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ABSTRACT 

Although Sri Lankan coastal areas are well-known for their high background radiation 

levels, mostly due to Th-bearing minerals, higher natural background radiation levels 

inland were discovered in 2015. The radioactivity data collected at this location raised 

concern regarding the risk of public radiation exposure since the screened area 

comprised a school playground. 

The present study reports on-site radioactivity measurements and geochemical analyses 

of environmental samples, such as four soil samples, two grass samples and six water 

samples from around the area of study. Subsequent series of batch and column 

experiments with the soil samples were carried out to better understand the 

environmental risk and potential mobility of dose-dominating NRs in the area. Since 

the mobility and bioavailability of NRs in the environment strongly depend on their 

aqueous speciation, adsorption behavior and the solubility of relevant solid phases, 

classical sequential and single extraction methods were applied and modern 

spectroscopic techniques were used to gain insight. 

Gamma spectrometry from the soil samples clearly showed the dominant contribution 

of Th-232 and progenies to total activity ranging between 4440.0 ± 364.7 and 7037.9 ± 

647.0 Bq kg-1 followed by K-40 in the range from 339.6 ± 16.9 to 538.9 ± 55.8 Bq kg-

1 and U-238 including progenies in 318.7 ± 88.7 – 510.9 ± 106.3 Bq kg-1. In-situ 

measurements yielded background radiation levels at one-meter height above the 

ground of 2.5 ± 1.2 µGv h-1 (maximum of 21.6 ± 10.9 mSv yr-1). The calculated 

absorbed dose rates in air, 3 – 4.6 µGy h-1, while the calculated radiation hazard indices 

yielded mean values of 9300 ± 1800 Bq kg-1, 33 ± 6, 25 ± 5, and 20 × 10-3 ± 4 × 10-3 

for Radium Equivalent Activity (Req), Gamma Index (Iγ), External Hazard Index (Hex) 

and Excess Life Time Cancer Risk (ELCR), respectively. All these indices exceed their 

corresponding world averages. Activity concentrations of Th-232, U-238 and K-40 in 

grass sample dry masses are in the range of 770 – 975, 21 – 30, and 540 – 574 Bq kg-1, 

and the estimated soil-grass transfer factors (TFs) are 0.12 – 0.16, 0.05 – 0 08, and 0.94 

– 1.40, respectively. Thoron gas releases from soil samples in exhalation experiments 

using a closed system result in activities 35 – 76 kBq m-3. Conversion to annual 

effective doses via the inhalation pathway yields values of 2.49 to 5.46 mSv. Note that 
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those values do not reflect the real situation, where extensive dilution by air will reduce 

thoron concentrations by orders of magnitude even in closed rooms.  

All soil samples were characterized by several spectroscopic and microscopic 

techniques. The basic physicochemical characterization evidenced acidic properties 

and moderate total organic carbon content in the soils. X-ray Diffraction (XRD) data 

reveal that the major mineralogy of the site is dominated by kaolinite and quartz with 

minor fractions of Fe crystalline phases like hematite and goethite. Target trace 

elements were found to be present in different mineral phases, i.e., as oxides, silicates 

and phosphates, and in mixed phases as identified by Scanning Electron Microscopy 

(SEM) with Energy Dispersive X-ray (EDX) spectroscopy. Linear Combination Fitting 

(LCF) of X-ray Absorption Spectroscopy (XAS) data involving Th-monazite 

(phosphate), thorite (silicate), and thorianite (oxide) provided evidence that Th in the 

samples is present as Th-monazite (61 ± 7%), thorite (ThSiO4, 24 ± 7%), and thorianite 

(ThO2, 16 ± 7%). Further study of single particles selected from the sediment samples 

using micro-focus X-ray Fluorescence (μ-XRF) and micro-X-ray Absorption 

Spectroscopy (μ-XAS) confirmed the nature of the mineral phases and the chemical 

forms of Th. 

Element mobility was tentatively addressed by applying several batch and column 

experiments. Selective chemical extractions showed that ~8 and 16 wt.% of total Th 

and U could be dissolved/extracted from the operationally defined soil non-residual 

fractions and >85 wt.% of Th and U are associated with the major residual fraction of 

NR-containing mineral phases (oxide, phosphate and silicate phases). Mass balance 

calculations confirmed full recovery of 100 ± 15% Th while for U it was 100 ± 40% as 

compared to the amount quantified by X-ray Florescence (XRF) spectroscopy.  

Batch extractions and column leaching experiments with simulated rainwater (SRW), 

silica nanoparticles (Si NPs) and humic acid (HA), show clearly lower leachability of 

Th and U when compared to the chemical extractions. Overall potential mobilization 

of the trace elements with the above solutions in both batch and column experiments 

are <1% under the experimental conditions. Column experiments with SRW show 

relatively higher release of particulate species at the beginning likely due to erosion and 

eventually reach the measured on-site groundwater concentration levels. Added Si NPs 

and HA did not cause any significant effect on metal leaching and seemed strongly 



vii 

 

retained by the soil. Scoping calculations involving geochemical models qualitatively 

retrieved the trend of the target elemental mobilities in the experiments. 

The obtained results suggest important public, on-site exposure to radioactive NR-

containing particles. Complementary results on associated light rare earth elements 

(REEs) are also presented given current socio-economic interest and in view of 

potential future environmental impact.  

The present study provides for the first time relevant information about NR minerals in 

Sri Lankan soil, marking the onset for future studies concerning radioactive risk 

assessment in Sri Lanka. 
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ABSTRAKT 

Obwohl die Küstengebiete Sri Lankas für ihre erhöhten Konzentrationen an natürlichen 

radioaktiven Stoffen bekannt sind, wurden im Jahr 2015 noch höhere Strahlungswerte im 

Landesinneren entdeckt. Die an diesem Ort gemessenen Aktivitäten gaben Anlass zur 

Besorgnis hinsichtlich des Risikos einer Strahlenbelastung der Bevölkerung, da der untersuchte 

Bereich einen Schulhof umfasst. In der vorliegenden Studie wurden Radioaktivitätsmessungen 

vor Ort durchführt, Umweltproben im Labor charakterisiert und anschließend Serien von 

Batch- und Säulenexperimenten mit Bodenproben durchgeführt, um mögliche Umweltrisiken 

und die potenzielle Mobilität natürlicher Radionuklide (NR) in dem Gebiet besser zu verstehen. 

Gammaspektrometrische Analysen von Bodenproben zeigen einen dominanten Beitrag von 

NRs der Th-232- und U-238-Zerfallsreihen, gefolgt von K-40, was zu mittleren Dosiswerten in 

einem Meter Höhe über dem Boden von 2,5 ± 1,2 µGv h-1 führt (21,6 ± 10,9 mSv yr-1). 

Signifikante Exhalationen von Thoron (Rn-220) aus den Bodenproben konnten nachgewiesen 

werden. Alle Bodenproben wurden mit spektroskopischen und mikroskopischen Methoden 

charakterisiert. Kaolinit und Quarz mit geringen Anteilen von Hämatit und Goethit dominieren 

die mineralogische Zusammensetzung des Bodens. Zudem liegen in geringen Massenanteilen 

Th-, U- und Seltenerdhaltige Oxide, Silikate, Phosphate und Mischphasen vor. Aus der 

Anwendung selektiver chemischer Extraktionsverfahren ergibt sich, dass ~8 und 16 Gew.-% 

des gesamten Th und U aus den operational definierten nicht-residualen Fraktionen des Bodens 

gelöst/extrahiert werden können. >85 Gew.-% des Th / U liegen in der residualen Fraktion der 

NR-haltigen Mineralphasen vor. Experimente mit simuliertem Regenwasser (SRW), Silica-

Nanopartikeln (Si NPs) und Huminsäure (HA) zeigen eine deutlich geringere Auslaugbarkeit 

von Th und U im Vergleich zu den chemischen Extraktionen. Insgesamt liegt die potentielle 

Mobilisierung der Spurenelemente (Th, U, La) mit den oben genannten Lösungen unter den 

Versuchsbedingungen bei <1%. Säulenexperimente mit SRW zeigen anfänglich eine erhöhte 

Freisetzung von partikulären Th und U Spezies, und erreichen schließlich Konzentrationen, die 

vergleichbar mit den Konzentrationen in den vor Ort beprobten Grundwässern sind. Zugesetzte 

Si NPs und HA verursachen keinen signifikanten Effekt auf die Metallauswaschung und 

werden offenbar vom Boden zurückgehalten. Orientierende geochemische Rechnungen 

konnten den Trend der experimentell beobachteten Mobilisierung von Th, U und La durch 

Kolloide wiedergeben. Zusammenfassend deuten die erhaltenen Ergebnisse auf die signifikante 

Rolle partikulärer NR für die lokale radiologische Exposition hin. Die vorliegende Studie liefert 

zum ersten Mal detaillierte Informationen zu NR-haltigen Mineralien in srilankischen Böden 

und zur möglichen Mobilisierung von NR und stellt damit den Auftakt für zukünftige Studien 

zur Risikobewertung durch erhöhte Vorkommen an Ablagerungen natürlicher radioaktiver 

Minerale in Sri Lanka dar. 
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1. INTRODUCTION 

 

1.1. Background of the work 

 Motivation 

Human exposure to background radiation levels due to the presence of naturally 

occurring radionuclides (NRs) has become an important general research focus and a 

significant issue considering the radiological protection during last decades throughout 

the world. Characterization of the origin, speciation, potential mobility, transport 

pathways and subsequent bioavailability of corresponding NRs are key factors in 

environmental risk and impact assessment or for modelling the future impacts essential 

for appropriate radiation protection decision making. 

Even though many studies referring to the geochemical behavior of NRs like Th and U 

can be found in the literature, most of them are based on either experimental data under 

laboratory conditions or studies at contaminated areas like mining sites. Therefore, 

there is a substantial need to investigate NRs under realistic conditions in areas where 

people live and to examine their potential mobility in the environment and subsequent 

transfer to biota, especially considering the fact that the data for many NRs on the above 

aspects are still missing. 

In the current study, one of the high background radiation areas in central Sri Lanka 

was carefully selected as study area given its precise location and potential implications 

within the playground of a school. Therefore, proximity of public school and private 

buildings to the location of interest under increased radiation levels may obviously raise 

concerns related to potential health issues via direct exposure through external and/or 

internal pathways (radiotoxicity). Maximum exposure is expected to be related to in-

situ external radiation and inhalation of radiological gases or dust particles containing 

NRs, especially during dry seasons, becoming particularly relevant when pupils are 

active on the playground.  

Nevertheless, systematic studies of measured activity levels, chemical compositions 

and environmental behavior of NRs in this area are less documented. Subsequently, an 

estimation of bioavailable NRs concentration and their corresponding impact on the 

ecosystem is important for the assessment of environmental and human safety. The 

activity concentration of the NRs in soil, exhalation of Radon isotopes and 

bioavailability to native plants are vital factors to be evaluated under this perspective. 
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The potential implications of these results should be interpreted in the context of 

radioactive risk assessment concerning human exposure and environmental 

bioavailability.  

Overall, it is obvious that proper assessment of the playground soil is vital and urgent 

due to the current lack of detailed studies concerning inland locations in Sri Lanka. 

Moreover, such a study is not only crucial to estimate the radiation exposure to the 

public, it could even become of interest with respect to the possible occurrence of 

previously unidentified radionuclide-bearing minerals or in the sense of natural 

analogous studies. Therefore, focusing on the above issues, this PhD thesis mainly 

addresses a comprehensive environmental analysis and radiological dose estimation in 

this area. 

 

 Aim, objectives and thesis structure 

Since the radioactivity from natural sources is the main contribution to global human 

exposure, more attention has recently been given to the speciation and mobility of NRs. 

Consequently, this PhD thesis aims at solid state speciation of NRs in the soil samples 

from the playground of the school presenting higher than average background radiation 

levels, and at determining potential mobility/bioavailability of mainly Th-232 and U-

238 along with some associated REEs, i.e., Lanthanum (La), Neodymium (Nd), and 

Cerium (Ce). To achieve these perspectives, extensive characterization techniques are 

applied to investigate the overall solid speciation while the environmental accessibility 

and mobility studies are carried out through batch extractions and column experiments. 

Complementary information on some light REEs is included given their natural 

association to NRs-bearing minerals, their relatively high concentrations in the area and 

their economic relevance for new technologies. This thesis includes: 

• An extensive description of the sampling techniques as well as in- and ex-situ 

methodologies used for fundamental and advanced solid phase characterization 

and applied experimental approaches for mobility studies (Chapter 2). 

• An evaluation of the solid phase speciation concerning Th and U, the main elements 

of interest, and subsequent radiation risk assessment caused by the elevated 

background radiation levels due to presence of high concentration of Th in the area 

of study (Chapter 3). This approach was carried out based on the obtained data from 
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both (i) on-site gamma radiation and laboratory radionuclide activity measurements 

and (ii) analyses of fundamental surface mineralogy and chemical compositions by 

basic surface (i.e., XRD, ATR-FTIR, XPS, SEM-EDX, and XRF) and advanced 

solid phase characterization techniques (i.e., XAS – both bulk and microanalysis). 

The geochemical characterization of natural water samples collected in the targeted 

area is also discussed to get an idea about the targeted elemental distribution in 

natural waters. 

• Identification of the potential environmental mobility of Th, U, and La (selected as 

the representative element out of all studied light REE, showing the analogous 

behavior of Ce and Nd in Appendices) via several batch approaches (Chapter 4), 

including both extraction and column experiments (for which only one soil sample 

will be discussed in detail while the results for the rest of the soil samples are 

included in Appendices). Suitable extraction protocols are applied in batch and/or 

column experiments to (i) identify soil leachability and element mobility in 

environmentally representative conditions (i.e., simulated rainwater and soil 

interactions with silica nanoparticles and humic acids as potential carrier phases), 

as well as (ii) characterize intrinsic mineral carrier phases of the elements of interest 

through selective extractions. These results are also contrasted to the knowledge of 

solid phase speciation gained in Chapter 3, providing a better understanding of the 

potential environmental behavior, transfer and fate of Th, U, and light REEs in the 

area of study. 

Scoping geochemical calculations taken from the available literature and 

development of a geochemical model for Th and U based on some results from soil 

characterization (Chapter 3) and mobility studies will be presented at the end of this 

chapter. These data will also help evaluating potential interactions and effects of the 

hypothetical transport of Th and U with simulated rainwater and in presence of 

silica nanoparticles and humic acids, providing a comparison to assess the real 

system with laboratory data. 

• A final compilation (Chapter 5) of general conclusions, future perspectives 

regarding radiological safety measures and further potential research lines 

concerning the study area.  
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1.2. Review and summary of relevant literature 

 Sources of radiation exposure 

Continuous exposure of all living organisms on earth to ionizing radiation is a natural 

phenomenon. The main types of radiation exposures that can cause adverse health 

effects to humans are natural, man-made, medical radiation and occupational radiation. 

According to United Nations Scientific Committee on the Effects of Atomic Radiation 

(UNSCEAR) report in 2000, about 87% of the radiation dose received by mankind is 

due to natural radiation sources and the remaining is due to anthropogenic sources [1]. 

The sources of natural radiation exposures could be categorized according to their 

origin such as radiations coming from (1) outer space and from the surface of the sun 

(cosmic rays) and (2) terrestrial radionuclides that occur in the Earth crust (in soil, air, 

water, building materials, food, human body, etc.). Some details about terrestrial NRs 

in soil will be addressed later in this Chapter.  

The extent of exposure to any kind of radiation depends on location and human 

activities. Humans can be exposed to radiation both externally via cosmic rays or 

terrestrial gamma rays and internally by inhalation of contaminated air (mainly radon) 

and ingestion of contaminated foodstuff. These exposures lead to the global average 

effective dose to humans of 2.40 mSv yr-1 with a typical range of 1 – 10 mSv yr-1. A 

summary of various contributions is presented in Table 1.1 [1].  

 

Table 1.1: Average annual effective doses to human caused by natural radiation [1] 

Components of exposure Annual effective dose (mSv) % 

Cosmic rays 0.38 16.1 

Cosmogenic radionuclides 0.01 0.4 

Terrestrial radiation: external exposure 0.46 19.5 

Terrestrial radiation: internal exposure without 

radon 

0.23 9.8 

Terrestrial radiation: internal exposure from radon   

Inhalation of Rn-222 1.2 51.0 

Inhalation of Rn-220 0.07 3.0 

Ingestion of Rn-222 0.005 0.2 

Total 2.40 100 

 

According to Table 1.1, half of the global average annual effective dose (1.2 mSv) is 

due to the radon, thoron and their short-lived decay products. Radon, Rn-222 (Rn), and 
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thoron, Rn-220 (Tn), originate from the decay chains of U-238 and Th-232, 

respectively. The corresponding decay chains are shown below. 

 

𝑈92
238

𝛼
→ 𝑇ℎ90
234

𝛽−

→ 𝑃𝑎91
234

𝛽−

→ 𝑈92
234

𝛼
→ 𝑇ℎ90
230

𝛼
→ 𝑅𝑎88
226

𝛼
→ 𝑅𝑛86
222    

(𝑅𝑛 − 𝑡1/2 = 3.8 𝑑𝑎𝑦𝑠, 𝐸𝛼 = 5.5 𝑀𝑒𝑉) 

 

𝑇ℎ90
232

𝛼
→ 𝑅𝑎88
228

𝛽−

→ 𝐴𝑐89
228

𝛽−

→ 𝑇ℎ90
228

𝛼
→ 𝑅𝑎88
224

𝛼
→ 𝑅𝑛86
220   

(𝑇𝑛 − 𝑡1/2 = 56 𝑠𝑒𝑐. , 𝐸𝛼 = 6.3 𝑀𝑒𝑉) 

 

Alpha decay of Ra-226 in the U-238 decay series generates Rn while Ra-224 in the Th-

232 decay series generates Tn with significantly different half-lives. Radon has a half-

life of only a few days (3.8 days) with two longer-lived decay products, Pb-210 and Po-

210, which are important in dose evaluations. Thoron has a very short half-life of 55 

seconds and therefore cannot travel as far from its source as Rn before it decays and it 

has no long-lived decay products. Both Rn and Tn decay into their progenies, polonium, 

lead and bismuth, before finally reaching stable isotopes of lead.  

The main source of Rn and Tn in the atmosphere is release from soil, rock and building 

materials and once they exhale, their decay products are generated in the air [1]. The 

primary defining factors for emanation of these gases involve the content of Radium 

(Ra) in soil and the soil properties while the moisture content and climatic conditions 

are also factors [2]. Further, the concentration of atmospheric Rn/Tn depends on the 

rate of diffusion from the ground and diffusion in the air [3]. The inhalation of these 

gases may cause some health problems in lungs due to densely ionizing alpha particles 

emitted by deposited short-lived decay products of Rn, Po-218 and Po-214. Rn is a 

carcinogen designated by the World Health Organization (WHO) and is the second-

leading cause of lung cancer next to smoking [1, 4-9]. Therefore, areas with high 

concentration of primordial radionuclides might cause some elevated external exposure 

of these Rn and Tn. Even though the dose from Tn is generally negligible compared to 

that from Rn in most areas of the world [1], significant contributions of Tn to the 

inhalation dose were reported in some areas, particularly those with Th-rich monazite 

sands [10-12].  
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Additionally, humans can be exposed to radiation by manmade sources or enhanced 

levels of natural radiation from anthropogenic activities [1]. The latter part includes air 

travel, mining operations, mineral processing, mine tailing, use of phosphate fertilizers 

and agricultural practices, building materials, treatment of wastewater and drinking 

water, geothermal energy, production of industrial minerals, and burning fossil fuels 

like coal, nuclear weapon tests, etc. All these enhance the levels of environmental 

radioactivity [1, 13, 14]. Significant amounts of man-made radionuclides (Cs-137 and 

Sr-90) can be released to the environment via the nuclear related activities and 

applications. Such as small quantities of radioactive materials released to the 

environment during nuclear power production and large quantities in nuclear accidents 

like Chernobyl and Fukushima or nuclear fallouts from nuclear weapon tests for 

military purposes. Among them, waste generated by the nuclear power plants has a high 

level of radiotoxicity and should therefore be carefully treated and disposed. Even 

though used nuclear fuel can be reprocessed to separate U and Pu, the direct disposal 

of irradiated nuclear fuel has become international consensus in many countries. Such 

disposal can be done in geological formations like crystalline rock, clay rock and rock 

salt [15]. 

 

 Naturally occurring radionuclides  

1.2.2.1.  General overview 

Terrestrially originated NRs are components of the biosphere and thus are found 

naturally in the environment in all soils and plants at different levels and even inside 

the human body itself and may irradiate various organs with α and β particles, as well 

as gamma rays. External irradiation from these NRs is an important component 

regarding the exposure of human populations. The decay of NRs in soil produces 

gamma-beta radiation that may cross the soil-air interfaces and results in human 

exposure to radiation. The exposure rate to a person is determined mainly by the 

concentrations of NRs in the soil and the time of exposure. The dose rates can be 

measured by the direct measurements in air from terrestrial NRs or estimated from the 

concentrations of NRs in soil. 

There are three types of NRs are in nature, (i) primordial, (ii) radiogenic, and (iii) 

cosmogenic radionuclides. Some terrestrial NRs have half-lives comparable to the age 

of the earth which are called primordial radionuclides implying that they did not 
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significantly decay after formation of the earth. The principal primordial NRs existing 

in nature are U-238, Th-232 and K-40, and they constitute the major terrestrial 

components of natural background radiation. Together with their progenies, they 

significantly contribute to the total dose from natural sources. Some other terrestrial 

radionuclides, such as the U-235 series, Rb-87, La-138, Sm-147, and Lu-176, exist in 

nature but due to low levels, their contributions to the dose to humans are rather small. 

In general, Th and U are considered as major energy sources, which drive the evolution 

of the earth and planets. However, such radioactive elements in uppermost soil layers 

are mostly immobile which may cause problems for the environment and human health 

as they can be easily integrated in the food chain and thereby induce risk for ecosystems, 

agro-systems and health [16].  

Radiogenic nuclides (most commonly referred to as radiogenic isotopes) are nuclides 

that are produced by a process of radioactive decay. The most common radioactive 

decay chains observed in nature, commonly called the thorium (4n) series or thorium 

cascade, the radium or uranium (4n+2) series or uranium cascade, and the actinium 

(4n+3) series or plutonium cascade are started with long-lived nuclides, Th-232, U-238 

and U-235, respectively, have existed since the formation of the earth. All these chains 

are ending in three different, stable isotopes of lead, i.e. Pb-208, Pb-206, and Pb-207, 

respectively, as shown in Figure 1.1 (the images are modified from the decay chains at 

[17]) while the total energy released from the initial parent nuclide to the final stable 

isotope of each series including the energy lost to neutrons are 42.6, 51.7, and 46.4 

MeV, respectively. The radiogenic nuclides might be radioactive or stable and used in 

radiometric dating. These radionuclides can be divided into long-lived and short-lived 

isotopes while their different half-lives have implications for their usage in different 

fields of science [18].  
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Figure 1.1: Decay series of (a) Th-232, (b) U-238, and (c) U-235. Full names of elements showed in the right side illustrate the elements 

appeared in all three decay series are in green, in two U series are in blue, in Th-232 and U-235 are in brown, and unique in in U-238 and 

U-235 are in red  



9 

 

Some unstable isotopes occur naturally by cosmic radiation called cosmogenic 

radionuclides such as C-14 (half-life ~5730 years) and H-3 (half-life ~12.3 years), and 

they are constantly regenerated. Most of these radionuclides are formed in Earth’s 

atmosphere but some are formed within the Earth materials such as rocks and soil 

exposed to cosmic rays. The measurements on these radionuclides give insight into a 

range of geological and astronomical processes while the two main fields of application 

of them are dating and tracing [19].  

Main sources of the terrestrial NRs in the environment are the minerals containing NRs. 

These minerals in soil are mainly inherited from the underlying geology and further 

influenced by the geographical setting [20, 21]. The respective minerals are not 

uniformly distributed, occur at different levels in various regions on earth, and their 

concentration depends on the local geology of each region in the world while the 

specific levels of radiation are related to the types of rock from which the soils originate. 

Higher radiation levels are normally associated with igneous rocks, such as granite, and 

lower levels with sedimentary rocks. As an exception, some phosphate rocks also show 

relatively high content of NRs. Mineral composition may have been potentially 

modified over long periods of time by weathering of original rock material and 

minerals, erosion, and volcanic eruptions with consequences for NR mobility in the 

environment. Mobility and chemical behavior of these NRs in geological settings play 

a major role in their distribution in the environment [22].  

Understanding the bioavailability and bioaccumulation of NRs under natural 

environmental conditions is a complex and challenging subject of study. The 

knowledge of the concentration levels of NRs and their distribution and subsequent 

mobility in the environment is very important in several fields of science. These 

radionuclides can be used as natural tracers in geological and radioecological processes 

and hence allow understanding many important phenomena in atmosphere, biosphere, 

and geosphere and the respective interfaces [23, 24]. The isotopes of U, Th and Ra are 

particularly interesting to study due to their different chemical properties and long half-

lives. Besides, these elements are recognized as toxic if accumulated inside the human 

body, which motivates studies of these elements. NRs can enter human body mainly 

via (1) ingestion of food, which can be simulated by assessing the bioaccumulation of 

NRs and (2) inhalation of contaminated air or dust particles containing NRs. Therefore, 
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it is crucial in this study to investigate the transfer of NRs in the various compartments 

of the biosphere. 

The availability of NRs to plants, i.e. the amounts taken up, and subsequent 

bioaccumulation originates from and depends on several factors. The interaction of 

plants with NRs at a site can occur in two ways: (1) by foliar absorption of NRs 

deposited upon leaves or (2) uptake from the plant root zone in the soil. These two 

modes cannot be clearly distinguished in the natural systems, since for the target site of 

the present work radionuclides can easily be deposited on the leaves by the means of 

fugitive dust while pupils play in the playground or by wind. Uptake of radionuclides 

by plants from the soil is influenced by several factors. The major governing factor for 

the availability of these elements to the plants via root uptake from the adjacent soil is 

the solubility and thermodynamic activity of uncomplexed ions [25]. The soluble ionic 

forms of the radionuclides must exist in the soil solution adjacent to the root membrane 

for some finite period in order to be up taken by the plants [26]. The solubilization of 

NRs is mainly determined by the form and the NRs concentration in the rhizosphere as 

well as by the physicochemical characteristics of the soil, such as pH, clay and organic 

matter content, etc. However, in the geographical perspective, these chemical and 

physical properties of the soil are continuously varying and are the result of the 

combined effects of soil parent material, local topography, local climate, biological 

processes, time, and human activities [27]. Furthermore, some plant factors also affect 

this process, such as plant species, plant age, stage of growth, rate of physiological 

activity, plant root characteristics, plant nutritional status, moisture availability, the 

kinetics of ion transport across the membranes, the metabolic fate of absorbed ions, and 

ion interactions within the plant [26, 28]. Therefore, it is clear that NR uptake by plants 

depends on the interrelations between the soil factors and plant factors, which make 

their subsequent uptake by plants highly complex. 

The risk assessment of NR contamination with respect to the biosphere usually includes 

bioaccumulation factors or transfer factors (TF), for estimating the plant uptake from 

the soil. Since this factor mainly depends on the corresponding location, it is 

encouraged/recommended to use such factors preferably as site-specific data [29]. 

Transfer factors also help understanding the biogeochemical cycling of NRs in the 

environment and their accumulation in the food chain [30-32]. Even though almost all 
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foods contain some amount of NRs like K-40, Th-232, U-238 and their progenies [1], 

their amounts depends on the geographical region, agricultural practices, and type of 

food. Normally, the food crops growing in the areas with high background radiation 

levels can be contaminated with higher amounts of NR than the crops growing in 

regions of normal background levels. Grazing and the consumption of the contaminated 

water by animals potentially also increases the accumulation of NRs in animal products 

resulting in access to the human body [33].  

 

1.2.2.2.  Fundamental properties and chemistry of Th and U 

The major terrestrial NRs, Th and U show some unique fundamental properties. The 

two elements belong to the actinide series in the periodic table, which in general exhibit 

different oxidation states following different chemical behavior, which complicates the 

prediction of their geochemical behavior. Their solubility depends on pH, Eh, reaction 

with complexants such as carbonate, phosphate, humic acid, etc., and sorption to 

surfaces of minerals and/or colloids in the water. However, in general, data on the 

environmental behavior of Th are scarce in literature compared to U. 

 

➢ Thorium 

Thorium is, probably surprisingly for many, the most abundant radioactive element, 

three to four times higher in abundance than U and about as abundant as Pb or Mo, in 

the Earth’s crust (crustal abundance 9.6 – 12 mg kg-1 [34]) and can be found in trace 

amounts in rocks, soils, surface water, groundwater, plants, and animals. Thorium was 

discovered by the Norwegian amateur mineralogist Morten Thrane Esmark in 1828 and 

identified by Jöns Jacob Berzelius, a Swedish chemist, from a mineral sample, which 

is now known as thorite (ThSiO4). Thorium has a unique chemistry, and yet has 

remained relatively unexplored. The atomic number is 90 with an atomic mass of 232 

and the corresponding electronic configuration is [Rn] 6d2 7s2. It has 26 known isotopes 

but only 12 of them have half-lives above one second while only 3 have half-lives 

sufficiently long to be of environmental concern. These three notable isotopes are 

described in Table 1.2.  

Essentially, Th-232 is the most abundant isotope in nature with a half-life of about 1.4 

×1010 years. Both Th-232 and Th-230 are present in soil and ores in secular equilibrium 

with Ra-228 and Ra-226, respectively, in the absence of any geochemical interactions 
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(e.g. no access of water). Th-230 is a radioactive decay product of U-238 and is found 

in low concentrations in U deposits and mill tailings. Th-229 is produced as a daughter 

product of artificial U-233 and generally not considered as a radionuclide of concern in 

environmental contamination [35]. Thorium naturally occurs as oxide (ThO2), 

phosphate (ThPO4), and silicate (ThSiO4). It is concentrated in natural soil largely either 

in detrital minerals such as monazite and silicate minerals or adsorbed onto natural 

colloidal-sized materials. However, it is widely accepted that most of the Th-containing 

minerals are highly refractory to weathering and considered as very insoluble and Th is 

considered a more or less immobile element in natural environments. 

Thorium has some remarkable chemical and physical properties. Among them, Th 

metal is liquid over the widest temperature range of any element and ThO2 has the 

highest melting point of any known oxide [36]. It has an empty 5f orbital and +4 is the 

stable and exclusive oxidation state in the natural environment and is largely redox 

inactive, which means that it has a very high standard reduction potential [37, 38]. This 

Th(IV) has a large cationic radius of 1.14 Å with small electronegativity of 1.0 and an 

ionization potential of 6.95 eV. Therefore, it shows greatest affinity to other M(IV) 

elements such as U, Ce and Zr. Because of its large atomic size, high valence and 

electronegativity, Th cannot form isomorphic series that involve major rock forming 

minerals and occurs mostly in accessory minerals like zircon, sphene, epidote, 

uraninite, allanite and apatite in igneous rocks. Further, the large Th(IV) ion is 

hydrolyzed and significantly adsorbed on organics, clays and oxides in soil under 

environmental conditions resulting in its immobility [39]. Furthermore, due to its large 

size, the Th(IV) ion possesses the ability to reach multiple coordination numbers from 

4 to 15 allowing a wide-range of ligands to be coordinated with potential in various 

applications. The most common coordination number is 8 with respect to oxygen [36, 

37]. Owing to these high coordination numbers, Th exhibits fascinating properties with 

diverse topological configuration and rich coordination chemistry [40]. The typical Th 

compounds are colorless due to the lack of electrons in the 6d and 5f orbitals of Th(IV). 

Also, due to the high stability of Th(IV), it is frequently used as a structural analogue 

for other actinides which are difficult to handle under normal conditions, such as 

Np(IV) or Pu(IV) [41]. With respect to redox states, Th(III) is a potential oxidation state 

and has been reported in terms of free Th3+ in an aqueous solution of ThCl4 and HN3 

[42], which is obviously not available under natural conditions. 
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Table 1.2: Description of Th and U isotopes with the known natural abundance 

Isotopes of Th Decay Radiation Energy (MeV) 

 Abundance 

% 

Half-life 

(years) 

Mode Product Alpha  

(α) 

Beta 

(β) 

Gamma 

(γ) 

Th-229 Trace 7.9 × 103 α Ra-225 4.9 0.12 0.096 

Th-230 0.02 7.5 × 104 α Ra-226 4.7 0.015 0.0016 

Th-232 99.98 1.4 × 1010 α Ra-228 4.0 0.012 0.0013 

U-234 0.0054 2.4× 105 α Th-230 4.8 0.013 0.0017 

U-235 0.7204 7.0× 108 α Th-231 4.4 0.049 0.16 

U-238 99.2742 4.5× 109 α Th-234 4.2 0.010 0.0014 

 

The mobility of Th in soil is governed by the formation of hydrated Th4+ which is 

responsible for its solubility over a wide range of soil pH. In aqueous solutions, Th(IV) 

is capable to form both mono- and poly nuclear hydrolysis products. A wide range of 

Th(OH)n
4-n hydroxide complexes and subsequent olation or oxolation result in the 

formation of polynuclear compounds [43]. A number of polynuclear Th hydroxide 

species have already been identified, such as dimers: Th2(OH)2
6+, Th2(OH)3

5+, 

Th2(OH)4
4+, tetramers: Th4(OH)8

8+, Th4(OH)12
4+, pentamers: Th5(OH)12

8+, and 

hexamers: Th6(OH)14
10+, Th6(OH)15

9+ [44]. The most important ligands for Th aqueous 

speciation are hydroxide and carbonate. The formation of hydroxide complexes 

Thx(OH)y
4x-y in the absence of complexing ligands other than water is governed by the 

following reaction [45], 

𝑥𝑇ℎ4+ + 𝑦𝑂𝐻− ↔ 𝑇ℎ𝑥𝑂𝐻𝑦
4𝑥−𝑦

                            (𝐸𝑞 1.1) 

The distribution of aqueous Th species with pH in water (~10-11 mol L-1) is shown in 

Figure 1.2. The corresponding speciation can be described as follows: free Th+4 ion 

dominates at pH < 3, molecular 1:1, 1:2 and 1:3 hydroxy complexes, Th(OH)3+, 

Th(OH)2
2+ and Th(OH)3

+ are predominant between about pH 3-7, colloidal Th(OH)4
0 

is the major species above pH 7 where other pseudocolloidal occurrences may also 

occur [46, 47]. The solubility of Th in aqueous solution in the absence of other 

complexing ligands is controlled by the solubility of thorium oxide/thorium hydroxide 

[48].  
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Thorium in natural waters is usually complexed with sulfate, fluoride, chloride, nitrate, 

carbonates, phosphate or organic anions, which can increase the solubility of Th 

minerals and the mobility of Th in soil and ground waters [46, 49]. However, Th might 

be virtually absent in soil solutions at high pH due to the strongly decreasing solubility 

of ThO2 with increasing pH. Factors like particle size, presence of colloids and ionic 

strength can affect the solubility of Th [45, 50-52].  

