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Abstract

Agriculture is considered a nexus issue on which the future of global sustainability, health
and the environment depend. Although, the environmental impact of agriculture is well
established, the potential human health impacts of agriculture are less well understood
and quantified, despite their potential to hinder or undermine global health and development
efforts.

In this thesis, using gold standard methods from the medical sciences, epidemiology, and
industrial ecology, I explore the impacts of agricultural land use and trade on infectious
diseases risks. Through conducting a systematic review and meta-analysis, I quantify the
association between occupational or residential exposure to agricultural land uses and be-
ing infected with a pathogen using Southeast Asia as a focal model system (Chapter 2). I
further extend these evidence synthesis methods to other geographical regions and inte-
grate meta-analytic estimates with burden estimation methods and input-output analysis to
calculate the global human infectious disease impacts of agricultural production and trade
(Chapter 3). To address the possibility of spatial autocorrelation and confounding within
agriculture-disease relationships, I focus on childhood malaria in sub-Saharan Africa as a
case study. Here, I assess the relationships between agricultural land use and malaria
whilst controlling for socio-economic and environmental confounders using hierarchical
modelling (Chapter 4). Finally, I summarise the main findings of my research, synthe-
sise the added value of the research conducted and highlight future research opportunities
(Chapter 5).

To combat agricultural land use and trade induced infectious disease risks, governments
must acknowledge and address the human health impacts involved with the production
of agricultural commodities. The findings from this thesis provide decision makers with
a number of impactful recommendations on how public health, development, economic
and environmental practitioners can jointly respond to mitigate the negative health impacts
of agricultural production and trade. This can aid governments in securing co-benefits
and mitigating trade-offs when trying to achieve multiple sustainable development goals
simultaneously.
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Chapter 1

Introduction

1.1 Global Change, Global Goals

1.1.1 Impacts of the Anthropocene

Ecosystems around the world face degradation and collapse as a result of global envi-
ronmental and social changes [1]. These global changes have been a direct result of
human-induced activities and pressures which has led to the proposal of a new human-
dominated geological epoch titled ’The Anthropocene’ [2, 3]. Although various start dates
have been proposed for ’The Anthropocene’, anthropogenic pressures on the natural en-
vironment have been well documented over time and consistently highlight the correlation
between human-driven socio-economic impacts and the changes to components of the
global environment such as the oceans, coastal zones, atmosphere and land [2, 3, 4, 5, 6].

The industrial revolution, which began from about 1760 to 1840 and involved the tran-
sitioning from hand production methods to automated machines is widely considered an
anthropogenic pressure [3, 7]. This is known to have resulted in greenhouse gases be-
ing emitted into the atmosphere resulting in global warming [7, 8]. The green agricultural
revolution is also described as another anthropogenic pressure, which occurred between
1940 and 1970 [9]. Here, global grain production doubled thereby improving agricultural
productivity and food security which contributed to the global population increasing 3.7-fold
during the 20th century [9, 10]. In addition to these impacts, the green agricultural revolution
is also known to have resulted in widespread environmental impacts such as biodiversity
loss, deforestation, greenhouse gas emissions, air and water pollution [9, 11].
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1.1.2 Globalisation

Globalisation, which has rapidly increased in the last century and is a significant compo-
nent of The Anthropocene. It is considered the incorporation of national economies and
societies into a world system through the movement of goods and services, capital, tech-
nology and labour [6, 12, 13]. This process has resulted in many positive impacts such as
free trade and the reduction of barriers such as tariffs, taxes and subsidies, the creation
of jobs, competition between companies and countries, lower prices for consumers and
introduction of foreign capital and technology [14]. However, rapid increases in population
size and per capita consumption alongside increases in globalisation has further intensi-
fied the destruction and degradation of ecosystems to meet economic demand over the
last century. This has led to global challenges such as climate change, large scale conflict,
biodiversity loss, degradation of ecosystems, inequality, corruption and a lack of education,
food, safety, health and sanitation [4, 15, 16, 17].

1.1.3 Millenium Development Goals

To combat these global issues which have arisen from anthropogenic pressures and glob-
alisation, the Millennium Development Goals (MDGs) were initially created by the United
Nations (UN). Here, 147 heads of state adopted the MDGs to address income poverty,
hunger, disease, lack of adequate shelter, and exclusion, whilst promoting education, gen-
der equality, and environmental sustainability, with quantitative targets set for 2015 [18].

Many developing countries made substantial progress towards achieving the MDGs, espe-
cially in domains such as public health, for example there has been considerable progress
in reductions in child and maternal mortality across Africa alongside other public health
indicators (e.g. smoking rate reductions) [19, 20, 21, 22]. However, progress was highly
variable across goals, countries and regions [18]. For example, the reduction in global
income poverty is mainly due to the rapid growth of a select few countries in Asia, such
as China, India, Indonesia and Vietnam. In many other countries, poverty reduction has
been quite slow, or poverty has even increased. In addition, environmental sustainability
remains a global challenge due to a fast decline of biodiversity and an increase in gas emis-
sions. Primary education and gender equality remained unfulfilled, and there are severe
inequalities that exist among populations, especially between rural and urban areas [23].

The lack of progress in achieving the MDGs in some countries was considered due to
issues such as unmet commitment, inadequate resources, lack of focus and accountability
and insufficient interest in sustainable development and its links to the environment [24].
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Many stakeholders also considered the MDGs flawed in conception as the overall creation
process was driven and spearheaded by high income countries and institutions such as the
United States of America (USA), Europe and Japan, World Bank, International Monetary
Fund (IMF) and Organisation for Economic Co-operation and Development (OECD) [18].

1.1.4 Sustainable Development Goals and Planetary Health

Following the shortcomings of the MDGs, the global community has now acknowledged the
inter-connectedness of human and environmental systems and the need for sustainable
development to achieve a better and more sustainable future for all [25]. This has resulted
in the development of the Sustainable Development Goals (SDGs) and a new and important
concept called “Planetary Health” [26, 27].

The SDGs otherwise known as the “global goals” are a universal call to action to end
poverty, protect the planet and ensure that all people enjoy peace and prosperity [28]. They
consist of 17 universal goals and 169 targets which are to be achieved by 2030 and were
developed by the UN in 2015 [25, 29]. A central feature of the SDGs is that they are “in-
tegrated and indivisible, hence, synergies and trade-offs between individual SDGs require
a systematic analysis [30]. Previous research, however, suggests that insufficient under-
standing and accounting of trade-offs, externalities and synergies across sectors or global
goals have resulted in incoherent policies and adverse impacts in sustainable development
[31, 32]. For example, continued deforestation of primary forests for shifting agriculture in
sub-Saharan Africa can reduce poverty and improve livelihoods (SDG1) and provide food
security (SDG2) and nutrition (SDG3) to marginal or smallholder farmers. However, this
deforestation could also increase the unsustainable use and management of agrochemi-
cals (SDG12) which can pollute drinking water (SDG6), increase biodiversity loss (SDG15),
desertification (SDG15), soil erosion (SDG15), flooding (SDG15), and also potentially in-
crease illnesses such as diarrheal diseases or malaria (SDG3). Failing to account for these
trade-offs, externalities or synergies could result in poor cost-effectiveness, failure to meet
the global goals or the creation of dis-benefits. Establishing evidence between the syner-
gies and trade-offs will be an important component of simultaneously achieving multiple
SDGs [32, 33, 34, 35, 36, 37, 38].

Achievement of such goals is largely dependent on national level factors such as coun-
tries formalising commitments and integrating policies across sectors [39]. However, the
research community also has a vital commitment with regards to the measurement of
progress towards these global goals, identifying and assessing externalities and co-benefit
opportunities and integrating economic, social and environmental perspectives whilst shap-
ing global governance [27, 39, 40]. This has resulted in global tracking of key sustainable
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development indicators such as The Lancet Countdown on Climate Change and Health,
measurement of the health and environment related SDGs and The Planetary HealthWatch
[29, 41, 42]. The outputs and outcomes of monitoring progress on these key sustainable
development indicators can help ensure the design of effective policy, targets, and actions
and inform interventions that can simultaneously provide benefits across sectors at reduced
monetary and non-monetary costs [27].

The concept of Planetary Health, which is embedded within the SDGs, refers to "the health
of human civilization and the state of the natural systems on which it depends”. It pro-
vides a useful perspective for the identification and quantification of connections between
sectors such as human health and environmental change. For example, conservation of
ecosystems and species directly supports human health and wellbeing by providing goods
like food, water and fibre, and global public goods like habitat for species and mitigation of
climate change [43]. Planetary health also builds upon previous fields such as ecological
public health, One Health, Eco Health and environmental health [44, 45] and yet focuses
on the understanding that human civilisation and health depend on the sustainable man-
agement of natural systems [46].

The links between environmental change and human health can involve complex and dy-
namic interactions at multiple levels in the biological world that can lead to health outcomes
that are hard to predict and result in unintended consequences [27]. The planetary health
concept provides a lens to investigate these complex systems to identify, quantify and mea-
sure such interactions and decompose potential areas of success for sustainable develop-
ment.

Planetary Health has gained more traction over time with key institutions such as the World
Health Organisation (WHO), TheRockefeller Foundation, The Lancet and the Royal Society
for Tropical Medicine and Health adopting planetary health within their core principles. For
example, in 2017, The Lancet launched a new journal titled The Lancet Planetary Health
with the aim of publishing research that broadly encompassed sustainable development
and global environmental change, including the drivers of change, the implications of those
changes for people and society, and practical policies and interventions for a healthier
planetary future [47]. In addition, entire departments and academic collaborations that
focus on planetary health are now formulating in universities globally, encouraging action
within the research community and stimulating future generations [48].
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1.2 Sustainability in Agriculture

1.2.1 Health and Environmental Impacts of Agricultural Land Use

One area where the possibility of large-scale co-benefits is in land-use management. Land
use and land-use change are considered the alteration of land for domestic, residential, oc-
cupational or economic purposes [49, 50]. Land use is primarily described as an alteration
in the use of land and can include deforestation, rangeland expansion, urbanisation and
infrastructure development (railways, roads or powerlines), hydrological alteration (dams
or irrigation), agricultural land use (crops or livestock) or natural resource extraction (min-
ing, logging or hunting) [50, 51]. Such alterations are largely driven by social (e.g. urban
infrastructure) and economic (e.g. trade in resources) considerations, but pursuit of these
objectives often also creates dis-benefits (negative externalities/costs) in other sectors that
are rarely considered in decision making. Hence, identification and quantification of con-
nections and the dissemination of potential co-benefits or disbenefits across sectors will be
a useful strategy for joint decision making for sustainable development.

Agricultural land use and land use change, including agricultural intensification is defined
as land suitable for agricultural production, both crops and livestock in the form of arable
land or pastureland. It is a common land use and has led to major increases in the pro-
duction of food, timber, housing and other commodities [52, 53, 54]. Although delivering
economic and social benefits, these activities have also resulted in substantial negative
socio-ecological consequences, such as increased CO2 [55, 56], air pollutant emissions
[56], loss of biodiversity [57, 58, 59, 60, 61, 62], modifications in surface fluxes of heat and
water vapour resulting in changing regional weather patterns [63, 64, 65], degradation of
air and water quality [66, 67, 68], and a decrease in the supply of renewable fresh water
[69]. While the impacts of agricultural land-use activities is relatively well characterised in
some sectors (e.g. carbon emissions accounting frameworks [70], biodiversity loss [60, 71,
72], less well established are the potential impacts on human health. Here, the majority of
existing research signposts towards the health impacts of occupational pesticide, chemical
and heavy metal exposure [73, 74]. Previous research by the WHO estimates that 24%
of the disease burden (estimated using disability adjusted life years (DALYs)) and an esti-
mated 23% of all deaths (premature mortality) are attributable to a group of environmental
factors such as agriculture and land use change, water and sanitation, pollution and infec-
tious disease [75]. However, specific burdens attributable just to agricultural land use are
not derived.

Evidence linking agricultural land use and infectious disease risk outcomes in humans,

22



many of which are related to agriculture, is even more fragmented and geographically re-
stricted; nor has it been systematically synthesised or assessed previously [50, 76, 77,
78, 79, 80, 81, 82, 83]. For example, there is a growing body of evidence that suggests
that human-induced land-use changes such as deforestation for agriculture are the primary
drivers or contributing factors of a range of infectious disease outbreaks and emergence
events [50, 76, 77, 78, 80, 83]. These changes may also serve as modifiers of the transmis-
sion processes of endemic infections, in some cases resulting in increases in the number
of cases and burden [76]. Forest loss has also been linked with increased malaria in Africa
and South America [84] and Ebola Virus outbreaks in Africa [85]. Specific case studies
include deforestation and associated environmental changes for palm oil production being
a key drivers in Plasmodium knowlesi (cause of zoonotic malaria) transmission to humans
in Malaysian Borneo [86]. Expansion and changes in agricultural practices are associated
with the emergence of Nipah Virus in Malaysia [87, 88]. Malaria in children in Democratic
Republic of Congo has also been associated with agricultural land use change [89]. Defor-
estation of dense forest for agricultural expansion, large-scale development projects and
illegal timber harvesting has also been associated with an increased incidence of diar-
rhoea, fever and acute respiratory infection in children in Cambodia [90]. Finally, livestock
farming and contact with pigs was associated with Hepatitis E and Japanese Encephalitis
prevalence in Lao PDR [91].

1.2.2 Agriculture-Disease Mechanisms

Common mechanisms by which agricultural land use alters the transmission of infectious
disease include vector, host, and pathogen niche alterations, changes in host and vector
community composition, behaviour or movement change of vectors and/or hosts, altered
spatial distribution of hosts and/or vectors, socioeconomic factors, and environmental con-
tamination [50].

Many studies also look at the links between land use change, species diversity and infec-
tious disease transmission otherwise known as biodiversity-disease relationships [50, 92].
Over time, there has been much debate regarding biodiversity-disease relationships where
the majority of scholars suggest that decreased species diversity leads to an increase or
decrease in infectious disease risk, otherwise known as the amplification or dilution effect,
respectively [93, 94, 95, 96, 97, 98, 99, 100, 101].

There have also been some critics with regards to this mechanism. For example, Randolph
and Dobson (2012) propose that the dilution effect only applies in certain circumstances
and depends more on specific community composition rather than biodiversity [102]. In
addition, Dobson et al (2006) also suggests that evaluation of the dilution or amplification
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effect can be biased and involve personal value as most people would prefer biodiversity
to be good for their own health [50, 103]. Halliday and Rohr (2019) find that biodiversity
generally inhibits disease at local scales, but this effect weakens as spatial scale increases
[104]. To make generalisable predictions on biodiversity-disease relationships, more focus
needs to be given to how species diversity impacts specific individual disease mechanisms
such as host density, contact rates and transmissibility which can lead to increases and
decreases in transmission [105, 106].

Another mechanism can be a change in exposure pathway with increased human-animal
contact. The emergence of novel diseases from forests and the increase of endemic dis-
ease impacts in forested landscapes are thought to be related to encroachment and degra-
dation arising from increasing human presence in these habitats [43]. For example, evi-
dence suggests that deforestation has increased exposure to malaria in Africa and South
America and subsequent hunting and wild-meat butchering was a key factor in initial out-
breaks of HIV and Ebola virus in Africa [84, 107]. Land use and land use change alongside
agricultural drivers have also been identified as a leading pathway for emerging infectious
diseases (EIDs), however, there is considerable uncertainty surrounding this topic [108,
109, 110]. Evidence linking agricultural drivers to EIDS has always opted to use data
drawn from a review of published literature. Here, individual studies carry their own bi-
ases, inaccuracies, and different approaches to collecting and documenting data, which
are not investigated and could lead to spurious associations [109].

Agricultural land use and land use change can potentially create new suitable habitats that
reservoirs or vectors can adapt too. For example, research in Malaysian Borneo suggests
that variation in temperatures due to forest conversion dramatically increases development
rates in Aedes albopictus mosquitoes [111]. In parts of Africa, forest cutting alongside
the use of agrochemicals also alters the composition and density of aquatic snail species
thereby increasing transmission of schistosomiasis [107, 112]. Research in Kenya also
shows that vectoral capacity of Anopheles gambiae was at least 106% and 29% higher in
the deforested area due to increases in temperature than in the forested area in dry and
rainy seasons, respectively [113]. Guo et al. (2018) also find a general increase in host
or vector community competence associated with land-use changes [114]. Research by
Morris et al (2016) also suggests that deforestation driven food-web collapse has led to an
increase in preferred hosts and thereby increased the potential abundance of Mycobac-
terium ulcerans [115].

Finally, rapid changes due to agricultural land use or land use change can impact host
or vector communities through genetic modification which can impact disease transmis-
sion. For example, mass scale livestock farming where animals are in close confinement
or within proximity to different species can increase genetic pathogen exchange resulting
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in pandemic infectious diseases such as H5N1 or Severe Acute Respiratory Syndrome
(SARS) [116, 117, 118, 119].

Although many studies provide compelling evidence of a common link between agricultural
land-use and infectious disease risk in specific countries or contexts, no previous research
has been able to establish a generalisable agriculture-disease relationship.

1.2.3 Health and Environmental Impacts of Agricultural Trade

Agricultural land use can have multiple negative ecological impacts which are due to drivers
(e.g. population growth, per capita income, new technologies, economic policies) that un-
sustainably expand or intensify agricultural land use. One of the key drivers is global de-
mand and trade for commodities [16]. Here, it has been found that changing diets alongside
increased consumer demand has resulted in substantial agricultural land use and subse-
quent ecological impacts [120]. For example, 10% - 70% of local environmental and social
impacts are associated with (embodied in) the international trade of goods [16]. Within
this body of research, authors find that approximately one third of global biodiversity loss
can be attributed to the land-use impacts of international trade, with the remainder caused
by domestic trade threats [121, 122]. Such approaches have also been used to assess
other dis-benefits, such as pollution, energy supply chains, water footprints and carbon
emissions [121, 122, 123, 124, 125, 126, 127].

There is also a growing body of research that focusses on linking international trade with
social issues such as gender equality, mother and child health, governance and access to
clean water or corruption [16, 128, 129]. Studies have also linked international trade with
human health impacts associated with production-based environmental emissions, where
26% of global human health impacts and 22% of global premature deaths are related to
PM2.5 pollution embodied in trade [16, 130]. However, previous research on the specific
links between global agricultural trade and health impacts in producing countries is even
more sparse. Here, the majority of research focusses on how certain agricultural poli-
cies may impact global food security, poverty reduction or nutrition and diet related chronic
health impacts [131, 132, 133, 134, 135, 136].

At the same time, infectious diseases are emerging globally at an unprecedented rate while
population and consumption growth will lead to an increasing global demand for commodi-
ties [110, 137]. Research that does link agricultural production or trade with infectious
diseases suggests that >25% of all EID events and >50% of zoonotic EID events since the
1940s are linked specifically to agricultural drivers [110]. Chaves et al (2020) also find that
about 20% of the malaria risk in deforestation hotspots is driven by the international trade
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of deforestation-implicated export commodities, such as timber, wood products, tobacco,
cocoa, coffee and cotton [138]. Other studies linking agriculture to infectious disease risks
more specifically have centred on the spread and control of emerging infectious diseases
(EIDs), particularly as a biosecurity threat that could impact or halt global trade [139] (e.g.
pandemic swine or bird flu [117, 140, 141, 142, 143, 144], bovine spongiform encephalopa-
thy (BSE) [145, 146, 147, 148] and acute respiratory syndromes (e.g., SARS or MERS)
[149].

Hence, ensuring sustainability in agricultural land use and its globalised supply chains is
vital to achieving the global goals [150]. Especially if international demand and trade for
products drives significant impacts (e.g. biodiversity loss, pollution) linked to agricultural
activities in supplier countries. This is certainly exemplified by research that suggests that
suggests exports from developing nations are more ecologically intensive than those from
developed nations [151].

1.2.4 Agriculture-Disease Poverty Traps

The globalisation of agriculture and its supply chains has provided many families and indi-
viduals the opportunity to escape poverty by generating income through the growing, selling
and exportation of cash crop. However, escaping poverty is a multi-dimensional complex
phenomenon that not only includes improvements in income, but also includes improve-
ments in wealth, education, health and socio-economic and ecological factors [152].

A poverty trap is a mechanism that makes it very difficult for people to escape poverty and
is created when an economic system requires a significant amount of capital in order to
earn enough to escape poverty. When individuals lack this capital, they may also find it
difficult to acquire it, creating a self-reinforcing cycle of poverty [153, 154, 155, 156]. For
example, Sachs et al (2004) suggest that people in sub-Saharan Africa are consistently
prone to getting stuck in poverty traps due to very high transport costs, small market size,
low-productivity agriculture, a high disease burden, adverse geopolitics and a slow diffusion
of technology from abroad [157].

Research suggests many factors contribute to creating a poverty trap, including limited
access to credit and capital markets, extreme environmental degradation (which depletes
agricultural production potential), corrupt governance, capital flight, poor education sys-
tems, disease ecology, lack of public health care, war, and poor infrastructure [158].

The role of health conditions (infectious disease and malnutrition) as a driver of poverty
traps has been attracting increasing attention [156, 157, 159, 160]. Here agricultural pro-
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duction can improve human health by reducing food prices, enhancing nutrition, improving
agricultural livelihoods through cash crops which can all result in a decrease in suscepti-
bility to infectious diseases due to improved wealth, education, access to care, food and
nutrition [155, 156, 161]. However, this relationship is bidirectional where poverty can also
be an important risk factor for developing or being infected with a disease [110, 155, 156,
162]. For example, freshwater habitats established for irrigation often increase the risk of
parasitic and vector-borne diseases such as malaria and schistosomiasis [110, 112]. This
is particularly important as people who are stuck in these poverty traps tend to live in rural
areas that have very little access to healthcare or sanitation, heavily rely on subsistence
agriculture, have low levels of education and are highly susceptible to infectious disease
[110, 156].

Analysis of the links between agriculture, infectious disease and the poverty traps they
form are limited [153, 155, 156, 160]. In essence, previous research argues that escap-
ing such poverty traps are extremely difficult for the rural poor as agricultural land use
alongside infectious diseases are governed by biological, epidemiological and ecological
factors and processes, which are uncontrollable [155, 156, 161]. Understanding whether
agriculture-disease associations remain significant when controlling for poverty trap socio-
economic factors such as wealth, education and sanitation in addition to assessing whether
these associations remain strong when accounting for spatial-temporal processes can pro-
vide further evidence on where resources need to be allocated to reduce disease burdens,
maintain agricultural productivity and simultaneously lift those out of poverty.

1.3 Research Gap

The sustainability of agriculture is a key priority for many governments as it may positively
impact ecological factors including biodiversity, climate change, water and air pollution.
However, a key gap in the in the evidence base, is the relationship between agriculture and
human health (specifically infectious diseases). There is now a window of opportunity to
consolidate the impact of agriculture on infectious diseases which can aid in joint decision
making across sectors to ensure achievement of multiple sustainable development goals
and indicators.

A key challenge is that the relationship between upstream drivers such as exposure to agri-
cultural land use and downstream impacts such as infectious diseases in humans has not
been systematically assessed or quantified whilst taking into account the biases, inaccura-
cies, and different approaches used in the collection of primary data. Hence, exploration of
heterogeneity, confounding and publication bias through a gold standard systematic review
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and meta-analysis methodology is critical to minimise the likelihood of spurious associa-
tions (Chapter 2).

In addition, no attempt has previously been made to quantify the current burden of dis-
ease linked to agricultural land use and no assessment has been made on whether the
international trade of agriculture is a small or large driver of this agriculture induced burden
(Chapter 3). Further compounding this is that agriculture-disease associations may be spu-
rious when controlling for poverty trap socio-economic factors such as wealth, education,
sanitation or potential processes such as spatial autocorrelation between deforestation for
agriculture and disease incidence (Chapter 4).

Robust understanding of the agriculture-disease paradigm can identify mutual interests and
facilitate joint decision making. This can lead to the deployment of specific land use, public
health or economic interventions that may simultaneously improve health related quality of
life, maintain agricultural productivity and improve livelihoods in a sustainable manner that
is not detrimental to the environment. Cross sectoral policies that focus on the sustainability
of agriculture can reduce economic costs, or increase effectiveness of actions designed to
progress towards agreed health, environment and development targets in each of these
domains, as compared to pursuing domain-specific goals in isolation (Chapter 5).

1.4 Aims and Objectives

The aim of this PhD is to quantify the relationships between agricultural land use and in-
fectious diseases in humans to improve agricultural sustainability through using the SDG
framework. In meeting this aim, the following research questions have been generated:

1. Is there an association between occupational or residential exposure to agricultural
land uses and being infected with a pathogen in SE Asia?

2. What impact does agricultural land use and trade have on the global burden of in-
fectious diseases?

3. What impact does exposure to differing agricultural land uses have on childhood
malaria risk in sub-Saharan Africa when controlling for socio-economics and envi-
ronmental factors?
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1.5 Thesis Structure

This thesis is structured into three main studies which align with the research gap and
questions stated above in the aims and objectives.

In Chapter 2, I test for a generalisable or net impact of occupational or residential exposure
to agricultural land use on the risk of infectious disease in humans via a systematic re-
view and meta-analysis approach, following PRISMA reporting standards for medical and
epidemiological evidence syntheses. Here, I use Southeast Asia as an appropriate model
system to test this association given its combination of biologically diverse landscapes [57],
differing land uses [163] and because it is considered a zoonotic, parasitic and emerging
disease hotspot area [164, 165].

Chapter 3 presents the integration of meta-analytic methods from Chapter 2, epidemiolog-
ical methods such as population attributable fractions and the use of input output analysis
to quantify the impact that agricultural land use has on global infectious disease mortality
and morbidity in humans. I further explore the magnitude of the burden that is linked to
international trade and provide insights into the links between importers and exporters of
disease-implicated agricultural commodities.

Chapter 4 seeks to investigate the consistency of the agricultural exposure and infectious
disease association when looking at a specific case study of malaria in children in Africa.
Specifically, I aim to assess what effect exposure to differing agricultural land uses have on
the probability of childhood malaria risk in Africa, whilst controlling for numerous socioeco-
nomic and environmental confounders alongside spatial autocorrelation.

Chapter 5 presents a discussion where I summarise the main findings of my research,
synthesise the added value of the research conducted and highlight future research oppor-
tunities. I also reflect upon my research and put it into the context of current understanding,
practices and interventions that seek to reduce infectious disease transmission, improve
agricultural productivity and improve livelihoods through agricultural sustainability through
the SDG framework. Finally, I pinpoint the contributions I have made to specific global
health, development and economic policies and provide potential linkages to the SDGs
furthering the dialogue of mutual interests and co-benefits. I conclude the discussion, by
dissecting the growing relative importance of infectious disease as a negative impact of
agricultural land use and the rapid need for sustainability in agriculture to feed 10 billion by
2050 whilst controlling potential large-scale socio-ecological disbenefits.
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Chapter 2

Agricultural land-uses consistently
exacerbate infectious disease risks in
Southeast Asia
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2.1 Abstract

Background

Agriculture has been implicated as a potential driver of several human infectious diseases.
However, the generality of disease-agriculture relationships has not been systematically
assessed, hindering efforts to incorporate human health considerations into land-use and
development policies.

Methods

Here, I conducted a systematic review and meta-analysis to test and quantify the associa-
tions between agricultural land-use and human infectious disease in SE Asia. Crude odds
ratios were extracted, and a meta-analysis using a random effects logistic regression model
was conducted to test a priori hypotheses. Further tests for heterogeneity, publication bias
and confounding were calculated.

Results

Pooled results from 34 eligible studies show that people who exposed to agricultural land
are on average 1.74 timesmore likely to be infected with a pathogen than controls (OR 1.74,
CI 1.47 - 2.07, p < 0.001). This effect rose to a 2-4-fold increase in the odds observed for
forest monocultures (palm oil OR 3.25, CI 2.29 - 4.61; rubber OR 2.27, CI 1.82 - 2.82) and
was most pronounced for hookworm (OR 2.42, CI 1.56 - 3.75), malaria (OR 2.00, CI 1.46
- 2.73), Scrub typhus (OR 2.37, CI 1.41 - 3.96) Schistosoma japonicum (OR 1.71, CI 1.18
- 2.48), Spotted fever group (OR 3.91, CI 2.61 - 5.85) and Trichuris trichiura (OR 1.40, CI
1.27 - 1.53). In other subgroups, no change in infection risk was detected (e.g. livestock
farming). No evidence of publication bias or confounding was detected.

Conclusion

Evidence thus suggests that agricultural land uses consistently exacerbate human infec-
tious diseases in Southeast Asia. Although responses clearly vary by land-use and disease
types, generalizable results from this and further studies will help identify co-management
opportunities for health and the environment.
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2.2 Introduction

Agricultural land use and land use change, including agricultural intensification and the con-
version of forests, wetlands and grasslands into forest monocultures, crops and pasture has
led to major increases in the production of food, timber, housing and other commodities [52,
53, 54]. Although delivering economic and social benefits, these human activities have also
resulted in substantial negative socio-ecological consequences, such as increased CO2
[55, 56], air pollutant emissions [56], loss of biodiversity [57, 58, 59, 60, 61, 62], modifi-
cations in surface fluxes of heat and water vapour resulting in changing regional weather
patterns [63, 64, 65], degradation of air and water quality [66, 67, 68], and a decrease in
the supply of renewable fresh water [69].

This trade-off between the considerable costs and benefits at stake places the agricultural
sector at the heart of global sustainability, health and environmental frameworks (e.g. Sus-
tainable Development Goals (SDGs), Paris Agreement, Aichi Biodiversity Targets), and
makes simultaneous achievement of key targets a formidable challenge [150].

While the impacts of agricultural land-use activities is relatively well characterised in some
sectors (e.g. carbon emissions accounting frameworks [70], biodiversity loss [60, 71, 72],
less well established are the potential impacts on human health, where the majority of
existing research signposts towards the health impacts of occupational pesticide, chemical
and heavy metal exposure [73, 74]. In particular, the evidence linking human-induced land-
use changes and infectious disease risk outcomes in humans, many of which are related
to agriculture [50, 76, 77, 78, 79, 80, 81, 83], has not been systematically evaluated or
quantified.

Numerous case studies support a link between agricultural land-use or land-use change
and infectious disease risks [166]. For example, irrigation-based agriculture and rural de-
velopment can expand breeding habitats of Culex vectors and has led to Japanese en-
cephalitis virus establishing a secondary cycle in domestic pig populations where it am-
plifies and spills over into human populations [166, 167, 168, 169]. Deforestation and as-
sociated environmental changes may facilitate the transmission of Plasmodium knowlesi
(cause of zoonotic malaria) to humans in Malaysian Borneo [86]; expansion and changes
in agricultural practices are associated with the emergence of Nipah Virus in Malaysia [88]
and increased Leptospira infections and fatalities in Thailand have been observed in open
habitats such as rice fields that are prone to flooding [170].

In addition, a number of theoretical modelling studies and meta-analyses suggest poten-
tially generalisable links between land-use or land-use change and biodiversity loss (a
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key outcome of land-use change, albeit not necessarily specific to agricultural activities,
some of which may be linked to increases in disease risk. For example, Guo et al. (2018)
find a general increase in host or vector community competence associated with land-use
changes [114]. Rohr et al. (2019) report that agricultural drivers are associated with more
than 25% of emerging infectious diseases and more than 50% of emerging zoonotic in-
fectious diseases in humans [110]. Faust et al. (2018) highlight changing host population
densities and edge effects as mechanisms that could drive disease emergence in con-
verted landscapes [81]. Civitello et al. (2015) show that host diversity inhibits parasite
abundance (e.g. infection prevalence for microparasites, mean parasite load for macro-
parasites, density of infected vectors for vector-borne parasites, or percent diseased tissue
for plant parasites) and therefore suggest that a generalizable ‘dilution effect’ may modu-
late disease risk across a number of disease systems [98]. However, the extent to which
these effects extend to human infectious diseases remain highly contentious [105], and few
studies focus on specific land-use types.

Here, I test for a generalisable or net impact of occupational or residential exposure to
agricultural land use on the risk of infectious disease in humans in Southeast Asia (SE
Asia) via a systematic review and meta-analysis approach, following PRISMA reporting
standards for medical and epidemiological evidence syntheses.

A global review was deemed infeasible due to the vast collection of citations that would
require double review to achieve PRISMA standards ( 50,000 citations). A narrower focus
on SE Asia (defined here as the Association of Southeast Asian Nations (ASEAN) region,
including, Vietnam, Cambodia, Laos PDR, Thailand, Myanmar, Malaysia, Indonesia, Sin-
gapore, Philippines, East Timor and Brunei) was considered as an appropriate model sys-
tem given its combination of biologically diverse landscapes [57], differing land uses [163]
and because it is considered a zoonotic, parasitic and emerging disease hotspot area [164,
165]. Specifically, I quantified an overall association between where people live or work in
SE Asia and disease risk, finding that those in agricultural land are on average almost twice
as likely to be infected with a pathogen than controls (OR 1.74, CI 1.47 – 2.07, p < 0.001).
Consistent associations are also reported between forest mono-culture agriculture (oil palm
and rubber) and a number of specific diseases of differing ecologies and epidemiologies,
while accounting for potential effects of publication bias and both within and between study
confounding. Although responses clearly vary by land-use and disease types, generaliz-
able results from this and further studies will help identify co-management opportunities for
health and the environment.
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2.3 Methods

2.3.1 Search Strategy and Selection Process

Following PRISMA protocol and reporting standards for systematic reviews, I systematically
screened articles in April 2017 using five academic literature databases: Medline, PubMed,
Global Health, Web of Science and EMBASE alongside Google Scholar. Another collabo-
rator also independently screened articles to ensure the review was systematic.

Search strings were created through a PECOS statement using three categories (exposure,
location and outcome) with Boolean operators AND between categories and OR within cat-
egories. Where applicable, MeSH terms for communicable disease, SE Asia, land use and
agriculture were also used. Differing land use types were incorporated into the search
strategy to improve the sensitivity of the search. To improve the specificity of the search
strategy, the location category was only applied for title and abstracts, to capture all pub-
lications that had a study context within SE Asia. No language restrictions were placed
within the search strategy. An example of the search strategy used for EMBASE can be
found below:

1. zoonoses or zoonosis or infectio* or communicab* or emerg* or disease*

2. exp Communicable Diseases

3. South east Asia or SE Asia or Southeast Asia or Brunei or Cambodia or Indonesia
or Laos or Malaysia or Myanmar or Philippines or Singapore or Thailand or Timor or
Vietnam – TITLE AND ABSTRACT ONLY

4. exp Asia, Southeastern

5. 1 or 2

6. 3 or 4

7. land use* or land cover* or landscape* or habitat* or deforest* or agricultur* or farm*
or urbani* or suburbani* or fragment*

8. 5 and 6 and 7

Articles were initially assessed by myself and another independent reviewer for relevance
first by title, as well as keywords if these were available, then by abstract and finally by full
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text. I then simultaneously assessed the suitability of the studies retained after screening for
full text analysis for their potential inclusion in meta-analyses, rejecting studies for which risk
or odds estimates could not be calculated. Disagreements were resolved by consensus,
and where no consensus was achieved a third investigator was consulted. One reviewer
(Hiral Shah) then extracted outcome and exposure data as well as data on population and
study characteristics into a bespoke data extraction framework, which was then validated
by a second reviewer [171].

2.3.2 Eligibility

Following PRISMA guidelines and the PICOS framework, I considered the following factors
to determine eligibility criteria: ‘study question’, ‘populations’, ‘exposure’, ‘comparators’, and
‘outcome’. A description of each follows.

Study Question - Is there an association between occupational or residential exposure to
agricultural land uses and being infected with a pathogen for adults aged 18 and above in
SE Asia?

Study Design – Empirical observational studies (longitudinal cohorts, case control or cross
sectional) studies conducted in the ASEAN region and reported in English were considered
eligible. I anticipated that the extent and effects of language bias may have diminished
recently because of the shift towards publication of studies in English [172]; however, I
reserved the option to have non-English articles translated to bolster sample sizes if a
reasonable number of non-English studies were found.

Populations – This study drew participants from the general adult population aged 18 and
above in SE Asia. Studies that recruited participants of all ages (including children) were
also included. Studies that focused exclusively on the child population were excluded.
Exposure – The primary exposure of interest was defined as occupational or residential
exposure to agriculture or agricultural land use. This was defined as whether study par-
ticipants would be working or living in or near agricultural land. Specifically, agricultural
exposure was defined as any person who partakes in the cultivation of land and breeding
of animals and plants to provide food, fibre, medicinal plants and other products either for
domestic, residential, occupational or economic purposes [49].

Comparators – Studies were included if they compared outcomes in the exposed group with
those in a group of unexposed people (people who are not occupationally or residentially
exposed to agriculture or agricultural land use).

Outcome – Studies were included if one of the primary outcomes include prevalence, sero-
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prevalence or incidence for all infectious diseases that have a biologically plausible link to
agriculture or agricultural land use.

Studies that investigated non-communicable disease or infectious diseases of plants, inver-
tebrates or fish were excluded. I also excluded studies that were not based on SE Asia, did
not include some form of land use as an exposure or study focus, were theoretical research
papers, reviews, commentaries or letters, or were not published in English (following deter-
mining that few non-English studies meeting all other criteria were available, see above).
Studies that presented odds ratios based on the co-infection of more than 1 disease were
excluded as co-infection could increase susceptibility to other infectious diseases [173].
Studies that assessed the impact of using human faeces (night soil) as fertiliser in agricul-
ture were also excluded [174, 175, 176]. This is because using human faeces as fertiliser
was not considered a land use but rather a confounding behavioural activity. Studies that
assessed risk factors of disease in children were also excluded [177, 178] as children may
be exposed to agricultural work but may also be more susceptible to certain diseases . An
explicit bulleted inclusion and exclusion criteria can be found below:

• Inclusion Criteria

– Geographical Location – Southeast Asia defined as Vietnam, Cambodia, Laos
PDR, Thailand, Myanmar, Malaysia, Indonesia, Singapore, Philippines, East
Timor and Brunei as part of the ASEAN region.

– Population – Adults in Southeast Asia aged 18 and above that work or live in
or near agricultural land (NB – studies that assess total populations including
both adult and children will be included).

– Type of exposure - Agricultural land use exposure was defined as any person
who partakes in the cultivation of land and breeding of animals and plants to
provide food, fibre, medicinal plants and other products to sustain and enhance
either for domestic, residential, occupational or economic purposes.

– Type of comparator - No exposure to agricultural land use.

– Types of outcome: Change in prevalence or incidence of infectious disease as
a function of land use or land use change.

– Type of disease: All infectious diseases that are prevalent in humans in South-
east Asia with a biologically plausible link to land-use change including emerg-
ing, zoonotic, bacterial, viral, parasitic and vector-borne infections.

– Types of study – Peer reviewed empirical observational studies.

• Exclusion Criteria
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– Articles based on non-communicable disease.

– Articles based on infectious diseases of plants, invertebrates or fish.

– Articles that do not study the impact of land use or land use change.

– Articles that do not have a study context in SE Asia.

– Articles not in English.

– Theoretical research, reviews, commentaries or letters.

– Studies that presented odds ratios based on the co-infection of more than 1
disease.

– Studies that assessed the impact of using human faeces (night soil) as fertiliser
in agriculture.

– Studies that assessed risk factors of disease in children.

Duplicates were removed using reference management software (Endnote and Mendeley).
If the inclusion of an article was in doubt in either the first two stages, the article was
included, and the suitability determined at a later stage.

2.3.3 Study Quality

Amethodological study quality assessment was conducted using two quality appraisal tools
sourced from the Office of Health Assessment and Translation (OHAT) and the National
Heart, Lung and Blood Institute’s (NHLBI) Quality Assessment website.

The first tool was the OHAT Risk of Bias Rating Tool for Human and Animal Studies which
evaluates the assessment of whether the design and conduct of the study compromised
the credibility of the link between exposure and outcome. The OHAT for human studies
contains 11 risk-of-bias questions that cover six different domains including selection, con-
founding, performance, attrition/exclusion, detection, and selective reporting bias. Six of
the eleven questions are applicable for cross sectional and case control studies and are
answered using one of four predefined answer choices (1) definitely low risk of bias; (2)
probably low risk of bias; (3) probably high risk of bias; and (4) definitely high risk of bias.
Studies were excluded from this review if they had an average rating of definitely high risk
of bias and/or if there was substantial evidence that the studies showed threats to internal
validity.

The second set of tools were for Observational Cohort and Cross-Sectional Studies (QAT
– OCCSS), and for case control studies (QAT – CCS). Both tools had 14 and 9 items, re-
spectively, that classified study quality using specific epidemiological parameters such as
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transparency of research question, sources of potential bias (e.g. selection or measure-
ment), study power, confounding and other items that inferred internal validity of each study
[179, 180]. A greater number of Yes responses indicated a higher study quality for both
study quality tools. Studies were classed as good if they presented information on all key
criteria within the tools such as: research question, study population, sample size justifica-
tion, exposure measurement and outcome measurement. Studies were classed as fair if
they presented some information on the key criteria. Poor studies were classed as studies
that could not satisfy the majority of key criteria.

2.3.4 Data Synthesis and Statistical Analysis

Data were summarised as the number of individuals with and without infection stratified by
whether they were exposed to agricultural land use or not. Associations were quantified us-
ing the odds ratio (OR) with a 95% confidence interval. This was extracted where possible
from the studies or self-calculated using relevant data where possible. Where ORs could
not be extracted or calculated due to poor or non-reported data, studies were excluded from
the meta-analysis [171].

