each receptor with high precision. This 

study then verifies a significant increase in the efficiency of link elimination using direct 

comparison tests. The new link screening method is applied to the 20-county metropolitan 

Atlanta area to demonstrate the promising performance of SLS for regional-scale 

applications of microscale dispersion modeling. 

5.2 Model Development 

This study develops a supervised binary link screening model that classifies roadway links 

as either significant or insignificant, based upon the predicted contribution of the link to 

the pollutant concentration at a particular receptor. Several supervised machine-learning 

models were developed and applied in this modeling effort, and the random forest (RF) 

classifier was selected for its superior predictive capability. The RF classifier was 
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developed using a set of classification variables that are calculated based upon the hourly 

mass emissions from the roadway link, distance to receptor, and meteorological 

parameters. The variables that influence predicted pollutant concentration at a specific 

location are identified and used in the classifier. Furthermore, this study develops different 

link-screening classifiers for six criteria air pollutants. As a demonstration, the classifier 

developed for fine particulate matter (PM2.5) is described in detail and applied to Metro 

Atlanta. However, the modeling structure and preparation of input datasets for PM2.5 can 

be applied to all pollutants of interest. 

5.2.1 Data 

The data used to the roadway classifier include pollutant concentration estimates derived 

from the dispersion model (used as the screening variable), link emissions (grams/hour), 

roadway geometry, and meteorological parameters as predictive variables. First, the on-

road vehicle emissions profile for each link is generated based on traffic operating 

conditions and fleet composition to generate fleet emission rates in grams/vehicle-hour, 

and then multiplied by hourly traffic volumes to generate the resulting hourly mass 

emissions (grams/hour) for each roadway link. The emissions are then used to calculate the 

PM2.5 mass flux for each roadway link (given the roadway length and width) as dispersion 

model inputs. Spatial data include roadway geometry, receptor locations, and surface 

terrain roughness. The road and receptor geometry are used to calculate the distance 

between a given receptor and roadway segment. Meteorological data include wind speed 

and direction, mixing height, temperature, etc. The input data are used to train and verify 

an RF link-screening classifier for the 20-county Metropolitan Atlanta Region. This 

approach allows the prediction results of the classifier to be assessed for a large 
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metropolitan area. Because a metropolitan region as large as Atlanta includes a diversity 

of urban, suburban, and exurban settings, with a variety of transportation infrastructure 

development, traffic operating conditions, and local meteorological conditions, sufficient 

environmental complexity is available in the input data and concentration outcomes. 

Hence, the application helps ensure that the link-screening model is transferrable to other 

regions. 

5.2.1.1 Link Emissions 

The on-road PM2.5 emission rates are calculated by integrating vehicle activity data from 

the Atlanta Regional Commission’s activity-based travel demand model (ARC-ABM), 

used in regional air quality management planning (ARC, 2017), with applicable emission 

rates from MOVES-Matrix (Liu, et al., 2019b). The ARC-ABM outputs contain vehicle 

activity data in vehicle-miles traveled (VMT) and average speed for each roadway segment 

within Metro Atlanta. Based on this information, the PM2.5 emission rate for each roadway 

segment is queried from MOVES-Matrix, a high-performance emission rate lookup system 

(Liu, et al., 2019b). MOVES-Matrix is a multidimensional array containing emission rate 

outputs from numerous MOVES model runs enabled by the Partnership for an Advanced 

Computing Environment (PACE) high-performance computing (HPC) cluster (PACE, 

2017). MOVES-Matrix generates exactly the same emission rates as running MOVES on 

a case-by-case basis, while using the same structure of input variables (e.g., source type, 

drive cycle, road grade) and algorithms used by MOVES. However, MOVES-Matrix 

calculates link-based emission rates more than 200 times faster than a traditional MOVES 

interface run (Guensler et al., 2016; Liu et al., 2019) and MOVES input files never need to 

be prepared because MOVES-matrix already contain the results of all model input 
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combinations. As such, using MOVES-Matrix in emissions calculations for large-scale 

networks (such as the Metro Atlanta network) helps increase the speed of generating input 

data used to calculate link emissions and mass flux. The link emissions calculations are 

performed using equation (13), in which each vehicle source type (vehicle class), by model 

year for that vehicle class, by operating mode condition for that vehicle class and model 

year, is multiplied by its applicable MOVES emission rate. 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑓𝑙𝑒𝑒𝑡 ∑ ∑ ∑(𝑆𝑇% × 𝑀𝑌%𝑆𝑇 × 𝐹𝑇𝑆%𝑆𝑇,𝑀𝑌)

𝐹𝑇𝑆

× 𝐸𝑅𝑆𝑇,𝑀𝑌,𝐹𝑇𝑆

𝑀𝑌𝑆𝑇

              (13) 

Here:  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑓𝑙𝑒𝑒𝑡 is on-road vehicle activity of a link (in vehicle-miles or vehicle-

seconds), 𝑆𝑇% is the source type distribution on a link, 𝑀𝑌%ST is the model year 

distribution within a source type on a link, and 𝐹𝑇𝑆%ST,MY is the distribution of on-road 

operations (facility type by average speed) on the link within each source type and model 

year pair, and 𝐸𝑅 is the corresponding emission rate for each source type by model year 

by on-road operating condition combination (which can be queried from MOVES-

Matrix). In particular, this study performed the link emissions calculations for 12 months 

and 24 hours within a day (weekday and weekend).  

 Figure 30 depicts the example of the estimated PM2.5 mass flux (grams/m2/hour) 

by link for the Metro Atlanta road network (161,188 links) in the morning peak hour 

(8:00 AM to 8:59 AM) for January 2015. 
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Note: the figure illustrates the example emission rates estimated for 8:00 AM to 8:59 AM 

in January 2015. 

Figure 30 – Estimated Hourly Average PM2.5 Mass Flux (g/m2/hour) for the 

Metropolitan Atlanta Area 

5.2.1.2 Meteorological Conditions 

The meteorology data used in this study were obtained from the Georgia Department of 

Natural Resources (DNR) Environmental Protection Division (Georgia EPD, 2019). 

Georgia EPD provides five years (2014-2018) of meteorological data for 15 sub-regions in 

the state of Georgia. The meteorological data are processed by using AERMET, the 

meteorological processor approved by USEPA, based on data from 15 Automated Surface 
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Observing Systems (ASOS) surface- and upper-air stations (Nadolski, 1998). The resulting 

meteorological database generated by AERMET contains the post-processed 

meteorological conditions for each sub-region and hour of the year. Therefore, the 

meteorology database contains a total of 657,000 meteorological conditions (15 sub-

regions × 5 years × 365 days × 24 hours). The database provides meteorological parameter 

values for each hour, and the list of the parameters are summarized in Table 7, along with 

the descriptive statistics for each parameter in the database. For most of the variables, the 

processed meteorological conditions in Georgia vary significantly across the hours of the 

year and sub-regions. For example, the surface temperature ranges from -9.0 °C (264.2 K) 

to 38.3 °C (311.4 K), with a mean of 19.8 °C (292.9 K) and a standard deviation of around 

8.4 °C (8.4 K), indicating that the data include extremely cold and hot weather conditions. 

Yet, a few variables may not represent a wide range of meteorological conditions.  For 

example, the Bowen ratio ranges from 0.470 to 0.730, which implies a wet surface over 

most of the Atlanta region.  This surface condition is likely reasonable due to the abundance 

of temperate forests and grasslands in the Atlanta metropolitan area (Nowak and 

Greenfiled, 2012; Park and Guldmann, 2020) as compared to other metro areas in the U.S.  

Hence, the link screening model developed based on the meteorological processor data for 

Georgia may need to be revised before being applied to regions with significantly different 

meteorological conditions. 
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Table 7 – Descriptive Statistics of Meteorological Variables 

Variab

les 
Description Min. Max. Mean 

Standard 

Deviation 

H Sensible heat flux (W/m2) -64.0 228.1 34.0 63.5 

temp 
Reference temperature on ground 

surface (K) 
264.2 311.4 292.9 8.4 

u* Surface friction velocity (m/s) 0.033 1.515 0.203 0.114 

w* Convective velocity scale (m/s) 0.015 2.285 1.169 0.497 

Zic 

Height of convectively-generated  

boundary layer, or mixing height 

(m) 
2.0 2,664.0 843.5 545.8 

Zim 
Height of mechanically-generated 

boundary layer (m) 
14.0 3,999.0 245.8 204.0 

VPTG 

Vertical potential temperature 

gradient  

above the convective mixing 

height (K/m) 

0.005 0.034 0.007 0.004 

L Monin-Obukhov length (m) -8,888.0 8,888.0 -9.5 318.6 

z0 Surface roughness length (m) 0.012 0.091 0.031 0.017 

B0 Bowen ratio 0.470 0.730 0.599 0.130 

R Albedo 0.150 1.000 0.624 0.388 

Ws Reference wind speed (m/s) 0.0 22.7 2.8 1.6 

Wd 
Reference wind direction 

(degrees) 
0.0 360.0 184.0 106.7 

zref Reference height for wind (m) 10.1 10.1 10.1 0.0 

ztemp 
Reference height for temperature 

(m) 
2.0 2.0 2.0 0.0 

ipcode 
Precipitation type code  

(0=none, 11=liquid, 22=frozen) 
- - - - 

pamt Precipitation rate (mm/hour) 0.0 70.6 0.1 1.2 

rh Relative humidity (percent) 7.0 100.0 70.9 20.7 

pres 
Station atmospheric pressure 

(mb) 
971.0 1,034.0 1,011.9 5.1 

ccvr Cloud cover (tenths) 0.0 10.0 3.4 4.1 
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5.2.1.3 Sample Selection 

A large number of random samples are needed to train and test the supervised link-

screening (SLS) classifier. These random samples should include the dependent variable 

(i.e., classification of each link as significant versus insignificant pollutant contributor for 

each link-receptor pair) and all relevant classification variables expected to affect model 

predictions. A spatially random sample of roadway links is first selected from the Atlanta 

network. A random set of receptors is generated over x- and y-coordinate space using a 

random point generator within a geographic bound. A random pairing process was then 

used to generate 79,328 link-receptor pairs for analysis. About 70% of the sample sets (i.e., 

55,530 sample sets) are used to train the classifier, and the remaining 30% is used for model 

verification. 

5.2.1.4 Pollutant Concentrations 

AERMOD predicts the PM2.5 receptor concentration for each link-receptor pair in the 

random sample. The screening option embedded in AERMOD is used for this dispersion 

modeling, so that AERMOD forces the model calculations to represent values for the 

plume centerline, regardless of the source-receptor-wind direction orientation (USEPA, 

2016). In other words, the AERMOD screening option internally adjusts the source-

receptor-wind direction orientation to derive the highest predicted air pollutant 

concentrations for the link-receptor pair, and thereby returns the highest concentration 

based on the worst hourly meteorological condition for the year. This worst-case hourly 

meteorological condition identified by AERMOD is used as the pollutant concentration 

value for developing the link screening classifier. Because the AERMOD screening option 
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is likely to overestimate the contribution of roadway links to any receptors’ predicted 

pollutant concentrations, links screened as non-significant under the worst-case 

meteorological scenario should have even lesser impact under more favorable 

meteorological scenarios (i.e., scenarios with greater dispersion). The urban population 

parameter is required in AERMOD to select the population-dependent urban boundary 

layer height. During the AERMOD dispersion modeling process, the urban population 

parameter is randomly varied, ranging from 50,000 (small city) to 1,000,000 (large city), 

uniformly distributed in one-person unit increments. Finally, based on the link and receptor 

geometry data, the Euclidean distance between a specific link (geometric center) and a 

receptor is calculated. In summary, the output from the AERMOD-assisted dispersion 

modeling contains the worst-case hourly PM2.5 concentration for each sample set as a 

function of its corresponding link emission rates, meteorological conditions, and urban 

population. 

5.2.1.5 Link Screening Thresholds 

The binary dependent variable, or ‘class’ (i.e., identification of a link as significant versus 

insignificant for a given receptor), is generated from the resulting PM2.5 concentrations that 

are computed for each link-receptor pair. The link is defined as significant (and the 

dependent variable is set to 1) if the concentration contribution from the link at the receptor 

is greater than a specific pollutant concentration threshold (𝜹). The link is defined as 

insignificant (and the dependent variable is set to 0) if the concentration contribution from 

the link at the receptor is less than the pollutant concentration threshold (𝜹). In this study, 

the threshold value for link contribution to concentration is set to 0.1 μg/m3, and then to 

0.01 μg/m3, both of which are relatively small contributions at a receptor, given the 



 110 

predictive capability of microscale dispersion models. The former threshold value (𝜹 = 0.1 

μg/m3) was used in a previous study conducted by Shafi (2008), which employed 

CALINE4 (Benson, 1984) and set worst-case wind speed of one meter per second 

(concentration outputs are automatically rounded by CALINE4 to one decimal place). The 

previous screening (Shafi, 2008) removed all links that contributed to a reported 

concentration impact of 0.0 μg/m3. The initial threshold value for this study was also set to 

0.1 μg/m3. A more stringent threshold value (𝜹 = 0.01 μg/m3) was then considered in this 

study as a more conservative rule for identifying insignificant links, given that AERMOD 

reports predicted concentrations beyond the first decimal place. 

5.2.2 Variable Selection 

In developing a parsimonious model, variable selection should be designed to obtain good 

performance (i.e., explanatory power) without including excess variables and overfitting 

the model. The variable selection for link significance classification was conducted through 

two main steps: 1) finding candidate variables that potentially affect PM2.5 concentrations, 

and 2) identifying a final set of variables through an iterative model calibration process. 

In the first step, three different approaches are considered in selecting candidate 

variables: logistic regression (LR) coefficients, feature importance rankings provided by a 

random forest (RF) classifier, and significances of variables identified in the literature. The 

binary LR model is generally used to predict the probability of a certain class of binary 

case (Greene, 2012; Washington, et al., 2011); in this study, whether the predicted 

concentration contribution is greater than the pre-defined threshold 𝜹. The statistical 

significance of coefficients of the explanatory variables of the LR model is used as criteria 
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for variable selection. The LR model was estimated using the routines contained in the R 

statistics software ‘glm’ library (R Core Team, 2017). The results in Table 8 show that link 

emission rate, distance between link and receptor, surface friction velocity, and mechanical 

mixing height parameters are statistically significant in predicting PM2.5 concentrations at 

the 90% confidence level. The signs of most of the significant coefficients are intuitively 

correct. For example, as the link source produces more PM2.5 emissions, the resulting PM2.5 

concentration impact increases. The PM2.5 concentration at the receptor decreases as the 

link source’s distance to the receptor increases. An increase in surface roughness length 

decreases PM2.5 concentration. However, the signs of some of the variables appeared to be 

counter-intuitive. For example, an increase in wind speed increased PM2.5 concentration. 

This trend may be attributed to the fact that some of the meteorological variables are highly 

correlated. In particular, the team found that the correlations among surface friction 

velocity, Monin-Obukhov length, mechanical mixing height, and wind speed were high 

(Pearson’s correlation coefficients among these variables are either less than -0.5 or greater 

than 0.5), as these variables are related to each other in AERMOD formulation (USEPA, 

2019b). Thus, these correlated variables need to be further investigated through a 

parsimonious variable selection process. 

The feature importance rankings provided by the RF classification were also used 

to assess the usefulness of each variable in identifying link significance, calculated by the 

Gini index from classification results (Archer and Kimes, 2008). Scikit-Learn, a machine 

learning library in Python (Pedregosa, et al., 2011), is used to apply the RF classifier. The 

results in Table 8 (in the “Variable Importance (from RF Classifier)” column) show that 

the link emission rate and the distance between link and receptor are the most important 
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features in estimating the PM2.5 concentration rates. The urban population (which impacts 

the AERMOD boundary layer height), surface roughness length, and wind speed are also 

identified as important in the feature importance rankings. These results are in line with 

the logistic regression results. 

An extensive literature review identified potential relationships between PM2.5 

concentrations and explanatory variables. The results are summarized in the “Literature 

Review” column in Table 8. In particular, the column “Expected Coefficient Signs” in 

Table 8 summarizes the impacts of explanatory variables on PM2.5 concentrations 

described in the literature: “positive” indicates that an increase in the variable value is 

expected to increase PM2.5 concentration, and “negative” indicates that an increase in the 

variable value is expected to decrease the PM2.5 concentration. For example, an increase in 

hourly PM2.5 emission from the link source tends to increase PM2.5 concentration (Liu and 

Kim, 2019a; Zhang, et al., 2018). On the contrary, an increase in the distance between the 

link and receptor should decrease the predicted PM2.5 concentration (Liu, et al., 2017; Wu 

and Niemeier, 2016; Igri, et al., 2011). The urban population input variable is used in 

AERMOD to account for the urban nighttime heat island effect, which generally increases 

the urban nighttime boundary layer mixing height and thus decreases observed 

concentrations (USEPA, 2019d).  Note that the AERMOD urban roughness option was not 

considered in this study because the option is not allowed for regulatory analysis (USEPA, 

2019d). 

The literature also revealed relationships between some of the meteorological 

variables and PM2.5 concentration. Igri, et al. (2011) investigated the variations in pollutant 

concentration patterns depending on the three surface parameters (surface roughness 
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length, albedo, and Bowen ratio). The research revealed that an increase in albedo or 

surface roughness length decreases pollutant concentration, while an increase in the Bowen 

ratio increases pollutant concentration. Some research emphasized the important role of 

sensible heat flux on pollutants concentration. Gamo, et al. (1994) concluded that an 

increase in sensible heat flux is related to an increase in convective mixing height, thereby 

lowering pollutants concentration, while USEPA (2019d) and Igri, et al. (2011) suggested 

that because the sensible heat flux is widely used in processing various surface parameters 

(e.g., albedo and Bowen ratio) as well as meteorological parameters (e.g., surface friction 

velocity, mixing height, and Monin-Obukhov length), the impact of sensible heat flux on 

PM2.5 concentrations may vary. Many journal articles suggested that surface temperature 

and wind speed are among the most important factors affecting pollutant concentration 

levels (Zhang, et al., 2015; Tecer, et al., 2008; Akpinar, et al., 2008; Lin, et al., 2015; 

Zhang, et al., 2018), suggesting that increases in surface temperature and wind speed tend 

to reduce pollutant concentrations. In addition, research revealed that some variables 

(including vertical potential temperature gradient, relative humidity, station pressure, and 

cloud cover) have a positive impact on PM2.5 concentration, while mixing height and 

precipitation rate have a negative impact (Hien, et al., 2002; Tecer, et al., 2008; Lin, et al., 

2015; Zhang, et al., 2015; Akpinar, et al., 2008; Zhang, et al., 2018). 

An extensive literature review was conducted to provide a comprehensive overview 

of the fundamental relationship between various dispersion parameters and pollutant 

concentrations.  The effect and significance of the introduced variables are summarized in 

Table 8.  This overview helps limit meaningful variables for link screening.  At the same 

time, an appropriate variable selection for link screening also requires an understanding of 
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the technical formulation of AERMOD.  In the AERMOD formulation, some of the 

variables are interconnected and derived from each other (Cimorelli et. al., 2005; USEPA, 

2019d).  For example, sensible heat flux depends on surface characteristics such as Bowen 

ratio (indicator for surface moisture), implying that the increase in Bowen ratio (i.e., dry 

condition) leads to the increase in sensible heat flux.  When the variables are correlated, 

one of those variables with an overriding effect may be selected over the other variables. 

In the second step of parameter screening, the candidate variables identified in the 

first step are evaluated in light of the literature review and the technical formulation of 

AERMOD to select a final set of explanatory variables. This process iteratively developed 

candidate LR models using multiple combinations of the candidate variables until a final 

model that only included those coefficients that were statistically significant with correct 

signs (corresponding to the column “Expected Coefficient Signs” in Table 8) were 

identified. The final LR model result is summarized in the column labeled “Logistic 

Regression for Selected Variables” in Table 8. This process helped resolve the potential 

multi-collinearity problem noted for some of the variables (e.g., wind speed, surface 

friction velocity, sensible heat flux, and Monin-Obukhov length), by selecting the most 

representative variable among them. For example, the final variable set only includes wind 

speed, excluding its correlated variables, and the coefficient sign was negative as expected. 

Based on this parsimonious variable selection processes, six variables were selected for 

use in the final link-classification model, as listed in the column “Selected in Final Model” 

in Table 8. The final variables include: 1) link emission rate, 2) distance between link and 

receptor, 3) urban population, 4) sensible heat flux, 5) surface roughness length, and 6) 

reference wind speed. 
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Table 8 – Results of Variable Selection Models 

Variables 

Step 1: Identifying Candidate Variables 
Step 2: Selection of Final 

Variable Set 

Logistic Regression 

for All Considered 

Variables 
Variable 

Importanc

e (from RF 

Classifier) 

Literature Review 

Selected as 

Candidate 

Variables 

Logistic Regression 

for Selected 

Variables Selected 

for Final 

Model 
Coefficien

ts 
Z-score 

Expected 

Coefficie

nt Signs 

References 
Coefficient

s 
Z-score 

(Intercept) 33.280 0.668 - - - - 1.538 10.869 - 

Link emission rate 

(grams/hour)1 
1.005 50.319 0.318 Positive 

Liu and Kim (2019); 

Zhang, et al. (2018)  
Yes 0.992 50.555 Yes 

Distance between link 

and receptor (km) 
-8.557 -46.826 0.396 Negative 

Liu, et al. (2017); 

Wu and Niemeier 

(2016); Igri, et al. 

(2011) 

Yes -8.427 -47.103 Yes 

Urban population 

(million)2 
-0.168 -1.428 0.034 

Positive 

or 

negative 

USEPA (2018b) Yes -0.151 -1.296 Yes 
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Sensible heat flux 

(W/m2) 
0.023 1.039 0.021 

Positive 

or 

negative 

Gamo, et al. (1994); 

Igri, et al. (2011); 

USEPA (2019b) 

Yes 0.062 3.921 Yes 

Surface friction 

velocity (m/s) 
-13.780 -2.602 0.021 Positive 

Donateo and Contini 

(2014) 
Yes - - No 

Convective velocity 

scale (m/s) 
-31.280 -0.698 0.001 - - No - - No 

Vertical potential 

temperature gradient 

above the convective 

mixing height (K/m) 

35.510 0.657 0.000 Positive Hien, et al. (2002) No - - No 

Height of convectively 

generated mixing 

height (m) 

-0.015 -0.365 0.000 Negative Liu and Kim (2019) No - - No 

Height of mechanically 

generated mixing 

height (m) 

-0.008 -2.190 0.022 Negative Liu and Kim (2019) Yes - - No 

Monin-Obukhov length 

(m) 
0.000 1.284 0.025 - - Yes - - No 

Surface roughness 

length (m) 
-1.101 -1.580 0.024 Negative Igri, et al. (2011) Yes -4.414 -8.549 Yes 



 117 

Bowen ratio -0.532 -2.969 0.017 Positive Igri, et al. (2011) Yes - - No 

Albedo 0.249 1.640 0.017 Negative Igri, et al. (2011) Yes - - No 

Reference wind speed 

(m/s) 
1.149 5.367 0.022 Negative 

Zhang, et al. (2015); 

Tecer, et al. (2008); 

Akpinar, et al. 