There are some known health effects associated with Th in the areas with relatively 

high concentrations of Th. However, humans are always exposed to small amounts of 

Th via inhalation through air and ingestion with food and water, due to its availability 

nearly everywhere on earth. Inhalation of high levels of Th containing dust particles 

over a long time may be lethal and potentially increases the possibility of developing 

lung diseases, cancers in lungs, pancreas, hepatic, or kidney, and leukaemia [53-55]. 

Thorium has the ability to change genetic material and after injection of Th as contrast 

agent for special X-ray examinations into humans the appearance of liver diseases were 

reported. Further, Th can be stored in bones and long-term exposure can lead to bone 

cancer [56].  

Even though natural Th is radioactive and ubiquitous, its chemical properties are mainly 

utilized rather than its nuclear properties. The most revolutionary potential use of Th 

might be the application in nuclear industry. The theoretical feasibility of using Th as a 

Figure 1.2: Aqueous speciation of 10-11 mol L-1 Th(IV) in the absence of complexing ligands at I = 

0.001 mol L-1 NaCl and 25 °C (calculations were performed in Visual MINTEQ 3.1). Solid phase 

formation is not considered 
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nuclear fuel for Th-based nuclear reactor has been recognized for a long time. The Th 

fuel cycle offers higher burn-up, longer reactor life cycles and most importantly less 

nuclear waste with no plutonium generation. While Th-232 itself is not fissile, it 

transforms into the fissile isotope of U-233 upon absorption of a neutron. Even though 

the performance of Th-232/U-233 fuel cycle has been demonstrated in pilot-scale 

studies, the use of Th-based nuclear reactors is still in debate [57].  

 

➢ Uranium 

Uranium along with Th are the only actinides which naturally occur in considerable 

quantities. Yet, U is important in nuclear energy as the main source of fuel for 

commercial nuclear power plants. The crustal abundance of U is 2.7 mg kg-1 [58]. 

Uranium is also commonly found in trace amounts in soil, rock, surface and 

groundwater, plants, and animals. It was discovered by the German scientist Martin 

Klaproth in 1789. Uranium is a very important element in the actinide series with 

atomic number of 92, the highest atomic weight of 238 among the NRs and the 

electronic configuration of [Rn] 5f3 6d1 7s2. Higher concentrations of U can be observed 

in phosphate-rich soil and minerals like uraninite, brannerite and carnotite, but these 

concentrations are often below the ranges for uncontaminated soil. In its natural state, 

U occurs as an oxide ore, U3O8 along with additional oxides, UO2 and UO3. The most 

common oxidation states of U are shown in Table 1.3. 

Uranium has valences ranging from II to VI in the solid state where IV and VI are the 

most stable which show differences with respect to solubility, mobility and speciation. 

The hexavalent state, U(VI), is usually found in both solid-state and solution under 

oxidizing conditions, dominated by the uranyl cation, UO2
2+ at pH < 2.5. It is relatively 

soluble and undergoes complex formation with organic and inorganic ligands. The 

cation has a linear geometry that can coordinate with four to six ligands forming 

tetragonal, pentagonal and hexagonal bipyramidal polyhedral structures [59]. The 

mobility of U in soil is governed by this hydrated UO2
2+ cation which is responsible for 

its relatively high solubility over a wide range of soil pH. In the case of U(IV) which 

dominates under reducing conditions, relatively insoluble solid phases like uraninite are 

expected [60]. A similar coordination environment like Th(IV) occurs with a variable 

number of coordination states from 6-12 with 8 and 9 as the most common.  
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The study of the hydrolysis of U(VI) is quite complicated as it forms some oligomeric 

species. At low concentration such as <10-6 M in natural waters, the dominant species 

is UO2(OH)+ while at high concentrations, the oligomeric UO2
2+ species, such as 

(UO2)2OH3+, (UO2)2(OH)2
2+, (UO2)3(OH)4

2+, etc. are formed [61]. About 90-100% of 

the dissolved U in the oceans mainly consist of uranyl carbonate complexes such as 

Ca2UO2(CO3)3 and CaUO2(CO3)3
2- [62, 63]. In natural environment, the uranyl aquo 

cation prevails under acidic conditions while hydroxide and phosphate complexes are 

mostly found under neutral and carbonate complexes are predominant under alkaline 

conditions [64]. The total solubility of U increases with increasing complex formation 

and at low pH. The bioavailability and uptake by plants correlates with solubility. 

The radioactivity of U is weak and contributes little to the natural background radiation 

levels in the environment. Three natural isotopes, U-238, U-235, and U-234 (Table 1.2), 

and several isotopes ranging from U-217 to U-242 are exist.  

 

Table 1.3: The most common oxidation states of U and Th 

 Oxidation states Basic oxide compounds 

U IV, VI UO2,UO3 

Th IV ThO2 

 

Like Th, being naturally available in the environment, humans are always exposed to 

certain amounts of U from food, air, and water. Even though scientists have detected 

no harmful effects due to natural levels of U, chemical effects may occur after uptake 

of larger amounts of U with concomitant health effects. Further, long-term exposure of 

U through inhalation causes chronic lung diseases, acute leucopoenia, anemia, necrosis 

of the mouth, and bone, cranial, and nasal tumors [65, 66]. Uranium is not likely to 

accumulate inside the body and even though gastrointestinal absorption from food or 

water can deposit U internally, those absorbed amounts of U quickly leave the body 

through urine and faeces. The major health concerns are kidney damage caused by the 

chemical toxicity of soluble U compounds and bone cancers by U deposition on bones. 

Radiologically much more relevant than U itself are some of its decay products, 

especially radon, which can build up in confined spaces, such as inside buildings, and 

then can contribute to an enhanced risk for lung cancer. 
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Nowadays, the primary use of U is as fuel in nuclear power reactors to generate 

electricity via production of thermal energy by nuclear fission of U-235. U-238 acts as 

a target material for producing plutonium (Pu-239 is produced when U-238 absorbs a 

neutron). 

 

 Mobility of the natural radionuclides in terrestrial systems 

In general, NRs in the soil are classified into two groups, immobile and mobile 

radioactive elements [67]. Even though Th has been clearly identified to belong to the 

former category, radionuclides in the Th and U decay series (e.g. Rn and Ra) and U 

under certain (aerobic) conditions can be definitely mobile in the environment. The 

distribution and potential mobility of NRs in soil and the subsequent environmental 

toxicity depends on the occurring phases and the characteristic, on-site chemical-

physical conditions. It is well-established that bioavailability, toxicity and mobility of 

these NRs in soils mainly depend on soil texture, pH, element concentrations, and 

organic matter content, and are thus controlled by a combination of complex processes. 

These processes may include (i) releases of trace elements through mineral 

solubilization or surface ion exchange with the subsequent transport as free ions or as 

aqueous complexes and/or (ii) environmental, site-specific colloidal transport from 

mineral erosion and/or sorption to scavenger phases and organic matter. The following 

sections will focus firstly on known scavenger phases and organic complexes 

responsible of NR mobility in terrestrial environments, and then on published 

experimental approaches used to identify potential mineral solubilization and solid 

carrier phases [13, 14, 20, 68-74]. 

 

1.2.3.1.  Known potential solid scavengers and carrier phases   

Th, U and REEs are mainly abundant as bound in refractory host minerals like 

monazite, cheralite, zircon and thorite. The mobility of U and Th in soils when released 

from a source is generally limited by their incorporation into sparingly soluble solid 

phases like phosphates and oxides, and/or adsorption to the soil matrix. Direct evidence 

for the adsorption of a substantial fraction of these elements onto clay minerals and 

hydrous oxides of Fe3+ and Al3+ is also available in the literature [75, 76]. In fact, 

sorption studies of Th and U onto a variety of minerals and phases has been reported in 

the literature, including: oxides and silicates [77-81], clays [82, 83], Fe oxides [84-88], 

alumina [89, 90], organic matter [91, 92], and silica [77-81]. 
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Furthermore, minerals and compounds of Fe and their complexes with organic matter 

are very important in soil forming processes and they certainly influence element 

environmental dispersion and fate. The stability of these phases also varies among sites 

and chemical conditions, e.g., mineral solubility and trace element desorption from 

mineral surfaces increases with decreasing pH and decreases at high pH values [88, 93], 

explaining why higher availability and mobility of trace heavy metals, REEs and 

actinides are found in acidic soils [94]. Many researchers reported sorption of trace 

concentrations of U(VI) to Fe oxyhydroxides and found adsorption to be maximum at 

a pH of ~5 [95, 96]. Quigley et al reported that the sorption of Th onto hematite is rapid 

and equilibrium is attained within a few minutes [97]. Hongxia et al stated the strong 

sorption of Th to gibbsite over a wide pH range [98]. Some researches claimed that iron 

oxides/hydroxides and Fe-Al (hydr)oxides represent major binding phases for NRs in 

subsurface environments [70, 87, 93, 95, 97, 99, 100]. In addition, it was shown that 

colloidal Fe-Mn oxyhydroxides are capable of sorbing large amounts of trace metal 

ions [101]. Also, Th adsorption onto Fe-hydroxides is stronger than that of U and even 

significant at pH values as low as 2 [102]. Natural samples present a mixture of Fe 

containing species which may include not only the classical amorphous and crystalline 

phases but also Fe as potential free ions or associated to carbonates and /or organic 

matter. 

The amount of natural organic matter may also play a relevant role causing potential 

mobilization and transport of NRs [46, 87, 103], and REEs [104, 105] in the 

environment. As humic acids are abundant in the environment, complexation by 

organic ligands can affect the physical and chemical properties of dissolved elements 

including actinides like Th and U as well as REEs [60, 70, 93, 103, 106-111]. In general, 

actinides interact with humics either involving redox reaction, Coulombic attractions 

due to net anionic charge of the humic or direct site-specific binding to surface 

functional groups on the humics [41]. In soil, the organic content involving humic 

substances under oxidizing conditions, tend to be degraded by microbes aerobically and 

anaerobically leading to the release of bound metals. The presence of humic acids as a 

competing ligand has a strong effect on the retention of heavy metals onto mineral 

phases [87, 112-114]. Evidence for the importance of soil organic matter concerning 

the complexation of NRs indicates that complexation by high-molecular-mass organic 

carbon (humic matter) predominates over low molecular mass organic and/or inorganic 
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complexation, at least for similar systems as the elements and the environment 

investigated in this work [115].  

Noteworthy, kaolinite and Fe/Al oxides, together with smaller amounts of other 

components, dominate the clay fraction of lateritic soil. Clays as naturally occurring 

minerals typically contain admixtures. Clay particles which may dominate the colloidal 

phase are scavengers for actinides (Ac) like Th, U and lanthanides (Ln) [47, 116]. Clay 

minerals sorb primarily by surface complexation [117, 118] although additional 

contribution by cation exchange has been identified in some studies [119, 120]. From 

such particles, as well as from quartz [121, 122], Ln and Th can in principle be desorbed 

under favorable physicochemical conditions (i.e. low pH, high salt concentrations, 

presence of strongly complexing ligands). Especially, in the case of silica, sorption 

behavior of Th to silica reported in several ways in literature. Östhols et al. stated that 

Th sorption to silica takes place only in the pH range 3 to 6 while in the neutral to 

alkaline pH range, the hydrolysis of Th cause desorption from silica surface. He also 

added that it is also unlikely that silica will act as an efficient scavenger when the pH 

above 7 and the formation of Th-silica colloids at higher pH values decreases the 

sorption of Th onto silica [80].Other studies reported Th shows strong sorption to silica 

over a wide range of pH [81, 123, 124]. 

 

1.2.3.2.  Experimental approaches to identify potential scavenger and mineral-bearing 

carrier phases  

Several methods exist in the literature to determine the potential mobility and transport 

of NR under natural conditions. These include extraction methods, quantifying the 

leachability of NRs through column-leaching experiments with non-vigorous 

conditions [125, 126] and/or by applying specific leaching steps for of target minerals 

using different reagents in batch extractions. In this study, batch extraction/leaching 

and column leaching approaches were used to estimate potential carrier phases and 

mimic the potential mobility of NRs in the localized natural system.  

In general, chemical extraction protocols exist as tools for assessing mobility and 

bioavailability of NRs in the environment. The extractants are selected such that they 

are expected to lead to mobilization of ions or dissolution/degradation of targeted 

mineral lattices with gradual increase in extraction power. The results provide some 
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information about the different availabilities of NRs among different mineral phases 

[69]. Even though sequential schemes are frequently used for assessing availability and 

mobility of trace elements in soil matrices [127-130], there are some major 

shortcomings associated with sequential extractions. These include (1) potential re-

adsorption and redistribution of the trace elements which are released during an 

extraction step and re-adsorbed onto an undissolved phase, (2) loss of sample during 

intermediate washing steps to remove excess extractant solutions, (3) non-selectivity of 

certain reagents to specific solid samples, and (4) incomplete dissolution of the targeted 

mineral fractions and change in pH from the previous step [131, 132]. As an example 

of the lack of complete selectivity of reagents, the metal fraction recovered in the 

second step of the Tessier protocol, i.e. the carbonate fraction, NaOAc/HOAc, might 

be present as co-precipitate with carbonate minerals but also specifically sorbed to some 

sites of the surfaces, particularly on clays, organic matter and Fe/Mn oxyhydroxides 

[132]. Despite the need for larger amounts of sample, single extraction methods have 

been widely employed for faster analysis and they may help circumvent some of the 

aforementioned shortcomings of sequential extractions [133-135]. In any case, 

selective extractions are used to characterize operationally defined carrier phases of 

given trace metals in soil [136]. That is, the outcome of these extraction protocols 

should be considered and interpreted with care since the individual schemes are defined 

“operationally” and are not specifically assigned to selectively extract a particular metal 

ion or soil component [137].  

Furthermore, since the optimum selection of a certain scheme for NRs is still unclear, 

many protocols are available in the literature which are, moreover, modified from the 

one originally developed by Tessier et al. [127, 129, 131] and the BCR (Bureau 

Communautaire de Référence) method [138]. In fact, many studies revealed and 

confirmed that the results obtained for the same samples using different protocols 

yielded different results [139, 140]. For now, most common protocols applied for Th 

extractions, along with the common Tessier and BCR protocols, are shown in the Table 

1.4. A summarized description about the specific use of each chemical and the applied 

chemical extraction protocol in this study is shown in Table 1.5 [132, 136, 141-144]. 
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Table 1.4: Selected extraction protocols for the extraction of Th and U in soil and sediment samples 

 Extraction Steps 

F1 F2 F3 F4 F5 

Tessier et al. 

(1979) [127] 

Exchangeable 

1 M MgCl2 at pH 7 

Carbonates 

1 M NaOAc/HAc at pH 

5 

Fe-Mn oxides 

0.04 M NH2OH.HCl in 25% 

(v/v) HAc 

Organic matter 

30% H2O2/ 3.2 M NH4OAc 

Residual 

HF/HClO4 

Revised 

BCR [138] 

Water and acid 

soluble, exchangeable, 

carbonates 

0.11 M CH3COOH 

Fe-Mn oxyhydroxides 

0.5 M NH2OH.HCl at 

pH 1.5 

Organic matter and sulphides 

8.8 M H2SO4/1 M CH3COONH4 

Residual 

Aqua regia 

1 part HNO3+3 parts HCl 

 

Martinez-

Aguirre and 

Perianez 

[145] 

Carbonates 

1 M NaOAc/HAc at 

pH 5 

Organic matter and/or 

amorphous oxides 

0.1 M Na4P2O7/ NaOH 

at pH 9.8 

Amorphous Fe-Mn 

oxyhydroxides 

0.2 M NH4C2O4/0.2 M H2C2O4 

Crystalline Fe-Mn oxides 

0.175 M sodium 

citrate/0.025 M citric acid 

 

Guo et al. 

[133]  

Exchangeable 

1 M MgCl2 at pH 7 

Carbonates 

1 M NaOAc/HAc at pH 

5 

Organic matter and/or 

amorphous oxides 

0.1 M Na4P2O7/ NaOH at pH 9.8 

Amorphous Fe-Mn 

oxyhydroxides 

0.2 M NH4C2O4/0.2 M 

H2C2O4 

Crystalline Fe-Mn oxides 

Sodium dithionite in 

0.175 M sodium 

citrate/0.025 M citric acid 

Kaplan and 

Serkiz [130]  

Exchangeable 

0.44 M CH3COOH/0.1 

M Ca(NO3)2 

Organic matter 

0.1 M Na4P2O7/ NaOH 

at pH 9.8 

Amorphous Fe-Mn 

oxyhydroxides 

Tamm’s acid oxalate 

0.175 M NH4C2O4/0.1 M 

H2C2O4 

Crystalline Fe-Mn oxides 

Coffin’s reagent 

Sodium dithionite in 0.15 M 

sodium citrate/0.05 M citric 

acid 

Residual 

Aqua regia 

1 part HNO3+3 parts HCl 
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Table 1.5: Description of the chemicals used in the chemical extraction protocol in this study 

Exchangeable fraction  

➢ MgCl2 

• Does not attack organic matter, silicates or metal sulfides in soil.  

• Decrease of pH also been observed that may lead to partial dissolution of carbonate and Mn-oxide fractions 

Acid soluble 

fraction/carbonate 

➢ NaOAc/HOAc 

• Suitable for soils with low carbonate content. Sensitive to pH changes.  

• Recover metals co-precipitated with carbonate minerals. But metal ions specifically sorbed to some sites of the surface of clays, 

organic matter and Fe/Mn oxyhydroxides can be also extracted.  

• Lowering pH from 7 (F1) to 5 would release the remaining specifically adsorbed trace-metal ions that escaped extraction in F1.  

Organic  

➢ Na4P2O7 

• Promotes the dispersion of organic colloids in basic medium.  

• Targets OM bound to mineral surfaces via ligand exchange and cation bridging as well as MO in metal-OM complexes 

• Useful chelating agent to solubilize organic compounds precipitated by metallic cations (Ca, M, Al, Fe) 

• Does not affect amorphous or crystalline Fe and Al oxyhydroxides 

• Solubilizes some amounts of strongly adsorbed organic compounds due to relatively high pH 

Amorphous Fe-Mn 

oxyhydroxides 

Tamm’s acid oxalate (in 

dark) 

➢ 0.2 M NH4C2O4/0.2 M 

H2C2O4 

• High Fe complexing capacity (Fe(III)-C2O4
2-) and low reducing properties.  

• Appears to be specific for amorphous iron phases with low degree of crystallinity.  

• Solubility of iron oxides depends on nature and concentration of surface hydroxyl groups and so decreases with the degree of 

crystallinity. Can also enhance solubility of other mineral phases beside Fe-oxi/hydroxides 

• Oxalate action is light sensitive; UV light could have an enhancing effect which could destroy crystalline iron oxides. 

• Presence of an oxalate-Fe(II) complex in solution would act as a catalyst and promote Fe(III) reduction.  

• Extract Fe from organic complexes, not considered as a specific reagent of amorphous iron oxides. 

Crystalline Fe-Mn 

oxyhydroxides 

➢ Na2S2O4 

• Strongly reducing agent. Dissolves well-crystalline Fe oxides and other redox sensitive oxides such as Mn(IV) oxides. 

• Add a strong ligand like sodium citrate to avoid precipitation of FeS.  

• This fraction approximates the combined content of amorphous and crystalline Fe oxides.  
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Due to all the complications involved in using extraction protocols, above and beyond 

the general knowledge concerning the soil properties, this study complements selective 

extractions with direct mineral characterization of given samples. This approach will 

provide better understanding of the different chemical forms or ways of binding of trace 

elements of interest in natural soils. This information will help identifying potential 

solid phases and carriers of trace elements, and thus, could help to predict the behavior 

of NRs and their potential bioavailability once mobilized in terrestrial systems. It is, 

however, also clear that the interpretation of results obtained from individual extraction 

protocol steps will need to be critically discussed.  

 

 Areas with high natural background radiation levels on earth 

In general, one third of the total annual effective dose is from external exposure and 

two thirds from the internal exposures for areas with normal background radiation 

levels (Table 1.1). In contrary, these values obviously deviate for high background 

radiation areas (HBRAs). HBRAs, which occur in several regions on the planet based 

on both natural and anthropogenic sources, exhibit unusually high radiation levels 

ranging up to 100 times or more the average values of the world.  

Proper global investigations of HBRAs from natural sources are of interest from several 

aspects; (1) exploration of natural radio-mineral sources regarding geological and 

geochemical interests, (2) implementation of remedial actions to prevent unwanted 

human exposure, (3) assessment of human exposure risk by direct observations of the 

effects cause by the higher doses of natural radiation, (4) application of the data 

obtained from radiobiological and epidemiological studies to educate the public against 

irrational fears of radiation (radiophobia), and (5) determination of natural radioactivity 

levels in detail concerning man-made sources, i.e. identifying anthropogenic 

contaminations [146]. 

There are numerous localized areas with high levels of natural radiation in the world 

and such areas are well known in countries like Brazil, China, India, Egypt, Iran, 

Sweden, Austria, France, etc. Small areas in these countries show markedly elevated 

absorbed dose rates in air due to various natural phenomena. Some areas are 

characterized by monazite sand deposits, which have high levels of Th, for examples 

Guarapari and Meaipe in Brazil, Yangiang in China, the states of Kerala and Madras in 



24 
 

India, and the Nile delta in Egypt. Some sites involve volcanic soils such as Mineas 

Gerais in Brazil, Niue Island in the Pacific and parts of Italy while others exhibit high 

natural radioactivity content in water from some hot springs such as Ramsar and 

Mahallat in Iran. Since this study is mainly focused on soil samples, some of the 

HBRAs related to monazite beach sand and soil were selected for further discussion. 

 

➢ Selected worldwide known cases  

a) Brazil: Guarapari and Meaipe are two coastal cities in Brazil in the monazite sand 

region along the Atlantic coast in Brazil, one of the most widely known HBRAs in the 

world. The absorbed dose rates in air are found to range from 1 – 10 µGy h-1 in outdoor 

and up to 87 µGy h-1 at selected spots on the beach, and the average effective dose rate 

from terrestrial irradiation (outdoor and indoor) is 1.5 mSv yr-1 [147, 148]. In some 

other studies, up to 38 µGy h-1 were detected, particularly on beaches, due to the high 

Th content with traces of U in the beach sand minerals. Dose rates from 1 – 32 mSv yr-

1 in Guarapari, up to 40 µGy h-1 in a particular storage room of a monazite separation 

plant, 1.3 µGy h-1 in the streets of Meaipe, and an average level of 0.5 µGy h-1 in 

Cumuruxatiba streets were also reported in those studies [146, 149, 150]. 

b) China: The city Yangiang, located in southern China, is also famous for elevated 

radiation levels. Based on the geological history, it is believed that monazite in 

mountains with granitic surface rocks, was washed out by rain and radionuclides 

containing fine particles of monazite accumulated in the basin in this region resulting 

in a HBRA. In an early study, the average total annual effective dose rate in this area 

was 5.4 mSv yr-1 [151]. The reported ambient gamma dose rates for indoor and outdoor 

are 0.1 – 0.4 µGy h-1 and 0.1 – 0.2 µGy h-1, respectively, while the estimated dose rate 

range received from terrestrial radiation is 0.6 – 1.8 mSv yr-1 [152].  

c) India: Among the localized HBRAs in India, especially Kerala coast, Tamil Nadu 

coast, Orissa, and Chavara-Neendakara, Kerala and Tamil Nadu coasts have similar 

levels of absorbed dose rate ranges in air from 0.2 – 4.0 µGy h-1 [146, 153, 154]. In 

Kerala, the average radiation level was estimated to be 15.7 mSv yr-1 while in Tamil 

Nadu it was 20 – 40 mSv yr-1 [146]. Soil samples collected from some locations of the 

Tamil Nadu area showed gamma dose rates in air in less than 0.2 µGy h-1 with a mean 

value of 0.1 µGy h-1 [155, 156]. In Orissa beach sands, it is in the range of 0.7 – 3.2 

µGy h-1 with a mean value of 1.9 µGy h-1. The annual external effective dose rates in 
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this area varied from 0.8 to 3.9 mSv yr-1 with an average of 2.4 mSv yr-1 [157], and 

Chavara-Neendakara shows 1.5 – 28.4 µGy h-1 with an average of 9.8 µGy h-1 [153]. 

The annual effective dose rates values in this region varied from 1.2 to 9.3 mSv yr-1 

with an average value of 1.2 mSv yr-1 [153]. At Kalpakkam coast elevated background 

radiation levels in the range of 0.3 – 2.7 µGy h-1 with a mean of 1.1 µGy h-1 in the 

coastal sands were reported and that of the soil samples in this area is less than 0.6 µGy 

h-1 with a mean of 0.1 µGy h-1 [154]. 

d) Egypt: Soil samples in some areas close to the Nile delta exhibit higher 

concentrations of natural radioactivity due to the presence of black sand rich in heavy 

minerals containing Th. One of the published studies, some soil and sediment samples 

collected over the entire River Nile basin and its delta reported absorbed dose rates are 

less than 0.06 µGy h-1 with an outdoor annual effective dose rate in air is < 0.07 mSv 

yr-1 for both soil and sediment samples [158]. In an another study, for soil samples 

collected from the northwestern area of the Nile delta an average absorbed dose rate 

0.04 ± 0.02 µGy h-1 and annual effective dose rate of 0.05 ± 0.02 mSv yr-1 was obtained 

[159] while the values for the sediment samples from the Upper Nile river for absorbed 

dose rates are < 0.04 µGy h-1 [160]. Further, soil samples from Southeastern Nile Delta 

showed a range between 0.03 and 0.07 µGy h-1 absorbed dose rate and less than 0.2 

mSv yr-1 average external outdoor exposure [161]. 

The comparison of activity concentrations of main NRs and their corresponding 

absorbed dose rates in the above selected cases in the world with known cases in Sri 

Lanka and the current location are summarized in Table 1.6. 
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Table 1.6: Comparison of activity concentrations of U-238 (Ra-226), Th-232, and K-40 and 

corresponding absorbed dose rates (DR) in surface sand and soil samples from different areas in the world, 

some areas of Sri Lanka, and the study area. The values inside brackets represent the average 

Location Type of 

sample 

U-238 
 

Th-232 K-40 DR 

(µGy h-1) 

Ref. 

Bq kg-1 

Selected worldwide known cases 

Brazil 

(Guarapari and 

Meaipe) 

Beach 

sand 

10 – 4100 20 – 57000 70 – 3000 <90 [146-150] 

China 

(Yangiang) 

Monazite 

particles 

2 – 690  1 – 360  9 – 1800  0.4 

average 

[1, 152] 

India  

(Kerala, Chavara-

Neendakara, 

Orissa, 

Kalpakkam) 

Beach 

sand 

40 – 41280  230 – 6020  100 – 2530  0.2-4.0 [153, 154, 

157, 162] 

India (Kalpakkam, 

Orissa, Tamil 

Naadu) 

Soil  5 – 70  5 – 780  15 – 850  <0.6 [154-156] 

Egypt (Nile Delta) Soil and 

sediment 

2 – 120 2 – 96 29 – 650 <0.4 [1, 158, 

159, 163] 

World average Soil  35 30 400 0.06 [1] 

Specific known cases for Sri Lanka 

East coast deposits 

(Pulmudei) 

Beach 

sand 

300-650 

(540) 

630-1670 

(1160) 

130-175 

(170) 

0.5-1.3 [164] 

Southwestern 

coastal strip 

(Beruwala to Crow 

Island) 

Beach 

sand 

7-3150 

(450) 

11-19600 

(2100) 

14-1210 

(220) 

<13.7 [165] 

Western coastal 

strip 

(Uswetakeyyawa to 

Chillaw) 

Beach 

sand 

7 – 1240  

(299) 

14 – 6260  

(1032) 

170 – 650 

(335) 

<4.6 [166] 

[167] 

Southern coastal 

strip 

(Hambanthota to 

Dondra) 

Beach 

sand 

4-1730 

(280) 

1-10750 

(1290) 

50-850 

(200) 

Sri Lanka 

(Average) 

Soil 5 – 760  

(50) 

10 – 1170 

(140) 

20 – 1380 

(310) 

- [168] 

Target area of the current study 

Kawudupalella, 

Matale 

Soil 320 – 510  

(370) 

4440 – 7040  

(6225) 

340 – 540  

(470) 

2.9-4.6 Present 

study 
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➢ Specific known cases for Sri Lanka  

Some highlighted HBRAs in Sri Lanka are included in Table 1.6. When comparing the 

results of in-situ natural radiation measurements by the Sri Lanka Atomic Energy Board 

(SLAEB) with other regions in Asia, Sri Lanka has the highest average Th-232 

concentration in soil. The mean value of Th radioactivity in Sri Lankan soil is 138 Bq 

kg-1 and the range is 9 – 1166 Bq kg-1 according to a study in 2013 [168] while the 

global average of natural Th-232 content in sediments is 30 Bq kg-1 (range from 11 to 

64 Bq kg-1) according to the UNSCEAR 2000 [1]. It is known that Sri Lankan beaches 

are rich in various industrially valuable minerals, involving ilmenite, rutile, quartz, and 

zircon. Areas with high background radiation levels due to Th-rich monazite were 

identified along with the aforementioned beach sand minerals in the coastal areas of the 

country [169]. Usually monazite is associated with ilmenite and other heavy minerals 

in beach sands. In addition, other elements of economic interest (i.e., the technology 

critical elements) such as rare earth elements (REEs) like Lanthanum (La), Cerium 

(Ce), Neodymium (Nd) also associate with the monazite crystal structure [170-173]. 

The East Coast deposits in Pulmudei and Kokilai are the largest Th-bearing beach sand 

deposits in Sri Lanka. Recent research on the soil samples from a placer deposit of 

monazite in Pulmudei reported an average gamma ray absorbed dose rate of 1.0 (0.5 – 

1.3) µGy h-1, mean background radiation level detected by survey meter of 23.4 (14.4 

– 28.8) mSv yr-1 and mean effective dose rate of 1.2 (0.6 – 1.6) mSv yr-1 [164]. In an 

another study, sand samples collected along the southwestern coastal strip of Sri Lanka 

from Beruwala to Crow Island showed that the estimated dose rate at 1 m above ground 

was < 13.7 µGy h-1, the effective annual gamma dose rate in the area ranged from 0.004 

– 16.8 mSv yr-1 [165]. Additionally, sand samples collected from the coastal strip 

between Uswetakeyyawa and Chillaw on the West Coast of Sri Lanka showed that the 

calculated external annual effective dose rate was < 4.6 µGy h-1 [166]. Similar mineral 

sand deposits were found in several coastal areas around the country including the 

southern coastal strip between Hambanthota and Dondra [167]. 

 

In 2015, a base line environmental monitoring program was conducted by the Sri Lanka 

Atomic Energy Board (SLAEB) in collaboration with the Geological Survey and 

Mining Bureau (GSMB) of Sri Lanka. The objective was to collect data for the 

concentrations of natural and artificial radionuclides in near surface soil and plants. 
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During this project, the Sri Lanka land area was divided into 400 squares and the 

corresponding soil and grass sampling was carried out. The subsequently published one 

meter height dose distribution map of Sri Lanka for the overall radioactivity 

concentrations of soil, and corresponding radionuclide distributions are shown in 

Figure 1.3 [174].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

➢ Target area of the current study 

Some elevated radiation levels in the inland of Sri Lanka were discovered during this 

project and a specific location was selected for the present study as this location is the 

playground of a school. The above exploration yielded measured background radiation 

levels at one-meter height above the ground of 2.5 ± 1.2 µGy h-1 with a maximum 

contribution of 21.6 ± 10.9 mSv yr-1 [174].  

Figure 1.3: (a) One meter height dose distribution map of Sri Lanka (black dot with the cross shows the 

exact location, the school playground) and corresponding radionuclide distributions; (b) Th-232, (c) Ra-

226 and (c) K-40 in soil 

nGy h-1 Bq kg-1 

Bq kg-1 Bq kg-1 
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The study area of interest is located in Kawudupelella village, Matale District, Central 

Province, Sri Lanka and the exact sampling location is the playground of a school 

named “Kawudupelella Sinhala Vidyalaya” (Figure 1.3a). The school was inaugurated 

in 1953 and there have been 346 pupils in this school up to date, and the playground 

was created in 2011. The population around this area was ~1400 according to the census 

of population and housing of Sri Lanka in 2012 and about 200 people live close to the 

location. 

The school is situated at the eastern side of a small valley with 7.58 °N 80.63 °E GPS 

coordinates, ~362 m above the sea level. The maximum average temperature in this 

area during the day is 26° - 30 °C and the average annual rainfall is between 1500 mm 

and 2000 mm. The second inter-monsoon period in October and November yields the 

maximum rainfall [175].  

One part of the playground is covered by a forest (Figure 1.4a) and the other bare part 

has a slight slope next to a school building (Figure 1.4b). A more systematic graphical 

side view of this location is shown in Figure 1.4c. 

 

 

The location is characterized by a host rock of quartzofeldspathic gneisses with 

pegmatitic intrusions in the upper area of the playground. Marble, quartzite, khondalite, 

Figure 1.4: (a) Forest cover of one side of the 

playground, (b) playground with a school 

building, and (c) graphical side view of the 

location; A-forest cover in the upper part of the 

playground (as shown in (a)), B-playground with 

one school building (as shown in (b)), C-school 

buildings, D-students assembling area with some 

school buildings, and E-public road 
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garnet-sillimanite-biotite gneisses are the major mineral types in Matale District. The 

soil type is predominantly laterite, where kaolinite and Fe/Al oxides with smaller 

amounts of other components typically dominate the clay fraction. According to 

Ranasinghe et al., laterite soil is formed under high temperature and heavy rainfall 

conditions with alternating wet and dry periods [176]. It is a reddish clayey rock 

material. Such soils exhibit high specific surface area, porosity and permeability, but 

no specific values according to the classification were given by the aforementioned 

authors. Lateritic soils are acidic in nature [176], acidic soils being defined as having 

pH less than 5.5 for most of the year [177].  
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2. EXPERIMENTAL 

 

Both on site and laboratory approaches were used to obtain complementary information 

on the geochemical environment, the speciation of target elements in solid phases and 

the leaching behavior of these elements under different conditions. This includes 

several sampling campaigns, conventional and advanced characterization techniques, 

batch and column experiments, and finally some simplifying geochemical modelling. 