A regional meta-analysis was conducted with a random effectsmodel [181, 182] to calculate
a pooled estimate that quantifies the overall impact of how any occupational or residential
exposure to agricultural land use impacts the odds of infectious disease prevalence. For
this, I selected mutually exclusive studies and odds estimates to be incorporated into the re-
gional meta-analysis. This was to avoid any double counting of estimates, which could oth-
erwise bias pooled estimates. Only one estimate was used per study and other estimates
from the same study population were excluded. This was achieved by systematically se-
lecting risk/odds estimates based on agriculture as a general occupational exposure. How-
ever, in some cases, studies provided multiple agricultural exposures or multiple disease
outcomes in the same study (e.g. oil palm, rice, rubber as an exposure type or hookworm,
Trichuris trichuria and Ascaris lumbrocoides infection as the outcome). In these types of
studies, I selected the exposure and outcome that had the largest number of cases to max-
imise study power. In some instances, there were multiple publications by the same author
analysing the same study population [183, 184, 185]. In these cases, only the most recent
publication was selected for incorporation into the overall analysis.

Random effects meta-analyses assume that a distribution of effects exists across all stud-
ies included in the analyses, resulting in heterogeneity among study results. The use of a
random effects model was considered appropriate here because I assume that the asso-
ciations between occupational or residential exposure to agricultural land use or land use
change and infectious disease risks are likely to be inconsistent and idiosyncratic, which
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might otherwise bias the results. Therefore, I considered a random effects meta-analysis
to be a more conservative approach than fixed effects analysis [181, 182].

All analyses were conducted in R version 3.2.5 [186] with the metafor package [187].

2.3.5 Heterogeneity and Subgroup Analysis

Heterogeneity of effect sizes was first tested among studies included in the overall analysis
using the I2 statistic and the Cochranes Q test. A value of >75% for the I2 statistic is
generally considered to suggest substantial heterogeneity [188, 189].

A subgroup analysis was performed to determine how robust the regional meta-analysis
result would be to certain study characteristics using the estimates from the regional meta-
analysis. Here I created a priori subgroups on study type, sampling strategy, study setting,
outcome measurement, study quality, study country and the characteristics of the study
population.

Subgroup analyses were also conducted on common exposures stratified by aetiological
agent (parasitic, viral, bacterial) and transmission mode (vector-borne, zoonotic) or spe-
cific disease or disease complex subgroups that had more than two mutually exclusive es-
timates available. In order to preserve sample sizes and remain epidemiologically realistic,
aetiological agent and transmission mode subgroups were not constrained to be mutually
exclusive (e.g., a disease can be both vector-borne and zoonotic, such as zoonotic malaria).

Common exposures that had more than two estimates included non-specific agriculture
(defined as a category where a person indicates they work in agriculture regardless of the
type of agriculture), livestock farming, oil palm plantation work, rice paddy farming and rub-
ber plantation work. Livestock farming was further stratified into common livestock groups
including porcine, bovine and poultry related exposure. Common diseases that had more
than two risk estimates included Ascaris lumbrocoides, Entamoeba histolytica, Giardia in-
testinalis, hookworm, leptospirosis, malaria, Opisthorchis viverrini, scrub typhus (Orientia
tsutsugamushi),Rickettsia typhi, Schistosoma japonicum, spotted fever group and Trichuris
trichiura.

2.3.6 Confounding

It was not possible to adjust pooled regional meta-analysis estimates for known confounders
and effect modifiers due to lack of individual participant level data. However, I conducted
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a meta-analysis of adjusted odds ratios extracted from each study to assess the potential
impact of within study confounding.

In addition, considering that the association between land use and infectious disease may
be impacted by many variables that are unmeasured or unreported in published articles
(e.g. temperature, rainfall, climate, soil type, topography, socio-economic status), I con-
ducted a sensitivity analysis using an E-value to test for between study unmeasured con-
founding. The E-value represents the strength of association an unmeasured confounder
would need to have with both the treatment and outcome to fully explain away a specific risk
factor-outcome association [190]. The E-value is calculated using the following equation:

� −+0;D4 = $' +
√
$' × ($' − 1) (2.1)

When calculating the E-value, unmeasured confounders are not listed and tested explicitly.
Additionally, the E-value, does not assess measurement or selection bias. The E-value
results also do not guarantee that if a confounder with parameters of a particular strength
exists, then it necessarily explains away the effect. Rather, it is, only possible to construct
scenarios in which it could. Readers and other researchers may then assess whether any
confounding associations of that magnitude are biologically plausible [190].

2.3.7 Publication Bias

Publication bias was assessed in three ways. First, I plotted individual study effect sizes
against the standard error of each study as a measure of the study size in funnel plots to
visually assess asymmetry [191]. Second, I tested this asymmetry using Egger’s linear
regression test, in which significant asymmetry would suggest bias or heterogeneity [192].
Finally, I used a trim and fill method to further assess if there was a likelihood of missing
studies that might exist and whether this would impact the pooled estimate. This method
imputes hypothetical negative unpublished studies to mirror the positive studies, and re-
calculates a pooled estimate to assess the impact these hypothetical studies have on the
pooled effect size [193, 194].

2.3.8 Data Availability

The final data set used that support the findings of this study can be made available upon
request.
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2.4 Results

2.4.1 Narrative Synthesis

The search strategy returned 15,426 potentially relevant publications in total, 58 of which
met the inclusion criteria for full text analysis (see Figure 2.1). Of these, 34 mutually
exclusive studies were included in the regional meta-analysis and a total of 37 mutually
exclusive studies were included in the multiple subgroup analyses. Studies spanned five
countries (Thailand = 11, Malaysia = 10, Vietnam = 9, Philippines = 2, Lao PDR = 2), two
designs (cross-sectional = 27, case-control = 7) and were assessed as being of varying
quality using two study quality tools (OHAT – definitely low risk of bias = 2, probably low
risk of bias = 25, probably high risk of bias = 10 and NHLBI – good = 7, fair = 23, poor =
4). A total of 80 effect estimates were extracted consisting of 26 infectious diseases and
12 different exposures. All included studies were in English and no studies were found to
be in any other language.

2.4.2 Regional Meta-Analysis

Overall, occupational or residential exposure to agricultural land use was consistently as-
sociated with increased infectious disease risks, but effects varied widely among studies,
differing disease groups and agricultural types. A regional analysis of 34 mutually exclu-
sive crude odds ratios from 34 studies demonstrated that people exposed to agricultural
land either occupationally or residentially were at a 74% increased risk of being infected
with a pathogen than those unexposed (OR 1.74, CI 1.45 – 2.05, p < 0.001, E = 2.01, (see
Figure 2.2). Although a larger number of positive studies were included within the sample
dataset, as shown in the funnel plot (see Figure 2.3), linear regression tests and the trim
and fill analyses (see Figure 2.2) highlighted no evidence of publication bias on the overall
effect size. High between-study heterogeneity (I2 = 83.5%) was nevertheless observed,
indicating considerable variability in effects among studies.

To assess the impact for within study confounding, a meta-analysis of 17 mutually exclu-
sive adjusted odds ratios from 17 studies was conducted suggesting that people exposed
to agricultural land either occupationally or residentially were similarly at significantly in-
creased risk of being infected with a pathogen than those unexposed (OR 1.46, CI 1.11 –
1.92, p < 0.001, (see Figure 2.4). Tests of the potential effect of unmeasured confounders
suggested that an excluded variable(s) would have to have a minimum odds ratio of 2.03
with both the exposure and outcome to fully explain away the pooled result (E=2.03).
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Figure 2.1: PRISMA diagram.
A flow chart of the study selection process
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Figure 2.2: Regional meta-analysis.
Regional meta-analysis of mutually exclusive risk estimates to determine the association between occupa-
tional or residential exposure to agricultural land-use and infectious disease prevalence. Exposure to ’agri-
culture’ is defined as a category where a person indicates they work or live in or near agriculture regardless
of the type of agriculture. Square points show the crude odds ratio for each study, solid diamonds show the
pooled meta-analysis estimates and error bars are defined as the 95% confidence interval. Note: Q, the
Cochrane Q-test. Df, degrees of freedom. p, p-value. I2, test for heterogeneity. RE, random effects
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Figure 2.3: Funnel plot for the regional meta-analysis.
A plot of the logarithmic risk estimates vs. the precision (standard error) for each study, with adjustment using
the trim and fill method. Closed circles denote identified studies and their summary measures, respectively.
Open circles represent missing studies after adjustment for funnel plot asymmetry and the summary measure
incorporating hypothetical studies, respectively. Key areas of statistical significance have been superimposed
on the funnel, and the plot is now centred at zero. The yellow zones show effects between p=0.10 and p=0.05,
and the orange zones show effects between p=0.05 and p=0.01. Effects in the white zone are greater than
p=0.10 and effects in the grey zones are smaller than p=0.01. A Z-test was conducted to calculate p-values.
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Figure 2.4: Adjusted odds meta-analysis.
Adjusted meta-analysis of mutually exclusive risk estimates to determine the impact of within study confound-
ing on the association between occupational or residential exposure to agricultural land use and infectious
disease prevalence. Agriculture (Non-specific) is defined as a category where a person indicates they work
or live in or near agriculture regardless of the type of agriculture. Multivariate adjustment is defined as ad-
justment for multiple factors which are not listed in the original study. A Z test was conducted to calculate
p values. Square points show the crude odds ratio for each study, solid diamonds show the pooled meta-
analysis estimate and error bars are defined as the 95% confidence interval. Note: Q, the Cochrane Q test.
Df, degrees of freedom. p, p value. I2, test for heterogeneity. RE, random effects.
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2.4.3 Study Characteristics Sensitivity Analysis

To evaluate the impact of between study confounding, I examined the influence of a range
of additional study and sample characteristics on effect size and direction, including study
type and methodology, socio-demographic characteristics (gender, whether children were
included in the sample population, and rural vs urban), both study quality assessments
and study location. In this test, associations consistent with the overall positive effect were
observed irrespective of study and sample characteristics (see Figure 2.5), strengthening
confidence that the pooled result is robust to a range of measured and, by extension, un-
measured confounders. In addition, the significant heterogeneity observed amongst stud-
ies in the regional pooled analysis (see Figure 2.2) does not suggest the presence of
systematic bias from unmeasured confounders.

Nevertheless, one effect modifier/confounder variable (study setting) exhibited a diver-
gence in effect sizes between groups, suggesting a possible interaction with the main effect
of agricultural exposure. Here, the effect of agricultural exposure on infection was more
than twice as strong in studies in urban than in rural settings, preserving the possibility that
the pooled effect is vulnerable to the effect of unmeasured confounders, albeit here insuf-
ficient to explain away the pooled result. In addition, a single subgroup indicated a lack
of significant association (studies based in Lao PDR). However, given the effect sizes and
direction for these groups did not deviate considerably from the pooled effect, I considered
this more likely due to small sample size than evidence of potential confounding. Finally,
low heterogeneity for some stratum specific covariates alongside consistent effect sizes
indicates that the source of heterogeneity is likely coming from elsewhere, warranting the
use of further subgroup analyses to scrutinize the pooled result and to test hypotheses on
differences in effect between agricultural types and disease groups.
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Figure 2.5: Sensitivity analysis of the regional meta-analysis.
A priori subgroups based on study characteristics to test the sensitivity of the regional meta-analysis. Results
suggest that subgroups based on study characteristics do not significantly alter the direction of the association
between occupational or residential exposure to agricultural land-use and infectious disease prevalence.
Circle points show the pooled subgroup estimates and error bars are defined as the 95% confidence interval.
Note: n, number of studies included in each pooled estimate. CI, confidence intervals. OHAT, Office of Health
Assessment and Translation. NHLBI, National Heart, Lung and Blood Institute
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2.4.4 Exposure-based Subgroup Analysis

Further subgroup analysis was performed using mutually exclusive estimates based on
common exposure types (see Figure 2.6, 2.7) and for specific disease classes (see Fig-
ure 2.8). Consistent associations between agricultural exposure and infection were again
evident. For the non-specific agricultural group, a similar effect was observed with all in-
fectious diseases (OR 1.71, CI 1.38 – 2.13). When stratifying the non-specific agricultural
group by disease class, significant effects were observed for parasitic (OR 1.74, CI 1.41 –
2.13), vector-borne (OR 1.85, CI 1.18 – 2.90) and zoonotic diseases (OR 1.63, CI 1.19 –
2.24). A marginal non-significant effect was found for bacterial diseases (OR 1.79, CI 0.97
– 3.31, I2 = 89.4%) (see Figure 2.6).

Among the specific agricultural subgroups, the effect was higher in populations working
or living in or near oil palm and being infected with vector-borne zoonotic diseases (lep-
tospirosis and P. falciparum) compared to those unexposed (OR 3.25, CI 2.29 – 4.61).
Similarly, exposure to rubber plantations increased the risk of being infected with all types
of pathogens (OR 2.27, CI 1.82 – 2.82). This effect was also consistent when stratified
by disease class where significant associations were found for bacterial (OR 2.27, CI 1.79
– 2.89), parasitic (OR 2.24, CI 1.35 – 3.74), vector-borne (OR 2.27, CI 1.82 – 2.82) and
zoonotic (OR 2.31, CI 1.83 – 2.94) disease class subgroups (see Figure 2.7).

Significant associations were observed for general livestock farming (see Figure 2.7) and
all diseases (OR 2.54, CI 1.37 – 4.72), zoonotic (OR 2.46, CI 1.35 – 4.48), vector-borne (OR
2.52, CI 1.48 – 4.28) and bacterial (OR 4.47, CI 1.30 – 15.39) diseases. A marginal non-
significant positive association was also established between livestock farming and viral
diseases (OR 1.55, CI 0.83 – 2.81). Further subgrouping by livestock type showed con-
sistent marginal non-significant positive effects. Specifically, marginal associations were
observed between porcine animals and all diseases (OR 3.57, CI 0.84 – 15.23), vector-
borne (OR 3.09, CI 0.58 – 16.46), zoonotic (OR 3.57, CI 0.84 – 15.23) and viral (OR 4.31,
CI 0.49 – 37.81) diseases. Effect sizes found for bovine animals were consistent for all,
vector-borne or zoonotic diseases (OR 2.09, CI 0.80 – 5.49) and bacterial diseases (OR
2.40, CI 0.57 – 10.12). No associations were found for exposure to poultry and all, vector-
borne or zoonotic diseases (OR 0.91, CI 0.24 – 3.45). There was no evidence of publication
bias for any other exposure-based subgroups.

Exposure to rice paddy farming (see Figure 2.6) resulted in a non-significant association
for all diseases (OR 1.34, CI 0.81 – 2.23), bacterial (OR 1.40, CI 0.71 – 2.77), zoonotic
or vector-borne (OR 1.17, CI 0.62 – 2.21) disease class subgroups. However, trim and fill
tests indicated the presence of publication bias in which positive associations between agri-
cultural exposure and general infection were under-reported among studies on rice paddy

49



Figure 2.6: Agricultural exposure based subgroup analysis
Subgroups were created a priori based on exposures that had two or more mutually exclusive estimates.
Agriculture (non-specific) is defined as a category where a person indicates they work in agriculture regardless
of the type of agriculture. Square points show the pooled subgroup estimates and error bars are defined as
the 95% confidence interval
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Figure 2.7: Livestock exposure based subgroup analysis
Livestock farming is defined as a category where a person indicates they are exposed to livestock generally
regardless of the specific type of livestock (e.g., chickens). Porcine, Bovine or Poultry exposure is defined as
a person being exposed to each of these respective animal types. Square points show the pooled subgroup
estimates and error bars are defined as the 95% confidence interval
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farming. When accounted for, the effect of agricultural exposure on infection risk within the
rice paddy farming subgroup became significant (OR 1.81, CI 1.04 – 3.17, p = 0.037, E =
1.47), suggesting that the overall effect is likely conservative.
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2.4.5 Disease-based subgroup analysis

A final subgroup analysis based on specific diseases or disease complexes again showed
consistent associations between infection and agricultural exposure (see Figure 2.8), no-
tably for spotted fever group rickettsioses (OR 3.91, CI 2.61 – 5.85), hookworm (OR 2.42,
CI 1.56 – 3.75), scrub typhus (OR 2.37, CI 1.41 – 3.96), malaria (OR 2.00, CI 1.46 – 2.73),
S. japonicum (OR 1.71, CI 1.18 – 2.48) and T. trichuria (OR 1.40, CI 1.27 – 1.53). In
contrast, no significant association was observed for the A. lumbrocoides, O. viverrini, E.
histolytica, G. intestinalis, Leptospirosis and R. typhi subgroups. Again, there was little ev-
idence of publication bias or unmeasured confounding for significant effect sizes, although
heterogeneity remained present in many groups (see A.1, A.2, A.3)
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Figure 2.8: Disease Based Subgroup Analysis
Subgroups were created a priori based on diseases that had two or more mutually exclusive estimates.
Orientia tsutsugamushi is also known as Scrub typhus. Rickettsia typhi is otherwise known as murine typhus.
Opisthorchis viverrini is also known as Opisthorchiasis. Square points show the pooled subgroup estimates
and error bars are defined as the 95% confidence interval

54



2.5 Discussion

2.5.1 Overview

Agricultural land use or land-use change has been repeatedly linked to infectious disease
risks in humans [50, 77, 78, 81, 83, 85, 86, 90, 110, 114, 195, 196, 197, 198]; however, no
study has systematically assessed or quantified this association. Based on currently avail-
able evidence from 37 eligible studies drawn from a corpus of over 15,000 peer-reviewed
publications, results strongly suggest that exposure to agricultural land use either occu-
pationally or residentially is consistently associated with increased infectious disease risk
(average 74% increase), an effect evident across a wide range of agricultural types and
disease groups. After pooling adjusted risk estimates from 17 eligible studies, a similar
significant association was still evident, suggesting that there was little within study con-
founding.

Effects were most pronounced for oil palm monoculture (>3 times the risk) and rubber (>2
times the risk) forest monocultures and a strong association was also found for livestock
farming. Associations for specific diseases or disease complexes were present for spotted
fever group rickettsioses, hookworm, scrub typhus, malaria, S. japonicum and T. trichuria,
but absent for other groups (A. lumbrocoides, G. intestinalis, E. histolytica, leptospirosis,
opisthorchiasis and R. typhi). No evidence of publication bias was detected in the regional
meta-analysis, but evidence of bias was present in the rice paddy farming subgroup anal-
ysis, whereby studies documenting positive associations between agriculture and all types
of infection were under-represented, suggesting the overall effect is conservative. Consid-
erable heterogeneity among studies and subgroups alongside negative tests for potential
confounding from both measured and unmeasured effect modifiers further suggest that the
results are robust to a range of possible sources of bias.

2.5.2 Exposure-based Subgroups

Sub-group analysis, in which data were grouped by common exposures and then stratified
by aetiological agent (parasitic, viral, bacterial), transmission mode (vector-borne, zoonotic)
or specific disease types or disease complexes, nevertheless highlight the potential com-
plexity and variability of agriculture-infectious disease associations. The particularly strong
effects that were observed for the two-forest monoculture-based agricultural types (oil palm
and rubber) are key findings. All these crops have been planted extensively in recent
decades and been major contributors to land-use changes in this region. For example, be-
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tween 2005 and 2010, almost 250,000 hectares of natural vegetation with tree cover was
converted to rubber plantations in SE Asia [199, 200], and the loss of primary forests for
the cultivation of oil palm in Indonesia (especially on Sumatra and Borneo islands) quadru-
pled between 2000 and 2012 to 800,000 hectares a year [201]. In 2010, with an estimated
122 million people working in agriculture in SE Asia, approximately 115 million hectares
(approx. 28% of the total area) were harvested for rice, maize, oil palm, natural rubber and
coconut [202, 203]. These results thus have far reaching implications for a large fraction of
SE Asia currently under cultivation or planned for agricultural conversion; that agricultural
land-uses and even differing agricultural types appear to exacerbate infectious disease
risks more than others raises the possibility that land-use decisions could be tailored to
minimise human health impacts.

Mechanisms by which crop monocultures impact the risk of infectious diseases are diffi-
cult to untangle and likely idiosyncratic. Deforestation or different agricultural land-uses
may favour some disease hosts or vectors (influencing e.g., abundance, distributions or
transmission dynamics), while the loss of biodiversity has also been linked to increases
in disease risk in some cases [197]. For example, a decrease in wild mammal species
richness in fragmented habitats was associated with a higher seroprevalence of Chagas
disease in small mammal reservoir hosts [50, 204]. In other cases, different agricultural
land-use types could be frequented by people, modifying contact rates with animal hosts
or vectors, and combinations of these effects are also probable. Fornace et al. (2016), for
example, show that a higher incidence of P. knowlesi is associated with larger amounts of
forest loss surrounding villages, which may have caused changes in macaque or mosquito
habitats in addition to increased levels of human activity, thereby increasing the risk of
infection in humans [86].

Landscape factors such as distribution, density, behaviour and population dynamics of vec-
tors and their hosts are partially controlled by landscape features such as vegetation cover,
surface moisture, topography or soil type; which in turn may also influence the level of
transmission of an infection [78]. Oil palm, rubber plantation and rice paddy monocultures
have reduced species richness compared with primary and secondary forests [205, 206],
and these monocultures are structurally less complex than natural forests typically exhibit-
ing a more uniform age structure, lower or no canopy, sparse undergrowth, less stable and
more extreme microclimates, and greater levels of human disturbance and presence [206,
207]. Evidence suggests that such changes related to physical characteristics of the land-
scape or biodiversity loss itself could favour disease carrying hosts or vectors or increase
the efficacy of disease transmission to remaining hosts (in this case people). For exam-
ple, Burkett-Cadena et al (2018) suggest that an increased mosquito vector abundance
was positively associated with deforestation. Of the mosquito species that were favoured
by deforestation, 56.5% were confirmed vectors of human pathogens, compared to 27.5%
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of species that were negatively impacted by deforestation [208]. Faust et al (2018) also
suggest that the greatest risk of spillover events occur at intermediate levels of habitat loss,
whereas the largest, but rarest, epidemics occur at extremes of land conversion [81]. These
results are thus consistent with these previous empirical [89, 209] and modelling studies
[81, 85, 86, 90, 198] and further support suggestions that deforestation resulting in crop
monocultures is particularly problematic for elevating infection risks in susceptible nearby
populations.

Whereas many previous studies have focussed on land-use change and deforestation ex-
plicitly, my analysis is largely blind to prior land-cover history. I nevertheless find variation
in disease risk among specific agricultural land-use types, suggesting that an effect on
disease risk likely goes beyond simply a change in land cover (e.g., from forest to crop
monoculture) to include the final characteristics of modified agricultural landscapes. To
further untangle mechanisms here would require a more detailed dataset on land-cover
history (e.g., class transitions), scale and context.

Previous research on the association between livestock farming and infectious disease risk
has been inconsistent [170, 210, 211, 212, 213, 214, 215, 216], whereas here I find consis-
tent associations between infectious disease risks and exposure to livestock farming. The
subgroup analysis for separate livestock categories (see Figure 2.7) suggests that infec-
tion risk may vary according to exposure to the type of animals farmed, with pigs and cattle
exposure being positively associated with infection while poultry exposure having no associ-
ation. Results further show consistent positive associations between livestock farming and
differing disease classes, whereby exposure to livestock can result in 2 to 4 times the risk of
being infected with vector-borne, bacterial or zoonotic diseases. I also find a marginal asso-
ciation with livestock farming and viral diseases, albeit with small sample sizes likely limiting
power to confirm the positive effect. Livestock disease transmission can occur through mul-
tiple routes including airborne, direct faecal-oral, animal bites and scratches, contaminated
animal products and consumption of uncooked meat [215, 217]. Alternatively, the impact
of livestock may be to act as amplifier hosts [218, 219], while livestock housing studies
show that keeping livestock such as cattle in the house as opposed to shelters outside
the house contributes to increased disease risk rather than zoo-prophylaxis [220, 221]. In
addition, global changes in climate, agricultural intensification and expansion for livestock,
trade, travel, and closer interactions with livestock has facilitated infectious disease trans-
mission [222]. Further empirical data from appropriately powered epidemiological studies
are required to confirm my results and better identify mechanisms.
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2.5.3 Disease-based Subgroups

Effect variability was also observed among specific disease or disease complex subgroups.
Significant associations ranging between 1.4 to 2.9 times the risk of infection when exposed
to agricultural land-use were identified for hookworm, malaria, scrub typhus, S. japonicum,
spotted fever group rickettsioses and Trichuris trichiura. In contrast, no effect was seen
for A. lumbrocoides, E. histolytica, G. intestinalis, O. viverrini, Leptospirosis and R. typhi.
These results again illustrate the potential complexity of agriculture-disease associations,
whereby agricultural land use could be impacting the transmission cycles of these disease
groups in different ways or otherwise unmeasured effect modifiers could be at play.

Specific disease traits or epidemiological characteristics likely explain these differences,
at least in part. For example, previous research suggests that arthropod vectors, such as
mosquitoes and ticks, and helminths may be more vulnerable to environmental changes
such as agricultural land uses than other taxa [214]. Since I find significant associa-
tions only for parasitic or vector-borne diseases (and no association for directly transmitted
zoonotic or faecal-oral route diseases), my results broadly support this suggestion. Mech-
anistically, this may be linked to the modification of environmental niches, changes in the
community composition, or alterations in the behaviour or movement of vector species [50,
76, 196, 207, 223]. For example, malaria in the Mekong region has been associated with
dense forest cover and also with cultivated areas [84, 224]. Forest-fringe and deforested re-
gions can also create suitable habitats for malaria vectors (e.g. Anopheles minimus)[225].
Therefore, the widemosquito vector diversity and the potential for mosquito vectors to adapt
in deep-forests and forest-fringes, in addition to the movement of susceptible humans to
and from the forest, provide ideal conditions for sustained and novel transmission [84].

Despite this trend, some diseases for which no effect was observed were helminths, and in
this case variation in effect may be related to subtler transmission characteristics or other
unmeasured confounders. A. lumbrocoides or O. viverrini, for example, are transmitted
via the faecal-oral route whereas T. trichuria, S. japonicum and hookworm are transmitted
through skin penetration. Although both cases and controls will be infected via the same
transmission mechanism, people exposed to agriculture may be more susceptible to infec-
tion with faecal-oral route transmitted diseases due to the use of night soil (human faeces)
as fertiliser to improve crop yield. Using nightsoil as fertiliser is prevalent in SE Asia, al-
though there are no estimates on how widespread it may be [174, 175, 176], making it
difficult to include explicitly as a potential confounding factor. Similarly, variation in effects
between diseases could be a result of differential responses to public health interventions.
For example, the efficacy of praziquantel mass drug administration is higher for A. lum-
brocoides compared to T. trichuria or hookworm [226], but again incorporating treatment
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history as a potential effect modifier was not possible here.

Results show significant associations between exposure to agriculture and spotted fever
group rickettsioses or scrub typhus but not R. typhi. This difference could again be linked
to transmission characteristics. Although all are vector-borne, spotted fever rickettsioses
is tick borne, scrub typhus is transmitted by larval mites, while R. typhi is transmitted by
both fleas and lice. This is in line with current research that suggests ticks and mites are
highly susceptible to environmental change [49, 227, 228]. For example, Lyme disease (a
tick borne disease) has increased with forest fragmentation in North America [229, 230,
231]. Ostfeld et al (2018) also find that tick-borne infection prevalence was lowest when
forest cover within a 1 km radius was high [232]. I found very little research to suggest
environmental change was having large impacts on flea borne diseases [49, 227]. Previ-
ous research does suggest that R. typhi is largely an urban disease where overcrowding,
poor public health and sanitation measures are considered key risk factors for transmis-
sion [233]. Specifically, R. typhi typically thrives in markets, grain stores, breweries, and
garbage depots where rats serve as the main reservoir, which may explain the lack of as-
sociation with agriculture reported here [233].

Results also contrast with previous studies in the case of agriculture and leptospirosis.
Whereas I found no overall effect for leptospirosis, previous studies have yielded mixed
results [234, 235, 236]. Research conducted in Thailand suggests that the sources of
human and rodent infections are different, where humans are infected in villages in non-
forested areas located near rivers while rats are infected in forest patches situated in the
hilly areas [170]. In Asia, humans are known to be infected through prolonged contact with
water that may be contaminated by infected animal hosts [237, 238]. Such environmental
transmission is directly linked to frequent occupational exposure to agricultural land use
and establishing causal pathways between the environment, animal hosts and human risk
is therefore required for such complex eco-epidemiologies.

2.5.4 Limitations

Although consistent associations were found between agricultural land-use and infectious
disease risk in humans, there are several inherent challenges in resolving agriculture-
disease associations and some limitations in this study that could be improved upon or
resolved in future studies.

First, despite the diverse range of generally robust results reported in this study, the system-
atic assessment of study quality in this analysis does highlight an apparent lack of robust
and high-quality studies that assess the impact of differing agriculture types, the degree
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of exposure to agriculture (e.g. more or less) and land use change on infectious disease
risks in SE Asia. Considering an initial 15,476 articles were generated from a sensitive and
specific search strategy, just 34 (0.2%) met the inclusion and exclusion criteria and were
included in the regional meta-analysis. All retained articles focus on agriculture as the main
land use types, as opposed to other conventional land use practices, such as road build-
ing, dam building, mining and urbanisation. Only a small number of studies focus on the
final human health outcome, while in contrast many studies focus on infectious diseases in
plants or animals [118, 196, 239, 240]. Similar research aiming to evaluate the impacts of
agricultural land-use on biodiversity appears far more prevalent and incorporates a wider
range of land use types [58, 71, 241, 242]. Caution is therefore advised in interpreting
results so as to avoid generalisations not supported by the data.

In addition, studies in the meta-analysis were all either case control or cross-sectional stud-
ies, which, in the hierarchy of evidence within the medical sciences, are considered more
prone to bias and confounding than some other study designs (i.e., cohort studies or ran-
domised controlled trials) [243]. Nevertheless, most of the studies were evaluated to have
probably low risk of bias or be of fair quality, indicating that there is only a small chance
that a fatal flaw would invalidate an individual study’s findings. Despite this, I identify a
general paucity of the highest quality studies on the human health implications of land-use
decision making and policy, and its impacts on infectious diseases. Further studies that
capture bias, confounding and effect modification would be particularly valuable.

Second, understanding whether the associations are significant spatially and temporally or
if the associations are transient was not possible. Understanding whether the association
between land use and infectious disease is consistent both spatially and temporally is an
important avenue for future research. Specifically, understanding the causal relationships,
leading from distal environmental changes to alterations in more proximal environmental
characteristics and disease transmission cycles, which eventually lead to a shift in the risk
of infectious diseases at the landscape level should be prioritised for future research [195].

Third, although extensive efforts to control (through the inclusion/exclusion criteria and the
subgroup analysis) or at least detect (through tests of heterogeneity, the meta-analysis
of adjusted odds ratios and E score tests) the potential effect of confounders and effect
modifiers were made, there are likely to be environmental, social, demographic or even
economic factors that could impact the association between land use and infectious disease
risks. Participatory epidemiology offers the opportunity to conduct bottom up agro-system
analytical research on the patterns of diseases in animal and human populations [244,
245, 246]. Participatory epidemiological research has previously provided insights into how
social factors (which can be potential confounders or effect modifiers) can impact ecological
processes. For example, the involvement of women in the care and preparation of poultry
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carcasses in Egypt could contribute to higher incidence of highly pathogenic avian influenza
in women [244, 247]. Similarly, understanding how local indigenous herder knowledge on
the clinical signs of classical acute and milder rinderpest has previously aided in the control
and eradication of rinderpest [244, 248] . Hence, participatory mixed methods research is
an ideal platform to assess effect modification and confounding and their potential impact
on disease-agriculture relationships.

Finally, substantial heterogeneity was also observed in the regional meta-analyses, where
I2 values were higher than 80%. The substantial heterogeneity may be due to clinical het-
erogeneity or statistical heterogeneity. Clinical heterogeneity occurs where the exposure is
modified by factors that vary across studies, the type of exposure (e.g. different agricultural
types – rice vs rubber) or study participant characteristics [182]. Differences between stud-
ies in the definition or the measurement of exposure or outcome, may all lead to a difference
in effects. In contrast, statistical heterogeneity exists when the true effects being evaluated
differ between studies and may be detectable if the variation between the results of the
studies is above that expected by chance [188]. Further sub-group and sensitivity analysis
showed that heterogeneity decreased to a moderate level (I2 < 60%) only for certain sub-
groups [171, 188]. This suggests that some of the observed heterogeneity is attributable
to epidemiological and environmental differences within this subgroup [188, 189]. Within
our analysis, we did not plan for or conduct multiple comparison tests. Specifically, multiple
testing was considering difficult to plan for as it might not be known, at the outset, which
outcomes and which effect measures will be available from the included studies. However,
further research is required to develop adequate multiple comparison procedures for use
in systematic reviews [172]. There was little evidence of significant publication bias in my
analyses (except for rice paddy farming), and any publication bias that was present had
very little impact on the pooled association.
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2.6 Conclusion

This meta-analysis provides broad evidence that occupational or residential exposure to
differing types of agriculture can consistently exacerbate infectious disease risks in humans
in SE Asia. These trends suggest that further expansion or intensification of land use
for agricultural purposes may result in the novel emergence of pathogens as observed
elsewhere (e.g., [83, 85, 88, 109, 249] or increased transmission of zoonotic, parasitic
or vector-borne diseases (e.g., [84, 86, 90]. However, the results presented in this study
also provide an opportunity for land use decision makers, governments, companies and
agriculturalists to recognise the impact that agricultural land use or land use change may
have on susceptible populations and proactively identify measures to mitigate these risks.

Given a range of other negative externalities of agriculture identified in other fields (e.g.
carbon emissions, air pollution, biodiversity loss), the potential for better land-use deci-
sions to collectively minimise infectious disease impacts alongside these other impacts is
large. Enhancing the sustainability of agriculture has already been identified as a nexus
issue that is central to meeting a diverse range of development and environmental tar-
gets, such as the SDGs, the Aichi biodiversity targets, and the Paris agreement [150].
Key measures are already being proposed to sustainably meet this multiplicity of demands
through policy changes, such as reducing food wastage throughout the food supply chain
[250, 251], advocation of reduced emissions and more sustainable diets [252, 253], efforts
in soil management techniques [254], responsible consumption of animal products [254],
and biodiversity-friendly farming practices [255]. This study provides critical additional ev-
idence to propel human health impacts from infectious diseases into this mix to further
advance health targets (e.g., SDG3, Target 3.3) [256] as a central component of improving
the sustainability of agricultural development more broadly.
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Chapter 3

Global human infectious disease
impacts of agricultural production and
trade
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3.1 Abstract

Background

Infectious disease has typically been understood as a domestic burden, influenced primarily
by in-country factors. The existence of a link between public health and agriculture trade
has been a ‘known unknown’. This study provides evidence establishing such a link where
global agricultural production and trade, which is known to be associated with a range of
environmental impacts, is also a substantial driver of the infectious disease burden in many
countries.

Objectives/Methods

A literature review and meta-analysis was conducted to test for country-specific associa-
tions between exposure to agriculture and human infectious diseases. Country-specific
meta-analytic effect sizes were then integrated with spatial averaging methods and popu-
lation attributable fraction calculations to quantify the country-specific burden of infectious
disease associated with agriculture. These country-specific burdens were then combined
with a global input-output model to estimate what proportion of the burden of infectious
diseases associated with agricultural is linked due to international trade.

Results

People who are exposed to agriculture are at more than double (107%) the risk of being
infected with any pathogen compared to those unexposed, with agriculture being asso-
ciate with approximately 13.1% (CI 7.9% - 18.4%) of the global burden of communicable
diseases. Around one third (34.6%, CI 24.8% - 57.6%)) of this burden is linked to the in-
ternational trade of agricultural commodities, with demand from high-income countries and
regional powerhouses (USA, UK, EU, India, China and Japan) contributing the most to dis-
ease risks in primarily developing countries. The highest burden of trade related infectious
disease occurs in Sub-Saharan Africa, particularly West Africa.

Interpretation

For burdened countries where both infectious disease and agricultural exports are preva-
lent, multinationals, multilaterals, governments, and public health funding bodies should
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aim to ease these burdens through public health, environmental and sustainable devel-
opment interventions. For consumer nations, SDG-aligned policies promoting sustainable
consumption and diets must be extended to consider the eco-epidemiological costs of in-
ternational food production and trade.
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3.2 Introduction

The globalisation of agriculture has led to increases in production and trade and has re-
duced hunger, expanded consumer choice, enriched diets, improved efficiencies, and fu-
elled economic growth [14, 257]. However, these benefits have come at some cost: agricul-
ture is also substantially responsible for greenhouse gas emissions, water and air pollution,
and biodiversity loss [57, 71, 72, 258]. The impacts of agriculture are likely to increase as
population growth continues. Sustainably feeding a global population of 10 billion by 2050 is
one of the grand challenges recognized by the UN Sustainable Development Goals (SDGs)
[150].

The direct environmental and social impacts of agriculture are well described. For example,
over 50% of new agricultural land recruited during the 1980s and 1990s in the tropics was
converted from previously intact forests, endangering essential environmental services and
driving biodiversity loss globally [57, 71, 72, 258]. Similarly, studies assessing the links be-
tween human health and agriculture show impacts of agriculture on increasing the preva-
lence of both non-communicable (e.g. asthma) and infectious diseases (e.g. malaria or
emerging infectious disease) [110, 259]. However, evidence on how demand for agricul-
ture can drive these negative health impacts is limited or geographically restricted [138].

In current evaluations of sustainable agriculture, the health impacts of agricultural produc-
tion and food imports are largely unknown. While bad labour footprints [260, 261] and the
environmental footprint of foods and diets has been well studied [262, 263, 264, 265, 266,
267], the links between agricultural trade and public health have remained an unquantified
‘known unknown’.

The World Health Organisation has estimated the burden of disease broadly linked to envi-
ronmental determinants but this currently excludes explicit agriculture-disease associations
[268, 269]. Only partially filling this gap, the majority of studies that assess the association
between agriculture and/or agricultural trade and infectious disease outcomes are geo-
graphically restricted empirical [138, 270] or modelling studies focussed on single infec-
tious diseases [259, 271] or specific disease subsets (e.g. emerging infectious diseases,
EIDs) [110]. Rohr et al., (2019) estimated that >25% of emerging infectious disease (EID)
‘events’ and >50% of zoonotic EID ‘events’ globally in the period 1940-2004 were linked
to agricultural drivers; however, EIDs represent just a subset of the global burden of infec-
tious diseases with a relatively small burden and trade routes were not assessed. Chaves
et al., (2020) also find that 20% of the malaria risk in deforestation hotspots is driven by the
international trade of deforestation-implicated export commodities, such as timber, wood
products, tobacco, cocoa, coffee and cotton [138].
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As agriculture continues to expand and intensify to meet the demands of a growing global
population, monitoring and evaluating agriculture-based infectious disease threats will be
of global importance and require quantification. I aimed to fill these gaps by developing
a framework to explicitly estimate the agriculture-related burden of human infectious dis-
eases at a global scale and map its trade-related demand network with input-output analy-
sis. These results will be of value to land use decision makers, economists, governments,
companies and agriculturalists seeking to recognise the impact that agricultural land use
and trade can have on susceptible populations, alongside various other negative external-
ities, and to proactively identify measures that seek to achieve multiple global targets and
indicators.

3.2.1 Agriculture-Disease Mechanisms

Common mechanisms by which agricultural land use alters the transmission of infectious
disease include vector, host, and pathogen niche alterations, changes in host and vector
community composition, behaviour or movement change of vectors and/or hosts, altered
spatial distribution of hosts and/or vectors, socioeconomic factors, and environmental con-
tamination [50]. Within this analysis, I only included specific diseases and disease cate-
gories that had a biologically plausible link on the basis of relevant literature which can be
found in Table 2. Here I provide a narrative description of some the potential ecological
mechanisms between agriculture and various diseases included within our analysis.

Diarrheal Diseases

Diarrheal diseases are most commonly caused by the transmission of bacterial, parasitic,
or viral enteric organisms to humans through the contamination of water or food sources by
faeces [272]. For example, recent studies have found that the local loss of dense forests,
largely from agricultural expansion, affected diarrheal diseases in Cambodian children.
Here, the authors suggest that deforestation due to agricultural expansion can impact hy-
drological cycles by increasing peak flows or soil erosion or reducing groundwater recharge
or flow, which thereby increases microbial load and exposure, potentially raising the risk of
diarrhoea in susceptible communities that use water resources [90].

Studies conducted in Vietnam also found that exposure to wastewater and excreta, which
is typically used in Southeast Asia as fertiliser during agricultural activities, are significantly
contributing to the risk of diarrhoea in adults [174, 175, 176, 273]. One study conducted in
Wisconsin, USA found that living on a farm increased the risk of diarrheal diseases such
as Campylobacter jejuni and Escherichia coli. Here, authors hypothesised that livestock
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exposure and consumption of unpasteurised (e.g. milk) or contaminated livestock or food
products resulted in a higher risk for children living on a farm compared to those not living
on a farm [274].

Viral Infections

A majority of emerging infectious viruses have origins in zoonotic animal reservoirs and are
often transmitted to humans via intermediate hosts, such as domestic animals and livestock
or wildlife species. Specifically, modern agricultural practices that can concentrate livestock
and bring them into contact with wild animals can lead to increased disease risk amongst
humans [275]. Examples of viruses that have emerged in this manner include influenza,
coronaviruses such as the ones causing severe acute respiratory syndrome (SARS) and
Middle East respiratory syndrome (MERS), and Nipah virus [88, 116, 149]. Viruses can
also be foodborne, such as hepatitis E virus, tick-borne encephalitis virus in addition to nu-
merous species of the enterovirus, adenovirus, and astrovirus viral families, among others
[276].