(2008); Zhang, et al. 

(2018) 

Yes -0.241 -2.022 Yes 

Reference height for 

wind (m) 
0.029 0.393 0.001 - - No - - No 

Reference temperature 

on ground surface (K) 
0.005 0.974 0.024 Negative 

Zhang, et al. (2015); 

Tecer, et al. (2008); 

Akpinar, et al. 

(2008); Zhang, et al. 

(2018); Lin, et al. 

(2015) 

Yes - - No 

Precipitation type 

11=liquid 
-0.409 -2.019 0.001 - - Yes - - No 

Precipitation type 

22=frozen 
0.060 0.050 0.000 - - No - - No 

Precipitation amount 

(mm/hour) 
0.059 0.816 0.001 Negative 

Tecer, et al. (2008); 

Lin, et al. (2015) 
Yes - - No 
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Relative humidity (%) 0.000 0.010 0.021 Positive 

Zhang, et al. (2015); 

Tecer, et al. (2008); 

Akpinar, et al. 

(2008) 

Yes - - No 

Station pressure (mb) -0.010 -2.999 0.022 Positive 

Akpinar, et al. 

(2008); Zhang, et al. 

(2018) 

Yes - - No 

Cloud cover (tenths) -0.011 -1.313 0.008 Positive Tecer, et al. (2008) Yes - - No 

1 Note that the variable for link emission rate is a mass emission rate from a link source (grams/hour) rather than mass flux rate 

(grams/meter2/hour).  Although the mass flux rate may better explain predicted concentrations when wind is perpendicular to the road, 

this study adopted the mass emission rate because the mass emission rate may be better for explaining predicted concentrations in 

connection with road geometry and wind direction.   

2 Note that AERMOD processes a continuous value for the urban population to calculate urban-rural temperature difference and 

nocturnal urban boundary layer height (USEPA, 2019d). 
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5.2.3 Model Development 

Several supervised machine-learning models are applied to identify significant and 

insignificant links as a function of the six variables selected for model development as 

outlined above. The applied models include logistic regression (LR), regression tree (RT), 

random forest (RF), support vector machine (SVM), adaptive boosting (AdaBoost), and 

neural network (NN). All of these models are widely used for classification in computer 

science and industry. LR is estimated by the R statistics software (R Core Team, 2017), 

and the rest of the models are estimated by Scikit-Learn in Python (Pedregosa, et al., 2011). 

The theoretical background of LR was described earlier. Here, LR is used to 

classify the links with only the selected variables. The probability of being a significant 

link, P, is modeled by LR, and the predicted label is determined by P: significant link if 

𝑃 ≥ 0.5, and insignificant link if otherwise. 

RT is one of the most widely used classification techniques that generally take a 

binary classification outcome to construct a ‘decision tree’. The tree-structured 

classification system consists of a set of attributes that splits the data through a binary 

partition, thus generating two resultant regions (Quinlan, 1986). This approach is attractive 

because it provides a symbolic representation that helps human interpretation 

(Camdeviren, et al., 2007). It should be noted that the RT model in this study utilizes a 

different set of meteorological variables through a more parsimonious variable selection 

process, compared to the older model presented in Shafi (2008). 

RF is a supervised ensemble classifier that is a collection of individual tree 

predictors. Each tree depends on the values of a random vector sampled independently and 
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with the same distribution for all trees in the forest (Breiman, 2001). Each tree in the 

ensemble is trained on a random subset of the training sample. This bootstrap aggregation 

(or “bagging”) approach makes the RF classifier less sensitive to the quality of training 

samples and to overfitting than other machine learning models (Breiman, 2001; Belgiu and 

Drăguţ, 2016). 

SVM is also one of the widely used classification algorithms that seek a separating 

hyperplane that is a maximal margin classifier with respect to training data (Yuan and 

Cheu, 2003; Hastie et al., 2009a). In SVM, to prevent the model from overfitting the data, 

and to make the model less error-prone in the training process, it is common to adjust two 

parameters: cost parameter C and a kernel parameter γ (Hsu, et al., 2003). In this study, the 

optimal C and γ are determined by a k-fold cross-validation procedure, and the procedure 

was conducted using ‘Optunity,’ a Python library supporting SVM modeling in the Scikit-

Learn (Claesen, et al., 2014). The optimal C was estimated to be 83.8 and 96.7 for 𝜹 = 0.1 

𝜇g/m3 and 𝜹 = 0.01 𝜇g/m3, respectively, and the optimal γ was estimated to be 0.181 and 

0.419 for 𝜹 = 0.1 𝜇g/m3 and 𝜹 = 0.01 𝜇g/m3, respectively. 

AdaBoost is an algorithm introduced to remedy binary class problems identified by 

Freund and Schapire (1997). The AdaBoost algorithm is an iterative procedure that tries to 

approximate a Bayes classifier, by combining many weak classifiers (Hastie, et al., 2009b; 

Shafique and Hato 2015). AdaBoost has been particularly successful when applied to 

binary classification problems (Hastie, et al., 2009b). While the AdaBoost algorithm can 

be implemented within various machine learning models, this study used a decision tree-

based AdaBoost algorithm, known as the “best off-the-shelf classifier” (Breiman, 1996). 
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Neural Networks (NNs) employ a supervised learning algorithm based on the 

concept of extracting linear combinations of inputs as derived features, and then modeling 

the target as a nonlinear function of these features (Hastie, et al., 2009a). There are several 

implementations of NNs; the Multi-Layer Perceptron (MLP), Convolutional Neural 

Networks, and Recurrent Neural Networks are among the most commonly used NNs. This 

study used the MLP that is suitable for classification prediction problems where inputs are 

assigned to a class or label (Montavon, et al., 2012). The NN with MLP is modeled with 

an input layer, a hidden layer, and an output layer of neurons. The input data are scaled and 

transformed to a zero to one range using 
𝑥𝑖−min (𝑥)

max(𝑥)−min (𝑥)
, where x is equal to one when max(x) 

= min(x). From the empirical analysis, the study used two hidden layers with twenty 

neurons for the first layer and five for the second layer. 

5.2.4 Model Results 

The performance and prediction accuracy of the classification models for link screening 

(i.e., properly identifying the links significant or insignificant) are compared. Twelve 

classification models (the six models for each threshold value, 𝜹 = 0.1 𝜇g/m3 and 𝜹 = 0.01 

𝜇g/m3) are trained and tested for prediction accuracy using the 79,328 receptor-link pairs 

that were randomly selected from the Atlanta Metropolitan area. Table 9 summarizes the 

overall accuracy (OA) of each of the link screening models. The results demonstrate that 

the developed classification models are successful at identifying significant and 

insignificant links, with an overall accuracy of greater than 95% in all cases. Moreover, the 

results show that the tree-based models (RF and AdaBoost), outperformed all other 

classifiers by yielding an overall prediction accuracy of over 97% for both threshold values.  
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While the difference in OA between RF and AdaBoost is probably still acceptable 

(97.7% - 99.0% versus 97.4% - 98.9%), the RF showed slightly better performance in 

identifying significant links than AdaBoost (88.2% - 95.4% versus 80.3% - 91.9%). 

Considering that misclassifying significant links as insignificant may result in an 

underestimation of pollutant concentrations, the RF model seems to be a better alternative 

than the AdaBoost model. It is noteworthy that the OA of the RT model presented in Shafi 

(2008) was only about 88%, which is much lower than the models that are developed and 

presented in this dissertation. This is primarily because the previous model used an 

arbitrary set of worst-case meteorological variables for dispersion modeling, limited wind 

speeds to one meter per second, and used CALINE 4 model outputs that were necessarily 

constrained to one decimal place by the model outputs. Hence, the older model presented 

in Shafi (2008) may have excluded many potentially significant links that the newer models 

include. On the other hand, as a screening tool used to identify whether a violation of an 

ambient air quality standard is likely to occur, the older screening tool may perform 

acceptably (with much lower computational cost). 
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Table 9 – Overall Prediction Accuracy of Link Screening Models 

Classification Model 

Actual and Predicted Classes Prediction Accuracy 

Sa ; Sp  

(A) 

Sa ; ISp 

(B) 

ISa ; Sp 

(C) 

ISa ; ISp 

(D) 

Significant Links 

A/(A+B) 

Insignificant 

Links 

D/(C+D) 

Overall 

(A+D)/(A+B+C+D) 

𝜹 = 0.1 

𝝁g/m3 

Logistic 

Regression 
619 280 74 22,825 68.9% 99.7% 98.5% 

Regression Tree 618 284 81 22,815 68.5% 99.6% 98.5% 

Random Forest 745 100 133 22,820 88.2% 99.4% 99.0% 

Support Vector 

Machine 
574 291 52 22,881 66.4% 99.8% 98.6% 

Adaptive 

Boosting 
682 167 101 22,848 80.3% 99.6% 98.9% 

Neural Network 730 136 106 22,826 84.3% 99.5% 99.0% 

𝜹 = 0.01 

𝝁g/m3 

Logistic 

Regression 
4,071 596 262 18,869 87.2% 98.6% 96.4% 

Regression Tree 4,108 497 551 18,642 89.2% 97.1% 95.6% 
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Random Forest 4,573 222 332 18,671 95.4% 98.3% 97.7% 

Support Vector 

Machine 
3,601 1049 129 19,019 77.4% 99.3% 95.1% 

Adaptive 

Boosting 
4,272 375 246 18,905 91.9% 98.7% 97.4% 

Neural Network 4,053 711 265 18,769 85.1% 98.6% 95.9% 

Here: 

Sa refers to an actual significant link; Sp refers to a predicted significant link; 

ISa refers to an actual insignificant link; ISp refers to a predicted insignificant link. 

A: number of significant links with a prediction as significant (good prediction). 

B: number of significant links with a prediction as insignificant (bad prediction). 

C: number of insignificant links with a prediction as significant (bad prediction). 

D: number of insignificant links with a prediction as insignificant (good prediction). 
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Figure 31 illustrates the example of roadway links that are identified by the RF 

model as significantly contributing to the PM2.5 concentration at one receptor site in 

downtown Atlanta. Without link screening, the whole set of roadway links (about 161,188 

links), as shown in Figure 31(a), needs to be run to calculate the pollutant concentrations 

at a single receptor. However, after applying the link-screening model, only those links that 

have an impact greater than the threshold on the receptor are selected and considered in the 

concentration calculations, as shown in Figure 31(b). Refining the threshold value from 𝜹 

= 0.1 𝜇g/m3 to 𝜹 = 0.01 𝜇g/m3 increases the number of significant link sources for each 

receptor, and these links spatially surround the receptor without a clear pattern, as the link’ 

contribution is a function of many variables (Figure 31(c)). In the case of Metro Atlanta’s 

road network, on average, the RF model with a threshold of 𝜹 = 0.1 𝜇g/m3 selected 23 links 

(0.014% of all links), and with a threshold of 𝜹 = 0.01 𝜇g/m3, RF selected 175 links 

(0.108% of all links). 
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Figure 31 – Location of the Significant Links for a Receptor as Identified by 

Random Forest 

5.3 Case Study 

The case study focuses on the estimation of PM2.5 concentrations in the Metro Atlanta area. 

The concentration estimation results that are obtained with and without the link-screening 

model integrated with AERMOD are compared with regard to total computation time and 

similarity in concentration outcomes. As expected, conducting mobile source dispersion 

modeling for the entire Metro Atlanta area roadway network is computationally 

formidable. Therefore, this study selected two subareas in Metro Atlanta (Figure 33(a)): 
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downtown Atlanta and northwest Atlanta. Downtown Atlanta has a dense highway and 

street network (35,234 links in an area of 878 km2) and heavy traffic volumes. Whereas, 

northwest Atlanta has less-congested traffic on fewer links (20,893 links in an area of 1,193 

km2). The air quality dispersion model is first applied in the two case study areas using all 

existing links in the subarea (hereafter referred to as a ‘whole-link’ model), and then with 

the subset of links selected by the link screening model as being significant (‘reduced-link’ 

model). A set of 2,000 receptors is randomly placed in x- and y-coordinate space for 

Downtown Atlanta (2,000 receptors and 35,2234 links) and Northwest Atlanta (2,000 

receptors and 20,893 links), respectively. As a result, six different model specifications are 

created: 

• Downtown Atlanta, whole-link model  

• Downtown Atlanta, reduced-link model, 𝛿 = 0.1 µg/m3 

• Downtown Atlanta, reduced-link model, 𝛿 = 0.01 µg/m3 

• Northwest Atlanta, whole-link model 

• Northwest Atlanta, reduced-link model, 𝛿 = 0.1 µg/m3 

• Northwest Atlanta, reduced-link model, 𝛿 = 0.01 µg/m3 

The PM2.5 link emissions for the links in each subarea are first extracted from the 

Metro Atlanta network (see the earlier section “Link Emissions”). The links are coded for 

use with AERMOD and link emissions are converted to mass flux rates (grams/m2/s). The 

reduced-link model selects the significant links associated with each of the 2,000 receptors, 

and stores the link-receptor pairs in the database for modeling. To speed up AERMOD 

dispersion modeling, input files are separately generated for each link-receptor 
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combination so that the AERMOD modeling can be implemented with Georgia Tech’s 

PACE supercomputing cluster (submitting multiple jobs simultaneously). The AERMOD 

input files prepared for the whole-link model contain the information about the 

concentration impact of all of the links (e.g., emission rates, geometry) on each of 2,000 

receptors. In contrast, the AERMOD input files created for the reduced-link model only 

contain the information of the selected links for each receptor. 

Figure 32 shows the correlation of the predicted annual average PM2.5 concentration 

results for the reduced-link and whole-link models, where 𝛿 denotes a threshold value used 

in the reduced link models and MSE denotes mean squared error. The results show that 

their correlations are extremely high, with 𝑅2 values ranging from 95.8% to 97.3%, with 

the fitted slope ranging from 0.9472 to 0.9999, indicating that the reduced-link models can 

approximate the PM2.5 concentrations predicted by the whole-link models. The mean 

squared errors (MSEs) between the PM2.5 concentrations predicted by the reduced-link and 

whole-link models only ranged from 0.084 µg/m3 to 0.272 µg/m3, on a case-by-case basis. 

This finding suggests that the PM2.5 emissions from some significant link sources 

predominantly determine the modeled PM2.5 concentrations at the receptor. 
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Figure 32 – Comparison of Annual Average PM2.5 Concentrations by Different 

Model Specifications 

 

The results also show that the prediction power of the reduced-link models is high 

and results are comparable to those of the whole-link models, regardless of the parameters 

considered. As expected, the analyses also indicate that a further increase in estimation 
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precision can be achieved by using a lower threshold value in identifying insignificant 

links, which comes with an accompanying cost of increased modeling time. When more 

links are selected as being significant and included in AERMOD modeling due to the lower 

threshold (𝛿 = 0.01), the predicted PM2.5 concentrations become more closely align with 

the predictions of whole-link models. Furthermore, Figure 33 shows that the spatial 

distributions of the estimated annual average PM2.5 concentration profiles across the two 

study areas are very similar across the reduced-link and whole-link models. Figure 33(b) 

and (c) display contour plots representing the PM2.5 concentrations predicted for the 2,000 

receptor sites. The proposed reduced-link model is especially effective in predicting high 

pollutant areas in that both model settings identified the same PM2.5 hot spots. 
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Figure 33 – Predicted Annual Average PM2.5 Concentration Profile of Study Area 
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Table 10 summarizes the AERMOD simulation run-time for each model scenario. 

The results show that the AERMOD run-time of the reduced-link models is dramatically 

reduced compared to that of the whole-link model. The speed increase results from the 

significant reduction in link-receptor pairs that need to be processed in AERMOD. Note 

that the time for identifying significant links based on the RF model is much smaller than 

the AERMOD execution time. For example, in the case of the reduced-link model with δ 

= 0.1 µg/m3 for downtown Atlanta, the link screening takes an average 57 milliseconds, 

while the AERMOD execution takes about 32 seconds (57 milliseconds:32 seconds = 

1:561). The significant reduction in dispersion modeling run-time is therefore due 

significantly to the decrease in AERMOD simulation run-time. Specifically, the AERMOD 

run-time of the reduced-link model with 𝛿 = 0.1 µg/m3 for downtown Atlanta is 511 times 

faster than the whole-link model (16,354 seconds vs. 32 seconds). The reduced-link model 

processed 1,258 times fewer links (35,234 links vs. 28 links) during the dispersion 

modeling than the whole-link model.  

The results also show that the AERMOD run-time reductions from the reduced-

link models for downtown Atlanta are much greater than those for northwest Atlanta. The 

AERMOD run-times for the reduced-link models for downtown Atlanta were 113 to 511 

times faster than those for the whole-link models, while the AERMOD run-times for the 

models for northwest Atlanta (where roadway density is lower) were only 92 to 372 times 

faster. This finding suggests that the reduced-link model may decrease AERMOD run-time 

more for areas with dense road networks, than for suburban road networks. For example, 

the reduced-link model with 𝛿  = 0.01 µg/m3 selected 0.605% of the links existing in 
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downtown Atlanta (213 links among 35,234 links), while the same model for northwest 

Atlanta selected 0.637% of the available links (133 links among 20,893 links). 

In addition, link screening reduces data storage requirements by decreasing 

AERMOD input file sizes. As presented in Table 10, the AERMOD input file size for the 

whole-link model for downtown Atlanta is 26,273 kilobytes for one receptor case, leading 

to 52 gigabytes for 2,000 receptors. In contrast, the average input file size for the reduced-

link model with δ = 0.1 µg/m3 for the same area is only 26 kilobytes, implying that the data 

storage requirement is reduced by a factor of 1,000. The significant decreases in input file 

size leads to an additional reduction in dispersion modeling execution time. A dispersion 

modeling covering a large geographic area often necessitates the use of distributed 

computing, as is the case in this research, and smaller file sizes help reduce the data 

transferring time significantly between local computer and distributed computing clusters. 
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Table 10 – AERMOD Simulation Results 

Area Models 

Average 

Number of 

Links 

Average Link 

Screening Time 

(milliseconds) 

Average 

AERMOD 

input file size 

(kilobytes) 

Average 

AERMOD 

Run-time 

(seconds) 

Run-time 

Ratio (whole-

link/RF) 

Downtown 

Atlanta 

Whole-link 35,234 10 26,273 16,354 - 

RF (𝛿 = 0.1 µg/m3) 28 57 26 32 511 

RF (𝛿 = 0.01 µg/m3) 213 61 163 145 113 

Downtown 

Atlanta 

Whole-link 20,893 9 15,586 11,526 - 

RF (𝛿 = 0.1 µg/m3) 17 49 18 31 372 

RF (𝛿 = 0.01 µg/m3) 133 54 105 125 92 

Note: 𝛿 denotes a threshold of the reduced-link model. The average link screening time includes the time for identifying significant 

links through the developed RF models and generating the resulting AERMOD input files. 
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5.4 Summary of Findings 

Enhancing the computational efficiency of regional-scale near-road air quality analysis is 

critical, if these models are to become feasible for assessing the air quality impact 

assessment of large and complex transportation projects. Not all roadway links contribute 

significantly to the pollutant concentration level at every receptor. The number and location 

of links that significantly influence receptor concentrations vary in space and time as a 

function of roadway geometry, mobile source emissions, and meteorological conditions. 

Prior regional modeling applications of microscale dispersion models have typically 

included all link-receptor combinations in dispersion model iterations; however, this brute-

force approach results in high computational costs. As an innovative way to significantly 

improve modeling efficiency, this study developed a supervised link screening (SLS) 

approach to eliminate roadway links that do not contribute significantly to predicted 

receptor concentration from these analyses. The SLS presented in this paper and applied to 

an Atlanta regional case study was derived from a supervised machine learning Random 

Forest (RF) classification model. The final variable set includes six variables used for the 

link-screening model, including link emission rate, distance between link and receptor, 

urban population, and some meteorological variables. The classification results showed 

that the developed RF model yielded a high classification accuracy (greater than 95%). 

Using refined AERMOD model variables to develop an RF screening model provided 

much higher classification accuracy in identifying significant link-receptor pairs than did 

a previous link screening method that employed regression tree analysis with CALINE 4. 

To demonstrate the methodology and its computational performance in detail, the 

RF classifier is applied to AERMOD case studies for PM2.5 concentrations in downtown 
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Atlanta (urban) and northwest Atlanta (suburban). The precision and efficiency of the 

dispersion modeling integrating the developed RF classifier (‘reduced-link’ model) are 

compared to the dispersion modeling conducted without a link-screening process (‘whole-

link’ model). The results showed that the AERMOD run-time of the reduced-link models 

is greatly decreased (a 98.9% - 99.8% reduction in model run time) compared to that of the 

whole-link model, primarily because the number of links processed during the AERMOD 

simulation decreased significantly. 

In terms of estimation precision, the results also showed that the PM2.5 

concentration estimates obtained with the reduced-link models are close to those obtained 

with the whole-link models, with correlations ranging from 95% to 97%. The reduced-link 

model is especially efficient for identifying areas with potentially high pollutant 

concentrations that may require more detailed hot-spot analysis. A lower contribution cut-

off threshold value for labeling significant versus insignificant links (𝛿 = 0.1 µg/m3 vs. 𝛿 

= 0.01 µg/m3) turned out to be very helpful in increasing the accuracy of predicted pollutant 

concentrations. Future research may need to assess the trade-off between estimation 

precision and computational cost with respect to the selection of the threshold parameter. 

One of the caveats in this research is that the link screening model was developed 

using State of Georgia meteorological data, and this screening model may need to be re-

redived for use in other regions (as meteorological factors do affect the link screening rules). 

A careful selection of meteorological data that provide reasonable ranges for individual 

variables for each study area is also recommended. The basic modeling framework and 

approaches of the link screening model presented in this paper remain applicable to other 

traffic-induced primary pollutants, such as NO2, with appropriate model parameter 
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development. While the link screening model presented in this study proved to be effective 

in selecting a compact set of significant links and thereby reducing computation time, the 

series of modeling procedures required to implement the model may be difficult for many 

practitioners to reproduce. Future research may consider developing simpler link screening 

rules/algorithms or data requirements (e.g., traffic volumes and speeds, weather 

observation data, etc.). For example, land-use regression (LUR) modeling, a statistical 

modeling approach might be used to estimate air pollution levels or ambient temperature 

measured at a set of geographic points, might be used as a substitute for screening models, 

particularly when available input data are limited. 