 

2.1. On site measurements and sampling procedures 

The soil sampling campaign took place on July 15th, 2017 after obtaining a proper 

approval from the school authority. A weekend was selected to avoid any disturbance 

concerning the activities of the school. The meteorology on that day involved sunny 

weather around 32 °C with no rain and the humidity was about 60%.  

 

2.1.1. Gamma measurements  

Four sampling points were selected according to preliminary screening and after having 

detected high background radiation levels at one-meter height above the ground using 

a radiation survey meter equipped with a NaI scintillation detector (model: Automess 

6150 AD5/H). The device has in addition a built-in GM counter which makes it very 

sensitive in environmental radiation monitoring. This detector was issued by the 

General Scientific Division of SLAEB, Sri Lanka. 

 

2.1.2. Sampling and pre-treatment of soil 

The GPS coordinates of the selected points in the playground, where the four soil 

samples were collected, are: L-03 (07° 34.687’, 80° 37.695’), L-04 (07° 34.691’, 80° 

37.695’), L-05 (07° 34.699’, 80° 37.689’), and L-06 (07° 34.707’, 80° 37.683’) (Figure 

2.1). Since this area may have been contaminated with building materials during the 

construction of the school buildings, the top layer of the soil was removed to minimize 

the presence of any anthropogenic construction materials. Then a mass of about 1 kg of 

soil per location was collected by scooping up from a depth of 10 – 20 cm below the 

surface with a shovel. All samples were packed in polyethylene bags separately, 

labelled, and transported to the SLAEB laboratory in Sri Lanka. Non-target materials, 

such as plant debris and large stones, were manually removed in the laboratory. After 
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air-drying for 24 hours, the soil samples were sieved through 2 mm mesh-sized sieves. 

All samples were packed in plastic securitainer containers separately for each location, 

labelled, and sealed. These samples were then shipped to Germany in November 2017 

after having obtained approval from GSMB, Sri Lanka and the relevant German 

authorities. 

 

2.1.3. Sampling of potable water 

Potable water samples were sampled for analysis in order to verify ground water 

contamination by Th, U or REEs and to obtain the drinking water composition in that 

area since the majority of the households nearby rely on private groundwater wells. The 

underground water table in this area is at about 3 – 4 m depth with flow in SE direction. 

The digital elevation map (DEM) of the surface water runoff basin is shown in Figure 

2.2 along with the water sampling locations and the actual images of the sampling 

location are shown in Figure 2.3. 

Two in-situ water sampling campaigns were carried out close to the above location. 

The first took place on January 9th, 2020 and the other on February 21st, 2020. The 

meteorology of the first day was sunny with an average temperature of 33 °C and no 

rain. On the second day, the average temperature was around 30 °C with rain.  

Figure 2.1: Aerial view of the study area; numbers denote the sampling locations and labels are in 

accordance with the Figure 1.3c 
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Sampling tubes of 15 mL, HDPE bottles of 50 mL and the Teflon bucket used to collect 

water samples from wells had been previously soaked in HNO3 acid and washed 

thoroughly with de-ionized water in a laboratory at the National Institute of 

Fundamental Studies (NIFS), Sri Lanka, before taking the material to the site. The 

locations were selected such that water samples from locations WL-01, 04, 05, and 06 

were from private wells, location WL-02 was a spring well, and location WL-03 

involved tap water from a water purification plant. 

 

 

The bucket was thoroughly rinsed initially with water of each location before taking 

the final samples. Water samples from the wells and the spring well were collected ~ 1 

m depth below the water surface. The in-situ measurements of pH, total dispersed solid 

Figure 2.2: Digital elevation map (DEM) of the surface water runoff around the location and water 

sampling locations are denoted by WL 
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(TDS in mg L-1), and conductivity of the water samples were obtained for each location 

using field equipment. Each sampling tube was thoroughly rinsed with the 

corresponding water sample at each location. One sample set was collected at each 

location without filtering and without acidifying for anion analysis. For the rest of the 

samples, two filter sizes, 0.20 µm and 0.45 µm, were used and triplicates were collected 

from each location for each filter size. One drop of ultrapure HNO3 was added to each 

10 mL sample volume. Samples from the first day were transferred to the Geological 

Department, University of Peradeniya for ICP-MS analysis while the samples from the 

second day were directly sent to Germany. 

 

 

2.1.4. Sampling of grass 

Grass samples were collected to investigate the potential bioaccessibility of NRs to 

plant material in the vicinity of the playground. The sampling was done in parallel to 

the first in-situ water sampling. From some grassy areas next to the forest side of the 

playground two grass samples were transferred into polyethylene bags and labelled. 

These samples were then transferred to SLAEB for gamma spectroscopic and XRF 

measurements. 

 

2.2. Chemicals and solution preparation procedures 

All dilutions and solution preparations were carried out using ultrapure water obtained 

from a Milli-Q system (Millipore Milli-Q Advantage A10 with Milliporepak® 400.22 

Figure 2.3: Images of the water sampling locations; (a) WL-01, (b) WL-02 (Spring well), (c) WL-03 

(Tap water), (d) WL-04, (e) WL-05, and (f) WL-06 
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µm, 18.2 MΩ.cm at 25 °C and maximum 4 ppb TOC). All chemicals were purchased 

from Merck (Germany), Alfa Aeser (Germany), VWR chemicals (USA and Belgium), 

Carl Roth (Germany), and Honeywell (USA) and were of analytical reagent grade. 

Details of all the chemicals used in this study are given in Appendices (Table A2.1). 

 

2.3. Solid phase characterization in the laboratory 

2.3.1. Radioactivity measurements, sample preparation and radiation dose/radiation 

risk assessment calculations 

The specific activities of radionuclides in the air-dried soil samples were determined by 

gamma spectrometry both at SLAEB and INE while the grass samples were analyzed 

only at SLAEB to overcome the quarantine issue for the plant materials which would 

have been obligatory for transportation to Germany. 

At SLAEB, the gamma spectrometer was equipped with a high purity germanium 

detector, P-type Coaxial HPGe (model: Gx3020), with a relative efficiency of 32.6% in 

horizontal cryostat and an energy resolution of 1.84 keV at 1.3 MeV gamma line of Co-

60. The detector calibration was done using IAEA certified reference material, a 

standard soil of known radioactivity - Soil 6, a point source, containing Cs-137 and Co-

60 for gamma energies of 661.5 keV for Cs, and 1173.2 and 1332.5 keV for Co. Spectra 

were analyzed using GENIE 2000 data acquisition Canberra software. The counting 

time was 72,000 seconds. The specific activities of K-40, Ra-226, Th-232, and Pb-210 

were obtained. For the estimation of radium, energy peaks of 186.1 keV from Ra-226, 

609.4 and 1764.5 keV from Bi-214 were used while for Th-232 estimation, 911 keV 

from Ac-228, 238.6 keV from Pb-212, 583.1 and 2614.5 keV from Tl-208 were used. 

Note that this requires Th-232 being in secular equilibrium. Notably for the first 

daughter nuclides of Th-232, Ra-228 with a half-life of 5.7 a, this is not necessarily the 

case. The derivation of Th-232 activity from Ac-228 activity and following progenies 

will be correct for refractory minerals but needs to be considered with care for sample 

having experienced significant chemical alteration. For K-40 estimation, the photo peak 

energy of 1.46 MeV emitted by potassium itself was used [178]. Details about the 

energy peaks of the progenies used to analyze the gamma data are shown in Appendices 

(Table A2.2). 
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At INE, the gamma spectrometer was equipped with an N-type pure Germanium Semi-

Coaxial detector (model: GR3019-7500SL). The relative efficiency at 1.3 MeV is ≤ 

30% and the energy range is 5 keV – 10 MeV. Detector calibration involved IAEA 

certified reference material (RGTh-1 IAEA), a point source, made by the dilution of a 

Th ore OKA-2 (2.89% Th, 219 µg U/g) with floated silica powder of similar grain size 

distribution. Only Th-232 activity was measured. However, data related to this analysis 

will be given in Appendix 3.1. 

 

2.3.1.1. Soil sample preparation for gamma analysis 

Samples were vigorously shaken in the bags and emptied onto clean dry surfaces 

separately. Then the samples were smoothed out to a thickness of approximately 2 cm 

and divided into ~5 cm grid squares. A small amount of sample was taken from each 

grid and placed into a sub-sample container (49×85 securitainer) such that the sub 

sample corresponded to approximately 10% of the total mass. Containers were sealed 

to prevent the escape of radiogenic gases (Rn-222 and Rn-220 generated from U-238 

and Th-232 decay series, respectively). Samples were kept for one month to attain Rn-

222 and its short-lived decay products in secular equilibrium with Ra-226 and then 

subject to gamma spectrometric analysis. In addition, Rn-220 has a very short half-life 

(55 s) and if it escapes from the sample container, it disrupts the decay repopulation of 

the remaining isotopes in the Th-232 decay series thereby lessening the intensity in 

gamma emissions.  

 

2.3.1.2. Grass sample preparation for gamma and X-ray fluorescence spectroscopic 

analysis 

The collected grass samples were washed several times under running tap water to 

remove any possible external contamination due to soil particles/dust and were air-dried 

for some days in a tray to remove moisture from the sample. After air-drying, the 

samples were packed in plastic containers (49×85 securitainer) and the exact dry weight 

of each was determined. Then the containers were properly sealed and left about one 

month to bring Rn-222 and its short-lived decay products into secular equilibrium with 

Ra-226. Under those conditions, the nuclide pair Ra-224 and Rn-220 in the Th-232 

decay series is also equilibrated.  
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The XRF analysis of the grass samples were carried out at SLAEB, laboratory for Life 

Sciences. The grass samples were ground and sieved through 62 µm mesh sieve and 

pellets were produced from this material. Those pellets were then subjected to ED-XRF 

(model: Canberra M SL30165 XRF detector). The XRF technique will be described in 

section 2.3.4. 

 

2.3.1.3. Gas sample preparation for radon/thoron analysis 

Masses of about 100 g of each soil sample were transferred into 500 mL glass bottles 

separately, properly closed to avoid any gas leakage, and kept for nearly one month 

before the measurements. The measurements were carried out via a professional 

portable measuring system designed to continuously determine airborne radon and 

thoron concentrations (AlphaGUARD DF2000, Bertin-Instruments) using a flow-

through method. Continuous radon/thoron operation mode was used for the analysis by 

setting the flow rate to 2 L min-1 and running the measurement for 10 minutes, where 

the air is sucked in during the first 3 minutes of each 10-minute measuring cycle. 

 

2.3.1.4. Evaluation of radiological doses 

Gamma-ray radiation hazards caused by specific radionuclides of Ra-226, Th-232 and 

K-40 can be evaluated in different ways and therefore it is very important to assess the 

radiation hazard to humans from different radiological hazard indices. The following 

are the most widely used radiation hazard indices to identify radiological effects in 

worldwide [1, 179-183]. 

 

a) Soil 

➢ Absorbed dose rates in air (𝐷𝑅) 

The absorbed dose rates in outdoor air, 𝐷𝑅 (nGy h-1), at 1 m height above the ground 

were estimated from the radionuclide activity concentrations of K-40, Ra-226, and Th-

232 in the studied soil samples using Eq.2.1 [184] to ensure uniform distribution of 

radionuclides. The parameter 𝐷𝑅 can be used to assess any radiological hazard and 

radiation exposure from radionuclides in the soil. 

𝐷𝑅 (𝑛𝐺𝑦 ℎ
−1) = 0.0414 𝐴𝐾 + 0.4611 𝐴𝑅𝑎 + 0.623 𝐴𝑇ℎ                                    (𝐸𝑞. 2.1) 
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This involves the dose coefficients in nGy h-1 per Bq kg-1, while AK, ARa, and ATh are 

the measured activity concentrations of K-40, Ra-226, and Th-232 in Bq kg-1, 

respectively. 

 

➢ Annual outdoor effective dose equivalent (𝐸𝐷) 

These values from external exposure to gamma rays, 𝐸𝐷 (mSv yr-1), received by the 

population from the soil samples were estimated by substituting the calculated absorbed 

dose rates (𝐷𝑅) in equation Eq.2.2 [1]. 

𝐸𝐷(𝑚𝑆𝑣 𝑦𝑟
−1) = 𝐷𝑅 (𝑛𝐺𝑦 ℎ

−1) × 8760 (ℎ 𝑦𝑟−1) × 0.2 × 0.7 (𝑆𝑣 𝐺𝑦−1) × 10−6  (𝐸𝑞. 2.2)  

Here, 0.2 is the outdoor occupancy factor, which is equivalent to an outdoor occupancy 

of 20% and 0.7 Sv Gy-1 is the conversion factor from absorbed dose rate in air to 

effective dose for external gamma irradiation.  

 

➢ Radium equivalent activity (𝑅𝑎𝑒𝑞) 

This index considers the radiation hazard associated to the specific activities of Ra-226, 

Th-232, and K-40 by a single quantity. 𝑅𝑎𝑒𝑞 in Bq kg-1 can be calculated by equation 

Eq.2.3 [185]. 

𝑅𝑎𝑒𝑞(𝐵𝑞 𝑘𝑔
−1) = 𝐴𝑅𝑎 + 1.43𝐴𝑇ℎ + 0.077𝐴𝐾                               (𝐸𝑞. 2.3) 

This index represents the weighted sum of activities of the three NRs based on the 

estimate that 1 Bq kg-1 of Ra-226, 0.7 Bq kg-1 of Th-232 and 13 Bq kg-1 of K-40 

generate the same gamma-ray dose rate [179, 186]. According to the recommendation 

of the Organization for Economic Cooperation and Development (OECD), the 

maximum value of 𝑅𝑎𝑒𝑞 must be less than 370 Bq kg-1 to keep the annual radiation 

dose below 1.5 mGy yr-1 [187, 188]. 

 

➢ Gamma index (𝐼𝛾) 

This index is proposed by the European Commission to asses excess external gamma 

radiation from materials, and the safety value for this index should be less than 1 [189]. 

𝐼𝛾 =
𝐴𝑅𝑎
300

+
𝐴𝑇ℎ
200

+
𝐴𝐾
3000

 ≤ 1                                                    (𝐸𝑞. 2.4) 
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➢ External hazard index (𝐻𝑒𝑥𝑡) 

The extent of external hazard from Ra-226, Th-232 and K-40 can be calculated from 

Eq. 2.5 [185].  

𝐻𝑒𝑥𝑡 =
𝐴𝑅𝑎
370

+
𝐴𝑇ℎ
259

+
𝐴𝐾
4810

 ≤ 1                                       (𝐸𝑞. 2.5) 

The maximum value of 𝐻𝑒𝑥𝑡 equal to unity corresponds to the upper limit of 𝑅𝑎𝑒𝑞 (370 

Bq kg−1). 

 

➢ Excess lifetime cancer risk (𝐸𝐿𝐶𝑅) 

The chance of developing cancer over a lifetime due to human exposure to ionizing 

radiation can be estimated using the 𝐸𝐿𝐶𝑅 index. This excess lifetime cancer risk can 

be evaluated from the following equation for long term exposure to the radiation in a 

given area. 

𝐸𝐿𝐶𝑅 = 𝐸𝐷 × 𝐿 × 𝑅𝐹                                       (𝐸𝑞. 2.7) 

where L is the duration of life (70 years), 𝐸𝐷 is the annual effective dose (Eq.2.2), and 

𝑅𝐹 is a risk factor (Sv-1) which gives the fatal cancer risk per Sievert and suggested to 

be 0.057 by ICRP 103 for public exposure regarding the stochastic effects from low-

dose background radiation [190]. 

 

b) Grass 

➢ Transfer factor (𝑇𝐹) 

The transfer factor is a commonly used to determine the ability of plant species to take 

up radionuclides from soil. In the case of soils, it can be calculated from the measured 

radionuclide content in the soil and grass samples. 

𝑇𝐹 =
 𝑅𝑝(𝐵𝑞 𝑘𝑔

−1, 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡)

𝑅𝑠(𝐵𝑞 𝑘𝑔−1, 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡)
                                                    (𝐸𝑞. 2.8) 

where, 𝑅𝑝 and 𝑅𝑠 are the radionuclide activities of interest in plant and soil, 

respectively. 
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c) Gases: Radon/thoron measurements 

➢ Annual effective doses (𝐴𝐸𝐷) 

The annual effective doses (𝐴𝐸𝐷s) due to inhalation outdoors can be estimated using 

the dose conversion factors reported by UNSCEAR [1] for Rn and Tn gases. The 𝐴𝐸𝐷 

(mSv y-1) for Rn, 𝐴𝐸𝐷𝑅𝑛, and for Tn, 𝐴𝐸𝐷𝑇𝑛, can be calculated using the following 

equations 

𝐴𝐸𝐷𝑅𝑛 = 𝑅𝐶 × 𝐹𝑅𝑛 × 𝐷𝑅𝑛 × 𝑡                                         (𝐸𝑞. 2.9) 

   𝐴𝐸𝐷𝑇𝑛 = 𝑇𝐶 × 𝐹𝑇𝑛 × 𝐷𝑇𝑛 × 𝑡                                         (𝐸𝑞. 2.10) 

where 𝑅𝐶 and 𝑇𝐶 are the measured Rn and Tn concentrations (Bq m-3), respectively 

while 𝐷𝑅𝑛 (9×10-6 mSv (Bq h m-3)-1) and 𝐷𝑇𝑛 (40×10-6 mSv (Bq h m-3)-1) are the Rn 

and Tn dose conversion coefficients, respectively. Then in the present case, 𝑡 is the time 

that might be spent by the pupils in the playground per year (600 h). 𝐹𝑅𝑛 and 𝐹𝑇𝑛 are 

the equilibrium factors of Rn and Tn, respectively. The corresponding values for these 

factors are 0.7 and 0.003 for outdoor according to UNSCEAR Report 2000 and 1993 

[1, 191]. This equilibrium factor allows the exposure to be estimated in terms of the 

potential alpha energy concentration (PAEC) from the measurements of radon gas 

concentration while it defines as the ratio of the PAEC to the PAEC that would prevail 

if all the decay products in each series were in equilibrium with the parent radon. These 

factors depend extensively on environmental factors [10, 192, 193]. Noteworthy, Tn 

equilibrium factors may significantly vary even for the same environment making it 

more difficult to estimate because the concentrations of the gas and the decay products 

at any particular location might not be closely related. This is mainly due to the half-

lives of the decay products, which yield very different distributions in the atmosphere 

of the gas and the decay products [1]. Hence, only an estimation of 𝐴𝐸𝐷𝑇𝑛 will be 

given. 

 

2.3.2. Soil acidity  

Soil pH is an important parameter to be measured preliminary since it is a measure of 

acidity and alkalinity in the soil. A pH 7 is considered as neutral, above 7 is alkaline 

and below 7 is acidic. Soil pH depends on the method that we used and the pH can be 

measured either in water or in CaCl2 [194-196]. Therefore, it is important to specify the 
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method that used to measure the pH. In the present work soil acidity was determined as 

follows. 

A mass of about 10 g of soil sample was mixed with 50 mL of Milli-Q water (solid-to-

liquid ratio 1:5). The samples were occasionally stirred for 30 minutes and allowed to 

stand for 1 hour and then the pH was measured in the supernatant after particle settling 

[197]. A pH meter (Orion 720A+, Thermo Electron Corporation) and a pH electrode 

(ORION 8102 BN, ThermoFisher Scientific) were used for these measurements and 

also for pH adjustments of extractant and leached solutions in sections 2.4.2 - 2.4.4. All 

the pHs were measured at room temperature and the pH measurement setup was 

calibrated using at least four buffers with known pH values. 

 

2.3.3. Total organic carbon content in solid phase 

Various approaches exist to determine the organic matter content in the soil. Loss after 

ignition method: weight change after destruction of organic compounds by H2O2 

treatment or by ignition at high temperature, or by wet combustion analysis of soil by 

chromic acid digestion. Further, volumetric and colorimetric methods can be used to 

estimate organic carbon in soil. Potassium dichromate (K2Cr2O7) is most commonly 

used to oxidize the organic matter and subsequently the amount of unreduced 

dichromate is determined by oxidation-reduction titration with ammonium ferrous 

sulfate, which is also referred to as the Walkey-Black method [198]. This method 

typically yields about 90% recovery of carbon as compared to the dry combustion 

method [199] and was used in this study.  

A mass of about 1 g of air-dried and mildly ground soil samples was weighed into 

beakers separately. Then volumes of 10 mL of 1 N K2Cr2O7 and 20 mL of concentrated 

H2SO4 solutions were added to a given soil sample in the beaker and swirled to mix the 

suspension. The suspension was then allowed to stand for 30 min, followed by addition 

of about 200 mL of Milli-Q water and then 10 mL of concentrated H3PO4. After 

allowing the mixture to cool, 10 – 15 drops of diphenylamine indicator were added and 

subsequently the sample was titrated with 0.5 mol L-1 ferrous ammonium sulfate 

[(NH4)2SO4.FeSO4.6H2O] solution until the color changed from violet-blue to green. 

Two blanks were prepared in parallel with the same conditions but without soil and 
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treated in the same way as the soil suspensions. The equations utilized to calculate the 

TOC are provided in the Appendix 2.2. 

 

2.3.4. Total elemental compositions of bulk samples and sieved fractions 

The elemental compositions of both bulk and sieved fractions were investigated mainly 

by X-ray fluorescence (XRF) spectroscopy. This relatively nondestructive chemical 

analysis of rocks, minerals, soils and fluids, is typically used for bulk analyses of large 

fractions of geological samples. In addition, it is a robust technique with high precision 

and fast sample preparation, plus XRF provides both qualitative and quantitative 

information of the analyzed sample, making it one of the most widely used methods for 

analysis of major and trace elements in environmental samples. Therefore, this 

technique was used in this study to identify the geochemical compositions of the soil 

samples. Also, this technique is generally divided into two main groups, wavelength 

dispersive (WD-XRF) and energy dispersive (ED-XRF). The difference between the 

two lies in the sample preparation, detection system and achievable spectral resolution. 

A wavelength dispersive detection system physically separates the X-rays via a grating 

according to their corresponding wavelengths while an energy dispersive detection 

system mainly focuses on the trace elemental analysis and directly measures the 

different energies of the emitted X-rays from the sample with a semiconductor detector. 

For bulk sample analysis, a mass of about 5 g of each sample was crushed using a 

vibratory disc mill (model: Scheibenschwingmühle-TS, SIEBTECHNIK) before the 

analysis. Duplicate samples were prepared for each soil sample. 

For the fractionation of the bulk samples, aliquots of soil samples L-04 and L-05 were 

used in the laboratory at INE/KIT using a standard dry sieving technique to determine 

whether Th, U, and REEs are specifically bound to any particular size fraction in the 

soils. Masses of about 900 g of L-04 and 100 g of L-05 samples were oven dried 

separately at 40 °C overnight, followed by fractionation via dry sieving with different 

mesh sized sieves. Dry sieving was used to minimize the redistribution of Th and other 

elements of interest by particle size that might occur during wet sieving. Seven 20 cm 

× 50 cm test sieves (ISO 3301-1: Retsch GmbH, Germany), with mesh sizes of 40, 75, 

125, 180, 250, 425, and 850 µm, were used to obtain eight different soil fractions for 

further analysis, but also to obtain the soil grain size distribution. The fractionation 

involved the use of a vibrator machine and subsequently the mass of each fraction was 
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measured and transferred into plastic zip bags separately with proper labelling. The 

resulting eight soil fractions were then analyzed via XRF and ICP-OES (corresponding 

data for ICP-OES will be given in Appendix 3.5) to determine total elemental 

composition and via XRD (section 2.3.5) to identify major mineral phases in each 

fraction. A sequential extraction protocol was also applied to these soil fractions as 

described in detail in section 2.4.2.1 to gain an idea about the mobility of elements of 

interest in each fraction.  

 

2.3.4.1. Wavelength dispersive X-ray fluorescence spectroscopy 

Major components in the samples (i.e., SiO2, Al2O3, Fe2O3, etc) were quantified by 

Wavelength Dispersive XRF (WD-XRF, model: S4 Explorer, Bruker AXS). About 5 g 

aliquots of the crushed samples were weighed in ceramic crucibles separately and 

heated up to 950 °C for 8 hours in a muffle furnace to remove moisture and burn 

carbon/sulphur containing compounds. Loss on ignition (LOI) was determined and the 

values were later used to correct the WD-XRF data. Then the soil samples were mixed 

with Li-tetraborate/Li-metaborate (Spectroflux 110) in a 1:10 ratio by weight. These 

samples were then transferred into platinum crucibles and fused beads were made using 

a fusion instrument at ~1000 °C. During the fusion, the crucible was shaken slightly on 

a regular basis to ensure thorough mixing of the melt while keeping an oxidizing 

atmosphere during fusion. The molten mixture was then rapidly poured onto a metal 

plate and cooled by a stream of air. 

 

2.3.4.2. Energy dispersive X-ray fluorescence spectroscopy 

Energy Dispersive XRF (ED-XRF, model: Ɛpsilon 5, PANalytical) was used to 

measure concentrations of trace elements (i.e., Th, U, and REEs) directly from the 

crushed samples. This method was used for both bulk and sieved samples. Small 

containers (30 cm×20 cm) were approximately half filled with soils separately, properly 

closed and labelled. Three certified standards, SY-2, SY-3 and BE-N were used for 

quality assurance. Detailed information about these certified standard materials is given 

in Appendices (Table A2.3). 
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2.3.5. Major mineral compositions in soil: X-ray diffraction of bulk and sieved soil 

samples 

Major mineral components in the soil samples can be obtained from X-ray diffraction 

pattern of the corresponding samples. A few micrograms of each soil sample (bulk or 

sieved samples) were suspended in iso-propanol separately and aliquots of the resulting 

suspensions were applied onto a silicon wafer disc using a pipette. Additionally, the 

clay phases of all four bulk samples were separated by preparing a suspension in iso-

propanol, sonicating and decanting. The obtained clay samples were also placed onto 

silicon wafer discs separately. All these samples were allowed to dry in a fume hood. 

XRD measurements were performed on a D8 Advance X-ray diffractometer (Bruker 

AXS) equipped with Cu-Kα radiation tube (voltage: 40 kV, current: 40 mA, λ= 0.15418 

nm) and energy dispersive detector (Sol-X). The XRD patterns were recorded over the 

range of 2 ≤ 2θ ≤ 80° with a step size of 0.015° and a count time of at least 6 seconds 

per step. The data processing of the spectra was done by Bruker AXS DiffracPlus EVA 

software (Bruker AXS, Germany, version 3.1) while phase identification was achieved 

by comparison with the PDF-2 database.  

 

2.3.6. Surface morphology and soil composition: Scanning electron microscopy and 

energy dispersive X-ray spectroscopy 

More detailed elemental data and surface morphological information on the soil 

samples were obtained by performing SEM-EDX analysis. Secondary Electron (SE-

SEM) and Backscattered Electron (BSE-SEM) images were recorded for the carbon 

coated sample surfaces using a FEI Quanta 650 FEG environmental scanning electron 

microscope. Quantitative and semi-quantitative chemical analyses in the energy 

dispersive mode for selected areas were performed to support the mineral 

characterization using a Thermo Scientific UltraDry, i.e. Peltier cooled, silicon drift X-

ray detector. The NORAN System7 microanalysis system, software version 3.3 was 

utilized for data analysis while the primary electron beam energy was set at 30 keV.  

 

2.3.7. Identification and quantification of Th containing mineral phases: X-ray 

absorption spectroscopy at the Th L3-edge 

X-ray absorption spectroscopy (XAS) is an advanced spectroscopic technique that 

could effectively been used to investigate the local chemical environment of Th in its 

host minerals. X-ray absorption spectra at the Th L3-edge (16.3 keV) were recorded at 
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the INE-Beamline for radionuclide science [200] of the KIT synchrotron light source 

(Karlsruhe, Germany). The energy of the storage ring is 2.5 GeV and the maximum 

current is 150 mA. The incoming X-ray beam was monochromatized using a pair of 

Ge<422> crystals and the energy was calibrated by assigning the first inflection point 

of the Th L3-edge XANES recorded from ThO2 to 16.3 keV. Measurements and data 

evaluations were done with close supervision and guidance of the beamline scientists. 

 

2.3.7.1. Sample preparation and bulk sample analysis: X-ray absorption near edge 

structure and extended X-ray absorption fine structure 

Aliquots of the four soil samples (L-03, 04, 05, 06) and residues from sequential 

extraction steps (F4 and F5 of L-05 soil sample, the extractions and the resulting 

fractions are explained in detail in section 2.4.2) were mildly ground and placed 

between two Kapton tapes as shown in the Figure 2.4a. Reference compounds (RCs) 

were selected to represent the major mineral phases that had been previously identified. 

The RCs include monazite ((Ce, La, Nd, Th)PO4) from Brazil, synthetic ThSiO4 

(courtesy Dr. Stéphanie Szenknect, Institute for Separation Chemistry, Marcoule, 

France) and ThO2 [51]. For the measurements, the monazite and ThSiO4, RCs were 

prepared in the same way as the soil samples (between Kapton tapes) while the ThO2 

RC was prepared as a pellet. Samples and RCs were put in a sample container and 

transferred to the beamline following the radioprotection requirements. XAS spectra 

for RCs were collected in transmission mode, while fluorescence detection mode was 

applied for bulk and extracted soil samples. A Vortex-ME4, Hitachi USA silicon drift 

detector was used for these measurements. Several scans were collected at room 

temperature and averaged to obtain adequate counting statistics. 

 

2.3.7.2. Sample preparation and analysis of selected individual Th-containing particles 

a) SEM-EDX 

Soil samples were dispersed in isopropanol in separate vials. Aliquots of those 

suspensions were dried on polished glassy carbon substrates mounted on sample 

holders (Figure 2.4b). Then the locations of the particles of interest, i.e., Th-containing 

particles, within the dried particles on these carbon surfaces were triangulated primarily 

during SEM-EDX analysis. The applied primary electron beam energy was 20 keV. 

Secondary Electron and Backscattered Electron images were recorded and analyzed 

using the instrument and software described in section 2.3.6. 
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b) µ-XRF and µ-XAS 

These analyses were performed using the existing experimental setup at the INE-

Beamline (Figure 2.4c) to obtain more detailed insight concerning the elemental 

composition and Th-elemental distribution. The beam footprint is about 28 µm in size, 

i.e., FWHM of the beam intensity profile. Initial µ-XRF scans at the beamline provided 

first information on elemental distribution in the regions (which had been previously 

identified in SEM-EDX) in order to relocate the particles of interest for subsequent 

detailed µ-XRF analyses. For the detection of the possible presence of U in the sample, 

the excitation energy was set at 17.5 keV. A Vortex-60EX, SII Nano Technology USA 

silicon drift detector was used for spatially resolved XRF/XAS measurements with this 

µ-focused beam. Subsequently, µ-XAS analyses by recording Th L3-edge µ-XANES 

spectra in fluorescence mode were carried out for the points of interest, where Th-

containing phases were identified. 

 

 

2.3.7.3. Data treatment 

a) Bulk XAS  

Standard procedures using the Athena interface to the Ifeffit software were followed to 

process the collected XAS data [201] and the information on the composition of the 

soil samples was inferred from linear combination fitting (LCF) of experimental 

EXAFS spectra involving the spectra of the RCs. The LCF analysis provides direct 

information on the contribution of each mineral phase to the experimental data. LCF 

requires proper identification of the minerals present and inclusion of their respective 

spectra in fits of spectra of the unknown multi-mineral assemblages. The accuracy of 

Figure 2.4: Samples prepared for (a) bulk XAS (b) µ-

XAS and µ-XRF, and (c) experimental set up used at 

the INE-beamline 
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this method depends on the extent to which the spectra of the chosen RCs actually do 

represent these components in the unknown samples. The RCs used in the bulk XAS 

were selected for LCF analysis. LCF analysis also provides goodness of fit parameters 

via R-factor and reduced χ2 along with the weight percentage contribution of each RC 

to a given soil sample. The k-range from 2.9 Å-1 – 7.5 Å-1 was selected for this EXAFS-

LCF analysis. 

 

b) µ-XAS and µ-XRF  

The µ-XAS and µ-XRF data were reduced and analyzed using the PyMca Fluorescence 

Toolkit [202] and the Athena software [201]. Insight into Th containing particle 

mineralogy and coordination environment can be obtained by comparing the spectra 

with the selected RCs. Separate information obtained from µ-XRF, elemental mapping, 

and µ-XAS can be combined to describe geochemical matrices and to identify 

differences in the individual Th-containing mineral particles. This combination was 

used to determine the coordination environment of Th within isolated particles from the 

soil samples. 

The statistical significance of the elemental distributions inside each particle based on 

the µ-XRF elemental maps was quantitatively estimated by Spearman correlation 

coefficients (ρ). The detector counts of fluorescence lines from µ-XRF maps 

corresponding to different elements were used for this purpose. The Spearman 

correlation assesses monotonic relationships whether linear or not. A perfect Spearman 

correlation of +1 or -1 occurs when each variable is a perfect monotone function of the 

other whereas ρ=0 indicates the absence of correlation between the variables. When 

interpreting these correlations, the beam effect on the measurements needs to be 

carefully considered. In the present work, only the Spearman correlation coefficient 

values are included in the discussion whilst both scatter plots and corresponding 

frequency histograms are given as Appendices in Chapter 3. The statistical program R 

version 3.6.0 [203] was used to perform the data treatment and all calculated correlation 

factors showed significant values, i.e. p-values < 0.01 (see results in Appendix 3.6). 
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2.4. Analysis for elemental mobility and potential carrier phases 

2.4.1. Quantification methods and analytical instrumentation 

2.4.1.1. Trace element analyses 

The determination of trace element concentrations (such as Th, U, and REEs) in the 

liquid phase of all the investigated extractants (sections 2.4.2 and 2.4.3), eluants from 

column experiments (section 2.4.4) and groundwater samples was performed using 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS). This analytical technique 

is a type of mass spectrometry that uses an inductively coupled plasma to ionize the 

sample. It is a well-established, highly sensitive fast analysis and used to detect metals 

and several non-metals in liquid samples down to very low concentrations. The samples 

were introduced to the device using an analytical nebulizer, which converts liquids into 

aerosols that are subsequently swept into the plasma to create the ions. Dilutions were 

necessary to keep the salt content in the samples below 50 mg L-1 because the detection 

capability is highly influenced by a concentrated matrix solution of the samples. 