Arboviruses such as rift valley fever, yellow fever, dengue, Japanese Encephalitis, and
Crimean-Congo haemorrhagic fever virus (CCHFV) have also been known to be associ-
ated with agricultural practices. For example, in a recent study by [277], specific types
of vegetation or land use were often found to be associated with increased disease risk
through their impacts on suitable habitat for vectors and reservoir (or intermediate) hosts.
Agricultural practices such as the creation of rice paddies, abandonment of farmlands, and
a high rate of habitat fragmentation is hypothesised to have led to enhancing breeding sites
for arbovirus vectors, increase host and vector densities and contact rates, and stimulate
host and vector movement between habitat patches [277]

Respiratory Infections

Respiratory infections have long been recognized in association with work in farming. For
example, inhalation of fungal spores frommouldy hay, straw, or grain can result in increased
morbidity and mortality in farmers [278]. The incidence of pulmonary tuberculosis caused
by Mycobacterium bovis is also higher in occupationally exposed individuals such as farm
and slaughterhouse workers than in urban inhabitants in India. Here, little is known about
disease transmission from human to cattle and vice-versa; however, researchers hypoth-
esise that the consumption of unpasteurised bovine products can be a risk factor [279].
Other agricultural zoonoses that can lead to respiratory infections include psittacosis and
Q fever. Psittacosis follows inhalation of desiccated droppings or secretions of poultry in-
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fected with Chlamydia psittaci and Q fever, is caused by inhalation of Coxiella burnetii from
infected cattle, goats, and sheep [280]. In Cambodia, deforestation for agricultural expan-
sion has also been associated with respiratory illnesses through various mechanisms. For
example, fire is often used to clear tropical forests, and fine particulate matter from biomass
smoke can penetrate deep into the lungs, thereby increasing the risk of respiratory infection
(including pneumonia) [90]. Finally, in sub-Saharan Africa, biomass burning which typically
occurs in poverty stricken agricultural landscapes is also associated with an increased risk
of acute respiratory infection [281]

Helminth Infections

In general, human helminth infections (e.g., tapeworms, flukes, and roundworms) can occur
in areas where the reuse of wastewater and sludge for agriculture is common. Specifically,
the unrestricted use of wastewater for irrigation presents a serious health risk to farmers
due to the dissemination of pathogens, particularly helminth eggs. Helminth eggs survive
in water, soil, and crops for several months and over much longer periods than other mi-
croorganisms [282, 283]. Furthermore, some helminth infections, can even cause eating
disorders, such as geophagy (desire to eat soil), bulimia and anorexia [110].

A key driver of increased helminth infection is agricultural irrigation and freshwater redis-
tribution. For example, in a large meta-analysis, results showed that humans living near
irrigation schemes or in close proximity to large dam reservoirs had significantly higher risk
of schistosome infections than humans that did not live near these water resources [284].
Similarly, a more recent analysis of schistosomiasis case data from the past 70 years across
sub-Saharan Africa showed that creating dams caused an ecosystem shock and blocked
the migration of snail-eating river prawns, resulting in an increased risk of schistosomiasis
for almost 400 million people [285].

The use of agrochemicals is also considered a risk factor for helminth infections by altering
the densities of hosts or parasites or their natural enemies or mutualists [110]. Several
pesticides can alter host behaviours or be directly toxic to hosts and parasites, which in
turn can modify contact rates between parasites and human hosts. In addition, pesticides
can alter community composition, which can indirectly affect behaviours or densities of
intermediate and zoonotic hosts and parasites. For example, nitrogen- and phosphorous-
based fertilizer use can increase the number of snails that transmit flatworms that cause
human schistosomiasis [112]
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Malaria

Agriculture is often cited as playing an important part in malaria ecology. For example,
pre-production environmental changes, such as forest loss for agricultural expansion or
intensification, can impact malaria transmission through changing habitat suitability. For
example, forest loss leads to a decreased forest canopy thereby increasing sunlight and
standing water creating optimum habitats for certain malaria transmitting mosquitoes [208].
In addition, frontier malaria can also occur due to unstable socio-economic conditions linked
to deforestation such as increased migration, novel human exposure and low immunity,
poor housing quality, and a lack of health services [76, 84, 161, 208, 240, 286, 287]. Crop
production also plays an important role in malaria ecology and epidemiology across sub-
Saharan Africa, yet only a few studies assess the relationship between differing crop types
and malaria outcomes in humans [89, 288, 289, 290].

70



3.3 Methods

3.3.1 Methodological Overview

I integrated methods from epidemiology (literature review and meta-analysis), statistics
(spatial averaging, population attributable fractions) and industrial ecology (input-output
analysis) to quantify the burden of infectious disease associated with agriculture and fur-
ther assess which countries ultimately drive these agriculture-associated disease burdens
through their importation of agricultural commodities. In specific, I aimed to develop a
’framework’ for the estimation of the burden of disease linked to agricultural production and
trade. This framework can be applied at the global or regional level given available data,
but importantly it can incorporate new information or data as it becomes available.

Within the systematic review, I focussed on searching and screening literature from 29
countries in Southeast Asia, South America and sub-Saharan Africa. However, through the
screening process and data extraction, I only found 82 mutually exclusive studies that were
from 14 of the 29 countries and which met my inclusion and exclusion criteria. Therefore,
I calculated 14 country-specific pooled meta-analytic odds ratio estimates from empirical
data extracted from a comprehensive literature review and meta-analysis to quantify the
risk of being infected when exposed to agriculture compared to those unexposed. Using
nearest neighbour weighted spatial averaging on the meta-analytic pooled odds ratios, I
imputed and extrapolated associations for 135 countries (excluding island nations). I then
calculated the burden of disease associated with agriculture and link these burdens to a
global input output table to determine the total infectious disease footprint of agricultural
trade across all countries, map the location of the likely impacts according to agricultural
land-use extent, and detail the most impactful and impacted country connections.

3.3.2 Literature Review and Meta-Analysis

Overview

The systematic review methodology from Chapter 2 which focused on Southeast Asia was
extended to then include 10 additional countries from sub-Saharan Africa and 10 countries
from South America. With the aid of twoMSc students, I reviewed articles that assessed the
association between occupational or residential exposure to agriculture and the prevalence
or incidence of infectious disease compared to the counterfactual of no exposure [270].
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Here, studies between 1970 and 2017 from 29 countries across Southeast Asia, Africa and
South America that provided data on the prevalence of infectious disease in people either
occupationally or residentially exposed and unexposed to agricultural land use were re-
viewed. A random effects meta-analysis was subsequently performed to calculate global,
regional and country-specific infectious disease risks of occupational or residential expo-
sure to agricultural land use. Fixed effect models were only used in an instance where
pooled estimates were calculated from a sample size of 2 studies.

Global and WHO regional effect estimates were initially calculated and data were then
stratified by disease category subgroups defined as "all infectious diseases", "diarrheal
disease", "parasitic and vector borne diseases", "intestinal nematodes" and "all other dis-
eases"; which are based on specific categories stated within the Global Burden of Disease
Project [291]. To assess country-level effects, I further stratified the global data set by coun-
try and quantified pooled odds ratios using two or more mutually exclusive crude estimates
per country. Exposure based and disease based subgroup analysis was also conducted to
assess whether associations were robust at the global level in relation to exposure type or
disease type. Finally, I performed a covariate sensitivity analysis to determine how robust
the global meta-analysis results would be to certain study, socioeconomic and environmen-
tal characteristics using the estimates from the global meta-analysis.

Eligibility Criteria

The following eligibility criteria were adhered to:

Study Question - “Is there an association between occupational or residential exposure to
agricultural land uses and being infected with a pathogen for adults aged 18 and above in
the 29 countries being investigated?”

Study Design – Empirical observational studies (longitudinal cohorts, case control or cross
sectional) studies conducted within the last century in the 29 countries being investigated
and reported in English were considered eligible.

Populations – This study ideally drew participants from the general adult population aged
18 and above. Studies that recruited participants of all ages (including children) were also
included. Studies that focused exclusively on the child population were excluded.

Exposure – The primary exposure of interest is occupational or residential exposure to
agriculture or agricultural land use. This is defined as whether study participants would be
working or living in or near agricultural land. Specifically, agricultural exposure was defined
as any person who partakes in the cultivation of land and breeding of animals and plants to
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provide food, fibre, medicinal plants and other products to sustain and enhance either for
domestic, residential, occupational or economic purposes [49].

Comparators – Studies were included if they compared outcomes in the exposed group with
those in a group of “unexposed” people (people who are not occupationally or residentially
exposed to agriculture or agricultural land use).

Outcome – Studies were included if one of the primary outcomes include prevalence, sero-
prevalence and incidence for all parasitic or vector-borne diseases that have a biologically
plausible link to agriculture or agricultural land use.

Studies that investigated non-communicable disease or infectious diseases of plants, in-
vertebrates or fish were excluded. I also excluded studies that were not conducted in the
29 listed countries, did not include some form of land use as an exposure or study focus,
were theoretical research papers, reviews, commentaries or letters, or were not published
in English. Studies that presented odds ratios based on the co-infection of more than 1
disease were excluded as co-infection could increase susceptibility to other infectious dis-
eases [173]. Studies that assessed the impact of using human faeces (night soil) as fer-
tiliser in agriculture were also excluded [174, 175, 176]. This is because using human
faeces as fertiliser was not considered a land use but rather a confounding behavioural
activity. Studies that assessed risk factors of disease in children were also excluded as
children may be exposed to agricultural work but may also be more susceptible to certain
diseases.

Countries that are members of ASEAN were selected as a culturally, environmentally and
geographically rich, diverse and dynamic region of the world where significant natural re-
sources including globally important stocks of biological diversity can be found. SE Asia
also contributes 27% of the global burden of infectious and parasitic diseases, 30% of res-
piratory infections, 33% of maternal conditions, 37% of perinatal conditions and 35% of
nutritional deficiencies [164]. All countries from South America were included as commer-
cial agriculture is the biggest driver of deforestation in Latin America, with around 2/3 of
deforested areas are for this purpose and the region is increasingly producing for interna-
tional markets for example palm oil and soybean in particular in the Amazon region [292,
293]. At the same time, neglected tropical diseases disproportionally affect poorer commu-
nities in Latin America with the region experiencing some of the highest levels of inequality
[154]. Finally, 10 countries were selected from Africa as these countries were considered
to have high disease burdens, yet at the same time have high levels of agricultural land
use.

• Inclusion Criteria
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– Geographical Location – The 29 selected countries included Argentina, Bolivar-
ian Republic of Venezuela, Bolivia, Brazil, Brunei, Burundi, Cambodia, Chile,
Colombia, Cote D’Ivoire, East Timor, Ecuador, Ghana, Indonesia, Laos PDR,
Malawi, Malaysia, Myanmar, Nigeria, Paraguay, Peru, Philippines, Rwanda,
Sierra Leone, Singapore, Tanzania, Thailand, Uganda, Uruguay, Vietnam and
Zimbabwe.

– Population – Adults aged 18 and above that work or live in or near agricultural
land (NB – studies that assess total populations including both adult and chil-
dren will be included).

– Type of exposure - Agricultural land use exposure was defined as any person
who partakes in the cultivation of land and breeding of animals and plants to
provide food, fiber, medicinal plants and other products to sustain and enhance
either for domestic, residential, occupational or economic purposes.

– Type of comparator - No exposure to agricultural land use.

– Types of outcome: Change in prevalence or incidence of infectious disease as
a function of land use or land use change.

– Type of disease: All infectious diseases that are prevalent in humans with a bi-
ologically plausible link to land-use change including emerging, zoonotic, bac-
terial, viral, parasitic and vector-borne infections.

– Types of study – Peer reviewed empirical observational studies.

• Exclusion Criteria

– Articles based on non-communicable disease.

– Articles based on infectious diseases of plants, invertebrates or fish.

– Articles that do not study the impact of land use or land use change.

– Articles not in English.

– Theoretical research, reviews, commentaries or letters.

– Studies that presented odds ratios based on the co-infection of more than 1
disease.

– Studies that assessed the impact of using human faeces (night soil) as fertiliser
in agriculture.

– Studies that assessed risk factors of disease in children.
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Statistical Analysis

Associations were quantified using the odds ratio (OR) with a 95% confidence interval. This
was extracted where possible from the studies or self-calculated using relevant data where
possible. Where ORs could not be extracted or calculated due to poor or non-reported data,
studies were excluded from the meta-analysis [171]. Crude odds ratios were then analysed
using a random effects model. Random effects meta-analyses assume that a distribution of
effects exists across all studies included in the analyses, resulting in heterogeneity among
study results. The use of a random effects model was considered appropriate here because
I assume that the associations between occupational or residential exposure to agricultural
land use or land use change and infectious disease risks are likely to be inconsistent and
idiosyncratic, which might otherwise bias the results. Therefore, I considered a random
effects meta-analysis to be a more conservative approach than fixed effects analysis [181,
182].

As specified in Chapter 2, a study quality assessment was also conducted for all stud-
ies using the using a quality appraisal tools sourced from the National Heart, Lung and
Blood Institute’s (NHLBI) [179, 180]. Heterogeneity was quantified using the I2 statistic
and the Cochranes Q test. A value of >75% for the I2 statistic is generally considered
to suggest substantial heterogeneity [188, 189]. I also conducted a sensitivity analysis
using an E-value to test for between study unmeasured confounding. The E-value repre-
sents the strength of association an unmeasured confounder would need to have with both
the treatment and outcome to fully explain away a specific risk factor-outcome association
[190]. Finally, publication bias was also assessed using three separate methods which
have been described in Chapter 2: funnel plots, Egger’s linear regression test and the trim
and fill method [191, 192, 193, 194].

Subgroup and Sensitivity Analysis

Agriculture-disease relationships may be moderated by many confounders or effect modi-
fiers. Exposure based and disease based subgroup analysis was also conducted to assess
whether associations were robust at the global level in relation to exposure type or disease
type (as specified earlier in Chapter 2). In addition, I performed a sensitivity analysis using
the data extracted from the systematic review to determine how robust the regional meta-
analysis result would be to certain study characteristics, environmental and socio-economic
study level confounders [270]. I endeavoured to create subgroups by study location spe-
cific or subnational data; however, where no such granularity in data was found, I opted to
use country-level data to formulate subgroups.
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Here, I created a priori subgroups on i) study type, ii) sampling strategy, iii) study setting, iv)
outcome measurement, v) study quality and iv) various characteristics of the study popula-
tion. I also performed a sensitivity analysis with environmental covariates including i) mean
annual temperature, ii) precipitation, iii) humidity, iv) climate zones and v) latitude [294,
295, 296]. Finally, a socioeconomic sensitivity analysis was also performed where a priori
subgroups were created using the i) human development index (HDI), ii) gross domestic
product per capita, iii) percentages of the population that have improved water and im-
proved sanitation, respectively, and iv) country-specific overseas development assistance
stratification. I could not use the income adjusted human development index to account for
household consumption as these indicators are not available at the subnational level [297].

Although there was some variation amongst countries, the effect of agricultural exposure
on infectious disease risk was relatively consistent, with minor variation being observed
across countries and through the subgroup and sensitivity analyses (see Figures 3.1, 3.2,
3.3). In addition, although I find considerable heterogeneity at the global, regional, and
country-specific level thereby justifying the use of subgroup analysis, I find no strong evi-
dence of consistent covariate driven bias impacting our overall direction of association. This
consistency supports the generality of an effect across diverse social and environmental
settings and presents the possibility of using the estimates obtained to impute values for
countries with no estimates (within reason) in order to increase the size of the trade net-
work component of the analysis. This presents the two issues of 1) valid interpolation and
2) extrapolation beyond the range of the available data, when aiming to achieve wider and
ultimately global agriculture-disease risk coverage.

3.3.3 Spatial Averaging

Interpolation

There are many methods of interpolation that can be used to assign missing values for
countries with no estimates, all of which require certain assumptions to be made. Here
countries without estimates are those for which no studies were identified in the literature re-
view yielding the required data to calculate an odds ratio (i.e., no eligible studies retrieved).
In these cases, the challenge is to determine whether a valid estimate can be assigned to
it from what is known or can be learnt about the estimates derived from the sampled coun-
tries, since not having an estimate of its own is likely to reflect an unmeasured rather than
an absence of an effect. For example, I could first apply the ‘global’ pooled meta-analytic
effect size calculated using all data from sampled countries in the literature review to un-
sampled countries within the same study region (i.e., South and Southeast Asia, Africa and
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Figure 3.1: Study Characteristics Sensitivity Analysis
Sensitivity analysis of the global meta-analysis. A priori subgroups based on study characteristics to test the
sensitivity of the global meta-analysis. Results suggest that subgroups based on study characteristics do not
significantly alter the direction of the association between occupational or residential exposure to agricultural
land-use and infectious disease prevalence. Circle points show the pooled subgroup estimates and error bars
are defined as the 95% confidence interval. Note: n, number of studies included in each pooled estimate.
CI, confidence intervals.
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Figure 3.2: Socio-economics Sensitivity Analysis
Socioeconomic Sensitivity analysis of the regional meta-analysis. A priori subgroups based on open access
socioeconomic data to test the sensitivity of the global meta-analysis. Results suggest that subgroups based
on socioeconomic determinants do not significantly alter the direction of the association between occupational
or residential exposure to agricultural land-use and infectious disease prevalence. Circle points show the
pooled subgroup estimates and error bars are defined as the 95% confidence interval. Note: n, number of
studies included in each pooled estimate. CI, confidence intervals.
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Figure 3.3: Environmental Sensitivity Analysis
Environmental Sensitivity analysis of the regional meta-analysis. A priori subgroups based on open access
environmental data to test the sensitivity of the global meta-analysis. Results suggest that subgroups based
on environmental determinants do not significantly alter the direction of the association between occupational
or residential exposure to agricultural land-use and infectious disease prevalence. Circle points show the
pooled subgroup estimates and error bars are defined as the 95% confidence interval. Note: n, number of
studies included in each pooled estimate. CI, confidence intervals.
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South and Central America). This method assumes a general average effect size linking
agriculture exposure to disease risk that is interpolated from sampled to unsampled coun-
tries along with the respective uncertainty, reflecting the various potential sources of error
in estimating this value from the variation among sampled country estimates (e.g., num-
ber of studies, sample sizes or methodological differences, different disease compositions,
socio-ecological differences) [298].

Secondly, I could use a more nuanced interpolation approach to try to leverage hetero-
geneity among sampled country estimates to arrive at interpolated values closer to the
real (unobserved) value for countries with missing data. One of the simplest approaches
for this purpose is to use a “nearest neighbour” as a proxy, which for geographic studies
can literally mean using the values of neighbouring countries (e.g., longest shared border,
closest capital city) or an average from all neighbouring countries with values. Without ad-
ditional analysis, this approach invokes the assumption that points closer together will be,
on average, more similar in their characteristics than points further apart. This is a robust
assumption that is the basis of some routines in the analysis of spatial data, such as in the
field of model based geostatistics [299, 300]. It is a method often used where the analysis
of variation in estimates is not an explicit objective (e.g., where no covariates have been
hypothesised or collated).

Interpolation approaches can also identify “nearest neighbours” in covariate space rather
than geographic space. Here, covariates could be selected on the basis of a priori hypothe-
ses about their effects on the outcome of interest. For instance, for strongly age-related
diseases, it may be more appropriate to impute missing values for countries with no data
from countries with data which also have the most similar age structure irrespective of
whether they are geographic neighbours or not [301].

Extending this method, nearest neighbours can also be identified in multivariate space,
which estimates distance according to numerous covariates. This could be preferable
where fewer assumptions about the dependence of the outcome on its covariates are
made. For instance, I can hypothesise that some outcome is in some way related to socio-
economic development, but there may be limited grounds to favour the influence of one
development-related covariate over another similar one, particularly where these are inter-
correlated (e.g., GDP per capita vs HDI). In these cases, multivariate methods (e.g., hier-
archical clustering) can be used to calculate distances between countries for interpolation
[302].

Finally, statistical models can also be used directly for the estimation of missing values on
the basis of identifiable associations within the data. This is the basis of methods such as
regression imputation (and its extensions, such as multiple imputation) or machine learn-
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ing methods (e.g., random forest-based imputation). Such methods rely, however, on the
presence of meaningful associations between covariates and the outcome [303].

To assess which of the above methods may be the most appropriate here, I first visually
inspected the variation in estimates across countries and within the subgroup analyses.
The results of the sensitivity analyses did not show clear evidence of significant covariate
effects on the meta-analytic odds ratios, suggesting statistical model-based imputations or
interpolations for countries with no data would be of limited value (see Figures 3.1, 3.2,
3.3). This is based on the evaluation of the mean effect sizes and their associated variation,
where significant effects should manifest themselves as changes in the direction of effect
(i.e., moving from positive to negative), non-overlapping confidence intervals among levels
or clear trends in effect size across different levels of a factor (indicating possible interaction
effects).

Next, in order to evaluate the plausibility of using nearest neighbour interpolation (both
geographic and covariate based), I considered the differences in covariate and outcome
values between neighbouring and non-neighbouring country pairs. Using the 14 meta-
analytic estimates, I plotted neighbouring vs non-neighbouring countries to compare the
pair-wise differences in a) effect size (log odds ratios), b) geographic distance (based on
distance between capital cities) and c) SDG distance (see Figures 3.4). With this, I test
whether neighbouring countries had more similar effect sizes than non-neighbours and
find that while overall there was some evidence for this (lower median difference among
neighbours; smaller range of difference values among neighbours), the mean difference
values and overall distribution of values were similar whether neighbour or non-neighbour
(see Figures 3.4). This prevents us from categorically rejecting the validity of nearest
neighbour interpolation as an improvement over simple averaging, but also cautions against
its blind adoption.

Next, I confirmed the geographic proximity of neighbours as well as show that neighbouring
countries are also more similar in multivariate covariate (i.e. Moritisita-Horn Dissimilarity
Index)) space than non-neighbours (see Figures 3.4). Here, I used the difference in SDG
attainment scores to assess this, which was quantified using data on all available SDG indi-
cators for each country. Specifically, I applied the Morisita-Horn index to quantify pairwise
dissimilarity in country progress towards all SDG indicators. The value of the Morisita-Horn
index ranges from 0, indicating complete similarity between two countries (all SDG indica-
tors are equal), to 1, when the two countries are completely dissimilar [304]. This confirms
the basis for an ‘isolation by distance’ effect on measured (and by extension) unmeasured
social and ecological confounders and presents itself as alternative approach to valid inter-
polation.
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Figure 3.4: Boxplots of Neighbouring vs Non-Neighbouring countries
Boxplots of neighbouring vs non-neighbouring countries by their pair-wise difference in the A) log odds ratios,
B) standard errors, C) geographic distance (based on distance between capital cities) and D) SDG distance.
Diamond points indicate mean values.

82



On the basis of these preliminary investigations, I therefore implemented a hybrid approach
to interpolation that I believe to be a superior and more conservative alternative to taking a
simple average of effect sizes for interpolation. The method chosen is based on geographic
neighbour interpolation weighted by distance in covariate space, where covariates were
selected to capture the similarity of countries in their progress towards the SDGs. I con-
strained interpolation to neighbouring countries to account for the weak indication that effect
sizes among neighbours are indeed more likely to be similar than more distant countries
but more importantly to minimise the risk of inadvertently introducing additional sources of
bias related to ‘isolation by distance’ spatial effects (see Figures 3.4). I then reasoned that
neighbouring countries that also have more similar SDG performance should have more
similar agriculture disease outcomes than countries that are less similar in this respect, re-
flecting the fact that I hypothesise that both social and environmental development factors
combine to mediate all cause infectious disease risk.

Extrapolation

In this analysis, the literature review yielding meta-analytic odds ratios were a non-random
subset of all countries globally. Yet global trade with these countries is much more expan-
sive, so it was desirable to increase the number of countries included in the study as far as
possible to try to capture as many global connections as possible and gain a preliminary
estimate of the global burden of infectious disease linked to agriculture and its trade. As
discussed above, I commenced this by interpolating effect sizes from sampled countries
to non-sampled countries. However, this then raises an additional issue of extrapolation,
i.e., to what extent is interpolation to countries with no data a reasonable methodological
approach.

Extrapolation refers to the application of a statistical model beyond the range of data used
to develop it, and is a common problem to address in spatial analyses [305]. In ecolog-
ical studies, extrapolation is usually assessed by examining the range of environmental
conditions used to ‘train’ a model (e.g., at the locations in which a species is observed)
and comparing it to the range of environmental conditions in which it is applied (e.g., in a
new geographic range, or under future climates). Where there is a mismatch (e.g., novel
environments on a different continent), results must be interpreted with additional caution.
In cases where model inputs include socio-economic factors that may also be spatially
heterogeneous, a similar level of caution must be used to safeguard against spurious inter-
pretation related to extrapolation [306].

I therefore examined the degree to which various decisions regarding which countries to
include in the analysis were likely to be vulnerable to extrapolation following the interpolation
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step. To do this, I visually inspected the differences in latitude, HDI, SDG Index, proportion
of population that has access to improved sanitation and improved water, mean annual
temperature and precipitation and the proportion of the population that works in agriculture
between sampled and non-sampled countries (see Figure 3.5). Boxplots were generated
for three ‘interpolation strategies’ including: i) global (interpolate to all countries) ii) HDI-
restricted (interpolate only to countries that fall within the range of HDI values represented
by sampled countries, here 0.5 < HDI > 0.8), iii) systematic review restricted (interpolate
only to countries that fall within the geographic scope of the initial review protocol i.e., South
and Central America, South and Southeast Asia and Africa). Boxplot summaries showing
the distributions of data for the above covariates for sampled vs unsampled countries are
shown in (see Figure 3.5).

Here, the ‘global’ strategy shows considerable potential for extrapolation beyond the range
of data from sampled countries for most key covariates and therefore opted to use a global
spatial interpolation approach as a base case analysis. On the other hand, the ‘HDI-
restricted’ strategy suggests limited evidence of considerable extrapolation for most co-
variates. The ‘systematic review restricted’ strategy falls in between these two extremes.

Spatial Averaging

Based on the exploration of interpolation and extrapolation methods, I opted to use the
’global spatial interpolation’ approach which I describe below.

Using the country-specific pooled subgroup estimates from the meta-analysis (see Table
3.1), nearest-neighbour weighted spatial averaging was performed to estimate the mean
infectious disease subgroup risk and its corresponding standard error when exposed to
agricultural land use compared to those unexposed for all countries (excluding islands)
[307]. Due to no agriculture related risk estimates being generated for the "All Other Dis-
eases" category and due to no data being found in the literature review on association
between agriculture and intestinal nematodes in the African and Americas contexts for in-
testinal nematodes which include Ascaris lumbrocoides, Trichuris Trichura and Hookworm
and food-borne trematodes such as Opisthorchis viverrini, three assumptions were made.

The first assumption was the "All Other Diseases" category would have the same risk as
"All Diseases". The second assumption was that spatial averaging for the African context
could be conducted using a single odds ratio taken from a specific study from Nigeria which
shows that people who work or live in agriculture in Nigeria are 168% as likely to be infected
with Hookworm [308]. As no studies were found that estimated the risk of agricultural land
use on intestinal nematode risk in any in South America, the third assumption I made was
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that people who live or work in agriculture in Brazil would be at a similar risk of being infected
with intestinal nematodes as they would be at a risk of parasitic and vector borne diseases
at the Americas regional level. Hence, I used the regional Americas parasitic and vector
borne diseases pooled risk estimate to spatially average (see Table 3.1) which is similar
to global risk of working in agriculture and being infected with an intestinal nematodes.

Hence, using the risk estimates from Table 3.1, I aimed to compute the estimated odds
ratio for an unsampled country, denoted by Z0, given a set of neighbouring geographical
neighbours that share any land border sampled values Zi, sampled for countries Xi. Here
log refers to the natural logarithm. The odds ratio interpolating relationship is:

/0 = exp(
=∑
8=0

W i × log(/ (- i))0));
=∑
8=1

W i = 1 (3.1)

where W i represents the weights assigned to each of the respective i neighbouring values,
and the sum of the weights is one [307].

To calculate the confidence intervals for the odds ratio of the unsampled country Z0, I first
calculated the confidence interval on the log odds scale by interpolation using the given
standard errors for the neighbouring countries Zi denoted as SE logZi:

(� log Zi =

√√
(
=∑
8=1

W i2 × (�2 log(/ i)) (3.2)

�� log Z0 = log Z0 ± 1.96 × (� log Z0 (3.3)

��Z0 = exp(log Z0 ± 1.96 × (� log Z0) (3.4)

Considering the majority of odds ratios found through the systematic review were consid-
ered relatively low, I assumed that odds ratios were equivalent to risk ratios [309].

Country weights were calculated based on the disease burden and sustainability footprint
of each country relative to all other countries. Here I extracted data on 41 health-related
SDG indicators for the year 2015 for all countries [310]. Using all extracted SDG indicators,
pairwise distance values were calculated between every pair of countries given their values
for each indicator, indicating their overall similarity of progress towards all SDG goals using
the Morisita-Horn similarity index. The value of the Morisita-Horn similarity index ranges
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Table 3.1: Odds ratios used for spatial averaging
Study Context Category n Odds Ratio Standard Error
Argentina All Diseases 2 0.61 1.34
Bolivia All Diseases 2 2.04 0.23
Brazil All Diseases 18 2.10 0.22
Colombia All Diseases 2 4.74 0.77
Ghana All Diseases 2 4.05 0.24
Lao PDR All Diseases 2 1.95 0.87
Malaysia All Diseases 10 1.95 0.22
Nigeria All Diseases 7 2.96 0.44
Peru All Diseases 7 2.13 0.44
Philippines All Diseases 2 1.70 0.19
Tanzania All Diseases 2 3.44 1.06
Thailand All Diseases 11 1.58 0.18
Venezuela All Diseases 2 3.97 0.72
Vietnam All Diseases 8 1.86 0.18
Brazil Diarrheal 7 1.65 0.33
Malaysia Diarrheal 4 1.80 0.43
Nigeria Diarrheal 2 1.41 1.15
Peru Diarrheal 2 2.10 0.56
Philippines Diarrheal 2 1.70 0.19
Thailand Diarrheal 3 2.20 0.25
Vietnam Diarrheal 4 1.86 0.34
Thailand Nematodes 7 1.58 0.18
Vietnam Nematodes 3 1.55 0.38
Argentina Parasitic & Vector Borne 2 0.61 1.34
Brazil Parasitic & Vector Borne 17 2.07 0.23
Lao PDR Parasitic & Vector Borne 2 1.95 0.87
Malaysia Parasitic & Vector Borne 10 1.95 0.22
Nigeria Parasitic & Vector Borne 6 3.12 0.51
Peru Parasitic & Vector Borne 6 2.16 0.56
Philippines Parasitic & Vector Borne 2 1.70 0.19
Thailand Parasitic & Vector Borne 10 1.69 0.20
Vietnam Parasitic & Vector Borne 7 1.78 0.20
Argentina All Other Diseases 2 0.61 1.34
Bolivia All Other Diseases 2 2.04 0.23
Brazil All Other Diseases 18 2.10 0.22
Colombia All Other Diseases 2 4.74 0.77
Ghana All Other Diseases 2 4.05 0.24
Lao PDR All Other Diseases 2 1.95 0.87
Malaysia All Other Diseases 10 1.95 0.22
Nigeria All Other Diseases 7 2.96 0.44
Peru All Other Diseases 7 2.13 0.44
Philippines All Other Diseases 2 1.70 0.19
Tanzania All Other Diseases 2 3.44 1.06
Thailand All Other Diseases 11 1.58 0.18
Venezuela All Other Diseases 2 3.97 0.72
Vietnam All Other Diseases 8 1.86 0.18
Americas Parasitic & Vector Borne 27 1.99 0.21
Nigeria Hookworm 1 2.67 0.04
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from 0, indicating no similarity between two countries, to 1, when the two countries are the
same (all SDG indicators are equal) [304].

To assess the sensitivity of weighting indicators, I also used the income adjusted human
development index as an alternative indicator. I found a 99% correlation between the SDG
index and the human development index (iHDI) and therefore opted to use the SDG index
due to its holistic amalgation of indicators (see Figure 3.6).

3.3.4 Impact Fractions and Population Attributable Fractions

Using the weighted risk ratios that were calculated from spatial averaging, I calculated
country-specific impact fractions (IF). Impact fractions describe the percentage of the risk
that can be attributed to hazardous exposures or risky behaviours, multiple levels of expo-
sure, or to incomplete elimination of exposure [75, 269, 311]. To calculate country-specific
impact fractions, the following formula was implemented:

�� =

∑
%i × ''i − 1∑

''i
(3.5)

Where Pi represents the proportion of population that are exposed to agriculture. In this
instance, I used occupational data from theWorld Bank that shows the proportion of people
that work in agriculture out of the entire labour force population where the labour force is
defined as the sum of person in employment plus persons in unemployment [203]. In this
analysis, I could not account for informal employment due to lack of data. RRi denotes
the relative risk of exposure compared to the counter factual risk which were obtained from
the process of meta-analysis and spatial interpolation. Specifying normal distributions us-
ing the country-specific weighted interpolated means and standard deviations, I randomly
sampled 1000 times and recalculated the impact factor for each sample for each country.
The average impact factor alongside the upper and lower confidence interval was then cal-
culated for each country and could then be used to calculate the population attributable
fraction.

The population attributable fraction (PAF) of a risk factor is the proportional reduction in
population death or disease that would occur if exposure to this factor was removed or
reduced to an achievable, alternative (or counterfactual) exposure distribution. That is, I
aimed to calculate the attributable fraction, PAF, for each country (i) [75, 269].

%�� i = �� i × )>C0;�DA34=i (3.6)
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Figure 3.6: Correlation between the SDG Index and the iHDI.
Scatter plot between the SDG index and the income adjusted human development index thereby suggesting
the use of either of these measures in the spatial interpolation of risk ratio’s would result in very little change
to the spatially interpolated risk ratio map.
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where IF represents the mean country level impact fraction and total burden denotes the
total country level burden lost due to infectious disease that are linked to agriculture through
a biologically plausible mechanism. Here, a biologically plausible mechanism is defined as
a hypothesised causal pathway by which agriculture can increase infectious disease risk
which has been highlighted in previous research (see Appendix A.4). I calculated PAFs for
both deaths and DALYs by multiplying the calculated impact fractions by the mortality and
burdens of infectious disease linked to agricultural land use using World Health Orgnisa-
tion data that is already categorised into All Diseases, Diarrheal Diseases, Parasitic and
Vector-Borne Diseases and Other Diseases [291]. I only included specific diseases and
disease categories that had a biological plausible link on the basis of relevant literature
(see Appendix A.4).

3.3.5 Input Output Analysis

To calculate the burden of disease associated with the international trade of agriculture and
identify the top importers of disease implicated agricultural commodities, I linked country
level agriculture associated infectious disease burdens to environmentally extended input
output (EEIO) analysis.

Input output tables provide a database of global trade flows, alongside production and
consumption recipes involved in the supply and distribution of each commodity or sector.
Hence, input output analysis is a form of macroeconomic analysis based on the interde-
pendencies between different economic sectors or industries. It is a well-known and widely
used method amongst macro-economists for estimating the impacts of positive or nega-
tive economic shocks and analysing the ripple effects of trade or implicated commodities
throughout an economy [312].

EEIO analysis, an extension to input output analysis, provides a simple and robust method
for evaluating the linkages between economic consumption activities and its downstream
environmental impacts, including the harvest and degradation of natural resources [313].
EEIO is commonly used by macroeconomists, industrial ecologists, and many other re-
searchers within the sustainability community to quantify the environmental impact of pro-
ducing and distributing a specific commodity [121, 314, 315]. However, to date, application
of EEIO to human health has been limited [138, 315]. In one example, Chaves et al (2020)
use input output analysis to quantify the proportion of malaria risk held in deforestation
hotspots that is driven due to international trade [138]. Using a similar methodology, I adapt
EEIO to quantify the relationships between international agricultural consumption activities
and how they link to agricultural production associated infectious disease impacts.
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To do this, I use the Eora global input output table, which documents the domestic and
international monetary transactions between 15,909 industry sectors across 187 countries
[121, 122, 316]. By combining the Eora database with input output analysis and structural
path analysis, I am able to identify supply chains and production or consumption “recipes”.
For example, “A typical $10,000 automobile purchased in the US requires $1200 worth of
Japanese steel parts, the production of which in turn requires $600 worth of Chinese rolled
steel, the production of which in turn requires $200 worth of Australian iron ore”. In essence,
I am able to link countries who import commodities (e.g. $10,000 automobile purchased in
the US) to a supplier (e.g. Australian Iron Ore) [317], where the extraction of Australian Iron
Ore at its source may then be linked to an environmental impact (e.g. carbon emissions,
biodiversity impacts, infectious disease risks).

To conduct such an EEIO analysis on infectious disease impacts, I connected an infec-
tious disease “environmental satellite account”, which contains estimates of agriculture-
associated infectious disease burdens (and relative standard deviations) from a robust
meta-analysis to all agricultural sectors in the input output table. In cases where a country’s
input output table describes multiple agricultural goods sectors, the burden was allocated
amongst them based on the sectors’ proportional contribution to total agricultural output in
the country. Therefore, to construct the agriculture-associated infectious disease satellite
account for the EEIO analysis, all sectors are given 0 disease impact, except the agriculture
sector(s) which are given a value of 1.

After making the link between infectious disease risk and the agricultural sectors, I then
determined infectious disease ‘footprints’ using the standard Leontief input output calculus
[312]. Specifically, the infectious disease footprint induced through agricultural consump-
tion of each country s, comprising the sum of the deaths or DALYs due to infectious disease
associated with agricultural land use in each country r exerted directly by the agricultural
industry (consisting of agriculture) due to consumption in country s of the good j, inclusive
of the upstream and indirect impacts involved in provisioning j, can be expressed as:

� j
(c)s =

∑
8,A

@i
r
∑
C

! ij
rt × Hjts (3.7)

where q is an infectious disease coefficient, L is the Leontief inverse and y is the final
demand [122].

The Leontief method has been well explained previously and many publications describe
the method in addition to how it can be applied to different case studies [121, 122, 138, 313,
317]. Within this analysis, I collaborated with industrial ecologists at the Norwegian Univer-
sity of Science and Technology who have developed existing and currently best-practice
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models for EEIO and which can be adapted for other environmental or health impacts [122,
317]. Through such an analysis, I then estimate what proportion of the burden of infectious
disease associated with agriculture is related to agricultural exports and thereby assess
which countries are the largest consumers of agricultural commodities that have an associ-
ated infectious disease impact. I refer to this as disease implicated commodities, following
the terminology used when this method has been applied to other impact endpoints [121].

3.3.6 Interpolation and Extrapolation Sensitivity Analysis

Within this analysis, I consider the spatial averaging, interpolation and extrapolation of
agriculture-disease risk a rate determining step to quantifying the burden of infectious dis-
ease associated with agriculture. Hence, I finally performed a sensitivity analysis to assess
the impact of various interpolation (and by extension extrapolation) strategies on the burden
of infectious disease associated with agriculture. Here, interpolation strategies included:

1) A “global average risk” strategy where no spatial interpolation was conducted, and global
risk was assumed to be equivalent to country-specific risk. Hence, all countries (excluding
island nations) were included within this strategy.

2) A “global spatial interpolation” which used a nearest neighbour weighted spatial inter-
polation approach where neighbouring countries that also have more similar SDG perfor-
mance should have more similar agriculture-disease outcomes than countries that are less
similar in this respect. Hence, I interpolate country-specific meta-analytic odds ratios and
their respective standard errors to all other countries that share a land border including all
countries in Africa, the Americas, Asia, Europe, and the Middle East.

3) A “HDI limited interpolation” strategy which restricts spatial interpolation using the nearest
neighbour weighted interpolation approach to only those countries that have a HDI above
0.51 or below 0.81, representing the range of values in sampled countries from the literature
review.

4) A ‘systematic review limited interpolation’ strategy, that restricts interpolation using the
nearest neighbour weighted interpolation approach to only those countries within the geo-
graphic scope of the original literature review, including Africa, South and Central America
and South and Southeast Asia.

92



3.3.7 Assumptions

Here I provide an explicit description of assumptions to ensure transparency in our method-
ological approach. As stated earlier, I assume that the associations between occupational
or residential exposure to agricultural land use or land use change and infectious disease
risks are likely to be inconsistent and idiosyncratic, which might otherwise bias the results.
I also assume that meta-analytic odds ratios are considered equivalent to risk ratios [309]. I
further assume that countries who share a land border and are on a similar track to achieve
the SDG indicators will have a similar agriculture-infectious disease risk compared to coun-
tries who do not share a land border or who are not similar in achieving the SDG indicators.
Finally, I assume that international imports of agricultural commodities are linked to local
agricultural land use associated infectious disease risks and burdens.
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3.4 Results

3.4.1 Narrative Synthesis

From the global systematic literature review, 83 out of 43,095 potentially relevant publica-
tions met the eligibility criteria for full text analysis and data extraction. Although the initial
search strategy specified 29 countries, included studies only spanned 18 countries and
were assessed as being of varying quality. Of the 18 countries, only 14 countries had more
than two mutually exclusive effect estimates that could be used to generate pooled effect
sizes. Of the 83 studies, 34, 36 and 13 studies were located in Southeast Asia, South
America and Africa, respectively (see Figure 3.7, 3.8, 3.9). A total of 148 effect estimates
were extracted consisting of 31 differing infectious diseases and 12 different exposures.

3.4.2 Infectious Disease Risk due to Agricultural Land Use Exposure

Globally, people who live or work in agriculture are at an 107% increased risk of being
infected with any pathogen compared to those unexposed (OR 2.07, CI 1.72 – 2.38, p <
0.001, I2 = 90.47%, (see Figure 3.10). Consistent associations were also found at the
regional level, where being exposed to agricultural land use increased the risk of being
infected with any pathogen compared to those unexposed in Southeast Asia (OR 1.58, CI
1.10 – 2.24), Western Pacific (OR 1.88, CI 1.46 – 2.41), South America (OR 2.13 , CI 1.54
– 2.95) and Africa (OR 2.68, CI 1.50 – 4.79) (see Figure 3.10).