The link screening methodology presented in this paper has significant potential to 

help researchers and practitioners implement air quality dispersion modeling for 

environmental assessment of regional-scale transportation projects at a much lower 

computational cost. The methodology is also expected to make it much more feasible to 

compare the air quality impacts across complex project scenarios and for transportation 

development alternatives over large geographic areas. All these aspects may be of interest 

to a broad readership including metropolitan planning organizations and practitioners 

engaged in near-road air quality modeling for transportation and air quality conformity and 

for environmental analysis under the National Environmental Policy Act. 
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CHAPTER 6. STREAMLINED DATA PROCESSING FOR 

REGIONAL-LEVEL MICROSCALE DISPERSION MODELING 

This chapter is adopted from “Kim, D., Liu, H., Xu, X., Lu, H., Wayson, R., Rodgers, 

M.O., and Guensler, R. (2020). Streamlined Data Processing for Regional Scale 

Applications of Line Source Dispersion Modeling via Distributed Computing. Presentation 

at the 99th Transportation Research Board (TRB) Annual Meeting.” 

6.1 Introduction 

Motivated by the challenges encountered in the previous efforts, this study develops an 

advanced modeling framework for a regional-level microscale dispersion modeling that 

integrates a high-performance emission rate lookup system known as MOVES-Matrix, 

employs innovative link screening and receptor locating methods that further accelerating 

model implementation, and provides flexibility for system use with multiple dispersion 

models. The research team has developed linkages for all of USEPA’s recommended line 

source dispersion models, including AERMOD Version 19191 (USEPA, 2019b), 

CALINE4 (Benson, 1984), and R-LINE (Snyder and Heist, 2013b). This paper 

demonstrates the application with AERMOD and R-LINE. 

MOVES-Matrix operates with a multidimensional array containing 90 billion energy 

use and emission rate outputs for each modeling region (where a region is defined by a 

specific fuel program and inspection and maintenance program) generated from more than 

146,000 MOVES model runs per region. MOVES-Matrix systematically iterates across 

specified ranges for all input variables, such that every combination of input variables that 
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affect energy use and emission rates is modeled. The comprehensive preprocessing of 

MOVES results allows users to query matrices to obtain applicable emission rates for any 

analysis, rather than having to run MOVES again. MOVES-Matrix queries produce exactly 

the same emission rates as running MOVES on a case-by-case basis, but these queries run 

more than 200 times faster than running MOVES to generate emission rates and project-

specific MOVES input files do not need to be prepared (Liu, et al., 2019b; Guensler, et al., 

2016). Using MOVES-Matrix boosts the computational speed of the model processes in 

conducting regional-level mobile source emissions calculations. The modeling system also 

integrates efficient receptor locating algorithms and link screening (to remove non-

significant source-receptor combinations from the modeling work) to provide additional 

savings in computational time associated with line source pollutant dispersion modeling. 

Finally, the system features a streamlined processor that automates individual modeling 

steps ranging from data preparation, travel demand model (TDM) connectivity, emissions 

calculations, and dispersion modeling, using a user-friendly interface with minimal data 

input requirements. As an application, this paper presents the model’s performance when 

applied to the 20-county Metropolitan Atlanta Region (hereafter referred to as Metro 

Atlanta), using MOVES-Matrix emission rates coupled with outputs from the Atlanta 

Regional Commission’s (ARC) activity-based travel demand model (ARC, 2017). 

6.2 Modeling Framework 

As illustrated in Figure 34, the streamlined structure of the system for regional-scale line 

source dispersion analysis consists of four main sections: scenario set-up, input data 

preparation, emissions calculations, and dispersion modeling. This modeling framework 

utilizes various data sources including the regional travel demand model (TDM) database, 
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meteorology, terrain, road geometry, local fleet operation data, and background 

concentrations, as shown in Figure 34. 

First, the regional TDM database is processed to produce link-level vehicle activity 

data (i.e., speed, volume, fleet composition) in the proper formats to be used in link-level 

emissions calculations. Second, the link-level vehicle activity data are linked to MOVES-

Matrix to obtain the applicable emission rates for each link. Finally, the estimated emission 

rates are converted to the dispersion model inputs (in the model’s applicable formats), and 

additional input parameters (e.g., meteorology, terrain, receptor locations) are also 

prepared. Because fine-resolution dispersion modeling for a large geographic area still 

requires substantial computational resources, the program is designed to use a distributed 

computing cluster (cloud computing resources). 

The modeling framework supports two types of dispersion modeling: screening 

dispersion modeling and standard dispersion modeling. Screening dispersion modeling can 

be used for predicting the worst-case pollutant concentrations. To this end, screening 

dispersion modeling assumes the worst-case link emission rate and meteorological 

scenarios. In contrast, standard dispersion modeling allows seasonal and hourly variations 

in link emission rates and meteorological conditions to predict the annual average 

concentrations conforming to NAAQS.  
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Figure 34 – Proposed Modeling Framework for Regional-level Microscale Dispersion Analysis 
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6.3 Data Preparation 

Regional-scale applications of microscale pollutant dispersion modeling require a variety 

of inputs for comprehensive analysis. The inputs include: regional travel demand model 

(TDM) outputs, link and receptor geometry, meteorology and terrain profile, local fleet and 

operation data, background pollutant concentrations, etc. Because many of these input data 

are related, and linking one dataset to another is often complex, the streamlined linkages 

among these diverse input datasets are of importance for efficient modeling are described 

in this section. 

6.3.1 Scenario Set-up 

Dispersion model input data sets can be prepared in advance for each scenario analysis. 

Each scenario considers the temporal and spatial scales of the project. For example, the 

temporal scale of analysis may consider the present and future calendar years in which the 

on-road fleet and traffic conditions, and therefore vehicle emissions, are affected by 

planned transportation projects. The pre-set temporal scenario is then used to prepare the 

required input datasets for subsequent analyses. For example, transportation modelers will 

query TDM model outputs for a scenario, obtain traffic volumes and operating conditions, 

specify on-road fleet compositions, prepare meteorology data, querying sub-sets of 

corresponding MOVES-Matrix emission rates, etc. In addition, the spatial scale for project 

analyses needs to be defined to consider the geographical areas where traffic conditions are 

expected to change over time due to implementing transportation projects. Similarly, the 

pre-set spatial scale is used to prepare various input dataset for the project area. 
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6.3.2 MOVES-Matrix 

MOVES-Matrix is a multidimensional array containing emission rate outputs obtained 

from the iterative MOVES model runs for all combinations of MOVES input variables that 

affect emission rate predictions. This process requires more than 146,000 MOVES runs to 

represent all emission and energy use rates for the Atlanta-region and was facilitated by 

the high-performance computing (HPC) cluster at Georgia Tech (Partnership for an 

Advanced Computing Environment (PACE)). The final MOVES-Matrix array for each 

modeling region contains more than 90 billion energy use and emission rates, which can 

be quickly queried and combined to generate on-road emission rates for any scenario 

analysis. MOVES-Matrix has proven its capability in estimating sub-regional and project-

level emission impacts at more than 200-times faster than traditional methods (Guensler, 

et al. 2016; Liu, et al. 2017; Xu, et al. 2016; Xu, et al. 2018a; Xu, et al. 2018b; Kim, et al. 

2019a; Kim, et al. 2019b). MOVES-Matrix is highly-desirable for regional-scale 

dispersion analysis, as it is capable of dealing with emissions calculations for numerous 

link sources under a variety of scenarios for seasonal and hourly variations in traffic 

operations and various meteorology conditions, fleet compositions, etc., without needing 

to create additional input files or to launch MOVES itself. This simple lookup system also 

helps minimize potential human errors in running MOVES for thousands of transportation 

links at a time. 

Because emissions are a complex function of many locally dependent variables, 

and because the MOVES model interface is somewhat complex and requires numerous 

inputs for a specific emissions scenario, a significant amount of time and effort (i.e., human 

labor) is normally required to pre-process MOVES and prepare MOVES input files for 
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traditional scenario analyses. All of this pre-processing time is eliminated in using 

MOVES-matrix, as MOVES has already been run for all combinations of input variables. 

In addition, running the MOVES model is time-consuming because calculations of 

emissions always begin with base emissions rates, and for each run, the data are internally 

adjusted for aspects such as temperature, humidity, and fuel property. This adjustment 

makes it difficult to use the MOVES model to assess large-scale transportation networks 

that experience dynamic changes in on-road fleets and operating conditions. Thus, this 

study uses the MOVES-Matrix modeling approach to take advantage of the operating mode 

bin approach employed inside the MOVES model (see Figure 35), and the fact that the 

model allows users to specify the fleet composition down to a single-vehicle source type. 

For example, the CO2 emission rate for the passenger trucks under the driving condition 

that operating mode bin is 25 and the vehicle speed ranges between 25 and 50 mph can be 

found through the MOVES-Matrix, which is approximately 4 grams per second. In this 

circumstance, because MOVES-Matrix contains all possible model input combinations for 

the selected regions and is well-structured based on MOVES input specifications, the users 

can easily query the desired MOVES emission rates (desirably using regular language 

scripts, e.g. Python, Java, C, etc.) from MOVES-Matrix arrays and obtain the exactly the 

same emission outputs that MOVES provides without ever having to launch MOVES. 

More details on the setup, implementation, and application of MOVES-Matrix can be 

found in Guensler, et al. (2016). 



 145 

 

Figure 35 – Example of MOVES CO2 Emission Rates by VSP Bin for Passenger 

Trucks (Model Year of 2016 in 2016) 

6.3.3 Geographic Input Data 

The spatial and geometric characteristics of roadway networks and receptors are a key 

factor in estimating the pollutant concentration profile. Because the proximity between 

road segments and receptor significantly influences the concentrations at a specific site, an 

optimal setting for receptor distribution is crucial for producing unbiased concentration 

estimates over the area of interest (Liu, et al., 2017; Wu and Niemeier, 2016; Guensler, et 

al., 2000). The modeling system incorporates a model to generate link geometry input files 

and proper receptor locations associated with the link geometry information. The program 

also integrates road grade information into the constructed road geometry as an elevation 

attribute to better estimate road grade contributions to link emissions, which has rarely 

been applied in previous regional-level microscale dispersion modeling (Liu, et al., 2019c). 

Finally, a built-in model feature converts the link-geometry and receptor location outputs 

to a format suitable for use in subsequent line source dispersion modeling. 
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6.3.3.1 Road Geometry 

The dispersion models (e.g., AERMOD, CALINE4, R-LINE) typically allow either 

Universal Transverse Mercator (UTM) coordinates or X- and Y-coordinates in meters, 

specified relative to any user-specified coordinate origin. Most state-government and city-

government agencies provide road geometry shapefiles, where each roadway link is 

represented by the coordinate information of a GIS-polyline. These road geometry data are 

defined in a specific geospatial coordinate reference system and usually need to be 

converted to a metric coordinate system suitable for each of the dispersion models. The 

conversion is made according to the input format requirements of each dispersion model. 

For example, R-LINE and CALINE4 require every link segment to be a straight-line, with 

coordinates representing the two link endpoints (network nodes). Therefore, the original 

road shapefile, which often includes polylines representing curved road segments with 

multiple nodes, must be transformed into a new shapefile by dividing each polyline into a 

set of straight lines. Furthermore, because the public release of CALINE4 only handles 20 

links in a single simulation run, multiple CALINE4 input files with each file containing up 

to 20 link segments are generated by automatically decomposing the entire road network. 

AERMOD supports various road geometry formats including line, polygon, and different 

shapes of area sources. The USEPA’s PM hot-spot guidance allows any of these options to 

be used for transportation projects (USEPA, 2015a). The modeling system developed as a 

part of this study utilizes the polygon option (Figure 36). Preparing roadway network 

geometries in proper formats for regional-scale dispersion modeling is usually a labor-

intensive and time-consuming process, and because each dispersion model requires 
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different input formats, the streamlining program developed for pre-processing of these 

networks significantly reduces modeling labor. 

 

Figure 36 – Example of Generating Link Geometry Data using GIS-Polyline 

6.3.3.2 Road Grade 

Based upon the previous empirical analysis, the integration of road grade with link 

geometry data (as described in the preceding section) is important in line source dispersion 

model implementation (Liu, et al., 2019c). Roadway elevation profiles and road grade 

distribution are produced at high-spatial-resolution from the Digital Elevation Model 

(DEM), obtained from the US Geological Survey (Liu, et al., 2018). The resulting road 

grade profile is a layer consisting of points containing road grade values placed 10 m apart 

along the roadway network. This point layer is then used to further subdivide modeled 
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roadway links into sub-link for every change in road grade by 1% or greater, from -15% to 

15%, as shown in Figure 37-(a). For example, the continuous portion of a road link where 

grade remains within a predefined 1% range (e.g., 1.5% ≥ Grade < 2.5%) becomes a new 

road segment (i.e., 2%). In the case of Metro Atlanta, each roadway link in the 203,000-

link ARC-ABM network is divided into an average of about six new modeling links, based 

upon road grade. Preliminary analysis of the impact of road grade on predicted PM2.5 

concentrations in downtown Atlanta showed that ignoring road grade is likely to result in 

biased PM2.5 concentrations across the area, particularly for potential concentration hot 

spots along the urban highways. The mean absolute error (MAE) in PM2.5 concentrations 

were estimated to be 2.2 µg/m3 in downtown Atlanta when compared to those estimated 

with road grade and those without, with a 200 m by 200 m grid space. Figure 37(a) 

illustrates the road geometry and grade distribution; Figure 37(b) shows the annual average 

PM2.5 concentration profile; and Figure 37(c) illustrates the difference in annual average 

PM2.5 concentration profiles between estimates with and without road grade information. 
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Note: PM2.5 concentrations were estimated based on ARC-ABM data using AERMOD. 

Figure 37 – Impact of Road Grade on Pollutant Concentrations (Downtown 

Atlanta) 
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6.3.3.3 Receptor Location 

Most previous studies for dispersion modeling have utilized gridded receptors with 

relatively low (e.g., 200 m by 200 m) resolution (see Zhai, et al., 2016; Wu, 2018; 

D'Onofrio, et al., 2016). The program presented in this study generates receptors that 

directly consider the road geometry across a metropolitan region at much finer spatial 

resolution. This approach places an increased density of receptors in areas of high road 

density to provide better predictions of pollutant sources and local area concentrations (all 

receptors are placed at a “human receptor” height of 1.5 m). The program also allows users 

to specify receptor resolutions for receptor installation at a specific distance interval along 

and adjacent to the roadway. Figure 38(b)-1 displays the receptors generated for downtown 

Atlanta. Receptors were placed at intervals of 100m along roadways, at 5-meters and 50-

meters from the roadsides. Receptors are precluded from falling on top of any roadway 

polygons. Another group of receptors is then placed at intervals of 200m, at 100-, 200-, 

400-, and 800-meters from the roadsides, again these receptors are precluded from falling 

onto roadway polygons. Finally, 1 km by 1 km gridded receptors are placed over the entire 

region. This receptor assignment mechanism, when used in dispersion modeling, yielded a 

much more precise understanding of the local PM2.5 concentrations (Figure 38(b)-2). 

Comparing the concentration profiles estimated with road geometry-based and gridded 

receptors shows that gridded receptors are likely to overestimate local exposure 

concentrations when receptors fall on top of (or immediately adjacent to) roadway 

polygons where high concentrations are predicted because these high values are spatially 

(linearly) averaged across the uniform low-density grid (proper spatial averaging requires 

application of non-linear weighting, based upon dispersion-related pollutant concentration 
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drop-offs with distance). Similarly, the models underestimate concentration fields when no 

receptors fall near roadway edges. The mean absolute difference between the 

concentrations from geometry-based and gridded receptor models was estimated as 

1.01µg/m3 for downtown Atlanta (Figure 38(c)). Because an increased number of receptors 

results in longer total processing time, identifying an optimal setting of receptor resolution 

and placement is warranted for predicting concentration profiles at desired precision while 

minimizing the total computational time. 
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Note: PM2.5 concentrations were estimated based on ARC-ABM data using AERMOD. 

Figure 38 – Annual Average PM2.5 Concentrations from Geometry-based and 

Gridded Receptor Models 
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6.3.4 Meteorology Data 

Meteorological condition data is one of the most important inputs in dispersion models. 

This meteorology data are commonly developed by state air agencies for use in AERMOD 

dispersion modeling (see an example of Georgia EPD, 2019). The meteorological files are 

normally processed using AERMET, AERSURFACE, and AERMINUTE, which are 

meteorological processors developed by USEPA, by taking surface and upper-air data 

provided by National Weather Service. The meteorological files contain a number of 

parameters explaining meteorological conditions across hours of the year (8,760 hours for 

365 days), including wind profile (Figure 39), temperature, humidity, etc. In general, 

analyses take at least one full year of meteorology data to determine annual average 

pollutant concentrations conforming to the NAAQS standard. Simplified meteorology data 

are also prepared by categorizing the full year of data into a number of representative 

meteorological hours (D'Onofrio, et al., 2016; Zhai, et al., 2016). In particular, this study 

developed a modeling tool that matches hourly meteorological information in the 

meteorological files with hourly travel activity data (e.g., speed and volume) to extract 

appropriate emissions rates. 
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Data source: Georgia EPD (2019) 

Figure 39 – Examples of Wind Rose Diagrams in Two Locations in Georgia, USA: 

Calendar Year of 2018 
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6.3.5 Others 

Previous research has demonstrated that vehicle fleet composition can have a significant 

impact on emission results, and these inputs should represent local conditions (Granell, et 

al., 2002; Liu, et al., 2017). MOVES represents vehicle fleet features using 13 vehicle 

source type and 31 applicable model years (age 0 - 30 from investigated calendar year). 

Agencies can prepare the vehicle composition with data from the MOVES default database, 

while a more detailed data can be retrieved from state motor vehicle registration data, or 

license-plate data transcribed from the video and matched to the motor vehicle registration 

database (Liu, et al., 2017). In this regard, the modeling system developed in this study is 

capable of translating diverse local fleet data to be matched with appropriate emissions 

rates in the MOVES-Matrix platform. 

Background concentrations are those emissions not from the project that also affect 

the project area. Under PM Hot-spot Guidance (USEPA, 2015a), background 

concentrations are combined with air quality modeling results to generate design values 

and determine project conformity. Ideally, background concentrations are determined by 

interagency consultation with state and local air quality agencies (USEPA, 2018), while air 

quality monitoring data can also be selected from USEPA’s AirData website 

(www.epa.gov/airdata/). 

Terrain conditions are also related to urban pollutant concentrations (Saide, et al., 

2011). For some of the dispersion models (e.g., AERMOD and R-LINE), the urban terrain 

conditions are input in the form of surface roughness length. The selection of surface 

roughness length can be made with Grimmond and Oke (1999) (Table 11). However, 

http://www.epa.gov/airdata/
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AERMOD set a default value of 1.0-meter surface roughness length, and USEPA 

addressed that any value for the urban roughness length other than 1.0 meter will be treated 

as a non-regulatory option. Thus, caution should be used when specifying a non-default 

urban roughness length, and the use of a non-default value should be clearly documented 

and justified (USEPA, 2018). 

Table 11 – Typical Urban Boundary Layer Parameters 

Urban surface 

form 

Mean building 

height (m) 

Displacement 

height (m) 

Surface 

roughness 

length (m) 

Low height and 

density 5 - 8 2 - 4 0.3 - 0.8 

Medium height 

and density 
7 - 14 3.5 - 8.0 0.7 - 1.5 

Tall height and 

density 11 - 20 7 - 15 0.8 - 1.5 

High rise > 20 > 12 > 2.0 

Source: Grimmond and Oke (1999) 
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6.4 Emissions Inventories 

The modeling system employs an advanced emissions modeling method for regional 

emission analysis using MOVES-Matrix. The method is suitable for processing the outputs 

from the majority of TDM developed and provided by state and city planning agencies or 

traffic simulation model (Xu, et al., 2018a; Xu, et al., 2016) to generate regional mobile 

source emissions inventories (by summing link-by-link emissions). Typical TDMs predict 

static or dynamic traffic operating conditions (e.g., traffic volumes, link speeds) assigned 

to individual roadway links by time-period. These traffic data are then post-processed and 

linked to MOVES-Matrix emission rates. The process includes three underlying steps: 1) 

MOVES-Matrix preparation; 2) integration of MOVES-Matrix and the regional TDM 

outputs; and 3) emissions calculations (Figure 40). 
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Note: the figure has been modified based on Xu, et al. (2018a) 

Figure 40 – Emissions Calculation Process 

6.4.1 Integration of MOVES-Matrix and Regional Travel Demand Model 

A series of PythonTM-script-based programs were created to process and convert regional 

TDM outputs into specific formats to link these TDM outputs with corresponding 

MOVES-Matrix emission rates. Typical TDM outputs include traffic volumes (or vehicle 

miles traveled, VMT), average speeds, and road types for each link (as examples in Figure 

41 and Figure 42). The TDM outputs need to be further post-processed because the TDM 

is generally run for a certain traffic period (e.g., morning peak, afternoon peak) and reflects 

annual average traffic conditions. VMT adjustment factors representing the amount of 

vehicle activities during a specific time period are applied to the VMT outputs generated 
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by the TDM (see Equation (14)). Average link speeds included in the TDM outputs can be 

updated from field observation data, where applicable, to obtain more realistic on-road 

operating conditions. The roadway facility type within the TDM outputs may need to be 

matched with MOVES road types, where applicable. For example, vehicle operations on 

arterials are different from those on freeway segments. In sum, each link contains an array 

of the required information including VMT, average speed, road type, and VMT 

adjustment factors representative of variations across seasons (or months) and hours within 

the day. 

𝑉𝑀𝑇𝑙,𝑚,𝑑,ℎ = 𝑉𝑀𝑇𝑙  ×  𝑀𝑜𝑛𝑡ℎ 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑚  

×  𝐷𝑎𝑦 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑑  ×  𝐻𝑜𝑢𝑟 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟ℎ 

(14) 

Here, 𝑙 is link, 𝑚 is month, 𝑑 is day, ℎ is hour, 
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Source: Kim, et al. (2019c) 

Note: the figure shows the example of metro Atlanta major interstate highways. 

Figure 41 – ARC-ABM’s Daily Link-by-Link Total Traffic Volumes in 2015 
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Source: Kim, et al. (2019c) 

Note: the figure shows the example of metro Atlanta major interstate highways at 8:00 

AM to 8:59 AM. 

Figure 42 – ARC-ABM’s Link-by-Link Congested Traffic Speeds in 2015 
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MOVES classifies vehicle fleet features by 13 different vehicle source types (Table 12) 

and 31 applicable model years (the age of 0 to 30 from the target calendar year). By default, 

the program developed in this study uses the fraction of regional fleet composition by 

vehicle source type and age distribution in MOVES. Often, state vehicle registration data 

describing the proportion of each vehicle type registered in the state are used by impact 

assessment modelers in traditional MOVES runs. However, the program is also capable of 

integrating fleet composition based upon field observation (e.g., license plate studies) by 

allowing the user to allocate total VMT estimated by the TDM to MOVES-specific source 

types. Because MOVES only allows only one set of vehicle model years per run, users 

have to run MOVES separately for each set of links if the model year distributions are 

different. However, MOVES-Matrix allows users to specify any vehicle fleet composition 

data for road links (source type and model year distributions) without running MOVES. 