Importantly, the liquid samples were acidified to 2% HNO3 to ensure that the elemental 

composition persists in the samples. A volume of 5 mL of 2% HNO3 was used as blank 

samples. Both X-Series II, Thermo Scientific and iCAP TQs, Thermo Scientific were 

utilized during this study. The reference material SPS-SW1 specified for measurement 

of elements in surface waters was used for the quality assurance and the details of the 

analytical quality with the detection limits of each trace element analyzed are given in 

Appendices (Table A2.4). 

 

2.4.1.2. Major element analyses 

The determination of major elements (such as Si, Fe, Al) was performed by Inductively 

Coupled Plasma Optical Emission Spectroscopy (ICP-OES). An Optima 4300 DV 

(PerkinElmer Inc.) analytical device was used in this study. The technique was used for 

major elements since it involves a wide linear dynamic range and better matrix 

tolerance than the ICP-MS. The liquid samples were introduced into the device using a 

peristaltic pump to ensure a constant flow. A high-speed argon gas was used to generate 

from the liquid droplets aerosols that subsequently enter the plasma. The samples to be 

analyzed were acidified to 2% HNO3 to maintain the elemental components in the 

samples. While the liquid samples (extractions and column leachates) can be introduced 

directly into the plasma, the solid samples, the soil samples used in this study, had to 
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be digested using KOH and HCl and were transferred into solutions before the injection 

(corresponding data for soil samples will be given in Appendix 3.2).  

 

2.4.1.3. Non-purgeable organic carbon 

The Non-Purgeable Organic Carbon (NPOC) technique was used to determine OC in 

liquid samples, such as extracted aliquots, column leachates and groundwater. This 

method measures the OC remaining in an acidified sample after purging the sample 

with gas. The volatility of inorganic carbon (carbonates, bicarbonates and carbon 

dioxide) allows for distinction from organic carbon when applying the method at low 

pH. This technique assumes that the non-purgeable inorganic carbon is insignificant. In 

the direct method used in this study, a volume of ~7 mL of sample was acidified to pH 

2-3 with HCl acid and the inorganic carbon was blown out by bubbling with pure 

oxygen gas for a certain duration and then subjected to the analysis. This analysis was 

carried out using a TOC-L (Shimadzu, measuring range: 4 µg L-1 – 30,000 mg L-1). 

 

2.4.1.4. Analysis of anionic components: IC 

Ion Chromatography (IC) Dionex ICS-3000 (Thermo Scientific, measuring range: 0.1 

– 10.0 mg L-1) was used to determine major anions in the leachates from the column 

experiments and in water samples. The water samples (which had not been acidified in 

the field) were filtered using 0.2 µm filters before analyzing via IC. 

 

2.4.2. Batch extraction procedures 

2.4.2.1. Sequential chemical extractions of bulk and sieved samples 

All glass and plastic ware used in the extractions was soaked in 2.7 mol L-1 HNO3 

overnight, and then thoroughly rinsed with Milli-Q water prior to use. 

The selected chemical extraction was applied to triplicate samples of each batch soil 

adopting the protocol previously used by Guo focusing on Th [133], which is based on 

a sequential extraction procedure applied by Martinez-Aguirre [129]. 

A mass of approximately 2 g of air-dried original soil samples was used during the 

extractions for both bulk and sieved samples. For the sieved fractions, only the 

sequential extraction protocol was followed due to insufficient sample material for 

single extractions. The adopted sequential extraction protocol including the duration 

for each extraction step is summarized in Table 2.1.  
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Table 2.1: Summary of the chemical extraction protocol used sequential and single extractions 

Fraction Target phase Extractive reagent at room temperature pH 

Shaking 

time (hrs) 

F1 Exchangeable 20 mL of 1 mol L-1 MgCl2 7 2 

F2 Carbonates 30 mL of 1 mol L-1 Sodium acetate in Acetic 

acid 
5 7 

F3 Organic matter 

and/ or amorphous 

oxides 

20 mL of 0.1 mol L-1 Na4P2O7 (pH adjusts 

with 0.1 mol L-1 Na2H2PO4)  9.8 2 

F4 Amorphous Fe-

Mn- oxyhydroxides 

20 mL of 0.2 mol L-1 (NH4)2C2O4 in H2C2O4, 

in dark (Tamm’s reagent)  
3 5 

F5 Crystalline Fe-Mn-

oxyhydroxides 

20 mL of 0.175 mol L-1 Sodium citrate in 

0.025 mol L-1 Citric acid, dithionite (Coffin’s 

reagent) 

5 6 

F6 Residual N/A   

 

The sixth fraction (F6), i.e. the residual solid phase after all extraction steps, included 

in this work was investigated using two methods after freeze-drying of the samples: (i) 

F6M1, direct XRF measurements on solid residuals after washing and freeze-drying the 

remainder of F5 solids as described in section 2.3.4, and (ii) F6M2, calculating the 

differences between total element content (XRF of bulk soils) and the sum of the 

extracted contents from F1 to F5. Fractions F1-F4 target the adsorbed amounts and 

secondary phases, considered to represent the non-residual part of Th in soil, whereas 

fractions F5 and F6 define the residual phase, which is not expected to react on short 

time scales [129]. The extracted samples were centrifuged for 10 min at 3000 rpm after 

each extraction step and the decanted supernatant from each step was analyzed by ICP-

MS. The extracted samples had to be diluted accordingly to keep the salt concentration 

of each matrix below 50 mg L-1 for the ICP-MS analysis. Each residue was washed 

with 15 mL of MilliQ-water between each extraction step, centrifuged and subsequently 

the decanted supernatant after each washing was also analyzed by ICP-MS to check for 

any loss of elements during washing. The chemical compositions of the residual phases 

were further studied by SEM-EDX as described in section 2.3.6.  
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The accuracy of the utilized extraction protocol for the extraction of the target elements 

can be verified by evaluating the total percentage recovery, 𝑂𝑅 [133] as shown in 

Eq.2.11, 

𝑂𝑅 = [∑
𝑚𝑆𝑒𝑞,𝐹𝑖

𝑚𝑇

𝐹6

𝐹1

] × 100                                               (𝐸𝑞. 2.11) 

 

where 𝑚𝑆𝑒𝑞,𝐹𝑖 is the amount of the element of interest in individual fractions (F1 to F6) 

while 𝑚𝑇 is the total amount of the given element obtained by XRF.  

 

2.4.2.2. Single chemical extractions of bulk samples 

The same reagents and conditions used for the sequential extractions were also applied 

in a single extraction procedure, as described in [133] with ~2 g of soil sample for each 

individual extraction step. The solid residue after each extraction was not further 

required with this procedure. The supernatant from each extraction was analyzed by 

ICP-MS and the residue after each single extraction was studied by SEM-EDX. The 

final pH values of the extracted solutions were also measured. 

 

2.4.3. Batch leaching experiments 

2.4.3.1. Simulated rainwaters 

Batch leaching studies on soil samples targeting Th, U, and REEs with simulated 

rainwater (SRW) were carried out using different compositions of SRWs at different 

periods and two different pH values. This approach is probably the most convenient 

way to simulate the mobilization of Th, U, and REEs in natural systems. 

Overall, four different compositions of SRW were used by adopting the recorded 

rainwater chemistry values in the literature [175] which are shown in the Table 2.2. 

Maximum and minimum pH values were selected from the same literature source based 

on the categorized rainfall zones in the respective area [175]. The charge balances of 

the reported SRWs were not exact. Therefore, the final compositions were selected as 

shown in Table 2.2. 

A mass of approximately 0.2 g of soil sample was added into 50 mL centrifuge tubes 

and 50 mL of SRW was added separately to each tube. One sample set was rotated for 

different time periods while the other stood still. Rotating samples assure contact with 
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the full sample but may cause erosion of the particles with the rainwater. Keeping 

samples unstirred/still in turn may simulate how the elements of interest concentrate in 

an area where rainwater can be collected such as in a small pond but this procedure has 

the disadvantage that not the whole sample is in contact with SRW. 

 

Table 2.2: Chemical composition of simulated rainwater at two different pH values 

 pH Ca2+ 

×10-7  

mol L-1 

Mg2+ 

×10-7  

mol L-1 

Na+ 

×10-7  

mol L-1 

K+ 

×10-7  

mol L-1 

SO4
2- 

×10-7 

mol L-1 

Cl- 

×10-7  

mol L-1 

NO3
- - N 

×10-7  

mol L-1 

A1 5.1 6.5 8.6 5.7 0.3 -- Counter ion -- 

A2 6.8 40.4 43.2 21.3 6.9 -- Counter ion -- 

B1 5.1 -- -- Counter ion -- -- 174.9 1.8 

B2 6.8 -- -- Counter ion -- 92.7 315.9 26.3 

 

The sampling periods were selected as 7, 14, 21, 50, and 118 days. The samples were 

centrifuged at 4000 rpm for 10 minutes and three replicates were prepared for ICP-MS 

analysis by taking out 500 µL aliquots from each sample and diluted to 50 mL using 

2% HNO3. 

 

2.4.3.2. Silica nanoparticles 

Silica nanoparticles were used to mimic anthropogenic nanoparticle contamination, 

which could potentially enhance colloidal migration of Th, U and REEs in the soil. 

AEROSIL 200 silica nanoparticles were used because absorption data of Th and a 

model with Th are already available for this material and, therefore, development of a 

new model is not required. 

Different Silica AEROSIL200 suspensions with 0.5, 1, 2, 4, and 8 g L-1 at pH 5 were 

prepared and mixed with 0.2 g of L-04 and L-05 soil samples separately (data for L-04 

will be given in the Appendix 4.5). The pH value was adjusted using HCl and NaOH. 

The samples were rotated for 7 days and then centrifuged at 4000 rpm for 20 minutes. 

Three replicates were prepared by pipetting out 500 µL aliquots from 0.5 – 4 g L-1 and 

250 µL aliquots from 8 g L-1 of each decanted sample. All the samples were then diluted 

up to 5 mL using 2% HNO3 for ICP-MS analysis. Samples with a volume of 5 mL of 

2% HNO3 were used as blanks for the ICP-MS analysis. 
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2.4.3.3. Humic acid  

Humic acid (HA) was selected as a potential carrier phase since the target area has a 

forest cover, which potentially supplies the soil with organic substances which may 

facilitate the mobilization of Th, U and REEs in the corresponding environment. 

There were two types of HAs were used, humic acid crystalline powder from Alfa Aeser 

and humic acid sodium salt from Sigma-Aldrich. A 10 mg L-1 HA solutions were 

prepared by dissolving solid HA initially in a very small volume of 0.1 mol L-1 NaOH 

due to its low solubility in Milli-Q water. The pHs were adjusted to 7 using HCl. Then 

a volume of 50 mL of this solution was added to 0.2 g of soil sample and shaken for 25 

hours. Three replicates were prepared by pipetting 500 µL aliquots from each sample 

supernatant for ICP-MS analysis after centrifugation at 4000 rpm for 20 minutes. All 

samples were then diluted to 5 mL using Milli-Q water. No HNO3 was added since HA 

might precipitate in acidified solutions. 

 

2.4.4. Column leaching experiments 

The column experiments were carried out to investigate the extent of potential vertical 

migration of Th, U, and REEs in the soil. The column setup and user interface in the 

software used in this study are shown in Figure 2.5. The ÄKTATM pure 25-

chromatography system with a XK 50 borosilicate glass column (GE Healthcare, 

Sweden) and UNICORNTM software was used as the hardware and software support 

for these experiments, respectively. Based on the previous batch experiments and the 

availability of material, L-05 and L-04 were selected for these experiments (data for L-

04 will be given in Appendix 4.6). For each leaching experiment a mass of about 150 

g of the corresponding soil was filled into the glass column without compressing. A gap 

of ~0.5 cm was kept between the soil surface and the plunger at the column outlet to 

reduce the pressure development inside the column. Initial tests had shown that 

probably due to the clay fraction of the soils, a tight column caused clogging of the 

column and/or blocking of filters causing the above-mentioned pressure build-up. 

However, intermittent discontinuation of the column due to software failure or 

computer shutdown could not be avoided during all column experiments. 
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2.4.4.1. Simulated rainwater 

The SRW – A1 [Cations (Ca2+, Mg2+, Na+, K+), Cl- as counter ion at pH 5.1] rainwater 

composition was selected for soil column experiment with L-05. The flow was from 

bottom to top and the flow rate was adjusted in two stages during the experiments. 

Initially, a fast flow rate of 0.5 mL min-1 was applied manually until the soil was 

saturated, i.e. the first water layer appeared on the top of the soil surface. After that, the 

flow rate was changed to 0.05 mL min-1. From this point a macro was applied for the 

rest of the experiment. The macro was designed to collect 5 mL fractions in tubes that 

already contained 50 µL of 69% HNO3. Some tubes were put into the fraction collector 

without adding HNO3 for pH measurements, NPOC, and IC analysis. All pH 

measurements were made in the sample collecting tube. Approximately 1 L of the SRW 

A1 was passed through the column.  

 

 

The potential for colloidal transport was assessed by comparing filtered and unfiltered 

column samples. A filter pore size was used such that any suspended or colloidal 

materials above about 0.2 µm size are removed. The difference will therefore represent 

potential colloidal migration since a wide range of colloidal or suspended particles 

Figure 2.5: (a) Experimental setup of the column experiments and (b) user interface with the process 

picture reflecting the system configuration 
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would be removed by filtration. Finally, after all the samples were collected at the 

fraction collector, the acidified samples were analyzed by ICP-MS and all other 

measurements were carried out. 

 

2.4.4.2. Silica nanoparticles 

About 150 g of fresh L-05 soil sample was mechanically mixed with ~750 mg of dry 

AEROSIL200 silica inside the column. The SRW – A1 rainwater composition was used 

as the infiltration leachant in the subsequent leaching experiment. The initial flow rate 

was adjusted to 0.7 mL min-1 until saturation of the silica/soil column and the first water 

layer was visible at the surface. Then the column was equilibrated overnight. After that, 

the flowrate was set to 0.05 mL min-1 and the sample volume adjusted to 10 mL for 

each fraction. About 290 µL of 69% HNO3 was added to each tube. Each tenth tube 

was inserted into the column fractionator without adding acid for separate pH 

measurements. After about 1 L of the SRW A1 passed through the column, the program 

macro was stopped, and all the fractions collected were analyzed by both ICP-MS and 

ICP-OES. 

 

2.4.4.3. Humic acid 

About 150 g of fresh L-05 soil was filled inside the cleaned column. For this 

experiment, a 100 mg L-1 HA solution at pH 5 was prepared using SRW A1 as the 

infiltration leachant. The required volume of HA solution was injected into the system 

using a separate syringe. The initial flowrate was adjusted into 0.7 mL min-1 for the 

saturation of the soil and until the first water layer appeared at the interface. Then a 

macro was designed fixing a flowrate of 0.05 mL min-1, automatic injection of 15 mL 

of HA into the system, and subsequent continuous flow of SRW A1 through the system 

until nearly 1 L of total volume had passed through the column. The sample volume for 

each fraction was set to 10 mL and no acid was added. Then 5 mL samples were 

prepared from these fractions and analyzed in ICP-MS after the digestion with HF and 

7 mL fractions were taken out from different sample fractions for NPOC. 

 

2.5. Geochemical data modelling 

Scoping calculations concerning the speciation of Th(IV), U(VI) and REEs(III) were 

carried out using Visual MINTEQ 3.1 [204]. The thermodynamic data base included in 

this computer program can be used to calculate metal speciation, solubility equilibria, 
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sorption etc. for natural waters. Even though the default inorganic speciation database 

was used for computations which includes the NICA-Donnan model [205] for 

simulating the complexation of protons and metals to humic substances, some 

modifications in the database were required concerning the solubility of thorite and 

monazite, or adsorption on silica. Despite the modifications, self-inconsistent 

parameters that include solid phase formation, adsorption on silica and interaction with 

humic acid do not seem to be available. 
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3. CHARACTERIZATION OF THE ENVIRONMENTAL 

SAMPLES 

 

This chapter will discuss the results of on-site radiological measurements followed by 

the solid phase geochemical characterization based on both conventional and advanced 

techniques. The geochemical analysis on the groundwater samples collected around 

this area will also be discussed. Data for all four soil and water samples will be given 

in this chapter to provide a general geo-chemical overview of the location. All these 

results will be discussed to provide a proper insight into the speciation of Th, U, and 

REEs in these samples along with comprehensive radiation risk assessment based on 

the radioactivity measurements considering the applicability of proper radiological 

investigation in this area.  

 

3.1. Activity measurements and radioactivity dose calculations in the area of 

study 

The radiation doses received by a population includes contributions from (a) the 

exposure to terrestrial primordial radionuclides (U-238 decay series, Th-232 decay 

series, and K-40), (b) ingestion of radionuclides by consumption of food, milk, etc via 

radionuclide uptake by plant materials, and (c) inhalation of radon (Ra-222), thoron 

(Rn-220), and their progenies. In the present study, all these possible modes of 

exposures in the target area were investigated and will be discussed.  

 

➢ Activities in soil  

The collected soil samples were subjected to gamma spectrometric analysis in the 

laboratory to investigate the latent NRs present at the location which are responsible 

for the elevated levels and to evaluate their corresponding activity concentrations. The 

results indicated that members of the Th-232 decay series have the highest contribution 

to the elevated background radiation levels in this area which agrees with the Th dose 

distribution map of Sri Lanka (Figure 1.1b). The activity concentrations of primordial 

radionuclides such as U-238 (assuming secular equilibrium between U-238, Ra-226 

and their progenies), Th-232 and K-40 in soil samples (all values reported as Bq kg-1, 

dry weight) collected from the terrestrial environment of the study area are given in 

Table 3.1. Even though the radionuclide concentration of U-238 is assumed to equal 

that of Ra-226, Ra-226 in the U-238 decay chain may have concentrations slightly 
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deferent from U-238, because this radionuclide has greater mobility in the environment. 

The comparison of activity concentrations of the same radionuclides in surface soil 

samples of the study area, some specific sites in Sri Lanka and different areas in the 

world are shown in Table 1.4. 

Thorium and uranium primarily undergo alpha and beta decay, and unable to detect 

easily. However, many of their daughter products are strong gamma emitters. The 

activity of U was estimated rely on the establishment of secular equilibrium in the 

samples and determined from the average concentrations of Ra-226, Pb-214 and Bi-

214 while for Th with Ac-228, Pb-212 and Tl-208 in their respective decay series due 

to the much smaller lifetime of daughter radionuclides in their decay series, but the 

activity concentration of K-40 was assessed directly from its gamma ray peak as 

explained in section 2.3.1. thus, an accurate measurement of Th-232 and U-238 

radiological concentrations was made, whereas the true measurement of K-40 

concentration was achieved. According to Tables 3.1 and 1.4, the mean activity of U-

238 (~372 Bq kg-1) in these soils is about ten times higher than the world average (35 

Bq kg-1), whereas the average Th-232 activity (~6227 Bq kg-1) in the present study is 

two orders of magnitudes higher than the world average (30 Bq kg-1) as reported by 

UNSCEAR (2000). The average K-40 activity of the soil (~468 Bq kg-1) is found to be 

almost at similar level as the world average value of 400 Bq kg-1 [1]. In addition, both 

the mean activities of U-238 (372 Bq kg-1) and Th-232 (6227 Bq kg-1) in the soils 

observed in the present study are three times and one order of magnitude higher than 

the all-Sri Lanka average values of U-238 (49 Bq kg-1) and Th-232 (138 Bq kg-1), 

respectively [168]. The calculated absorbed dose rates in air using the radionuclide 

activity data, exceeds the world average of 57 nGy h-1 and the range of 18 – 93 nGy h-

1 [1], c.f. values in Table 3.1. For monazite bearing sands in the coastal areas of Kerala 

and Madras, absorbed dose rates in air ranges from 200 to 4000 nGy h-1 according to 

the UNSCEAR report whereas Sri Lankan soil samples from this study show rather 

higher values in comparison. Noteworthy, significant variations in the activity 

concentrations were observed within a distance of a few meters. Even though somewhat 

unexpected, it implies the existence of local heterogeneities on a small scale. Similar 

phenomena were reported elsewhere [94].  
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Table 3.1: Activity concentrations, calculated absorbed dose rates and effective dose rates for soil 

samples 

Sample K-40 

(Bq kg-1) 

U-238 

(Bq kg-1) 

Th-232 

(Bq kg-1) 

Th-232 

(×10-3 

mol  

kg-1) 

Calculated 

Absorbed 

Dose Rate 

(µGy h-1) 

Calculated 

Effective 

Dose Rate 

(mSv yr-1) 

Measured 

Effective 

Dose Rate 

(mSv yr-1) 

L-03 339.6±16.9 319.8±79.9 4440.0±364.7 4.7±0.4 2.9 3.6 36.3±0.1 

L-04 530.3±24.5 510.9±106.3 7037.9±647.0 7.5±0.7 4.6 5.7 28.9±0.4 

L-05 538.9±55.8 338.2±109.0 6835.1±639.1 7.3±0.7 4.4 5.4 12.2±0.1 

L-06 461.9±43.6 318.7±88.7 6595.5±879.6 7.0±0.9 4.3 5.2 9.2±0.2 

World 

average 

World 

range 

(UNSCE

AR 2000) 

400 

 

140-850 

35 

 

17-60 

30 

 

11-64 

 0.06 

 

0.02-0.09 

 2.4 

 

1-10 

 

➢ External radiation exposures 

The present study was initiated by measuring on-site radiation levels using an 

environmental radiation monitoring survey meter and the measured effective dose rates 

on the location are in the range of 9 – 36 mSv yr-1 (Table 3.1). However, the effective 

dose rates calculated using activity concentrations of NRs (Eq. 2.2) showed significant 

differences compared to the values measured on-site (Table 3.1). Though the calculated 

annual effective dose rates are much lower and in the range of 3.6 – 5.7 mSv yr-1, they 

are still above world average annual exposure to natural radiation sources (2.4 mSv yr-

1) but within the acceptable range of 1 – 10 mSv yr-1, while at the same time similar to 

some other HBRAs in the world (Table 1.4, Section 1.2.3). The reasons for the 

differences between the measured and the calculated values might be due to the 

assumed limited residence time in the area (outdoor occupancy factor of 0.2, section 

2.3.1.4) and/or might be that the calculated dose rate is based on the specific contents 

of the isolated representative sample collected at a specific location whereas the on-site 

measured dose rates at the sampling locations include radiation from greater depths as 

well as radiation from the surroundings. 

 

➢ Hazardous indices 

Knowing the activity concentrations of available NRs, it is worthwhile to assess ensuing 

possible radiation hazards related to the area. There are several radiation hazard indices 

in the literature to estimate the radiological hazards to the general public. Even though 
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the main two indices, absorbed and effective dose rates, were already discussed, several 

other indices are utilized in different perspectives all over the world. Some of the well-

known and accepted indices were used in this study via measured radionuclide activity 

concentrations of K-40, U-238 and Th-232. They are given in Table 3.2 together with 

some comparable values from India.  

The radium equivalent activity (Req) is a widely used radiation hazard index, which 

considers as a measure of the radiation dose likely to be delivered externally to the 

general public. The maximum value of Req must be below 370 Bq kg-1 to keep the 

annual radiation dose below 1.5 mSv yr-1. This value is in the range of 6700 – 10600 

Bq kg-1 for the target site, i.e. obviously much higher than the threshold value 

recommended by the Organization for Economic Cooperation and Development 

(OECD) [187]. Yet, it is only half of the value reported in Chavara-Neendakara, India 

[153] and close to values reported in some other places in India and some locations 

around Sri Lankan beaches (Table 3.2) [162, 166, 206]. In addition, the values of the 

two indices estimated in this study, i.e. the gamma index (Iγ) and the external hazard 

index (Hex), must be below unity as established by the European Commission on 

Radiation Protection (1999) to keep the radiation hazard insignificant, which means it 

is safe for humans to carry out their activities in the area [207]. The estimated Iγ values 

are in the range of 23.4 to 37.1 while calculated Hex values range from 18.1 to 28.7, 

exceeding the recommended limit but close to the values reported in some HBRAs in 

India (Table 3.2). Lifetime cancer risks (ELCR) were calculated to assess the 

radiological risk using effective dose rate values. The calculated values are in the range 

of 14.3× 10-3 to 22.7 × 10-3 and the maximum is two orders of magnitude above the 

world average of 0.29 × 10-3 [1]. Although the excess seems obvious due to the higher 

concentration of NRs in this study site, these are only estimated values, which require 

proper supplementary studies for confirmation. Nevertheless, several epidemiological 

studies have been conducted to analyze the risk of cancer in world-known HBRAs, 

most of these studies concluded that there is no link between an increased rate of cancer 

or mortality and exposure to high background natural radiation, but still a debatable 

topic [208-210]. It should also be noteworthy that the “permissible limits” for dose 

values exist in legislations for nuclear facilities and nuclear accidents, but explicitly not 

for natural radioactivity in the environment. 

 



61 
 

Table 3.2: Radiation hazardous indices calculated in the study area, some places in India and the world 

acceptable limits 

Sample  𝑹𝒂𝒆𝒒 

Bq kg-1 

𝑰𝜸 𝑯𝒆𝒙𝒕 𝑬𝑳𝑪𝑹 × 𝟏𝟎−𝟑 Ref. 

L-03 6700 23.4 18.1 14.3 Current 

study 
L-04 10600 37.1 28.7 22.7 

L-05 10200 35.5 27.4 21.7 

L-06 9790 34.2 26.4 20.9 

Sri Lanka 1000 – 10000 - - - [166] 

Chavara-Neendakara  23200 - - 14.8 [153, 

162, 206, 

211] 
Gopalpur 100 - 8770 0.3 – 30  - - 

Rushikulya 70 - 8490 0.5 – 29.5  - - 

Kerala 15 - 8800 0.05 – 30.6 0.04 – 23.7 0.03 – 16.2 

World acceptable limits 370 1 1 0.29 [1] 

 

➢ Bioavailability and insights to internal exposure via ingestion 

The subsequent possible way of human exposure to radiation next to external is internal 

exposure. Internal radiation exposure caused by ingestion of radionuclides via 

consumption of foodstuff can be evaluated by considering the potential 

bioaccumulation/bioaccessibility of NRs in the ecosystem. It was attempted to evaluate 

this exposure pathway in this work by measuring the concentrations of NRs of grass 

samples collected in the vicinity of the study site. The data listed in Table 3.3 show the 

measured activity of each radionuclide in the leaves of grass samples of Cynodon 

dactylon by gamma spectrometry and the corresponding transfer factors (TF) calculated 

using these measured activities of the grass and corresponding activities of the soil. 

This table also includes elemental concentration of Th in mg kg-1, estimated using the 

measured gamma activity data and directly analyzed by XRF. 

The data from the present study clearly shows that the gamma activity levels and 

elemental concentrations of NRs in grass samples collected in the target area are higher 

than for plant material collected in normal background areas. It was observed that the 

values for both activity/elemental concentrations and TF vary with the corresponding 

radionuclide. The accumulated activities reflect the relative abundance observed in the 

underlying soil (Table 3.1). However, surprisingly huge differences were observed for 

the elemental concentrations of Th (in mg kg-1) estimated from radionuclide activities 

and XRF. This might be due to the difficulties associated with the applied analytical 
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methods because it is less likely that gamma spectroscopy and XRF provide comparable 

data. 

Regardless of relatively lower activities in the soil, K-40 showed the highest calculated 

TF, in accordance with its bio essential character to plants. Noteworthy, the TF values 

estimated in this study are similar for Ra-226 and approximately two to five times 

higher than the TF values of Th-232 and K-40 reported for similar grass samples (leaves 

+ roots) from the city of Chittagong, Bangladesh [212]. Another study on grass samples 

(species not specified) collected in the North-west of West Bank (Palestine) reported 

TF values for Th-232 and Ra-226 which are about eight to twenty times higher than our 

results while showing similar TF values for K-40 [213]. Furthermore, only the average 

values of TF for Th-232 and K-40 in the currently studied samples (Table 3.3) were 

found to be higher than the IAEA values specified for the grass samples from tropical 

environments [29]. These results could imply that other local vascular plants with 

developed root systems may also accumulate important amounts of Th-232 and K-40. 

Additionally, such high plant uptake seen in this current study site is supported by the 

batch extraction results in Chapter 4, section 4.2 that show the presence of potentially 

bioaccessible fractions in the soil. Concentrations of U and Th in a plant species can 

significantly vary with the sampling site and even for different parts of a given plant 

sample, i.e. between roots and aboveground parts in accordance with findings of similar 

radionuclide studies available in literature [94, 214, 215]. Therefore, these values can 

be highly influenced by several plant and local environmental factors as discussed in 

the Chapter 1 (Section 1.2.2.1).  

The unexpectedly enhanced radionuclide, particularly Th- 232, uptake by grass could 

be explained in the perspective of soil pH as well. The corresponding high TF values, 

at least an order of magnitude higher than the recommended IAEA value, might be due 

to the low soil pH, i.e. in this location in the range of 4 – 5 (Table 3.5). In such acidic 

soil, hydrogen ions can displace other cations, so that radionuclides like Th-species in 

soil pore water could possibly be enhanced. In highly alkaline soils, insoluble 

precipitates may be formed instead with carbonates, phosphates or sulphide ions which 

will significantly reduce the availability of cations to plants. Moreover, adsorption of 

cations to minerals is favored at this pH. 
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In general, it is expected that Th is normally bound in the soil in a very immobile form. 

Therefore, the increased activity of the grass samples is unexpected around the present 

study area and potentially due to the high enrichment of Th in the soil. Another possible 

reason for the excessive TFs might be the washing step during sample preparation prior 

to analysis. Washing the leaves of grass samples probably does not completely remove 

small particles from the surface since aerosols can be tightly attached to trichomes at 

leaf surfaces [216] and in this case, Th transfer to the plant is not only being accounted 

via root uptake but also via interception of strong deposition of NRs at the plant surface. 

Therefore, the TF itself cannot distinguish between root uptake and interception. When 

discussing the potential bioavailability of Th, the nature (speciation) of the “dissolved” 

Th is of relevance and will be investigated later.  

 

Table 3.3: Activity concentrations of NRs accumulated in soil (averaged value) and grass samples (Bq 

kg-1 dry weight) with corresponding transfer factors 

Sample  K-40 Ra-226* Th-232 

Gamma 

Th-232 

Gamma 

Th-232 XRF 

Soil  467.7 ± 

92.1 

Bq kg-1 

371.9 ± 

93.1 

Bq kg-1 

6227.1 ± 

1205.1 

Bq kg-1 

1534.0 ± 296.9  

mg kg-1 

1276.2 ± 

341.7 

mg kg-1 

Grass 1 573.6 ± 

261.8 

Bq kg-1 

30.1 ± 17.4 

Bq kg-1 

771.1 ± 284.2 

Bq kg-1 

190.0 ± 70.0 

mg kg-1 

564.7 ± 9.4 

mg kg-1 

Grass 2 539.5 ± 

236.2 

Bq kg-1 

21.1 ± 8.8 

Bq kg-1 

975.4 ± 340.5 

Bq kg-1 

240.3 ± 83.9 

mg kg-1 

573.5 ± 8.4 

mg kg-1 

Transfer factor 0.94 – 1.40 0.05 – 0.08 0.12 – 0.16   

IAEA TF 

(IAEA, 2010)  
0.87 1.7 0.058   

*Analogous to U-238 

 

➢ Insights to internal exposure via inhalation 

The other pathway of internal exposure to radiation is inhalation, which was 

investigated by measuring the released concentrations of radiogenic gases from the soil 

samples assuming that this mode of exposure also contributes to the inhalation dose in 

the area other than the inhalation of the re-suspended dust particle. Here, only the 

measured Tn values and corresponding annual outdoor effective doses are indicated in 

Table 3.4. Reliable measurements of Rn-222 concentrations could not be obtained due 

to the high concentrations of Tn in these soil samples, which also suggests the Tn 

exposure cannot be ignored. Such high Tn concentrations in the samples are uncommon 
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in most areas of the world. Even though many studies reported dose calculations for 

Rn/Tn indoor measurements, their corresponding outdoor data and particularly Tn data 

are still scarce or absent in most areas. Yet, Tn has recently been recognized as a 

potential health hazard in areas rich in Th-232, calling for its determination and risk 

estimation [1, 217, 218]. The main reason for the lack of Tn data is the difficulty in 

measuring an equilibrium factor for both indoor and outdoor Tn due to its short half-

life (55 s). As a consequence, this factor has a wide range due to the specific spatial 

distribution of Tn. Numerous researchers attempted to estimate equilibrium factors for 

Tn, which range between 0.003 and 0.1 [1, 217, 219-222]. The lowest value reported 

(i.e. 0.003) was considered during the estimation of effective doses in the present study. 

According to the UNSCEAR 2000 report, estimated total outdoor annual effective 

doses from Rn and Tn are 1.2 mSv and 0.07 mSv, respectively (Table 1.1), while the 

typical outdoor concentration of Tn is of the order 10 Bq m-3 with a range from 1 to 100 

Bq m-3 [1]. The measured activity and estimated dose values for Tn in this study are 

considerably higher than reported outdoor values in UNSCEAR reports and also higher 

than some values reported for annual effective doses from Tn by Popic and co-workers 

with similar Th-232 radionuclide activities in their soil samples [192]. Yet, the total 

annual outdoor effective doses (sum of annual effective doses from gamma, from Rn, 

and from Tn) reported by those authors are in the range of the estimated effective doses 

from Tn in our study [192]. However, it should be noted that the corresponding values 

in the current work are obtained from gas samples released from soils inside closed 

containers which were equilibrated for a short time, while the other researchers 

performed continuous measurements of Rn and Tn outdoors for a long time using 

commercially sold passive Rn-Tn discriminative detectors [192, 223]. Therefore, the 

comparison of our data with the available literature should be considered with caution 

at this stage. Moreover, there is a high possibility that the actual dose values in the 

authentic environment are significantly lower due to dilution effects by wind and open 

air spaces without even causing any radiotoxicity exposure for the public.  
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Table 3.4: Measured thoron concentrations and calculated annual inhalation doses of the soil samples* 

Sample Thoron (kBq m-3) Estimated annual 

effective dose from Tn 

(mSv) 

L-03 34.62 ± 4.78 2.49 

L-04 45.77 ± 5.23 3.30 

L-05 75.82 ± 4.00 5.46 

L-06 66.79 ± 4.97 4.81 

*The results listed are average values of two replicates  

 

➢ Insights from NRs ratios 

The analysis of the NRs relative abundance (Th/U, K/U, and K/Th ratios) can give 

information on the enrichment/depletion processes occurred in a complex metamorphic 

history and alteration and/or weathering processes, which affected the investigated area. 