Similar results were observed when stratifying the global data by disease class, with sig-
nificant effects for diarrheal disease (OR 1.63, CI 1.32 – 2.17), parasitic and vector borne
diseases (OR 1.98, CI 1.60 – 2.44) and intestinal nematodes (OR 1.98, CI 1.17 – 3.35) over-
all but with some variation among regions (see Figure 3.10). Further regional stratification
by disease type revealed strong positive associations between exposure to agricultural land
use and parasitic and vector borne diseases in South America (OR 1.99, CI 1.32 – 2.98),
Africa (OR 2.43, CI 1.13 – 5.25), Southeast Asia (OR 1.69, CI 1.15 – 2.48) and the Western
Pacific (OR 1.85, CI 1.43 – 2.40); intestinal nematodes in the Western Pacific (OR 1.78,
CI 1.14 – 2.79); and diarrheal disease in Southeast Asia (OR 2.20, CI 1.34 – 3.60) and
the Western Pacific (OR 1.68, CI 1.15 – 2.44). Positive but marginally non-significant as-
sociations where also found for intestinal nematodes in Southeast Asia (OR 1.53, CI 0.92
– 2.55) and diarrheal disease in Africa (OR 1.39, CI 0.54 – 3.54) and South America (OR
1.55, CI 0.88 – 2.76). No pooled risk estimates were calculated for exposure to agricultural
land use and the risk of being infected with intestinal nematodes in Africa or South America
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Figure 3.7: Southeast Asia PRISMA Diagram
A flow chart of the study selection process
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Figure 3.8: South America PRISMA diagram
A flow chart of the study selection process
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Figure 3.9: Africa PRISMA diagram
A flow chart of the study selection process
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Figure 3.10: Global and regional meta-analysis
The global meta-analytic estimate consists of mutually exclusive risk estimates to determine the overall global
association between occupational or residential exposure to agricultural land use and infectious disease
prevalence. Regional subgroups were created a priori based on World Health Organisation regions that had
two or more mutually exclusive estimates. Square points show the pooled subgroup estimates and error bars
are defined as the 95% confidence interval.
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Figure 3.11: Country-based subgroup analysis
Subgroups were created a priori based on countries that had two or more mutually exclusive estimates.
Square points show the pooled subgroup estimates and error bars are defined as the 95% confidence interval
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Figure 3.12: Agricultural exposure-based subgroup analysis
Subgroups were created a priori based on exposures that had two or more mutually exclusive estimates.
Agriculture (non-specific) is defined as a category where a person indicates they work in agriculture regardless
of the type of agriculture. Square points show the pooled subgroup estimates and error bars are defined as
the 95% confidence interval

100



Figure 3.13: Livestock exposure-based subgroup analysis
Livestock farming is defined as a category where a person indicates they are exposed to livestock generally
regardless of the specific type of livestock (e.g., chickens). Porcine, Bovine or Poultry exposure is defined as
a person being exposed to each of these respective animal types. Square points show the pooled subgroup
estimates and error bars are defined as the 95% confidence interval
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Figure 3.14: Disease-based subgroup analysis
Disease-based subgroup analysis. Subgroups were created a priori based on diseases that had two or more
mutually exclusive estimates. Orientia tsutsugamushi is also known as Scrub typhus. Rickettsia typhi is
otherwise known as murine typhus. Opisthorchis viverrini is also known as Opisthorchiasis. Square points
show the pooled subgroup estimates and error bars are defined as the 95% confidence interval
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due to a lack of published peer reviewed studies that met the eligibility criteria.

When conducting a stratified country-specific subgroupmeta-analysis, national level pooled
estimates for 13 countries similarly showed positive associations between agricultural land
use exposure and differing infectious disease risks (see Figure 3.11). Stronger positive as-
sociations were generally found for equatorial countries, while five country level estimates
had confidence intervals that cross the line of no association. A single country subgroup
(Argentina) indicated a negative albeit non-significant association (OR 0.61, CI 0.04 – 8.31).
There was again some variation with disease class at country level (see Figure 3.11).

Non-specific agricultural exposure (OR 2.36, CI 1.90 – 2.93), oil palm plantation (OR 3.25,
CI 2.29 – 4.61), rubber plantation (OR 1.88, CI 1.24 – 2.86), bovine farming (OR 2.09, CI
1.15 – 3.81) and hunting (OR 2.71, CI 1.58 – 4.64) were all associated with elevated all
infectious disease risks overall, while a marginal but non-significant effect was identified for
rice (OR 1.37, CI 0.88 – 2.13) (see Figure 3.12).

Subgroup Analysis

Consistent positive associations were again identified when stratifying by disease class
within each agricultural land use type (see Figure 3.12). Specifically, exposure to gen-
eral agricultural land use consistently increased the risk of being infected with parasitic and
vector-borne diseases (OR 2.25, CI 1.77 – 2.86), intestinal nematodes (OR 2.29, CI 1.39
– 3.78) and diarrheal diseases (OR 1.65, CI 1.22 – 2.24). People exposed to hunting as a
land use were at an increased risk of parasitic and vector-borne diseases (OR 2.71, CI 1.58
– 4.64). The effect was higher in populations working or living in or near oil palm and being
infected with vector-borne zoonotic diseases (leptospirosis and Plasmodium falciparum)
compared to those unexposed (OR 3.25, CI 2.29 – 4.61) [270]. Weak positive associations
were found between exposure to rice paddy and parasitic and vector borne diseases (OR
1.37, CI 0.88 – 2.13) and diarrheal diseases (OR 1.15, CI 0.65 – 2.02), where the confi-
dence intervals for both subgroups crossed the line of no association. Exposure to rubber
plantations consistently increased the risk of parasitic and vector-borne diseases (OR 1.88,
CI 1.24 – 2.86) in addition to an increased risk for diarrheal diseases (OR 2.27, CI 1.83 –
2.83). Consistent marginal positive associations for exposure to rice paddy and diarrheal
disease (OR 1.15, CI 0.65 – 2.02), parasitic and vector-borne diseases (OR 1.37, CI 0.88
– 2.13). Hunting was also strongly positively associated with parasitic and vector-borne
diseases (OR 2.71, CI 1.58 – 4.64).

Considerable variability in effects was found for differing livestock exposure and disease
classes (see Figure 2.7). Significant positive associations were only found for bovine
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exposure and all diseases (OR 2.09, CI 1.15 – 3.81), diarrheal diseases (OR 3.27, CI 1.93
– 5.54) or parasitic and vector-borne diseases (OR 2.40, CI 1.22 – 4.72). Weak positive
associations were found between general livestock farming and all diseases (OR 1.47, CI
0.82 – 2.63), diarrheal diseases (OR 1.12, CI 0.30 – 4.20) and parasitic and vector-borne
diseases (OR 1.32, CI 0.62 – 2.81), although confidence intervals crossed the line of no
association. A weak negative association was also found for poultry exposure and diarrheal
disease (OR 0.68, CI 0.27 – 1.72). However, no association was found for exposures such
as ovine, porcine and poultry exposure with differing disease categories.

Disease based subgroups showed consistent significant associations for Brucellosis (OR
3.78, CI 1.42 – 10.05), Hantavirus (OR 3.18, CI 1.08 – 9.34), Hookworm (OR 2.34, CI
1.70 – 3.20), Leishmaniasis (OR 3.33, CI 1.18 – 9.43), Malaria (OR 1.54, CI 1.00 – 2.38),
Manzonella ozzardi (OR 4.59, CI 2.57 – 8.18), Onchocerciasis (OR 5.59, CI 4.0.4 – 7.74),
Scrub typhus (OR 2.37, CI 1.41 – 3.96), Paracoccidiodomycosis (OR 2.54, CI 1.02 – 6.30),
Schistosomiasis (OR 1.96, CI 1.17 – 3.30), Spotted fever group diseases (OR 3.91, CI 2.61
– 5.85) and Trichuris trichuria (OR 1.40, CI 1.27 – 1.53) (see Figure 2.8).

Within the geographic subgroup analysis that assessed global, regional and national asso-
ciations, publication bias was found for nematode subgroups in which positive associations
between agricultural exposure and nematode infection were under-reported at the global
level and at the western pacific regional level (see Table A.4). There was no evidence of
publication bias or unmeasured confounding for any other exposure-based subgroups (see
Tables A.5, A.6 and A.7). Full details of sample characteristics for each study including
analysis groups are presented in Table A.8.

Sensitivity Analysis

To evaluate the influence of between-study confounding, I examined the impact of a range
of additional study and sample characteristics on effect size and direction, including study
type and methodology, socio-demographic characteristics (gender, whether children were
included in the sample population, and rural vs. urban), study quality assessments and
study location. I further extended this analysis to assess the impact of environmental and
socio-economic confounders on the size and direction of effects.

Within this study characteristics sensitivity analysis, associations consistent with the overall
positive effect were observed irrespective of study and sample characteristics (see Figure
3.1), strengthening confidence that the pooled result is robust to a range of measured and,
by extension, unmeasured confounders. When conducting the same analysis using en-
vironmental covariates, there was some evidence of degraded effect sizes in sites with
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intermediate mean temperatures, and study locations situated below the Tropic of Capri-
corn or in Polar regions (see Figure 3.3). Similarly, in a socio-economic sensitivity analysis,
there was evidence of degraded effect sizes in places with the highest human development
index scores (> 0.81 or classified as ‘high’ by UN) (see Figure 3.2).

However, these results must be interpreted in light of the effect size trends across the other
levels of each factor tested as well as the reduced sample sizes at this more granular level
of analysis. Overall, I conclude weak potential confounding effects of very high HDI and in
high/low latitude settings. Hence, the results of this analysis warrant further investigation
of how spatially interpolating from sampled countries to unsampled countries impacts the
estimated burden of infectious disease associated with agriculture.

3.4.3 Global Burden of Disease Linked to Agricultural Land Use

Overall, 10.33% (CI 5.94% - 14.71%) of global deaths and 13.12% (CI 7.86% - 18.37%)
of global disability adjusted life years (DALYs) lost due to communicable diseases in the
reference year (2015) were associated with exposure to agricultural land use in the refer-
ence year (2015) (see Tables 3.2 and 3.3). This is equivalent to 886,355 (CI 510,217 -
1,262,585) deaths and 63,627,960 (CI 38,146,978 – 89,112,345) DALYs.

Agriculture was further associated with 4.49% (CI 1.72% - 7.34%), 0.04% (CI 0.03% -
0.06%), 3.02% (CI 2.15% - 3.89%) and 1.11% (CI 0.61% - 1.61%) of communicable disease
deaths in 2015 due to diarrheal diseases, intestinal nematodes, parasitic and vector-borne
diseases and other types of infectious diseases, respectively (see Tables 3.2 and 3.3).
When accounting for morbidity, agriculture was associated with 4.73% (CI 1.60% - 7.96%),
0.22% (CI 0.12% - 0.31%), 4.56% (CI 3.28% - 5.84%) and 1.52% (CI 0.85% - 2.18%) of all
communicable disease DALYs lost in 2015 due to diarrheal diseases, intestinal nematodes,
parasitic and vector-borne diseases and other types of infectious diseases, respectively.
Detailed lists of the country-specific deaths and DALYs linked to agricultural land use are
presented in Tables A.9 and A.10.

3.4.4 Global Burden of Disease Linked to International Agricultural
Trade

Globally, 3.52% (CI 3.48% - 3.57%) of deaths and 4.54% (CI 4.53% - 4.55%) of DALYs
lost due to communicable disease were linked to international agricultural trade in 2015,
equivalent to 302,367 (CI 298,546 – 306,189) deaths and 22,037,894 (CI 22,005,135 –
22,070,652) DALYs. This equates to 34.11% (CI 24.25% - 58.52%) and 34.64% (CI 24.77%
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- 57.6%) of all agricultural land use related infectious disease deaths and DALYs being
linked to international trade, respectively, with the remainder linked to domestic trade and
consumption (see Tables 3.2 and 3.3).

When stratifying by disease categories, the international trade of agriculture was linked to
1.38% (CI 1.34% - 1.41%), 0.01% (CI 0.01% - 0.02%), 1.03% (CI 1.01% - 1.05%) and
0.37% (CI 0.35% - 0.38%) of the global communicable disease deaths in 2015 due to
diarrheal diseases, intestinal nematodes, parasitic and vector-borne diseases and other
types of infectious diseases, respectively (see Tables 3.4 and 3.5). When accounting for
morbidity, international agricultural trade was linked to 1.51% (CI 1.51% - 1.52%), 0.07%
(CI 0.07% - 0.07%), 1.55% (CI 1.55% - 1.55%) and 0.52% (CI 0.52% - 0.52%) of the global
communicable disease DALYs lost in 2015 due to diarrheal diseases, intestinal nematodes,
parasitic and vector-borne diseases and other types of infectious diseases, respectively.

Therefore, the international trade of agricultural commodities contributed 30.6%, 32.6%,
34.1% and 33.1% of all agricultural land use related deaths and 32.0%, 32.4%, 33.9%
and 34.5% of all agricultural land use related DALYs due to diarrheal diseases, intestinal
nematodes, parasitic and vector-borne and other infectious disease deaths, respectively.
The remainder is linked to domestic trade and consumption. Detailed lists of the country-
specific deaths and DALYs linked to agricultural trade are presented in Tables A.11 and
A.12.
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Table 3.2: Global deaths linked to agricultural land use
Global Deaths linked to Agricultural Land Use

Mean % CI Low % CI High %
All Disease 886,355 10.325 510,217 5.943 1,262,585 14.707
All Other Diseases 95,430 1.112 52,586 0.613 138,343 1.611
Diarrheal Disease 385,256 4.488 147,758 1.721 630,193 7.341
Intestinal Nematodes 3,475 0.040 2,234 0.026 4,718 0.055
Parasitic & Vector Borne Diseases 259,369 3.021 184,589 2.150 334,165 3.892

Table 3.3: Global DALYs linked to agricultural land use
Global DALYs linked to Agricultural Land Use

Mean % CI Low % CI High %
All Disease 63,627,960 13.116 38,146,978 7.864 89,112,345 18.370
All Other Diseases 7,352,677 1.516 4,130,841 0.852 10,576,121 2.180
Diarrheal Disease 22,958,902 4.733 7,780,461 1.604 38,628,316 7.963
Intestinal Nematodes 1,055,227 0.218 589,832 0.122 1,520,736 0.313
Parasitic & Vector Borne Diseases 22,140,126 4.564 15,949,255 3.288 28,331,754 5.840

Table 3.4: Global deaths linked to international agricultural trade
Global Deaths linked to International Agricultural Trade
Mean % CI Low % CI High %

All Disease 302,367 3.522 298,546 3.478 306,189 3.567
All Other Diseases 31,453 0.366 30,049 0.350 32,857 0.383
Diarrheal Disease 118,056 1.375 114,848 1.338 121,264 1.413
Intestinal Nematodes 1,135 0.013 998 0.012 1,272 0.015
Parasitic & Vector Borne Diseases 88,309 1.029 86,655 1.009 89,964 1.048

Table 3.5: Global DALYs linked to international agricultural trade
Global DALYs linked to International Agricultural Trade

Mean % CI Low % CI High %
All Disease 22,037,894 4.543 22,005,135 4.536 22,070,652 4.550
All Other Diseases 2,528,168 0.521 2,516,042 0.519 2,540,294 0.524
Diarrheal Disease 7,338,390 1.513 7,312,648 1.507 7,364,132 1.518
Intestinal Nematodes 339,334 0.070 336,610 0.069 342,059 0.071
Parasitic & Vector Borne Diseases 7,511,490 1.548 7,496,583 1.545 7,526,397 1.551
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3.4.5 Infectious Disease Footprints

European countries drive approximately 42.52% (CI 33.17% - 59.20%) of the burden of
infectious disease through their agricultural imports (Figure 2). The Western Pacific region
drives approximately 18.59% (CI 14.51% - 25.89%) and the Americas drive an estimated
14.47% (CI 11.29% - 20.14%). 8.30% (CI 6.48% - 11.57%) is also driven by the South-
east Asia region, 4.74% (CI 3.70% - 6.60%) is driven by the African region and 3.23% (CI
2.52% - 4.50%) is driven by the Eastern Mediterranean region (Figure 2). On the other
hand, 84.33% (CI 82.60% - 84.32%) of the burden of communicable disease linked to agri-
cultural trade is being suffered in Africa, with Europe (37.94%, CI 29.60% - 52.82%), the
Americas (11.61%, CI 9.05% - 16.15%) and the Western Pacific (15.02%, CI 11.72% -
20.91%) driving an aggregated 65% of this burden in Africa (see Figures 3.15).

Country-specific regional footprints (i.e., the infectious disease impacts in producing coun-
tries that can be traced back to consuming countries through trade networks), show that
the USA, five European countries (Germany, France, UK, Spain, and Italy) and Asia’s three
largest superpowers (Japan, China, and India) are the largest importers of disease impli-
cated commodities (see Figures 3.16). Together they drive 57.51% of the total infectious
disease burden induced through agricultural trade. These 9 countries combined infectious
disease footprints were mostly located in sub-Saharan Africa (see Figure 3.17).

Here, the USA has the largest footprint (DALYs), totalling approximately 2.1 million DALYs
(CI 1.78 million – 2.36 million) which is equivalent to 9.38% (CI 8.04% - 10.71%) of global
DALYs lost due to agricultural trade. Approximately 41.70% of the USA’s footprint occurs
in only 5 countries: Ethiopia (10.80%), Chad (9.40%), Cote d’Ivoire (7.70%), India (7.50%)
and Liberia (6.30%).

Japan (9.08%), China (7.21%) and India (6.22%) drive a combined 4.96 million DALYs
through the importation of disease implicated commodities, equivalent to a total 22.51% of
global DALYs lost due to agricultural trade. The top countries that suffered this absolute bur-
den driven by the Asian powerhouses included Ethiopia (28.29%), Nigeria (13.98%), Tan-
zania (6.37%), Pakistan (3.93%), Cameroon (3.14%), India (2.59%), Afghanistan (2.21%),
Cote d’Ivoire (2.10%), Mozambique (1.96%) and Burkina Faso (1.17%). India was found
to be both a large driver and sufferer of global agricultural trade related infectious disease.

The five European countries (Germany (8.00%), France (6.11%), UK (4.63%), Italy (3.88%)
and Spain (3.00%)) drove approximately 5.65 million DALYs, equivalent to 25.52% of the
disease burden through importing implicated commodities. These infectious disease foot-
prints were all located in sub-Saharan Africa and included Cote d’Ivoire (11.18%), Nigeria
(9.93%), Ethiopia (6.74%), Chad (4.13%), Tanzania (3.18%), Burkina Faso (3.21%), Ghana
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Figure 3.15: Regional importers and burdens
The absolute deaths (left pane) and DALYs (right pane) of all infectious diseases associated with international
agricultural trade that is driven at a regional level. Regions are as defined by the World Health Organisation
Regions.
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Figure 3.16: Top 9 importers and regional impacts
The absolute deaths (left pane) and DALYs (right pane) of all infectious diseases associated with international
agricultural trade that is driven by the top 9 importers of disease implicated commodities. Regions are as
defined by the World Health Organisation Regions.
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(2.95%), Mali (1.83%), DR Congo (1.29%), Cameroon (1.00%), Kenya (0.91%) and Guinea
(0.86%).

Further details on the regional and country-specific footprint of diarrheal, intestinal nema-
todes, parasitic and vector-borne and other infectious diseases can be found in Figures
3.18 and 3.19. Further details on the flow of diarrheal, intestinal nematodes, parasitic and
vector-borne and other infectious diseases implicated commodities can be found in Figure
3.20.

3.4.6 Interpolation & Extrapolation Sensitivity Analysis

To ascertain how sensitive the burden of infectious disease associated with agriculture is to
spatial interpolation and by extension extrapolation, I performed a sensitivity analysis using
different interpolation strategies.

Here, I find that although mean effect sizes are non-sensitive, uncertainty in the burden of
infectious disease associated with agriculture is somewhat sensitive to a global average risk
approach (see Figure 3.21). Specifically, uncertainty was greater when estimated through
spatial interpolation approaches. However, confidence intervals overlapped across all out-
comes suggesting that our overall analysis is stable and insensitive to large scale method-
ological changes. Therefore, our results at the global level can be considered relatively
insensitive to the interpolation assumptions.

In sensitivity analyses on the interpolation strategy (i.e., global average risk, global spa-
tial interpolation, HDI focussed and systematic review focussed) on the burden of disease
associated with agriculture. Here, I find consistency between global extrapolation and a lim-
ited systematic review-based extrapolation thereby suggesting that extrapolations can be
made to Africa, South and Central America, South and Southeast Asia (see Figure 3.21).
However, when limiting extrapolations to countries that have a HDI score between 0.51 and
0.81, I find that the burden of disease associated with the production of agricultural com-
modities is reduced for all diseases and especially for parasitic and vector-borne diseases.
This is likely due to the exclusion of countries with a low HDI score (< 0.51) that may typi-
cally have a larger burden of infectious disease and a higher proportion of the population
working in agriculture.
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Figure 3.17: Flow map of the top trade routes of disease implicated commodities
Note that the green lines directly link the agriculture producing countries, where agriculture associated disease
burdens are incurred (magenta circles), and the top nine final consumer countries that drive these burdens
through their import (blue circles). India is both an importer and sufferer. Supply-chain links in intermediate
countries are accounted for but not explicitly visualized.
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Figure 3.18: Regional importers and mortality
The absolute deaths (left pane) and DALYs (right pane) of diarrheal, intestinal nematodes, parasitic and
vector-borne and other infectious diseases associated with international agricultural trade that is driven at a
regional level. Regions are as defined by the World Health Organisation Regions.
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Figure 3.19: Top 9 importers and regional impacts
The absolute deaths (left pane) and DALYs (right pane) of diarrheal, intestinal nematodes, parasitic and
vector-borne and other infectious diseases associated with international agricultural trade that is driven by the
top 9 importers of disease implicated commodities. Regions are as defined by the World Health Organisation
Regions.
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Figure 3.20: Flow of the top trade routes of disease implicated commodities
The flow of absolute deaths (left pane) and DALYs (right pane) of diarrheal, intestinal nematodes, parasitic
and vector-borne and other infectious diseases associated with international agricultural trade that is driven
by the top 9 importers of disease implicated commodities.
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Figure 3.21: Interpolation & Extrapolation Sensitivity Analysis
Sensitivity analysis showing the impact of three different interpolation strategies.
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3.5 Discussion

3.5.1 Overview

Globally, people who work or live in agriculture are more than twice (107%) as likely to be in-
fected with a pathogen than those unexposed. This effect is robust across continents, coun-
tries, exposure categories and disease types. Due to this elevated risk of infection among
people exposed to agriculture, around 10.33% of deaths and 13.12% of global DALYs lost
due to communicable diseases are directly associated with agricultural exposure. This bur-
den is roughly twice that of the global burden of malaria [291]. Of this, around one third was
linked to international agricultural trade, which I traced back through input-output analyses
to wealthy high-income consumer countries as well as the biggest economies in Asia. This
international trade impact on human health is itself equivalent to more than half (58%) the
global malaria burden [291].

This analysis quantifies a relatively small yet likely significant fraction of the full infectious
disease burden that agricultural land use (~13.12%) and trade (~4.54%) is likely to be
incurring. The novel framework employed in this study can also be readily applied to other
health areas to deliver a more complete picture of the true health footprint of agricultural
land use and trade. Future assessments could include other similarly fragmented areas
such as animal bites and stings [318], allergic reactions [319, 320], respiratory issues due
to dust, smoke from burning and air pollution [321, 322, 323] and toxic carcinogens [323,
324, 325, 326]. Such estimates following the methodology used in this study could be used
to incorporate potential social and health impacts of agricultural land-use or production
into environmental, development and trade policies, which could aid in better uptake of
sustainable products that are not sourced at the expense of the health of local populations.

3.5.2 Burdened Countries

The majority of the infectious disease burden associated with agricultural land use and
trade accrues in sub-Saharan Africa, and west Africa in particular, which is in line with
previous research [138]. This may be partly explained by the fact that West Africa has
some of the worst contemporary rates of deforestation and a rapidly increasing area under
agricultural cultivation, largely due to cash crop exports such as cocoa and palm oil [327].
In addition, deforestation (often related to timber harvesting and charcoal production for
use as fuel for heating and cooking [328] and consequent biodiversity loss are common
precursors to agricultural expansion, and both have been linked to increases in disease
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risk via various mechanisms in other contexts; for example, by favouring certain disease
hosts or vectors [84, 270]. At the same time, Sub-Saharan countries also have some of the
largest proportions of people working in agriculture who predominantly live in rural settings
with little access to education or health care [203].

More broadly, given that the majority of land-use change resulting in loss of tree cover is
related to agricultural expansion, results appears broadly consistent with previous studies
that have shown significant positive associations between tree cover and diarrheal disease,
deforestation and disease carrying mosquito vectors and general theoretical associations
between deforestation, certain tree covers and infectious disease risk [81, 161, 198, 208,
270, 329]

3.5.3 Importing Countries

High income western territories such as the USA, UK, and European Union alongside Asian
powerhouses such as India, China and Japan drive approximately 57.54% of the total bur-
den of agricultural trade induced infectious diseases. This analysis suggests that trade
routes of disease implicated commodities follow some historical trade pathways, while also
reflecting new or evolving trade relationships. For example, the USA and Europe have pre-
viously been established as substantial importers from sub-Saharan Africa, while China has
emerged more recently as Africa’s largest trading partner [330, 331, 332, 333, 334, 335].
Analysis of infectious disease footprints is thereby consistent with previous research and
suggests exports from developing nations are more ecologically and now epidemiologically
intensive than those from developed nations [151].

3.5.4 Accounting and Accountability

To date, no clear global trade policy has been established that focusses on aiding ex-
porting nations in minimising local health threats induced through agricultural production.
The World Trade Agreement on the Application of Sanitary and Phytosanitary Measures
Agreement (1995) does specify a need to “take into account . . . [the] prevalence of specific
diseases or pests”. However, this focusses on potential trade restrictions due to infectious
diseases being a biosecurity threat through the movement of trade [139, 336].

Accountability and responsibility of negative impacts of production and trade is highly de-
bated issue [121]. For example, when looking at carbon accounting, China’s official stance
is that final consumers of implicated products should be held accountable and responsi-
ble for the greenhouse gases emitted during the production of China’s export goods [121,
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337]. This, however, is in contrast to most methods of carbon accounting (e.g. the Paris
Agreement) which is more typically seen for traded commodities [338].

Complicating matters, and within the context of agricultural land use or trade induced dis-
ease risks, appetite for claiming responsibility may be low amongst high income importing
countries considering these countries already fund public health programmes in low and
middle income countries through international development aid [339]. However, if interna-
tional development aid is increased to allow for the impact of agricultural production and
trade, supplier country governments could improve or change land use and health policy
to ensure agricultural workers are less impacted by agricultural land use and trade induced
infectious disease risks. Key measures that may mitigate agriculture induced burdens of
disease could include Universal Health Coverage (UHC), Vaccines and Immunisation for
all or Water Sanitation and Hygiene (WaSH) interventions [340, 341, 342, 343, 344, 345,
346]. Improving the funding streams of such programmes is essential and if consumer
countries wish to accept responsibility of the impact their consumption is having on agri-
cultural workers, then increasing funding through multilateral organisations that implement
these environmental measures may be a starting point [340, 341, 343, 344, 345, 346].

Other accountability measures also exist to help limit the impact that international demand
will have locally. For example, sustainable certification schemes have been applied for
commodities such as coffee or palm oil (with a focus on biodiversity and livelihoods) with
varying success [347, 348]. Here, the inclusion of agriculture-disease indicators within
sustainability certification is a goal that could be easily implemented in the short term if
human health is incorporated more effectively into sustainable development and land use
policy making.

In addition to these relatively lower hanging fruits, environmental interventions and nature-
based solutions are being increasingly highlighted as essential to meet a range of intercon-
nected global targets within and across different sectors [338, 349]. For example, chang-
ing from current agricultural practice to sustainable agriculture which integrates three main
goals: environmental health, economic profitability, and social equity, could help to prevent
climate change, improve livelihoods, reduce pollution and simultaneously provide ancillary
benefits in reducing biodiversity loss or mitigating disease risk [350]. Economic mecha-
nisms such as Pigouvian taxes, trade tariffs or market based systems such as Cap-and-
trade measures may be also on the horizon if global consensus can be achieved and robust
agriculture-health based accounting frameworks can be created [351, 352].
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3.5.5 Limitations

There are a number of limitations in this first study of the links between infectious disease
burden and global agricultural trade. My macroeconomic assessment is a cross sectional
snapshot (data compiled for the year 2015) which focusses on associations at the eco-
logical (aggregated) level rather than at the individual level. Hence, I have limited ability
to assess the causal relationship between agriculture, trade and infectious disease risks
[353].

I did make extensive efforts to control (through our inclusion/exclusion criteria, sensitivity
and the subgroup analysis) or at least detect (through tests of heterogeneity and E-score
tests) the potential effect of confounders and effect modifiers. In specific, through our study
characteristics, environmental and socio-economic sensitivity analysis, I found very little ev-
idence of confounding. Here, only four confounders showed no association between agri-
cultural exposure and infection (i.e. study locations conducted below the Tropic of Capri-
corn and study locations that had a human development index higher than 0.80 or deemed
of high human development by the United Nations). However, as stated earlier, the en-
tirety of this analysis was conducted at the ecological (aggregated) level rather than at the
individual level whereas there may be additional individual level confounders such as edu-
cation, socio-economic status, household income, geographical accessibility to healthcare
services or a variety of environmental factors such as seasonality of crops at the individual
level which requires more granular data to assess the impact of confounding [109, 270,
354, 355]. In addition, through further subgroup analysis and testing that countries that
are closer have similar risk estimates, I find that the global burden of infectious disease
associated with agriculture is not sensitive to these assumptions.

Onemethod to address issues surrounding confounding and effect modification would be to
conduct large-scale field experiments to quantify the impact of land-use, land-use change
and forestry activities on multiple health, environment and development outcomes, which
could provide primary data, better address causality, confounding and effect modification
and give greater insights on the sustainability of agricultural production activities [356].

Within our analysis, we also did not plan for or conduct multiple comparison tests. Specifi-
cally, multiple testing was considering difficult to plan for as it might not be known, at the out-
set, which outcomes and which effect measures will be available from the included studies.
However, further research is required to develop adequate multiple comparison procedures
for use in systematic reviews [172].

There was also a lack of studies that assess the impact of differing agriculture types, the
degree of exposure to agriculture (e.g. more or less) and land use change on infectious
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disease risks globally. Such a paucity in data has led to further limitations. For exam-
ple, risk estimates from 14 tropical or subtropical countries calculated from the literature
review and meta-analysis were extrapolated through spatial averaging to infer the risk of
infection for all countries (excluding island nations) whilst accounting for similarity between
country demographics and progress towards the SDG goals. While the methods used in
this study maximises available data in neighbouring countries to impute missing data for
countries with no meta-analytic results, it would plainly be better to derive estimates for
individual countries directly from existing data. Nevertheless, this analysis improves upon
other methods of data imputation for countries with missing data (e.g., nearest neighbour
within WHO epidemiological regions) [357], and provides a robust and reproducible frame-
work which can be used for multiple agricultural impacts on health and can be updated with
new evidence as it accrues.

Through using Eora, I am able to link country-specific agriculture-disease burdens to a gen-
eral agriculture sector and perform a macroeconomic assessment which is likely to include
aggregation errors [358]. For example, certain countries may report a single “Agriculture”
sector that could contain commodities and services such as palm oil, maize, beef prod-
ucts or timber, each with differing environmental and epidemiological risks [270]. This can
mean that the whole agricultural sector in the input output table is a poor approximation of
its constituent flows. This can be rectified through hybrid life cycle-analysis [317, 359, 360,
361, 362]. In addition, I do not estimate the reductions of disease from agriculture, where
this would be mostly on non-communicable diseases, nor do I examine the bidirectionality
where agricultural land use and trade driven disease risks impact agricultural productivity.
Further research in the form of a cost-benefit analysis of agricultural production should aim
to disentangle the overall net gain or loss in economic and development indicators from
agricultural production [110, 267].
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3.6 Conclusion

Global agricultural trade has had many positive economic and social benefits. However,
the growing demand for agricultural products has led to high-income countries dispropor-
tionately exerting pressure that drives infectious disease risks in lower income nations. To
combat this, governments must acknowledge and address the human health cost involved
in land use and ag-trade decisions.
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Chapter 4

Agricultural expansion increases
childhood malaria risk across
sub-Saharan Africa
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4.1 Abstract

Background

Agricultural expansion in Africa is amongst the most rapid in the world due to a growing pop-
ulation and increased food demand. However, expansion of agriculture can have a number
of disbenefits for the environment and human health. Here, we assess the effect of differing
agricultural land uses on childhood malaria risk while controlling for socio-economic and
environmental confounders across 12 countries in sub-Saharan Africa.

Methods

Here, I compiled a geo-referenced dataset of 24,034 children with information on childhood
malaria incidence, agricultural land cover classes (rainfed, irrigated or post-flooding, crop-
dominant mosaic, and veg-dominant mosaic), forest cover, socioeconomic and environ-
mental confounding factors. Using a multi-model inference hierarchical modelling frame-
work, I tested a number of a priori hypotheses on the relationships between agricultural
land use and malaria whilst controlling for confounders.

Results

After controlling for socio-economic and environmental factors, rainfed cropland (OR 1.19,
CI 1.10 – 1.28), irrigated or post-flooding cropland (OR 1.05, CI 1.00 – 1.11) and veg-
dominant mosaic (OR 1.04, CI 0.99 – 1.10) were all associated with an overall increase in
childhood malaria risk. However, exposure to crop-dominant mosaic was not associated
with childhood malaria and may be mildly protective (OR 0.97, 0.91 – 1.02). Effects further
varied across rural and urban settings, with the overall effects all pronounced in rural set-
tings, except for the irrigated or post flooding cropland effect which was more pronounced
in urban settings.

Interpretation

Expansion of agriculture will likely increase childhood malaria in Sub-Saharan Africa, which
is detrimental to malaria eradication efforts and the achievement of sustainable develop-
ment targets. Environmental interventions such as creating mosaics of natural vegetation
within existing or newly developed cropland systems may help reduce or neutralise malaria
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risk compared to more intensive agriculture, particularly in rural settings, and hold promise
for decision makers that need to balance the future sustainability of agriculture and health.
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4.2 Introduction

Although sub-Saharan Africa has made remarkable gains in many areas of health, such as
reduced smoking rates and reductions inmaternal mortality, the region hasmany continuing
health challenges to resolve, particularly at the interface of the environment and health [20,
310, 363]. Foremost among them is the elimination and eradication of malaria, where the
Africa region accounts for 93% of all malaria cases worldwide and in which children aged
under 5 years are the most vulnerable group [364].

At the same time, the current population across sub-Saharan Africa is projected to rise from
approximately 1.03 billion in 2020 to 4.2 billion by 2100, with much of this growth occurring
in rural areas [89, 365, 366]. Such growth places considerable demand on the region’s
food supply and governments are now considering or implementing large-scale agricul-
tural projects to meet this increased need. However, increasing agricultural expansion or
intensification in an unsustainable manner may be detrimental to eliminating or eradicat-
ing malaria; for example, by bolstering mosquito populations or accelerating chemical use
and resistance [89, 288, 367, 368]. Projections also show that many African workers and
their families will remain engaged in agricultural work in rural areas; hence, agriculture may
continue to influence malaria risk in future [89, 366].

Better resolving the links between differing agricultural land-uses and malaria risk could
help policy makers identify to what extent expansion of specific agricultural land uses may
impact malaria risk in the region, thereby improving agricultural productivity and sustain-
ability. For instance, expansion of differing agricultural land uses may have varied impacts
on habitat suitability of specific malaria transmitting mosquitoes and subsequent malaria
transmission [208]. Frontier malaria may also occur, where a change in spatial or tempo-
ral malaria risk of previously undeveloped areas occurs as a result of large-scale land-use
transformations due to agriculture [76, 84, 161, 208, 240, 286, 287].

So far, few studies have assessed the relationships between agriculture and malaria out-
comes in humans [89, 289, 290]. For example, Ijumba et al (2002) found that the incidence
of clinical episodes of malaria was significantly less in children living close to a large area of
irrigated rice production than in other communities without rice [290]. However, the study
failed to control for important confounders, such as socio-economic, demographic (e.g.,
urban vs rural) or climatic factors. On the other hand, previous research has found that
increased exposure to agriculture increased malaria risk in children younger than 5 years
across rural and ecologically diverse settings. However, here the authors were not able to
assess the relationship between childhood malaria and specific agricultural land use types
(e.g. irrigated vs rainfed croplands) [89].
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Here, I aimed to resolve the linkages between agriculture and childhood malaria risk in Sub-
Saharan Africa. Specifically, I combined remotely-sensed land cover and land use data with
a large geo-referenced malaria dataset from the Demographic and Health Surveys (DHS),
comprising 24,034 children across 12 countries, to ask: what impact does increasing ex-
posure to differing agricultural land cover types (including rainfed, irrigated, post flooding
and cropland-natural vegetation mosaics with varying levels of coverage (i.e., dominated
by either cropland, hereafter crop-dominant mosaics, or natural vegetation, hereafter veg-
dominated mosaics)) have on childhood malaria risk in rural and urban households across
sub-Saharan Africa?

I use a multi-model inference hierarchical modelling framework to assess relationships be-
tween malaria infection status and the agricultural covariates while controlling for a number
of important individual (age and sex of child), household (education level of the mother,
wealth of household, access to improved sanitation and water sources, whether the house-
hold had a bed-net and whether the dwelling was sprayed with insecticide within the last
12 months) [369] and extrinsic or environmental confounders (population density, forest
cover, forest loss, temperature, precipitation and elevation) [84, 370, 371, 372, 373, 374,
375, 376, 377].

Here, I find that malaria risk differs considerably among these agricultural land cover classes,
with rainfed cropland generally associated with the largest overall increase in malaria risk
and irrigated or post-flooding cropland also associated with an elevated risk. In contrast,
crop-dominant mosaics marginally decreased childhood malaria risk. Identifying gener-
alisable associations using multi-country data between differing agricultural land uses (ir-
rigated, rainfed, mosaics) and childhood malaria risk raises the possibility that land-use
policies (e.g. increasing irrigation schemes, mosaic landscape design) could both posi-
tively and negatively impact malaria risk. Better understanding the potential for adaptive vs
maladaptive agricultural development strategies could aid in reducing or eliminatingmalaria
and also intersect with other sustainability issues and priorities, such as education, poverty
reduction, income growth, food or water security, biodiversity or climate change [367].
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4.3 Methods

4.3.1 Data Integration

I used the Demographic and Health Surveillance Data (DHS) andMalaria Indicator Surveys
(MIS) to compile datasets for analysis. These are nationally-representative household sur-
veys that provide data for a wide range of monitoring and impact evaluation indicators in the
areas of population, health, socio-economics and nutrition [90, 198, 363, 371, 378]. Here,
I analysed data for 12 sub-Saharan countries (consisting of 12 mutually exclusive DHS
datasets) from the years 2010 to 2015 with all variables that were hypothesised (see be-
low) to be important risk factors for the probability of malaria whilst controlling for potential
confounders. More countries are included in these datasets, but I restricted our analyses
to those for which covariate data were the most complete.

The final dataset included 24,034 cases from respondents of households within clusters
within each country between 2010 – 2015. For analysis, 21 socio-economic, environmen-
tal, and agricultural land use variables were compiled into a single dataset on the basis of
their hypothesised or known links to malaria from previous studies. Socio-economic vari-
ables included age, sex, education, whether a bed-net was used, whether the dwelling was
sprayed with insecticide, wealth index, urban/rural, water source, sanitation type and pop-
ulation density (extracted from the Gridded Population of the World, Version 4 (GPWv4))
[379]. Environmental variables included forest cover, forest loss, temperature, precipita-
tion, elevation extracted from the Global Forest Change and WorldClim datasets [380, 381,
382]. Agricultural land use variables included rainfed cropland, irrigated or post flooding
cropland and crop-dominated or veg-dominated mosaics (see below) from the European
Space Agency (ESA) Climate Change Initiative Land Cover (CCI-LC) dataset [294].

The DHS program does not report exact coordinates for the clusters included in the survey,
but randomly displaces the cluster coordinates up to 2km for urban clusters and up to 5km
for rural clusters, with a further 1% of rural clusters displaced up to 10km. This is done to
ensure privacy protections of survey participants [90, 198]. Hence, to address the possible
displacement of the exact locations, all environmental data were resampled to a resolution
of 10 km to approximate the environmental conditions for each household in the year of
sampling. A 10-km radius also corresponds to the maximum flight distance of a female,
human blood-fed Anopheles gambiaemosquito, representing the maximum extent at which
human and specific mosquito populations can be expected to interact [89].
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4.3.2 Variables

Biology and Ecology of Malaria

A key factor within the agriculture-malaria relationship is the water-dependent life cycle of
anopheles mosquitoes that transmit human Plasmodium and the types of water they pre-
fer. Specifically, the life cycle of an anopheles individual proceeds through four stages:
three immature stages, which occur in a water body – egg, larva, pupa – and then the ma-
ture stage, a flying adult [383]. Research suggests that anopheles larvae occur in a wide
range of habitats, but most species prefer clean, unpolluted water. Larvae of Anopheles
mosquitoes have been found in freshwater or saltwater marshes, mangrove swamps, rice
fields, grassy ditches, the edges of streams and rivers, and small, temporary rain pools.
Many species prefer habitats with vegetation such as forest edges. Others prefer habitats
with none. Some breed in open, sun-lit pools, while others are found only in shaded breed-
ing sites in forests [384]. Hence, any land use or land use change such as agriculture that
can impact habitat suitability for the Anopheles mosquito has the potential to incur a change
in human risk.