That is, users can specify different fleet compositions for each transportation link, 

represented by a three-dimensional array, with a fraction of population by source type, 

model year, and road type. 
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Table 12 – MOVES2014 On-road Source Types 

Source Type ID Source Type Name 

11 Motorcycles 

21 Passenger Cars 

31 Passenger Trucks (primarily personal use) 

32 Light Commercial Trucks (primarily non-personal use) 

41 Intercity Buses (non-school, non-transit) 

42 Transit Buses 

43 School Buses 

51 Refuse Trucks 

52 Single Unit Short-Haul Trucks 

53 Single Unit Long-Haul Trucks 

54 Motor Homes 

61 Combination Short-Haul Trucks 

62 Combination Long-Haul Trucks 
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6.4.2 Emissions Calculation for Dispersion Modelling 

Using MOVES-Matrix, emissions for each link are calculated by Equation (15); the same 

emissions calculation algorithm as used in MOVES. Corresponding vehicle activities, fleet 

composition, and on-road operating conditions are prepared for each link and used to 

assemble a composite emission rate for the link (the summation term in equation (15)). The 

composite emission rates are then multiplied by the amount of vehicle activity on the link 

to estimate the total emissions for the specific link segment. 

𝑇𝑜𝑡𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑙𝑖𝑛𝑘 

= 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑓𝑙𝑒𝑒𝑡 ∑ ∑ ∑(𝑆𝑇% × 𝑀𝑌%𝑆𝑇 × 𝐹𝑇𝑆%𝑆𝑇,𝑀𝑌)

𝐹𝑇𝑆𝑀𝑌𝑆𝑇

× 𝐸𝑅𝑆𝑇,𝑀𝑌,𝐹𝑇𝑆 

(15) 

Here, 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑓𝑙𝑒𝑒𝑡  is on-road vehicle activity of a link (in vehicle-miles or vehicle-

seconds), 𝑆𝑇%, 𝑀𝑌%, and 𝐹𝑇𝑆% are source type distribution, model year distribution, 

and the distribution of on-road operations of the link in the form of a percentage of activity 

by facility type and average speed, and 𝐸𝑅 is the corresponding emission rates determined 

by operating speed, road type and fleet composition from MOVES-Matrix (Figure 43). As 

noted in previous studies, this process obtains exactly the same fleet composite emission 

rate for each link as is obtained by running MOVES separately for each link (Liu, et al., 

2019b). 
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Figure 43 – MOVES-Matrix Run Module: Developing On-Road Fleet Emission 

Rates 

6.5 Link Screening 

In general, modeling traffic-induced pollutant dispersion for a large geographic area 

demands substantial computational resources and processing time. A preliminary study 

conducted in Metro Atlanta showed that the run time for AERMOD to process spatially-

dense receptors installed in roadside and non-roadside areas (161,188 links and 1,163,958 

receptors in Atlanta model) would require more than a year with a normal desktop 

computer (Kim, et al., 2019). To reduce computation time, previous research has 

implemented link screening, where roadway link and receptor combinations that do not 

impact concentrations at that receptor are excluded from the analysis (Guensler, et al., 

2008; Shafi, 2008). However, link screening may result in under-prediction of 

concentrations. The contribution of concentration from a road to a receptor is a function of 

the mass flux from the roadway to the receptor, the distance between roadway and receptor, 

and a set of meteorological parameters. Building upon this methodology, this study created 

an updated objective version of the link screening method using a classification algorithm 
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based upon supervised random forests (RF) machine learning. Detailed documentation 

describing the development of this new link screening model will be addressed in Chapter 

5.  

6.6 Dispersion Modeling 

Based on the database of link emissions, road geometry, receptors, and meteorological 

parameters, dispersion modeling is conducted for the project area. The modeling system 

supports screening modeling as well as standard modeling. Screening models generally 

predict the impacts of a “worst-case” or near worst-case analysis based upon conservative 

meteorological assumptions and on-road operating conditions. This approach can save 

much labor in obtaining high-resolution meteorology and on-road operating condition data, 

allowing the users to quickly evaluate alternative scenarios and identify potential hot spots 

where further investigation is needed. Standard modeling generally estimates the pollutant 

concentrations to meet regulatory modeling guidelines for planning activities and identifies 

likely concentrations in comparative scenario analysis (USEPA, 2018). 

6.6.1 Screening Dispersion Modeling 

The screening model approach essentially searches for worst conditions, based on mass 

flux calculations from mobile source emissions under a specific meteorological scenario. 

To derive the worst-case conditions for given on-road vehicle emissions, the database 

containing seasonal (or monthly) and hourly emission profiles can be used to identify the 

time periods that yield the highest emission rates among the seasons and hours considered. 

This process outputs the highest concentrations for each receptor during the year, for a set 

of given meteorological conditions. 
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The process also involves the adjustment of the meteorological parameters (in the 

dispersion modeling), such as atmospheric stability, wind speed, and wind direction, so 

that the dispersion model yields the highest concentration rates with the given link emission 

rates. It is noteworthy that CALINE4 and AERMOD, the dispersion modeling tools used 

in the modeling system also have internal screening options.  

For CALINE4, the default worst-case meteorological parameter values are 

generally set to 1.0 m/s for wind speed, atmospheric stability G (7), and 30 to 100 m for 

the mixing height so that the model will simulate the worst-case concentration likely to be 

experienced in the field. Then, CALINE4 searches the worst-case wind angle for each 

source, by cycling through wind directions (Benson, 1984). 

In the case of AERMOD, it finds the worst-case meteorological scenario among 

those conditions specified in a meteorological processor file (AERMET format), which is 

generally provided by the state or local agency responsible for implementing 

environmental regulations (USEPA, 2018). For example, the AERMET meteorology files 

for Atlanta are managed by the Georgia Department of Natural Resources (Georgia DNR), 

Environmental Protection Division (EPD). The internal screening mode in AERMOD 

forces the model calculations to represent values for the plume centerline, regardless of the 

source-receptor-wind direction orientation (USEPA, 2016).  

Because these screening models do not necessarily perform the calculations 

considering dynamic meteorology conditions across the project area, they are naturally 

computationally efficient in identifying potential hot spots while minimizing the total 

model run time. 
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6.6.2 Standard Dispersion Modeling 

The program database can also be used in traditional, or ‘standard’ modeling. For the 

standard models, link emission profiles that vary by season and hour of day are included 

within the model input files. CALINE4 uses fixed link emission rates for a specific date 

and hour in each model run. In other words, CALINE4 does not consider seasonal and 

hourly variations in link emission rates within a single model run. Therefore, a number of 

input files must be created that contain link emission rates by season and hour combination 

(e.g., 96 input files are created when four seasons and 24 hours are considered). Within 

each input file, appropriate meteorological conditions are coupled with corresponding 

season and hour. The modeling system can post-process the meteorological file in 

AERMET format to identify meteorological conditions for each season and hour. Although 

R-LINE accepts the AERMET output file, it has fixed link emission rates assigned for a 

specific date and hour for a single model run. Therefore, as with CALINE4, multiple input 

files need to be generated for R-LINE that contain the link emission rates for each season 

and hour. Then a subset of meteorological elements is extracted from AERMET for season 

and hour. In the case of AERMOD, because of its integrated model specification, standard 

modeling generates a single file that contains varying link emission profiles across different 

seasons and hours. After CALINE4 and R-LINE are run separately for each season and 

hour, the concentration results obtained from each model need to be aggregated across the 

year to assess whether the outcome conforms to the NAAQS. Those results are aggregated 

differently for each pollutant type (e.g., 8-hour average for CO, annual average for primary 

PM2.5); whereas, AERMOD handles this aggregation process internally. Another 
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difference is that R-LINE and AERMOD deal with all NAAQS pollutants, whereas 

CALINE4 only handles CO, NO2, and particulate matter. 

6.7 Distributed Computing Strategy 

Even with the efficiencies associated with MOVES-matrix, estimating regional-scale 

pollutant dispersion incorporates numerous sources and receptors under dynamic traffic 

and meteorological conditions, which requires extensive computational resources. The 

research team has priority access to the Partnership for an Advanced Computing 

Environment (PACE) high-performance computing (HPC) cluster at Georgia Tech. PACE 

was established for the primary purpose of providing an environment for distributed high-

performance computing. For this study, the computational challenges will be met using 

this distributed computing resource. For implementation, dispersion model input data were 

split into individual dispersion model input files, where each file included data for a single 

receptor and its significant link sources selected by the RF classifier (Figure 44). Now that 

these numerous small-sized input files can be simultaneously processed through the 

distributed computing cluster (Figure 44), the total processing time will substantially 

decrease. Up to 500 PACE processors were available to the team through Georgia Tech’s 

PACE allocation, meaning that 500 individual AERMOD input files are can be processed 

simultaneously, producing an (almost) corresponding savings in wall-clock processing 

time. The research team is in the process of expanding the system so that any user can take 

advantage of similar cloud-computing platforms, such as Amazon Web Services (AWS) or 

Microsoft Azure. Note that the modeling system is designed to assign one core to one 

processor for modeling convenience. However, this strategy may decrease the distributed 

computing efficiency to some extent because this strategy is not likely to use the maximum 
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computing capacity of each processor. This calls for future research regarding optimal 

core-processor allocation strategy that maximizes the modeling efficiency. 

 

Figure 44 – Distributed Modeling Process for Dispersion Modeling 
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6.8 Case Study 

This section describes the results of applying the modeling system to the 20-county 

metropolitan Atlanta area as a case study, focusing on the estimation of PM2.5 

concentrations in the area. The 20-county metropolitan Atlanta area includes Cherokee, 

Clayton, Cobb, DeKalb, Douglas, Fayette, Fulton, Gwinnett, Henry, Rockdale, Barrow, 

Bartow, Carroll, Coweta, Forsyth, Hall, Newton, Paulding, Spalding, and Walton counties. 

The number of roadway links considered in this application, including existing freeway, 

arterial, and local roads, excluding centroid connectors, was 161,188. Following the spatial 

distribution of these roadway links, receptors are placed across the area at fine spatial 

resolution. As explained earlier, receptors are installed based on the dynamic grid-receptor 

model. As a result, 878,731 receptors are created in Metro Atlanta. Figure 47 shows the 

geographic layout of these receptors. 

Vehicle activity and link geometry data are obtained from the ARC-ABM model, 

the regional TDM developed for the regional transportation plan and the Atlanta Region’s 

Plan (ARC, 2017). The ARC-ABM output files contain link-level vehicle activity data, 

including traffic volumes and average speeds for five different time periods (early AM, 

AM, midday, PM, evening/late night periods). These traffic data are further elaborated by 

using month, day, and hour VMT adjustment factors to create variations in link-level VMT 

(Xu, et al., 2018a). The monthly and daily adjustment factors are provided by MOVES as 

default, and the hourly adjustment factor is derived from post-processing of ARC-ABM 

outputs (Figure 45-(a) and (b)). To account for varying meteorological conditions affecting 

vehicle emissions rates (e.g., more incomplete combustion at low ambient temperature), 

the meteorological processor data are provided by the Georgia EPD (2019) (upper air 
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station ID: 53819; surface station ID: 3813; latitude: 33.355278; longitude: 84.566944; 

station height: 243.2 m). Combining the lowest, highest, and average surface temperatures 

and humidity, nine (3×3 matrix) different meteorological conditions are considered for 

each of the months (Figure 45). Therefore, the case study considers 5,184 alternative 

scenarios (12 months × 2 types of days (weekday and weekend) × 24 hours × 3 

temperatures × 3 humidities) in the emissions calculation. Notably, estimating emissions 

under such a variety of conditions for a regional-scale dispersion analysis has been rarely 

conducted in prior studies, possibly because of the complexity of using the MOVES GUI 

in processing numerous link sources. In this study, the modeling was feasible because the 

system could take advantage of the MOVES-Matrix platform. For each of the 5,184 

scenarios, the vehicle emissions rates corresponding to the fleet, on-road operating 

conditions, and meteorological conditions are retrieved from MOVES-Matrix. 

 

Figure 45 – Temporal and Meteorological Factors Considered in Emissions 

Calculations 
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Figure 46 displays the sensitivity analysis results of the estimated total PM2.5 link 

emissions, indicating that the total PM2.5 emissions produced in Metro Atlanta vary by 

traffic operating condition, by month (Figure 46(a)), day of week (Figure 46(b)), 

temperature (Figure 46(c)), humidity (Figure 46(d)), hour of day (Figure 46(e)). In each 

sub-chart, the gray circle represents the sample mean and the green error bar represents the 

99% confidence limit on the mean (that is, we are 99% confident that the true mean falls 

somewhere within the error bar). These estimated link emissions are then converted to the 

dispersion model format; for example, link emission rates were converted into the mass 

flux rates (g/s/m2) using the polygon-shaped link geometry data. The raw link geometry 

data were obtained from ARC-ABM network data.  
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Figure 46 – Sensitivity Analysis of the Total PM2.5 Emissions in Metro Atlanta 

The PM2.5 dispersion modeling was conducted in AERMOD due to its efficiency 

in terms of incorporating a multitude of link emission rates that vary by season and hour 

of day. Furthermore, the streamlined modeling system can be further enhanced if new 

models can be applied to significantly reduce the number of link-receptor combinations 

that are considered when calculating receptor concentrations. For screening dispersion 

modeling, the highest link emission rate among the 5,184 link emission scenarios was 

selected for the AERMOD link emission rate. For standard dispersion modeling, the 

average seasonal and hourly link emission rates (96 rates = 4 seasons × 24 hours) were 
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estimated by aggregating the 5,184 link emission rates into the corresponding season and 

hour, and they were used for link emission rates in AERMOD. In this way, the standard 

dispersion modeling connects the seasonal and hourly link emission rates to the 

corresponding meteorological conditions through the AERMOD processing.  

Figure 47 shows the results of estimating PM2.5 concentrations using both screening 

and standard dispersion models for Metro Atlanta. The screening dispersion model results 

provide the estimated PM2.5 concentrations for the worst-case total emission scenario 

among the alternative scenarios (Figure 47(a)). The emission rates for the weekday in 

January with the lowest temperature and humidity conditions turned out to be the worst-

case situation. For the standard model, 24-hour link emission rates for four months 

(January, April, July, and October, representing the four seasons) were used in the 

AERMOD input file. As expected, the standard dispersion model produced consistently 

lower PM2.5 concentrations than the screening model. The overall model results seem to be 

in line with the common patterns in prior studies in that higher PM2.5 concentrations are 

clearly observed along the major Interstate highways (e.g., I-85, I-75, and I-285) in Metro 

Atlanta (Kim, et al., 2019c). The case study also demonstrated a greater performance of 

the streamlined modeling system, compared to existing approaches, in terms of total 

processing time. Processing a single AERMOD input file took around 3.5 minutes for each 

screening model run (about three days in total) and 12.7 minutes for each standard model 

run (about ten days in total). Traditional methods would require many years to perform the 

same analyses on a single machine. 
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Note: The concentration profile graphs are generated based on the receptor concentrations 

((a)-1, (b)-1) using the Kriging tool in ArcGIS. 

Figure 47 – Estimated PM2.5 Concentration Results: (a) Screening model, (b) 

Standard Model 

The dramatic reduction in computational time in implementing the regional-scale 

dispersion modeling framework resulted primarily from the innovative methods for 

reducing the number of receptor-link combinations required by using the supervised 

machine learning classifier, and employing the PACE distributed computing platform. For 

example, Table 13 shows that the dynamic grid-receptor model reduced the number of 
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receptors by 92%, and the link screening model reduced the number of links by 99%, 

respectively. In addition, the dispersion modeling through PACE boosted the AERMOD 

simulation speed by 100 times as compared to the AERMOD modeling with a normal 

desktop computer. As such, the availability of the streamlined modeling program 

developed in this study is expected to make it more feasible to assess regional-level air 

quality impacts of transportation projects while taking various project scenarios into 

account. 

Table 13 – Expected and Actual AERMOD Runtimes for Metro Atlanta (Standard 

Modeling) 

Classification 

Average 

number of 

links 

Receptors Total runtime 

Traditional modeling 161,188 10,626,677 1 many years 2,3 

After applying dynamic grid-

receptor model 
161,188 878,731 many years 2,3 

After applying link screening 23 878,731 1,220 days 2,3 

Dispersion modeling through 

PACE 
23 878,731 10 days 3 

1 The number of receptors is determined based on USEPA’s hot-spot guidance (25-m 

resolution near roads and 100-m resolution for other areas) 

2 Expected runtime 

3 The runtime does not include ARC-ABM model runtime. The ARC-ABM traffic 

assignment runs around 1.5 days (or 4 days with path retention) 

 

  



 178 

6.9 Chapter Summary 

This study illustrated in this chapter introduced a streamlined modeling framework to 

implement regional-scale line source dispersion analysis with high spatial resolution. The 

modeling system provided a significant improvement not only in model prediction 

resolution, but also in computational efficiency and simplicity of the user interface. The 

modeling system augments roadway link attribute data by directly integrating road grade 

information with the link geometry information. As demonstrated in previous work, the 

road grade contributed to the emissions calculations and should not be ignored in the 

identification of potential concentration hot stops (e.g., continuous uphill roadway 

segments with a heavy mixture of passenger cars and trucks). Including grade yields more 

realistic estimates. The program also used an increased number of receptors whose density 

and locations are spatially dependent on the configuration of roadways. This approach can 

produce a more complete concentration profile than simple, sparsely-gridded receptors, 

and thereby help better capture the spatial variability of pollutant concentrations profile. 

The program allows variation in the temporal and meteorological conditions for dispersion 

analysis, comparing 5,184 alternative scenarios in the emissions calculations as presented 

in the case study. 

Despite the increase in input data precision and spatiotemporal resolution, a huge 

decrease in computational time was also achieved by integrating some innovative features 

(i.e., AERMOD processing time for metro Atlanta decreased from years to 10 days). The 

program utilizes the MOVES-Matrix platform to rapidly produce link emissions rates for 

mobile source emissions under a variety of scenarios combining varying traffic operating 

conditions by different time periods. Running MOVES-Matrix is more than 200 times 



 179 

faster than running the MOVES interface to achieve the same output. MOVES-Matrix 

outputs can also be automatically processed to obtain the appropriate fleet average 

emission rates for each link, by season, hour of day, and meteorological condition. The 

modeling system also employs a link screening feature that objectively identifies all 

irrelevant link sources that do not significantly affect the pollutant concentration of each 

receptor, and excludes the irrelevant link-receptor combinations from the modeling. The 

verification results showed that while each project is unique, 0.1 - 3.0% of the selected link 

sources could closely approximate most pollutant concentrations estimated using all of the 

links. The presented program also employed a distributed computing cluster to perform a 

regional-level microscale dispersion analysis. Multiple input files created for the number 

of receptors were split and simultaneously processed, significantly reducing the total run-

time. 

The case study based on the 20-county metropolitan Atlanta area showed that the 

modeling system generated reliable concentration estimates with high computational 

efficiency. The total processing time for running dispersion models was around 3 days and 

10 days, for the screening model and standard model, respectively, which seem reasonable 

for regional-scale analysis involving a huge number of link sources and receptors and 

performing comparative analysis across thousands of scenarios (especially considering that 

comparable analysis conducted with traditional methods on a regular desktop would take 

years to complete). The streamlined modeling system can also be interfaced with most of 

the travel demand models, dynamic traffic assignment models, and traffic simulation 

models for use in air quality impact assessment with regional and sub-regional analyses. 

The authors anticipate that once the modeling system is deployed on conventional cloud 
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computing platforms (such as AWS or Microsoft Azure), federal, state, and local agencies 

will be able to compare numerous project scenarios at the regional level very rapidly, 

reliably, and automatically. The efficiency and precision of the modeling system should be 

of interest to a broad group of stakeholders who are in vehicle emission modeling, 

transportation conformity analysis, near-road air quality impact assessment, and health 

impact assessment. 
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CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 

Chapter 7 summarizes the conclusions and contributions of the research presented in this 

dissertation, including the proposed regional-level microscale dispersion modeling process, 

theoretical contributions, and practical contributions. Some limitations of the dissertation 

research are listed and future research needs are discussed. 

7.1 Regional-Level Microscale Dispersion Modeling Processes 

Traditional efforts in region-wide line source dispersion modeling have faced major 

concerns regarding modeling complexity, data preparation, and computational efficiency. 

To address these issues, the work developed a streamlined data processing tool for 

efficiently preparing extensive input datasets needed for regional-scale line source 

dispersion modeling. In particular, the modeling system integrated several advanced 

modeling features, to generate reliable pollutant concentration estimates with high 

computational efficiency, including MOVES-Matrix integration, supervised link screening, 

dynamic grid-receptor modeling, and distributed computing.  

The modeling system integrates MOVES-Matrix (a high-performance emission 

rate lookup system) for efficient on-road emissions calculation that accounts for dynamic 

traffic operations. Because USEPA’s MOVES model requires a complex model set-up and 

huge computational resources for large-scaled on-road emissions calculations, most of the 

traditional modeling methods that used the MOVES model have tried to simplify the 

dynamic traffic operating conditions into the averaged conditions. Such simplifications 

reduce the total number of MOVES runs and the total model run-times for MOVES; 
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however, these approaches produce model output bias (e.g., unsuitable in identifying 

seasonal peak emissions). The integration of MOVES-Matrix for on-road emissions 

calculations (as in this dissertation) helps reduce model bias, by supporting calculations 

under dynamic traffic conditions with reduced modeling efforts and reasonable model run-

times. This is because the MOVES-Matrix can be integrated using Java, Python, Perl or 

any similar program, MOVES-Matrix can finish the emissions computation tasks 200 times 

faster than using the MOVES GUI and the generated results are exactly the same.   

The integration of MOVES-Matrix also allows users to consider road grade 

information in the on-road emissions calculations. The modeling system augments 

roadway link attribute data by directly integrating road grade information with the link 

geometry information. In the process, emission rates for desired road grade intervals (e.g., 

every change in road grade by 1%) can be prepared in the MOVES-Matrix platform so that 

they can be easily queried for each link segment. To this end, generating road grade profiles 

can be conducted from the USGS’s DEM within the modeling framework. As such, the 

emissions calculation considering road grade profile became much more efficient. 

Considering that previous modeling systems have ignored road grade profiles in emissions 

calculations due to the complexities of generating road grade profiles for large-scale 

networks (and the increased model run-times for emissions calculations with road grades 

through MOVES GUI), this work helps practitioners obtain more realistic emissions 

estimates (e.g., potential concentration hot-spots near continuous uphill roadway segments 

with a heavy mixture of passenger cars and trucks).  