The calculated 232Th/238U ratio in the target area was in the range of 14 – 21, i.e. there 

is more Th-232 in these soil samples compared to U-238. The ratio is much higher than 

the Upper Continental Crustal (UCC) average of 4.2 and the world average of 0.86 [1, 

224] but closer to the beach sand samples from Areia Petra, Brazil (13.9) and 

Kalpakkam, India (1.5 – 13.7) [154, 225]. Uranium is typically more soluble than Th 

and hence it is often deficient with respect to Th in surface soil environments. 

Additionally, such lower concentrations of U-238 suggest the correspondence of the 

lower abundance of U-238 in the bedrock of the study area. High activity ratios suggest 

that there is no contribution from U series members from external factors like 

contamination with phosphate fertilizers in the study area (i.e., way before using this 

location as a playground). The calculated 40K/238U ratios ranged from 1.0 – 1.6 and are 

much lower than that of the UCC, 1.0 – 1.3 × 104, as given by Tufail et al. [226] and 

world average of 11.43 [1]. Moreover, 40K/232Th ratios are in the range of 0.07 – 0.08, 

much lower than world average of 13.33 [1]. Noteworthy, 40K/238U and 40K/232Th ratios 

are reported to be highly variable in soils worldwide [21, 227]. However, these results 

can be compared with future similar measurements to support the fact that the area of 

study may be subjected to effective erosive regime or anthropogenic activities, as 

expected from the monsoon seasons or population development. 

Furthermore, in literature, researchers discussed correlation between Th-232 and U-238 

in soil samples and with that perspective, inferred whether soil samples contain 
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monazites or not [154, 223, 225]. In those studies, they used data from more than 10 

sampling points, whereas in the current study, only four data points are available and 

therefore the outcome should be carefully assessed. The correlation between Th-232 

and U-238 in the soil samples is found to be weak, R=0.49 (Figure 3.1a), whereas Th-

232 and K-40 exhibit a strong correlation of R=0.96 (Figure 3.1b). The weak correlation 

of Th-232 and U-238 indicates that the presence of large amounts of monazite mineral 

phases in these soil samples is less possible. However, we used only four data points, 

precise correlations among the data points are difficult (see e.g. the point at the highest 

concentration in Figure 3.1a). Kannan et al. reported the same weak correlation 

(R=0.47) for soil samples from Kalpakkam, India, which were collected close to the 

beach, indicating that the presence of monazite minerals in those soil samples was also 

less likely [154]. In contrast, Kannan et al for beach sand from India, Vasconcelos et 

al. for beach sand from Brazil, and Prajith et al. for soil samples from Antarctica 

showed much stronger positive correlations (R=0.99, R=0.91, and R=0.95, 

respectively) indicating that monazite could be the major source of the elevated 

background radiation levels in those areas [154, 223, 225]. However, though this study 

shows a weak correlation itself among the samples, these data are in line with the trends 

observed in the aforementioned literature, rendering an overall correlation of R=0.99 

(Figure 3.2). This means that in areas dominated by monazite mineral composition, 

there is a characteristic U/Th ratio, found worldwide as a general indicator of solid 

composition. Nevertheless, direct analyses on soil samples should verify these 

observations (as will follow in sections 3.3 and 3.4). 

 

 

Figure 3.1: Correlation between (a) Th-232 and U-238 and (b) Th-232 and K-40 in the soil samples by 

gamma spectrometry 
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3.2. Basic soil characterization 

This section will cover different characterization techniques starting with the 

measurements on physico-chemical properties followed by some conventional and 

advanced characterization approaches to evaluate the solid-state speciation of elements 

of interest.  

 

➢ General soil properties 

Bioavailability of metals mainly depends on the physiochemical properties of the 

environmental media such as pH, organic matter, presence of Fe, Mn-hydroxides and 

clays, etc. Therefore, two basic properties of the soil samples relevant to this study are 

presented in Table 3.5. In average, the pH of the soil samples is 4.4 ± 0.2 (Table 3.5) 

which is extremely acidic according to the classification of soil pH by the United States 

Department of Agriculture Natural Resources Conservation Service (NRCS) [228]. The 

pH of natural soils mainly depends on the soil mineral composition. The study area has 

lateritic type soil with inherent acidic pH under natural conditions. Three major effects 

cause acidity in soils: 1) organic matter and minerals that break down in soil over time 

are acidic in nature and acidify the soil, which is a quite reasonable cause for this site 

as the playground has a forest cover, 2) leaching of the soil due to excessive rainfall or 

irrigation, a natural phenomenon that could occur in this study area, and 3) use of 

Figure 3.2: Comparison of the correlation between Th-232 and U-238 in reported soil/beach samples and 

this study 
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ammonia-based synthetic fertilizers, which also increases soil acidity, is a more 

unlikely effect for the location of study [229, 230].  

Soils contain large amounts of organic materials which may play important roles in 

natural systems [231]. Therefore, it is important to determine the TOC in site 

characterization studies since its presence or absence can remarkably influence the 

chemical behavior of the soil. TOC is a non-specific test, which does not resolve 

particular compounds. Natural samples are complex mixtures of thousands of different 

organic carbon compounds. Instead, TOC provides the sum of all organic carbon 

contained in those compounds. The TOC contents of the soil samples in this study are 

moderately high based on the classification of Kaplan et al. [130], consistent with the 

forest cover on one side of the location (Figure 1.3a). These results suggest that on-site 

leaching of the studied soils under natural conditions (e.g., rainwater from the 

Monsoon) would result in acidified water containing organic matter as potential carrier 

phases for trace elements. 

 

Table 3.5: Physicochemical properties of soil samples* 

Sample L-03 L-04 L-05 L-06 

pH  4.4 ± 0.1 4.2 ± 0.2 4.6 ± 0.4 4.2 ± 0.3 

TOC (g kg-1) 1.68 ± 0.01 0.69 ± 0.01 1.77 ± 0.00 1.28 ± 0.01 

*The results listed are average values of triplicate samples  

 

➢ Major soil mineralogy 

(a) Bulk composition: 

The main mineralogy of the soil was characterized by XRD. The obtained 

diffractograms in Figure 3.3a with the main peaks indicating the minerals identified, 

suggest the presence of two major mineral phases, i.e. silicate (clay) type minerals and 

silica (quartz). The clay phase was identified as kaolinite and it was the dominant phase 

in all the samples. Kaolinite is a typical dioctahedral species with an ideal structural 

formula of Al2Si2O5(OH)4. Such silicate minerals are relevant in many settings because 

of their relative natural abundance and importance in nature. The silica phase was 

identified as quartz (SiO2) and it is consistently present in all the samples and most 

clearly detected in L-03 and L-06. The other minerals present in the soil could not be 

detected by XRD due to their low concentrations (i.e., typically, 1-5 wt.% of a mineral 

are required to be detectable) and/or amorphous nature. Despite the above fact, the color 
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variation of the soil samples varies from dark reddish to light reddish suggests the 

possible presence of Fe phases in the samples with variable contents. This hypothesis 

was tested for the separated clay fractions as described in the section 2.3.5, and the 

resulting diffractograms are shown on Figure 3.3b. However, the XRD patterns still 

show correspondence mainly to kaolinite. Regardless of the fact that kaolinite 

associated iron oxy-hydroxides, hematite and goethite are considered as the main iron 

containing mineral components of lateritic soil [232], no distinct peaks were observed 

for Fe containing crystalline phases in any of the spectra. This rather suggest the 

presence of poorly crystalline Fe minerals such as ferrihydrite or any other trace 

constituents in the soil which are insensitive to bulk XRD [233] or the crystalline grains 

might be covered by clay. 

 

Figure 3.3: X-ray diffractograms of (a) bulk soil and (b) clay fractions of soil samples 
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(b) Sieved fractions: 

In contrast, XRD analysis of the sieved soil fractions revealed some more details about 

the mineralogy of the soil. Diffractograms were collected for the size fractions of L-04 

and L-05 samples and are shown in Figures 3.4a and b, respectively. The color of the 

sieved fraction less than 40 µm is dark brown compared to the rest and only few 

milligrams could be collected in both cases, and some differences can be observed 

between the two soil samples and among their corresponding size fractions.  

 

 

Especially, the fraction below 40 µm in L-04 clearly indicates the presence of some 

crystalline iron phases, mainly goethite and hematite while those phases could not be 

resolved in L-05. It was expected that iron and most other elements are rather 

Figure 3.4: X-ray diffractograms of the sieved fractions of (a) L-04 and (b) L-05 soil samples 
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concentrated in small size fractions [234-237]. In contrast to L-04, quartz appears 

clearly in almost all fractions of L-05 and especially in the 40 – 75 µm fraction. Yet, all 

other fractions in both soil samples have the same mineralogy dominated by kaolinite 

(Figure 3.4), may be due to covering of other mineral phases by dominating clay phases 

which occurs when the dry sieving method is used instead of wet sieving. The latter 

might concentrate other mineral phases. According to the literature, minerals like clay, 

quartz and iron phases are likely to adsorb trace elements and move them to the fine 

particulate matter, in particular the clay minerals [238-240].  

 

➢ Total contents of major and trace elements 

(a) Bulk composition 

The amounts of major and trace elements in each sample were analyzed by XRF. The 

results and their corresponding upper continental crust (UCC) abundances [241] are 

shown in Table 3.6. The results specify that Si, Al, and Fe oxide phases dominate the 

soil matrix, in agreement with the expected dominant oxide phases in Sri Lankan 

lateritic soil, i.e. Fe2O3, Al2O3 and SiO2 [242]. The recalculated relative abundances in 

our samples to weight percent for Fe2O3, Al2O3 and SiO2 are 9-16, 25-32, and 42-53 

wt.%, respectively, in accordance with those reported, i.e. about 13, 26, and 60 wt.%, 

respectively, by Dahanayake (1982) for samples collected close to the study area. 

Furthermore, the amount of P2O5 identified in all samples is in the range of 0.17-0.24 

wt.%, in the range of REEs and Th content (Table 3.6). The abundances of the REEs 

Cerium (Ce), Lanthanum (La) and Neodymium (Nd) are 0.16-0.49, 0.09-0.13 and 0.04-

0.06 wt.%, respectively, while Th and U show percentages of 0.08-0.16 and 0.001-

0.004 wt.%, respectively. 

Even though several studies estimated the abundance of REEs, Th and U in beach 

mineral sands in Sri Lanka, such data are scarce for inland locations. In one of the 

studies such data on inland locations showed similar abundance of Ce and La for 

sediment samples collected from a river basin [243] while two other studies on whole-

rock chemical analysis on carbonated rocks and gem-bearing sediments showed much 

lower values compared to our study [244, 245]. In addition, the abundances of all 

elements shown in Table 3.6 are higher than the values reported for the UCC, except 

for SiO2, notably in Th, U and REEs. This also provides evidence of some mineral 
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anomaly in the study area and Table 3.6 also show significant special heterogeneity 

even within short distances for the four samples.  

 

 Table 3.6: Amounts of main components and trace elements present in the samples measured by XRF* 

and average reported values for the Upper Continental Crust (UCC, [241]) 

 
Amounts of main components and trace elements 

L-03 L-04 L-05 L-06 UCC 

SiO2  (g kg-1) 501.8±0.6 413.8±48.8 507.1±1.2 527.8±1.0 666 

Al2O3 (g kg-1) 248.0±6.0 317.1±22.5 248.8±1.5 260.2±3.2 154 

Fe2O3  (g kg-1) 129.0±1.2 161.4±8.7 101.1±0.8 85.3±0.2 50 

P2O5  (g kg-1) 2.4±0.4 2.1±0.2 2.4±0.3 1.7±0.1 1.5 

Ce  (×103 mg kg-1) 1.6±0.2 4.9±0.4 3.1±0.1 2.3±0.3 0.06 

La  (×103 mg kg-1) 1.3±0.4 0.9±0.0 1.2±0.1 0.9±0.1 0.03 

Nd (×103 mg kg-1) 0.6±0.2 0.5±0.0 0.6±0.1 0.4±0.0 0.03 

Th (×103 mg kg-1) 0.8±0.2 1.5±0.0 1.6±0.1 1.3±0.1 0.01 

U (mg kg-1) 13.4±7.4 35.7±3.5 19.8±0.7 22.3±4.1 3 

*The results listed are average value of duplicate samples 

 

(b) Size effects 

The variations of Th, U, La and Fe2O3 content with the size fractionation measured by 

XRF are shown in Figure 3.5. Data for the below 40 µm fraction of L-05 were not 

obtained due to lack of sample material. All elements showed higher amounts in <40 

µm fraction of L-04 except for La which exhibit an increase in above 850 µm fraction 

(same behavior can be seen in the ICP-OES data in Appendix 3.6, Figure A3.5). 

Overall, the contents seem to continuously decrease with the increase of size fraction 

for L-05 in accordance with the surface area increasing with decreasing particle size. 

These small sized particles may either bind trace metals by their higher surface areas or 

the presence of iron oxides and clay minerals in the fine particle fraction may, however, 

also host those metal ions in their crystal structure. Several studies reported the same 

behavior for Th and U [246-248]. Further, L-04 has a high amount of Fe oxides 

compared to L-05 in each fraction with ~1.6 ratio between them and these data agree 

with the bulk XRF amounts, with high amounts of Fe oxides in L-04 showing the same 

concentration ratio between bulk L-04 and L-05 (Table 3.6) and with the XRD peaks 
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which confirmed the concomitant Fe-mineral phases in L-04 compared to L-05 (Figure 

3.4).  

 

 

The percentages of the contribution from each size fraction to the bulk increase with 

increasing particle size and the trace elemental distribution follow the same trend 

(Figure 3.6). Nevertheless, the elemental distribution of Th has a slight difference 

percentagewise, with higher percentage in smaller sizes compared to U and La, 

suggesting the slight particle affinity of Th towards smaller size fractions of soil. 

Contrary to this in the literature for some samples from a beach deposit it was noted 

that the concentration of heavy minerals is confined to 43-62, 62-125 and 125-250 µm 

fractions while particularly monazite grains tend to accumulate in 100-200 µm and 200-

400 µm fractions [249]. Another study reported higher accumulation of Th, U, and 

Figure 3.5: Concentration of (a) Th, (b) U, (c) La, and (d) Fe2O3 in each size fraction of L-04 and L-05 

soil samples measured by XRF 
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REEs in fractions 63-125 µm and 125-177 µm (as compared to fractions <63 µm and 

177-250 µm) for a sediment sample collected from a river basin in Sri Lanka [243]. 

These element distributions among grain sizes depend on several factors such as on-

site mineralogy, mineral erosion rate and location of the sampling site along the 

erosion-transport-deposition path of minerals from elevated grounds (e.g., mountains) 

to the coast (e.g., beach areas and deep sea basins). 

 

 

➢ Element content of trace minerals  

Detailed microscopic scale information on the mineralogy was obtained by SEM and 

corresponding EDX spectroscopy. Both large area and spot analyses were carried out 

Figure 3.6: Contribution of each size fraction (a) to the bulk and elemental distribution of (b) Th, (c) U, 

(d) La in each size fraction of L-04 (note that the smallest size fraction < 40 µm is almost invisible in the 

pie chart. It is indicated by the percentage fraction of 0.1-0.5 %) 
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to obtain a clearer picture of the mineralogy. The obtained atomic concentrations of 

elements (%) for Figures 3.7 – 3.12 are given in Table 3.7. 

The SEM images and EDX spectra in Figure 3.7 suggest the presence of alumino 

silicates and iron as major phases along with titanium (Ti) as traces in the large area 

analysis (the area given by the red frame in the inset), typically observed in all samples. 

Different orientations of hexagonal stacking layers of kaolinite clay minerals are visible 

in Figure 3.7b and c. A ratio close to 1:1 of Al:Si atomic concentration in both cases 

corroborates the presence of kaolinite inferred from XRD (Figure 3.3b).  

The spot-chemical analysis mode in SEM-EDX yields more conclusive results 

concerning local abundance of Ln and Th in soil grains. Concerning Th-bearing 

minerals, several morphologies were identified. Typical spherical morphology of Ce-

rich minerals containing Th is shown in Figure 3.8 (25 at.-% Ce, 5 at.-% Th). The low 

contents of P and Si in this example suggest that Ce and Th could be present as some 

oxide ((Ce,Th)O2) phase. In fact, literature data provide evidence for (Th,Ce)O2 solid 

solutions owing to the comparable ionic radii of Th(IV) and Ce(IV) [250].  

La-rich monazite crystals were also identified together with kaolinite (Figure 3.9), with 

about 18 at.-% P and a total of ~13 at.-% for La, Ce, Nd and Th, suggesting that even 

in close vicinity to clays, these elements are present as phosphates. The kaolinite 

associated monazite mineral phases here always display needle like crystal 

morphology, while in a study from Sri Lanka monazite from the bottom sediments of 

the southwestern coast is well-rounded and has ellipsoidal and flattened-spherical 

shapes, and is predominantly angular prismatic crystal fragments in beach placers 

[249]. 

An elongated and rectangular Th-rich phosphate mineral (Figure 3.10a) was observed 

also presenting a total of ~14 at.-% for Th and P, while Si and Al are below 2 at.-%. 

The high amount of P suggests a phosphate phase in which Th occurs without any 

REEs, atypical for monazite-like phases.  

Thorium associated with the oxide phase (Figure 3.10b) shows a Th-rich area with 18 

at-% Th and 77 at-% O along with traces of Ce and clay minerals. Unambiguous crystal 

structures cannot be reported for this phase. Interestingly, the SEM-EDX spectrum of 

such a particle acquired using a 30 kV electron beam shows 3 at-% U, which cannot be 
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seen with low voltages. Possible explanations are that (i) low energies intended for 

surface analysis, cannot detect U (which does not necessarily imply an absence of U at 

the surface), (ii) presence of mixed phases within the particle, do not show surface U 

exposure or (iii) differences in redox activity of U and Th preferentially solubilized U 

species. Solubility and speciation of metals in soils strongly depend on redox potential 

and pH [251]. The redox activity of U and U-oxides makes this element readily soluble 

in oxygenated water. Uranium has two main redox states in typical environments, 

U(IV) and U(VI). Under aerobic conditions, uranium oxidizes to the more mobile 

aqueous uranyl ion, UO2
2+ (section 1.2.2.2) [252]. 

Enrichment of Th-silicate phases potentially with a trace amount of Th-phosphate is 

alleged to be present in the studied soils with 19 at-% Th with high Si and low P. No 

definite crystal structure can be resolved for this phase either (Figure 3.11). The size of 

the largest Th-silicate mineral identified in one of the samples via SEM is ~200 µm 

while Th/REE containing phosphate minerals are normally in the range of 50 – 250 µm. 

All these results provide evidence that most of the minerals found in these soil samples 

are not pure but rather present mixed solid phases. Other examples of mixed phases 

involve CeO2 (crystalline spheres) and (Ce, La, Nd, Th)PO4 (needle-like crystals), 

within a single particle (Figure 3.12).  

 

 

Figure 3.7: SEM and corresponding EDX spectra of (a) large area analysis, (b) and (c) spot analyses of 

clay minerals with hexagonal stacking layers in different orientations 
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Overall, three distinct Th containing mineral phases were identified: Th-oxide, Th-

silicate and Th-phosphate. The identification of the exact mineral phases present in this 

work not possible from the SEM-EDX results and needs more sophisticated 

approaches. Examples of the specific Th mineral phases present in nature and in Sri 

Lankan sediments include monazite, thorite, thorianite, uranothorianite, ekanite, 

allanite, zirkelite, baddeleyite, samarskite, fergusonite, thorium pyochlore, oraganite, 

bastnaesite, thorogummite, cheralite, zircon, among others [253-255]. Many of these 

mineral phases are rare and not found in pure forms in nature. For instance, thorianite 

(ThO2) and thorite (ThSiO4) crystals are commonly associated with zircon, monazite, 

uranite, among others (as also observed in this study), and even incorporated in the 

zircon structure [46, 253, 256]. 
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Figure 3.8: SEM images and corresponding EDX spectra of monazite phases Figure 3.9: SEM images and corresponding EDX spectra of Ce-rich phases 
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Figure 3.10: SEM images and corresponding EDX spectra of (a) Th-phosphate and 

(b) BSE-SEM image and corresponding EDX spectra of Th-oxide phases 
Figure 3.11: SEM images and corresponding EDX spectra of Th-silicate phases 
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Table 3.7: Atomic concentrations of elements (%) in area and spot analyses for Figures 3.7 - 3.11

Figure Element – Atom % 

O-K Al-K Si-K Fe-K Ti-K P-K Ce-L La-L Nd-L Th-M 

3.7           

(a)  62.8±0.5 16.6±0.1 17.2±0.1 3.2±0.0 0.2±0.0 - - - - - 

(b)  67.4±1.5 15.7±0.5 16.5±0.6 0.4±0.2 - - - - - - 

(c)  68.0±1.7 15.1±0.3 16.4±0.5 0.5±0.1 - - - - - - 

3.8  59.2±0.6 1.6±0.1 1.9±0.1 2.2±0.2 2.7±0.2 2.7±0.1 25.2±0.3 - - 4.6±0.1 

3.9  64.3±1.3 1.3±0.3 1.0±0.2 - - 18.0±0.3 2.4±0.4 8.6±0.6 2.1±0.5 0.3±0.1 

3.10           

(a)  70.9±1.1 0.5±0.1 1.7±0.1 0.3±0.1 - 13.8±0.2 - - - 13.7±0.2 

(b) 77.0±2.1 1.6±0.3 1.5±0.2 0.5±0.3 - - 0.1±0.2 - - 18.1±0.3 

3.11 62.9±2.5 1.5±0.4 12.5±0.3 0.5±0.3 - 3.3±0.2 - - - 18.6±0.4 

Figure 3.12: Mixture of mineral phases in soil; C denotes - (Ce,Th)-

oxide and P denotes - (Ce, La, Nd, Th)-phosphate phases 
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3.3. Speciation of Th in soil minerals  

Detailed information on solid phase speciation of Th can be revealed via X-ray 

absorption spectroscopy (XAS), which is element specific and provides molecular-

scale information. Several studies on Th speciation using XAS are available in the 

literature focusing on: (i) Th(IV) containing materials synthesized in the laboratory [51, 

257], (ii) Th(IV) interaction with organic matter [258, 259], (iii) Th(IV) in natural 

minerals from ores [260], and (iv) adsorption studies of Th(IV) by mineral surfaces 

[261-263]. However, XAS studies of Th(IV) in natural soil samples from topsoils are 

to our knowledge not available in the literature. 

 

3.3.1. Bulk XAS analysis of Th containing minerals 

For bulk analyses, the two main regions in X-ray absorption spectra, i.e. X-ray 

Absorption Near-Edge Structure (XANES) and Extended X-ray Absorption Fine 

Structure (EXAFS), were used to study the chemical environment of Th (Figure 3.13a). 

The XANES region of the sample spectra is compared to that of reference compounds 

(RCs) to gain information on coordination geometry, whereas EXAFS spectra are 

employed to gain quantitative information on the phase assemblage. XANES and 

EXAFS are highly sensitive to the local chemical environment and can be considered 

to some extent as a “fingerprint” of certain chemical species. In this sense, chemical 

speciation of Th was investigated using XAS in different aliquots from the same soil 

samples and from some soil residues after sequential extractions (Chapter 4). Since the 

previous solid phase characterizations showed that the target samples are quite 

heterogeneous, it is obvious that recorded bulk XAS data would correspond to the 

sum/average of the various Th species. 

The normalized XANES spectra, k2-weighted EXAFS (k2∙χ(k)) spectra and 

corresponding Fourier transformations (FT) of all soil samples and selected residues 

from sequential extraction steps (F4 (Ex4) and F5 (Ex5) of L-05) along with the RCs 

are shown in Figures 3.13a,b,c, and 3.14a,b,c, respectively. The Ex4 fraction is obtained 

after the treatment with Tamm’s reagent and Ex5 after treatment with Coffin’s reagent 

(Table 2.1), which according to the definition should extract the metals attached to 

amorphous and crystalline Fe-Mn oxyhydroxides, respectively (Section 2.4.2). The 

RCs were chosen to represent the main mineralogical species of Th identified in section 

3.3, i.e. Th-silicate, Th-oxide, and Th-phosphate containing mineral phases.  
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A main feature at 16304 eV can be seen in all absorption edges of the recorded Th L3-

edge XANES spectra (Figures 3.13a and 3.14a), which is consistent with Th in 

tetravalent oxidation state in all analyzed soil samples and residual samples from 

chemical extraction steps, as expected for natural samples [46]. The second feature at 

16320 eV is more pronounced only in ThO2 RC and virtually absent in the rest. For 

ThO2 this second feature can be assigned to a solid phase of relatively high degree of 

crystallinity arising from different transition probabilities due to backscattered 

electrons. In amorphous ThO2 and Th(OH)4, this feature is less pronounced or even 

absent [264]. Therefore, the XANES spectra could probably hold as an indication that 

the Th-minerals in the soil have a higher degree of disorder, even after some chemical 

extractions.  

Analyses were performed in the k-range and R-range from 2.9 – 7.5 Å-1 and 1 – 5 Å, 

respectively, for all samples and RCs. The data in Figures 3.13b and 3.14b (i.e. k2-

weighed χ(k) functions) and in Figures 3.13c and 3.14c (the corresponding FT 

magnitudes) suggest minor variability in the mineralogy of Th among the studied soil 

samples, but significant differences with respect to the RCs. It can be inferred that Th 

in the bulk soils (< 0.17% wt.) is not present as pure single phase ThO2, ThSiO4 or 

monazite. This agrees with the SEM-EDX results, which highlighted the heterogeneity 

of the studied soil samples in terms of Th speciation. 

Interestingly, for the bulk soil samples, despite the limited k-range (Δk = 4.6 Å-1) all 

FTs (Figure 3.13c) contain two main peaks, located at R + ΔR ~1.8 Å and ~3.4 Å. The 

intense peak around 1.8 Å, which corresponds to a phase-corrected value of about 2.4 

– 2.5 Å, represents backscattering from oxygen atoms (Th – O) in the first coordination 

shell of the central absorbing Th atom and is in accordance with XAS measurements 

on pure Th(IV) oxide/hydroxide phases [51]. The second peak at around R + ΔR ~3.4 

Å is located at a phase corrected distance of 3.8 – 3.9 Å and can be assumed to originate 

from nearest Si/Th/P neighbours, in agreement with the thorite [265], monazite [266], 

or thorianite (pure ThO2 [51]) crystal structures. This suggests similarities between the 

soil samples and thorite, while the observed differences among the spectra suggest the 

presence of more than one mineral phase of Th in the natural samples. 

Another captivating observation in Figure 3.14c, the FTs of the residues after F4 and 

F5 chemical extractions of L-05 compared to the same bulk sample, show that none of 
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the FTs of extracted residues are similar to that of the originating bulk soil sample 

suggesting that the chemical extraction steps alter the mineralogy of the soil sample. 

However, some similarities can be seen with respect to the RCs. Thus, Ex4 seems to 

follow the shape of the thorite while Ex5 rather resembles thorianite. The second peak 

of Ex4 located at the phase corrected distance of about 3.5 Å is closer to that of thorite 

while the peaks of Ex5 at 2.6 – 3.2 Å and 3.2 – 4.2 Å follow the peak pattern of 

thorianite. However, these observations are somewhat unexpected since the extraction 

with Tamm’s reagent used for Ex4 leaves the very stable silicate while the stronger 

extractant, Coffin’s reagent, used in Ex5 leaves the less stable ThO2. Yet, since none of 

the spectra shows the exact pattern of any of the RCs, mineral heterogeneity of the 

samples still prevails. 

Linear combination fitting (LCF) was carried out to estimate the weight percentage 

contribution of each major mineral phase to the bulk. LCF treatment of the XAFS data 

was preferred over typical shell-by-shell EXAFS fitting for the soil samples here as it 

was expected that soil samples contain mixtures of various Th(IV) phases. In fact, 

modelling the data using single scattering paths (i.e., Th-O, Th-Si, Th-P, Th-Th, etc.) 

is complicated by possible overlaps from shells located at comparable distances in the 

host structures, especially with limited k-ranges as for these low concentration samples. 

The LCF analysis of the EXAFS spectra of the four soil samples (Figure 3.15) and the 

extracted mineral contributions (Figure 3.16) yielded the RCs with comparable 

proportions (Table 3.8).  

Fitting the bulk soil sample data revealed that monazite has the highest contribution to 

the experimental spectra with 61 ± 7%, followed by thorite with 24 ± 7%, while 

thorianite has the smallest proportion with 16 ± 7% (percentages are averaged over all 

four samples). Besides, some fine details can be highlighted with LCF data of the 

extracted soil samples, which agree well with the features of the corresponding FTs 

(Figure 3.14c). Notably, Ex4 sample showed higher weight percentage of thorite (35%) 

whereas Ex5 illustrated more percentage of thorianite (32%) in their matrices with 

lower percentages of monazite compared to the average bulk soil samples. Even though 

these data seem promisingly fitting with the remarks of their FTs, the differences in the 

spectra might still be either due to the extractions or the consequences of the 

heterogeneities of the sample aliquots. 
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In addition to the mixed mineral phases and inherent heterogeneity, samples may also 

contain minor amounts of other species such as Th sorbed to various minerals or bound 

to organic matter. Phases for which Th has a high sorption affinity are present in the 

sample such as clay minerals dominated by kaolinite, iron phases and organic matter. 

One may assume that in the soil samples Th might occur as Th-bearing mineral phases 

(i.e., Th-phosphate, Th-silicate, Th-oxide) along with traces of Th retained within 

mineral lattices or adsorbed at surfaces (i.e., iron oxides, organic matter and clay 

minerals). This heterogeneity widens the perspectives for chemical batch extractions 

(discussed in detail in Section 4.2.1) meaning that Th could be extracted via single 

extraction procedures aiming at identifying ion exchange, carbonate or organic matter 

bound metal ions.  

 

Table 3.8: Thorium L3-edge EXAFS spectra linear combination fitting results for soil samples and 

sequential extraction residues from F4 (Ex4) and F5 (Ex5) 

Sample Weight contribution (%) Fit parameters* 

Monazite Thorite Thorianite 

L-03 67 14 19 R = 0.052106 

χ2 = 0.012900 

L-04 54 26 20 R = 0.042861 

χ2 = 0.011761 

L-05 63 24 13 R = 0.043632 

χ2 = 0.011060 

L-06 59 31 10 R = 0.042318 

χ2 = 0.011144 

Average  61 ± 7 24 ± 7 16 ± 7  

L-05-Ex4 50 35 15 R = 0.057586 

χ2 = 0.016553 

L-05-Ex5 46 22 32 R = 0.080901 

χ2 = 0.026112 

*R: R-factor; χ2: goodness of fit for the k-range 2.9 – 7.5.  
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Figure 3.14: Thorium L3-edge (a) XANES and 

(b) EXAFS spectra with (c) corresponding FT 

of L-05 and sequential extraction residues 

from F4 (Ex4) and F5 (Ex5) 

Figure 3.13: Thorium L3-edge (a) XANES and 

(b) EXAFS spectra with (c) corresponding FT 

of all samples and RCs (distance is not corrected 

for phase shift) 

XANES 

EXAFS 
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Figure 3.15: Experimental (solid line) and LCF 

modeled (dashed line) EXAFS spectra of the soil 

samples with residual (blue line). R-factor and 

reduced χ2 are represented for individual fits 
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Figure 3.16: Experimental (solid line) and LCF 

modeled (dashed line) EXAFS spectra of L-05, 

L-05-Ex4 and L-05-Ex5 samples with residual 

(blue line) 
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3.3.2. Small area analysis of specific Th-containing particles 

Since these soil samples are mineralogically heterogeneous, additional investigations 

on selected particles of these samples by both SEM-EDX and XAS with a micron size 

beam footprint (µ-XAS) were performed. The objective was to analyze small isolated 

grains in the soil samples at higher spatial resolution utilizing a micro-focused beam in 

order to collect X-ray fluorescence data (μ-XRF) and further select points of interest 

for application of X-ray absorption spectroscopy (μ-XAS). The µ-XRF technique can 

be used to determine elemental composition and distribution (elemental mapping) for a 

given particle due to its relative simplicity and non-destructive character. Although, 

SEM-EDX has higher spatial resolution than µ-XRF, the latter has certain advantages 

over SEM-EDX particularly in this study due to the effect of beam size vs particle sizes. 

µ-XRF has certain advantages over SEM-EDX regarding the elemental analysis. 

Additionally, high penetration depth of X-rays, absence of sample pre-treatments [267], 

and improved resolution for the analysis of heavy elements are helpful. The 

composition resulting from µ-XRF characterizes the entire particle while the near 

surface composition is obtained by SEM-EDX since it probes only a few µm below the 

surface, depending on the material composition and the electron acceleration voltage. 

However, if the size of the particle is a few µm only, SEM-EDX may also provide 

information on the entire particle. 

Elemental analysis using SEM-EDX was performed under high vacuum mode allowing 

the detection of fluorescence at low energies, whereas analyses by µ-XRF were 

performed with X-rays of high energies under ambient conditions allowing the 

detection of fluorescence energies above ~3 keV. The two techniques provide 

complementary information since SEM-EDX is better suited to detect light elements 

(e.g., O, Na, Mg, Al, Si) which cannot be detected using µ-XRF at ambient conditions. 

From the elemental point of view and the information depth of the analysis, SEM-EDX 

provides higher resolution for surface composition while µ-XRF prone to explain the 

entire mineral composition. Both approaches consistently depict that the soil samples 

are assemblages of particles with variable compositions, and the nature of the particles 

agrees with XAS analyses of the bulk samples. 

Three particles with different size and mineralogy, which had been identified as Th-

silicate-, Th-oxide-, and Th-phosphate dominated phases by SEM-EDX were selected 
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for further investigations. The corresponding weight (wt.%) and atomic (at.-%) 

contributions of the detected elements of each particle are shown in Table 3.9. The 

electron images of the selected particles together with the corresponding SEM-EDX 

spectra and fitted µ-XRF spectra are displayed on Figures 3.17, 3.20 and 3.23. The µ-

XRF spectra were fitted using the PyMca Fluorescence Toolkit to identify the elements 

present in each particle.  