Malaria Outcome Variable

The DHS and MIS survey explicitly test for the presence or absence of malaria in children
under 5 years using blood smear tests or rapid diagnostic tests [385, 386, 387]. Although
rapid diagnostic tests have been found to be superior in detecting the presence of P. fal-
ciparum, research suggests that the two outcome variables are well correlated (r = 0.58)
[371]. Using this information, a binary outcome variable was constructed that is equal to 1
if the child had malaria either diagnosed by BSTs or RDTs and 0 otherwise.

Agricultural Exposure

Agriculture has consistently been considered a risk factor for malaria infection in multi-
ple geographical contexts [89, 161, 259, 270, 286]. However, research that investigates
specific agricultural land uses (rainfed, irrigated or post-flooding and mosaic systems) and
malaria infection is sparse and heterogeneous. To test the associations between differing
agricultural land uses, I extracted data for each cluster in the survey year on rainfed, post
flooding or irrigated and mosaic croplands using the European Space Agency (ESA) Cli-
mate Change Initiative Land Cover (CCI-LC) dataset [294]. Within this analysis, I focus
on three agricultural production methods (rainfed and irrigated or post-flooding and mo-
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saic systems) as potential risk factors of malaria and therefore exclude all other covariates
(e.g., mosaic natural vegetation, shrubland, grasslands). Mosaic systems are further strat-
ified into mosaic cropland and mosaic natural vegetation, with mosaic cropland constituting
more than 50% of the allocated pixel and mosaic natural vegetation constituting more than
50% of the pixel [294].

Forest Cover Change

Forest loss and forest cover have similarly been considered important factors in malaria
ecology across sub-Saharan Africa [84, 208, 259, 371]. In addition, agriculture is consid-
ered the leading driver of forest loss in sub-Saharan Africa [388]. Here, I extracted forest
loss and forest cover data from theGlobal Forest Change Dataset for each cluster in the sur-
vey year to capture forest cover change for pre-production agriculture [380]. This dataset
is a published high resolution spatially explicit global raster of 21st century forest cover
change at a 30-meter resolution from 2001 to 2017. I do not include forest gain due to
concerns on the reliability of these data, following previous studies [389].

Socio-economics

Age and sex: Our dataset specifies the age (years) and sex of each child, allowing me to
control for their commonly reported effects on malaria [390].

Education and wealth: Education and wealth have previously been found to be important
variables in malaria epidemiology and ecology across sub-Saharan Africa [391]. Therefore,
maternal education and wealth were included as potential confounders. Maternal education
is defined as the level of education of the mother of each child and was classified into
three categories: No education, Primary, and Secondary. Wealth within the DHS data is a
composite measure of a household’s living standard and is considered to be a surrogate
of a household’s economic status [198, 392]. The index places households into categories
representing wealth quintiles, where the higher the wealth quintile, the higher the economic
status of the household.

Rural/Urban: Within the integrated dataset, children are classified as either living in rural
or urban clusters. The rural-urban context has also previously been shown to be a major
determinant of malaria risk where the risk of malaria infection was shown to decline from
rural areas through peri-urban settlements to urban central areas [372]. In addition, the
majority of global population growth this century is predicted to occur in Africa with dramatic
changes to population densities in both rural and urban landscapes expected. Given the
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importance of the rural-urban context, in addition to the primary analyses, an additional
subgroup analysis was performed to determine how the agriculture-malaria relationship
may differ across rural or urban landscapes (see ‘Statistical analysis’ section below for
further details).

Water source and sanitation: Drinking water and poor sanitation have previously been
found to be risk factors of malaria infection in sub-Saharan Africa [393]. DHS identifies
the main source of drinking water used by the household, and the type of sanitary facility
primarily used by each household. Here, I grouped the type of water and sanitation used
by the household into dichotomous measures reflecting improved or unimproved sanitation
and water source based on existing peer-reviewed literature [198].

Bed-net ownership and spraying of dwellings: Insecticide-treated mosquito nets (ITNs)
and indoor residual spraying (IRS) are the two most frequent interventions used to combat
malaria in Africa [394, 395]. Such interventions may confound the agriculture-malaria re-
lationship and therefore have been included as potential confounding variables. The DHS
and MIS datasets provide binary variables for whether the household has a bed-net for
sleeping and whether the dwelling has been sprayed against mosquitoes in the last 12
months (0 = no, 1 = yes).

Population density: Population density is another important factor in malaria epidemiology
and the process of urbanization and accompanying demographic change is associated
with decreased risks of infection due to reduction of suitable breeding grounds for malaria
vectors through reduction of vegetative cover, water surfaces and other natural surfaces
with building structures and other paved surfaces as well as through pollution of available
breeding sites [372, 396]. To control for potential confounding, population density data were
extracted from the Gridded Population of the World, Version 4 (GPWv4)) and included for
each cluster using 2010 as an average year [379].

Climatic Factors

Mean temperature and precipitation have been shown to be significant predictors of malaria
in sub-Saharan Africa [286, 374, 397, 398, 399]. The temperature and precipitation vari-
ables in our dataset are the long-term (1950-2000) mean temperature (degrees Celsius)
and precipitation (millimetres) in the cluster during the survey month. Both variables were
sourced from the WorldClim v1 dataset, which provides monthly mean precipitation from
interpolated station data over the period 1950–2000 [381].

Elevation is an appealing environmental proxy for a variety of fundamental dynamic ecolog-
ical factors (e.g. temperature, humidity, precipitation, air pressure, sunshine, wind velocity,
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altitudinal farming) critical for mosquito development [41, 400]. For these reasons, elevation
also relates to both where certain crops are grown (e.g., in highland vs lowland regions) as
well as suitability for malaria transmission. Although I aimed to include some of the proximal
factors proxied by elevation directly into the analyses, I retained elevation as a covariate in
analyses to control for these other elevation-related potential confounders. Elevation mea-
surements were extracted from the Amazon Web Services Terrain Tiles dataset using the
‘elevatr’ package within R [382].

4.3.3 Statistical Analysis

Descriptive Analysis

Our initial dataset consisted of approximately 2.3 million respondents based on all DHS
and MIS surveys extracted in 2018. Here I excluded surveys that had no geo-referenced
presence/absence of malaria tested through BSTs or RDTs alongside socio-economic vari-
ables. Variables (e.g. presence of specific malaria species, presence of soap/detergent,
main housing material used, and type of bed net used) that were correlated with exist-
ing socio-economic variables such as sanitation, water sources, bed-net ownership were
also excluded. Variables describing livestock ownership type (e.g. cows, chickens, goats
etc) were also excluded due to a high level of missingness (>95%) which was not ran-
dom. Finally, I removed duplicate records and performed a complete case analysis that
only included participants for which we had no missing data on the variables of interest.
Baseline characteristics and descriptive characteristics were computed and are presented
in the results [401].

Missing Data, Pairwise Correlation & Multicollinearity

When first cleaning the dataset, I removed variables that had 95% or more missing data. I
then tested for pairwise correlations and removed one of the two variables that had more
than a 70% correlation with another variables. As a final step, I tested for multicollinearity.

Multicollinearity arises in statistical models when two or more covariates are not statistically
independent (i.e., correlated), leading to unstable estimates of variances of regression co-
efficients. To control for multicollinearity, the variance inflation factor (VIF) was calculated,
which represents the amount of variability of a covariate which is explained by other covari-
ates [402]. Here, I calculated the VIF for the candidate set of environmental, agricultural,
and socio-economic variables. Methods state that variables that have a VIF greater than
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10 should be excluded [403]. No variables met this threshold for exclusion and VIF scores
are presented alongside the results.

Hierarchical Modelling

Data were analysed within a multi-model inference framework [90, 198, 404], chosen to
reduce the risk of overfitting, avoid the arbitrary stepwise approach to model selection and
allow for the simultaneous assessment of different models and their associated hypothe-
ses [405]. Within this framework, hierarchical models were used as they can control for
covariates measured at different levels within the hierarchical dataset, thereby allowing the
correction of biases in parameter estimates due to clustering of observations [198, 406].

The dataset is structured as individuals (level 1) that reside in households (level 2) that
are in clusters (level 3) located within countries (level 4). Hence, I fitted a four-level hier-
archical model using a binomial distribution for malaria presence/absence with a logit link
function. Here, I assume that there may be random variability across households, clusters
and countries and therefore added a random effect at each of the four levels [198, 407].

I specified 81 candidate models using a priori hypotheses. These models included vari-
ous combinations of socio-economic, agricultural land use, forest cover, forest loss, and
climate explanatory variables. To assess predictive accuracy, model averaging was con-
ducted based on Akaike’s Information Criterion (AIC), where predictions were combined
using Akaike weights based on the inclusion of all candidate models with an AIC less than
5 compared to the best performing model (defined as the model with the lowest AIC value)
[408, 409, 410, 411].

As with demographic and economic transitions, landscapes often also follow a sequence
of different land-use regimes: from pre-settlement natural vegetation to frontier clearing,
then to subsistence agriculture and small-scale farms, and finally to intensive agriculture,
urban areas, and protected recreational lands [51]. Hence, initial results at the regional
level are thus expressed in odds ratios across differing land use segments reflecting this
successional transition process, starting with natural vegetation, through to the mosaic
(crop-dominated or veg-dominated) systems and finally intensive agricultural land use sys-
tems (rainfed, irrigated or post-flooding).

Appendix A.17) provides a description of the variables included within each of the 81 a
priori models. Appendix A.16) shows the AIC for each model.
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Rural Urban Subgroup Analysis

Further subgroup analysis was performed by stratifying rural and urban clusters to assess
whether geographical heterogeneity may influence or explain the association between dif-
fering agricultural land uses and childhood malaria risk. Specifically, I hypothesise that
socio-economic and environmental factors will likely be different across rural and urban gra-
dients. For example, urban areas are likely to have improved education, wealth, improved
housing, sanitation, and water sources which are all considered potential confounders in
the agriculture-malaria relationship [84, 363, 377, 412, 413, 414]. Hence, I aimed to cap-
ture variation in the key socio-economic and environmental variables across an urban and
rural stratification and hypothesise that urban or rural clusters can provide a proxy for such
confounding socio-economic or environmental factors that may be related to disease risk.

Marginal Effects Analysis

Marginal effects measure the instantaneous effect that a change in a particular explanatory
variable has on the predicted probability of the outcome (here malaria occurrence), when
the other covariates are kept fixed [415]. In nonlinear models the marginal effects differ from
the estimated coefficient as these depend on the values of the other explanatory variables,
and in this analysis, also depend on the estimated random effects of the hierarchical model
[198]. Here, marginal effects were calculated using a global model to estimate the impact
on the probability of childhood malaria of increasing exposure to each of the agricultural,
environmental, forest cover change and socioeconomic variables.

The interpretation of marginal effects differs for discrete and continuous variables. For
discrete variables, the marginal effect corresponds to changes in each of these variables
from 0 to 1 (e.g. no to yes responses or unimproved to improved states). The marginal
effect of a continuous independent variable such as rainfed cropland is the instantaneous
rate of change (e.g. the change in the probability of malaria given very small changes (close
to zero) in the independent variable (e.g. rainfed cropland) [198].
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To specify the global model (with all covariates) used for the marginal effect’s analysis, I
observe Mijkl, a binary variable for malaria presence or absence for child "i" in household
"j" in cluster "k" in country "l". I define the probability of malaria equal to 1 as Pijkl = Pr(Mijkl

= 1) and let Pijkl be modelled using a logit link function. The four-level global model can be
written as:

log[%ijkl/(1 − %ijkl)] = V0 + V1�64ijkl + V2(4G ijkl
+V3,40;Cℎjkl

+V4�3D20C8>=jkl
+V5'DA0;*A10=jkl

+V6.40A jkl
+V7�<?A>E43(0=8C0C8>=jkl

+V8�<?A>E43,0C4A(>DA24Bjkl
+V9�0B��43=4C jkl

+V10�F4;;8=6(?A0H43 jkl
+V11%>?D;0C8>=�4=B8CHkl

+V12)4<?4A0CDA4kl
+V13%A428?8C0C8>=kl
+V14�;4E0C8>=kl
+V15�>A4BC!>BBkl
+V16�>A4BC�>E4Akl

+V17'08= 5 43�A>?;0=3kl
+V18�AA860C43%>BC�;>>38=6�A>?;0=3kl

+V19">B082�A>?;0=3kl
+V21">B082#0CDA0;+464C08>=kl

+V22%>?D;0C8>=�4=B8CHkl
+n jkl + nkl + n l

where
n jkl = household-level random intercept, independent across households, within clusters,
within countries
nkl = cluster-level random intercept, independent across clusters, within countries
n l = country-level random intercept, independent across countries
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4.3.4 Assumptions

Here I provide an explicit description of assumptions to ensure transparency in our method-
ological approach. As stated earlier, I assume assume that there may be random variability
across households, clusters and countries and therefore added a random effect at each of
the four levels. I further assume that that between the 2010–2015 time period, climatic
environments do not vary from long-term climate trends already found in a given region.
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4.4 Results

4.4.1 Descriptive Analysis and Multicollinearity

Our final data set sourced from the DHS consisted of 24,034 individuals in 14,281 house-
holds in 4028 clusters located in 12 countries (see Figure 4.1). Of these individuals, 22.1%
were tested positive for malaria using either a blood smear test (BST) or rapid diagnostic
test (RDT) (Table 1). Data were collected between the years of 2010 until 2015, with 12.42%
samples collected in 2010, 11.53% in 2011, 24.89% in 2012, 7.42% in 2013, 9.08% in 2014
and 34.42% in 2015.

Countries included Angola (5.66%), Burkina Faso (5.24%), Benin (5.07%), Burundi (8.43%),
Cote D’Ivoire (4.34%), Ghana (2.57%), Guinea (2.32%), Mali (5.68%), Mozambique (7.88%),
Nigeria (13.93%), Senegal (25.11%) and Tanzania (13.75%). No variables within this
dataset had a Variance Inflation Factor (VIF) greater than two and therefore all variables
were included for analysis (see Table 4.1). A correlation matrix of all variables can also be
found in Appendix A.17). Further descriptive statistics stratified by urban and rural clusters
can be found in Appendix A.18

Table 4.1: Descriptive statistics

Malaria (-ve) Malaria (+ve)
Total Sample 18712 (77.86%) 5322 (22.14%)

Age (VIF = 1.03)
Mean 2.348 2.520
SD 1.486 1.395

Sex (VIF = 1.00)
Female 9251 (49.44%) 2743 (51.54%)
Male 9461 (50.66%) 2579 (48.56%)

Country
Angola 1176 (86.47%) 184 (13.53%)
Burkina Faso 417 (33.10%) 843 (66.90%)
Benin 958 (78.65%) 260 (21.35%)
Burundi 1800 (88.80%) 227 (11.20%)
Cote D’Ivoire 637 (61.02%) 407 (38.98%)
Ghana 344 (55.75%) 273 (44.25%)
Guinea 391 (70.07%) 167 (29.92%)
Mali 900 (65.89%) 466 (34.11%)
Mozambique 1261 (66.54%) 634 (33.46%)
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Nigeria 1901 (56.76%) 1448 (43.24%)
Senegal 5906 (97.86%) 129 (2.14%)
Tanzania 3021 (91.41%) 284 (8.59%)

Mothers Education (VIF = 1.02)
No Education 18514 (98.94%) 5283 (99.27%)
Primary 196 (1.05%) 38 (0.71%)
Secondary and Higher 2 (0.01%) 1 (0.02%)

Household has a bed-net for sleeping (VIF = 1.04)
Yes 14497 (77.47%) 3913 (73.52%)
No 4215 (22.52%) 1409 (26.48%)

Dwelling sprayed against mosquitoes (VIF = 1.02)
Yes 5034 (26.90%) 288 (5.41%)
No 16980 (90.74%) 1732 (32.54%)

Wealth Index (VIF = 1.45)
1 = Poorest 3390 (18.12%) 1386 (26.04%)
2 = Poorer 3519 (18.81%) 1309 (24.60%)
3 = Middle 3739 (19.98%) 1244 (23.37%)
4 = Richer 4097 (21.90%) 903 (16.97%)
5 = Richest 3967 (21.20%) 480 (9.02%)

Water Source (VIF = 1.91)
Improved 9359 (50.02%) 1063 (19.97%)
Unimproved 9353 (49.98%) 4259 (80.03%)

Year (VIF = 1.11)
2010 1578 (8.43%) 1407 (26.44%)
2011 2087 (11.15%) 683 (12.83%)
2012 4641 (24.80%) 1340 (25.18%)
2013 1549 (8.28%) 215 (4.04%)
2014 1966 (10.51%) 296 (5.56%)
2015 6891 (36.83%) 1381 (25.95%)

Sanitation (VIF = 1.79)
Improved 11355 (60.68%) 2417 (45.42%)
Unimproved 7357 (39.31%) 2905 (54.58%)

Cluster Type (VIF = 1.44)
Urban 7500 (40.08%) 1126 (21.16%)
Rural 11212 (59.92%) 4196 (78.84%)

Population Density (VIF = 1.41)
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Mean 179.11 103.79
SD 5.47 3.83

Rainfed Cropland (%) (VIF = 1.11)
Mean 26.285 35.172
SD 27.838 30.525

Irrigated/Post-Flooding Cropland (%) (VIF = 1.09)
Mean 2.529 2.769
SD 9.375 11.457

Mosaic cropland (%) (VIF = 1.14)
Mean 5.963 7.306
SD 9.218 9.192

Mosaic natural vegetation (%) (VIF = 1.22)
Mean 3.568 5.932
SD 6.516 9.491

Forest Loss (VIF = 1.15)
Mean 0.147 0.179
SD 0.356 0.434

Forest Cover (%) (VIF = 1.35)
Mean 12.84 16.41
SD 13.47 16.25

Mean Temperature (°C) (VIF = 1.48)
Mean 24.926 25.330
SD 3.467 2.589

Precipitation (mm) (VIF = 1.13)
Mean 77.566 86.092
SD 91.771 98.477

Elevation (m) (VIF = 1.59)
Mean 453.03 391.87
SD 593.96 367.22

4.4.2 Sub-Saharan Africa Analysis

At the regional level, a non-linear “U-Shaped” relationship was found across land use
classes and childhood malaria, reflecting the transitions from forest cover (highest risk)
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Figure 4.1: Location of household clusters
The georeferenced dataset includes 24,034 children in 14,281 households in 4028 clusters located in 12
countries between 2010 and 2015. The dataset links geo-referencedDemographic andHealth Surveys (DHS)
individual and household information with data on agricultural land uses, forest cover change and climate.
"R" denotes rural clusters and "U" denotes urban clusters.
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to mosaics (lower risk) and intensive agriculture (intermediate risk) (see Figure 4.2). Here,
the greatest risk was observed for exposure to complete forest cover, which increased the
probability of childhood malaria risk by 34% (OR 1.34, CI 1.23 – 1.46). This risk dimin-
ishes when mosaics include cropland but remain dominated by natural vegetation (veg-
dominated mosaics; OR 1.04, CI 0.99 – 1.10). Risk reduced further in mosaics that are
dominated by crops but also include natural vegetation, and this represents the only land
use class that potentially neutralises or even reduces the risk of childhood malaria (OR
0.97, 0.91 – 1.02) overall. Exposure to intensive agricultural land-classes sees this risk
increase once again; exposure to irrigated or post-flooding cropland resulted in a 5% in-
crease in malaria risk (OR 1.05, CI 1.00 – 1.10), while exposure to rainfed cropland was
associated with a larger overall 19% increase in the probability of childhood malaria risk
(OR 1.19, CI 1.10 – 1.28).

When controlling for environmental confounders, no associations were found betweenmalaria
infection and forest loss (OR 0.98, CI 0.96 – 1.01), mean temperature (OR 1.00, CI 1.00 –
1.01), precipitation (OR 1.00, CI 1.00 – 1.00), or elevation (OR 0.97, CI 0.84 – 1.13) (see
Figure 4.2).

With respect to potential socio-economic and other confounders, unimproved water sources
and unimproved sanitation resulted in a 31% (OR 1.31, CI 1.10 – 1.56) and 15% (OR 1.15,
CI 0.99 – 1.34) increase in the probability of childhood malaria when compared to improved
water sources or sanitation, respectively. A child’s age (OR 1.28, CI 1.24 – 1.32) was
positively associated with a higher probability of malaria. Higher maternal education levels
were correlated with lower levels of malaria infection (OR 0.42, CI 0.27 – 0.66). Increased
population density reduced the risk of childhood malaria (OR 0.77, CI 0.73 – 0.82). Higher
wealth was found to reduce the probability of childhood malaria (OR 0.69, CI 0.66 – 0.73),
while spraying the dwelling with insecticide was marginally negatively associated with the
probability of childhood malaria risk (OR 0.91, CI 0.73 – 1.13). No association was found
between childhood malaria risk and a child’s sex (OR 1.00, OR 0.91 – 1.09) or for bed-net
ownership (OR 1.02, CI 0.90 – 1.14) (Figure 2). Finally, there was a temporal trend showing
that childhood malaria decreased between 2010 and 2015 (OR 0.95, CI 0.91 – 0.99) (See
Figure 4.2). Full details of these results are summarised in Supplementary Information
Table A.13.

4.4.3 Analysis of Urban and Rural Households

The overall effects of differing agricultural land uses did in some cases vary considerably
between rural and urban clusters, as shown by the subgroup analysis (see Figure 4.3).
Specifically, a positive association was found for rainfed cropland in rural clusters (OR 1.19,
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Figure 4.2: Sub-Saharan regional analysis
Factors associated with the probability of childhood malaria. Error bars are defined as the 95% confidence
interval. Variables increasing the probability of childhood malaria have odds ratios greater than 1 to the right
of the vertical line. Crop-dominated mosaic denotes mosaic cropland and veg-dominated mosaic denotes
mosaic natural vegetation within the European Space Agency (ESA) Climate Change Initiative Land Cover
(CCI-LC) dataset.
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CI 1.09 – 1.31), but not in urban areas (OR 0.99, CI 0.97 – 1.02). On the other hand,
irrigation or post-flooding cropland was marginally associated with childhood malaria risk in
urban clusters (OR 1.05, CI 0.99 – 1.12), but not in rural areas (OR 1.02, CI 0.98 – 1.06). In
rural clusters, crop-dominant mosaics (OR 0.94, CI 0.90 – 1.00) and veg-dominant mosaics
(OR 1.04, CI 1.00 – 1.08) were negatively and positively associated with childhood malaria,
respectively. However, no effect was found for either mosaic classes in urban clusters.

The overall effect of forest cover was emphasised in urban vs rural clusters (urban: OR 1.55,
CI 1.34 – 1.79; rural: OR 1.24, CI 1.11 – 1.38) (see Figure 4.3); however, no association
was found between exposure to forest loss and childhood malaria risk across urban or rural
clusters. When assessing climatic factors, a marginal negative association was found for
elevation in rural clusters (OR 0.87, CI 0.72 – 1.06) yet confidence intervals cross the line
of no association.

The association between childhood malaria and water, sanitation, and hygiene (WaSH)
related socio-economic variables varied across rural and urban households (see Figure
4.3). Unimproved sanitation in urban households was associated with a higher probability
of childhood malaria (OR 1.63, CI 1.17 – 2.26) compared to improved sanitation, whilst no
association was found for unimproved sanitation in rural areas (OR 1.04, CI 0.87 – 1.24).
On the other hand, unimproved water sources in rural areas had a higher probability of
childhood malaria risk compared to improved water sources (OR 1.37, CI 1.10 – 1.71),
where no association was found in urban areas (OR 0.99, CI 0.72 – 1.38).

A consistent pattern was found for maternal education (urban OR 0.28, CI 0.11 – 0.69;
rural OR 0.49, CI 0.29 – 0.83), wealth (urban OR 0.54, CI 0.49 – 0.61; rural OR 0.76, CI
0.72 – 0.81) and population density (urban OR 0.78, CI 0.72 – 0.85; rural OR 0.81, CI
0.75 – 0.88), all of which reduced the risk of childhood malaria in both rural and urban
clusters (although the largest protective effect sizes were observed in urban clusters) (see
Figure 4.3). On the other hand, we found that between 2010 and 2015 (equivalent to
year of survey), childhood malaria decreased more for urban clusters (OR 0.76, CI 0.66 –
0.89) but not for rural clusters (OR 1.01, CI 0.95 - 1.06) (see Figure 4.3). We also found
consistent and expected positive associations between a child’s age and childhood malaria
in both rural (OR 1.28, CI 1.24 – 1.33) and urban clusters (OR 1.26, CI 1.19 – 1.34).

Spraying the dwelling with insecticide was marginally negatively associated with the prob-
ability of childhood malaria risk in rural clusters (OR 0.83 CI 0.64 – 1.07), however, confi-
dence intervals cross the line of no association. On the other hand, spraying the dwelling
with insecticide in urban clusters, a child’s sex, or bed-net ownership (in either cluster type)
was not associated with childhood malaria (see Figure 4.3). Full results are presented in
tabular format in Supplementary Information Tables A.14, A.15.
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Figure 4.3: Analysis of rural and urban households
Factors associated with the probability of childhood malaria differ between rural and urban households. Error
bars are defined as the 95% confidence interval. Variables increasing the probability of childhood malaria
have odds ratios greater than 1 to the right of the vertical line. Crop-dominated mosaic denotes mosaic
cropland and veg-dominated mosaic denotes mosaic natural vegetation within the European Space Agency
(ESA) Climate Change Initiative Land Cover (CCI-LC) dataset.

144



4.4.4 Marginal Effects

For continuous predictors, the probability of childhood malaria at the sub-Saharan regional
level was predicted to steadily increase with increasing rainfed and irrigated or post-flooding
cropland (see Figure 4.4). Increasing crop-dominated mosaics steadily decreased child-
hood malaria risk, whereas increasing veg-dominated mosaics steadily increased child-
hood malaria risk. A rapid increase in childhood malaria risk was also predicted with in-
creasing forest cover (note, however that this does not reflect reforestation but rather the
static extent of forest cover in the dataset). However, as population density increased, we
predicted a sharp decline in the probability of childhood malaria. When assessing increas-
ing forest loss, the probability of childhood malaria at the regional level was predicted to
decrease with increasing forest loss (see Figure 4.4).

When stratifying by cluster type, similar increaseswere found in childhoodmalaria risk when
increasing irrigated or post-flooding cropland andmean temperature in both rural and urban
clusters (see Figure 4.4). On the other hand, increasing rainfed cropland in rural clusters
resulted in an increased childhood malaria risk, however, no effect was found in urban
clusters. Increasing crop-dominatedmosaics in rural clusters led to consistent decline in the
probability of malaria whereas increasing veg-dominated mosaics in rural clusters steadily
increased childhood malaria risk. No trend was found for either mosaic classes in urban
clusters (see Figure 4.4). Increasing forest cover in either rural or urban clusters resulted
in substantially increased probability of childhood malaria. Similar impacts were also found
when increasing population density or forest loss in rural or urban clusters, which resulted
in a decreased childhood malarial risk. Increasing precipitation in rural areas decreased
the risk of childhood malaria; however, an inverse relationship was found for urban areas
(see Figure 4.4). Marginal effects for socio-economic interventions were consistent and
expected at the overall level and across rural and urban clusters (see Figure 4.5).
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Figure 4.4: Marginal effects for continuous predictors
Marginal effects curves for continuous predictors included within the global model. The global model consists
of all variables within the georeferenced dataset and represents the most complex model. Marginal effects
measure the instantaneous effect that a change in a particular explanatory variable has on the predicted
probability of malaria, when the other covariates are kept fixed.
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Figure 4.5: Marginal effects for discrete predictors
Marginal effects curves for discrete predictors included within the global model. The global model consists
of all variables within the georeferenced dataset and represents the most complex model. Marginal effects
measure the instantaneous effect that a change in a particular explanatory variable has on the predicted
probability of malaria, when the other covariates are kept fixed.

147



4.5 Discussion

4.5.1 Overview

Land use change can involve many different transitions such as pre-settlement natural
vegetation (highest risk) to frontier clearing, subsistence agriculture and small-scale farms
(lower risk), and finally to intensive agriculture (intermediate risk) and urban areas. Here,
the greatest risk was observed for exposure to complete forest cover ( 34%). However, this
risk diminished when mosaics include cropland but remain dominated by vegetation ( 4%).
The risk of childhood malaria was further refused or potentially neutralised in mosaics that
are dominated by crops but also included some natural vegetation. Childhood malaria risk
again increased for intensive agricultural land uses such as rainfed cropland ( 19%) or
irrigated or post-flooding cropland ( 5%).

4.5.2 Mechanisms

Rainfed cropland is the most common agricultural method used by marginal or smallholder
subsistence farmers across sub-Saharan Africa. With the sub-Saharan African population
projected to further increase between 2050 and 2100 by a factor of 1.9, there is likely to be a
vast expansion of rainfed cropland across the region [416, 417]. Here I find these activities
are associated with the highest malaria risk generally outside forested areas, as well as pri-
marily within rural clusters after controlling for other factors [417]. These results align with
existing research that suggests, for example, that agriculture in the Democratic Republic
of Congo is associated with an increased risk of childhood malaria risk in rural areas [89].
Mechanisms by which rainfed cropland could influence malaria transmission may include
slash and burn practices for shifting agriculture, where an area of ground is cleared of vege-
tation and cultivated for a few years and then abandoned for a new area until its fertility has
been naturally restored [418]. This process could influence malaria transmission through
changing habitat suitability of mosquito vectors through increasing sunlight, standing water
and high temperatures, which favour some types of malaria transmitting mosquitoes. In
addition, rainfed landscapes may also have fewer insectivores, greater competition among
remaining species for ecological niches and fewer dead-end hosts to dilute malaria ([371,
419].

Irrigated cropland, on the other hand, only accounts for approximately 6% of all agriculture
across sub-Saharan Africa [366]. I found that irrigation or post-flooding cropland signifi-
cantly increased the risk of childhood malaria across sub-Saharan Africa, and especially
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within urban clusters, albeit this increase is less than in rainfed systems. Previous research
has generally been inconclusive, with some studies suggesting that irrigation can increase
malaria transmission and other studies suggesting that crop irrigation has little impact on
malaria transmission and is dependent on endemic or non-endemic setting status [288,
420]. Heterogeneity in effects is potentially explained by a number of factors which can
be heterogenous on geography (e.g. urban, rural, highlands, desert fringes) such as im-
provements in wealth, housing, access to care, the widespread use of bed-nets and the
antimalarials in villages [288, 363, 392, 421]. However, this analysis provides evidence
when accounting for numerous environmental and socio-economic factors that irrigation
could confer a somewhat reduced risk when compared to rainfed cropland in rural areas.

Mosaic landscapes, which consist of varying mixes and degrees of cropland or natural
vegetation, may occur due to frontier clearing for agricultural, subsistence or smallholder
farming, or associated with restoration efforts in previously degraded agricultural areas
(e.g., agroforestry). My results show that in rural areas, veg-dominated mosaic systems
increased the risk of childhood malaria. However, crop-dominated mosaics interspersed
with natural vegetation had a neutralising or protective effect against childhood malaria risk.
These results suggest a fine balance in mechanisms that may either increase or decrease
disease risk in complex landscapes, depending on majority land-cover classes and their
associated factors.

Identifying potential explanations for this intriguing result is a challenge given current knowl-
edge on disease ecology in more complex, potentially fragmented but otherwise more bio-
diverse landscapes (i.e., compared to crop monocultures). Previous research suggests
that species diversity within mosaic systems can act differently on competing drivers of
disease transmission (host density, vector biting rates, vector habitat suitability and trans-
missibility) and may cause simultaneous increases (amplification) and decreases (dilution)
in malaria transmission [106, 287, 422]. For example, increasing vegetation can lead to
increases in humidity which favours mosquito survival and increases biting rates [423].
Specific crops may be linked to increased (e.g. sweet potatoes or yams) or decreased
(e.g. millet) malaria transmission due to respective water requirements thereby impacting
mosquito habitat suitability [424]. Subsistence or small-holder farming can also include the
use of livestock which are known to be a zoo-prophylaxis for malaria [425]. More broadly,
loss of dilution of disease transmission (which is itself related to higher biodiversity) may
be broadly underpinned by biodiversity loss. These results are consistent with a growing
body of literature suggesting that the role of biodiversity in regulating ecosystem processes
depends on characteristics of species or individuals present in those ecosystems [426].

Forest conservation has often been suggested as a potential anti-malarial intervention.
However, results from this study suggest that increasing forest cover (natural vegetation)
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substantially increases childhood malaria risk in both rural and urban clusters across the
region. Our results also showed no association between forest loss and childhood malaria
risk, which is in line with previous research [371]. Mechanisms by which forest cover may
impact malaria transmission include changing habitat suitability due to clearing of forest
frontiers in rural areas [419]. In urban areas, malaria is often linked to poor housing located
at the periphery of cities and thus closer to forests [427]. Given the strong association
between forest cover and childhood malaria risk, it would be more effective to prioritize
proven anti-malarial interventions such as improvements in education and wealth, insecti-
cide treated nets, spraying of dwellings, and housing improvements. Forest conservation
efforts in Africa should instead focus on securing known and proven benefits such as car-
bon storage, clean water provision, biodiversity, food provision, and other aspects of human
health (e.g. diarrheal disease) [90, 198, 371]. Nevertheless, given the heterogeneity we ob-
served within mosaic systems, further research is required to assess whether such effects
are true or spurious and further disentangle how ecological drivers of malaria transmission
mechanistically relate to changes in disease risk across landscape types in agricultural
systems.

4.5.3 Environmental and Socio-economic Confounding

The agricultural-malaria relationship can be influenced by many differing environmental
and socio-economic factors [270]. Results suggest consistent and expected confounding
effects at the general level and across rural and urban clusters. For example, no association
was found between environmental confounders such as mean temperature, precipitation or
elevation at the general level or across a rural urban stratification, which is consistent with
previous research [371, 374, 400, 428, 429]. Socioeconomic confounding effects were
also generally consistent with previous research, which has consistently shown that im-
provements in maternal education [430, 431, 432], wealth [391, 433], sanitation and water
sources [393, 414] alongside increasing urbanisation or population density [434] all had
protective effects. Increases in child age increased malaria risk whereas child sex had no
association with malaria risk, results which follow previous research [19, 435, 436].

Results also suggest that spraying dwellings for mosquitoes decreased childhood malaria
risk in rural areas; however, no association was found between bed-net ownership and
malaria compared to no bed-net ownership. It is important to acknowledge that I assess
the impact of bed-net “ownership” as opposed to “use” or “adherence” [437]. Previous re-
search has shown that improving maternal education and wealth can improve adherence of
malarial interventions such as bed-net usage [391, 430, 431, 432, 433]. Hence, our results
do not suggest that bed-nets have no impact on childhood malaria risk, however, malaria
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policy should continue focussing on advocating for high adherence to malarial interventions
such as spraying dwellings and bed-nets [373].

4.5.4 Policy Implications: Agricultural Sustainability and Health

Given the increase in demand for agricultural commodities within the region and the poten-
tial for malaria eradication, it is now essential to acknowledge and better assess the impact
that differing agricultural land use methods have on childhood malaria [138, 438]. Rainfed
cropland is often seen as a more sustainable method compared to irrigated agriculture as
a result of its environmental friendliness and sustainability over long periods of time. How-
ever, rainfed cropland generally results in lower crop yield levels, increased water losses
[5, 439] and, based on our analysis, increased childhood malaria risk. On the other hand,
irrigated cropland which has known barriers to implementation (e.g. agronomic, hydrologic
and economic) and is often seen as environmentally unsustainable can lead to improved
yields, food security, water and sanitation infrastructure, environmental resilience and an in-
crease in wealth and livelihoods thereby meeting many of the SDGs [440, 441]. Although,
this analysis suggests irrigation increases the risk of childhood malaria and is known to
increase the risk of other parasitic or vector-borne diseases such as schistosomiasis, irri-
gation could confer a somewhat reduced risk of malaria when compared to rainfed cropland
especially in rural areas [110, 112, 442]. Careful consideration of both the pros and cons of
irrigation is plainly critical for the sustainability of future agricultural development projects.

Environmental interventions that can be employed in rural areas also offer increased po-
tential to reduce the risk of childhood malaria that is associated with agricultural land uses,
thereby improving agricultural sustainability. By acting on elements of mosquito vector
ecology or disease transmission processes, interventions such as creating mosaics of nat-
ural vegetation within intensive cropland systems may reduce or neutralise malaria risk
compared to more intensive agriculture, particularly in rural settings, and hold promise for
decision makers that need to balance the future sustainability of agriculture and health.
Other environmental interventions can also include drainage of canals that are used for irri-
gation, site clearing, canal lining, water level or vegetation management or improvements in
housing, sanitation or water sources have historically been shown to be effective at reduc-
ing malaria across sub-Saharan Africa [443, 444]. Wider deployment of these measures
requires more empirical evidence on the cost-effectiveness of environment interventions in
rural and urban areas to assess whether an overall net benefit is found.
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4.5.5 Limitations

There are several limitations to this study. Firstly, this analysis is a cross-sectional analysis
that is limited to the countries that have been included in recent DHS surveys between
2010 and 2015 that had no missing data on the variables incorporated within our analysis.
Hence, I could not assess the temporal association between land use change and malaria
incidence within countries. Future research must be focused on establishing whether such
associations are consistent across time and whether health impacts accrue over time.

Although I aim to control for a large number of potential confounders due to socio-economic
and environmental factors, this analysis is still correlational in its approach and should be
interpreted as such, preventing us from firmly implying causal relationships [198]. Three
particular confounders that were not controlled for was the type of crop, livestock, and
humidity. Previous research suggests that mosquitoes readily feed on natural sources of
plant sugars, hence crop type could be an important confounder as mosquitoes feeding on
peri-domestic plant- and fruit-derived sugar sources can change malaria transmission dy-
namics [424, 445]. Livestock were not incorporated as a variable considering our analysis
focusses on specific agricultural land uses (e.g. rainfed). However, it is important to note
that livestock have been shown to be a zoo-prophylaxis for malaria in certain locations and
livestock are also important as sources of income and nutrition that improve the well-being
of the populations who have access to them [198, 446]. Humidity also could not be explicitly
included as a variable due to substantial variability in humidity across a 10km resolution,
however, increases in humidity favour mosquito survival and increases biting rates [423].
Finally, we opted to include DHS variables such as improved or unimproved water sources
or sanitation, however, inclusion of additional variables such as the amount of freshwater
within a cluster can be an alternative analysis considering the life-cycle of a mosquito is
water-dependent [383].

Another significant limitation is the spatial resolution within this analysis and its impact on
selecting explanatory variables. Deforestation across sub-Saharan Africa is largely due to
shifting agriculture by marginal or smallholder farmers who employ agricultural methods on
small (e.g., <1km squared) transects of land [388]. As stated in the methods, the displace-
ment of rural clusters up to 10km and urban clusters up to 1km by the DHS is needed for
confidentiality reasons. However, this displacement alongside the use of a 10km resolution
within this analysis does not adequately capture the association between forest loss and
malaria at finer spatial scales and could also artificially amplify the relationship between
forest cover and malaria [447].

This analysis is also limited to childhood malaria risk considering the majority of the malaria
burden occurs in children across sub-Saharan Africa; however, quantifying the association
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between agriculture andmalaria in agricultural workers in terms of occupational hazards is a
priority for sustainable development across Africa. Temperature and precipitation variables
control for climatic conditions of survey month based on long-term monthly averages, but
this assumption only holds if the 2010–2015 period does not depart from long-term climate
in a given region [198].
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4.6 Conclusion

Current expansion of intensive agricultural land uses will increase childhood malaria risk
across sub-Saharan Africa, which is detrimental to achieving malaria eradication. Decreas-
ing agricultural expansionmay not be considered an appropriate blanket policy option due to
unintended consequences such as increased poverty, hunger, or decreased wealth. Based
on the results from this analysis, environmental interventions such as creating mosaics of
natural vegetation within intensive cropland systems may reduce the burden of malaria that
is associated with agricultural expansion, and such actions should be considered in tan-
dem with other better studied socio-economic and demographic factors. However, decision
makers require further evidence on the optimal design and cost-effectiveness of such en-
vironmental interventions in rural and urban systems and how these measures will impact
all aspects of sustainability including but not limited to water availability, biodiversity loss,
malaria eradication, carbon emissions and soil health.
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Chapter 5

Discussion and Conclusion
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5.1 Discussion and conclusion

5.1.1 Prior Evidence

Numerous case studies have supported a link between agricultural land-use or land-use
change and infectious disease risks [80, 86, 89, 110, 166]. In addition, a number of theoret-
ical modelling studies and meta-analyses suggest potentially generalisable links between
land-use or land-use change and biodiversity loss (a key outcome of land-use change,
albeit not necessarily specific to agricultural activities), some of which may be linked to in-
creases in disease risk [92, 98, 105, 114]. However, the generality of disease-agriculture
relationships had not been systematically assessed prior to the research conducted in this
thesis.

Measuring progress toward the UN’s Sustainable Development Goals (SDGs) has also
been an important international priority since the SDGs were introduced in 2015. For ex-
ample, the Global Burden of Disease Project published a comprehensive analysis of the
progress from 1990 to 2017 in attaining the health-related Sustainable Development Goals
for 195 countries and territories in 2017; however, that study did not attribute the disease
burden to upstream drivers such as agricultural exposure [29].

In 2016, TheWorld Health Organisation also estimated the burden of disease broadly linked
to environmental determinants, where approximately 24% of the disease burden (disability
adjusted life years (DALYs)) and an estimated 23% of all deaths (premature mortality) was
attributed to environmental factors, such as proximity to agriculture and land use change,
water and sanitation, pollution and infectious disease [269]. However, this study also did
not explicitly link burdens to agricultural production and trade.