The modeling system also integrated a distributed computing cluster to perform a 

regional-level line source dispersion analysis, which has been barely employed in previous 
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modeling efforts. The distributed computing processing multiple dispersion modeling jobs 

could reduce the total dispersion model run-time with the number of distributed computing 

clusters. For example, the distributed computing with 500 PACE clusters (available to the 

team through Georgia Tech’s PACE allocation) produced corresponding savings in wall-

clock processing time. With a lack of previous modeling efforts that implemented 

distributed computing in dispersion modeling, the significant reduction in dispersion 

modeling run-time through the distributed computing as in this work is unique in this field.  

A supervised link screening methodology is also incorporated into the streamlined 

modelling framework as an innovative way to significantly improve modeling efficiency. 

The link screening models are developed based on a supervised machine learning Random 

Forest classification algorithm, with a large number of training and testing datasets 

predicted by AERMOD. The link screening model is capable of eliminating roadway links 

that do not contribute significantly to receptor concentration with a high classification 

accuracy (greater than 95%). The case study results based on two sub-regions in the 

metropolitan Atlanta suggest that the link screening model could significantly reduce the 

total dispersion modeling run-time (a 98.9% - 99.8% reduction in model run-time), while 

preserving the pollutant concentrations as predicted by whole link models.  

The work addressed in Chapter 4 proposed a strategic receptor placement method 

(called dynamic grid-receptor model) that minimizes the number of receptors without 

undermining the pollutant concentration profiles generated by high-density receptor model. 

The dynamic grid-receptor approach is proposed in the placement of receptor locations 

with respect to link geometry and meteorological parameters. As a result, the work suggests 

that the optimal receptor placement from the dynamic grid-receptor models readily 
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approximate the PM2.5 concentration profiles predicted by high-density receptor models. 

The model results also suggested that the dynamic grid-receptor model helps to reduce 

biased pollutant concentration profiles predicted by static grid-receptor models that most 

of previous studies have applied. 

The case study applying the developed modeling framework to the 20-county 

metropolitan Atlanta area showed that the modeling system generated reliable 

concentration estimates with high computational efficiency. The total processing time for 

running the dispersion models was around 10 days, which seem to be affordable for 

regional-scale analysis involving a huge number of link sources and receptors and for 

performing comparative analysis across thousands of scenarios (especially considering that 

comparable analysis conducted with traditional methods on a regular desktop would take 

years to complete).  

7.2 Theoretical Contributions 

This dissertation has identified some theoretical findings that could be added to the 

literature on traffic-related pollutant dispersion research. First, some influential factors that 

significantly influence receptor concentrations were identified. In the absence of literature 

that summarized the influential factors that affect traffic-related pollutant concentrations, 

the thorough literature review results as well as the estimated coefficients from the logistic 

regression models summarized in Table 8 provide a better understanding of the 

relationships between the influential factors and relative contributions to predicted 

concentrations. For example, link emission rate can increase concentration, while 

concentration decreases with the distance between the link segment and the receptor site. 
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In particular, the dissertation suggested that six variables including link emission rate, 

distance between link and receptor, urban population, sensible heat flux, surface roughness 

length, and wind speed are the significant factors determining traffic-related pollutant 

concentrations. As such, the model results also suggested that the predicted concentration 

at receptor site should be interpreted in relation to those influential parameters.  

The work also identified the fundamental relationships among some dispersion 

model input parameters and predicted near-road pollutant concentration profile. The results 

suggested that link emissions, wind speed, and wind direction are important factors that 

determine concentration profile. For example, steep gradients in concentrations at near-

road areas were found when the near-road link emission rate is high and the wind speed 

low. In addition, high concentrations were found in the areas where the wind runs along 

roadway sections. Such trends helped identify the optimal locations of receptor sites (i.e., 

dynamic grid-receptor approach as in this work) that can produce unbiased concentration 

profiles, suggesting that the unbiased concentration profiles can be predicted with only a 

few numbers of receptors. It also shows that the optimal receptor model can approximate 

the concentration profiles as predicted by the high-density receptor model than standard 

gridding methods. Considering that traditional modeling methods have mostly applied 

standard gridding methods (where the distance between receptors are uniform in all 

directions, e.g., 200 m resolution), the model results identified in this work imply that 

concentration profiles predicted by the previous modeling efforts might have produced 

model biases to some extent because predicted concentrations are highly sensitive to the 

distance between emission source and receptor site. For researchers and practitioners who 

implement air quality dispersion modeling of traffic-related pollution, setting proper 
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locations of receptors has always been a challenge. In this regard, this work could provide 

an idea about how many receptors are required and where those receptors need to be located. 

In particular, the dynamic grid-receptor model can help minimize the regional-scale 

dispersion modeling run-time, by removing unnecessary receptors in the analysis, while 

not undermining the pollutant concentration profile as predicted by high-density receptor 

model. 

7.3 Practical Contributions 

This dissertation work also produced some important contributions to practical modeling 

fields. First, the modeling system is streamlined through the entire modeling processes 

including input preparation to dispersion modeling, and developed using PythonTM-based 

tools (PythonTM is currently one of the most popular programming languages). The open 

source program can be made available immediately to agencies and consulting firms. Once 

the modeling system is deployed on conventional cloud computing platforms (such as 

AWS or Microsoft Azure) any user could conduct the same modeling processes featured 

in this dissertation for their own analyses (see Appendix B, for more details about the model 

deployment on AWS).  

Second, the modeling system developed in this work provides a user-friendly 

interface through the developed PythonTM program. Considering that current air quality 

impact assessment efforts at this scale are labor-intensive because of the complex input 

data preparation procedures, the modeling system can significantly reduce the labor of 

practitioners and modelers and help minimize analytical errors that can be produced 

through the complex procedures. For example, the modeling system provides a tool for 
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generating source geometry used for dispersion models, by converting transportation 

network files (typically, containing GPS coordinates of both link-ends and mid-points for 

curved link geometry) into source geometry formats in dispersion models. In general, 

converting the road geometry of general transportation network files into dispersion model 

formats are complex (e.g., AERMOD requires to calculate the area of emission source, and 

R-LINE and CALINE requires to calculate link length). Thus, manual conversion requires 

a huge amount of time and effort. In addition, the conversion generally requires coordinate 

transformation (e.g., GPS coordinates to coordinates in meters). In this regard, the 

PythonTM program developed based on GeoPandas (PythonTM-based geo-spatial analysis 

tool) allows to quickly generate the source geometry required for dispersion modeling. 

Transferring data through subsequent modeling steps is also challenging (e.g., converting 

travel demand model outputs to be used for emissions calculation, and converting link 

emissions outputs to dispersion model inputs). In this regard, the streamlined program can 

also provide a way to efficiently connect each of the modeling steps.  

Third, the modeling system can be interfaced with transportation models at any 

scale. For example, the modeling system can be linked to most of travel demand models, 

dynamic traffic assignment models, traffic simulation models, and real-time traffic 

monitoring data for use in air quality impact assessment with regional and sub-regional 

analyses. Modeling requirements may differ, depending on the scope of air quality impact 

assessments, but connectivity can occur at any scale. For example, the project-level 

analysis may require microscopic traffic simulation model (e.g., VISSIM) for predicting 

individual vehicle operations. Some projects may conduct analysis based on observational 

data. Although the different traffic data inputs may require different model connections to 
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be developed in Python, the modeling system is capable of conducting dispersion modeling 

within that modeling framework. For example, MOVES-Matrix allows to process any 

traffic data (from individual- to aggregated-level data) for emissions calculation. In 

addition, because the modeling system processes the modeling on a step-by-step basis, 

once the users manipulate their own data corresponding to the data formats required for 

each step in the developed modeling framework, the same modeling processes can be 

performed by others. Specifically, real-time pollutant concentration predictions can be 

performed by automatically connecting real-time traffic monitoring station data to the 

modeling system deployed on cloud-computing platforms. The linkage between real-time 

traffic data and the modeling system may also help predict potential hot-spots in connection 

with forecasted traffic and weather information. To this end, the input formats in the 

developed modeling system is simple (e.g., comma separated values with its headers) and 

easy-to-understand with detailed variable descriptions. In this regard, the modeling system 

should be of interest to a broad group of stakeholders who are involved in various fields 

including vehicle emission modeling, transportation conformity analysis, near-road air 

quality impact assessment, and health-impact assessment. 

7.4 Limitations and Future Research 

There are some limitations and future research remained for further improving the model 

prediction and efficiency. First, this modeling demonstration focused on modeling PM2.5, 

which is one of the NAAQS criteria air pollutants (i.e., ground-level ozone, particulate 

matter, carbon monoxide, lead, sulfur dioxide, and nitrogen dioxide), for the particular 

concerns about the increasing severity of PM2.5 concentrations and related public health 

problems in countries with significant air pollution issue, including China, India, and South 
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Korea, in the last several years. Governments and environmental and health authorities 

concerned about traffic-induced air pollution impacts will benefit from the research 

presented on PM2.5. The same basic modeling framework and approaches presented in this 

paper should be applicable to other traffic-induced primary pollutants. To this end, future 

research is recommended to expand the modeling framework for other pollutants and to 

develop the apporprite modeling parameters for the various pollutions. Some of the caveats 

and discussions regarding expanding the modeling system for other pollutants are 

addressed throughout this section.  

Second, future research should be to conduct model verification and calibration by 

comparing predictions with observational data collected from monitoring stations. As 

addressed in some previous research, the predicted concentrations tend to overestimate 

high concentrations and underestimate the lower range of concentrations. Because this 

work is designed to consider dynamic traffic operations and meteorological conditions in 

the analysis, the modeling framework is expected to reduce model prediction bias. Model 

verification against measured concentrations is an essential future activity to confirm the 

reduction in prediction bias.  

To this end, future research also needs to be conducted to better understand the 

overall limitations of dispersion models. As addressed, dispersion models tend to 

overestimate the gradient of pollutant concentrations near roadway due to the technical 

formulations, embedded in dispersion models, that deal with mechanical mixing over the 

roadway (and near roadway within mixing zone). However, the modeling system presented 

in this dissertation does not address this overestimation in concentrations (i.e., the predicted 

concentrations are directly retrieved from the dispersion models without 
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verification/calibration).  Additional attention needs to be paid to verifying/calibrating the 

predicted concentrations over the roads or near roads. In addition, future research needs to 

understand the characteristics of field-monitored concentrations for model 

verifications/calibrations. For example, PM2.5 concentrations measured from monitoring 

stations are attributed to:  1) primary PM2.5 emissions emitted from vehicle tailpipes, and  

2) secondary PM2.5 formation from precursor emissions such as sulfur dioxide, nitrogen 

oxides, volatile organic compounds, and ammonia. In practice, the primary PM2.5 

emissions can be modeled by dispersion models; however, most of the dispersion models 

do not account for the secondary PM2.5 emissions in the modeling. Understanding the 

potential gaps between modeled and monitored pollutant concentrations is essential for 

proper processes of verifying/calibrating the predicted concentrations modeled by 

dispersion models.  

Another caveats in this research is that the modeling approach does not account for 

any issues associated with dispersion parameters. In other words, the modeling approach 

uses the parameters that are embedded in the dispersion models without 

verifying/calibrating the parameter values. That is, dispersion parameters still have their 

own limitations, and therefore future research needs a further improvement on dispersion 

parameters through a sort of model calibration process. For example, the modeling system 

is designed to use the meteorological processor data that are already developed and 

provided by state agencies (e.g., Georgia EPD’s database). The data from state agencies 

tend to represent macroscopic meteorological patterns of a large-scale geographic area (e.g., 

Fulton County in Georgia). As such, the modeling system that applies the data from state 

agencies does not account for the microscale meteorological conditions of a specific project 
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area. This may result in biased model predictions for some areas. For example, Georgia 

EPD provides meteorological processor data for 15 sub-regions for the State of Georgia, 

and as such, each sub-region data tends to cover a large-scale area. Meanwhile, it is also 

possible that dynamic surface meteorological patterns are dependent upon geographic 

locations within the sub-region. For example, the Fulton County dataset is used to reflect 

the whole Fulton county area, but the area consists of a variety of land uses and surface 

characteristics (e.g., high-rise and paved areas in downtown Atlanta, medium building 

heights and medium-levels of pavement area in Midtown Atlanta, and residential area with 

low building heights and primarily vegetated areas in suburban Atlanta). The diverse 

surface characteristics may affect the local meteorological conditions, and thereby affect 

local pollutant concentrations. This calls for future research that focuses on developing a 

modeling framework that accounts for microscale meteorological data processing at a local 

scale. Similarly, the modeling system also does not account for area-specific terrain 

profiles. The modeling regime simply applies macroscopic terrain profiles (surface 

roughness length from the meteorological processor data provided by state agencies) that 

represent the terrain profile for a large-scale area, such as Fulton County. As such, future 

research may also need to further reduce model prediction bias by processing area-specific 

terrain profiles considering microscopic terrain characteristics (e.g., high-rise building area 

in downtown Atlanta). In the same manner, future research also needs to incorporate 

roadway-specific terrain profiles (e.g., depressed roadway, elevated roadways, ridgelines). 

To this end, the surface elevation profile data from the USGS DEM may help identify area-

specific terrain profiles for use in dispersion modeling.  
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Third, future research may need to assess more efficient distributed computing 

strategies that account for the optimal link-receptor pairs for each model run. For modeling 

convenience, this work applied a brute-force approach where each model run considers a 

pair of multiple-links and a single-receptor. However, a better model performance 

comparison may be achieved by optimal job allocation strategies with a combination of 

multiple-links and multiple-receptors. In this way, the optimal performance can be 

achieved by reducing modeling spin-up time related to input file generation for each job, 

job allocation to cluster, and dispersion modeling spin-up and writing output files. In 

addition, the modeling system employed that assigns one core to one processor may 

actually have decreased the distributed computing efficiency because this strategy is not 

likely to use the maximum computing capacity of each processor. Thus, future research 

needs to consider optimal core-processor allocation strategy that maximizes the computing 

capacity of each processor, considering the distributed computing specifications (e.g., 

number of cores in each processor, memory, CPU, maximum number of processors and 

cores allowed for project).  

Fourth, the dynamic grid-receptor model developed based on linear interpolations 

for pollutant concentration profiles need to be further evaluated by comparing the model 

results with those generated by non-linear smoothing methods such as Kriging. Although 

the linear interpolation method was very efficient in developing the dynamic grid-receptor 

model by reducing the computational resources and time, this approach may produce 

somewhat biased model predictions because of weak performances in smoothing profiles 

by the linear interpolation. More advanced non-linear interpolation methods would likely 

improve model prediction accuracy (at a computational time cost). To this end, future 
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research needs to consider developing optimal receptor placement models based on non-

linear interpolation methods when computational resources are available. Future research 

should compare the concentration profiles produced by both of the linear and non-linear 

interpolation methods to identify the improvement in model predictions by the non-linear 

interpolation method over the linear interpolation method.  

Fifth, future research regarding the supervised link screening model can help to 

assess the trade-off between estimation precision and computational cost with respect to 

the selection of the threshold parameter (cut-off threshold value for labeling significant 

versus insignificant links). As demonstrated in the dissertation work, model accuracy and 

run-time are highly sensitive to the threshold parameter. For example, a lower threshold 

value turned out to be very helpful in increasing the accuracy of predicted pollutant 

concentrations while it increases the model run-time. On the contrary, a higher threshold 

value decreases the model accuracy while reducing the model run-time. For modeling 

convenience, this dissertation only tested two threshold parameters of 0.1 µg/m3 and 0.01 

µg/m3 for the case of PM2.5 concentrations. However, an optimal threshold value can be 

identified by conducting sensitivity analysis on the threshold values. In addition, threshold 

values for other primary pollutants also need to be evaluated. To this end, future research 

may need to consider the reasonable searching ranges of threshold parameters, considering 

the relative difference of the predicted concentrations to NAAQS pollution levels. For 

example, the threshold parameter values for PM2.5 were set between 0.1 µg/m3 and 0.01 

µg/m3 in this study, considering that the NAAQS for PM2.5 is 35 μg/m3 (24-hour average). 

Contributions lower than 0.1 µg/m3 have a marginal impact on the NAAQS PM2.5 

concentration level, but the threshold value of 0.1 µg/m3 helps to identify only a small set 
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of significant links. However, in the case of CO, higher threshold parameters may be 

considered in that the NAAQS for CO is 9 ppm (8-hour average) which is equivalent to 

1,164.2 µg/m3 (under the condition of 20°C and 1,013 millibars). In this case, 1 µg/m3 to 

10 µg/m3 may be proper selections for link screening threshold parameters for CO. 

Sixth, sensitivity analysis on modeling inputs should be considered in future 

research. This dissertation proposed conducting dispersion modeling by integrating high 

temporal and spatial resolution data to improve the model predictions; however, the work 

did not test the model predictions as compared to the low-resolution data. For example, the 

modeling system proposed predicting concentrations under dynamic traffic conditions, 

while the analysis on how much the model predictions were improved as compared to the 

concentrations predicted by the annual average traffic conditions. In the same manner, 

sensitivity analysis on pollutant concentrations with and without road grades or with 

simplified and hourly meteorological conditions need to be conducted. Because the model 

prediction and model run-time depending on the data resolution should be of interest for 

practitioners and modelers, the comparison analysis needs to be conducted to provide a 

better understanding of the model performance. To this end, several parameters that 

potentially affect predicted pollutant concentrations should be considered in future research, 

including: 

• Link screening threshold parameters, 𝜹 

• Annual average traffic conditions vs. dynamic traffic conditions 

• Simplified meteorological conditions vs. hourly meteorological conditions 

• With road grades vs. without road grades 
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• Breaking roadway links into smaller sections 

Lastly, the modeling system needs to be expanded for use in human exposure 

analysis. To this aim, the concentrations predicted by the developed modeling system can 

to be linked to human activity data. For example, the predicted concentration results can 

be linked to American time use survey (ATUS) data that surveys on the amount of time 

that people spend doing various activities, such as paid work, childcare, volunteering, and 

socializing (U.S. Bureau of Labor Statistics, 2020), although the further data manipulation 

may be required because ATUS data does not include the activity location data. In this 

regard, U.S. census data where population data is tracked into small survey area can be 

considered. Using census data, the overall human exposure to traffic-related pollutant 

concentrations could be estimated for each census tract; however, data accounting for 

dynamic human activities still needs to be incorporated to assess the different level of 

human exposure by time of day. In particular, vehicle trajectory data (e.g., path retention 

data from TDM, observational data such as license plate matching data) can used to 

evaluate the on-road human exposure.  

7.5 Publication Outline 

The research articles listed below have been conducted in part of this dissertation work.  
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Streamlined Data Processing for Regional Scale Applications of Line Source 

Dispersion Modeling via Distributed Computing. Computer-aided Civil and 
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APPENDIX A. LOGISTIC REGRESSION MODEL RESULTS FOR 

DYNAMIC GRID-RECEPTOR MODEL 

The section summarized the logistic regression model results described in section 4.5.2. As 

indicated, a number of logistic regression models are developed for predicting the 

probability of each candidate receptor site being selected as the optimal receptor site. Table 

14 particularly summarized the model coefficients and its p-values. As a total of 121 

candidate receptor sites are considered, 121 logistic regression model results are 

summarized in Table 14, showing that each row shows the model coefficients for each 

model. For the reference receptor sites (set for the corners of the receptor area), the model 

results are non-applicable because those receptor sites are selected in all cases. For practical 

implementation, they are set to be included in the optimal receptor set in all cases.  
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Table 14 - Logistic Regression Model Results for Each Candidate Receptor Site 

Model 

classification 
Model coefficients (values in parenthesis indicates p-values) 

x 

(scaled)1 
y 

Number of 

receptors 

Emission 

rate for 

focus 

link 

(link2) 

Percentage 

difference in 

emission on the 

left-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟏|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Percentage 

difference in 

emission on the 

right-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟑|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Wind speed Wind direction 
Link 

length 

-0.5 0 n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) 

-0.5 50 
-0.00780 

(0.208) 

0.00000 

(0.000) 
-0.04260 (0.000) -0.02520 (0.000) 

-0.12080 

(0.000) 
0.03360 (0.000) 

-0.00040 

(0.000) 

-0.5 100 
0.03400 

(0.000) 

0.00020 

(0.000) 
0.03760 (0.002) -0.04570 (0.000) 

-0.04610 

(0.000) 
0.00280 (0.038) 

0.00020 

(0.062) 

-0.5 150 
0.02990 

(0.000) 

0.00010 

(0.000) 
-0.03040 (0.008) 0.02110 (0.004) 

-0.02160 

(0.000) 
0.00200 (0.130) 

-0.00040 

(0.002) 

-0.5 200 
0.06700 

(0.000) 

0.00020 

(0.000) 
-0.13980 (0.000) -0.00680 (0.270) 

-0.04220 

(0.000) 
0.00430 (0.000) 

-0.00080 

(0.000) 

-0.5 250 
0.04660 

(0.000) 

0.00000 

(0.000) 
0.09690 (0.000) -0.05360 (0.000) 

0.00550 

(0.186) 
-0.00050 (0.590) 

-0.00030 

(0.000) 

-0.5 300 
0.08870 

(0.000) 

-0.00020 

(0.000) 
0.00390 (0.588) -0.36440 (0.000) 

0.00990 

(0.009) 
-0.00730 (0.000) 

-0.00070 

(0.000) 

-0.5 350 
0.05450 

(0.000) 

0.00010 

(0.000) 
-0.04750 (0.000) 0.00240 (0.477) 

-0.05190 

(0.000) 
0.01020 (0.000) 

-0.00090 

(0.000) 

-0.5 400 
-0.01570 

(0.000) 

-0.00020 

(0.000) 
-0.05450 (0.000) 0.01810 (0.000) 

-0.01760 

(0.000) 
0.01070 (0.000) 

-0.00010 

(0.169) 

-0.5 450 
0.05860 

(0.000) 

0.00000 

(0.000) 
-0.86180 (0.000) -1.05250 (0.000) 

-0.10690 

(0.000) 
0.00090 (0.001) 

-0.00300 

(0.000) 

-0.5 500 n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) 

-0.4 0 
0.14760 

(0.000) 

-0.00040 

(0.000) 
0.03480 (0.000) 0.02010 (0.001) 

-0.00730 

(0.153) 
-0.02000 (0.000) 

-0.00080 

(0.000) 
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Model 

classification 
Model coefficients (values in parenthesis indicates p-values) 

x 

(scaled)1 
y 

Number of 

receptors 

Emission 

rate for 

focus 

link 

(link2) 

Percentage 

difference in 

emission on the 

left-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟏|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Percentage 

difference in 

emission on the 

right-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟑|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Wind speed Wind direction 
Link 

length 

-0.4 50 
0.13060 

(0.000) 

-0.00010 

(0.000) 
0.05930 (0.000) -0.02010 (0.000) 

-0.01050 

(0.007) 
-0.01500 (0.000) 

-0.00010 

(0.298) 

-0.4 100 
0.08830 

(0.000) 

-0.00010 

(0.000) 
0.21090 (0.000) -0.31680 (0.000) 

-0.00650 

(0.033) 
-0.03320 (0.000) 

0.00090 

(0.000) 