The selected Th-silicate particle is ~10 µm in size (Figure 3.17a) according to SEM 

imaging and contains ~70 wt.% of Th based on EDX analysis (Figure 3.17b, Table 3.9). 

The particle appears to have a size of ~30 µm based on µ-XRF mapping (Figure 3.18a) 

which is due to the much larger beam footprint. The particle contains significant 

amounts of Si, compared to other major elements (Table 3.9) and the molar Th/Si ratio 

of 1.1 in the particle and the O/Si ratio of 4.2 indicate predominance of ThSiO4. The 

SEM-EDX spectra of the particle (Figure 3.17b) also illustrate the presence of small 

amounts of Al, P, Fe and, to a smaller extent, Ca (mapped in Figure 3.19c,e,g,f). These 

elements could stem from trace amounts of surface attached clays and other mineral 

phases, such as kaolinite and goethite. These findings are validated by µ-XRF spectra 

(Figure 3.17c), which further highlight the presence of small amounts of Pb and Y, and 

possibly minor levels of Ni, Cu and Zn. Further information on the association of 

various elements within the particle was obtained by recording µ-XRF maps. The total 

fluorescence yield are depicted in Figure 3.18a, whereas Figure 3.18b,c show the 

fluorescence of selected elements recorded for the Th-silicate particle. Visual 

differences in µ-XRF maps (Figure 3.18b,c) are supported by a weak correlation 

between Th and Y (ρ = 0.667), suggesting the presence of a single major phase 

containing Th with smaller contributions of Y. Information on the element composition 

of the particle surface layer down to some µm depth, especially for the elemental 

distribution of the light elements, is obtained from the SEM-EDX elemental maps 

(Figure 3.19). Both XRF (Figure 3.18b) and EDX (Figure 3.19h) maps show 

homogeneous Th distribution across the particle. Indications for heterogeneities in the 

Y distribution could not be evidenced by EDX. This might be due to the low Y-content 

in the sample which is close to or below the detection limit of EDX. Another possibility 

is that Y is mainly located below a Th silicate surface layer. The EDX maps illustrate 

the existence of a uniform Th silicate phase with Si and O being uniformly distribute 

all over the particle (Figure 3.19b,d).  



89 
 

 

 

 

 

Figure 3.17: (a) The SEM images, (b) corresponding EDX, and (c) µ-XRF spectra (solid line) with fits 

(dotted line) of the selected Th-silicate rich particle 

Figure 3.18: µ-XRF maps of the Th-silicate particle (a) showing total fluorescence and fluorescence 

lines of (b) Th and (c) Y (maps: 82.5 µm in width, 67.5 µm in height). The scale represents normalized 

count integral 

(a) (b) 

Th Lα1 

(c) 

Y Kα1 

Figure 3.19: (a) SEM image of the Th-silicate particle and corresponding SEM-EDX elemental maps for 

O, Al, Si, P, Ca, Fe, and Th (b – h) in counts 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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The Th-oxide particle studied is ~25 µm in size as observed by SEM (Figure 3.20a) and 

has high Th (~15 wt.%) and Ce (~38 wt.%) contents with relatively small amounts of 

Fe, Al, and Si identified by EDX spectra (Figure 3.20b, Table 3.9). In addition, when 

fitting XRF spectra (Figure 3.20c), it was found that this particle contains Pb and 

possibly low levels of Cu and Ni. The molar ratio of 5.7 from O:(Th+Ce) clearly 

indicates the presence of distinct oxide phases. Considering the presence of phosphates, 

Fe-oxides and silicates, the O:(Th+Ce) ratio is too high for the presence of only 

Th/CeO2. The EDX analysis would rather point to some kind of Th/Ce(OH)4 or 

Th/CeO(OH)2. This would also agree with the XANES spectra. As a conclusion, the 

data suggest that the particle is mostly composed of oxides, apparently Th-oxide or 

hydroxide mixed with Ce-oxide/hydroxide as the major component, which is further 

confirmed by the distribution of Th and Ce in the fluorescence maps (Figure 3.21a-c), 

yielding significant correlation (i.e., ρ = 0.970; Appendix 3.7, Figure A3.6). In fact, 

literature data provide evidence for (Th,Ce)Ox(OH)y solid solutions owing to the 

comparable ionic radii [250, 268] of Th(IV) and Ce(IV). EDX maps (Figure 3.22g, j) 

show an inhomogeneous distribution of Fe compared to Th, i.e. higher density areas of 

accumulation at the lower part of the particle, suggesting iron oxide phases, being 

slightly depleted in Th, attached to the (Th, Ce)O2 particle. The seemingly 

homogeneous Fe-distribution in the fluorescence maps (Figure 3.21b, d) and significant 

correlation with Th (i.e., ρ = 0.806; Appendix 3.7, Figure A3.6) are due to lack of spatial 

resolution. A small clay mineral flake is observed (Figure 3.22c, d) at the bottom corner 

of the particle. A relatively consistent surface distribution of Ce can be seen in the EDX 

map (Figure 3.22i), matching that of O and to a lesser extent to traces of Si and Al in 

spite of the mapping shadow effect, and adsorbed clay fractions containing REEs 

(Figure 3.22b-d). The weaker intensities for the Th and Ce signal in the area where the 

Fe signal is enhanced could be interpreted by overlay of a Th/Ce-oxide particle by iron 

oxide. Both Ce and Th are related to a small extent (0.65 < ρ < 0.85; Appendix 3.7, 

Figure A3.6) to traces of Ti and Pb (Figure 3.21e, f), indicating that the correlation 

analysis mostly reflects counting statistics. In summary, these data show that the natural 

Th-oxide particles are not pure ThO2 (thorianite), but presumably consist of a (Ce, 

Th)oxyhydroxide solid-solution covered by accessory clay minerals and Fe-oxide 

phases, including traces of P, Ti, Mo, and potentially also Ce (Figure 3.22e, f, h, i). 

However, it is impossible to draw conclusions with regard to the direct binding of Th 
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to those accessory mineral phases due to the fact that iron oxide and clay minerals are 

closely associated with Th-minerals and EDX cannot clearly distinguish between them.  

 

 

 

 

 

Figure 3.20: (a) The SEM images, (b) corresponding EDX, and (c) µ-XRF spectra with fits of the selected 

Th-oxide rich particle 

Figure 3.21: µ-XRF maps of the Th-oxide particle showing (a) total fluorescence and fluorescence lines 

of (b) Th, (c) Ce, (d) Fe, (e) Ti and (f) Pb (maps: 107.5 µm in width, 55 µm in height). The scale represents 

normalized count integral 

(a) (b) 

Th Lα1 

(c) 

Ce Lα1 

(d) 

Fe Kα1 

(e) 

Ti Kα1 

(f) 

Pb Lα1 
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The ~50 µm sized Th-phosphate containing particle (Figure 3.23a) has lower Th content 

(~1 wt.%, Figure 3.23b), compared to the silicate and oxide particles, but contains 

significant amounts of P and light REEs (Table 3.9). The total REE (La, Ce, Nd, Pr) 

content amounts to ~44 wt.% (Figure 3.23b), comparable to ~45 wt.% in the RC-

monazite (Table 3.9). Hence, it can be assumed that this soil particle is depleted in Th, 

(Ce0.43, La0.25, Nd0.16, Pr0.04, Th0.01, Ca0.10)(P0.98, Si0.02)O4, compared to the RC monazite 

from Brazil, (Ce0.41, La0.11, Nd0.27, Pr0.06, Th0.14, Ca0.01)(P0.96, Si0.04)O4. The high P 

content and the absence of significant amounts of Al and Si based on the EDX spectra 

(Figure 3.23b) clearly suggest that the particle mostly consists of a phosphate phase. µ-

XRF measurements further indicate that this particle contains more elements than the 

two other studied particles (c.f. the fluorescence spectra and maps in Figures 3.23c and 

3.24b-i). Iron shows a non-negligible contribution and the highest correlations with the 

analyzed light REEs and Ca (i.e., ρ > 0.92; Appendix 3.7, Figure A3.7). Despite the 

low Th concentrations in this particle, its distribution is clearly correlated to those of 

the REEs (i.e., ρ > 0.75), though the highest correlations of Th are found with Y and Pb 

Figure 3.22: (a) SEM image of Th-oxide particle and SEM-EDX elemental maps for O, Al, Si, P, Ti, Fe, 

Mo, Ce, and Th (b – j) of the particle in counts 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) 
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(i.e., ρ > 0.87; Appendix 3.7, Figure A3.7). Additionally, Th, Pb, Ca, and U show 

positive skewness of the data distribution (Appendix 3.7, Figure A3.7). All these 

observations suggest the presence of different compositions of monazite-type minerals, 

in accordance with EXAFS observations, which is further confirmed by results from 

A.-M. Seydoux-Guillaume et al. [269] who studied low temperature alteration of a Sri 

Lankan monazite sample. The REEs seem to be present in mixed phases, since the EDX 

maps for REEs and P show a uniform distribution of these elements over the particle 

(Figure 3.25e, h-k). Nevertheless, REEs, and in particular Ce, show higher element 

abundance compared to P, pointing towards the presence of REEs as both, mixed 

phosphate phases (i.e., in accordance with the main monazite mineralogy) and oxide 

phases. A uniform distribution of Th is also provided by the EDX map (Figure 3.25l). 

To some extent, the data sets again suggest the presence of clay minerals and Ca-/Fe-

phases suggesting potential correlation with lanthanides and actinides within the 

particle and/or at surface (Figure 3.25c,d,f,g). 

 

 

 

 

 

 

 

Figure 3.23: (a) The SEM images, (b) corresponding EDX, and (c) µ-XRF spectra with fits of the selected 

Th-phosphate rich particle 
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Figure 3.24: µ-XRF maps of the Th-phosphate particle showing (a) total fluorescence and fluorescence lines 

of (b) Th, (c) La, (d) Ce, (e) Nd, (f) U, (g) Ca, (h) Y, (i) Fe, and (j) Pb (maps: 230 µm in width, 183 µm in 

height). The scale represents normalized count integral 

(a) (b) 

Th Lα1 La Lα1 

(c) 

Nd Lα1 

(d) 

U Lα1 

(e) 

Ca Kα1 

(f) 

Y Kα1 

(g) 

(h) 

Fe Kα1 Pb Lα1 

(i) 

Ce Lα1 

(d) 

Figure 3.25: (a) SEM image of Th-phosphate particle and SEM-EDX elemental maps for O, Al, 

Si, P, Ca, Fe, La, Ce, Pr, Nd, and Th (b – l) of the particle in counts 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
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Additional Th L3-edge µ-XANES spectra were collected for the selected three mineral 

particles (Figure 3.26a, b, and c). The energy position of the XANES white line in all 

analyzed particles is identical to that of the bulk soil samples. This is not surprising as 

the oxidation state of Th in environmental samples is always IV. It is obvious that the 

X-ray absorption spectra of these particles closely follow those of the corresponding 

RCs even though their XAS signals are quite noisy. Theoretically, the identified 

particles could be used as local RC, to fit the bulk soil spectra in both XANES and 

EXAFS regions, which should lead to more conclusive results compared to the 

synthetic Th-silicate/oxide RCs and the natural monazite RC from another location. 

Such an attempt was made for the XANES region, because only µ-XANES spectra had 

been recorded for the selected particles. It should be noted that the EXAFS region was 

not measured during µ-XAS because fluorescence intensities were not sufficient. 

Unfortunately, the backfitting of the µ-XANES spectra was hampered by the relatively 

high intensity of the white line from the identified Th-phosphate particle. This may be 

related to differences in composition between the natural Th-monazite particle from Sri 

Lanka and the monazite RC from Brazil and/or to the difference in particle sizes (i.e. 

RC particles were ~40 times bigger than the Th-phosphate particle used in this study), 

which further highlights the challenges in characterizing the speciation of Th in natural 

samples, composed of multiple mineral phases compared to studies on pure samples. 

 

The aim of all these measurements was not only to identify the heterogeneous nature 

of the sample (as this was already clear from SEM-EDX analysis), but also to look for 

possible accessory phases like iron oxides which have coprecipitated or adsorbed Th or 

lanthanides. As a summary, all the extensive spectroscopic studies described in this 

chapter suggest the heterogeneity of both the natural samples and particle sizes and they 

have an impact on spectra, for instance in XANES. However, although it is possible to 

identify the accessory iron oxide and clay minerals, a clear assignment of direct Th or 

REE binding to those accessory minerals or coprecipitated and adsorbed Th, Ln forms 

could not be found in the frame of the present thesis either due to low concentrations 

or because they do not exist.  
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Table 3.9: Weight and atom contribution of each element (%) obtained by SEM-EDX for the selected isolated particles (i.e., Figure 3.18 – Th-silicate, Figure 3.21 – Th-

oxide, Figure 3.24 – Th-monazite) and the monazite RC 

Figure  Element – wt. % 

 O-K Al-K Si-K Fe-K Ca-K Ti-K P-K Ce-L La-L Nd-L Pr-L Th-M 

3.16 17.8±0.3 1.2±0.1 7.5±0.1 1.0±0.1 0.3±0.0 - 2.8±0.1 - - - - 69.4±0.4 

3.17 30.1±0.2 4.2±0.1 3.2±0.1 7.2±0.1 - 1.6±0.1 0.6±0.1 37.6±0.2 - - - 14.6±0.2 

3.18 35.4±0.2 1.2±0.0 1.5±0.0 0.4±0.1 2.2±0.0 - 13.9±0.1 21.4±0.3 12.4±0.2 8.1±0.2 2.4±0.3 1.1±0.1 

Monazite - RC 23.0±0.2 0.9±0.0 1.6±0.0 1.2±0.0 0.2±0.0 - 12.4±0.1 21.8±0.4 5.8±0.2 14.6±0.3 3.2±0.5 9.5±0.1 

 Element – Atom% 

3.16 60.6±3.0 2.4±0.5 14.5±0.5 1.0±0.1 0.4±0.1 - 4.9±0.4 - - - - 16.3±0.3 

3.17 70.4±1.2 5.8±0.3 4.2±0.3 4.8±0.2 - 1.3±0.1 0.7±0.2 10.0±0.1 - - - 2.3±0.1 

3.18 70.5±1.4 1.4±0.1 1.7±0.1 0.2±0.1 1.7±0.1 - 14.3±0.3 4.9±0.2 2.8±0.1 1.8±0.1 0.5±0.2 0.1±0.0 

Monazite - RC 61.0±1.2 1.5±0.2 2.5±0.1 0.9±0.1 0.2±0.0 - 17.0±0.3 6.6±0.4 1.8±0.2 4.3±0.3 1.0±0.4 1.7±0.0 

Figure 3.26: Micro-X-ray Absorption spectra 

of (a) Th-silicate, (b) Th-oxide, and (c) Th-

phosphate rich particles, respectively 
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3.4. On-site groundwater characterization 

Elemental concentrations in groundwater depends on lithology, geomorphology and 

geological conditions of a given region. Numerous environmental factors influence 

these concentrations such as pH, redox conditions, soil matrix porosity, particle size, 

dissolved CO2 concentration, temperature, presence of inorganic and organic 

compounds, colloids, etc. [102, 270, 271].  

This section summarizes results of on-site measurements of pH, total disperse solid 

(TDS), and conductivity of groundwater samples and the laboratory measurements on 

cation, anion and NPOC concentrations. The on-site data, elemental and anion 

concentrations of filtered samples using two filter pore sizes, i.e. for 0.2 µm and 0.45 

µm, are given for all locations in Table 3.10.  

The average well water pH is slightly acidic (~5.9) and somewhat lower than the 

standard range. The tap water shows the lowest concentrations of Th and La, which is 

probably due to the water purification process and relatively high pH. The pH is quite 

important, and normally the highest concentrations of trace elements are generally 

found at the lowest pH values. However, a clear correlation of Th, U and REEs 

concentrations with measured pH was not found except in few cases, for instance, Th 

concentration was mostly found to be highest in the water with the lowest pH (Table 

3.10). The TDS, conductance and pH of a particular location always seem to follow the 

same trend for the water samples from S1 and S2 (Table 3.10). TDS usually comprise 

inorganic salts and small amounts of organic matter dissolved in water and their values 

largely depend on the geological regions suggesting different mineral solubilities. The 

WL-02 and 03 locations correspond to spring well and tap water, respectively, with 

higher pHs, TDS and conductivity (Table 3.10) and in accordance with the literature 

with respect to the spring water [272]. Normally, the chemical compositions of 

groundwater and spring water are influenced by the mineral composition of the 

contacting rocks along their flow paths.  

Anion concentrations were measured only in the second sampling campaign (S2). The 

geochemical analysis of the water samples shows that the type of the groundwater is 

Na-Cl type with some sulfate and bromide while fluoride and phosphates are below the 

detection limit of 0.01 mg L-1. The current study location belongs to the intermediate 
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climatic zone of Sri Lanka and the anion concentrations measured in this study are in 

the range of previously reported groundwater analysis data in this zone [273]. 

The Th concentrations in groundwater samples are very low, as expected (in the range 

of 10-10 to 10-8 mol L-1, Table 3.10). These very low amounts reflect the low solubility 

of Th, which seldom exceeded 10-8 mol L-1 even at very low pH values and high affinity 

to surfaces. The minimum value of the Th concentration in groundwater is within the 

range of the solubility of ThO2. Thorium oxide is an insoluble phase, which will limits 

the fraction of potentially mobile Th. In contrast, U concentration varies enormously 

with the environmental factors and geological regions. For instance, some researchers 

from India reported that the amount of U in groundwater was in the range of 0.3 to 1443 

µg L-1 [274]. The attention towards REEs in groundwater was taken more recently and 

the resulting studies showed that these elements may be useful as geochemical tracers 

in groundwater aquifer systems [275-277], even if the geochemistry of REEs in 

groundwaters is still not completely understood. The solubility of REEs may be 

controlled by several processes with respect to minerals such as dissolution of Ca-PO4-

minerals. In some studies, experimentally determined REE concentrations are found to 

be higher than calculated values from speciation and solubility data. REEs mostly are 

found bound in apatite phases and are known to adsorb strongly to Fe, Al or Mn-

(hydr)oxides [278]. The literature data for the groundwater concentration of La is 

reported to be below 3 µg L-1 [72, 279], consistent with the concentrations reported in 

this work (Table 3.10). 

Differences among target elemental concentrations are observed between the two 

sampling campaigns. U and REEs show some kind of dilution phenomena in S2 

compared to S1 while Th and major elements such as Fe, Mn, Si, Al show otherwise 

(Table 3.10 and Appendix 3.8, Table A3.3.) potentially related to the meteorological 

conditions during the sampling campaigns (S1 – sunny day and S2 – rainy day). This 

suggests that U and REEs may be easily washed out with rain due to their high mobility 

while the erosion due to rain or some kind of out washing of colloidal species from the 

soil might cause the increase of Th and major elemental concentrations in S2, further 

supporting evidences for the mobilization of Th in this study area associated with the 

particulate phase. However, this effect is not prominent for WL-03 (tap water). Other 

than to the local meteorology, there are several other potential factors which might 
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influence the results, such as the effect of: (i) time period (sampling was done on two 

separate dates), (ii) sensitivity of the measuring instrumentation (S1 – analysis in Sri 

Lanka and S2 – analysis in Germany, section 2.1.3.), and (iii) sampling reproducibility 

between individuals. Although the differences in the values exist, the patterns between 

sampling sites are consistent among sampling campaigns, potentially indicating local 

characteristics and heterogeneity in water composition for a relatively small sampling 

area.  

In general, there is a consistency between the measured amounts involving 0.2 µm and 

0.45 µm pore size filters, suggesting little influence of the colloidal phase in the 

transport of target elements in groundwater. Some samples show slightly higher values 

for 0.2 µm than 0.45 µm (Figure 3.29), indicating potential analytical variability (± 

20%) and/or sample contamination (e.g., aerosols or tube composition) as it is unlikely 

that there would be more elements passing through a smaller filter than the larger filter. 

Even though U and La show similar amounts in both filtered samples, concentrations 

of Th are inconsistent. These observations indicate the presence of Th-containing 

particulates with different sizes. However, in some samples the opposite finding is 

stated. This might be due to the relatively high analytical uncertainty of measuring Th 

concentrations at such low concentration levels (ng L-1 range). The variable Th 

concentrations of samples passed through filters with different sizes may, however, hint 

to the significant presence of particulate and colloidal Th species. The best conceivable 

way to detect any type of colloids in the groundwater is direct analysis of such particles 

in the groundwater at the site [280]. Direct measurements on unfiltered groundwater 

samples were not carried out in this part of the study. Therefore, colloidal transport 

cannot be discarded for trace element mobility. This is similar to studies with column 

experiments (soil leaching), discussed later by analyzing filtered and unfiltered samples 

from flow-through column experiments in Chapter 4.  

The drinking water limits imposed by the world health organization (WHO) [281], 

United States Environmental Protection Agency (EPA) [282] and the Sri Lanka 

Standards Institution (SLS) [283] are included in Table 3.10. The pH, concentrations 

of U and anions of the tap water sample from the purification plant are within the limits 

of WHO, EPA and SLS standards. Standards are set to ensure drinking water quality 

based on the latest scientific evidence as well as to secure efficient monitoring and 
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assessment drinking water quality. No standards are currently available for REEs in any 

of the above guidelines, but it might become important since natural and human sources 

may lead to elevated levels of REEs in natural water resources. For instance, weathering 

processes, enhanced by deposition of acid rains, as well as the use of phosphate 

fertilizers could release REEs to the environment [284].
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Table 3.10: Concentrations of targeted elements, anions, and on-site measurements of groundwater samples with the drinking water limit standards of WHO (W), EPA (E) and 

SLS (S) 

Sampling campaign – S1  W E S 

 WL-01 WL-02 WL-03 WL-04 WL-05 WL-06    

Th (ng L-1)       -- -- -- 

0.45 µm 0.63±0.03 0.68±0.02 0.23±0.04 0.74±0.02 0.35±0.02 0.75±0.02    

0.20 µm 0.15±0.01 0.45±0.04 0.06±0.00 0.08±0.00 0.50±0.05 2.42±0.03    

U (µg L-1)       30 -- -- 

0.45 µm 0.10±0.01 1.41±0.07 1.12±0.00 0.22±0.01 3.06±0.07 0.17±0.03    

0.20 µm 0.12±0.01 1.52±0.05 1.18±0.07 0.20±0.01 3.09±0.02 0.15±0.00    

La (µg L-1)       -- -- -- 

0.45 µm 2.42±0.24 0.45±0.06 0.12±0.02 1.97±0.07 2.45±0.04 2.83±0.04    

0.20 µm 2.75±0.07 0.54±0.03 0.11±0.01 1.97±0.20 2.60±0.10 2.53±0.32    

On-site measurements 

pH 5.5 6.6 6.7 5.9 6.1 4.8 6.5-8.5 

TDS  

(mg L-1) 

120 650 580 240 520 130 500 

Conductivity (µS cm-1) 250 310 280 110 250 50 -- -- -- 
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Table 3.10 Cont. Sampling campaign – S2  

 WL-01 WL-02 WL-03 WL-04 WL-05 WL-06    

Targeted elements 

Th (ng L-1)       -- -- -- 

0.45 µm 4.04±0.14 2.49±0.16 1.24±0.05 3.55±0.41 4.80±0.05 3.79±0.04    

0.20 µm 4.00±0.00 3.31±0.02 1.39±0.05 3.29±0.31 2.31±0.01 5.17±0.00    

U (µg L-1)       30 -- -- 

0.45 µm 0.03±0.00 0.34±0.01 0.14±0.00 0.05±0.00 0.55±0.00 0.03±0.00    

0.20 µm 0.04±0.00 0.37±0.01 0.15±0.01 0.05±0.00 0.52±0.00 0.03±0.00    

La (µg L-1)       -- -- -- 

0.45 µm 0.41±0.00 0.03±0.00 0.25±0.00 0.19±0.00 0.15±0.00 0.20±0.01    

0.20 µm 0.51±0.00 0.10±0.00 0.28±0.00 0.20±0.00 0.15±0.00 0.22±0.00    

Anions (mg L-1) 

Cl-  14.9±0.2 10.8±0.1 9.7±0.1 14.9±0. 12.0±0.2 14.8±0.1 -- 250 

NO3
-  6.96±0.08 4.81±0.05 9.97±0.26 7.77±0.07 1.28±0.02 10.53±0.21 50 10 50 

SO4
2- 6.89±0.66 4.80±0.33 1.93±0.29 4.75±0.64 10.3±0.8 2.73±0.81 -- 250 

Br-  0.00±0.00 0.15±0.08 0.15±0.06 0.11±0.00 0.13±0.01 0.11±0.01 -- -- -- 

NPOC  

(mg L-1) 
5.90±0.80 7.77±0.30 3.61±0.70 7.36±0.51 5.25±0.06 4.43±0.76 -- -- -- 

On-site measurements 

pH 6.0 6.9 7.1 6.1 6.9 5.3 6.5-8.5 

TDS (mg L-1) 130 630 440 250 500 180 500 

Conductivity (µS cm-1) 280 310 210 120 240 80 -- -- -- 
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3.5. Conclusions  

The direct analysis of environmental samples from the area of study suggests: 

• The area of study is a hot-spot of radioactivity relative to Sri-Lankan average 

levels, showing high absorbed gamma dose rates in air (> 2000 nGy h-1) and 

enhanced soil radionuclide activity concentrations (Th-232: > 4000 Bq kg-1 and 

Ra-226: > 300 Bq kg-1), 100- and 10-fold higher than world average 

concentrations, respectively. Corresponding on-site effective dose rates are 

slightly above the acceptable range of 1-10 mSv y-1 and radiological risk 

assessment shows high hazard indices implying cancer risks. Although, these 

calculations might not always give accurate output, they are useful in providing 

upper limits of possible hazards and allow preliminary risk estimation for the 

location of interest. These results suggest that the current location should be 

considered as a HBRA, although the specific criteria for a location to be a 

HBRA still need to be clearly defined.  

• Both external and internal exposure pathways seem to play non-negligible roles 

in the area. The results suggest that further evidence and risk assessment are 

required for this area of study, as well as for similar anomalous sites over the 

country, to better address the concern for the local population subjected to 

chronic exposure of potentially elevated natural radiation levels. The present 

thesis does not provide direct information on internal exposure pathways. 

However, there are indications for the relevant transfer of Th from soil to plants, 

which needs to be investigated further.  

• The results from different solid characterization methods agree well with each 

other. XRD data reveal that the major mineralogy of the site is dominated by 

kaolinite and quartz while the diffractograms of sieved fractions add evidence 

for the presence of Fe crystalline phases including hematite and goethite.  

• SEM images and corresponding EDX spectra provide finer details of the grains 

and reveal the variable mineralogy with regard to Th, U and REEs. The 

combination of the different spatially resolved techniques such as synchrotron-

based µ-XRF (i.e., providing the bulk particle composition) and SEM-EDX 

(i.e., giving potentially the composition of both surface and a few μm-depth 

layer) mapping provides insight into the composition and heterogeneity of 
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single mineral grains in natural soil samples on the µm scale. The data show 

that clay and iron mineral phases may be attached to larger mineral grains in 

natural samples, with potential implications for the environmental behavior and 

fate of associated trace elements. Overall, the data confirm the presence of 

distinct dominant Th-containing mineral phases inside the soil samples (Th-

silicate, Th-phosphate and Th-oxide phases) and highlight the strong mineral 

phase heterogeneity within the same sample. Probably due to the low 

concentrations, no clear indication could be obtained related to the presence of 

Th, U, REE associated with accessory minerals (clay, iron oxides) via 

adsorption or incorporation.  

• There are some indications but no clear evidence for colloidal or particulate 

phase importance for Th, U and REEs transport in groundwater. A general 

spatial variability can be inferred from results of the sampling campaigns 

though higher frequency sampling over a longer period of time is required to 

better understand both element dispersion/mobility and local variability. In 

addition, a focused investigation of colloidal species (particles with sizes > 1 

nm) is required.  

• Despite the high radiological levels detected on-site, dissolved concentrations 

for target elements in groundwater samples remain within drinking water limits 

according to several local and worldwide guidelines.   
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4. POTENTIAL MOBILITY AND CARRIER PHASES OF 

TARGET ELEMENTS 

 

This chapter studies the potential release of Th, U and REEs in the area of study by 

several laboratory experiments under simulated static (batch) and flow-through 

(column) conditions. As column experiments can be considered as more representative 

of environmental settings, results will be compared with onsite analytical data 

discussed in Chapter 3. Although more systems were studied, only the soil sample L-

05 will be comprehensively discussed in this chapter while the results of the other 

samples are reported in the Appendices. In addition, since the focus of this work is 

mainly on Th and U, only the data for those elements will be discussed in detail with a 

comparison of La (selected as a representative of REE mobility). All weight 

percentages of leached elements as obtained from different experimental approaches 

were calculated based on total element concentrations in the bulk L-05 soil measured 

by XRF (Chapter 3). Scoping calculations involving geochemical models will be 

discussed at the end of the chapter. 

 

4.1. Evaluation of potential mobilization based on chemical batch extractions 

The mobility of NRs in soil, i.e. their potential toxicity in the environment, depends on 

the phases they occur in and which chemical and physical processes these phases are 

subject to. In addition, the concentrations of these metals in soil solutions are most 

likely controlled by sorption-desorption reactions. In this perspective, sequential and 

single batch extraction protocols, based on operationally defined fractions, provide 

more detailed information on the potential retention/mobility of NRs, and potentially 

yield insight into fractions of soil in which these metals exist besides assessing their 

bioavailability. The operationally defined fractions were summarized in Table 2.1 

(Chapter 2) and the corresponding extracted amounts of Th, U and La are evaluated in 

this section for unsieved (bulk) and sieved soils. However, care was taken not to over 

interpret the corresponding data since such operationally defined fractions may not 

really be selective for target elements and solid host phases. For this reason, the 

performance of the extractions will be presented first (section 4.2.1.) followed by a 

more detailed tentative interpretation of the results (section 4.2.2.). 
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4.1.1. Overall mass balances and performance of the chemical extraction procedures 

➢ Unsieved soil 

The percentage distribution of the target elements in each sequentially and singly 

extracted fraction is shown in Figure 4.1 (absolute values are in Appendix 4.1, Tables 

A4.2-A4.11). The mass balance for the sequential extraction steps validates the 

procedure by yielding overall recoveries of 91, 107 and 87 wt% for Th, U and La 

(Figure 4.1), respectively. This means that the sum of the six fractions (i.e., five 

sequential extractions and direct XRF measurement on F5 residual solids) is in fair 

agreement with the independent quantification of total Th, U and La (i.e., obtained by 

direct XRF measurements of overall soil, section 3.3, Table 3.6). These observations 

are backed-up by direct measurements of element concentrations in Milli-Q from inter-

fraction washing steps during sequential extractions, which show negligible leaching of 

the target elements after F3 (i.e. <1% of total corresponding element content in the soil, 

Appendix 4.1, Table A4.12).  

 

Figure 4.1: Percentage distribution of (a) Th, (b) U and (c) La in each chemically extracted fractions of 

soil sample L-05 in sequential (Seq) and single (Sin) extractions 
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The residual analysis after sequential extractions obtained via both methods described 

in section 2.4.2.1, revealed that Th, U and La in these samples are mainly present in 

fraction F6 (Figure 4.1), with corresponding percentage >70 wt.%. The difference 

between the values for F6 from direct XRF measurements of F5 residual solids (i.e., 

method F6M1 described in section 2.4.2.1) as well as the difference between extracted 

amounts and the total content of each element (i.e., method F6M2 described in section 

2.4.2.1) is <15% for Th and La while it is 10% for U (Table 4.2).  

In general, it is clear that single and sequential extractions will provide diverse results 

for each individual fractions and elements (Figure 4.1). Only in few cases, extracted 

concentrations of all target elements in single and sequential extractions provided <25% 

relative difference between common fractions, i.e., Th in fractions F1/F3, U in F1 and 

La in F1/F4. These results would suggest little overlap between operationally defined 

fractions or a certain consistency of the extracting power of the reagents. However, 

fractions F2 of Th, F2/F3/F4 of U and F2/F3/F5 of La exhibit more than 50% of 

discrepancies between the two approaches. Single extractions in these cases show 

enhanced leaching compared to sequential extractions, in accordance with the inherent 

implications of the procedures (i.e., original soil in each fraction of single extractions 

vs leached soil in subsequent fractions). Two potential explanations emerge for these 

observations: (i) sample heterogeneity (i.e., given the fact that each extraction required 

2 grams), and/or (ii) a non-selectivity of the reagents for a given target element. For 

instance, a significant fraction of La was easily released in extraction step 1 (Figure 

4.1c) with no further significant extraction in sequential F2 and F3. In the single 

extraction experiments, the exchangeable La fraction in F1 is desorbed as well in F2 

and, to a lower extent, in F3 and F5. Furthermore, differences observed in F5 for Th, U 

and La can only be possible because if citrate/dithionite is able to dissolve crystalline 

Fe-oxides, then it must also be able to dissolve amorphous Fe-(hydr)oxides(i.e., <3% 

relative difference) [132]. In fact, the sum of the elemental amounts leached in 

sequential extractions from F1 to F5 is in agreement with the single extraction of F5 for 

U as in the case of Th and not in the case of La as can be seen in Figure 4.1. In the case 

of U, the relative difference is +13% (i.e., the sum of sequential fractions extracts more 

than F5 in single). Nevertheless, this variability may fall within the ranges of 

experimental error due to the washing steps during sequential extractions. For La, non-

negligible concentrations of dissolved La were observed in some washing solutions 
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between extractions (Appendix 4.1, Table A4.12). These observations could imply that 

(i) sequential extractions may not be specific for potential carrier phases of relatively 

easily exchangeable elements such as La since the applied reagents in F2 to F5 are 

clearly non-selective for binding modes of La and there might be re-adsorption of 

released La onto remaining (non-dissolved/non-attacked) solid phases during F3 and 

F5 extractions (e.g., as already reported for other elements during selective extractions; 

[132]), which would explain the high concentrations in the washing steps (i.e., releasing 

re-adsorbed, loosely bound La), and (ii) elements present in different operationally 

defined carrier phases (e.g., Th and U) show relatively consistent trends and overall 

releases between fractions from both single and sequential extractions despite the non-

selectivity of different reagents.   