Although some studies have assessed the relationship between deforestation and infec-
tious diseases (e.g. malaria) using multi-country data, these studies draw differing conclu-
sions [84, 198, 370, 371]. No prior research has assessed differing agricultural land uses
and infectious disease relationships with multi-country georeferenced data whilst control-
ling for socio-economic and environmental factors, and none have evaluated differential
impacts across varied contexts (e.g. urban vs rural). Hence, when it comes to the impact
of research on informing sustainability and agricultural policy, generalisability of agriculture-
disease associations whilst controlling for important confounders has been lacking in par-
ticular.
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5.1.2 Summary of Key Findings

The overall aim of my thesis was to quantify the relationships between agricultural land use
and infectious diseases in humans to facilitate new approaches, data and policy sugges-
tions that can enhance agricultural sustainability in meeting multiple health, environment
and development-based SDG-related goals and indicators. Through a diversified method-
ological approach and through controlling for potential socio-economic and environmental
confounders, I document across multiple studies that exposure to agriculture consistently
increases the risk of infectious diseases in humans. This increased risk also results in a
small yet sizeable burden of disease which is directly associated with agricultural land use
and the international trade of agricultural commodities.

Using Southeast Asia as an initial model system (Chapter 2), I aimed to quantify the as-
sociation between occupational or residential exposure to agricultural land uses and be-
ing infected with a pathogen. Through a systematic review and meta-analysis following
PRISMA reporting procedures, I found that people who live or work in agricultural land in
Southeast Asia are on average 1.74 (CI 1.47–2.07) times as likely to be infected with a
pathogen than those unexposed. I also found that associations were greatest for exposure
to oil palm, rubber, and non-poultry-based livestock farming. When looking at specific dis-
eases I found that significant associations were found between exposure to agriculture and
hookworm, malaria, scrub typhus and spotted fever group; however, no association was
found for faecal-oral route diseases [270].

I then quantified what impact agricultural land use and trade have on the global burden of
infectious diseases (Chapter 3). Through extension of the literature review methodology
from Chapter 2 to sub-Saharan Africa and South America, and by combining meta analytic
methods, population attributable fractions and input-output analysis, I show that globally,
people exposed to agriculture are at more than double (107%) the risk of being infected with
any pathogen compared to those unexposed. Furthermore, agriculture was associated with
approximately 13.1% (CI 7.9% - 18.4%) of the global burden of communicable diseases.
Around one third (34.6%, CI 24.8% - 57.6%)) of this burden is driven by the international
trade of agricultural commodities, with demand from high-income countries and regional
powerhouses (USA, UK, EU, India, China and Japan) contributing the most to disease risks
in primarily developing countries. The highest burden of trade related infectious disease
occurs in Sub-Saharan Africa, particularly West Africa.

Consistent positive associations at the global, regional, and country-level alongside positive
associations in differing geographies, with multiple exposures and diseases are found with
very little evidence of publication bias or general study-level confounding. However, there
is also considerable heterogeneity among studies and subgroups within the meta-analyses
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conducted in Chapters 2 and 3. The agriculture-disease association can also be influenced
by multiple confounders or effect modifiers at differing levels (i.e. individual, household, ad-
ministrative), which could not be controlled for in the review andmeta-analysis process. Un-
derstanding the complex agriculture-disease relationship whilst controlling for confounders
and spatial autocorrelation was a logical step, explored in Chapter 4, in building general-
isable evidence to further resolve whether such associations were likely to be robust or
spurious.

Through creating a novel dataset that incorporates information onmalaria, socioeconomics,
agricultural land use, forest cover, forest loss and climatic factors, I aimed to understand
what impact exposure to differing agricultural land uses have on the probability of child-
hood malaria risk across sub-Saharan Africa (Chapter 4). I find that the greatest risk for
malaria occurs within land use regimes such as natural vegetation ( 34% increase in child-
hood malaria risk), veg-dominated mosaics ( 4% increase in childhood malaria risk) (which
includes both frontier clearing, subsistence or small-holder farming) and full scale intensive
agriculture (rainfed ( 19% increase in childhood malaria risk), irrigated or post-flooding ( 5%
increase in childhood malaria risk)). On the other hand crop-dominated mosaic systems,
which can include subsistence or small-holder farming or areas that have been partially
restored (e.g., agroforestry projects), may neutralise or protect against childhood malaria,
not only when compared to either complete forest cover or complete agricultural crop cover,
but also reduce overall risk . These effects vary across rural and urban settings, with overall
rainfed cropland effects more pronounced in rural settings whereas irrigated or post flood-
ing cropland effects being more pronounced in urban settings. Hence, on the basis of these
results, I predict that expansion of agriculture is likely to lead to continued increases in child-
hood malaria in sub-Saharan Africa, which will be detrimental to achieving malaria control
or eradication and hinder achievement of sustainable development targets. Environmental
interventions such as shifting from rainfed to irrigated cropland or creating mosaics of nat-
ural vegetation within cropland systems may reduce or neutralise malaria risk compared
to more intensive agriculture, particularly in rural settings, and hold promise for decision
makers that need to balance the future sustainability of agriculture and health

5.1.3 Implications of findings

Global, regional, national, and subnational data for population health indicators are needed
to monitor health and to guide resource allocation. Such indicators are also used by gov-
ernment officials, non-governmental organisations, and funding agencies to make com-
parisons among populations, to track changes over time, and to monitor progress toward
targets such as the Sustainable Development Goals—and to obtain a comprehensive pic-
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ture of causes of death, burden of disease, or risks to health [29, 448].

The implications of the systematic review and meta-analysis conducted in Chapter 2 in-
clude and address the fundamental and novel question of whether exposure to agriculture
changes human infectious disease risk using a gold-standard approach for evidence syn-
thesis in the medical sciences. The study therefore has the potential to resonate with a
more medically-oriented audience and other global health stakeholders. These results go
beyond previous studies, as the first to quantify the risk of occupational or residential expo-
sure to agriculture on infectious disease at a SE Asian regional scale. Additionally, ours is
the first study to also quantify the risk of multiple infectious diseases associated withmultiple
agricultural land use types. Hence, these findings are of global relevance and significance
as they have major implications for land use policy and infectious disease research that
could help identify co-benefit opportunities for health and the environment across SE Asia.
The results should also stimulate further similar studies in other regions to widen the evi-
dence base, and broadly raise interest in the role of, and impacts to, health as it relates to
agricultural development globally.

The added value of the macroeconomic assessment conducted in Chapter 3 is that infec-
tious disease has typically been understood as only a domestic problem governed primarily
by local factors. The existence of a link between public health and agriculture trade has
been a ‘known unknown’. However, the study conducted in Chapter 3 reveals such a link
and highlights that foreign demand and the global food trade is a major driver of infectious
disease. Further quantification of how food and agriculture production, including the portion
driven by foreign demand, contributes to the infectious disease burden in suffering supplier
countries is of critical value to global audiences. This study provides readers with evidence
on how international macro-economic production and consumption contribute to infectious
disease burdens. It also provides several recommendations on how public health, devel-
opment, economic and environmental practitioners might help mitigate the negative health
impacts of agricultural production and trade.

To my knowledge, my highly interdisciplinary study is the first to quantify the human health
cost in terms of infectious disease risk of agriculture inter-continentally, taking aim at a
global scale. The approach presented here could be further applied in future to estimate
a broader range of human health costs from a range of extractive industries (e.g. min-
ing) and the trade of resulting products. Hence, this study can become a benchmark for
other researchers to use systems approaches to explore connections between such distal
exposures (agriculture and its supply chains) and downstream impacts (human health).

The added value of the hierarchical modelling study conducted in Chapter 4 is that even af-
ter controlling for socio-economic and environmental confounders at the individual, house-
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hold, or cluster level, differing agricultural land uses increase childhood malaria risk across
sub-Saharan Africa. Hence, I predict that expansion of agriculture will lead to continued in-
creases in childhood malaria, especially in rural areas. This will be detrimental to achieving
malaria eradication and hinder achievement of sustainable development targets.

Considering the robust and consistent agriculture-disease associations found in this body
of work, environmental interventions such as shifting from rainfed to irrigated cropland in
rural areas or creating mosaics of natural vegetation within cropland systems now hold
promise for decision makers that need to balance the future sustainability of agriculture and
health. For example, decreasing expansion of agriculture may not be a feasible solution or
attractive politically, and may also have other unintended consequences such as increased
poverty, hunger, or decreased wealth. However, through improving practices within the
agricultural sector such as drainage of canals that are used for irrigation, site clearing,
canal lining, water level or vegetation management or improvements in housing, sanitation
or water sources may help harness co-benefits across sectors such as improving health,
education, wealth and simultaneously reduce biodiversity loss, greenhouse gas emissions
and water or air pollution.

5.1.4 Future work

The body of work presented in Chapters 2, 3 and 4 provide significant evidence on the
impact that agriculture has on infectious diseases globally and have allowed me to identify
and consider future research priorities.

Among the more direct opportunities for future work would be to further extend the sys-
tematic literature review and meta-analysis process to include countries in Europe, North
America, Central America and the Caribbean, East Asia, and Oceania. This would gener-
ate a truly unique global dataset of crude odds ratios as a function of differing agricultural
land uses, which could be used to further update the risk of disease linked to agricultural
exposure and the burden of disease linked to agricultural land use and trade. The system-
atic review process could also be extended to include other extractive industries and land
use types such as rangeland expansion, urbanisation and infrastructure development (rail-
ways, roads or powerlines), hydrological alteration (dams or irrigation) or natural resource
extraction (mining, logging or hunting) [50].

Data extracted from the systematic review process can only generate ecological associa-
tions whereas there is a clear gap in the evidence regarding the causality of agriculture-
disease relationships [353]. One method to address causality would be to conduct large-
scale field experiments to address health outcomes, following similar methodologies in
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ecology that address similarly large-scale and complex phenomena related to land-use
change and its impacts on biodiversity (e.g., the ecological impacts of tropical forest mod-
ification) [356]. A similar study design extending across multiple countries that also incor-
porates current best practices in epidemiological studies, such as cluster randomised con-
trolled trials or cohort studies, that aim to quantify the impact of land-use, land-use change
and forestry activities on multiple health, environment and development outcomes could
provide unique data, better address causality and give greater insights on the sustainability
of land use, land use change and forestry activities. In addition, such study designs could
also incorporate smaller scale pilot studies which could be used to test the efficacy, effec-
tiveness, and cost-effectiveness of specific environmental or other upstream interventions
from a health, environment, and sustainable development perspective. Field based con-
trolled trials can also generate data on epidemiological and ecological patterns that operate
over a wide range of spatial scales [356].

This body of work also highlights that differing agricultural land uses have a varied impact
on infectious disease risk. For example, rainfed cropland had a higher risk of childhood
malaria risk whereas irrigated or post-flooding cropland had less of a risk. Understand-
ing how landscapes can be tailored to maximise yield yet minimise negative externalities
is an important avenue of future research, and mosaic systems may hold promise in a
similar way that a similar land-sparing vs land-sharing debate has helped inform biodiver-
sity conservation strategies at landscape scales [449]. Here, the use of large-scale field
experiments could further explore the optimal landscape configuration that can generate
win-wins across multiple environmental and health indices, which could be the subject of
future primary research [450].

Although the entirety of this thesis focusses on exposure to agriculture and its association
to infectious diseases in humans, such a relationship can be bidirectional. Research on
the impacts of infectious diseases on worker health and subsequent agricultural produc-
tivity suggests that any source of ill health can significantly impact people’s productivity,
yields and agricultural output [110, 154, 155, 156]. However, this research is highly lo-
calised and based on specific case studies. For example, crop production in Kenya by
rural subsistence-farming families dropped 57% after the death of a male head of house-
hold [451]. Agricultural workers with lymphatic filariasis, trachoma, schistosomiasis, hook-
worm or onchocerciasis had substantially lower agricultural productivity or were forced to
stop working altogether in certain geographical contexts such as Nigeria or Southern In-
dia [154, 402, 452, 453, 454, 455]. Recent research shows that deforestation significantly
increased malaria transmission in South America, while a high malaria burden simultane-
ously reduced forest clearing possibly mediated by human behaviour or economic devel-
opment [271]. This suggests that there is a clear research gap to quantify the impact that
agriculture-induced infectious disease risks can have on global agricultural productivity and
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yields [110].

Although this body of work assesses the complex spatial associations between childhood
malaria risk and differing agricultural land uses, socioeconomic, and environmental factors,
I was unable to assess whether such associations were consistent temporally. Specifically,
whether increases in agricultural land use over time have increased the risk of infectious
disease over time. In addition, previous research suggests that there could be temporal lags
between initial land use events and future health impacts. For example, Ebola outbreaks in
sub-Saharan Africa located along the limits of the rainforest biome were significantly asso-
ciated with forest losses within the previous 2 years [85]. Assessing whether such temporal
lags exist for other diseases (e.g. malaria or neglected tropical diseases) is an important
avenue for future research and could influence decision making where this involves consid-
eration of future health, environmental and economic impacts. Additionally, the majority of
my analysis focused on assessing direct associations and main effects between agriculture
and infectious disease whilst trying to control for confounders or effect modifiers. Further
research should explore the impact of statistical interactions between agriculture, infectious
disease and other independent variables such as rural/urban.

Finally, previous research has accounted for the total impact of sustainable diets on the en-
vironment [263, 264, 267]. However, the human health impacts induced from agricultural
production and consumption have not been quantified. Future research should therefore
aim to estimate the total health impact of producing each agricultural commodity (e.g. palm
oil, beef, timber). By quantifying the total health impact, further analysis that aims to quan-
tify the cost-benefit of the production of specific agricultural commodities can elucidate the
overall net gain or loss in health, environment, and development indicators from its produc-
tion. Hence, there is an opportunity to conduct future hybrid or social life cycle-analysis
which can include health impacts, thereby aiding global behavioural change towards sus-
tainable diets [267, 314].

5.1.5 Global Policy Implications

Even though the SDGs were established in 2015, until now global health governance pro-
cesses and financing allocations have still largely focused on the MDGs [456]. Government
officials, non-governmental organisations, and funding agencies have also not been able
to explicitly acknowledge the links between environment and health nexus issues, such as
the health impacts of agricultural land use.

While efforts to meet the MDG-related health goals should clearly continue considering
the vast improvements in global health (e.g. reductions in maternal and child mortality, im-
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provements in education, improvements in HIV control) that have been made, more serious
efforts and focus are now needed to meet the SDGs. This will require broader financing
and effective work across several sectors throughout national and global governance [457].
These ambitious global agreements and targets also rely on ensuring wemaximise the ben-
efits and minimise the costs of global agricultural production and trade and this can only
begin by quantifying the impact extractive industries have on global health.

Based on the links established in this body of work between agriculture and infectious dis-
ease, the lowest hanging fruit includes increasing funding and implementation of public
health measures in rural areas [458, 459]. Governments must also ensure equitable ac-
cess to health services [457]. However, access to health services in these agricultural
landscapes is often limited due to factors such as shortages of medicines or public health
interventions, shortage of health personnel and facilities, poor health workers’ attitudes,
distance and transportation difficulties, and perceived poor quality of health services [460].
Reducing such barriers to healthcare for agricultural populations can help reduce the risk
of agriculture induced infectious diseases.

It has often been suggested that prevention-based interventions are extremely cost-effective
from a human health perspective. Key measures from a supply perspective that may
mitigate agriculture induced burdens of disease could include Universal Health Coverage
(UHC), vaccines and immunisation for all, Water Sanitation and Hygiene (WaSH) interven-
tions, improvements in housing and drainage, improving education in children and edu-
cating communities on environmental exposures. Improving the funding streams of such
programmes will be essential in meeting sustainable development and health indicators
[461]. Such measures also have the possibility of deriving co-benefits where improving
maternal education or WaSH interventions can reduce childhood malaria risk (Chapter 4)
and also help meet other sustainable development goals [430, 431, 432].

From the demand side, appetite for claiming responsibility or implementing measures may
be low amongst high income countries importing disease implicated agricultural commodi-
ties considering these countries already fund public health programmes in low- and middle-
income countries through international development aid. However, an initial starting point
can be the inclusion of agriculture-disease indicators within sustainability certification to ef-
fectively incorporate human health into sustainable development and land use policy mak-
ing [347, 348]. Sustainable diets and inducing consumer behaviour change can also help
ensure global awareness of the epidemiological risks associated with agricultural produc-
tion [252].

Improving global food and agricultural systems is essential to addressing multiple SDGs
that include climate change, mitigating biodiversity loss, and meeting both sustainability
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and human development goals [267]. Research has often highlighted the environmental
impact of certain agricultural production and its supply chains (e.g. beef, palm oil and staple
crops) on the environmental side; however, little research has quantified the human health
impact of global food supply chains or agriculture [138, 265, 267, 462]. Characterizing the
links between agriculture and human health is essential to understand the true cumulative
impact of agricultural production. Without doing so, society risks unknowingly exceeding
regional, or even global, environmental boundaries or missing opportunities to steer food
consumption and policy toward more sustainable foods and practices [267].

The final policy recommendation is the construction of governance mechanisms to en-
sure that these environmental and health impacts due to consumption are mitigated. Such
mechanisms will require global co-operation and intersectoral coordination between multi-
lateral agencies such as the WHO, World Bank, World Trade Organisation, Food and Agri-
culture Organisation and the International Labour Organisation. Specifically, these multi-
lateral organisations should aim to evaluate all evidence and recognise the environmen-
tal, social and human health impacts of agricultural production and provide a platform for
generating dialogue on sustainable agriculture between member state governments, the
private sector, civil society organizations and non-governmental organizations and most
importantly, local communities engaged in agriculture.
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5.2 Conclusion

This thesis offers a comprehensive evaluation of the relationships between agricultural land
use and infectious diseases in humans, with the aim of facilitating improvements in agri-
cultural sustainability. Using a variety of methods, I consistently find associations between
differing agricultural land uses and infectious disease risks whilst controlling for multiple
confounders. I further highlight the small, yet significant burden of disease linked to agri-
cultural land use and trade. Findings from this thesis will form a base to guide further
research questions revolving around how to integrate health metrics into agricultural sus-
tainability and provide a framework to quantify the health impacts of other extractive indus-
tries. Finally, the findings from this thesis provide robust evidence on the current impacts
that agriculture is having on human health and provides decision makers with new data
and evidence to bring environmentally mediated health risks higher up the sustainable de-
velopment agenda. My hope is that this can aid governments in securing co-benefits and
mitigating trade-offs when trying to achieve multiple SDGs simultaneously.
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A.1 Southeast Asia Exposure Based Subgroup Analysis

Table A.1: Exposure based subgroup analysis
Exposure Subgroups Disease Subclass No of Studies OR CI Low CI High P Value E Value Q Test P Value I2
Bovine Exposure All Diseases 3 2.09 0.80 5.49 0.130 2.96 15.96 <0.001 84.51
Bovine Exposure Bacterial 2 2.40 0.57 10.12 0.230 3.39 15.39 <0.001 93.50
Bovine Exposure Vector-Borne 3 2.09 0.80 5.49 0.130 2.96 15.96 <0.001 84.51
Bovine Exposure Zoonotic 3 2.09 0.80 5.49 0.130 2.96 15.96 <0.001 84.51
Livestock exposure All Diseases 8 2.54 1.37 4.72 <0.001 3.57 32.25 <0.001 76.02
Livestock exposure Bacterial 5 4.47 1.30 15.39 0.020 6.05 18.61 <0.001 88.05
Livestock exposure Vector-Borne 6 2.52 1.48 4.28 <0.001 3.55 14.04 0.020 60.55
Livestock exposure Viral 3 1.55 0.83 2.91 0.170 2.17 4.98 0.080 58.51
Livestock exposure Zoonotic 8 2.46 1.35 4.48 <0.001 3.46 33.79 <0.001 77.23
Non-specific Agriculture All Diseases 21 1.71 1.38 2.13 <0.001 2.42 76.09 <0.001 85.94
Non-specific Agriculture Bacterial 5 1.79 0.97 3.31 0.060 2.53 27.05 <0.001 89.41
Non-specific Agriculture Parasitic 16 1.74 1.41 2.13 <0.001 2.45 47.65 <0.001 82.77
Non-specific Agriculture Vector-Borne 7 1.85 1.18 2.90 0.010 2.61 32.40 <0.001 88.83
Non-specific Agriculture Zoonotic 15 1.63 1.19 2.24 <0.001 2.30 61.69 <0.001 84.30
Oil Palm Plantation All Diseases 2 3.25 2.29 4.61 <0.001 4.51 0.16 0.690 0.00
Oil Palm Plantation Vector-Borne 2 3.25 2.29 4.61 <0.001 4.51 0.16 0.690 0.00
Oil Palm Plantation Zoonotic 2 3.25 2.29 4.61 <0.001 4.51 0.16 0.690 0.00
Porcine Exposure All Diseases 7 3.57 0.84 15.23 0.090 4.92 33.97 <0.001 95.59
Porcine Exposure Bacterial 3 3.08 0.26 35.92 0.370 4.29 8.88 0.010 95.07
Porcine Exposure Vector-Borne 5 3.09 0.58 16.46 0.190 4.29 23.80 <0.001 94.90
Porcine Exposure Viral 4 4.31 0.49 37.81 0.190 5.85 24.62 <0.001 96.27
Porcine Exposure Zoonotic 7 3.57 0.84 15.23 0.090 4.92 33.97 <0.001 95.59
Poultry Exposure All Diseases 2 0.91 0.24 3.45 0.890 0.00 6.59 0.010 84.83
Poultry Exposure Vector-Borne 2 0.91 0.24 3.45 0.890 0.00 6.59 0.010 84.83
Poultry Exposure Zoonotic 2 0.91 0.24 3.45 0.890 0.00 6.59 0.010 84.83
Rice Paddy All Diseases 5 1.34 0.81 2.23 0.250 1.84 21.78 <0.001 87.15
Rice Paddy Bacterial 3 1.40 0.71 2.77 0.330 1.93 10.83 <0.001 82.33
Rice Paddy Vector-Borne 4 1.17 0.62 2.21 0.620 1.54 14.73 <0.001 80.86
Rice Paddy Zoonotic 4 1.17 0.62 2.21 0.620 1.54 14.73 <0.001 80.86
Rubber Plantation All Diseases 5 2.27 1.82 2.82 <0.001 3.20 1.33 0.860 0.00
Rubber Plantation Bacterial 2 2.27 1.79 2.89 <0.001 3.21 0.04 0.830 0.00
Rubber Plantation Parasitic 3 2.24 1.35 3.74 <0.001 3.17 1.28 0.530 0.00
Rubber Plantation Vector-Borne 5 2.27 1.82 2.82 <0.001 3.20 1.33 0.860 0.00
Rubber Plantation Zoonotic 3 2.31 1.83 2.94 <0.001 3.27 0.99 0.610 0.00
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A.2 Southeast Asia Exposure Based Subgroup Publica-
tion Bias Test Results

Table A.2: Exposure based subgroup publication bias test results
Exposure Subgroups Disease Subclass No of Studies Trim Fill OR Trim Fill P Value Trim Fill CI Low Trim Fill CI High Eggers T Statistic P Value
Bovine Exposure All Diseases 3 2.09 0.134 0.80 5.49 -0.06 0.9645
Bovine Exposure Vector-Borne 3 2.09 0.134 0.80 5.49 -0.06 0.9645
Bovine Exposure Zoonotic 3 2.09 0.134 0.80 5.49 -0.06 0.9645
Livestock exposure All Diseases 8 1.62 0.209 0.76 3.43 1.33 0.2324
Livestock exposure Bacterial 5 2.31 0.274 0.51 10.39 0.86 0.4518
Livestock exposure Vector-Borne 6 2.52 0.001 1.48 4.28 0.13 0.9063
Livestock exposure Viral 3 0.98 0.963 0.49 1.98 3.59 0.1731
Livestock exposure Zoonotic 8 1.96 0.072 0.94 4.09 1.58 0.1659
Non-specific Agriculture All Diseases 21 1.48 0.001 1.18 1.86 -0.88 0.3904
Non-specific Agriculture Bacterial 5 1.79 0.062 0.97 3.31 -0.11 0.9222
Non-specific Agriculture Parasitic 16 1.62 <0.001 1.32 1.99 -0.85 0.4088
Non-specific Agriculture Vector-Borne 7 1.85 0.008 1.18 2.90 0.34 0.7471
Non-specific Agriculture Zoonotic 15 1.37 0.060 0.99 1.92 -0.20 0.8422
Porcine Exposure All Diseases 7 3.57 0.086 0.84 15.23 4.56 0.0061
Porcine Exposure Bacterial 3 3.08 0.369 0.26 35.92 2.21 0.2700
Porcine Exposure Vector-Borne 5 3.09 0.187 0.58 16.46 3.69 0.0346
Porcine Exposure Viral 4 4.31 0.187 0.49 37.81 4.00 0.0572
Porcine Exposure Zoonotic 7 3.57 0.086 0.84 15.23 4.56 0.0061
Rice Paddy All Diseases 5 1.81 0.037 1.04 3.17 -1.58 0.2129
Rice Paddy Bacterial 3 1.40 0.333 0.71 2.77 -0.14 0.9107
Rice Paddy Vector-Borne 4 1.40 0.285 0.76 2.57 -0.70 0.5571
Rice Paddy Zoonotic 4 1.40 0.285 0.76 2.57 -0.70 0.5571
Rubber Plantation All Diseases 5 2.27 <0.001 1.82 2.82 0.33 0.7632
Rubber Plantation Parasitic 3 1.84 0.004 1.21 2.78 4.41 0.1420
Rubber Plantation Vector-Borne 5 2.27 <0.001 1.82 2.82 0.33 0.7632
Rubber Plantation Zoonotic 3 2.31 <0.001 1.83 2.94 0.62 0.6473
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A.3 Southeast Asia Disease Subgroup Analysis

Table A.3: Disease subgroup analysis
Disease No of Studies OR CI Low CI High Pvalue I2 E Value Trim Fill OR Trim Fill P Value Trim Fill CI Low Trim Fill CI High Eggers T Statistic p value
Ascaris lumbricoides 4 1.27 0.59 2.73 0.540 96.52 1.71 1.49 0.344 0.68 3.06 -1.45 0.28
Entamoeba histolytica 3 1.01 0.73 1.4 0.930 0 1.13 1.01 0.945 0.73 1.40 0.01 0.99
Giardia intestinalis 2 0.51 0.17 1.52 0.230 39 0 NA NA NA NA NA NA
Hookworm 3 2.42 1.56 3.75 <0.001 91.96 3.41 2.42 <0.001 1.56 3.75 1.20 0.44
Leptospirosis 4 1.36 0.55 3.32 0.500 90.6 1.86 1.71 0.204 0.75 3.93 -0.16 0.88
Malaria 5 2 1.46 2.73 <0.001 46.02 2.83 1.57 0.007 1.13 2.19 1.38 0.26
Opisthorchis viverrini 7 1.51 0.84 2.7 0.170 78.14 2.1 1.20 0.497 0.71 2.04 -0.22 0.83
Orientia tsutsugamushi 5 2.37 1.41 3.96 <0.001 85.83 3.34 2.37 0.001 1.41 3.96 -0.24 0.82
Rickettsia typhi 2 1.12 0.5 2.5 0.780 0 1.42 NA NA NA NA NA NA
Schistosoma japonicum 2 1.71 1.18 2.48 <0.001 63.92 2.41 NA NA NA NA NA NA
Spotted fever group 2 3.91 2.61 5.85 <0.001 55.23 5.35 NA NA NA NA NA NA
Trichuris trichuria 4 1.4 1.27 1.53 <0.001 0 1.93 1.41 <0.001 1.29 1.55 -1.25 0.34
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A.4 Information theory approach linking agriculture to dis-
ease

References that discuss and potentially support the hypothesis that exposure to agriculture
is linked with changes in risk of infectious disease. Only the country level burdens for these
diseases were incorporated into our analysis. Burdens for diseases such as HIV or measles
that have no biologically plausible link to agricultural exposure were excluded.

1. Diarrheal Diseases - [90, 174, 175, 176, 198, 273, 282, 463, 464]

2. Hepatitis E - [91, 465, 466]

3. Malaria - [86, 89, 138, 161, 184, 224, 239, 259, 288, 289, 290, 371, 443, 467, 468,
469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480]

4. African Trypanosomiasis - [481]

5. Schistosomiasis - [112, 482, 483, 484, 485]

6. Leishmaniasis - [486, 487, 488]

7. Cysticercosis - [489, 490, 491]

8. Echinococcosis - [492, 493]

9. Dengue - [494, 495, 496, 497]

10. Yellow fever - [411, 498]

11. Ascariasis - [176, 464, 499, 500]

12. Trichuriasis - [175, 270, 464, 499, 500, 501]

13. Hookworm disease - [184, 270, 484, 499, 501, 502]

14. Food-borne trematodes - [185, 503, 504, 505, 506, 507, 508]

15. Lower respiratory infections - [280, 321, 509, 510]

16. Upper respiratory infections -[280, 321, 509, 510]
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A.5 Global Geographic Subgroup Analysis Results

Table A.4: Global geographic subgroup analysis results
Geographic Subgroup Disease Category No of Studies OR CI LOW CI HIGH P value I2 E Value Q Test P Value Trim Fill OR Trim Fill P Value Trim Fill CI LOW Trim Fill CI HIGH
Global Diarrheal 31 1.630 1.230 2.170 0.000 86.09 2.29 155.56 0.00 1.632 0.001 1.229 2.167
Global Parasitic & Vector Borne 67 1.980 1.600 2.440 0.000 92.06 2.79 573.8 0.00 1.976 0.000 1.600 2.441
Global Nematodes 12 1.980 1.170 3.350 0.010 96.56 2.8 154.7 0.00 2.927 0.000 1.713 5.002
Global All Diseases 81 2.070 1.720 2.500 0.000 90.47 2.93 618.87 0.00 2.072 0.000 1.720 2.496
Americas Diarrheal 12 1.550 0.880 2.760 0.130 80.78 2.18 56.92 0.00 1.200 0.555 0.655 2.198
Americas Parasitic & Vector Borne 27 1.990 1.320 2.980 0.000 88.02 2.81 206.09 0.00 1.986 0.001 1.325 2.978
Americas Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Americas All Diseases 35 2.130 1.540 2.950 0.000 82.99 3.01 212.18 0.00 2.133 0.000 1.542 2.950
African Diarrheal 5 1.390 0.540 3.540 0.490 86.15 1.91 39.18 0.00 1.387 0.493 0.544 3.537
African Parasitic & Vector Borne 9 2.430 1.130 5.250 0.020 93.31 3.43 152.04 0.00 2.434 0.023 1.129 5.245
African Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
African All Diseases 13 2.680 1.500 4.790 0.000 91.79 3.76 173.02 0.00 2.683 0.001 1.504 4.787
South East Asia Diarrheal 3 2.200 1.340 3.600 0.000 0 3.1 0.62 0.73 1.839 0.003 1.234 2.740
South East Asia Parasitic & Vector Borne 10 1.690 1.150 2.480 0.010 76.66 2.38 26.06 0.00 1.364 0.069 0.976 1.907
South East Asia Nematodes 7 1.530 0.920 2.550 0.100 85.48 2.14 23.92 0.00 1.287 0.283 0.812 2.039
South East Asia All Diseases 11 1.580 1.110 2.240 0.010 76.69 2.21 30.69 0.00 1.290 0.120 0.936 1.777
Western Pacific Diarrheal 11 1.680 1.150 2.440 0.010 89.07 2.36 54.36 0.00 1.679 0.007 1.154 2.444
Western Pacific Parasitic & Vector Borne 21 1.850 1.430 2.400 0.000 90.55 2.62 136.65 0.00 1.852 0.000 1.427 2.405
Western Pacific Nematodes 4 1.780 1.140 2.790 0.010 88.66 2.52 12.22 0.01 2.240 0.002 1.332 3.767
Western Pacific All Diseases 22 1.880 1.460 2.410 0.000 89.86 2.52 137.22 0.00 1.878 0.000 1.463 2.410

219



A.6 Global Agriculture Exposure Subgroup Analysis Re-
sults

Table A.5: Global agriculture exposure subgroup analysis results
Geographic Subgroup Disease Category No of Studies OR CI LOW CI HIGH P value I2 E Value Q Test P Value Trim Fill OR Trim Fill P Value Trim Fill CI LOW Trim Fill CI HIGH
Agriculture Diarrheal Disease 24 1.650 1.220 2.240 0.000 85.93 2.33 117.75 0.000 1.281 0.144 0.919 1.785
Agriculture Parasitic & Vector Borne 53 2.250 1.770 2.860 0.000 93.33 3.18 516.85 0.000 2.249 0.000 1.772 2.855
Agriculture Nematodes 14 2.290 1.390 3.780 0.000 96.16 3.23 161.83 0.000 2.292 0.001 1.390 3.778
Agriculture All Diseases 62 2.360 1.900 2.930 0.000 92.09 3.33 539.66 0.000 1.649 0.000 1.287 2.111
Hunting Diarrheal Disease 1 3.340 1.040 10.700 0.040 0 4.62 0 1.000 NA NA NA NA
Hunting Parasitic & Vector Borne 4 2.710 1.580 4.640 0.000 47.22 3.79 5.55 0.140 1.875 0.036 1.041 3.376
Hunting Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Hunting All Diseases 4 2.710 1.580 4.640 0.000 47.22 3.79 5.55 0.140 1.875 0.036 1.041 3.376
Oil Palm Diarrheal Disease 2 3.250 2.290 4.610 0.000 0 4.51 0.16 0.690 NA NA NA NA
Oil Palm Parasitic & Vector Borne 2 3.250 2.290 4.610 0.000 0 4.51 0.16 0.690 NA NA NA NA
Oil Palm Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Oil Palm All Diseases 2 3.250 2.290 4.610 0.000 0 4.51 0.16 0.690 NA NA NA NA
Rice Paddy Diarrheal Disease 4 1.150 0.650 2.020 0.630 78.47 1.48 13.4 0.000 1.148 0.630 0.654 2.016
Rice Paddy Parasitic & Vector Borne 6 1.370 0.880 2.130 0.170 77.24 1.88 20.32 0.000 1.534 0.066 0.972 2.419
Rice Paddy Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Rice Paddy All Diseases 6 1.370 0.880 2.130 0.170 77.24 1.88 20.32 0.000 1.534 0.066 0.972 2.419
Rubber Diarrheal Disease 4 2.270 1.830 2.830 0.000 0 3.21 1.29 0.730 2.238 0.000 1.801 2.781
Rubber Parasitic & Vector Borne 5 1.880 1.240 2.860 0.000 55.25 2.66 9.2 0.060 1.659 0.008 1.138 2.419
Rubber Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Rubber All Diseases 5 1.880 1.240 2.860 0.000 55.25 2.66 9.2 0.060 1.659 0.008 1.138 2.419
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A.7 Global Livestock Exposure Based Subgroup Analy-
sis Results

Table A.6: Global livestock exposure based subgroup analysis results
Geographic Subgroup Disease Category No of Studies OR CI LOW CI HIGH P value I2 E Value Q Test P Value Trim Fill OR Trim Fill P Value Trim Fill CI LOW Trim Fill CI HIGH
Livestock Diarrheal Disease 4 1.120 0.300 4.200 0.860 89.92 1.43 21.16 0.000 1.123 0.863 0.300 4.199
Livestock Parasitic & Vector Borne 8 1.320 0.620 2.810 0.480 81.63 1.79 28.62 0.000 1.124 0.777 0.501 2.520
Livestock Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Livestock All Diseases 10 1.470 0.820 2.630 0.200 76.52 2.04 31.23 0.000 1.172 0.611 0.636 2.163
Bovine Diarrheal Disease 4 3.270 1.930 5.540 0.000 37.11 4.53 4 0.260 3.267 0.000 1.927 5.539
Bovine Parasitic & Vector Borne 5 2.400 1.220 4.720 0.010 67.07 3.38 11.6 0.020 2.398 0.011 1.219 4.719
Bovine Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Bovine All Diseases 6 2.090 1.150 3.810 0.020 68.14 2.96 16.14 0.010 2.092 0.016 1.147 3.814
Ovine Diarrheal Disease NA NA NA NA NA NA NA NA NA NA NA NA NA
Ovine Parasitic & Vector Borne 2 1.020 0.570 1.840 0.940 0 1.16 0.64 0.420 NA NA NA NA
Ovine Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Ovine All Diseases 2 1.020 0.570 1.840 0.940 0 NA 0.64 0.420 NA NA NA NA
Pig Diarrheal Disease 5 1.030 0.400 2.640 0.960 83.08 1.17 25.3 0.000 0.637 0.341 0.251 1.613
Pig Parasitic & Vector Borne 7 1.030 0.460 2.350 0.930 80.88 1.21 34.58 0.000 1.035 0.934 0.456 2.347
Pig Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Pig All Diseases 10 1.360 0.670 2.790 0.390 84.41 1.87 48.6 0.000 1.133 0.774 0.484 2.649
Poultry Diarrheal Disease 3 0.680 0.270 1.720 0.410 79.31 0 8.61 0.010 0.680 0.415 0.268 1.720
Poultry Parasitic & Vector Borne 5 0.970 0.460 2.050 0.940 77.13 0 18.33 0.000 0.973 0.942 0.461 2.052
Poultry Nematodes NA NA NA NA NA NA NA NA NA NA NA NA NA
Poultry All Diseases 5 0.970 0.460 2.050 0.940 77.13 0 18.33 0.000 0.973 0.942 0.461 2.052
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A.8 Global Disease Based Subgroup Analysis Results

Table A.7: Global disease based subgroup analysis results
Disease No of Studies OR CI LOW CI HIGH P value I2 E Value Q Test P Value Trim Fill OR Trim Fill P Value Trim Fill CI LOW Trim Fill CI HIGH
Ascaris lumbricoides 5 1.470 0.790 2.740 0.220 94.6 2.05 71.69 0.000 1.613 0.131 0.867 3.001
Brucellosis 3 3.780 1.420 10.050 0.010 78.61 5.18 9.78 0.010 3.776 0.008 1.419 10.052
Entamoeba histolytica 3 1.010 0.730 1.400 0.930 0 1.13 0.14 0.930 1.011 0.945 0.731 1.400
Giardia intestinalis 2 0.510 0.170 1.520 0.230 39 0 1.64 0.200 NA NA NA NA
Hantavirus 2 3.180 1.080 9.340 0.040 0 4.41 0 0.990 NA NA NA NA
Hepatitis E 2 1.430 0.660 3.100 0.360 79.51 1.98 4.88 0.030 NA NA NA NA
Hookworm 5 2.340 1.700 3.200 0.000 76.73 3.29 7.95 0.090 2.335 0.000 1.701 3.205
Leishmaniasis 6 3.330 1.180 9.430 0.020 94.28 4.61 53.33 0.000 3.329 0.024 1.175 9.432
Leptospirosis 5 1.420 0.680 2.960 0.350 86.16 1.96 30.22 0.000 1.420 0.349 0.682 2.956
Malaria 10 1.540 0.990 2.380 0.050 87.92 2.15 62.42 0.000 1.538 0.054 0.993 2.380
Mansonella ozzardi 6 4.590 2.570 8.180 0.000 54.77 6.2 11.11 0.050 4.585 0.000 2.571 8.179
Onchocerciasis 2 5.590 4.040 7.740 0.000 0 0 0.33 0.560 NA NA NA NA
Opisthorchis viverrini 7 1.510 0.840 2.700 0.170 78.14 2.1 24.03 0.000 1.201 0.497 0.707 2.040
Orientia tsutsugamushi 5 2.370 1.410 3.960 0.000 85.83 3.34 22.98 0.000 2.366 0.001 1.414 3.960
Paracoccidioidomycosis 2 2.540 1.020 6.300 0.040 0 3.57 0.41 0.520 NA NA NA NA
Rickettsia typhi 2 1.120 0.500 2.500 0.780 0 1.42 0.59 0.440 NA NA NA NA
Schistosomiasis 7 1.960 1.170 3.310 0.010 86.59 2.78 29.11 0.000 1.963 0.011 1.165 3.307
Spotted fever group 2 3.910 2.610 5.850 0.000 55.23 5.35 2.23 0.140 NA NA NA NA
Trichuris trichuria 4 1.400 1.270 1.530 0.000 0 1.93 4.21 0.240 1.410 0.000 1.286 1.546
Toxoplasmosis gondii 2 1.240 0.920 1.680 0.160 0 1.66 0.4 0.530 NA NA NA NA
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A.9 Sample Characteristics