-0.4 150 
0.07280 

(0.000) 

-0.00020 

(0.000) 
-0.28490 (0.000) 0.05180 (0.000) 

-0.02680 

(0.000) 
-0.02560 (0.000) 

-0.00010 

(0.014) 

-0.4 200 
-0.03150 

(0.000) 

-0.00020 

(0.000) 
-0.02810 (0.000) 0.03710 (0.000) 

-0.02090 

(0.000) 
-0.03400 (0.000) 

0.00110 

(0.000) 

-0.4 250 
0.06520 

(0.000) 

-0.00020 

(0.000) 
0.03800 (0.000) -0.01540 (0.000) 

-0.02060 

(0.000) 
-0.00900 (0.000) 

-0.00110 

(0.000) 

-0.4 300 
-0.08570 

(0.000) 

0.00000 

(0.000) 
-0.02330 (0.000) -0.04350 (0.000) 

-0.14270 

(0.000) 
-0.01600 (0.000) 

0.00140 

(0.000) 

-0.4 350 
-0.18180 

(0.000) 

-0.00020 

(0.000) 
-0.00400 (0.122) -0.04300 (0.000) 

-0.16740 

(0.000) 
-0.01460 (0.000) 

0.00310 

(0.000) 

-0.4 400 
0.06600 

(0.000) 

-0.00020 

(0.000) 
-0.70950 (0.000) -0.53060 (0.000) 

-0.09360 

(0.000) 
-0.02630 (0.000) 

0.00110 

(0.000) 

-0.4 450 
-0.05490 

(0.000) 

-0.00010 

(0.000) 
-0.21550 (0.000) -0.34470 (0.000) 

-0.04330 

(0.000) 
-0.03610 (0.000) 

-0.00090 

(0.000) 

-0.4 500 
0.01600 

(0.000) 

-0.00010 

(0.000) 
-0.54590 (0.000) -0.13400 (0.000) 

-0.11560 

(0.000) 
-0.02470 (0.000) 

0.00170 

(0.000) 

-0.3 0 
0.18030 

(0.000) 

-0.00020 

(0.000) 
0.26420 (0.000) -0.27050 (0.000) 

-0.05650 

(0.000) 
-0.01110 (0.000) 

-0.00460 

(0.000) 

-0.3 50 
0.11810 

(0.000) 

-0.00030 

(0.000) 
0.00140 (0.790) -0.02800 (0.000) 

-0.01410 

(0.000) 
-0.01020 (0.000) 

-0.00120 

(0.000) 

-0.3 100 
0.14490 

(0.000) 

-0.00010 

(0.000) 
-0.02040 (0.000) 0.01570 (0.000) 

-0.10040 

(0.000) 
-0.02090 (0.000) 

-0.00130 

(0.000) 

-0.3 150 
0.08200 

(0.000) 

-0.00030 

(0.000) 
-0.11990 (0.000) 0.01320 (0.000) 

-0.06180 

(0.000) 
-0.01140 (0.000) 

-0.00120 

(0.000) 
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Model 

classification 
Model coefficients (values in parenthesis indicates p-values) 

x 

(scaled)1 
y 

Number of 

receptors 

Emission 

rate for 

focus 

link 

(link2) 

Percentage 

difference in 

emission on the 

left-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟏|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Percentage 

difference in 

emission on the 

right-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟑|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Wind speed Wind direction 
Link 

length 

-0.3 200 
0.02650 

(0.000) 

-0.00030 

(0.893) 
0.11280 (0.000) -0.09820 (0.000) 

-0.02470 

(0.000) 
-0.00860 (0.000) 

-0.00140 

(0.000) 

-0.3 250 
0.04990 

(0.000) 

-0.00010 

(0.000) 
-0.86710 (0.000) 0.04880 (0.000) 

-0.09150 

(0.000) 
-0.02590 (0.000) 

-0.00120 

(0.000) 

-0.3 300 
0.04510 

(0.000) 

-0.00010 

(0.000) 
-0.02490 (0.000) -0.14500 (0.000) 

-0.02760 

(0.000) 
-0.01160 (0.000) 

-0.00050 

(0.000) 

-0.3 350 
0.08230 

(0.000) 

-0.00030 

(0.000) 
-0.28000 (0.000) -0.09890 (0.000) 

-0.11140 

(0.000) 
-0.00950 (0.000) 

-0.00100 

(0.000) 

-0.3 400 
0.09470 

(0.000) 

-0.00010 

(0.000) 
-0.69110 (0.000) 0.06450 (0.000) 

-0.09920 

(0.000) 
-0.01010 (0.000) 

-0.00150 

(0.000) 

-0.3 450 
-0.09700 

(0.000) 

-0.00010 

(0.000) 
-0.27470 (0.000) -0.32890 (0.000) 

-0.23140 

(0.000) 
-0.00900 (0.000) 

0.00210 

(0.000) 

-0.3 500 
0.02030 

(0.000) 

0.00000 

(0.000) 
-0.35600 (0.000) -0.80990 (0.000) 

-0.10610 

(0.000) 
-0.02470 (0.000) 

0.00100 

(0.000) 

-0.2 0 
0.05670 

(0.000) 

-0.00030 

(0.000) 
0.00910 (0.022) -0.00780 (0.002) 

-0.01680 

(0.000) 
0.01250 (0.000) 

-0.00410 

(0.000) 

-0.2 50 
0.16900 

(0.000) 

-0.00030 

(0.000) 
-0.02630 (0.000) -0.02060 (0.000) 

-0.01860 

(0.000) 
-0.00170 (0.001) 

-0.00330 

(0.000) 

-0.2 100 
0.07060 

(0.000) 

-0.00040 

(0.000) 
0.09880 (0.000) -0.10070 (0.000) 

0.04050 

(0.000) 
0.00400 (0.000) 

-0.00240 

(0.000) 

-0.2 150 
0.12930 

(0.000) 

-0.00020 

(0.000) 
0.07540 (0.000) -0.06920 (0.000) 

0.01370 

(0.000) 
-0.00850 (0.000) 

-0.00320 

(0.000) 

-0.2 200 
0.05210 

(0.000) 

-0.00020 

(0.000) 
0.19040 (0.000) -0.22070 (0.000) 

-0.00630 

(0.000) 
-0.00790 (0.000) 

-0.00220 

(0.000) 

-0.2 250 
0.03110 

(0.000) 

-0.00020 

(0.000) 
-0.05890 (0.000) -0.00440 (0.002) 

-0.05930 

(0.000) 
-0.02150 (0.000) 

-0.00240 

(0.000) 

-0.2 300 
0.09240 

(0.000) 

-0.00010 

(0.000) 
-0.73140 (0.000) -0.19680 (0.000) 

-0.09980 

(0.000) 
-0.03780 (0.000) 

-0.00190 

(0.000) 
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Model 

classification 
Model coefficients (values in parenthesis indicates p-values) 

x 

(scaled)1 
y 

Number of 

receptors 

Emission 

rate for 

focus 

link 

(link2) 

Percentage 

difference in 

emission on the 

left-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟏|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Percentage 

difference in 

emission on the 

right-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟑|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Wind speed Wind direction 
Link 

length 

-0.2 350 
0.11140 

(0.000) 

-0.00010 

(0.000) 
-0.37810 (0.000) -0.68440 (0.000) 

-0.12500 

(0.000) 
-0.03820 (0.000) 

-0.00260 

(0.000) 

-0.2 400 
-0.09210 

(0.000) 

0.00000 

(0.000) 
0.12760 (0.000) -0.64860 (0.000) 

-0.19330 

(0.000) 
-0.00930 (0.000) 

-0.00330 

(0.000) 

-0.2 450 
-0.02390 

(0.000) 

-0.00010 

(0.000) 
0.00110 (0.568) 0.00810 (0.000) 

-0.05320 

(0.000) 
-0.02440 (0.000) 

-0.00260 

(0.000) 

-0.2 500 
0.10560 

(0.000) 

-0.00030 

(0.000) 
-0.31680 (0.000) 0.02370 (0.000) 

-0.06500 

(0.000) 
-0.03120 (0.000) 

-0.00030 

(0.000) 

-0.1 0 
0.15480 

(0.000) 

-0.00040 

(0.000) 
0.06760 (0.000) -0.06710 (0.000) 

-0.15190 

(0.000) 
0.00860 (0.000) 

-0.00500 

(0.000) 

-0.1 50 
0.19500 

(0.000) 

-0.00040 

(0.000) 
0.14720 (0.000) -0.18600 (0.000) 

-0.03160 

(0.000) 
0.00290 (0.000) 

-0.00420 

(0.000) 

-0.1 100 
0.17490 

(0.000) 

-0.00030 

(0.000) 
-0.00750 (0.097) 0.01760 (0.000) 

-0.02320 

(0.000) 
-0.01280 (0.000) 

-0.00370 

(0.000) 

-0.1 150 
0.17720 

(0.000) 

-0.00010 

(0.000) 
0.01360 (0.000) -0.24520 (0.000) 

-0.05620 

(0.000) 
-0.01990 (0.000) 

-0.00250 

(0.000) 

-0.1 200 
0.08100 

(0.000) 

0.00000 

(0.000) 
-0.02690 (0.000) 0.00630 (0.000) 

-0.03370 

(0.000) 
-0.02510 (0.000) 

-0.00320 

(0.000) 

-0.1 250 
0.13190 

(0.000) 

-0.00010 

(0.000) 
-0.04030 (0.000) -0.03270 (0.000) 

-0.06300 

(0.000) 
-0.01910 (0.000) 

-0.00560 

(0.000) 

-0.1 300 
0.05880 

(0.000) 

-0.00010 

(0.000) 
-0.12420 (0.000) -0.10830 (0.000) 

-0.02720 

(0.000) 
-0.02540 (0.000) 

-0.00160 

(0.000) 

-0.1 350 
0.12290 

(0.000) 

-0.00010 

(0.055) 
0.03040 (0.000) -0.24850 (0.000) 

-0.07890 

(0.000) 
-0.04440 (0.000) 

-0.00370 

(0.000) 

-0.1 400 
0.02650 

(0.000) 

-0.00020 

(0.000) 
0.16510 (0.000) -0.09920 (0.000) 

-0.18480 

(0.000) 
-0.02490 (0.000) 

-0.00140 

(0.000) 

-0.1 450 
-0.01630 

(0.000) 

0.00010 

(0.000) 
0.14660 (0.000) -0.10840 (0.000) 

-0.10940 

(0.000) 
-0.03680 (0.000) 

-0.00090 

(0.000) 



 202 

Model 

classification 
Model coefficients (values in parenthesis indicates p-values) 

x 

(scaled)1 
y 

Number of 

receptors 

Emission 

rate for 

focus 

link 

(link2) 

Percentage 

difference in 

emission on the 

left-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟏|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Percentage 

difference in 

emission on the 

right-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟑|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Wind speed Wind direction 
Link 

length 

-0.1 500 
-0.00060 

(0.777) 

-0.00020 

(0.000) 
0.02280 (0.000) 0.03380 (0.000) 

-0.08140 

(0.000) 
-0.02290 (0.000) 

0.00020 

(0.000) 

0.0 0 
-0.07820 

(0.000) 

-0.00020 

(0.000) 
0.08050 (0.000) -0.01680 (0.000) 

-0.07810 

(0.000) 
0.00760 (0.000) 

-0.00480 

(0.000) 

0.0 50 
0.15850 

(0.000) 

-0.00040 

(0.000) 
-0.02160 (0.000) 0.00900 (0.000) 

-0.12970 

(0.000) 
0.00260 (0.000) 

-0.00260 

(0.000) 

0.0 100 
0.14120 

(0.000) 

-0.00020 

(0.000) 
-0.18480 (0.000) 0.02370 (0.000) 

-0.16360 

(0.000) 
-0.01820 (0.000) 

-0.00390 

(0.000) 

0.0 150 
0.18940 

(0.000) 

-0.00030 

(0.000) 
-0.19930 (0.000) 0.01700 (0.000) 

-0.00800 

(0.000) 
-0.01140 (0.000) 

-0.00300 

(0.000) 

0.0 200 
0.08450 

(0.000) 

-0.00030 

(0.000) 
-0.22570 (0.000) -0.02780 (0.000) 

-0.03480 

(0.000) 
-0.02270 (0.000) 

-0.00210 

(0.000) 

0.0 250 
0.10790 

(0.000) 

-0.00020 

(0.000) 
-0.25260 (0.000) 0.01620 (0.000) 

-0.05100 

(0.000) 
-0.01720 (0.000) 

-0.00400 

(0.000) 

0.0 300 
0.12700 

(0.000) 

0.00000 

(0.000) 
0.10190 (0.000) -0.05360 (0.000) 

-0.06730 

(0.000) 
-0.02450 (0.000) 

-0.00390 

(0.000) 

0.0 350 
0.18080 

(0.000) 

-0.00010 

(0.174) 
-0.69960 (0.000) -0.08350 (0.000) 

-0.38840 

(0.000) 
-0.05940 (0.000) 

-0.00380 

(0.000) 

0.0 400 
-0.04810 

(0.000) 

-0.00010 

(0.672) 
-0.18930 (0.000) 0.02150 (0.000) 

-0.06850 

(0.000) 
-0.04150 (0.000) 

-0.00120 

(0.000) 

0.0 450 
-0.19410 

(0.000) 

-0.00010 

(0.000) 
-0.09720 (0.000) 0.02120 (0.000) 

-0.08440 

(0.000) 
-0.01960 (0.000) 

-0.00220 

(0.000) 

0.0 500 
0.11260 

(0.000) 

-0.00020 

(0.723) 
0.04530 (0.000) -0.01500 (0.000) 

-0.07750 

(0.000) 
-0.03450 (0.000) 

-0.00130 

(0.000) 

0.1 0 
0.06880 

(0.000) 

-0.00030 

(0.000) 
0.06980 (0.000) 0.00540 (0.004) 

-0.09290 

(0.000) 
0.00010 (0.752) 

-0.00350 

(0.000) 

0.1 50 
0.16670 

(0.000) 

-0.00030 

(0.000) 
-0.02810 (0.000) 0.01990 (0.000) 

-0.06370 

(0.000) 
-0.01330 (0.000) 

-0.00240 

(0.000) 
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Model 

classification 
Model coefficients (values in parenthesis indicates p-values) 

x 

(scaled)1 
y 

Number of 

receptors 

Emission 

rate for 

focus 

link 

(link2) 

Percentage 

difference in 

emission on the 

left-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟏|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Percentage 

difference in 

emission on the 

right-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟑|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Wind speed Wind direction 
Link 

length 

0.1 100 
0.16980 

(0.000) 

-0.00020 

(0.000) 
-0.01960 (0.000) 0.00540 (0.016) 

-0.08590 

(0.000) 
-0.01630 (0.000) 

-0.00150 

(0.000) 

0.1 150 
0.09030 

(0.000) 

-0.00030 

(0.000) 
0.18470 (0.000) -0.24520 (0.000) 

-0.06870 

(0.000) 
-0.01900 (0.000) 

-0.00210 

(0.000) 

0.1 200 
0.15280 

(0.000) 

-0.00030 

(0.000) 
-0.15390 (0.000) -0.12420 (0.000) 

-0.09750 

(0.000) 
-0.01400 (0.000) 

-0.00370 

(0.000) 

0.1 250 
0.12900 

(0.000) 

-0.00010 

(0.000) 
0.16230 (0.000) -0.09950 (0.000) 

-0.19640 

(0.000) 
-0.02970 (0.000) 

-0.00170 

(0.000) 

0.1 300 
0.10090 

(0.000) 

-0.00010 

(0.000) 
-0.66970 (0.000) 0.03160 (0.000) 

-0.13830 

(0.000) 
-0.03310 (0.000) 

-0.00230 

(0.000) 

0.1 350 
0.04130 

(0.000) 

-0.00010 

(0.000) 
-0.60000 (0.000) 0.02700 (0.000) 

-0.15850 

(0.000) 
-0.02880 (0.000) 

-0.00230 

(0.000) 

0.1 400 
0.00540 

(0.001) 

-0.00030 

(0.000) 
-0.31980 (0.000) 0.02550 (0.000) 

-0.08900 

(0.000) 
-0.01000 (0.000) 

-0.00100 

(0.000) 

0.1 450 
-0.02640 

(0.000) 

-0.00010 

(0.000) 
0.22370 (0.000) -0.12890 (0.000) 

-0.04970 

(0.000) 
-0.07170 (0.000) 

-0.00170 

(0.000) 

0.1 500 
0.13110 

(0.000) 

-0.00010 

(0.000) 
-0.01060 (0.009) 0.04430 (0.000) 

-0.02950 

(0.000) 
-0.04820 (0.000) 

-0.00120 

(0.000) 

0.2 0 
0.11730 

(0.000) 

-0.00030 

(0.000) 
-0.18530 (0.000) 0.16060 (0.000) 

-0.18480 

(0.000) 
0.00550 (0.000) 

-0.00300 

(0.000) 

0.2 50 
0.15840 

(0.000) 

-0.00040 

(0.000) 
-0.02700 (0.000) 0.03090 (0.000) 

-0.07630 

(0.000) 
-0.01000 (0.000) 

-0.00120 

(0.000) 

0.2 100 
0.10240 

(0.000) 

-0.00020 

(0.000) 
-0.04360 (0.000) 0.00370 (0.133) 

-0.00630 

(0.003) 
-0.00610 (0.000) 

-0.00230 

(0.000) 

0.2 150 
0.06900 

(0.000) 

-0.00010 

(0.000) 
-0.85180 (0.000) 0.00570 (0.001) 

-0.03570 

(0.000) 
-0.01160 (0.000) 

-0.00160 

(0.000) 

0.2 200 
0.07580 

(0.000) 

-0.00010 

(0.000) 
-0.16460 (0.000) -0.38360 (0.000) 

-0.01160 

(0.000) 
-0.02800 (0.000) 

-0.00180 

(0.000) 
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Model 

classification 
Model coefficients (values in parenthesis indicates p-values) 

x 

(scaled)1 
y 

Number of 

receptors 

Emission 

rate for 

focus 

link 

(link2) 

Percentage 

difference in 

emission on the 

left-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟏|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Percentage 

difference in 

emission on the 

right-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟑|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Wind speed Wind direction 
Link 

length 

0.2 250 
-0.17700 

(0.000) 

0.00000 

(0.000) 
0.02640 (0.000) 0.02570 (0.000) 

-0.05000 

(0.000) 
-0.03630 (0.000) 

-0.00070 

(0.000) 

0.2 300 
0.04680 

(0.000) 

-0.00010 

(0.000) 
-0.07690 (0.000) -0.06060 (0.000) 

-0.10770 

(0.000) 
-0.02240 (0.000) 

-0.00060 

(0.000) 

0.2 350 
0.13790 

(0.000) 

0.00000 

(0.000) 
-0.99550 (0.000) -0.50340 (0.000) 

-0.12720 

(0.000) 
-0.02640 (0.000) 

-0.00330 

(0.000) 

0.2 400 
-0.06290 

(0.000) 

-0.00010 

(0.000) 
-0.00410 (0.063) 0.04610 (0.000) 

-0.03330 

(0.000) 
-0.02360 (0.000) 

0.00000 

(0.066) 

0.2 450 
-0.01660 

(0.000) 

-0.00010 

(0.000) 
-0.79690 (0.000) 0.04590 (0.000) 

-0.15840 

(0.000) 
-0.03200 (0.000) 

-0.00080 

(0.000) 

0.2 500 
0.06170 

(0.000) 

-0.00010 

(0.000) 
-0.01350 (0.001) 0.00160 (0.521) 

-0.01170 

(0.000) 
-0.02420 (0.000) 

0.00110 

(0.000) 

0.3 0 
0.14840 

(0.000) 

-0.00040 

(0.000) 
0.07220 (0.000) -0.05760 (0.000) 

-0.08260 

(0.000) 
-0.00470 (0.000) 

-0.00230 

(0.000) 

0.3 50 
0.16450 

(0.000) 

-0.00020 

(0.000) 
-0.04390 (0.000) 0.01590 (0.000) 

-0.02150 

(0.000) 
-0.00490 (0.000) 

-0.00120 

(0.000) 

0.3 100 
0.08640 

(0.000) 

-0.00030 

(0.000) 
-0.02790 (0.000) 0.03190 (0.000) 

-0.08550 

(0.000) 
-0.01190 (0.000) 

-0.00090 

(0.000) 

0.3 150 
0.08470 

(0.000) 

-0.00020 

(0.001) 
0.24770 (0.000) -0.20340 (0.000) 

-0.04550 

(0.000) 
-0.01420 (0.000) 

-0.00130 

(0.000) 

0.3 200 
0.04030 

(0.000) 

-0.00010 

(0.000) 
-0.01980 (0.000) 0.03370 (0.000) 

-0.11500 

(0.000) 
-0.02350 (0.000) 

-0.00100 

(0.000) 

0.3 250 
0.07580 

(0.000) 

-0.00020 

(0.000) 
-0.33860 (0.000) -0.05090 (0.000) 

-0.03800 

(0.000) 
-0.01610 (0.000) 

-0.00070 

(0.000) 

0.3 300 
-0.04100 

(0.000) 

-0.00020 

(0.000) 
-0.55890 (0.000) 0.02090 (0.000) 

0.00530 

(0.000) 
-0.01730 (0.000) 

-0.00080 

(0.000) 

0.3 350 
0.07090 

(0.000) 

0.00000 

(0.000) 
-0.04050 (0.000) 0.05710 (0.000) 

-0.18130 

(0.000) 
-0.03520 (0.000) 

-0.00140 

(0.000) 
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Model 

classification 
Model coefficients (values in parenthesis indicates p-values) 

x 

(scaled)1 
y 

Number of 

receptors 

Emission 

rate for 

focus 

link 

(link2) 

Percentage 

difference in 

emission on the 

left-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟏|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Percentage 

difference in 

emission on the 

right-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟑|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Wind speed Wind direction 
Link 

length 

0.3 400 
0.08500 

(0.000) 

-0.00020 

(0.000) 
-0.64500 (0.000) -0.21940 (0.000) 

-0.16320 

(0.000) 
-0.01010 (0.000) 

-0.00140 

(0.000) 

0.3 450 
0.09090 

(0.000) 

-0.00010 

(0.000) 
0.05940 (0.000) -0.04980 (0.000) 

-0.03310 

(0.000) 
-0.02140 (0.000) 

-0.00080 

(0.000) 

0.3 500 
0.02760 

(0.000) 

-0.00020 

(0.000) 
-0.02160 (0.000) 0.01870 (0.000) 

-0.01330 

(0.000) 
-0.02390 (0.000) 

0.00110 

(0.000) 

0.4 0 
0.18810 

(0.000) 

-0.00050 

(0.000) 
-0.01500 (0.116) 0.03430 (0.000) 

0.00260 

(0.603) 
-0.02830 (0.000) 

0.00050 

(0.000) 

0.4 50 
0.11800 

(0.000) 