In an attempt to further understand the extraction efficiency of the reagents and to 

identify which soil components associated with Th, U, REEs-minerals are removed by 

the respective extracting solutions in each step, solid residues from each extraction step 

were analyzed by SEM-EDX. The results suggest that the main Th, U, REEs mineral 

phases (i.e., phosphates, silicates and oxides) have not selectively disappeared after a 

given extraction step. This would be expected for such insoluble phases and supports 

the hypothesis of reduced mobility of these elements in Sri Lankan soils due to the 

presence of mixed solid phases of low solubility, combined with other elements, or a 

dominance of mineral phases presenting crystalline structures. 

 

➢ Soil size fractions 

The main targeted elements, Th, U and La, were sequentially extracted to learn about 

their release behavior from different soil size fractions. The percentage distribution of 

Th, U and La from the sequential extraction studies on the different size fractions of L-

04 are shown in Figure 4.2 and the corresponding absolute values are given in the 

Appendix 4.1 (Tables A4.13-A.15). The data from F1 to F6 are illustrated together with 

separate graphs for the fractions F1-F4 for better comparison of the lower percentages.  
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The extraction patterns of each fraction of Th, U and La are consistent with their 

respective patterns observed in the unsieved bulk soil sample. Noteworthy, the 

extractions assigned for carbonates (F2), organic (F3), and iron oxides (F4, F5) are 

present in all soil size fractions implying that the extraction of Th, U and La in those 

Figure 4.2: Relative percentage values of Th (a,b), U (c,d) and La (e,f) extracted sequentially from each 

size fraction of sieved L-04, showing both overall F1-F6 (a,c,e) and expanded F1-F4 (b,d,f). A 

comparison with unsieved L-04 soil sample is included 
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fractions is largely independent of the soil particle size based on dry sieving (Figure 

4.2). This agrees with the conclusions from XRD data, which also showed that different 

size fractions do not contain specific phases (Figure 3.3), except for the smallest 

fraction, <40 µm. Unfortunately, due to the inadequate amounts of material available 

(i.e. the size fractionation yielded only about 1 g of soil for this fraction), the extraction 

protocol could not be performed on the size fraction <40 µm. This fraction showed 

some iron phases in XRD (Figure 3.3), and these observations will be useful for further 

interpretations and discussions of potential carrier phases (section 4.1.2) based on bulk 

(unsieved) soil. 

Mass balance calculations were carried out to further quantify the consistency of Th, U 

and La extractions in different size fractions. Mass balances for Th, U and La 

extractions per size fraction agree with the extractions from the unsieved soil sample 

(within <20% error) giving further evidence that the overall soil heterogeneity is not 

caused by grain size (Figure 4.3). 

 

 

Figure 4.3: Mass balance for (a) Th, (b) U and 

(c) La obtained in extractions per sieved soil 

fraction to the total of unsieved L-04 

considering F1-F6 
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4.1.2. Identification of potential carrier phases of target elements 

Results from extractions for each target element and operationally defined fractions for 

unsieved soil are presented in Table 4.1 for L-05. The corresponding percentages of 

these extractions are given in Figure 4.1. A summary of accumulated percentages with 

environmental relevance are shown in Table 4.2. 

 

Table 4.1: Amounts of Th, U and La extracted in sequential (Seq) and single (Sin) extractions; mass of 

element released from the soil sample L-05 

L-05 F1  

(ng g-1) 

F2  

(µg g-1) 

F3  

(µg g-1) 

F4  

(µg g-1) 

F5  

(µg g-1) 

F6  

(mg g-1) 

Total  

(mg g-1) 

Th 

Seq 35.1±5.9 14.6±0.3 9.6±0.3 63.8±0.1 172±5 1150±100 1560±98 

Sin 39.3±0.0 33.5±0.3 11.6±0.3 115±1 258±1   

U 

Seq 25.6±11.8 1.4±0.0 0.4±0.0 1.1±0.0 3.3±0.1 15±1 20±1 

Sin 27.1±12.2 3.1±0.0 1.4±0.1 3.1±0.1 5.4±0.2   

La F1  

(µg g-1) 

      

Seq 89.3±1.2 9.9±0.1 1.4±0.0 6.7±0.0 4.9±0.1 934±110 1201±138 

Sin 91.8±3.1 193.0±1.6 68.6±1.3 8.7±0.1 65.7±0.1   

 

Table 4.2: Extracted percentages of Th, U and La in both sequential (Seq) and single (Sin) approaches 

for the soil sample L-05 

% Th U La 

 Seq Sin Seq Sin Seq Sin 

“Easily” mobile  

(F1+F2) 
0.9 ± 0.0 2.2 ± 0.0 7.0 ± 0.2 15.9 ± 0.2 8.3 ± 0.1 23.7 ± 0.4 

Non-residual 

fraction 

(F1+F2+F3+F4 for 

sequential and F4 

for single) 

5.7 ± 0.0 7.4 ± 0.1 14.5 ± 0.3 15.6 ± 0.4 8.9 ± 0.1 0.7 ± 0.0 

Residual fraction 

F6-XRF (F6M1) 

F6-Calculated 

(F6M2) 

 

73.9 ± 6.4 

  

75.7 ± 4.7 

  

77.7 ± 9.1 

 

83.0  69.1  90.7  
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➢ Thorium 

Although Th is well-known to be mostly bound to the immobile fraction, the chemical 

extractions show that a small fraction of Th can be mobilized in the environment, 

potentially relevant given the inherent, high content at the study site. It should also be 

noted that colloidal species play an important role for the aquatic chemistry of Th [285]. 

The distribution of Th over the fractions in sequential extractions is, as expected, in the 

order of F6>F5>F4>F2>F3>F1 (Table 4.1, Figure 4.1). Guo et al. reported similar 

behavior and showed that Th was primarily associated up to 81% with the residual 

fraction, after microwave digestion with HF, in samples collected from a REE-related 

industrial area in Baotou, Inner Mongolia [133]. Martinez-Aguirre and Perianez also 

observed ~70% of Th in the residual fraction, via the approach F6M2 as described in 

section 2.5.1, for samples from a marsh area in southwestern Spain [145]. 

The experimental results from the extraction scheme suggest that, despite the 

predominance of Th-bearing mineral phases (mainly silicate-, oxide- and phosphate-

related), the second highest amount of Th extracted was found in the (operationally 

defined) crystalline ferro-manganese oxyhydroxides (F5) fraction (<16%, Figure 4.1). 

In fact, the extracted Fe in both F4 and F5 fractions in sequential (i.e., 0.4% in F4 and 

26% in F5 relative to the overall Fe content) and single extractions (i.e., 0.2% in F4 and 

16% in F5 relative to the overall Fe content, data not shown) suggest that Fe 

predominantly occurs as a crystalline phase. Corresponding iron containing mineral 

phases, however, could not directly be identified via bulk soil characterization 

techniques (section 3.3), but were found to some extent as goethite and hematite in the 

XRD analysis in the smallest soil size fraction (Figure 3.3). Therefore, they might be 

present in smaller amounts or as coatings on other mineral surfaces as has been also 

found within the present investigations. Crystalline Fe oxides are stable but may 

dissolve under strongly reducing conditions or by microbial activities, which would 

contribute to the release of trace metals.  

Lower but still important amounts of Th may also be present in F4 as co-precipitates 

with amorphous ferro-manganese oxyhydroxides (F4, <8%, Figure 4.1, Table 4.1) 

another potential fraction containing Th. The reagent used in this step is the oxalate 

buffer (Table 2.1), which may be occur in natural systems, in many plants, and released 

upon organic decomposition. Both oxalic and citric acids are two of the main organic 
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acids in forest soil and litter [46]. Even though not uncommon in nature, their 

concentrations are much lower than those of humic substances. The extracted amounts 

of F4 in sequential extraction should approximately equal to the extracted amounts of 

F4 reduced by F1 + F2 in single extraction, but extraction recoveries of F4 is ~three-

fold higher for Th. Thus, the extractant used in F4 may extract F1+F2+F4 because of 

its low pH (pH~3). Despite the specification that Tamm’s oxalate extraction should be 

conducted in the dark (Table 1.6), occasionally, these extractions show enhanced 

extractive power when natural soils present Fe(II)-bearing minerals, even for 

extractions in the dark [286]. In fact, Tamm’s reagent is characterized by relatively low 

pH (pH=3) and a high concentration of the complexing ligand oxalate. A solubility 

control by equilibration with ThO2 phase for F4 conditions due to low pH can be 

excluded for Th given the fact that the concentrations of Th found in the leachate of F4 

are 2.8 and 5.0×10-5 mol L-1 (6.4 and 11.5 mg L-1, Appendix 4.1, Table A4.2) for 

sequential and single, respectively. However, this is valid for the amorphous phases of 

ThO2 since the solubility for crystalline or microcrystalline ThO2 phases are even much 

lower [48] while solubility of Th-phosphate is even lower [287, 288]. In addition, it 

should be noted that the experimental conditions used in these selective extractions are 

probably not sufficient to attain the solubility equilibria of ThO2 within short period of 

time. 

Results for F3 (extracted Th content in both methods nearly 1%, Figure 4.1, Table 4.1) 

suggest a minor fraction of Th is associated with organic matter (OM). A source for the 

OM content in the soil might be an extensive forest cover in the vicinity, which could 

continuously supply organic substances to the location. The alkaline (i.e., pH ~9.8, 

Table 2.1) sodium pyrophosphate solution used in F3 is a well-known agent to 

solubilize OM and OM-bound metal cations, such as Ca, Mg, Fe, Al [141, 142]. 

Interestingly, the study of Kaplan and Serkiz, with OM content similar to our samples 

for soils from a wetland site adjacent to a pilot-scale nuclear facility in South Carolina 

and involving the same F3 reagent, showed ~65% extraction of Th [130] whereas Guo 

et al., again with the same reagent, observed <17% of Th in F3 from a soil sample with 

much higher OM content (4-23 g kg-1) [133] compared to our study (<2 g kg-1, Table 

3.5). Those studies indicate that Th could indeed be associated with soil OM. The large 

variety of Th found in this fraction suggests that the differences in the chemical 

speciation of Th in different geological settings.  
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Both exchangeable fraction (F1) and carbonates fraction (F2) are extracted together in 

the F2 single extraction (<2.2% in both extraction approaches). The F2 fraction is 

generally attributed to carbonate bound ions, though it is not restricted to this 

operationally defined fraction as many trace elements can be mobilized due to the 

relatively low pH applied during the extraction (i.e., pH 5). The latter assumption may 

be valid for Th extraction from Sri Lankan soil as no significant carbonate mineral 

phases were observed in the solid characterization. Measured Th concentrations in the 

F2 solutions are 4.2 and 9.6×10-6 mol L-1 (1.0 and 2.2 mg L-1, Appendix 4.1, Table 

A4.2) for sequential and single extractions, respectively, somewhat higher than 

expected concerning the solubility of freshly prepared hydrated thorium oxide (2×10-7 

mol L-1 at pH=5 [287]). Solubility of thorium phosphates (e.g. Th3(PO4)4) is expected 

to be even lower (<10-9 mol L-1) under these conditions [288]. Therefore, if the 

measured Th concentration arises from dissolution of a solid phase, it could be 

suspected that it is due to thorium oxide.  

Only trace amounts of Th were observed in the exchangeable fraction F1 (single and 

sequential extractions are obviously identical for this fraction), ~ 1.6×10-8 mol L-1 (3.7 

µg L-1, Appendix 4.1, Table A4.2). The F1 fraction is assumed to represent the ion 

exchangeable portion released due to the presence of a solution of relatively high ionic 

strength (i.e., 1 mol L-1 MgCl2, Table 2.1), but it seems unlikely that an ion exchange 

between Mg2+ and Th4+ would explain the obtained results. In fact, the pH conditions 

during F1 extraction (pH ~ 7) combined with the expected low solubility of ThO2 

resulting in concentrations at around 10-8 mol L-1 (~2 µg L-1; [287]) are in accordance 

with these observations, suggesting that the F1 extraction might be influenced by ThO2 

solubility. Despite the seemingly low extracted percentages, these results suggest that 

relatively high concentrations of Th e.g., higher than average worldwide concentrations 

of ~0.01-1 µg L-1 in surface and groundwaters [289] could be released from the soil. 

The fact that Th concentrations in groundwater from the site are < 0.005 µg L-1 (table 

3.10) clearly points to retention or dilution processes, resulting in concentration 

reduction by more than two orders of magnitude.  

 

➢ Uranium 

The percentage distribution of U over the fractions in the sequential extraction scheme 

is in the order of F6>F5>F2>F4>F3>F1. As shown in Figure 4.1 and Table 4.1, U is 
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mainly associated with the residual fraction (>70%) as was observed by Kaplan and 

Serkiz for some uncontaminated surface sediment samples from a wetland site in South 

Carolina. However, in the same study, U followed the sequence F3>F1>F6>F4>F5 for 

some contaminated sediment samples involving the same extractants as in our study 

[130]. Other studies also evidenced that U is mainly associated with the non-residual 

fractions. Martinez-Aguirre found U particularly within F4, 45% or more of the total U 

for some sediment samples collected along a riverside in Spain again involving the 

same chemicals we used in the extractions [145]. However, S.M. Peter-Moreno 

reported that U in lacustrine sediments was mainly bound in F3 around 25% but these 

authors used a modified version of BCR procedures [290]. Considerably different 

percentage distributions can be observed over the non-residual fractions F2 to F4 in this 

current study and U seems to be equally distributed between fractions F2 and F4, with 

about 7% of the total from the sequential and 16% from the single approach. In addition, 

the carbonate fraction (F2) contributes more (~7% in sequential and ~16% in single) to 

the total U in the soil than the adsorbed fraction F3 (~2% in sequential and ~7% in 

single). Uranium bound with the oxidizable fraction (<7%) is formed by organic matter 

(F3) and it is an efficient sorbent for U [291].  

Under aerobic conditions, U exist only in VI oxidation state and the solubility of U(VI) 

solid phases are much higher [292]. However, in the present situation, U in natural 

systems is quite complex. The U present as an accessory mineral along with stable 

crystalline Th-phases (monazite, thorite and thorianite) most probably exists as U(IV) 

as UO2. At the mineral surface/oxic water interface, some may be oxidized to VI state, 

releasing into the dissolved phase as i.e. UO2
2+ species. Therefore, concentrations of U 

in solution are then hardly predictable during the extractions. 

 

➢ Lanthanum 

The comparison of La percentage distribution in sequential and single extractions is 

included in Figure 4.1 and Table 4.1. The distribution over the fractions from the 

sequential extraction scheme is in the order of F6>F1>F2>F4>F5>F3. The extraction 

pattern of La is significantly different from those of Th and U. The highest percentage 

of La is associated with the residual fraction, ~78%, in agreement with some literature 

by Xinde et al and Casartelli and Miekeley [115, 293]. On the contrary, Usmanova et al 

for some samples collected from gold-bearing ore in Russia using Tessier’s protocol [294] 
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and Rao et al utilizing the BCR revised sequential extraction procedure for some natural 

soil samples collected in Bangalore, India [69], reported relatively low values for the F6 

of about only 20% and 32-35%, respectively. Instead <65% of La was bound strongly in 

F4 and F5, accumulating on Fe-Mn oxyhydroxides due to adsorption reactions [69, 294] 

whereas F4 and F5 fractions in our study had much lower contribution (<6%). The 

oxidizable fraction (F3) was two-fold higher in Rao et al [69] and similar in Usmanova 

et al [294] and Casartelli and Miekeley [115] to the values obtained in this study, i.e. 

<6% release in single extractions. 

The second highest contribution after F6 in the sequential approach is from F1 with a 

value of 7.4% and the maximum value in the single extraction is from the carbonate 

fraction, F2, with ~16%. These values disagree with some literature where lower values 

are reported [69, 115, 294], while Xinde et al found <10% and <25% of La in water 

soluble/exchangeable and carbonate/organic fractions, respectively, in soil samples 

from China using Tessier protocol [293]. Aubert and co-workers reported that REEs 

are mobile in the upper soil horizon and may also accumulate in deeper layers, adsorbed 

onto organic matter based on samples collected from Vosges mountains, France [295]. 

Contrary to this, Land et al observed a more important amount of REEs bound to 

organic matter in the surface soil layers rather than in deep layers, while REEs were 

found to be mostly associated with Fe-Mn oxyhydroxides in a spodosol from Sweden 

[296].  

The solubility phenomena can indeed not explain the outcome of the extraction studies 

of lanthanides (Ln) in this context,  while the solubility concentrations of Ln-oxides at 

neutral pH might be in the range of 10-5 mol L-1 [297] and the solubility of LaPO4 is 

even much lower, i.e. ~10-13 mol L-1 [298]. Therefore, the average extracted value of 

La in sequential and single extractions 6.52×10-4 mol L-1 (9.06 mg L-1, Appendix 4.1, 

Table A4.6) are suspected to be from other labile phases. 

 

4.2. Evaluation of potential mobilization in environmentally representative 

conditions: batch experiments with rainwater and exogenic carrier phases 

including silica nanoparticles and humic acids 

The mobilization of Th, U and La was further investigated via several batch extraction 

experiments using conditions closer to natural scenarios, namely with simulated 

rainwater (SRW), and solutions containing silica nanoparticles (Si NPs) or humic acid 
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(HA). The SRW approach is the most realistic way to mimic the mobility of Th, U, and 

La in the site. The target area is affected by heavy monsoon and inter-monsoon rains 

during some periods of the year, which could be a possible mode for mobilization and 

subsequent transport. The silica nanoparticles can imitate some anthropogenic 

nanoparticle contamination that subsequently aid trace element mobilization, a 

relatively recent field of research in environmental chemistry. Silica was chosen since 

a model for a silica samples was available for Th adsorption. The last option chosen 

involves the transport by enhanced organic matter content, not unrealistic given the 

potential continuous supply of organic matter at the study site from the forest cover in 

the vicinity. All these modes of transport were investigated in laboratory conditions 

with batch and column approaches.  

 

4.2.1. Simulated rainwaters 

The batch leaching studies of Th, U, and La with SRW were carried out using different 

compositions (SRW-A1, -A2, -B1, -B2, Table 2.2) and involved different time frames. 

For each composition, one sample set was rotated over selected time periods, while 

another sample set was kept standing still for the same time period. This should allow 

to see possible effects of mechanical erosion on NR release. The corresponding 

concentrations of target elements are shown in Figure 4.4 and Figure 4.5, respectively, 

for L-05 and their masses eluted per mass of soil are given in the Appendix 4.2 (Tables 

A4.26-A4.29). 

Even though some variations can be observed among the experimental data (Figures 

4.4 and 4.5), it is very difficult to explain all in detail due to the inherent complexity of 

the system and the low overall extractions. A straightforward interpretation considering 

all the factors into account requires more investigations than performed within this 

thesis. Different Th, U and La leaching behaviours are unexpected for different 

rainwater simulates given the fact that the concentrations of anions are in a range such 

that a significant impact on Th, U and La solubilities are unlikely. The data of La seems 

to agree with the behavior in the chemical extractions, where higher extraction is 

obtained for the exchangeable fraction of the chemical extractions (F1 ~8 wt.%, Figure 

4.1).  
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Further, the ionic strengths of each SRW are very low thereby any kind of colloids or 

even small sized particulates released from the soil could be kept stable in suspension. 

In the case of Th, it is well-known that colloidal species play a decisive role in aquatic 

chemistry of Th. The data from the undisturbed samples illustrated that Th is below the 

Figure 4.4: Concentrations of Th, U and La in the supernatant after rotating with different SRW 

compositions (a) SRW-A1, (b) SRW-A2, (c) SRW-B1, and (d) SRW-B2 for several time periods (7, 14, 

21, 50, and 118 days) for L-05 

Figure 4.5: Concentrations of (a) U and (b) La with different SRW compositions SRW-A1, A2, B1, andB2 

from samples standing still (not rotated) after several time periods (7, 14, 21, 50, and 118 days) for L-05. 

Thorium is not shown here because the released concentrations were below the detection limit 
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detection limit (when operated in the semi-quantitative mode of ICP-MS) in the 

supernatant even after 118 days, clearly pointing to the fact that Th species could be 

even exclusively colloidal in the rotated samples. The differences in metal 

concentrations in rotated and non-rotated samples are very likely mainly due to some 

kind of mechanically enhanced colloidal release. Such colloidal species are often the 

reason for unexplainable variations in concentrations (as e.g. seen for La in SRW after 

21 days).  

For both U and La, the released amounts are decreased by nearly 50% for all 

compositions of SRW for the stagnant samples compared to the rotating samples 

supporting the idea that mechanical rotation may enhance trace element extractions 

even for the more soluble elements like U and REEs. Additionally, the experiment with 

the undisturbed samples could mimic natural conditions present in calm situations like 

ponds, or lakes where the water could remain for a long time during the dry season. 

Likewise, rotating conditions could mimic situations of heavy rain, physically moving 

soil particles. The results also imply that different mobility (though at very low 

concentrations compared to the total solid content, <0.1%) may be expected for the 

elements of interest in the area of study along the year given the contrasting conditions 

during dry and monsoon periods.  

As it is not expected that the four SRW compositions resulted in similar leached 

amounts for Th, U, and La, only the SRW-A1 was selected for subsequent column 

studies since it extracted relatively higher amounts of Th and U at the shortest time 

period exposed, i.e. after 7 days, as shown in Figure 4.4.  

 

4.2.2. Silica nanoparticles 

Another series of batch experiments was carried out to mimic potential (future) 

anthropogenic contamination from aerosols or other nanoparticle (NP) applications. 

Such particles may enhance the mobility of the target elements due to interaction with 

these particles. Such a scenario was studied using Si NPs. Silica particles are known for 

their ability to scavenge metal ions while dissolved silica is ubiquitously present in 

natural waters [80] and can be a (colloidal) complexing agent. Furthermore, the soil 

contains 42-53% of SiO2 (XRF data in section 3.3), so that the silica particles can be 

seen as reasonable compromise, for model substrates, in combination with 

anthropogenic nanoparticles.  
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The concentrations of Th, U, and La leached with different Si NP concentrations are 

shown in Figure 4.6a (their masses eluted per mass of soil are given in the Appendix 

4.3, Table A4.34). In the case of U, the amounts released are increasing ~10-fold when 

increasing the added concentration of Si NPs from 0.5 to 8 g/L. The increase in Th and 

La is in the same range (~5- fold). Interestingly, in the case of La, where a relatively 

high fraction is easily mobilized in the exchangeable fraction, is not much leached by 

the silica colloid suspension. The outcome suggests a clear effect of high Si NP 

concentration on the mobilization of the target elements. It is remarkable, though, that 

Si NPs appear to strongly adsorb to the soil (Figure 4.6b). This might be due to different 

surface charges of Si NPs (Isoelectrical point, IEP = 2.3 – 3.8 [299] and soil). At least 

for one component of the soil, ThO2, it is known that the IEP = 6.8-9.8 [299]. This 

finding suggests Si NPs being of limited mobility in the lateritic soil. This means that 

Si NPs in principle may induce the desorption of target elements from the soil, but the 

transport via Si NP in the environment will be affected by their size, surface charge and 

concentration and the interaction with the soil. 

 

4.2.3. Humic acids 

A potential increase of mobility of Th, U, and La with HA is expected because organic 

matter in natural environments is more prone to bind Th, U, and REEs [1, 2]. However, 

a detailed evaluation of the effects of humic substances on the sorption of metal ions 

on to the natural soil particles is considered to be difficult due to the contribution of 

various other solid phases such as clay minerals and hydrated Fe/Mn oxyhydroxides is 

unavoidable in natural systems. These minerals may e.g. bind organic matter. 

Figure 4.6: Comparison of the (a) leached concentrations of Th, U and La in the supernatant after rotating 

soil samples with silica AEROSIL 200 suspension and (b) initial concentration of Si (Si0) with Si in 

leachates (Sis) after 7 days 
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The comparison of the concentrations of Th, U and La with the two humic acid samples 

(10 mg L-1 each) used is depicted in Figure 4.7 and their masses eluted per mass of soil 

are given in the Appendix 4.4 (Table A4.36). According to the data, both HA1, i.e. the 

sodium salt of humic acid, and HA2, i.e. the crystalline powder of humic acid leached 

the same amounts of Th and La (~0.02 mg L-1) with relatively low amount of U (0.3 µg 

L-1). HA1 was used in the subsequent column experiments. 

 

The overall comparison of the leached amounts of targeted elements with SRW-A1, Si 

NPs, and HA1 (leached amounts with SRW-A1 after seven days rotation with results 

from 0.5 g/L Si NPs in the suspension after rotation for the same time period, both at 

pH 5) depicts a leaching sequence of SRW-A1<Si NPs<HA1 in accordance with the 

literature which provided evidences for enhanced mobility of metal ions in the presence 

of silica and humics [41, 80]. 

 

4.3. Mobilization in column experiments for selected soils 

Column experiments allow studying the mobility of trace elements for the large soil-

to-liquid ratios that are more realistic in the natural setting. In addition, column 

experiments assist investigations of the vertical mobilization of Th, U, and La, generally 

via a continuous constant flow of solution. This approach may also minimize 

mechanical erosion effects, which may affect the results in batch type experiments. The 

closest phenomenon to mimic this kind of column experiments is percolation, 

consisting in elemental leaching from topsoil into the groundwater. On the way to the 

groundwater concomitant with increasing pH, sorption phenomena may reduce metal 

ion concentrations in solution. Our results show net transport for a given column size 

Figure 4.7: Comparison of the 

concentrations of Th, U and La in the 

supernatant after rotating the soil sample L-

05 with humic acids, HA1 and HA2  
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and solution composition while in the environment subsequent processes may occur. 

The column experiments can be viewed as “close-to-reality” mobilization tests. 

Studying the mobility of Th, U and La, here involves column leaching experiments with 

simulated rainwater along with focusing on the same potential carrier phases used 

during batch extractions in the previous section 4.2. Columns were infiltrated with 

SRW-A1 and HA1 solution or modified by homogenizing the soil with Si NPs. 

Moreover, the column data were compared with results from batch experiments and 

with analytical data obtained for the on-site groundwater data. 

 

4.3.1. Simulated rainwater 

The comparison of the released amounts of Th, U, La and NPOC with SRW-A1 and 

corresponding pH of the leachates are depicted in Figure 4.8 along with the respective 

elemental concentration ranges detected in groundwater samples and the averaged pH 

of the groundwater around the target location (section 3.8). At the beginning of the 

leaching experiment, the released amounts of Th, U, and La from the column are 

relatively high, i.e. Th: ~25 ng L-1, U: <0.12 µg L-1, and La highest with up to 24 µg L-

1, subsequently decreasing with time (Figure 4.8a and c). Given previous results 

(sections 4.1) La is most likely easily mobilized from the exchangeable fraction (Figure 

4.1c) and Th and U, which are less easily leached, may be released from initial erosion 

of particulates and colloids. Several flowrates were tested for both L-05- and L-04-

based columns and observations suggest that the leaching is soil-dependent rather than 

a flowrate-based behaviour (Appendix 4.8, Figure A4.10). Overall, the most interesting 

observation is that Th and La eventually reached their corresponding local groundwater 

ranges with time while U is always found within the groundwater range (Figure 4.8, 

Table 3.10) and much lower than “mobile” fractions in chemical batch extractions.  

The data might suggest a correlation between pH, NPOC, and elemental concentrations 

in the column elutes at the eluted volume around 700 mL where a first small hump 

appeared. Here, the pH decreases as the amount of NPOC (Figure 4.8d) and targeted 

elements (Figure 4.8a, b and c) increases. Although the decrease and subsequent 

increase of pH (Figure 4.8) is not explainable at present, three possible explanations 

can be given for this observation. (i) During the experiment, the flow stopped several 

times for several hours prior to these alterations, i.e. especially around 300 – 500 mL 

due to software failure or computer shutdown over night or during weekends allowing 
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the target elements to increase in concentration in stagnant water (towards solid/liquid 

partitioning equilibrium) and leached out from the column later. (ii) Microbially 

induced activities within the column over time may be induced, enhancing OM 

degradation or release of organic acids, causing a change in pH and release of trace 

elements. For instance, it is known that the presence of phosphate solubilizing bacteria 

could produce some organic acids which may also partially be responsible for 

increasing Th, U, and La elution [300]. (iii) A potential release of target metals could 

occur with NPOC as humate like complexes or NPOC stabilized colloidal/particulates. 

Although, this correlation cannot explain the enhanced levels at the beginning of the 

column and at the second hump ~1000 mL making it difficult to put forward some 

general relationship between pH, NPOC and leached elemental amounts, SEM-EDX 

measurements of effluent filtered with 1 kDa filter size indicate the presence of Al, Si, 

Fe particles and some bacteria further support the above explanations. 

The integrated total amounts of Th, U and La leached out from our column are 0.04 ng, 

0.38 ng and 0.04 µg per g of soil, respectively, and these values are clearly much lower 

in percentages (~0%, 0.002%, and 0.003%, respectively) relative to the total bulk 

concentrations of each element from XRF results (Chapter 3). 

The possibility that released elements are bound to colloidal carriers or eroded particles 

was checked by comparing unfiltered and filtered (0.2 µm mesh) samples for leachates 

during the whole column experiment with L-04 (Appendix 4.8, Figure A4.12). For 

these samples, both major (e.g., Al, Fe, Si, etc) and trace elements were analyzed, and 

Th concentrations were below the detection limit (when operated in the semi-

quantitative mode of ICP-MS). The obtained data evidenced that about 90% of the total 

U and >99% of total La were retained by the 0.2 µm filter, indicating the presence of U 

and La on suspended particles of dimension >0.2 µm. Thus, both U and La are probably 

leached predominantly in the colloidal phase or as suspended particulate matter rather 

than as dissolved ions or complexes. The formation of Th and U colloids has been 

widely reported by many researchers due to their effect on the increased mobility in 

aqueous environments. Moreover, Th, in particular, tends to absorb onto carrier 

colloidal phases or forms intrinsic colloids when its solubility limit is exceeded even at 

low pH [45, 301, 302]. Miekeley et al reported that a considerable fraction of La (>90%) 

is associated with the solution phase in colloidal forms for groundwater samples from 
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the Osamu Utsumi mine and the Morro do Ferro Th-REE deposit [303]. These authors 

added that suspended particles (>0.45 µm) composed mainly of amorphous hydrous 

ferric oxides with sorbed organics control the mobility of U and REEs in groundwater 

confirming the strong affinity of U and REEs to particles. Such sorption processes 

involve the removal of elements from aqueous phase onto suspended matter via binding 

to organic matter, coprecipitation, surface complexation and cation exchange. It was 

further reported that Th was below detection limits. Some other studies done at the 

Koongarra uranium deposit also revealed that Th was associated with mobile colloids, 

mainly composed of iron and silicon species [304]. Concerning the results of the current 

column studies, it can be assumed that transport of these U and La in subsurface soil 

samples of the area of study occur mainly in colloidal/particulate forms. 

 

4.3.2. Silica nanoparticles 

The next column experiments were carried out with Si NPs that were mixed prior to 

filling the column with the soil and SRW-A1 rainwater simulate was passed through 

Figure 4.8: Comparison of the leached amounts of (a) Th, (b) U, (c) La, and (d) NPOC with simulated 

rain water (SRW-A1). Corresponding pH of the elutes and respective elemental concentration ranges 

(highlighted in grey color) including averaged pH of the groundwater are also presented. The arrows 

shown in (c) are the points where the column stopped during the experiment and the durations of stops 

are specified in hours. CE – column elute and GW – Groundwater 
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the column. The leaching patterns are shown in Figure 4.10. The pH of the elute 

fractions are not shown here as they do not demonstrate any significant changes 

compared to the initial pH of SRW. Several major elements were measured in the elutes 

but only Si and Fe are shown due to their contrasting trends, comparable to those of the 

trace elements of this study.  

 

 

Figure 4.9: Comparison of the leached amounts of (a) Si 

and Fe while arrows showing the places where the column 

stops and the period, (b) Si and Th, (c) Si and U, (d) Fe 

and La with simulated rain water(SRW-A1) for the soil 

sample mixed with silica AEROSIL 200 and (e) 

comparison of the leached amounts of Si with the 

simulated rain water(SRW-A1) only with the soil sample 

(light blue points) and with the soil sample mixed with 

silica AEROSIL 200 nanoparticles (blue points) 
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The leached amounts of Si over time are relatively constant up to about 500 mL, where 

Si concentrations slightly decrease. Thorium elutes at an even lower concentration level 

as observed in the column experiments with SRW alone. The initially increased elution 

level of Th is much less pronounced, and U behaves similarly. Si NPs, when intermixed 

with the soil, therefore, seems to have a much lower effect as observed in batch 

experiments. Lanthanum showed a different elution profile which resembles that of Fe 

indicating a similar erosion or dissolution behavior. The integrated total amounts of Th, 

U and La leached from this column are 0.008 ng, 0.244 ng and 0.052 µg per g of soil, 

respectively. Interestingly, the concentration enhancement around 600 – 1000 mL as 

seen for the SRW-A1 elution experiments is also apparent for all elements in this 

experiment as well but less pronounced. 

Leaching with SRW-A1 and Si NPs is compared in Figure 4.10e and the integrated 

value of the SRW-A1 experiment gave a total 7.4 µg Si per g of soil while the Si NPs 

experiment showed 23.6 µg Si per g of soil for 0-1000 mL. Even though the integrated 

value for SRW-A1 is approximately three times lower than the amounts detected in the 

Si NPs column, it is not possible to distinguish between Si originating from soil and Si 

from added NPs. Clearly more Si was leached when Si NPs were added to the column 

as should be expected. 

 

4.3.3. Humic acid 

The leached element amounts were compared with the corresponding NPOC values of 

the elutes (Figure 4.11). In addition, the leached amount of NPOC in SRW-A1 column 

is included in Figure 4.11d. The total amount of NPOC leached with SRW-A1 seems 

lower than that from the column with added HA1. The balance of integrated eluted 

NPOC with SRW (only) and added HA (with SRW), i.e. ~ 2.8 mg, revealing an 

enhanced release of OM from the column related to the addition of HA (i.e., 1.5 mg) 

into the system. Nevertheless, it is not clear the overall fate of the added HA, i.e., 

complete/partial sorption onto the soil and/or instrument tubing (i.e., deduced from 

visual observation).  

Elution levels for Th and U are much lower than the corresponding amounts with SRW-

A1 experiment, while La shows otherwise. In addition, an early elution of La is found 
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as in the previous column experiments. The integrated total leached amounts of Th, U 

and La from this column are 0.6 ng, 7.7 ng and 9.7 µg per g of soil, respectively. 

Again, the unexpected changes in trends around the elute volume 600-1100 mL 

appeared even in this column and showing enhanced effects in the presence of added 

humic acids implying that this feature is a characteristic of the nature of the soil itself. 