Table A.8: Sample characteristics
Author Year Country exposure Disease caseexpyes caseexpno controlexpyes controlexpno log odds ratio samplin variance All_Diseases Other_Diseases Diarrheal ParVecBorne Nematode patho_region WHO_region
Abad-Franch 2012 Brazil Agriculture Mayaro virus 105 14 137 14 -0.266020576 0.159680222 Yes Yes Yes Yes No Neotropical Americas
Adami 2014 Brazil Agriculture Mansonella ozzardi 37 4 115 50 1.391714429 0.305722679 Yes Yes No Yes No Neotropical Americas
Aguiar 2006 Brazil Bovine Exposure Leptospirosis 16 7 27 21 0.575364145 0.290013228 Yes Yes Yes Yes No Neotropical Americas
Akogun 1999 Nigeria Agriculture Onchocerciasis 402 5 415 22 1.449778109 0.250351746 Yes Yes No Yes No African African
Amoah 2016 Ghana Agriculture Hookworm 27 5 265 147 1.097101714 0.247613343 Yes Yes Yes Yes No African African
Arzubiaga 1984 Peru Agriculture Leishmaniasis 17 1 8 41 4.467343869 1.208213773 Yes Yes No Yes No Neotropical Americas
Basano 2016 Brazil Agriculture Mansonella ozzardi 34 20 15 47 1.672725652 0.167355027 Yes Yes No Yes No Neotropical Americas
Cadavid 1993 Colombia Agriculture Paracoccidioidomycosis 20 6 17 10 0.673344553 0.375490196 Yes Yes No No No Neotropical Americas
Cermeno 2004 Venezuela Agriculture Histoplasmosis 6 7 14 32 0.672527893 0.412202381 Yes Yes No No No Neotropical Americas
Cermeño 2009 Venezuela Agriculture Histoplasmosis 4 17 7 247 2.116559205 0.455729255 Yes Yes No No No Neotropical Americas
Chaiputcha et al 2015 Thailand Agriculture Opisthorchis Viverrini 17 56 2 30 1.5159 0.61 Yes Yes No Yes Yes Oriental South East Asia
Chan et al 2008 Malaysia Agriculture Toxoplasmosis gondii 127 133 189 250 0.2336 0.0247 Yes Yes No Yes No Oriental Western Pacific
Chudthaisong et al 2015 Thailand Agriculture Opisthorchis Viverrini 107 198 10 36 0.6655 0.1422 Yes Yes No Yes Yes Oriental South East Asia
Costa 1991 Brazil Agriculture Schistosomiasis 58 18 140 290 1.898309753 0.083388068 Yes Yes Yes Yes No Neotropical Americas
Coura-Filho 1994 Brazil Agriculture Schistosomiasis 12 28 12 91 1.178654996 0.213369963 Yes Yes Yes Yes No Neotropical Americas
Cruz 2012 Bolivia Agriculture Hantavirus 25 3 142 54 1.153420525 0.398894105 Yes Yes Yes No No Neotropical Americas
Czechowicz 2011 Peru Agriculture Cardiovirus A 8 64 14 325 1.065326311 0.215130495 Yes Yes No No No Neotropical Americas
Dao et al 2016 Vietnam Agriculture Opisthorchis Viverrini 27 207 2 18 0.1603 0.5974 Yes Yes No Yes Yes Oriental Western Pacific
Diniz 2016 Brazil Livestock Farming Bartonella 4 12 69 415 0.695559727 0.350235726 Yes Yes No Yes No Neotropical Americas
Dozie 2007 Nigeria Agriculture Onchocerciasis 526 42 602 278 1.754995263 0.030968916 Yes Yes No Yes No African African
Eid 2018 Bolivia Agriculture Leishmaniasis 77 42 76 79 0.644850316 0.062612659 Yes Yes No Yes No Neotropical Americas
Erhart et al 2005 Vietnam Agriculture Malaria 1245 2176 65 376 0.4216 0.0124 Yes Yes Yes Yes No Oriental Western Pacific
Ferreira 2012 Brazil Agriculture Malaria 43 17 91 32 -0.117136832 0.124318354 Yes Yes Yes Yes No Neotropical Americas
Fuhrimann et al 2016 Vietnam Agriculture Hookworm 43 15 239 384 1.5273 0.0967 Yes Yes Yes Yes No Oriental Western Pacific
Garcia 1992 Peru Pig Exposure Taenia solium 21 3 48 29 1.442004968 0.436268473 Yes Yes Yes Yes No Neotropical Americas
Grigg et al 2017 Malaysia Agriculture Malaria 64 89 165 591 0.9461 0.0346 Yes Yes Yes Yes No Oriental Western Pacific
Gurtler 1998 Argentina Livestock Farming Chagas disease 4 34 25 32 -1.893206086 0.350661765 Yes Yes Yes Yes No Neotropical Americas
Guthmann 2001 Peru Agriculture Malaria 83 240 278 691 -0.151279605 0.02125916 Yes Yes No Yes No Neotropical Americas
Hinjoy et al 2012 Thailand Pig Exposure Hepatitis E 39 79 132 263 -0.0165 0.0497 Yes Yes No No No Oriental South East Asia
Huong et al 2015 Vietnam Agriculture Streptococcus Suis 47 32 68 115 0.9098 0.0759 Yes Yes No No No Oriental Western Pacific
Junaid 2014 Nigeria Agriculture Hepatitis E 73 52 37 57 0.771349078 0.077500286 Yes Yes No No No African African
Kaewpitoon et al 2016 Thailand Agriculture Opisthorchis Viverrini 16 0 849 53 0.7315 2.0805 Yes Yes No Yes Yes Oriental South East Asia
Kalu 2012 Nigeria Agriculture Malaria 165 38 34 35 1.497346851 0.090359589 Yes Yes Yes Yes No African African
Kawaguchi et al 2008 Lao PDR Rice Paddy Leptospirosis 86 11 280 29 -0.211 0.1406 Yes Yes Yes Yes No Oriental Western Pacific
Kenu 2014 Ghana Agriculture Buruli Ulcer 70 34 43 93 1.49353409 0.077705981 Yes Yes No No No African African
Kho et al 2017 Malaysia Livestock Farming Ricketsia felis 14 0 73 61 3.189 2.0988 Yes Yes No Yes No Oriental Western Pacific
Marques 2008 Brazil Agriculture Toxoplasmosis gondii 48 10 13 2 -0.303186259 0.69775641 Yes Yes No Yes No Neotropical Americas
Martin 2010 Brazil Agriculture Mansonella ozzardi 28 6 121 39 0.408216141 0.236286441 Yes Yes No Yes No Neotropical Americas
Matthys 2007 Cote d’Ivore Agriculture Schistosomiasis 68 8 55 10 0.435318071 0.257887701 Yes Yes Yes Yes No African African
Medeiros 2014 Brazil Agriculture Mansonella ozzardi 69 18 186 419 2.155858993 0.077811288 Yes Yes No Yes No Neotropical Americas
Medeiros 2007 Brazil Agriculture Mansonella ozzardi 18 4 20 35 2.063693185 0.384126984 Yes Yes No Yes No Neotropical Americas
Medeiros 2011 Brazil Agriculture Mansonella ozzardi 72 2 81 6 0.980829253 0.692901235 Yes Yes No Yes No Neotropical Americas
Membrive 2012 Brazil Pig Exposure Leishmaniasis 1 13 98 260 -1.589235205 1.090973312 Yes Yes No Yes No Neotropical Americas
Mngumi 2016 Tanzania Agriculture Brucellosis 44 10 107 241 2.29357264 0.136222445 Yes Yes No No No African African
Mngumi 2016 Tanzania Bovine Exposure Brucellosis 43 11 251 77 0.181657326 0.131135982 Yes Yes No No No African African
Mogaji 2013 Nigeria Agriculture Malaria 58 84 69 45 -0.797817803 0.065861117 Yes Yes Yes Yes No African African
Moro 2008 Peru Ovine Exposure Echinococcosis 20 14 21 20 0.30788478 0.219047619 Yes Yes No Yes No Neotropical Americas
Moro 1997 Peru Ovine Exposure Echinococcosis 74 69 18 14 -0.18135584 0.154990394 Yes Yes No Yes No Neotropical Americas
Ngoc dinh et al 2006 Vietnam Poultry Exposure H5N1 18 10 52 54 0.6255 0.1933 Yes Yes Yes Yes No Oriental Western Pacific
Nguyen et al 2006 Vietnam Agriculture Ascaris lumbricoides 1400 1938 770 2666 0.9168 0.0029 Yes Yes No Yes Yes Oriental Western Pacific
Nwakor 2008 Nigeria Rice Paddy Guinea worm 104 12 1977 289 0.236575114 0.096914742 Yes Yes No Yes No African African
Oliveira 2006 Brazil Livestock Farming Leishmaniasis 79 30 74 32 0.12992128 0.090755075 Yes Yes No Yes No Neotropical Americas
Oliviera 2013 Brazil Agriculture Schistosomiasis 12 14 316 259 -0.353064832 0.161787466 Yes Yes Yes Yes No Neotropical Americas
Ong et al 2016 Thailand Agriculture Opisthorchis Viverrini 0 0 0 0 -0.820980552 0.084252912 Yes Yes No Yes Yes Oriental South East Asia
Parashar et al 2000 Malaysia Pig Exposure Nipah Virus 40 8 71 38 0.9843 0.1904 Yes Yes No Yes No Oriental Western Pacific
Pattasin et al 2012 Thailand Rubber Plantation Malaria 0 0 0 0 0.832909123 0.168568461 Yes Yes Yes Yes No Oriental South East Asia
Pham Duc et al 2011 Vietnam Agriculture Entamoeba histolytica 30 16 93 45 -0.0973 0.1288 Yes Yes Yes Yes Yes Oriental Western Pacific
Pham Duc et al 2013 Vietnam Agriculture Trichuris Trichiura 302 271 401 451 0.2258 0.0117 Yes Yes No Yes No Oriental Western Pacific
Ramos 2008 Brazil Livestock Farming Brucellosis 18 8 297 312 0.860201265 0.187127687 Yes Yes No No No Neotropical Americas
Rangsin et al 2009 Thailand Agriculture Opisthorchis Viverrini 59 105 24 89 0.7342 0.0794 Yes Yes No Yes Yes Oriental South East Asia
Ridzuan et al 2016 Malaysia Bovine Exposure Leptospirosis 0 0 0 0 1.615419984 0.07674818 Yes Yes Yes Yes No Oriental Western Pacific
Ron-Roman 2014 Ecuador Livestock Farming Brucellosis 63 7 2946 717 0.784096821 0.160464302 Yes Yes No No No Neotropical Americas
Rosas-Aguirre 2015 Peru Agriculture Malaria 18 99 14 103 0.290923566 0.146793875 Yes Yes Yes Yes No Neotropical Americas
Ross et al 2016 Philippines Agriculture Any Helminth 962 1545 160 507 0.6796 0.0099 Yes Yes Yes Yes Yes Oriental Western Pacific
Rukmanee et al 2008 Thailand Agriculture Trichuris Trichiura 157 120 768 908 0.4362 0.0171 Yes Yes No Yes Yes Oriental South East Asia
Satitvipawee et al 2012 Thailand Rubber Plantation Malaria 60 10 186 57 0.6091 0.1396 Yes Yes Yes Yes No Oriental South East Asia
Silva 1997 Brazil Agriculture Schistosomiasis 25 46 54 169 0.531149097 0.086174809 Yes Yes Yes Yes No Neotropical Americas
Somboon et al 1998 Thailand Agriculture Malaria 0 0 0 0 1.172482137 0.389205875 Yes Yes Yes Yes No Oriental South East Asia
Täger Frey 2003 Chile Agriculture Hantavirus 4 1 337 270 1.16463339 1.256671063 Yes Yes Yes No No Neotropical Americas
Tan et al 1979 Malaysia Agriculture Leptospirosis 30 562 174 3880 0.1742 0.0411 Yes Yes Yes Yes No Oriental Western Pacific
Tarafder et al 2006 Philippines Agriculture Schistosomiasis 0 0 0 0 0.277631737 0.052893951 Yes Yes Yes Yes No Oriental Western Pacific
Tay et al 1999 Malaysia Rubber Plantation Orientia tsutsugamushi 45 25 150 80 -0.0408 0.0814 Yes Yes No Yes No Oriental Western Pacific
Tay et al 2000 Malaysia Agriculture Orientia tsutsugamushi 226 66 399 420 1.2822 0.0245 Yes Yes No Yes No Oriental Western Pacific
Tay et al 2013 Malaysia Agriculture Orientia tsutsugamushi 14 36 35 195 0.7732 0.1329 Yes Yes No Yes No Oriental Western Pacific
Thayaparan et al 2015 Malaysia Agriculture Leptospirosis 39 32 82 45 -0.4022 0.0913 Yes Yes Yes Yes No Oriental Western Pacific
Tuyizere 2018 Rwanda Agriculture Strongyloides Stercoralis 90 4 434 10 -0.656944132 0.363415259 Yes Yes Yes Yes No African African
Udonsi 1992 Nigeria Agriculture Hookworm 233 42 192 498 2.66647354 0.035317735 Yes Yes No Yes Yes African African
Vallee et al 2010 Lao PDR Agriculture Orientia tsutsugamushi 24 357 23 1567 1.5217 0.0886 Yes Yes No Yes No Oriental Western Pacific
Wattanayingcharoenchai et al 2011 Thailand Agriculture Opisthorchis Viverrini 737 103 2617 660 0.5903 0.013 Yes Yes No Yes Yes Oriental South East Asia
Weigle 1993 Colombia Agriculture Leishmaniasis 187 40 76 151 2.228775659 0.050128005 Yes Yes No Yes No Neotropical Americas
Yadon 2003 Argentina Agriculture Leishmaniasis 63 108 65 243 0.779677673 0.044632117 Yes Yes No Yes No Neotropical Americas
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A.10 Country-specific Agricultural Land Use Deaths

See next page.
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Table A.9: Country-specific agricultural land use deaths

All Diseases Diarrheal Disease Intestinal Nematodes Parasitic & Vector-Borne Diseases Other Diseases
Country Mean SD Mean SD Mean SD Mean SD Mean SD
Afghanistan 3337 1274 2665 731 13 6 78 31 433 163
Albania 15 6 3 1 0 0 3 1 9 4
Algeria 398 73 167 105 0 0 21 4 89 16
Andorra NA NA NA NA NA NA NA NA NA NA
Angola 3436 1274 919 619 6 0 1072 234 244 90
Antigua NA NA NA NA NA NA NA NA NA NA
Argentina 211 126 7 3 0 0 25 17 167 105
Armenia 7 3 3 1 0 0 1 1 3 1
Aruba NA NA NA NA NA NA NA NA NA NA
Australia NA NA NA NA NA NA NA NA NA NA
Austria 16 8 4 1 0 0 0 0 11 6
Azerbaijan 121 53 86 25 0 0 2 1 28 13
Bahamas NA NA NA NA NA NA NA NA NA NA
Bahrain NA NA NA NA NA NA NA NA NA NA
Bangladesh 11530 5601 10511 542 30 13 350 148 3515 1554
Barbados NA NA NA NA NA NA NA NA NA NA
Belarus 6 3 1 0 0 0 1 1 4 2
Belgium 13 8 4 2 0 0 0 0 9 5
Belize 2 0 1 1 0 0 0 0 0 0
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Benin 7937 1041 2483 1231 33 0 3259 436 856 106
Bermuda NA NA NA NA NA NA NA NA NA NA
Bhutan 68 26 32 9 0 0 2 1 33 13
Bolivia 310 51 224 88 1 0 12 7 29 5
Bosnia and Herzegovina 5 2 1 0 0 0 1 1 3 1
Botswana 203 59 97 53 0 0 8 1 19 5
Brazil 3500 595 450 195 3 1 498 94 2288 389
British Virgin Islands NA NA NA NA NA NA NA NA NA NA
Brunei 0 0 0 0 0 0 0 0 0 0
Bulgaria 14 7 2 1 0 0 6 3 6 3
Burkina Faso 27790 672 4397 2183 41 0 14432 1383 2500 58
Burundi 11212 1890 3668 1622 29 0 3746 367 754 138
Cambodia 949 391 518 132 21 10 100 42 391 157
Cameroon 15964 1758 5198 2534 141 2 5386 597 2163 229
Canada 160 34 34 25 0 0 0 0 95 20
Cape Verde NA NA NA NA NA NA NA NA NA NA
Cayman Islands NA NA NA NA NA NA NA NA NA NA
Central African Republic 6146 1067 1851 869 29 0 2638 283 277 48
Chad 18462 1802 6898 3123 46 0 5299 587 1633 165
Chile 92 59 42 18 0 0 4 3 60 38
China 7810 3418 1809 588 657 305 3535 1570 1312 596
Colombia 840 116 95 39 2 0 68 21 388 52
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Congo 2605 639 803 400 5 0 1023 144 181 42
Costa Rica 54 8 11 5 0 0 1 0 14 2
Cote dIvoire 19346 558 5208 2435 140 2 5540 682 2667 78
Croatia 15 7 3 1 0 0 0 0 11 6
Cuba NA NA NA NA NA NA NA NA NA NA
Cyprus NA NA NA NA NA NA NA NA NA NA
Czech Republic 37 17 10 3 0 0 0 0 27 12
Denmark 15 8 3 1 0 0 0 0 11 6
Djibouti 199 61 86 52 0 0 14 2 20 6
Dominican Republic NA NA NA NA NA NA NA NA NA NA
DR Congo 82578 17635 20552 10083 398 5 39354 4370 5960 1206
Ecuador 255 49 53 20 2 0 25 9 127 24
Egypt 2254 354 856 489 1 0 190 32 565 88
El Salvador 108 17 50 30 0 0 3 1 17 3
Eritrea 2078 428 1005 493 2 0 209 25 193 40
Estonia 1 0 0 0 0 0 0 0 1 0
Ethiopia 47962 8991 21791 9659 115 1 6732 714 3411 698
Fiji NA NA NA NA NA NA NA NA NA NA
Finland 6 3 1 0 0 0 0 0 5 3
Former USSR NA NA NA NA NA NA NA NA NA NA
France 287 116 42 20 0 0 2 1 190 79
French Polynesia NA NA NA NA NA NA NA NA NA NA
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Gabon 341 100 90 56 1 0 140 26 30 9
Gambia 841 46 201 113 1 0 269 43 101 5
Gaza Strip NA NA NA NA NA NA NA NA NA NA
Georgia 21 9 4 1 0 0 7 3 10 4
Germany 133 72 51 19 0 0 2 1 75 39
Ghana 13469 468 1991 1067 17 0 6698 895 1403 49
Greece 149 72 4 1 0 0 0 0 142 69
Greenland NA NA NA NA NA NA NA NA NA NA
Guatemala 1086 154 489 265 6 0 110 17 186 26
Guinea 15992 415 2686 1173 74 1 7682 837 1847 46
Guyana 39 9 6 3 0 0 5 1 15 3
Haiti NA NA NA NA NA NA NA NA NA NA
Honduras 429 58 163 88 1 0 31 5 64 9
Hong Kong NA NA NA NA NA NA NA NA NA NA
Hungary 19 10 13 4 0 0 0 0 4 2
Iceland NA NA NA NA NA NA NA NA NA NA
India 148085 63421 130144 12385 117 52 15171 6448 13442 5620
Indonesia 18417 3416 11218 4484 31 15 1746 328 3834 731
Iran 328 159 230 78 0 0 4 2 64 31
Iraq 494 234 375 119 0 0 23 11 63 30
Ireland NA NA NA NA NA NA NA NA NA NA
Israel 22 8 2 2 0 0 0 0 17 6
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Italy 322 137 39 13 0 0 0 0 263 114
Jamaica NA NA NA NA NA NA NA NA NA NA
Japan NA NA NA NA NA NA NA NA NA NA
Jordan 9 4 3 2 0 0 0 0 3 1
Kazakhstan 61 28 39 13 0 0 2 1 16 7
Kenya 29518 6302 12996 6096 17 0 5983 673 1510 327
Kuwait 4 2 0 0 0 0 0 0 4 2
Kyrgyzstan 48 20 30 9 0 0 8 4 7 3
Laos 1177 448 689 76 44 18 103 38 346 136
Latvia 2 1 0 0 0 0 0 0 1 1
Lebanon 28 10 9 5 0 0 1 0 10 3
Lesotho 802 187 422 221 1 0 10 1 40 10
Liberia 3220 104 759 407 11 0 1132 157 310 10
Libya 52 8 14 9 0 0 10 2 17 3
Liechtenstein NA NA NA NA NA NA NA NA NA NA
Lithuania 13 7 1 0 0 0 2 1 10 5
Luxembourg 0 0 0 0 0 0 0 0 0 0
Macao SAR NA NA NA NA NA NA NA NA NA NA
Madagascar NA NA NA NA NA NA NA NA NA NA
Malawi 9081 1915 2628 1206 9 0 4275 418 330 64
Malaysia 149 32 41 18 0 0 35 7 67 14
Maldives NA NA NA NA NA NA NA NA NA NA
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Mali 25910 1311 6119 2782 15 0 12001 1465 1304 63
Malta NA NA NA NA NA NA NA NA NA NA
Mauritania 2112 189 719 354 1 0 615 88 253 23
Mauritius NA NA NA NA NA NA NA NA NA NA
Mexico 1268 230 495 284 1 0 71 13 395 69
Moldova 7 3 1 0 0 0 2 1 4 2
Monaco NA NA NA NA NA NA NA NA NA NA
Mongolia 20 9 15 5 1 0 0 0 2 1
Montenegro 0 0 0 0 0 0 0 0 0 0
Morocco 719 98 340 195 0 0 43 7 125 18
Mozambique 18145 3590 4226 1898 75 1 9416 949 1248 264
Myanmar 3178 1567 2722 455 82 39 170 83 827 405
Namibia 349 93 155 86 0 0 28 4 34 9
Nepal 4983 1777 3780 965 4 1 149 55 872 307
Netherlands 43 23 10 4 0 0 0 0 30 16
Netherlands Antilles NA NA NA NA NA NA NA NA NA NA
New Caledonia NA NA NA NA NA NA NA NA NA NA
New Zealand NA NA NA NA NA NA NA NA NA NA
Nicaragua 159 18 49 19 0 0 5 2 14 2
Niger 22630 2490 6354 3048 35 0 10529 1211 2129 235
Nigeria 115769 17257 38546 22748 553 9 42031 6645 10729 1520
North Korea 329 126 195 54 36 15 12 5 54 23
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Norway 13 7 3 1 0 0 0 0 10 5
Oman 6 3 1 0 0 0 0 0 4 2
Pakistan 24170 10185 16927 5028 14 6 561 248 5163 2155
Panama 114 15 17 7 0 0 4 1 52 7
Papua New Guinea 1839 272 792 269 9 4 807 122 126 20
Paraguay 53 34 30 12 0 0 16 11 6 4
Peru 388 122 265 101 1 0 49 18 75 23
Philippines 3270 748 1416 331 NA NA 670 159 1189 267
Poland 73 37 50 17 0 0 1 0 16 8
Portugal 132 26 16 10 0 0 0 0 106 20
Qatar 0 0 0 0 0 0 0 0 0 0
Romania 177 81 33 10 0 0 74 34 63 28
Russia 64 32 22 8 0 0 11 6 30 16
Rwanda 5470 1097 1491 652 8 0 2549 263 372 78
Samoa NA NA NA NA NA NA NA NA NA NA
San Marino NA NA NA NA NA NA NA NA NA NA
Sao Tome and Principe NA NA NA NA NA NA NA NA NA NA
Saudi Arabia 34 17 19 6 0 0 3 1 11 5
Senegal 7045 302 1814 911 6 0 2340 306 848 33
Serbia 48 24 27 9 0 0 2 1 17 8
Seychelles NA NA NA NA NA NA NA NA NA NA
Sierra Leone 14173 374 2774 1256 65 1 5727 631 2038 53
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Singapore NA NA NA NA NA NA NA NA NA NA
Slovakia 6 3 1 0 0 0 0 0 5 2
Slovenia 9 4 0 0 0 0 0 0 8 4
Somalia 13630 2718 6011 2713 27 0 1786 186 1287 240
South Africa 2235 819 863 588 0 0 102 22 289 104
South Korea 179 92 30 11 29 15 5 3 86 47
South Sudan NA NA NA NA NA NA NA NA NA NA
Spain 278 58 37 25 0 0 0 0 209 43
Sri Lanka NA NA NA NA NA NA NA NA NA NA
Sudan 8210 1112 2459 1349 21 0 3450 514 773 101
Suriname 2 0 0 0 0 0 0 0 1 0
Swaziland 231 68 112 67 1 0 7 1 18 5
Sweden 30 16 4 2 0 0 0 0 24 13
Switzerland 21 10 7 2 0 0 1 1 12 5
Syria 618 180 204 76 0 0 10 4 92 28
Taiwan NA NA NA NA NA NA NA NA NA NA
Tajikistan 447 176 289 80 0 0 17 7 126 50
Tanzania 32620 6698 10959 4947 109 1 11611 1329 2197 432
TFYR Macedonia NA NA NA NA NA NA NA NA NA NA
Thailand 1476 368 1407 381 93 44 54 12 512 132
Togo 6982 194 1423 689 19 0 2853 308 822 22
Trinidad and Tobago NA NA NA NA NA NA NA NA NA NA

232



Tunisia 83 15 30 18 0 0 7 1 25 5
Turkey 308 149 105 33 0 0 26 12 179 85
Turkmenistan 117 54 83 30 0 0 0 0 23 11
UAE 4 2 1 0 0 0 0 0 2 1
Uganda 22853 4287 6684 3032 63 1 8644 936 2263 498
UK NA NA NA NA NA NA NA NA NA NA
Ukraine 106 49 39 13 0 0 9 4 49 25
Uruguay 16 11 9 4 0 0 1 0 4 3
USA 1844 301 273 163 0 0 6 1 1340 229
Uzbekistan 310 141 173 54 0 0 14 6 109 49
Vanuatu NA NA NA NA NA NA NA NA NA NA
Venezuela 564 107 86 37 1 0 25 5 204 37
Viet Nam 1943 303 907 260 129 60 149 30 689 106
Yemen 1545 673 991 310 1 1 227 100 251 107
Zambia 9214 1947 2790 1285 18 0 3814 448 566 130
Zimbabwe 5077 1076 1870 902 10 0 1572 164 175 37
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A.11 Country-specific Agricultural Land Use DALYs

See next page.
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Table A.10: Country-specific agricultural land use DALYs

All Diseases Diarrheal Disease Intestinal Nematodes Parasitic & Vector-Borne Diseases Other Diseases
Country Mean SD Mean SD Mean SD Mean SD Mean SD
Afghanistan 379398 144826 256464 70387 7224 3157 58817 23485 38160 14379
Albania 1073 449 561 167 0 0 83 36 378 164
Algeria 38003 7010 16297 10266 108 2 1434 276 8324 1535
Andorra NA NA NA NA NA NA NA NA NA NA
Angola 265772 98526 68815 46370 1662 38 83887 18316 20854 7650
Antigua NA NA NA NA NA NA NA NA NA NA
Argentina 5351 3184 502 219 85 17 801 526 3204 2006
Armenia 1212 520 739 226 2 1 61 28 342 148
Aruba NA NA NA NA NA NA NA NA NA NA
Australia NA NA NA NA NA NA NA NA NA NA
Austria 418 212 163 61 0 0 8 5 221 114
Azerbaijan 13592 5933 9898 2874 12 6 122 53 3013 1335
Bahamas NA NA NA NA NA NA NA NA NA NA
Bahrain NA NA NA NA NA NA NA NA NA NA
Bangladesh 680447 330533 488061 25169 58773 25672 28896 12228 230545 101927
Barbados NA NA NA NA NA NA NA NA NA NA
Belarus 819 424 468 162 0 0 46 23 268 135
Belgium 247 139 86 32 0 0 1 0 155 85
Belize 308 54 115 69 11 0 39 7 61 10
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Benin 627435 82327 170979 84768 3764 52 291204 38970 74164 9220
Bermuda NA NA NA NA NA NA NA NA NA NA
Bhutan 5359 2090 2605 693 22 9 175 67 2494 985
Bolivia 32567 5360 18978 7427 4274 679 2004 1130 3194 505
Bosnia and Herzegovina 472 229 267 89 0 0 39 19 138 64
Botswana 13447 3891 5198 2829 630 11 1683 280 1557 433
Brazil 194405 33073 48597 21050 9116 1694 38073 7214 69175 11762
British Virgin Islands NA NA NA NA NA NA NA NA NA NA
Brunei 7 2 2 1 0 0 2 0 3 1
Bulgaria 784 365 361 112 0 0 158 76 225 107
Burkina Faso 2183487 52825 282885 140410 5378 55 1224906 117386 217376 5024
Burundi 824163 138961 243910 107869 9361 86 302620 29659 65802 12022
Cambodia 74575 30756 35825 9119 1131 521 11426 4800 32094 12924
Cameroon 1309075 144154 367462 179131 23382 284 525355 58260 179088 18952
Canada 2821 602 561 411 0 0 7 2 1745 373
Cape Verde NA NA NA NA NA NA NA NA NA NA
Cayman Islands NA NA NA NA NA NA NA NA NA NA
Central African Republic 473142 82105 119532 56141 6419 71 237366 25453 21948 3823
Chad 1443721 140919 510995 231356 10378 107 445263 49317 138034 13938
Chile 2678 1701 1276 557 224 43 117 79 1496 944
China 719237 314790 193264 62757 158375 73649 180051 79981 95641 43489
Colombia 71875 9912 9625 3969 5944 1037 4789 1495 16041 2137
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Congo 173199 42496 43719 21779 3448 49 77104 10820 15208 3491
Costa Rica 4693 727 847 389 286 55 142 47 678 103
Cote dIvoire 1551386 44738 376538 176066 21168 260 493113 60740 221605 6442
Croatia 542 263 266 93 0 0 7 4 213 112
Cuba NA NA NA NA NA NA NA NA NA NA
Cyprus NA NA NA NA NA NA NA NA NA NA
Czech Republic 957 441 448 126 0 0 5 2 488 216
Denmark 244 134 68 26 0 0 0 0 162 90
Djibouti 12266 3741 4994 3013 83 1 882 140 1720 509
Dominican Republic NA NA NA NA NA NA NA NA NA NA
DR Congo 6948337 1483848 1505801 738768 81964 928 3647524 405052 493020 99757
Ecuador 28081 5421 8107 3124 4867 828 1711 623 3852 737
Egypt 221682 34817 80382 45884 9985 165 21774 3648 48396 7527
El Salvador 8860 1380 3629 2200 548 10 855 155 1027 170
Eritrea 119122 24554 53333 26177 355 4 12816 1521 17041 3563
Estonia 87 44 57 22 0 0 1 0 18 9
Ethiopia 3170207 594275 1303415 577751 42586 453 564835 59906 297141 60828
Fiji NA NA NA NA NA NA NA NA NA NA
Finland 212 117 95 35 0 0 1 0 112 59
Former USSR NA NA NA NA NA NA NA NA NA NA
France 4992 2017 877 426 0 0 50 20 2969 1232
French Polynesia NA NA NA NA NA NA NA NA NA NA
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Gabon 23475 6898 4831 3038 672 13 11133 2099 2335 683
Gambia 64413 3532 14523 8161 157 2 20742 3337 9222 482
Gaza Strip NA NA NA NA NA NA NA NA NA NA
Georgia 1809 731 899 264 3 2 247 105 598 243
Germany 2319 1258 891 341 0 0 42 23 1302 687
Ghana 1015029 35277 137610 73737 2916 41 511097 68303 120631 4227
Greece 2281 1104 311 107 0 0 12 6 1896 924
Greenland NA NA NA NA NA NA NA NA NA NA
Guatemala 82822 11771 33605 18207 12672 195 6508 974 8591 1199
Guinea 1301702 33768 182974 79933 13010 146 690547 75266 135176 3370
Guyana 2243 494 442 187 16 3 383 69 565 125
Haiti NA NA NA NA NA NA NA NA NA NA
Honduras 34869 4689 10746 5806 3222 52 3307 532 5063 708
Hong Kong NA NA NA NA NA NA NA NA NA NA
Hungary 677 355 462 164 0 0 14 7 137 71
Iceland NA NA NA NA NA NA NA NA NA NA
India 8068249 3455398 6387348 607843 139094 61791 1035185 439988 983212 411045
Indonesia 978709 181549 464268 185594 16888 7986 140701 26440 284554 54279
Iran 36485 17727 26877 9083 137 66 862 418 5077 2437
Iraq 53149 25137 38436 12208 9 5 2717 1315 8552 4024
Ireland NA NA NA NA NA NA NA NA NA NA
Israel 390 139 52 37 0 0 3 1 278 102
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Italy 5081 2157 776 246 0 0 25 11 3939 1704
Jamaica NA NA NA NA NA NA NA NA NA NA
Japan NA NA NA NA NA NA NA NA NA NA
Jordan 1079 462 358 236 32 8 20 8 311 136
Kazakhstan 8449 3939 4863 1628 416 202 111 54 2320 1095
Kenya 1687468 360242 643541 301864 5827 65 450108 50642 138642 30001
Kuwait 242 124 103 38 0 0 4 2 121 63
Kyrgyzstan 5726 2449 3451 1091 240 117 358 162 1214 504
Laos 101817 38731 57708 6369 5752 2307 8977 3312 28944 11393
Latvia 194 98 121 43 0 0 5 3 50 27
Lebanon 2176 746 730 468 2 0 59 12 630 223
Lesotho 49690 11600 24457 12807 1674 23 875 115 3295 842
Liberia 265773 8584 47230 25344 3439 47 117225 16280 24606 823
Libya 7576 1217 2151 1332 13 0 2329 417 1544 262
Liechtenstein NA NA NA NA NA NA NA NA NA NA
Lithuania 579 283 276 99 0 0 41 21 218 108
Luxembourg 6 4 2 1 0 0 0 0 5 3
Macao SAR NA NA NA NA NA NA NA NA NA NA
Madagascar NA NA NA NA NA NA NA NA NA NA
Malawi 620325 130823 152028 69748 1881 20 323346 31615 36047 7019
Malaysia 19391 4174 4668 2064 4667 2429 2897 618 4512 954
Maldives NA NA NA NA NA NA NA NA NA NA
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Mali 2057430 104067 395563 179851 3420 43 1086769 132650 117058 5645
Malta NA NA NA NA NA NA NA NA NA NA
Mauritania 147759 13218 47424 23370 200 3 43615 6274 21759 1992
Mauritius NA NA NA NA NA NA NA NA NA NA
Mexico 77342 14003 28320 16243 5587 109 7817 1397 17665 3092
Moldova 793 343 439 137 0 0 70 31 230 105
Monaco NA NA NA NA NA NA NA NA NA NA
Mongolia 2824 1274 1807 569 42 20 419 197 435 193
Montenegro 32 14 18 6 0 0 1 1 9 5
Morocco 64946 8816 29817 17121 447 7 4564 704 11634 1682
Mozambique 1498667 296531 307070 137934 29768 312 807881 81409 117696 24939
Myanmar 205023 101069 152639 25531 9970 4725 10926 5354 64940 31770
Namibia 24064 6409 9673 5347 561 9 2693 429 2638 711
Nepal 240234 85678 136539 34840 14245 5753 10556 3906 68210 23998
Netherlands 779 420 248 91 0 0 2 1 468 255
Netherlands Antilles NA NA NA NA NA NA NA NA NA NA
New Caledonia NA NA NA NA NA NA NA NA NA NA
New Zealand NA NA NA NA NA NA NA NA NA NA
Nicaragua 15409 1787 4368 1706 111 19 941 280 1278 149
Niger 1791679 197119 441491 211780 3501 41 922474 106085 182547 20149
Nigeria 8870603 1322304 2515060 1484237 88708 1434 3855131 609514 881306 124828
North Korea 38764 14866 26938 7398 2014 872 720 293 6010 2548
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Norway 188 105 54 20 0 0 0 0 129 69
Oman 594 302 266 94 0 0 18 10 265 136
Pakistan 1788712 753717 1176087 349326 11792 5342 55675 24669 434692 181414
Panama 7802 1028 1647 675 31 5 373 113 1824 243
Papua New Guinea 139846 20710 46860 15930 10238 4275 62770 9507 10212 1589
Paraguay 5771 3635 3823 1521 278 50 936 603 602 359
Peru 41930 13134 22629 8654 8460 1490 4361 1604 5892 1840
Philippines 251176 57430 116768 27309 NA NA 60978 14445 52603 11816
Poland 4473 2245 3284 1121 0 0 51 26 765 380
Portugal 2340 468 345 215 8 0 15 3 1755 340
Qatar 25 13 11 4 0 0 0 0 11 6
Romania 7460 3424 3308 1014 0 0 1638 755 2085 930
Russia 10333 5213 6348 2229 67 33 580 298 2792 1474
Rwanda 379142 76032 89414 39092 11796 126 181796 18773 31855 6696
Samoa NA NA NA NA NA NA NA NA NA NA
San Marino NA NA NA NA NA NA NA NA NA NA
Sao Tome and Principe NA NA NA NA NA NA NA NA NA NA
Saudi Arabia 3983 2060 2206 747 74 39 188 102 1306 674
Senegal 488620 20969 113968 57263 1256 16 166075 21699 76307 2968
Serbia 1952 977 1198 411 0 0 62 30 571 268
Seychelles NA NA NA NA NA NA NA NA NA NA
Sierra Leone 1088739 28764 179995 81482 8218 93 502851 55424 143300 3711
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Singapore NA NA NA NA NA NA NA NA NA NA
Slovakia 269 135 128 47 0 0 1 1 113 59
Slovenia 267 134 120 43 0 0 7 4 121 61
Somalia 1054289 210262 457265 206355 9631 102 131713 13719 111292 20756
South Africa 141191 51713 48471 33045 6765 142 10412 2280 17392 6260
South Korea 4148 2127 591 211 838 437 149 77 1830 995
South Sudan NA NA NA NA NA NA NA NA NA NA
Spain 4936 1031 808 555 1 0 37 8 3405 695
Sri Lanka NA NA NA NA NA NA NA NA NA NA
Sudan 634885 85957 205793 112880 5888 90 219527 32722 74370 9739
Suriname 115 22 30 13 3 1 30 6 29 6
Swaziland 17691 5217 7755 4637 1000 17 584 95 1560 470
Sweden 476 251 107 41 0 0 1 1 335 178
Switzerland 470 211 203 58 0 0 20 9 220 102
Syria 67457 19683 20558 7654 570 192 3948 1422 8698 2596
Taiwan NA NA NA NA NA NA NA NA NA NA
Tajikistan 41455 16318 27457 7634 65 29 781 316 11743 4636
Tanzania 2270961 466346 657622 296854 41028 477 897762 102775 202335 39744
TFYR Macedonia NA NA NA NA NA NA NA NA NA NA
Thailand 79958 19936 53497 14481 17456 8321 5635 1220 26852 6947
Togo 544635 15124 91164 44127 2140 25 251854 27169 68382 1812
Trinidad and Tobago NA NA NA NA NA NA NA NA NA NA
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Tunisia 6067 1099 2327 1411 30 1 547 105 1574 291
Turkey 31778 15382 15964 5073 64 32 1392 663 13909 6606
Turkmenistan 11567 5356 8348 3000 5 3 31 16 2158 1062
UAE 720 326 436 121 1 0 8 4 236 109
Uganda 1811501 339853 469943 213200 13672 151 757494 82016 199413 43927
UK NA NA NA NA NA NA NA NA NA NA
Ukraine 11686 5431 7092 2393 22 11 379 184 2956 1498
Uruguay 357 238 190 86 0 0 18 12 109 80
USA 43514 7107 7344 4387 0 0 231 42 29883 5100
Uzbekistan 34062 15461 18416 5756 17 8 920 434 13152 5974
Vanuatu NA NA NA NA NA NA NA NA NA NA
Venezuela 54145 10227 8897 3795 3827 733 2950 564 7102 1293
Viet Nam 201050 31369 82505 23684 34032 15722 17989 3649 51762 7977
Yemen 152981 66632 92575 28940 1018 478 22933 10094 29223 12421
Zambia 687790 145366 185238 85330 11033 132 301830 35421 51747 11885
Zimbabwe 403158 85439 138633 66868 11022 118 127864 13374 16946 3563
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A.12 Country-specific International Agricultural TradeDeaths
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Table A.11: Country-specific international agricultural trade
deaths