-0.00010 

(0.001) 
-0.06360 (0.000) 0.01450 (0.004) 

-0.01930 

(0.000) 
-0.02590 (0.000) 

0.00050 

(0.000) 

0.4 100 
0.10630 

(0.000) 

-0.00010 

(0.000) 
-0.25960 (0.000) 0.03120 (0.000) 

-0.00090 

(0.770) 
-0.02420 (0.000) 

0.00040 

(0.000) 

0.4 150 
0.08050 

(0.000) 

-0.00020 

(0.000) 
-0.45730 (0.000) 0.05390 (0.000) 

-0.03160 

(0.000) 
-0.03400 (0.000) 

0.00090 

(0.000) 

0.4 200 
0.11370 

(0.000) 

-0.00010 

(0.000) 
-0.57120 (0.000) -0.21250 (0.000) 

-0.04800 

(0.000) 
-0.01680 (0.000) 

-0.00030 

(0.000) 

0.4 250 
0.03330 

(0.000) 

-0.00030 

(0.000) 
-0.23770 (0.000) -0.21510 (0.000) 

-0.02720 

(0.000) 
-0.00780 (0.000) 

-0.00080 

(0.000) 

0.4 300 
0.07860 

(0.000) 

-0.00010 

(0.000) 
-0.03260 (0.000) -0.01460 (0.000) 

-0.09170 

(0.000) 
-0.01980 (0.000) 

-0.00110 

(0.000) 

0.4 350 
-0.05410 

(0.000) 

-0.00010 

(0.000) 
-0.05090 (0.000) 0.03770 (0.000) 

-0.13770 

(0.000) 
-0.01020 (0.000) 

0.00150 

(0.000) 

0.4 400 
0.07170 

(0.000) 

-0.00010 

(0.000) 
-0.41600 (0.000) -1.22860 (0.000) 

-0.05600 

(0.000) 
-0.01720 (0.000) 

-0.00280 

(0.000) 

0.4 450 
0.06760 

(0.000) 

-0.00010 

(0.000) 
-0.39930 (0.000) -1.10530 (0.000) 

-0.12020 

(0.000) 
-0.01770 (0.000) 

-0.00150 

(0.000) 

0.4 500 
-0.04570 

(0.000) 

-0.00010 

(0.000) 
0.02860 (0.000) -0.01360 (0.000) 

-0.07170 

(0.000) 
-0.02060 (0.000) 

0.00100 

(0.000) 
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Model 

classification 
Model coefficients (values in parenthesis indicates p-values) 

x 

(scaled)1 
y 

Number of 

receptors 

Emission 

rate for 

focus 

link 

(link2) 

Percentage 

difference in 

emission on the 

left-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟏|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Percentage 

difference in 

emission on the 

right-side 

(
|𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐−𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟑|

𝒆𝒎𝒊𝒍𝒊𝒏𝒌𝟐
) 

Wind speed Wind direction 
Link 

length 

0.5 0 n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) 

0.5 50 
0.02560 

(0.000) 

0.00010 

(0.000) 
0.01540 (0.123) -0.02790 (0.000) 

-0.12530 

(0.000) 
0.01870 (0.000) 

-0.00060 

(0.000) 

0.5 100 
-0.01800 

(0.031) 

0.00040 

(0.000) 
-0.09270 (0.000) 0.06600 (0.000) 

-0.04600 

(0.000) 
0.01460 (0.000) 

0.00020 

(0.097) 

0.5 150 
0.03470 

(0.000) 

-0.00010 

(0.000) 
0.03020 (0.008) -0.07860 (0.000) 

-0.01950 

(0.001) 
0.00760 (0.000) 

0.00000 

(0.801) 

0.5 200 
0.02830 

(0.000) 

0.00010 

(0.000) 
0.04070 (0.000) -0.03340 (0.000) 

-0.01710 

(0.000) 
-0.00030 (0.780) 

-0.00080 

(0.000) 

0.5 250 
0.02870 

(0.000) 

0.00000 

(0.000) 
0.06830 (0.000) -0.06850 (0.000) 

-0.06450 

(0.000) 
-0.00240 (0.012) 

-0.00030 

(0.004) 

0.5 300 
0.02900 

(0.000) 

0.00010 

(0.000) 
0.01870 (0.001) -0.07700 (0.000) 

-0.07840 

(0.000) 
0.00060 (0.395) 

-0.00010 

(0.025) 

0.5 350 
0.02240 

(0.000) 

-0.00010 

(0.000) 
0.09060 (0.000) -0.11850 (0.000) 

0.01190 

(0.000) 
0.01500 (0.000) 

-0.00150 

(0.000) 

0.5 400 
0.04420 

(0.000) 

-0.00020 

(0.000) 
-0.16620 (0.000) -0.04380 (0.000) 

-0.03230 

(0.000) 
0.00430 (0.000) 

0.00020 

(0.007) 

0.5 450 
-0.19580 

(0.000) 

-0.00010 

(0.339) 
0.26000 (0.000) -0.19640 (0.000) 

0.07780 

(0.000) 
-0.02420 (0.000) 

-0.00080 

(0.000) 

0.5 500 n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) n.a. (n.a.) 

1 The column values indicate the X positions in scale. -0.5 indicates the left-most position of Link 2, 0.0 indicates the middle, and 0.5 

indicates the right-most position.  
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APPENDIX B. THE DEPLOYMENT STRATEGY OF MODELING 

SYSTEM ON AMAZON WEB SERVICES 

This section suggests a strategy to deploy the developed modeling system on Amazon Web 

Services (AWS), and provides the expected deployment cost. AWS provides a variety of 

cloud computing products for diverse user demands, including products specialized for 

computing, storage, database, internet service, blockchain, etc. In addition, the AWS 

pricing varies depending on the type of products and the specification of the desired cloud 

computing system.3 Therefore, the proper selection of AWS product and pricing plan is 

important to provide affordable modeling system through AWS to the users.  

Based on the review of AWS product website (https://aws.amazon.com/), this study 

suggested some suitable options among various AWS products and pricing plans that may 

match with the developed modeling system. Basically, this study assumed that the similar 

modeling structure addressed in this dissertation will be deployed on AWS. That is, each 

job consisting of multi-links and a single receptor will be assigned to each processor and 

multiple jobs are processed simultaneously, and as such, this strategy inevitably requires 

many AWS processors and cores to be deployed on AWS. In addition, the AWS modeling 

system will be used per client’s request to reduce the total AWS ownership cost. (This 

option is best for occasional use.) Considering these assumptions, the study suggested the 

following AWS product and pricing plan. 

- Amazon EC2 product (one of the common types of AWS cloud computing system) 

                                                 
3 AWS cost estimation was based on https://aws.amazon.com/ec2/pricing/on-demand/. 

https://aws.amazon.com/
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- On-Demand service (pay for compute capacity by the hour with no long-term 

commitments) 

- “Compute optimized” and Linux based operating systems 

Table 15 summarized the cost of AWS service usages that adopts the above AWS 

service type. As shown, Amazon EC2 On-Demand service provides a variety of system 

specifications with increasing unit prices by CPU, EC2 compute unit (ECU), memory, and 

storage. In this case, because the developed modeling system particularly require more 

compute units for multiple dispersion modeling processes, some powerful Amazon EC2 

classes such as “c5d.metal” may be preferred. Note that “c5d.metal” class provides up to 

375 ECU (AWS compute unit: one ECU is similar in power to a 1.0 - 1.2 GHz 2007 Intel 

Xeon or AMD Opteron processor).  

Considering these desired AWS specifications, the study estimated the expected 

cost of dispersion modeling for the metro Atlanta area through AWS. As mentioned in 

chapter 6.8, the standard dispersion modeling time for metro Atlanta took around 10 days 

(= 240 hours) with 500 PACE processors. The Amazon EC2 c5d.metal provides up to 375 

processors, thus the dispersion modeling for metro Atlanta is expected to take 13.3 days 

(10 days × 500 processors / 375 processors, which is 320 hours) through AWS. Thus, the 

total cost of dispersion modeling for metro Atlanta is expected to be $1,475 (320 hours × 

$4.608 per Hour). Because the modeling cost can be scalable by the size of network (as 

mentioned, the dispersion modeling time is related to the number of links and receptors), 

the estimated cost in this study may help agencies to estimate their expected cost of their 

analysis.  
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Table 15 - Amazon EC2 On-Demand Pricing as of April, 2020: Compute Optimized 

& Linux/Unix Services  

Class 

Virtual 

CPU 

(vCPU) 

ECU 1 
Memory 

(GiB) 

Instance Storage 

(GB) 
Linux/UNIX Usage 

c5.large 2 10 4 EBS Only $0.085 per Hour 

c5d.large 2 10 4 1 x 50 NVMe SSD $0.096 per Hour 

c4.large 2 8 3.75 EBS Only $0.10 per Hour 

c5n.large 2 10 5.25 EBS Only $0.108 per Hour 

c5.xlarge 4 20 8 EBS Only $0.17 per Hour 

c5d.xlarge 4 20 8 1 x 100 NVMe SSD $0.192 per Hour 

c4.xlarge 4 16 7.5 EBS Only $0.199 per Hour 

c5n.xlarge 4 20 10.5 EBS Only $0.216 per Hour 

c5.2xlarge 8 39 16 EBS Only $0.34 per Hour 

c5d.2xlarge 8 39 16 1 x 200 NVMe SSD $0.384 per Hour 

c4.2xlarge 8 31 15 EBS Only $0.398 per Hour 

c5n.2xlarge 8 39 21 EBS Only $0.432 per Hour 

c5.4xlarge 16 73 32 EBS Only $0.68 per Hour 

c5d.4xlarge 16 73 32 1 x 400 NVMe SSD $0.768 per Hour 

c4.4xlarge 16 62 30 EBS Only $0.796 per Hour 

c5n.4xlarge 16 73 42 EBS Only $0.864 per Hour 

c5.9xlarge 36 139 72 EBS Only $1.53 per Hour 

c4.8xlarge 36 132 60 EBS Only $1.591 per Hour 

c5d.9xlarge 36 139 72 1 x 900 NVMe SSD $1.728 per Hour 

c5n.9xlarge 36 139 96 EBS Only $1.944 per Hour 

c5.12xlarge 48 188 96 EBS Only $2.04 per Hour 

c5d.12xlarge 48 188 96 2 x 900 NVMe SSD $2.304 per Hour 

c5.18xlarge 72 281 144 EBS Only $3.06 per Hour 

c5d.18xlarge 72 281 144 2 x 900 NVMe SSD $3.456 per Hour 

c5n.18xlarge 72 281 192 EBS Only $3.888 per Hour 

c5n.metal 72 N/A 192 EBS Only $3.888 per Hour 

c5.24xlarge 96 375 192 EBS Only $4.08 per Hour 

c5.metal 96 375 192 EBS Only $4.08 per Hour 

c5d.24xlarge 96 375 192 4 x 900 NVMe SSD $4.608 per Hour 

c5d.metal 96 375 192 4 x 900 NVMe SSD $4.608 per Hour 



 210 

REFERENCES 

Akpinar, S., Oztop, H. F., and Akpinar, E. K. (2008) Evaluation of Relationship between 

Meteorological Parameters and Air Pollutant Concentrations during Winter Season 

in Elazığ, Turkey. Environmental Monitoring and Assessment, 146(1-3), 211-224. 

https://doi.org/10.1007/s10661-007-0073-9. 

ARC, Atlanta Regional Commission. (2017) Activity Based Modeling. 

https://atlantaregional.org/transportation-mobility/modeling/modeling/. 

Archer, K., and Kimes, R. (2008) Empirical Characterization of Random Forest Variable 

Importance Measures. Computational Statistics & Data Analysis, 52(4), 2249-2260. 

https://doi.org/10.1016/j.csda.2007.08.015. 

Aziz, H. A., and Ukkusuri, S. V. (2012) Integration of Environmental Objectives in A 

System Optimal Dynamic Traffic Assignment Model. Computer-Aided Civil and 

Infrastructure Engineering. 27(7), 494-511. https://doi.org/10.1111/j.1467-

8667.2012.00756.x. 

Bachman, W., Granell, J., Guensler, R., and Leonard, J. (1998) Research Needs in 

Determining Spatially Resolved Sub-fleet Characteristics. Transportation Research 

Record. 1625. 139-146. Transportation Research Board. Washington, DC. 1998. 

Bachman, W., Sarasua, W., Hallmark, S., and Guensler, R. (2000) Modeling Regional 

Mobile Source Emissions in a Geographic Information System Framework. 

Transportation Research Part C: Emerging Technologies, 8(1-6), 205-229.  

https://doi.org/10.1016/S0968-090X(00)00005-X. 

Barad, M. L. (1958). Project Prairie Grass, A Field Program in Diffusion. Volume 1 (No. 

Grp-59-Vol-1). Air Force Cambridge Research Labs Hanscom AFB MA. 

Barzyk, T. M., George, B. J., Vette, A. F. Williams, R. W., Croghan, C. W., and Stevens, 

C. D. (2009) Development of a Distance-to-roadway Proximity Metric to Compare 

Near-road Pollutant Levels to a Central Site Monitor. Atmospheric Environment, 

43(4), 787-797.  https://doi.org/10.1016/j.atmosenv.2008.11.002. 



 211 

Batterman, S., Chambliss, S. and Isakov, V. (2014) Spatial Resolution Requirements for 

Traffic-related Air Pollutant Exposure Evaluations. Atmospheric Environment, 94, 

518-528. https://doi.org/10.1016/j.atmosenv.2014.05.065. 

Belgiu, M., and Drăguţ, L. (2016) Random Forest in Remote Sensing: A Review of 

Applications and Future Directions. ISPRS Journal of Photogrammetry and Remote 

Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011. 

Bellander, T., Berglind, N., Gustavsson, P., Jonson, T., Nyberg, F., Pershagen, G., and 

Järup, L. (2001) Using Geographic Information Systems to Assess Individual 

Historical Exposure to Air Pollution from Traffic and House Heating in 

Stockholm. Environmental Health Perspectives, 109(6), 633-639. 

https://doi.org/10.1289/ehp.01109633. 

Benson, P.E. (1979) CALINE-3. A Versatile Dispersion Model for Predicting Air 

Pollution Levels Near Highways and Arterial Streets FHWA/CA/TL-79/23, 

California Department of Transportation, Sacramento, CA 

Benson, P. E. (1982). Modifications to The Gaussian Vertical Dispersion Parameter, Σz, 

Near Roadways. Atmospheric Environment (1967), 16(6), 1399-1405. 

https://doi.org/10.1016/0004-6981(82)90060-9.  

Benson, P. E. (1984) CALINE 4-A Dispersion Model for Predicting Air Pollutant 

Concentrations Near Roadways. No. FHWA-CA-TL-84-15 Final Report. 

https://trid.trb.org/view/215944. 

Benson, P. E. (1992). A Review of The Development and Application of The CALINE3 

and 4 Models. Atmospheric Environment. Part B. Urban Atmosphere, 26(3), 379-

390. https://doi.org/10.1016/0957-1272(92)90013-I.  

Bernstein, J. A., N. Alexis, C. Barnes, I. L. Bernstein, A. Nel, D. Peden, D. Diaz-

Sanchez, S. M. Tarlo, and P. B. Williams. (2004) Health effects of air pollution. 

Journal of Allergy and Clinical Immunology. 114(5), 1116–1123: 

https://doi.org/10.1016/j.jaci.2004.08.030. 

Breiman, L. (1996) Bagging Predictors. Machine Learning, 24, 123–140.  

https://doi.org/10.1007/BF00058655. 

Breiman, L. (2001) Random Forest. Machine Learning, 45(1), 5-32. 

https://doi.org/10.1023/A:1010933404324. 

https://doi.org/10.1289/ehp.01109633


 212 

Briant, R., Seigneur, C., Gadrat, M., and Bugajny, C. (2013) Evaluation of Roadway 

Gaussian Plume Models with Large-scale Measurement Campaigns. Geoscientific 

Model Development, 6(2), 445-456. https://doi.org/10.5194/gmd-6-445-2013. 

Brook, R. D., S. Rajagopalan, C. A. Pope III, J. R. Brook, A. Bhatnagar, A. V. Diez-

Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, and A. Peters. (2010) 

Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the 

Scientific Statement from the American Heart Association. Circulation. 121(21), 

pp.2331-2378: https://doi.org/10.1161/CIR.0b013e3181dbece1. 

Caltrans, California Department of Transportation (2019) Project-Level Air Quality 

Analysis. https://dot.ca.gov/programs/environmental-analysis/air-quality/project-

level-air-quality-analysis. 

Camdeviren, H., Yazici, A., Akkus, Z., Bugdayci, R., and Sungur, M. (2007) Comparison 

of Logistic Regression Model and Classification Tree: An Application to Postpartum 

Depression Data.  Expert Systems with Applications, 32(4), 987-994. 

https://doi.org/10.1016/j.eswa.2006.02.022. 

Carruthers, D.J., Holroyd, R.J., Hunt, J.C.R., Weng, W.S., Robins, A.G., Apsley, D.D., 

Thompson, D.J. and Smith, F.B. (1994) UK-ADMS: A New Approach to Modelling 

Dispersion in The Earth's Atmospheric Boundary Layer. Journal of Wind 

Engineering and Industrial Aerodynamics, 52, pp.139-153. 

https://doi.org/10.1016/j.atmosenv.2003.10.052 

CERC, Cambridge Environmental Research Consultants. (2019) ADMS-Roads 

.https://www.cerc.co.uk/environmental-software/ADMS-Roads-model.html. 

Cimorelli, A.J., Wilson, R.B., Perry, S.G., Venkatram, A., Weil, J.C., Paine, R.J., Lee, 

R.F. and Peters, W.D., (1998) Minimum Meteorological Data Requirements for 

AERMOD–study and Recommendations. USEPA Version, 98314, p.98022. 

https://www3.epa.gov/ttn/scram/7thconf/aermod/degrade.pdf. 

Cimorelli, A.J., Perry, S.G., Venkatram, A., Weil, J.C., Paine, R.J., Wilson, R.B., Lee, 

R.F., Peters, W.D. and, Brode, R.W. (2005) AERMOD: A Dispersion Model for 

Industrial Source Applications. Part I: General Model Formulation and Boundary 

Layer Characterization. Journal of Applied Meteorology, 44(5), 682-693. 

https://doi.org/10.1175/JAM2227.1. 

Claesen, M., Simm, J., Popovic, D., and Moor, B. D. (2014) Hyperparameter Tuning in 

Python using Optunity. In Proceedings of the International Workshop on Technical 



 213 

Computing for Machine Learning and Mathematical Engineering, 1, 3.  

https://github.com/claesenm/optunity. 

Donateo, A., and Contini, D. (2014) Correlation of Dry Deposition Velocity and Friction 

Velocity over Different Surfaces for PM2.5 and Particle Number Concentrations. 

Advances in Meteorology. http://dx.doi.org/10.1155/2014/760393. 

D'Onofrio, D., Kim, B., Kim, Y., and Kim, K. (2016) Atlanta Roadside Emissions 

Exposure Study-Methodology & Project Overview. http://atlantaregional.org/wp-

content/uploads/2017/03/arees-documentation.pdf 

Draxler, R. R. (1976). Determination of Atmospheric Diffusion Parameters. Atmospheric 

Environment (1967), 10(2), 99-105. https://doi.org/10.1016/0004-6981(76)90226-2. 

Eckhoff, P. A., & Braverman, T. N. (1995). Addendum to the User's Guide to CAL3QHC 

Version 2.0 (CAL3QHCR User's Guide.  

Finn, D., Clawson, K. L., Carter, R. G., Rich, J. D., Eckman, R. M., Perry, S. G., Isakov, 

V., Heist, D. K. (2010) Tracer Studies to Characterize the Effects of Roadside Noise 

Barriers on Near-Road Pollutant Dispersion Under Varying Atmospheric Stability 

Conditions. Atmospheric Environment 44, 204-214. 

Freund, Y., Schapire, R. E. (1997) A Decision-Theoretic Generalization of On-Line 

Learning and an Application to Boosting. Journal of Computer and System 

Sciences, 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504. 

Gamo, M., Goyal, P., Kumari, M., Mohanty, U. C., and Singh, M. P. (1994) Mixed-layer 

Characteristics as Related to the Monsoon Climate of New Delhi, India. Boundary-

Layer Meteorology, 67(3), 213-227. https://doi.org/10.1007/BF00713142. 

Georgia EPD, Georgia Environmental Protection Division. (2019) Georgia AERMET 

Meteorological Data. https://epd.georgia.gov/air/georgia-aermet-meteorological-

data. 

Gifford, F. A. (1961) Use of Routine Meteorological Observations for Estimating 

Atmospheric Dispersion. Nuclear Safety, 2, 47-51. 

Granell, J., Guensler, R., and Bachman, W. H. (2002) Using Locality-Specific Fleet 

Distributions in Emissions Inventories: Current Practice, Problems and Alternatives. 



 214 

Published in the CD-ROM Proceedings of the 79th Annual Meeting of the 

Transportation Research Board. Washington, DC. January 2002. 

Greene, W. (2012) Econometric Analysis (7th ed.). Upper Saddle River, New Jersey: 

Prentice Hall. 

Grimmond, C.S.B., and Oke, T.R. (1999) Aerodynamic Properties of Urban Areas 

Derived from Analysis of Surface Form. Journal of Applied Meteorology., 38, 1262-

1292. https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2 

Guensler, R., Rodgers, M.O., Leonard II, J., and Bachman, W. (2000) A Large Scale 

Gridded Application of the CALINE4 Dispersion Model. Transportation Planning 

and Air Quality IV. A. Chatterjee, Ed. American Society of Civil Engineers. New 

York, NY. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0123540. 

Guensler, R., Pandey, V., Kall, D., Shafi, G., Blaiklock, P., Rodgers, M.O., and Hunter, 

M., (2008) MOBILE-Matrix and CALINE-Grid: Project-Level Conformity 

Screening and Microscale Air Quality Impact Assessment Tools. Prepared for the 

Georgia Department of Transportation, Atlanta, GA. Georgia Institute of 

Technology. Atlanta, GA. June 2008. 

Guensler, R., Liu, H., Xu, X., Xu, Y., and Rodgers, M.O. (2016) MOVES-Matrix: Setup, 

Implementation, and Application (16-6362). Presented at 95th Annual Meeting of 

the Transportation Research Board, Washington, D.C. 

https://trid.trb.org/view/1394387. 

Guensler, R., Liu, H., Xu, Y., Akanser, A., Kim, D., Hunter, M. P., and Rodgers, M.O. 

(2017) Energy Consumption and Emissions Modeling of Individual Vehicles. 

Transportation Research Record, 2627(1), 93-102. https://doi.org/10.3141/2627-11 

Hagler, G. S. W., Baldauf, R. W., Thoma, E. D., Long, T. R., Snow, R. F., Kinsey, J. S., 

Oudejans, L., and Gullett, B. K. (2009) Ultrafine Particles near a Major Roadway in 

Raleigh, North Carolina: Downwind Attenuation and Correlation with Traffic-

related Pollutants. Atmospheric Environment, 43(6), 1229-1234.  

https://doi.org/10.1016/j.atmosenv.2008.11.024. 