All Diseases Diarrheal Disease Intestinal Nematodes Parasitic & Vector-Borne Diseases Other Diseases
Country Mean SD Mean SD Mean SD Mean SD Mean SD
Afghanistan 1545 25 1234 23 6 2 36 5 200 10
Albania 6 2 1 1 0 0 1 1 3 2
Algeria 64 4 27 4 0 0 4 1 14 2
Andorra 0 0 0 0 0 0 0 0 0 0
Angola 368 13 98 12 1 0 113 7 26 4
Antigua 0 0 0 0 0 0 0 0 0 0
Argentina 99 6 3 1 0 0 13 3 78 6
Armenia 1 1 1 0 0 0 0 0 1 1
Aruba 0 0 0 0 0 0 0 0 0 0
Australia 0 0 0 0 0 0 0 0 0 0
Austria 8 3 2 1 0 0 0 0 5 2
Azerbaijan 57 5 41 4 0 0 1 1 13 3
Bahamas 0 0 0 0 0 0 0 0 0 0
Bahrain 0 0 0 0 0 0 0 0 0 0
Bangladesh 3894 70 3550 13 10 3 114 9 1187 20
Barbados 0 0 0 0 0 0 0 0 0 0
Belarus 6 2 1 0 0 0 1 1 4 2
Belgium 11 3 3 2 0 0 0 0 7 3
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Belize 2 1 1 1 0 0 0 0 0 0
Benin 1880 17 588 21 8 0 767 11 203 6
Bermuda 0 0 0 0 0 0 0 0 0 0
Bhutan 17 3 8 2 0 0 1 1 8 3
Bolivia 95 4 69 6 0 0 4 2 9 1
Bosnia and Herzegovina 2 1 0 0 0 0 0 1 1 1
Botswana 23 1 11 3 0 0 1 1 2 1
Brazil 553 12 71 7 1 0 78 5 361 11
British Virgin Islands 0 0 0 0 0 0 0 0 0 0
Brunei 0 0 0 0 0 0 0 0 0 0
Bulgaria 11 3 1 1 0 0 5 2 5 2
Burkina Faso 8007 17 1267 32 12 1 4153 29 720 7
Burundi 2495 26 816 29 6 0 838 10 168 7
Cambodia 561 19 307 12 13 3 59 7 231 12
Cameroon 9741 48 3172 43 86 2 3297 28 1320 14
Canada 97 5 21 4 0 0 0 0 57 4
Cape Verde 0 0 0 0 0 0 0 0 0 0
Cayman Islands 0 0 0 0 0 0 0 0 0 0
Central African Republic 2005 21 604 20 9 0 865 6 90 6
Chad 10315 35 3854 60 26 1 2973 23 912 11
Chile 44 5 20 3 0 0 2 1 28 3
China 816 22 189 6 69 7 355 11 137 10
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Colombia 0 0 0 0 0 0 0 0 0 0
Congo 1017 17 313 19 2 0 402 10 71 6
Costa Rica 45 4 9 2 0 0 1 1 12 2
Croatia 5 2 1 1 0 0 0 0 4 2
Cuba 0 0 0 0 0 0 0 0 0 0
Cyprus 0 0 0 0 0 0 0 0 0 0
Czech Republic 20 4 5 1 0 0 0 0 15 3
Cote dIvoire 18075 25 4865 45 131 2 5201 22 2491 12
North Korea 193 11 115 6 21 3 7 2 32 5
DR Congo 11137 70 2772 38 54 1 5283 29 804 16
Denmark 11 4 2 1 0 0 0 0 8 2
Djibouti 59 6 25 6 0 0 4 1 6 2
Dominican Republic 0 0 0 0 0 0 0 0 0 0
Ecuador 68 3 14 3 0 0 7 2 34 3
Egypt 841 8 319 17 1 0 71 4 211 9
El Salvador 52 4 24 5 0 0 1 1 8 1
Eritrea 322 9 156 11 0 0 32 2 30 4
Estonia 0 1 0 0 0 0 0 0 0 1
Ethiopia 47959 127 21789 105 115 2 6746 39 3410 26
Fiji 0 0 0 0 0 0 0 0 0 0
Finland 4 2 0 0 0 0 0 0 3 1
France 118 10 17 4 0 0 1 1 78 8
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French Polynesia 0 0 0 0 0 0 0 0 0 0
Gabon 255 7 67 7 1 0 107 5 22 4
Gambia 150 4 36 6 0 0 48 3 18 1
Georgia 3 2 1 1 0 0 1 1 1 1
Germany 61 6 24 4 0 0 1 1 35 5
Ghana 10852 29 1604 31 14 0 5396 37 1131 7
Greece 40 6 1 1 0 0 0 0 38 4
Greenland 0 0 0 0 0 0 0 0 0 0
Guatemala 807 13 363 14 4 0 82 4 138 6
Guinea 4932 17 828 18 23 1 2351 13 570 5
Guyana 2 1 0 1 0 0 0 0 1 1
Haiti 0 0 0 0 0 0 0 0 0 0
Honduras 285 7 108 9 1 0 21 3 42 2
Hong Kong 0 0 0 0 0 0 0 0 0 0
Hungary 11 3 7 1 0 0 0 1 2 1
Iceland 0 0 0 0 0 0 0 0 0 0
India 19005 92 16702 23 15 3 1948 24 1725 22
Indonesia 2864 22 1745 26 5 1 272 7 596 13
Iran 37 5 26 4 0 0 0 1 7 2
Iraq 6 2 4 2 0 0 0 0 1 1
Ireland 0 0 0 0 0 0 0 0 0 0
Israel 8 1 1 1 0 0 0 0 6 1
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Italy 121 10 15 3 0 0 0 0 99 8
Jamaica 0 0 0 0 0 0 0 0 0 0
Japan 0 0 0 0 0 0 0 0 0 0
Jordan 5 2 2 1 0 0 0 0 2 1
Kazakhstan 7 2 4 2 0 0 0 0 2 1
Kenya 5725 38 2521 29 3 0 1164 8 293 7
Kuwait 0 0 0 0 0 0 0 0 0 1
Kyrgyzstan 5 1 3 1 0 0 1 0 1 0
Laos 940 23 550 9 35 5 82 8 276 13
Latvia 0 0 0 0 0 0 0 0 0 0
Lebanon 15 3 4 2 0 0 1 0 5 2
Lesotho 128 7 67 8 0 0 2 1 6 2
Liberia 3027 13 714 27 11 0 1061 18 292 3
Libya 8 2 2 2 0 0 1 1 3 1
Liechtenstein 0 0 0 0 0 0 0 0 0 0
Lithuania 5 2 0 0 0 0 1 1 3 2
Luxembourg 0 0 0 0 0 0 0 0 0 0
Macao SAR 0 0 0 0 0 0 0 0 0 0
Madagascar 0 0 0 0 0 0 0 0 0 0
Malawi 7623 54 2206 29 8 0 3576 26 277 7
Malaysia 39 3 11 2 0 0 9 1 18 2
Maldives 0 0 0 0 0 0 0 0 0 0

249



Mali 8100 30 1913 43 5 0 3720 33 408 6
Malta 0 0 0 0 0 0 0 0 0 0
Mauritania 1399 12 477 25 1 0 407 10 168 6
Mauritius 0 0 0 0 0 0 0 0 0 0
Mexico 234 8 91 6 0 0 13 1 73 4
Monaco 0 0 0 0 0 0 0 0 0 0
Mongolia 13 3 10 2 1 1 0 0 2 1
Montenegro 0 0 0 0 0 0 0 0 0 0
Morocco 462 12 218 16 0 0 28 2 80 5
Mozambique 7824 57 1822 45 32 1 4061 30 538 14
Myanmar 2004 30 1716 17 52 7 105 7 522 25
Namibia 193 11 86 9 0 0 15 2 19 3
Nepal 2266 37 1719 32 2 1 68 7 397 15
Netherlands 36 6 8 3 0 0 0 0 25 5
Netherlands Antilles 0 0 0 0 0 0 0 0 0 0
New Caledonia 0 0 0 0 0 0 0 0 0 0
New Zealand 0 0 0 0 0 0 0 0 0 0
Nicaragua 102 6 32 4 0 0 3 1 9 1
Niger 2517 26 707 21 4 0 1169 11 237 7
Nigeria 26140 99 8704 87 125 2 9546 63 2423 18
Norway 4 1 1 1 0 0 0 0 3 2
Gaza Strip 0 0 0 0 0 0 0 0 0 0
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Oman 3 2 0 0 0 0 0 0 2 2
Pakistan 8965 72 6279 63 5 2 210 11 1915 35
Panama 47 4 7 2 0 0 2 1 21 2
Papua New Guinea 1702 20 733 22 8 2 751 16 117 7
Paraguay 12 3 7 2 0 0 4 2 1 1
Peru 53 6 36 5 0 0 7 2 10 2
Philippines 439 11 190 8 0 0 90 5 160 6
Poland 15 3 10 2 0 0 0 0 3 1
Portugal 45 4 6 2 0 0 0 0 37 3
Qatar 0 0 0 0 0 0 0 0 0 0
South Korea 11 2 2 1 2 1 0 0 5 2
Moldova 6 2 1 1 0 0 2 1 3 2
Romania 22 3 4 2 0 0 9 2 8 2
Russia 5 2 2 1 0 0 1 1 3 1
Rwanda 482 10 131 10 1 0 226 8 33 4
Samoa 0 0 0 0 0 0 0 0 0 0
San Marino 0 0 0 0 0 0 0 0 0 0
Sao Tome and Principe 0 0 0 0 0 0 0 0 0 0
Saudi Arabia 3 2 2 1 0 0 0 1 1 1
Senegal 3748 19 965 23 3 0 1250 14 451 4
Serbia 4 1 2 1 0 0 0 0 1 1
Seychelles 0 0 0 0 0 0 0 0 0 0
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Sierra Leone 2275 7 445 12 10 0 922 16 327 3
Singapore 0 0 0 0 0 0 0 0 0 0
Slovakia 1 1 0 0 0 0 0 0 1 1
Slovenia 2 2 0 0 0 0 0 0 2 1
Somalia 1814 25 800 27 4 0 236 7 171 8
South Africa 716 23 277 15 0 0 33 3 93 7
South Sudan 0 0 0 0 0 0 0 0 0 0
Spain 116 7 15 4 0 0 0 0 87 5
Sri Lanka 0 0 0 0 0 0 0 0 0 0
Sudan 200 7 60 7 1 0 84 4 19 1
Suriname 1 0 0 1 0 0 0 0 0 0
Swaziland 127 6 61 9 0 0 4 1 10 2
Sweden 13 3 2 1 0 0 0 0 10 2
Switzerland 5 2 2 1 0 0 0 0 3 2
Syria 365 12 121 10 0 0 6 3 54 6
Taiwan 0 0 0 0 0 0 0 0 0 0
Tajikistan 372 15 241 7 0 0 14 3 105 7
Thailand 387 7 369 8 24 3 14 1 134 4
TFYR Macedonia 0 0 0 0 0 0 0 0 0 0
Togo 4191 15 854 32 11 1 1722 14 493 4
Trinidad and Tobago 0 0 0 0 0 0 0 0 0 0
Tunisia 41 3 15 5 0 0 3 1 12 2
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Turkey 46 6 16 3 0 0 4 2 27 5
Turkmenistan 72 8 52 5 0 0 0 0 14 3
Former USSR 0 0 0 0 0 0 0 0 0 0
Uganda 10876 63 3181 47 30 1 4098 31 1077 21
Ukraine 12 3 5 2 0 0 1 1 6 2
UAE 1 1 0 0 0 0 0 0 1 1
UK 0 0 0 0 0 0 0 0 0 0
Tanzania 23763 53 7984 64 79 1 8509 32 1601 24
USA 342 5 51 4 0 0 1 0 249 5
Uruguay 5 2 3 1 0 0 0 0 1 1
Uzbekistan 54 5 30 4 0 0 2 1 19 4
Vanuatu 0 0 0 0 0 0 0 0 0 0
Venezuela 21 1 3 1 0 0 1 0 8 1
Viet Nam 385 5 179 7 26 3 30 2 136 4
Yemen 407 16 261 12 0 1 61 8 66 6
Zambia 4207 42 1274 21 8 0 1746 18 258 7
Zimbabwe 5076 44 1870 32 10 0 1568 16 175 7

253



A.13 Country-specific International Agricultural TradeDALYs

See next page.

254



Table A.12: Country-specific international agricultural trade
DALYs

All Diseases Diarrheal Disease Intestinal Nematodes Parasitic & Vector-Borne Diseases Other Diseases
Country Mean SD Mean SD Mean SD Mean SD Mean SD
Afghanistan 175653 407 118737 183 3344 65 27105 119 17667 123
Albania 397 20 207 11 0 0 32 5 140 11
Algeria 6150 46 2637 53 18 1 236 11 1347 20
Andorra 0 0 0 0 0 0 0 0 0 0
Angola 28439 153 7364 82 178 3 8880 60 2231 33
Antigua 0 0 0 0 0 0 0 0 0 0
Argentina 2499 44 234 8 0 0 406 14 1496 38
Armenia 248 13 151 8 0 0 13 4 70 8
Aruba 0 0 0 0 0 0 0 0 0 0
Australia 0 0 0 0 0 0 0 0 0 0
Austria 199 12 77 7 0 0 4 1 105 8
Azerbaijan 6436 75 4687 43 0 0 59 8 1427 19
Bahamas 0 0 0 0 0 0 0 0 0 0
Bahrain 0 0 0 0 0 0 0 0 0 0
Bangladesh 229828 436 164848 140 19851 88 9434 87 77869 215
Barbados 0 0 0 0 0 0 0 0 0 0
Belarus 818 28 467 14 0 0 45 4 268 11
Belgium 196 16 69 6 0 0 0 0 124 10
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Belize 254 9 94 5 0 0 0 0 50 3
Benin 148638 204 40505 186 892 5 68549 95 17569 52
Bermuda 0 0 0 0 0 0 0 0 0 0
Bhutan 1365 38 663 17 0 0 45 6 635 27
Bolivia 10009 34 5832 38 1313 13 606 18 982 12
Bosnia and Herzegovina 163 8 92 5 0 0 14 3 47 7
Botswana 1495 22 578 20 0 0 185 8 173 9
Brazil 30688 109 7671 57 1439 23 5997 33 10920 50
British Virgin Islands 0 0 0 0 0 0 0 0 0 0
Brunei 2 1 1 1 0 0 1 0 1 0
Bulgaria 592 11 273 14 0 0 121 11 170 10
Burkina Faso 629108 206 81505 273 1549 7 352522 259 62631 47
Burundi 183396 215 54276 160 2083 4 67683 120 14643 74
Cambodia 44099 179 21184 105 669 20 6819 76 18978 110
Cameroon 798777 451 224220 460 14267 15 321567 305 109277 128
Canada 1711 15 340 23 0 0 4 2 1058 20
Cape Verde 0 0 0 0 0 0 0 0 0 0
Cayman Islands 0 0 0 0 0 0 0 0 0 0
Central African Republic 154380 230 39002 159 2094 7 77836 99 7161 57
Chad 806643 364 285505 391 5799 11 249801 199 77123 158
Chile 1267 29 604 18 0 0 55 7 708 14
China 75158 198 20195 90 16550 123 18063 102 9994 93
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Colombia 0 0 0 0 0 0 0 0 0 0
Congo 67577 195 17058 100 1345 7 30310 68 5934 56
Costa Rica 3890 25 702 19 237 12 119 6 562 13
Croatia 177 12 87 9 0 0 2 2 70 6
Cuba 0 0 0 0 0 0 0 0 0 0
Cyprus 0 0 0 0 0 0 0 0 0 0
Czech Republic 522 21 245 8 0 0 3 1 266 11
Cote dIvoire 1449441 253 351794 484 19777 20 462926 309 207043 97
North Korea 22815 121 15855 76 1185 29 404 16 3537 44
DR Congo 937089 629 203080 327 11054 13 489656 266 66491 137
Denmark 185 12 52 3 0 0 0 0 123 7
Djibouti 3614 43 1471 32 0 0 258 5 507 12
Dominican Republic 0 0 0 0 0 0 0 0 0 0
Ecuador 7476 41 2158 31 1296 13 449 13 1026 13
Egypt 82667 140 29975 148 3724 11 8096 37 18047 73
El Salvador 4279 27 1752 52 265 2 410 9 496 14
Eritrea 18446 56 8258 69 55 1 1992 19 2639 27
Estonia 49 7 32 5 0 0 0 1 10 3
Ethiopia 3169976 974 1303320 862 42582 30 566019 261 297120 337
Fiji 0 0 0 0 0 0 0 0 0 0
Finland 134 11 60 5 0 0 0 0 71 7
France 2061 38 362 17 0 0 20 4 1226 33
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French Polynesia 0 0 0 0 0 0 0 0 0 0
Gabon 17585 97 3619 56 503 4 8489 62 1749 29
Gambia 11452 37 2582 56 28 1 3682 34 1640 13
Georgia 278 13 138 6 0 0 38 5 92 6
Germany 1073 19 413 10 0 0 20 4 603 23
Ghana 817818 236 110873 347 2349 8 411773 322 97193 74
Greece 610 27 83 7 0 0 3 2 507 20
Greenland 0 0 0 0 0 0 0 0 0 0
Guatemala 61529 142 24965 140 9414 11 4833 31 6383 45
Guinea 401473 149 56433 98 4013 10 211335 206 41691 30
Guyana 140 9 28 4 0 0 24 3 35 4
Haiti 0 0 0 0 0 0 0 0 0 0
Honduras 23183 80 7144 85 2142 5 2229 26 3366 35
Hong Kong 0 0 0 0 0 0 0 0 0 0
Hungary 383 16 261 14 0 0 8 2 77 4
Iceland 0 0 0 0 0 0 0 0 0 0
India 1035459 425 819736 207 17851 67 132927 226 126183 196
Indonesia 152213 158 72205 169 2627 43 21945 50 44255 93
Iran 4096 49 3017 38 15 3 97 5 570 17
Iraq 631 22 456 16 0 0 33 6 101 7
Ireland 0 0 0 0 0 0 0 0 0 0
Israel 150 6 20 3 0 0 0 0 107 5
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Italy 1910 39 292 10 0 0 9 2 1481 33
Jamaica 0 0 0 0 0 0 0 0 0 0
Japan 0 0 0 0 0 0 0 0 0 0
Jordan 569 14 189 18 0 0 10 2 164 10
Kazakhstan 969 31 558 15 0 0 13 2 266 13
Kenya 327293 299 124818 220 1130 4 87572 73 26890 64
Kuwait 14 3 6 2 0 0 0 0 7 2
Kyrgyzstan 569 10 343 6 0 0 35 2 121 5
Laos 81294 273 46076 106 4593 60 7117 75 23110 113
Latvia 47 5 29 4 0 0 1 1 12 4
Lebanon 1119 23 375 26 0 0 31 3 324 16
Lesotho 7919 53 3898 69 267 3 138 5 525 19
Liberia 249890 135 44407 219 3233 10 109891 155 23136 40
Libya 1178 12 334 18 0 0 360 4 240 8
Liechtenstein 0 0 0 0 0 0 0 0 0 0
Lithuania 208 11 99 9 0 0 15 3 78 8
Luxembourg 4 2 1 1 0 0 0 0 3 1
Macao SAR 0 0 0 0 0 0 0 0 0 0
Madagascar 0 0 0 0 0 0 0 0 0 0
Malawi 520687 481 127609 392 1579 6 270529 163 30257 68
Malaysia 5093 22 1226 21 1226 21 757 13 1185 13
Maldives 0 0 0 0 0 0 0 0 0 0
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Mali 643191 304 123660 324 1069 3 336875 278 36595 54
Malta 0 0 0 0 0 0 0 0 0 0
Mauritania 97888 86 31417 145 132 1 28847 66 14415 45
Mauritius 0 0 0 0 0 0 0 0 0 0
Mexico 14284 64 5230 59 1032 6 1459 23 3262 23
Monaco 0 0 0 0 0 0 0 0 0 0
Mongolia 1890 34 1209 32 28 5 0 0 291 14
Montenegro 5 2 0 0 0 0 0 0 1 1
Morocco 41739 60 19162 165 288 2 2940 25 7477 41
Mozambique 646187 544 132401 282 12835 13 348400 230 50748 112
Myanmar 129251 256 96227 209 6285 62 6758 50 40940 210
Namibia 13323 94 5356 76 0 0 1494 16 1460 29
Nepal 109270 265 62104 176 6479 66 4832 58 31025 130
Netherlands 659 16 210 9 0 0 2 1 396 15
Netherlands Antilles 0 0 0 0 0 0 0 0 0 0
New Caledonia 0 0 0 0 0 0 0 0 0 0
New Zealand 0 0 0 0 0 0 0 0 0 0
Nicaragua 9919 48 2812 41 72 5 607 21 823 7
Niger 199282 140 49105 107 389 3 102395 144 20304 53
Nigeria 2002970 668 567897 667 20030 27 875536 483 198998 292
Norway 57 8 16 3 0 0 0 0 39 6
Gaza Strip 0 0 0 0 0 0 0 0 0 0
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Oman 272 18 122 8 0 0 8 3 121 13
Pakistan 663473 545 436237 302 4374 78 20822 146 161237 371
Panama 3183 27 672 22 0 0 153 9 744 15
Papua New Guinea 129445 175 43375 153 9477 86 58408 149 9453 47
Paraguay 1291 43 855 22 62 3 209 13 135 7
Peru 5738 52 3097 50 1158 19 580 18 806 24
Philippines 33706 104 15669 70 0 0 8186 54 7059 47
Poland 910 28 668 12 0 0 11 2 156 10
Portugal 809 15 119 9 0 0 5 1 607 14
Qatar 2 1 1 1 0 0 0 0 1 1
South Korea 258 10 37 4 52 6 10 2 114 8
Moldova 690 22 382 13 0 0 61 8 200 15
Romania 908 22 402 14 0 0 195 9 254 9
Russia 884 35 543 20 0 0 50 7 239 12
Rwanda 33431 125 7884 71 1040 4 16097 55 2809 37
Samoa 0 0 0 0 0 0 0 0 0 0
San Marino 0 0 0 0 0 0 0 0 0 0
Sao Tome and Principe 0 0 0 0 0 0 0 0 0 0
Saudi Arabia 384 18 212 13 7 3 19 4 126 12
Senegal 259945 129 60631 244 668 4 88698 138 40595 57
Serbia 157 15 97 7 0 0 5 2 46 7
Seychelles 0 0 0 0 0 0 0 0 0 0
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Sierra Leone 174762 45 28892 114 1319 4 80953 135 23002 18
Singapore 0 0 0 0 0 0 0 0 0 0
Slovakia 61 7 29 4 0 0 0 0 26 3
Slovenia 76 5 34 4 0 0 2 1 34 5
Somalia 140306 201 60853 220 1282 2 17427 54 14811 45
South Africa 45250 207 15534 124 2168 8 3338 31 5574 64
South Sudan 0 0 0 0 0 0 0 0 0 0
Spain 2058 23 337 20 0 0 15 3 1419 21
Sri Lanka 0 0 0 0 0 0 0 0 0 0
Sudan 15476 60 5016 68 144 2 5340 37 1813 16
Suriname 75 4 20 5 0 0 20 2 19 2
Swaziland 9722 71 4262 42 550 5 317 9 857 23
Sweden 202 10 46 5 0 0 0 0 143 6
Switzerland 102 9 44 5 0 0 4 2 48 3
Syria 39813 162 12134 78 336 12 2285 36 5133 51
Taiwan 0 0 0 0 0 0 0 0 0 0
Tajikistan 34530 155 22871 96 54 7 650 24 9782 51
Thailand 20944 66 14013 46 4572 46 1443 13 7033 32
TFYR Macedonia 0 0 0 0 0 0 0 0 0 0
Togo 326956 112 54728 219 1285 5 152056 164 41052 34
Trinidad and Tobago 0 0 0 0 0 0 0 0 0 0
Tunisia 3003 35 1152 25 0 0 273 11 779 15
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Turkey 4751 63 2387 34 10 3 203 9 2079 41
Turkmenistan 7150 82 5160 42 0 0 20 4 1334 38
Former USSR 0 0 0 0 0 0 0 0 0 0
Uganda 862101 479 223648 319 6507 9 359102 230 94901 136
Ukraine 1365 23 828 20 0 0 44 8 345 16
UAE 199 11 120 7 0 0 0 0 65 8
UK 0 0 0 0 0 0 0 0 0 0
Tanzania 1654357 767 479067 436 29889 19 657928 262 147398 211
USA 8080 31 1364 24 0 0 42 2 5549 22
Uruguay 112 11 60 5 0 0 6 2 34 6
Uzbekistan 5933 62 3208 42 0 0 161 12 2291 45
Vanuatu 0 0 0 0 0 0 0 0 0 0
Venezuela 2021 14 332 10 143 5 109 4 265 7
Viet Nam 39806 63 16335 55 6738 50 3567 22 10248 43
Yemen 40345 193 24415 82 268 15 6159 66 7707 68
Zambia 314051 365 84581 213 5038 10 138165 152 23628 69
Zimbabwe 403047 326 138595 224 11019 17 127543 137 16941 75
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A.14 SubSaharanAfrica Regional Analysis TabulatedRe-
sults

See next page.
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Table A.13: Sub-Saharan Africa analysis
Standard Error Odds Ratio CI LOW CI High Data Type

Year 1.0217 0.9532 0.9140 0.9942 Socioeconomics
Age 1.0157 1.2775 1.2392 1.3170 Socioeconomics
Population Density 1.0288 0.7728 0.7310 0.8169 Socioeconomics
Sex 1.0458 0.9958 0.9121 1.0872 Socioeconomics
Education 1.2620 0.4201 0.2662 0.6628 Socioeconomics
Has a bednet 1.0622 1.0164 0.9030 1.1441 Socioeconomics
Dwelling sprayed against mosquitoes 1.1194 0.9091 0.7288 1.1340 Socioeconomics
Wealth 1.0268 0.6903 0.6554 0.7270 Socioeconomics
Urban Rural 1.0886 0.5382 0.4557 0.6357 Socioeconomics
Water Source Unimproved 1.0933 1.3068 1.0971 1.5566 Socioeconomics
Sanitation Unimproved 1.0810 1.1476 0.9851 1.3368 Socioeconomics
Mean Temperature 1.0019 1.0040 1.0003 1.0078 Climate
Precipitation 1.0005 0.9994 0.9985 1.0003 Climate
Elevation 1.0781 0.9722 0.8390 1.1266 Climate
Rainfed Cropland 1.0388 1.1858 1.1005 1.2776 Agriculture
Irrigated or post-flooding cropland 1.0243 1.0469 0.9988 1.0972 Agriculture
Mosaic Cropland 1.0289 0.9685 0.9159 1.0241 Agriculture
Mosaic Natural Veg 1.0260 1.0406 0.9895 1.0942 Agriculture
Forest Cover 1.0441 1.3396 1.2309 1.4580 Forest Cover Change
Forest Loss 1.0151 0.9841 0.9557 1.0135 Forest Cover Change
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A.15 Analysis of Rural Households Tabulated Results

See next page.
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Table A.14: Analysis of rural households
Standard Error Odds Ratio CI Low CI High Data Type

Year 1.0292 1.0062 0.9511 1.0644 Socioeconomics
Age 1.0181 1.2828 1.2385 1.3288 Socioeconomics
Population Density 1.0423 0.8112 0.7479 0.8797 Socioeconomics
Sex 1.0533 1.0112 0.9134 1.1196 Socioeconomics
Education 1.3095 0.4910 0.2894 0.8328 Socioeconomics
Has a bednet 1.0736 1.0030 0.8726 1.1528 Socioeconomics
Dwelling sprayed against mosquitoes 1.1412 0.8266 0.6381 1.0707 Socioeconomics
Wealth 1.0305 0.7590 0.7156 0.8051 Socioeconomics
Water Source Unimproved 1.1177 1.3712 1.1027 1.7053 Socioeconomics
Sanitation Unimproved 1.0947 1.0397 0.8708 1.2415 Socioeconomics
Mean Temperature 1.0024 1.0056 1.0008 1.0104 Socioeconomics
Precipitation 1.0006 0.9981 0.9969 0.9993 Climate
Elevation 1.1028 0.8743 0.7217 1.0591 Climate
Rainfed Cropland 1.0477 1.1914 1.0873 1.3054 Climate
Irrigated or post-flooding cropland 1.0203 1.0190 0.9797 1.0600 Agriculture
Mosaic Cropland 1.0254 0.9472 0.9017 0.9950 Agriculture
Mosaic Natural Veg 1.0225 1.0383 0.9940 1.0847 Agriculture
Forest Cover 1.0556 1.2394 1.1147 1.3781 Agriculture
Forest Loss 1.0161 0.9778 0.9477 1.0089 Forest Cover Change
Forest Loss 1.0151 0.9841 0.9557 1.0135 Forest Cover Change
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A.16 Analysis of Urban Households Tabulated Results

See next page.
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Table A.15: Analysis of urban households
Standard Error Odds Ratio CI Low CI High Data Type

Year 1.0803 0.7640 0.6567 0.8888 Socioeconomics
Age 1.0307 1.2609 1.1885 1.3378 Socioeconomics
Population Density 1.0440 0.7824 0.7191 0.8514 Socioeconomics
Sex 1.0895 0.9177 0.7758 1.0855 Socioeconomics
Education 1.5976 0.2752 0.1099 0.6893 Socioeconomics
Has a bednet 1.1177 1.0018 0.8054 1.2459 Socioeconomics
Dwelling sprayed against mosquitoes 1.2379 1.0786 0.7099 1.6388 Socioeconomics
Wealth 1.0559 0.5448 0.4896 0.6061 Socioeconomics
Water Source Unimproved 1.1813 0.9943 0.7173 1.3782 Socioeconomics
Sanitation Unimproved 1.1831 1.6260 1.1694 2.2608 Socioeconomics
Mean Temperature 1.0009 0.9999 0.9982 1.0017 Socioeconomics
Precipitation 1.0002 1.0002 0.9999 1.0006 Climate
Elevation 1.0323 0.9649 0.9066 1.0270 Climate
Rainfed Cropland 1.0125 0.9930 0.9691 1.0176 Climate
Irrigated or post-flooding cropland 1.0300 1.0525 0.9932 1.1153 Agriculture
Mosaic Cropland 1.0101 1.0037 0.9841 1.0237 Agriculture
Mosaic Natural Veg 1.0105 0.9939 0.9737 1.0145 Agriculture
Forest Cover 1.0761 1.5520 1.3443 1.7918 Agriculture
Forest Loss 1.0213 0.9833 0.9436 1.0247 Forest Cover Change
Forest Loss 1.0151 0.9841 0.9557 1.0135 Forest Cover Change
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A.17 List of models

The below list highlights the variables used per model.

1. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation

2. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X10baseline , X20baseline , X30baseline , X40baseline

3. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X10baseline

4. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X20baseline

5. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X30baseline

6. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X40baseline

7. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X10baseline

8. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X20baseline

9. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X30baseline

10. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X40baseline

270



11. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X10baseline , X20baseline , X30baseline , X40baseline

12. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X10baseline , forestloss

13. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X20baseline , forestloss

14. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X30baseline , forestloss

15. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X40baseline , forestloss

16. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , forestcover , X10baseline , X20baseline , X30baseline , X40baseline
, forestloss

17. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X10baseline , forestloss

18. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X20baseline , forestloss

19. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X30baseline , forestloss

20. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X40baseline , forestloss

21. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , meantemp ,
prec , elevation , X10baseline , X20baseline , X30baseline , X40baseline , forestloss
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22. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation

23. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , X10baseline

24. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , X20baseline

25. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , X30baseline

26. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , X40baseline

27. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , X10baseline
, X20baseline , X30baseline , X40baseline

28. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X10baseline , X20baseline , X30baseline , X40baseline

29. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X10baseline

30. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X20baseline

31. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X30baseline

32. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X40baseline

33. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X10baseline , X20baseline , X30baseline , X40baseline , forestloss
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34. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X10baseline , forestloss

35. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X20baseline , forestloss

36. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X30baseline , forestloss

37. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
X40baseline , forestloss

38. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestloss

39. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
forestloss , meantemp , prec , elevation

40. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestloss ,
meantemp , prec , elevation

41. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagainst-
mosquitoes , wealthindex , URBANRURA , watersource , sanitation , +X10baseline
, forestloss

42. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagainst-
mosquitoes , wealthindex , URBANRURA , watersource , sanitation , +X20baseline
, forestloss

43. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagainst-
mosquitoes , wealthindex , URBANRURA , watersource , sanitation , +X30baseline
, forestloss

44. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagainst-
mosquitoes , wealthindex , URBANRURA , watersource , sanitation , +X40baseline
, forestloss
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45. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagainst-
mosquitoes , wealthindex , URBANRURA , watersource , sanitation , +X10baseline
, X20baseline , X30baseline , X40baseline , forestloss

46. year , age , popdense , sex , education , bednetforsleeping , dwellingsprayedagain-
stmosquitoes , wealthindex , URBANRURA , watersource , sanitation , forestcover ,
meantemp , prec , elevation

47. meantemp , prec , elevation

48. X10baseline , X20baseline , X30baseline , X40baseline

49. X10baseline

50. X20baseline

51. X30baseline

52. X40baseline

53. forestcover

54. forestloss

55. forestcover , X10baseline

56. forestcover , X20baseline

57. forestcover , X10baseline , X20baseline , X30baseline , X40baseline

58. forestcover , X30baseline

59. forestcover , X40baseline

60. forestloss , X10baseline

61. forestloss , X20baseline

62. forestloss , X30baseline

63. forestloss , X40baseline

64. forestloss , forestcover

65. meantemp , prec , elevation , X10baseline , X20baseline , X30baseline , X40baseline

66. meantemp , prec , elevation , X10baseline

67. meantemp , prec , elevation , X20baseline
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68. meantemp , prec , elevation , X30baseline

69. meantemp , prec , elevation , X40baseline

70. meantemp , prec , elevation , forestcover

71. meantemp , prec , elevation , forestloss

72. meantemp , prec , elevation , forestcover , X10baseline

73. meantemp , prec , elevation , forestcover , X20baseline

74. meantemp , prec , elevation , forestcover , X30baseline

75. meantemp , prec , elevation , forestcover , X40baseline

76. meantemp , prec , elevation , forestcover , X10baseline , X20baseline , X30baseline
, X40baseline

77. meantemp , prec , elevation , forestloss , X10baseline

78. meantemp , prec , elevation , forestloss , X20baseline

79. meantemp , prec , elevation , forestloss , X30baseline

80. meantemp , prec , elevation , forestloss , X40baseline

81. meantemp , prec , elevation , forestloss , X10baseline , X20baseline , X30baseline ,
X40baseline

275



A.18 Table of AICs

Table A.16: AIC values for each model

Model AIC BIC Log Likelihood Deviance Residuals
africa0 16987 17132 -8475 16951 24016
africa1 16968 17146 -8462 16924 24012
africa2 16969 17123 -8466 16931 24015
africa3 16986 17140 -8474 16948 24015
africa4 16987 17141 -8475 16949 24015
africa5 16987 17141 -8475 16949 24015
africa6 16929 17090 -8444 16889 24014
africa7 16944 17106 -8452 16904 24014
africa8 16945 17107 -8453 16905 24014
africa9 16947 17108 -8453 16907 24014
africa10 16927 17113 -8440 16881 24011
africa11 16930 17099 -8444 16888 24013
africa12 16945 17115 -8451 16903 24013
africa13 16946 17116 -8452 16904 24013
africa14 16947 17117 -8453 16905 24013
africa15 16927 17121 -8440 16879 24010
africa16 16971 17133 -8466 16931 24014
africa17 16988 17149 -8474 16948 24014
africa18 16988 17150 -8474 16948 24014
africa19 16988 17150 -8474 16948 24014
africa20 16971 17157 -8463 16925 24011
africa21 16989 17111 -8480 16959 24019
africa22 16975 17104 -8471 16943 24018
africa23 16990 17120 -8479 16958 24018
africa24 16991 17120 -8479 16959 24018
africa25 16991 17120 -8479 16959 24018
africa26 16975 17128 -8468 16937 24015
africa27 16932 17093 -8446 16892 24014
africa28 16934 17071 -8450 16900 24017
africa29 16948 17086 -8457 16914 24017
africa30 16949 17086 -8457 16915 24017
africa31 16950 17088 -8458 16916 24017
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africa32 16932 17102 -8445 16890 24013
africa33 16934 17079 -8449 16898 24016
africa34 16949 17095 -8457 16913 24016
africa35 16950 17096 -8457 16914 24016
africa36 16952 17097 -8458 16916 24016
africa37 16989 17119 -8479 16957 24018
africa38 16946 17107 -8453 16906 24014
africa39 16988 17142 -8475 16950 24015
africa40 16976 17114 -8471 16942 24017
africa41 16991 17128 -8478 16957 24017
africa42 16991 17128 -8478 16957 24017
africa43 16991 17129 -8479 16957 24017
africa44 16975 17136 -8467 16935 24014
africa45 16945 17098 -8453 16907 24015
africa46 18325 18382 -9156 18311 24027
africa47 18294 18359 -9139 18278 24026
africa48 18300 18340 -9145 18290 24029
africa49 18367 18407 -9178 18357 24029
africa50 18365 18405 -9177 18355 24029
africa51 18366 18406 -9178 18356 24029
africa52 18230 18270 -9110 18220 24029
africa53 18365 18405 -9177 18355 24029
africa54 18164 18213 -9076 18152 24028
africa55 18231 18279 -9109 18219 24028
africa56 18163 18236 -9073 18145 24025
africa57 18232 18280 -9110 18220 24028
africa58 18232 18281 -9110 18220 24028
africa59 18300 18349 -9144 18288 24028
africa60 18366 18415 -9177 18354 24028
africa61 18365 18413 -9176 18353 24028
africa62 18365 18414 -9177 18353 24028
africa63 18295 18368 -9139 18277 24025
africa64 18224 18272 -9106 18212 24028
africa65 18249 18338 -9113 18227 24023
africa66 18257 18322 -9121 18241 24026
africa67 18325 18390 -9154 18309 24026
africa68 18324 18389 -9154 18308 24026
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africa69 18327 18392 -9156 18311 24026
africa70 18172 18237 -9078 18156 24026
africa71 18325 18389 -9154 18309 24026
africa72 18107 18180 -9044 18089 24025
africa73 18168 18241 -9075 18150 24025
africa74 18174 18246 -9078 18156 24025
africa75 18174 18247 -9078 18156 24025
africa76 18099 18196 -9037 18075 24022
africa77 18258 18331 -9120 18240 24025
africa78 18324 18397 -9153 18306 24025
africa79 18324 18397 -9153 18306 24025
africa80 18326 18399 -9154 18308 24025
africa81 18249 18347 -9113 18225 24022
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A.19 Correlation matrix

Please see the next page.
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Table A.17: Correlation matrix

year sex age edu bednet dwelling wealth temp prec Rainfed Irrigated CMosaic VMosaic floss popdense fcover elevation
year 1 0 0 0 0.1 0 -0.1 0 0.1 0 -0.1 -0.1 -0.1 0.1 -0.1 0 0.2
sex 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
age 0 0 1 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0
edu 0 0 0.2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
bednet 0.1 0 0 0 1 0.1 0 0.2 -0.1 0.1 0.1 0 0.1 -0.1 0 -0.1 -0.2
dwelling 0 0 0 0 0.1 1 0 0 -0.1 0 0 -0.1 0 0 0 -0.1 -0.1
wealth -0.1 0 0 0 0 0 1 -0.1 0 -0.1 0 0.1 0.1 0 0.5 0 -0.1
temp 0 0 0 0 0.2 0 -0.1 1 -0.2 0.3 0.2 0.2 -0.1 0 -0.1 -0.2 -0.7
prec 0.1 0 0 0 -0.1 -0.1 0 -0.2 1 -0.2 -0.1 0.1 -0.1 0.1 0.1 0.4 0.2
Rainfed 0 0 0 0 0.1 0 -0.1 0.3 -0.2 1 0.1 0 -0.1 -0.1 0 -0.2 -0.3
Irrigated -0.1 0 0 0 0.1 0 0 0.2 -0.1 0.1 1 0.4 -0.1 0 0 0 -0.3
CMosaic -0.1 0 0 0 0 -0.1 0.1 0.2 0.1 0 0.4 1 -0.1 0 0 0 -0.1
VMosaic -0.1 0 0 0 0.1 0 0.1 -0.1 -0.1 -0.1 -0.1 -0.1 1 0 0 -0.1 -0.1
floss 0.1 0 0 0 -0.1 0 0 0 0.1 -0.1 0 0 0 1 0 0.4 0
popdense -0.1 0 0 0 0 0 0.5 -0.1 0.1 0 0 0 0 0 1 -0.1 0
fcover 0 0 0 0 -0.1 -0.1 0 -0.2 0.4 -0.2 0 0 -0.1 0.4 -0.1 1 0.2
elevation 0.2 0 0 0 -0.2 -0.1 -0.1 -0.7 0.2 -0.3 -0.3 -0.1 -0.1 0 0 0.2 1
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A.20 Description of DHS Dataset
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Rural Urban
Malaria (+ve) Malaria (-ve) Malaria (+ve) Malaria (-ve)

Total Sample 4196 (27.2%) 11212 (72.7%) 1126 (13.1%) 7500 (86.9%)

Age
Mean 2.513 2.347 2.548 2.35
SD 1.396 1.498 1.39 1.468

Sex
Male 2055 (48.9%) 5554 (49.5%) 524 (46.5%) 3697 (49.3%)
Female 2141 (51.0%) 5658 (50.5%) 602 (53.5%) 3803 (50.7%)

Mothers Education
No Education 4166 (99.29%) 11112 (99.11%) 1117 (99.20%) 7402 (98.69%)
Primary 29 (0.69%) 99 (0.88%) 9 (0.79%) 97 (1.29%)
Secondary and Higher 1 (0.02%) 1 (0.009%) 0 (0.00%) 1 (0.01%)

Household has a bed-net for sleeping
Yes 3095 (73.76%) 8674 (77.36%) 818 (72.65%) 5823 (77.64%)
No 1101 (26.24%) 2538 (22.64%) 308 (27.35%) 1677 (22.36%)

Dwelling sprayed against mosquitoes in last 12 months
Yes 231 (5.51%) 1113 (9.93%) 57 (5.06%) 619 (8.25%)
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Rural Urban
No 3965 (94.49%) 10099 (90.07%) 1069 (94.94%) 6881 (91.75%)

Wealth Index
1 = Poorest 1283 (30.58%) 3135 (27.96%) 255 (22.65%) 103 (1.37%)
2 = Poorer 1205 (28.72%) 2982 (26.59%) 104 (9.24%) 537 (7.16%)
3 = Middle 985 (23.47%) 2510 (22.39%) 259 (23.00%) 1229 (16.39%)
4 = Richer 570 (13.58%) 1870 (16.68%) 333 (29.57%) 2227 (29.69%)
5 = Richest 153 (3.65%) 715 (6.38%) 327 (29.04%) 3252 (43.36%)

Water Source
Improved 575 (13.70%) 4177 (37.25%) 488 (43.34%) 5182 (69.09%)
Unimproved 3621 (86.30%) 7035 (62.75%) 638 (56.66%) 2318 (30.91%)

Sanitation
Improved 1699 (40.49%) 5495 (49.01%) 718 (63.77%) 5860 (78.13%)
Unimproved 2497 (59.51%) 5717 (50.99%) 408 (36.23%) 1640 (21.87%)

Mean Temperature (°C)
Mean 25.204 24.744 25.799 25.198
SD 2.641 3.726 2.328 3.019

Precipitation (mm)
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Rural Urban
Mean 83.25 79.644 96.681 74.461
SD 98.717 88.586 96.891 96.259

Rainfed Cropland (%)
Mean 35.592 27.583 33.605 24.345
SD 31.174 29.17 27.935 25.599

Irrigated/Post-Flooding Cropland (%)
Mean 2.88 2.528 2.353 2.53
SD 11.847 9.833 9.864 8.644

Crop Dominant Mosaic (tree, shrub, herbaceous cover) (<50%) (%)
Mean 6.274 6.992 5.497 8.478
SD 9.88 9.035 8.107 9.669

Veg-dominant Mosaic (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) (%)
Mean 3.226 5.799 4.08 6.426
SD 6.485 9.818 6.527 8.142

Elevation (m)
Mean 407.1323 519.852 334.985 353.13
SD 383.7677 643.831 290.712 493.864
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Rural Urban

Forest Loss
Mean 0.146 0.179 0.149 0.179
SD 0.364 0.447 0.344 0.379

Forest Cover
Mean 16.621 14.291 15.601 10.677
SD 16.193 14.141 16.437 11.934

Table A.18: DHS data stratified by urban and rural clusters
and malaria presence or absence.
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