Hanna, S. R., Briggs, G. A., and Hosker Jr, R. P. (1982). Handbook on Atmospheric 

Diffusion (No. DOE/TIC-11223). National Oceanic and Atmospheric 

Administration, Oak Ridge, TN (USA). Atmospheric Turbulence and Diffusion Lab. 

https://www.osti.gov/biblio/5591108. 



 215 

Hanna, S. R. (1984) Applications in Air Pollution Modeling. In Atmospheric Turbulence 

and Air Pollution Modelling (pp. 275-310). Springer, Dordrecht. 

Hartley, S., Rosenbaum, A., Holder, C., Cohen, J., Graham, S., Brode, R., Thurman, J., 

Langstaff, J., and Fox, T. (2009) Application of AERMOD to Region-wide 

Emissions in an Urban Setting in Support of the NO2 NAAQS. 

https://www.researchgate.net/publication/325269688_Application_of_AERMOD_to

_region-

wide_emissions_in_an_urban_setting_in_support_of_the_NO2_NAAQS_review 

Hastie, T., Tibshirani, R., Friedman, J. H. (2009a) The Elements of Statistical Learning: 

Data Mining, Inference, and Prediction. Springer Series in Statistics second ed., 

corrected 7th printing. http://statweb.stanford.edu/~tibs/ElemStatLearn/. 

Hastie, T., Rosset, S., Zhu, J., and Zou, H. (2009b) Multi-class Adaboost. Statistics and 

its Interface, 2(3), 349-360. http://dx.doi.org/10.4310/SII.2009.v2.n3.a8. 

HEI, Health Effects Institute. (2010) Traffic-related air pollution: A Critical review of the 

literature on emissions, exposure, and health effect. Boston, MA: HEI. 

https://www.healtheffects.org/publication/traffic-related-air-pollution-critical-

review-literature-emissions-exposure-and-health. 

Heist, D. K., Perry, S. G., Brixey, L. A., (2009) A Wind Tunnel Study of The Effect of 

Roadway Configurations on The Dispersion of Traffic-Related Pollution. 

Atmospheric Environment 43, 5101-5111. 

Heist, D., Isakov, V., Perry, S., Snyder, M., Venkatram, A., Hood, C., Stocker, J., 

Carruthers, D., Arunachalam, S., and Owen, R.C., (2013) Estimating Near-Road 

Pollutant Dispersion: A Model Inter-Comparison. Transportation Research Part D: 

Transport and Environment, 25, pp.93-105. 

https://doi.org/10.1016/j.trd.2013.09.003. 

Hien, P. D., Bac, V. T., Tham, H. C., Nhan, D. D., and Vinh, L. D. (2002) Influence of 

Meteorological Conditions on PM2.5 and PM2.5 − 10 Concentrations during the 

Monsoon Season in Hanoi, Vietnam. Atmospheric Environment, 36(21), 3473-3484. 

https://doi.org/10.1016/S1352-2310(02)00295-9. 

Hodan, W. M., and Barnard, W. R. (2004) Evaluating the Contribution of PM2.5 

Precursor Gases and Re-Entrained Road Emissions to Mobile Source PM2.5 

Particulate Matter Emissions. MACTEC Federal Programs, Research Triangle Park, 

NC. 

https://doi.org/10.1016/S1352-2310(02)00295-9


 216 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.593.2783&rep=rep1&typ

e=pdf. 

Hsu, C. W., Chang, C.C., and Lin, C. J. (2003) A Practical Guide to Support Vector 

Classification. Department of Computer Science, National Taiwan University. 

https://www.researchgate.net/profile/Chenghai_Yang/publication/272039161_Evalu

ating_unsupervised_and_supervised_image_classification_methods_for_mapping_c

otton_root_rot/links/55f2c57408ae0960a3897985/Evaluating-unsupervised-and-

supervised-image-classification-methods-for-mapping-cotton-root-rot.pdf. 

Hu, S., Fruin, S., Kozawa, K., Mara, S., Paulson, S. E., and Winer, A. M. (2009) A Wide 

Area of Air Pollutant Impact Downwind of a Freeway during Pre-sunrise Hours. 

Atmospheric Environment, 43(16), 2541-2549. 

https://doi.org/10.1016/j.atmosenv.2009.02.033. 

Igri, P., Vondou, D., and Kamga, F. (2011) Case Study of Pollutants Concentration 

Sensitivity to Meteorological Fields and Land Use Parameters over Douala 

(Cameroon) using AERMOD Dispersion Model. Atmosphere, 2(4), 715-741. 

https://doi.org/10.3390/atmos2040715. 

Kall, D., V. Pandey, J., and Guensler, R. (2008) MOBILE-Matrix and CALINE-Grid: 

Project-Level Conformity Screening and Microscale Air Quality Impact Assessment 

Tools. 18th Annual On-Road Vehicle Emissions Workshop, San Diego, CA. 

Coordinating Research Council. Atlanta, GA. March 2008. 

Kampa, M., and Castanas, E. (2007) Human Health Effects of Air Pollution. 

Environmental pollution. 151(2), pp.362-367: 

https://doi.org/10.1016/j.envpol.2007.06.012 

Kim, D., Ko, J., Xu, X., Liu, H., Rodgers, M.O., and Guensler, R. (2019a). Evaluating the 

Environmental Benefits of Median Bus Lanes: A Microscopic Simulation Approach, 

Transportation Research Record: Journal of the Transportation Research Board, 

https://doi.org/10.1177/0361198119836982. 

Kim, D., Guin, A., Ko, J., Rodgers, M., and Guensler, R. (2019b) Energy and Air Quality 

Impacts of Truck-Only Lanes: A Case Study of Interstate 75 Between Macon and 

McDonough, Georgia. Presented at 98th Annual Meeting of the Transportation 

Research Board, Washington, D.C. https://trid.trb.org/view/1573113. 

Kim, D., Liu, H., Xu, X., Lu, H., Wayson, R., Rodgers, M.O., and Guensler, R. (2019c) 

A Regional Air Quality Impact Assessment Screening Tool based upon MOVES-

https://doi.org/10.1016/j.envpol.2007.06.012


 217 

Matrix and AERMOD. Presented at Guideline on Air Quality Models: Planning 

Ahead Conference, Air & Waste Management Association, March 12, Durham, 

North Carolina, USA.  

Kim, D., H. Liu, M.O. Rodgers, and R. Guensler. (2020a) Development of Roadway 

Link Screening Model for Regional-level Near-road Air Quality Analysis: A Case 

Study of Particulate Matter. Presentation at the 99th Transportation Research Board 

(TRB) Annual Meeting. 

Kim, D., H. Liu, X. Xu, H. Lu., R. Wayson, M.O. Rodgers, R. Guensler. (2020b) 

Streamlined Data Processing for Regional Scale Applications of Line Source 

Dispersion Modeling via Distributed Computing. Presentation at the 99th 

Transportation Research Board (TRB) Annual Meeting. 

Lin, G., Fu, J., Jiang, D., Wang, J., Wang, Q., and Dong, D. (2015) Spatial Variation of 

the Relationship between PM2. 5 Concentrations and Meteorological Parameters in 

China. BioMed Research International. http://dx.doi.org/10.1155/2015/684618. 

Liu, H., Xu, Y., Rodgers, M. O., and Guensler, R. (2015).  Developing Vehicle 

Classification Inputs for Project-Level MOVES Analysis.  Transportation Research 

Record: Journal of the Transportation Research Board, No. 2503, 2015, pp. 81-90.  

https://doi.org/10.3141/2503-09. 

Liu, H., Xu, X., Rodgers, M.O., Xu. Y., and Guensler, R. (2017) MOVES-Matrix and 

Distributed Computing for Microscale Line Source Dispersion Analysis. Journal of 

the Air & Waste Management Association, 67(7).  

https://doi.org/10.1080/10962247.2017.1287788. 

Liu, H. (2018) Modeling the Impact of Road Grade on Vehicle Operation, Vehicle 

Energy Consumption, and Emissions. Doctoral Dissertation, Georgia Institute of 

Technology.  

Liu, H., and Kim, D. (2019a) Simulating the Uncertain Environmental Impact of Freight 

Truck Shifting Programs. Atmospheric Environment, 214, 116847. 

https://doi.org/10.1016/j.atmosenv.2019.116847. 

Liu, H., Guensler, R., Xu, X., Xu, Y., and Rodgers, M. (2019b) MOVES-Matrix for 

High-Performance On-road Energy and Emission Rate Modeling Applications.  

Journal of the Air and Waste Management Association, 69(12), 1415-1428. 

https://doi.org/10.1080/10962247.2019.1640806. 

http://dx.doi.org/10.1155/2015/684618


 218 

Liu, H., M.O. Rodgers, and R. Guensler (2019c). Impact of Road Grade on Vehicle 

Speed-Acceleration Distribution, Emissions, and Line Source Dispersion Modeling 

on Freeways. Transportation Research Part D: Transport and Environment. Volume 

69, pp: 107-122. https://doi.org/10.1016/j.trd.2019.01.028. 

McHugh, C. A., Carruthers, D. J., and Edmunds, H. A. (1997) ADMS and ADMS–

urban. International Journal of Environment and Pollution, 8(3-6), 438-440. 

https://www.cerc.co.uk/environmental-

software/assets/data/doc_presentations/CERC_2011_ADMS-

Urban_Developments_in_modelling_dispersion_from_the_city_scale_to_the_local_

scale_StockerJ.pdf 

Montavon, G., Orr, G., and Müller, K. (2012) Lecture Notes in Computer Science Series. 

LNCS: Vol. 7700. Neural networks: tricks of the trade. Springer Verlag. 

https://doi.org/10.1007/978-3-642-35289-8. 

Nadolski, V. L. (1998) Automated Surface Observing System (ASOS) User’s 

Guide. National Oceanic and Atmospheric Administration, Department of Defense, 

Federal Aviation Administration, United States Navy. 

Nowak, D. J., Greenfield, E. J., 2012. Tree and Impervious Cover Change in US cities. 

Urban Forestry & Urban Greening, 11(1), 21-30. 

https://doi.org/10.1016/j.ufug.2011.11.005. 

PACE (2017) Partnership for an Advanced Computing Environment (PACE). 

http://www.pace.gatech.edu. 

Park, Y., Guldmann, J. M. (2020) Understanding Disparities in Community Green 

Accessibility under Alternative Green Measures: A Metropolitan-wide Analysis of 

Columbus, Ohio, and Atlanta, Georgia. Landscape and Urban Planning, 103806. 

https://doi.org/10.1016/j.landurbplan.2020.103806. 

Pasquill, F. (1974) Atmospheric Diffusion. John Wiley & Sons.  

Pasquill, F. (1976) Atmospheric Dispersion Parameters in Gaussian Plume Modeling. 

Part 2. Possible Requirements for Change in the Turner Workbook Values.  

Pasquill, F., and Michael, P. (1977) Atmospheric Diffusion. Physics Today 30, 55. 

https://doi.org/10.1063/1.3037599. 



 219 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, 

M., Prettenhofer, P., Weiss, R., Dubourg, V., and Vanderplas, J. (2011) Scikit-learn: 

Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-

2830. http://www.jmlr.org/papers/v12/pedregosa11a. 

Quinlan, J. (1986) Induction of Decision Trees. Machine learning, (1), 81-106. 

https://doi.org/10.1007/BF00116251. 

R Core Team. (2017) R: A Language and Environment for Statistical Computing. R 

Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0:  

http://www.R-project.org/. 

Saide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E., Mena-Carrasco, 

M. A., and Pagowski, M. (2011). Forecasting Urban PM10 And PM2. 5 Pollution 

Episodes in Very Stable Nocturnal Conditions and Complex Terrain Using WRF–

Chem CO Tracer Model. Atmospheric Environment, 45(16), 2769-2780. 

https://doi.org/10.1016/j.atmosenv.2011.02.001. 

Samaranayake, S., Glaser, S., Holstius, D., Monteil, J., Tracton, K., Seto, E., Bayen, A. 

(2014) Real-Time Estimation of Pollution Emissions and Dispersion from Highway 

Traffic. Computer-Aided Civil and Infrastructure Engineering. 29(7), 546-558. 

https://doi.org/10.1111/mice.12078 

Shafi, G. (2008) Development of Roadway Link Screening Criteria for Microscale 

Carbon Monoxide and Particulate Matter Conformity Analyses through Application 

of Classification Tree Model. Master’s Thesis, Georgia Institute of Technology. 

http://hdl.handle.net/1853/28222. 

Shafique, M. A., and Hato, E. (2015) Use of Acceleration Data for Transportation Mode 

Prediction. Transportation, 42(1), 163-188. https://doi.org/10.1007/s11116-014-

9541-6. 

Snyder, M. G., Venkatram, A., Heist, D. K., Perry, S. G., Petersen, W. B., and Isakov, V. 

(2013a). RLINE: A Line Source Dispersion Model for Near-Surface Releases. 

Atmospheric Environment, 77, 748-756. 

https://doi.org/10.1016/j.atmosenv.2013.05.074 

Snyder, M. G., and Heist, D. K. (2013b). User’s Guide for R-LINE Model Version 1.2 A 

Research LINE Source Model for Near-Surface Releases. Atmospheric Modeling 

and Analysis Division. https://www.cmascenter.org/r-

line/documentation/1.2/RLINE_UserGuide_11-13-2013.pdf 

https://doi.org/10.1007/s11116-014-9541-6
https://doi.org/10.1007/s11116-014-9541-6


 220 

Tainio, M., de Nazelle, A. J., Götschi, T., Kahlmeier, S., Rojas-Rueda, D., 

Nieuwenhuijsen, M. J., de Sá, T. H., Kelly, P., and Woodcock, J. (2016) Can Air 

Pollution Negate the Health Benefits of Cycling and Walking? Preventive Medicine. 

87, pp.233-236: https://doi.org/10.1016/j.ypmed.2016.02.002. 

Tecer, L. H., Süren, P., Alagha, O., Karaca, F., and Tuncel, G. (2008) Effect of 

Meteorological Parameters on Fine and Coarse Particulate Matter Mass 

Concentration in a Coal-Mining Area in Zonguldak, Turkey. Journal of the Air & 

Waste Management Association, 58(4), 543-552. 

https://www.tandfonline.com/doi/pdf/10.3155/1047-

3289.58.4.543?needAccess=true. 

Texas Commission on Environmental Quality. (2019) Meteorological Data for Refined 

Screening with AERMOD. 

https://www.tceq.texas.gov/permitting/air/modeling/aermod-datasets.html. 

Turner, D. B. (1994). Workbook of Atmospheric Dispersion Estimates: An Introduction 

to Dispersion Modeling. CRC press. 

U.S. Bureau of Labor Statistics. (2020) American Time Use Survey. 

https://www.bls.gov/tus/. 

USEPA, U.S. Environmental Protection Agency. (1995) User’s Guide for the Industrial 

Source Complex (ISC3) Dispersion Models: Volume II. 

https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=000031VJ.TXT. 

USEPA, U.S. Environmental Protection Agency (2004) User's guide for the AERMOD 

Meteorological Preprocessor (AERMET). Research Triangle Park, NC, Office of 

Air Quality Planning and Standards. 

https://www3.epa.gov/ttn/scram/7thconf/aermod/aermet_userguide.pdf. 

USEPA, U.S. Environmental Protection Agency. (2006) National ambient air quality 

standards (NAAQS). 

USEPA, U.S. Environmental Protection Agency. (2008) Integrated Science Assessment 

for Oxides of Nitrogen – Health Criteria. Research Triangle Park, NC: National 

Center for Environmental Assessment, Office of Research and Development. 

https://www.epa.gov/isa/integrated-science-assessment-isa-nitrogen-dioxide-health-

criteria 

https://www.bls.gov/tus/
https://www3.epa.gov/ttn/scram/7thconf/aermod/aermet_userguide.pdf


 221 

USEPA, U.S. Environmental Protection Agency (2014) Official Release of the 

MOVES2014 Motor Vehicle Emissions Model for SIPs and Transportation 

Conformity. https://www.federalregister.gov/documents/2014/10/07/2014-

23258/official-release-of-the-moves2014-motor-vehicle-emissions-model-for-sips-

and-transportation. 

USEPA, U.S. Environmental Protection Agency (2015a) Project-Level Conformity and 

Hot-Spot Analyses. https://www.epa.gov/state-and-local-transportation/project-

level-conformity-and-hot-spot-analyses. 

USEPA, U.S. Environmental Protection Agency (2015b) Technical Support Document 

(TSD) for Replacement of CALINE3 with AERMOD for Transportation Related Air 

Quality Analyses. 

https://www3.epa.gov/ttn/scram/11thmodconf/CAL3_AERMOD_Replacement_TS

D.pdf. 

USEPA, U.S. Environmental Protection Agency (2015c) AERMINUTE User's Guide. 

https://www3.epa.gov/ttn/scram/7thconf/aermod/aerminute_userguide.pdf. 

USEPA, U.S. Environmental Protection Agency (2016) AERSCREEN User’s Guide. 

https://www3.epa.gov/scram001/models/screen/aerscreen_userguide.pdf. 

USEPA, U.S. Environmental Protection Agency. (2018). 3-Day PM Hot-spot Training 

Course, Held at USEPA, Ann Arbor, MI, June 26-28. 

USEPA, U.S. Environmental Protection Agency. (2019a) Air Quality Dispersion 

Modeling - Preferred and Recommended Models. https://www.epa.gov/scram/air-

quality-dispersion-modeling-preferred-and-recommended-models. 

USEPA, U.S. Environmental Protection Agency. (2019b). User’s Guide for the 

AMS/EPA Regulatory Model (AERMOD). 

https://www3.epa.gov/ttn/scram/models/aermod/aermod_userguide.pdf. 

USEPA, U.S. Environmental Protection Agency. (2019c) MOVES2014b: Latest Version 

of Motor Vehicle Emission Simulator. https://www.epa.gov/moves/latest-version-

motor-vehicle-emission-simulator-moves. 

USEPA, U.S. Environmental Protection Agency. (2019d) AERMOD Model Formulation 

and Evaluation. https://www3.epa.gov/ttn/scram/models/aermod/aermod_mfed.pdf. 



 222 

Vallamsundar, S., and Lin, J. (2012) MOVES and AERMOD used for PM2.5 Conformity 

Hot Spot Air Quality Modeling. Transportation Research Record, 2270, 39-48. 

https://doi.org/10.3141/2270-06. 

Vallero, D. A. (2014) Fundamentals of Air Pollution. Academic Press. 

Venkatram, A., Isakov, V., Yuan, J., and Pankratz, D. (2004) Modeling Dispersion at 

Distances of Meters from Urban Sources. Atmospheric Environment, 38(28), 

pp.4633-4641. https://doi.org/10.1016/j.atmosenv.2004.05.018. 

Venkatram, A., Snyder, M. G., Heist, D. K., Perry, S. G., Petersen, W. B., and Isakov, V. 

(2013) Re-Formulation of Plume Spread for Near-Surface Dispersion. Atmospheric 

Environment, 77, 846-855. https://doi.org/10.1016/j.atmosenv.2013.05.073 

Washington, S., Karlaftis, M., and Mannering, F. (2011) Statistical and Econometric 

Methods for Transportation Data Analysis. Boca Raton, FL: CRC Press. 

Wu, Y., and Niemeier, D. (2016) Strategy of AERMOD Configuration for Transportation 

Conformity Hot-spot Analysis. Presented at 95th Annual Meeting of the 

Transportation Research Board, Washington, D.C. 

Wu, Y. (2018) Integrated Assessment for Health Effects of Sustainable Transportation 

Strategies. Doctoral Dissertation, University of California, Davis. 

https://search.proquest.com/docview/2135254695?pq-origsite=gscholar. 

Xu, X., Liu, H., Anderson, J. M., Xu, Y., Rodgers, M.O., and Guensler, R. (2016) 

Estimating Project-Level Vehicle Emissions with Vissim and MOVES-Matrix. 

Transportation Research Record: Journal of the Transportation Research Board, 

2016. 107-117. doi:10.3141/2570-12. 

Xu, X., Liu, H., Guin, A., Rodgers, M. O., and Guensler, R. (2018a) Regional Emission 

Analysis using Travel Demand Models and MOVES-Matrix. Presented at 97th 

Annual Meeting of the Transportation Research Board, Washington, D.C. 

Xu, X., Liu, H., Li, H., Rodgers, M.O., Guensler, R. (2018b) Integrating Engine Start, 

Soak, Evaporative, and Truck Hoteling Emissions into MOVES-Matrix. DOI: 

10.1177/0361198118797208. Transportation Research Record.  Washington, DC. 

2018. 

https://doi.org/10.3141/2270-06


 223 

Xu, Y., Jiang, S., Li, R., Zhang, J., Zhao, J., Abbar, S. and González, M.C. (2019) 

Unraveling Environmental Justice in Ambient PM2. 5 Exposure in Beijing: A Big 

Data Approach. Computers, Environment and Urban Systems, 75, pp.12-21. 

https://doi.org/10.1016/j.compenvurbsys.2018.12.006 

Yuan, F., and Cheu, R. L., (2003) Incident Detection using Support Vector Machines. 

Transportation Research Part C: Emerging Technologies, 11(3-4), 309-328. 

https://doi.org/10.1016/S0968-090X(03)00020-2. 

Zhai, X., Russell, A. G., Sampath, P., Mulholland, J. A., Kim, B. U., Kim, Y., and 

D'Onofrio, D. (2016) Calibrating R-LINE Model Results with Observational Data to 

Develop Annual Mobile Source Air Pollutant Fields at Fine Spatial Resolution: 

Application in Atlanta. Atmospheric Environment. 147, 446-457: 

https://doi.org/10.1016/j.atmosenv.2016.10.015. 

Zhai, X., Mulholland, J. A., Friberg, M. D., Holmes, H. A., Russell, A. G., and Hu, Y.  

(2019) Spatial PM2. 5 Mobile Source Impacts Using a Calibrated Indicator Method. 

Journal of the Air & Waste Management Association, 2019. 1-13: 

https://doi.org/10.1080/10962247.2018.1532468. 

Zhang, H., Wang, Y., Hu, J., Ying, Q., and Hu, X. M. (2015) Relationships between 

Meteorological Parameters and Criteria Air Pollutants in Three Megacities in China. 

Environmental Research, 140, 242-254. 

http://www.caps.ou.edu/~xhu/files/Zhangetal_ER_accepted.pdf. 

Zhang, N., Huang, H., Duan, X., Zhao, J., and Su, B. (2018) Quantitative Association 

Analysis between PM2.5 Concentration and Factors on Industry, Energy, 

Agriculture, and Transportation. Scientific Reports, 8(1), 9461.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6013430/. 

https://doi.org/10.1016/j.atmosenv.2016.10.015