However, there is no obvious explanation for this behavior. Nevertheless, a clear 

correlation with the NPOC peak is found for Th and La but not for U, pointing to a 

preferential association of Th and La to humic acid, while the behaviour of U is in 

contradiction to the finding in batch experiments (unless the added HA enhanced U 

mobility but effectively retained in the column/tubes). 

 

 

Figure 4.10: Comparison of the leached amounts of NPOC with the leached amounts of (a) Th, (b) U, (c) 

La and (d) only leached with simulated rainwater (SRW-A1) and injected with 100 mg L-1 Humic acid 

(HA1). The red circle in (c) is the point where the injected humics should come out and arrows showing 

the places where the column stops and the period 
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Results from all three columns are compared in Figure 4.12 and Table 4.4. Some 

remarks highlighting the leaching behavior of each element has their own 

characteristics can be made. Slight discrepancy at specific elute volumes were observed 

for all the elements at different stages. The most interesting region is the range 500-

1100 mL revealing some kind of column retardation phenomenon for all three elements 

in all columns. The most noticeable increase occurs at 600-800 mL with a hump for 

which no profound explanation is available. One option might be organic matter related 

transport and/or potential development of microbiological activities due to the column 

acting as a bioreactor overtime might be another possible explanation as already 

mentioned in section 4.4.1. 

The extent of extraction for all targeted elements in the batch experiments followed the 

sequence HA1>Si NPs>SRW-A1. This sequence is not found in column experiments 

(Figure 4.11, Table 4.3). Significantly fewer metal ions are released in column as 

compared to batch experiments. Possible hypotheses for the lower eluted metal 

concentrations with humic acid and Si NPs might involve that humics and Si NPs are 

strongly retained in the soil and by this can adsorb Th, U and La to variable extent, thus, 

decreasing their mobility significantly.  

 

Figure 4.11: Comparison of column data from 

simulated rainwater (SRW-A1), mixed with 

silica nanoparticles, and injected with humic 

acid (HA1) for (a)Th, (b) U and (c) La 
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Table 4.3: The amounts of Th, U and La extracted and leached from the batch and column experiments 

per g of soil 

 Th (ng g-1) U (ng g-1) La (µg g-1) 

Batch Column Batch Column Batch Column 

SRW-A1 88.4 0.040 6.73 0.38 0.14 0.04 

Si NPs 1190 0.008 66.0 0.24 1.09 0.05 

HA1 4500 0.004 76.0 0.05 4.13 0.06 

 

4.4. Discussion of the potential environmental mobility of target elements with 

relevant carrier phases and environmental implications of the applied 

methods 

Overall, the elements of interest in this study, i.e. Th, U and La, are rather weakly 

released in chemical extractions and batch and column experiments with simulated 

rainwater, silica nanoparticles and humic acid. This was expected particularly for Th 

due to its insoluble nature and very low mobility under most environmental conditions. 

The following discussion connects particularities of each experiment with the 

corresponding relevance for this study. 

In the case of selective extractions, less than 8 wt.% of Th, 16 wt.% of U and 9 wt.% 

of La (Figure 4.1, Table 4.2) was associated with non-residual fraction due to solid host 

phase dissolution (i.e., sum of the sequentially extracted amounts in F1, F2, F3 and F4 

or the single F4 extraction), which reflects some possible mobility in the environment 

under specific conditions. For instance, environmental processes involving 

degradation/dissolution of OM and amorphous Fe/Mn mineral phases via 

remineralization or early diagenesis [38-40] may play a role in transferring a small 

fraction of natural Th (i.e., max. 8 wt.%) to the environment. Other relatively mild 

environmental perturbations taking place throughout the hydrological cycle (i.e., 

interaction between rocks and plants during water runoff, percolation, underground 

water, (acid) rain, etc.) could also lead to Th, U and La mobilization to some extent as 

suggested by Bednar et al [125]. This means that the largest fraction of Th, U and La 

are associated with F6 probably reflecting the most resistant Th, U and La-containing 

minerals, such as monazite, thorite, thorianite, uraninite, zircon, which are unaffected 

by the reagents used.  
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The batch extractions and column leaching studies with SRW-A1, Si NPs and HA1 

took place at the “natural” pH of the soil, i.e. pH ~5. The soil shows an important 

buffering effect given that final pH measurements of samples covering initially adjusted 

pH values between 2 and 10 converged to the soil pH at the end (Appendix 4.12, Figure 

A4.17).  

Further, very low Th, U and La concentrations in the column studies might be 

considered somewhat unexpected considering the much higher solid-to-liquid ratio 

(~0.15 g mL-1), opposed to the corresponding batch studies (~0.004 g mL-1). The 

obtained values for both cases are shown in Table 4.3. This independence on solid-to-

liquid ratio is an indication that Th, U and La in this site is not highly reactive, as 

expected, whereas the concentrations of targeted elements in the leachate solutions 

during column experiments are controlled by adsorption and/or ion exchange processes 

on the soil minerals. The extractions of batch experiments were physically enhanced by 

continuous rotation which induce abrasion resulting enhanced amounts of particulates 

and colloids. Even though, the total concentration of Th in the soil is higher than U, 

higher concentrations of U were detected both in batch extraction and column leaching 

experiments. The possible explanation might be the fact that Th species (e.g. the solids 

clearly identified in the XAS and SEM-EDX) are chemically inert in the system, while 

some U species are more easily leached from the soil due to the different redox 

behaviour. Overall, these experiments illustrate the leaching of elements from soil 

columns and provide evidence that leached species are in particulate forms, which 

further confirmed by the filtration analysis on the column. 

Finally, it can be concluded that, although the selective extractions provide an 

estimation for elemental fractions which could be potentially mobilized, the assignment 

of a certain metal ion fraction to a host phase is still difficult. Meanwhile, the batch 

extractions and corresponding column experiments, where the impact of potential 

colloidal carrier phases such as inorganic nanoparticles and humic acid were examined 

in order to estimate potential environmental impact scenarios on the studied site, 

provided information on the nature of the leaching species. As a result, both approaches 

converge to reveal to some extent an insight into the mobilization of Th, U and La in 

this natural system. 
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4.5. Scoping geochemical model calculations 

The scoping calculations involving geochemical models were done by using several 

data sets from the literature [80, 122, 205, 305-307]. The comparison of the total truly 

dissolved phases of Th(IV), U(VI), and REE(III), i.e. aquo ions, presented as 

percentages of total, simulated 10-6 mol L-1 initial concentrations was done as a function 

of pH for constant background electrolyte composition of 0.1 mol L-1 for systems in the 

presence of (i) Si NPs and HA, (ii) HA (absence of Si NPs), and (iii) Si NPs (absence 

of HA) and results are shown in Figure 4.13a, b, and c, respectively. Although Yttrium 

(Y) is a transition metal, it was selected here since it is chemically similar to the light 

lanthanides while Ytterbium (Yb) was selected as a heavy member in the lanthanide 

series. With La as the REE discussed in the main text, the two chosen elements should 

cover the behavior of La. Moreover, the choice of the two elements was triggered by 

the availability of a self-consistent model for adsorption on amorphous silica. 

Therefore, for both Yb and Y there is an availability of parameters with SiO2 and 

humics even though the parameters as pointed out earlier are probably not self-

consistent between the silica and humics models. These two elements would give a 

range of possible distribution for the REEs. Even though the pH of the batch and 

column experiments is around 5, the behavior were modelled in the range of 2 to 8 to 

predict the nature of the species at low and high pHs (i.e. to see differences among 

elements and cover a wider range of extraction conditions). 

System (i) illustrates the percentages of the total dissolved species in the presence of 

both silica and humics. The models were set up in such a way that the total site 

concentrations of the respective silicas and the humics were 0.57 mmol L-1 each. Under 

the experimental pH, i.e. at pH ~5, no dissolved species (aquo ion, hydroxo complexes) 

are observed as expected (Figure 1.2 for Th, section 1.2.2.2). At pH<4, the Y+3 aquo 

ion has the highest concentration in solution while the respective aquo ions of Yb+3 and 

UO2
2+ are following.  

In the presence of only humics, i.e. system (ii), the same pattern as for the system (i) 

for all the elements is obtained, suggesting that the humic substances are the 

predominant interacting agents in the medium. Above pH 4, all the ions are complexed 

with humics. In both these systems, according to the models, Th would be complexed 

by humics even at low pHs. In addition, the results suggest that Th binds more strongly 

in the presence of humics. If these data are compared with the corresponding batch 
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experiment with humic acids, the released percentage of about 0.29 wt.% (Figure 4.7a) 

of Th represents the soluble and/or colloidal fraction of Th complexed with humics. 

Under the experimental pH in these batch experiments (pH ~5), uranyl and other 

trivalent ions are also complexed with the humics according to the model and the 

released percentages in those batch experiments, 0.38 wt.% (Figure 4.7a), denote the 

soluble and/or colloidal species complexed to humic substances too.  

In system (iii), the effect of humics is clearly revealed due to the differences in Figure 

4.13 c to that of a and b. In the presence of only silica in the system, all ions of interest 

are 100% dissolved at pH 2 and the total dissolved amounts of Th+4 drastically decrease 

and becomes zero at pH 3 while for the amount of dissolved UO2
2+ starts to increase 

gradually at pH 6.5 and reached 100% at pH 3. The total dissolved concentration of Y3+ 

and Yb3+ ions remaining in the solution until the pH reaches 6 and then decreased 

dramatically and other species are formed pH >7.5. In the corresponding batch 

experiment with SiO2 NPs at pH ~5, 0.08 wt.% of Th (Figure 4.7b) were released and 

this is much less than one would expect based on these calculations, potentially 

indicating that other solid species should be included in the model in order to have more 

representative calculations. This is similar for UO2
2+/U. Even Yb and Y show 100% 

total dissolved ions at pH 5 (Figure 4.13c) suggesting that the increased La release in 

presence of Si NPs as compared to the SRW extraction (Figure 4.7b) do not represent 

mobilization by silica.  

For Th it is interesting to relate calculations to the experimentally observed 

simultaneous presence of different, environmental element-related mineral phases (e.g. 

section 3.3). A comparison of the percentage distribution of Th minerals is shown in 

Figure 4.14. The observed solid species concentrations are weight percentages 

estimated in the EXAFS LCF data (section 3.4.1, Table 3.8) showing the averaged 

contribution of about 61 wt.% from monazite, 24 wt.% from thorite and 15 wt.% from 

ThO2 to the total amount of Th minerals in the bulk soil. Even though the precise 

conditions are not properly defined, the modelling data do indicate that all these three 

solid phases can co-exist in the system below pH 4.5. Modifying relative concentrations 

like those of phosphate or silicate could change this simulation, indicating that 

depending on the initial concentrations of mineral phases, all three possible phases of 

Th can exist in natural system. One also has to consider that solubilities and 
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concomitantly chemical stabilities of mineral phases depend on their size and 

crystallinity. Considering such parameters can also change the outcome of calculations.  

 

 

 

Figure 4.12: Comparison of the total 

dissolved percentages of Th(IV), U(IV), 

Yb(III) and Y(III) in the presence of (a) Si 

and humics, (b) humics, and (c) Si 

Figure 4.13: Percentages distribution of Th in a system with an initial concentrations of 10-6 mol L-1 Th, 

8.5×10-7 PO4
3- mol L-1 and 2.4×10-7 mol L-1 H4SiO4 with 0.1 mol L-1 NaCl electrolyte concentration 
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Overall, the above geochemical data are based on certain assumptions so that the 

correlation of the geochemical data with the real system is much more complex and a 

more conclusive outcome would require more advanced approaches. The trend in ion 

mobility is to some extent well retrieved in the calculation results and help better 

understand the geochemical processes behind the observations encountered during 

batch experiments. 

 

4.6. Conclusions 

Laboratory experiments involving batch and column approaches with different 

extraction abilities (from chemical to environmentally relevant solutions) suggest that: 

• Chemical extractions are not necessarily as selective for the operationally 

defined fraction and the target elements as the methods often imply. However, 

applying both single and sequential extractions allows to (i) account for 

potential artefacts during the extractions, (ii) potentially identify relative solid 

carrier phases (especially during sequential extractions), and (iii) estimate 

element general mobility (particularly from single extractions).  

• Extractions in bulk and sieved soils suggest a common distribution of target 

elements among operationally defined phases independent of the soil grain size. 

Overall, low amounts of Th were extracted within the exchangeable fraction 

(0.02 – 0.04 wt.%), with no U, but 13 – 22 wt.% of La. Carbonates and organic 

matter bound fractions of Th operationally defined by the extraction scheme 

were about 0.8 wt.% , 8 – 15% for U, and 0.8 – 1.2% for La. Around 33 wt.% 

of Th and U was bound to iron phases including both amorphous and crystalline 

phases according to the operational definition of the scheme whereas they were 

0.7 wt.% for La in all size fractions. The metal ions released by the extraction 

agents might also come from other sources, e.g. by dissolution from Th, U, REE 

containing minerals. La leaches easily probably due to ion exchange reactions. 

The high concentrations of U in the carbonate fraction (which does not exist), 

might be due to the inherently low pH conditions at that extraction step. Overall, 

target elements were mainly associated with the residual fraction F6: >70, >50 

and >75 wt.% for Th, U and La, respectively. As stated above, the overall results 

from the extractions are in accordance with other areas of study for Th and U 

solid partitioning.  
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• Extractions in closed systems (batch) with simulated rainwaters and external 

carrier phases such as silica nanoparticles and humic acids suggest an overall 

potential mobilization of trace elements below 1% for the given experimental 

conditions. Despite the relative differences observed for the different conditions 

(extraction efficiencies being SRW<Si NPs<HA, with Si NPs mobilizing Th 

from some carrier phase other than the exchangeable fraction), these results 

indicate that these target elements show very low mobility and are expected to 

continue to reside in the area of study. Experiments reveal the strong sorption 

of Si NPs (and HA) to the acidic soil as well.  

• The vertical leachability as observed in column experiments with SRW suggest 

that trace elements show higher mobility during the first days and eventually 

reach measured groundwater levels. Much less Th, U, La is mobilized in column 

experiments as compared to batch studies and adding Si NPs or HA had no 

significant effect. Stagnant conditions or inherent column properties regarding 

soil type may affect the fates of trace elements over time. The occurrence of 

unexpected peaks/higher concentrations in the column experiments might imply 

the presence of other processes which could potentially enhance metal ion 

mobility. The origin of such peaks could not be identified. Column experiments 

seem to provide more relevant data for NR mobilization than those obtained 

from sequential extraction and batch studies. The amount of target elements 

released from the column is mostly associated to colloidal forms and the aquatic 

chemistry of La, Th, U strongly dominated by colloidal or particulate species. 

Thus, their environmental dispersion and biological implications must be 

further studied. Even though HA has the potential to mobilize target metal ions 

as in the case of Si NPs, HA appears to be relatively immobile in the soil. Strong 

HA retention is observed in the column studies and, thus HA may even enhance 

retention of metal ions.  

• Even though the geochemical data are based on certain assumptions, the trend 

in ion mobility observed in batch experiments is retrieved in the calculation 

results to some extent. The correlation of the geochemical data with the real 

system is much more complex and a more conclusive outcome would require 

more advanced approaches.  
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5. SUMMARY AND FUTURE PERSPECTIVES 
 

This thesis is a first, preliminary, but still comprehensive effort for radiological 

characterization and corresponding environmental mobility studies of selected NRs for 

a natural area in central Sri Lanka with high background radiation levels. The exact 

location is the playground of a school and therefore, attention was driven towards this 

location since it is directly in contact with local population and there is a potential risk 

for the population living in this area.  

The first part of this study mainly focused on the characterization of environmental 

samples such as soil, grass and groundwater and corresponding radiation risk 

estimations. The enhanced activity levels in the soil were identified to be due to Th-232 

(> 4000 Bq kg-1) and Ra-226 (> 300 Bq kg-1) including progenies, showing high 

absorbed dose rates in air (>2 µGy h-1) compared to world average values (10- and 100-

fold higher, respectively) and other investigated HBRAs in the world. The estimated 

TFs (for Th-232 ~0.16), effective inhalation doses (due to Tn in the range of 2.49 – 

5.46 mSv) and radiation hazardous indices (Raeq: 6695 – 10616 Bq kg-1, Iγ: 23.4 – 37.1, 

Hext: 18.1 – 28.7, ELCR: 14.3 × 10-3 – 22.7×10-3) all exceeded world averages and 

limits. Even though these calculations might not always give accurate values, they 

provide upper limits of possible hazards and allow preliminary risk estimations at the 

location. The results suggest that the current location should be considered as a HBRA, 

although the specific criteria to define a location as a HBRA still need to be clearly 

defined.  

External radiation exposure due to the presence of terrestrial NRs is mainly influenced 

by the geological settings. The corresponding soil is an indirect indicator of such 

geological background, used for monitoring and locating potential risk areas for the 

public. Furthermore, the existing knowledge on the radiation levels in soil and 

subsequently measured or estimated dose rates in this study can be used in the future as 

baseline data (or time zero information) and utilized to trace or quantify changes in 

environmental radioactivity due to unexpected or unforeseen anthropogenic activities 

such as fallouts from nuclear power plant accidents. 

Based on the studied samples, the following relevant radiation exposure pathways in 

the area can be identified: (i) external exposure due to radioactive soils containing NRs, 
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(ii) internal exposure via inhalation of radiogenic gases such as Rn-222 and Rn-220, 

and dust particles containing Th-232 and progenies, and (iii) potential internal exposure 

via ingestion of local crops, evidenced by uptake in grass samples, to be further 

investigated on specific edible species. The radiological risk via drinking water should 

be further observed as overall element concentrations are not of concern regarding 

chemotoxicity, i.e., they show concentrations for constituents below established limits 

in water quality guidelines. Among all identified pathways, the maximum exposure will 

probably be related to in-situ external radiation and inhalation of dust particles emitting 

radiation from relatively stable and immobile Th-232 and its progenies from small 

mineral particles, especially during dry seasons, and this is particularly relevant in 

places such as school playgrounds, where young pupils are. 

The results from different solid characterization methods agree well with each other, 

suggesting the following geochemical composition/characteristics of the local soil. 

XRD data reveal the major minerology of the site to be dominated by kaolinite and 

quartz while the diffractograms of sieved fractions indicate some Fe crystalline phases 

like hematite and goethite. The XRF data yielding the elemental distribution on the site 

showed high concentrations of Th (~1.6 g kg-1), U (35.7 mg kg-1) and REEs (total of 

La, Ce, and Nd is ~6.8 g kg-1), which support the radiological data. SEM images and 

corresponding EDX spectra provided finer details of the grain composition and revealed 

the variable mineralogy of Th, U and REEs solid phases together with synchrotron 

based XAS at Th L3-edge and µ-XRF. These approaches confirmed the presence of 

distinct dominant Th-containing mineral phases, namely Th-silicate, Th-oxide, and Th-

phosphate, within the soil samples. Results also provided insights into the composition 

and heterogeneity of both bulk soil and single mineral grains in natural soil samples 

showing that clay and iron mineral phases may be attached to large mineral grains with 

potential implications for the environmental behavior and fate of associated trace 

elements beyond simple dissolution of single mineral phases. This study presents the 

first thorough characterization of soil from this area.  

Studies on elemental mobility through well established selective extractions suggested 

that: (i) Th, U and REEs, are mainly associated with the residual fraction (>70, >50 and 

>75 wt.% for Th, U and La, respectively) most likely as the major minerals identified, 

silicates, oxides, and phosphates, which are not destroyed by the different steps of the 
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applied selective extraction schemes, (ii) ~16 and 27 wt.% of Th and U, respectively, 

could be associated with crystalline iron oxides, and (iii) less than 8 wt.% of Th, 16 

wt.% of U and 9 wt.% of La were associated with non-residual fraction due to solid 

host phase dissolution, which reflects some possible mobility in the environment under 

specific conditions. It is, however, unclear to what extent the extraction agents exert an 

increased solubility of Th/U/REE oxides, silicates or phosphates. A relatively high 

fraction of La, as a representative of the light REEs, is leached out easily pointing to a 

weak La binding to mineral surfaces, possibly to ion exchange sites.  

Batch and column experiments with HA and Si NPs have demonstrated clearly, that 

colloidal species such as HA and Si NPs are not as mobile as assumed and 

predominantly retain within the soil. Moreover, the column experiments (in presence 

and absence of “mobile” colloidal species), representing potential transfer to 

underground water systems, result in very much lower mobile fractions of Th, U, La 

than observed in batch and selective chemical extraction studies, yet providing more 

relevant data for the mobilization of NRs than aforementioned batch experiments. 

Apparently, the soil acts as an important filter. Experimental data obtained in the 

present thesis provide strong indications that, at least for Th, particulates and colloids 

play a cardinal role for the environmental behavior. Th, U, REE concentration levels in 

column effluents seem to be very consistent with those found in the groundwater 

samples, collected on-site. Under certain conditions such as heavy rainfall or flooding, 

it is thus conceivable that Th and also U and REE mobilization by resuspension can 

play a certain role.  

The geochemical scoping calculations supported experimental observations revealing 

that Th and UO2
2+ may strongly bind to humics explaining the higher released amounts 

(~0.02 mg L-1), in the respective batch experiments, and may represent both soluble and 

colloidal fractions of Th complexed with humics. The modelled data in the presence of 

silica NPs suggest week binding of U agreeing with its behaviour in the respective batch 

experiment. Moreover, scoping calculations based on existing thermodynamic data 

confirm that under given conditions the three main Th solid phases (monazite, thorite 

and thorianite) identified during the solid phase characterization can co-exist.  

Overall, this work highlights the need for comprehensive studies including several 

environmental compartments in order to better understand the environmental 
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dispersion, fate and impact of NRs for risk assessment purposes. In fact, the complexity 

of the field site suggests that multiple mechanisms, are responsible for NRs migration 

and for the metal ions under investigation colloids and particulates are of special 

importance. By combining different experimental approaches, it is possible to achieve 

insight into possible mobilization mechanisms for Th and U in the actual setting. Local, 

spatial heterogeneity was observed in both soils and groundwater samples, highlighting 

the importance of a higher sample representativity of the study site for future studies. 

The variability of groundwater compositions points to different local processes being 

active, which are presently not understood. Overall, this work constitutes (i) a 

contribution to research on Th, U and light REEs environmental behavior in a specific 

terrestrial system, as well as (ii) a conceptual basis and guideline for future development 

of more precise radionuclide risk assessment and management strategies in Sri Lanka. 

 

Future perspectives 

Key outcomes of this work support the following future lines of research concerning 

both radionuclide dispersion and radiological measures: 

Th transfer factors to grass are higher than expected, which highlights a knowledge gap 

concerning the understanding of the interactions between target elements and 

plant/microbial activities, especially in the rhizosphere. This effect surely plays a major 

role in the environmental system, especially concerning element mobility during 

dry/wet transition periods and soils with more vegetation cover.  

Despite the low contribution of Th-minerals to the overall mineralogy of the soil (< 

0.17 wt.%), further work is needed to evaluate the potential mobilization of Th during 

weathering (i.e., during rainfall and under biological influence) to better understand its 

fate and/or its accumulation in both aquatic and biological systems. For instance, 

determining particle transport via air and gross fluxes into groundwater for variable and 

extreme environmental conditions (e.g., monsoon periods, dry seasons, erosion from 

local activities, etc.) combined with meteorological data acquisition, analyzing erosion 

rates and land-use would provide the basis for identifying and assessing critical 

scenarios. Such information will be helpful for decision making. 

Future research also needs to include more complex models along with more extensive 

and self-consistent thermodynamic and kinetic data to better simulate environmental 
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processes, required for environmental risk assessment. In addition, the geochemical 

data found in this thesis can be utilized in solute-transport modelling which can be used 

to interpret and understand the water flow and solute transport in soils.  

Identification of the industrially valuable minerals was one of the main aims during the 

baseline environmental monitoring program, which was conducted by the SLAEB and 

GSMB of Sri Lanka in 2015 (the same project that this study location was identified). 

Therefore, high levels of REEs in the area may also be of economic interest for 

technological applications in future. The present study revealed that REEs are bound in 

mixed phases (e.g. oxides, phosphates, etc.) with Th. However, selective extraction 

experiments provide indications that at least a part of the lanthanides might be as well 

easily extractable without application of acids. Those bonding states of lanthanides 

should be explored more in detail. Consideration of REE mining should as well 

consider potential environmental impacts of local ores extracting REEs (together with 

released elements from gangue minerals containing NRs). Anticipating REEs impact 

the soil environment because of potential increase of industrial REE utilization in this 

area is another study of interest 

May be most importantly, the estimated excess lifetime cancer risks were found to be 

higher than the recommended limits. Yet it was impossible to evaluate the radiation 

health hazard of these values on the population. Further research should focus on the 

radiological hazardous effects on humans from such long-term exposure to in-situ and 

develop appropriate management measures when possible also considering the 

potential health impact of radionuclide containing dust inhalation as well. Since 

reliable, standardized mortality and morbidity statistics are not yet accessible for this 

target location, it is advisable to start by carrying out proper bio dosimetry and 

investigations in this area in future, best in consideration with epidemiological and 

medical studies. 
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APPENDICES 

Appendix 2.1: Experimental section 

Table A2.1: List of chemicals used in this study 

Name  Chemical formula Molar weight 

(g mol-1) 

Provider  

Acetic acid  CH3COOH 60.05 Merck (EMSURE®) 

Ammonium ferrous sulfate (NH4)2Fe(SO4)2.6H2O 392.13 VWR Chemicals (≥99.0%) 

Ammonium oxalate (NH4)2C2O4.H2O 142.11 Merck (EMSURE®) 

Calcium chloride -dihydrate CaCl2.2H2O 147.02 Merck (p.a.) 

Citric acid C6H8O7 192.13 VWR Chemicals 

Diphenylamine indicator (C6H5)2NH 169.23 Merck 

Humic acid (crystalline 

powder)  

- - Alfa Aeser 

Humic acid (sodium salt)   Sigma Aldrich 

Hydrochloric acid HCl 36.46 Merck Titrisol© 

Iso-propanol CH3CH(OH)CH3 60.10 Merck (EMSURE®) 

Magnesium chloride 

hexahydrate 
MgCl2·6H2O 203.30 Merck (EMSURE®) 

Nitric acid (69%) HNO3 63.01 
Carl Roth 

(ROTIPURAN®Ultra) 

ortho-Phosphoric acid H3PO4 98.00 Merck (EMSURE®)  

Oxalic acid C2H2O4.2H2O 126.07 VWR Chemicals (100.4%) 

Perchloric acid HClO4 100.46 Merck (EMSURE®) 

Potassium chloride KCl 74.55 Merck (EMSURE®) 

Potassium dichromate K2Cr2O7 294.19 ACROS Organics™ 

Potassium nitrate KNO3 101.10 Merck (EMSURE®) 

Sodium acetate C2H3NaO2 82.03 Honeywell (≥99.0%) 

Sulfuric acid H2SO4 98.07 Merck EMSURE® (95-97%) 

Sodium chloride NaCl 58.44 Merck (p.a.) 

Sodium citrate C6H5Na3O7.2H2O 294.10 VWR Chemicals (99.8%) 

Sodium 

dihydrogenphosphate 

NaH2PO4.2H2O 156.02 Merck (EMSURE®) 

Sodium dithionite Na2S2O4 174.11 Merck (≥85%) 

Sodium hydroxide NaOH 40.00 Honeywell Fluka 

Silica nanoparticles  SiO2 60.08 Evonik (AEROSIL®200) 

Sodium nitrate NaNO3 84.99 Merck (EMSURE®) 

Sodium perchlorate 

monohydrate 

NaClO4.H2O 140.46 Merck (EMSURE®) 

Sodium pyrophosphate Na4P2O7.10H2O 446.06 Alfa Aeser (99.0-103.0%) 

Sodium sulfate Na2SO4 142.04 Merck (EMSURE®) 
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Table A2.2: Radionuclides with the energy of gamma ray 

Parent radionuclide  Daughters Energy (keV) Abundance 𝑷𝜸
* 

(%) 

Th-232 Pb-212 238.63 43.20 

 Ac-228 338.32 11.27 

  911.23 25.80 

  968.97 15.80 

 Tl-208 583.19 30.37 

Ra-226 Ra-226 186.10 3.50 

 Pb-214 295.22 19.30 

  351.93 37.60 

 Bi-214 609.31 46.10 

  1120.29 15.10 

  1764.49 15.10 

K-40 K-40 1460.81 10.67 
*𝑃𝛾 is the absolute transition probability 

 

 

Table A2.3: Results from analytical quality of the ED-XRF measurements for all the analyzed elements, 

checked with certified reference materials of rock samples (units are in mg kg-1) 

 La Ce Th Nd 

Sy-3-M  1340±11 2267±21 1019±8 649±3 

Sy-3-S  1317±20 2251±20 904±10 796±10 

Accuracy (%) 100±1 102±1 102±1 97±0 

     

Sy-2-M 70±1 174±6 402±7 76±4 

Sy-2-S 77±5 161±10 386±10 77±5 

Accuracy (%) 94±2 99±3 106±2 104±6 

     

BE-N-M 92±1 180±4 17±1 74±6 

BE-N-S 82±5 153±10 11±5 66±5 

Accuracy (%) 113±2 118±3 163±7 111±9 

*M – measured value, S – standard value   

 

 
Table A2.4: Averaged results from analytical quality of the ICP-MS measurements for the analyzed trace 

elements, checked with certified reference materials of SPS-SW1 and detection limits (units are in ng L-

1) 

 La Ce Th Nd 

SPS-SW1-M  503±6 496±18 519±19 504±16 

SPS-SW1-S 500±10 500±10 500±10 500±10 

Accuracy (%) 101±1 99±4 104±4 101±3 

Detection limit 0.04 – 0.14 0.06 – 0.14 0.04 – 0.10 0.07 – 0.13 

*M – measured value, S – standard value   
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Appendix 2.2: Calculations for solid phase total organic carbon (TOC) 

            𝑀 =
10

𝑉𝑏𝑙𝑎𝑛𝑘
                                                                                                    (𝐸𝑞. 𝐴. 1) 

𝑂𝑥𝑖𝑑𝑖𝑧𝑎𝑏𝑙𝑒 𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝐶𝑎𝑟𝑏𝑜𝑛 (%) =  
[𝑉𝑏𝑙𝑎𝑛𝑘 − 𝑉𝑠𝑎𝑚𝑝𝑙𝑒] × 0.3 ×𝑀

𝑊𝑡
           (𝐸𝑞. 𝐴. 2) 

𝑇𝑂𝐶 (%) = 1.334 × 𝑜𝑥𝑖𝑑𝑖𝑧𝑎𝑏𝑙𝑒𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝐶𝑎𝑟𝑏𝑜𝑛 (%)                                   (𝐸𝑞. 𝐴. 3) 

Where: M – Molarity of (NH4)2SO4.FeSO4.6H2O solution (about 0.5 M) 

Vblank – volume of (NH4)2SO4.FeSO4.6H2O solution required to titrate the blank (mL) 

Vsample – volume of (NH4)2SO4.FeSO4.6H2O solution required to titrate the sample (mL) 

Wt – weight of air-dry soil (g) 

0.3 – 3 ×10-3 × 100, where 3 is the equivalent weight of carbon. 

 

The estimated OC in the soil using this Walkey-Black method gives about 89% 

recovery of carbon as compared to the dry combustion method. Therefore, the 

conversion factor 0.336 was obtained by dividing 0.003 (the milli-equivalent weight of 

carbon) by 89% and multiplied by 100 to convert it into percentage. The interference 

from chloride (Cl-) can be eliminated by adding silver sulfate (Ag2SO4) to the oxidizing 

reagent whereas the presence of nitrates (NO3
-) and carbonates (CO3

2-) up to 5% and 

50% respectively, does not interfere. 

 

Appendix 2.3: Specific Surface Area (SSA)  

There are several methods to measure the specific surface area of a material. The routine 

method for fine-grained materials is the gas adsorption method using non-polar gas like 

N2, Ar, Kr, or CO2. Among these, N2-gas adsorption (BET: Brunauer–Emmett–Teller) 

method is by far the most common and was used in this study. A Quantachrome 

Autosorb Automated Gas Sorption System with N2(g) adsorbate instrument was used 

to obtain the SSA for ~1 g of each soil sample.  

 

Appendix 2.4: Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) 

spectroscopy 

The main IR-active groups in the soil matrices were identified by recording ATR-FTIR 

spectra using a Bruker IFS 55 spectrometer. The soil samples were mildly ground to 
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obtain a homogenous distribution without destroying the mineral phases. Those 

samples were mounted on the ATR sample stage and spectra were collected at 4 cm-1 

resolution in the 400-4000 cm-1 spectral range. OPUS 7.5 software was used for data 

treatment. 

 

Appendix 2.5: X-ray Photoelectron Spectroscopy (XPS) 

Further investigations of the main soil components were performed using XPS. 

Measurements were performed using a PHI 5000 VersaProbeII (ULVAC-PHI Inc.) 

system, where the photoelectrons were generated by a scanning microprobe X-ray 

source (monochromatic Al-Kα (1486.7 eV) X-rays) as the excitation source, collected 

at 45° with respect to the surface normal, and detected with a hemispherical analyzer. 

Data analysis was performed using the ULVAC-PHI MultiPak program, version 9.8. 

 

Appendix 2.6: NPOC and anions measurements in batch experiment with SRW-A1 

Another batch experiment was done for ~ 2.5 g of L 04 and L 05 soil samples using 50 

mL of SRW A1 per each sample, to measure the NPOC. After 7 days of rotation, the 

samples were centrifuged at 3500 rpm for 10 minutes and 500 µL pipetted out from the 

decanted samples and diluted to 5 mL using 2% HNO3 for ICP-MS analysis. In 

addition, 10 mL of samples were prepared for NPOC measurements and 1.5 mL 

samples were prepared for IC analysis. 

 

Appendix 2.7: pH dependent extractions 

Since the extraction steps involve a range of pH values, it is not clear wheather pH plays 

a role for the obtained results. Therefore, only L-04 soil sample was used for this 

additional batch extraction experiment to check the influence of pH on the extracted 

amounts of Th, U, and REEs. A solution of 1 mmol L-1 NaClO4 was prepared and the 

pH values were adjusted in 50 mL aliquot solutions separately using HClO4 acid (pH 2 

– 5.5) and NaOH (pH 6 – 10) to obtain the desired pH values. The selected pH values 

were pH 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9, and 10. A mass of approximately 2 g of 

the L-04 soil was added to a volume of 20 mL of each pH solution. Aliquots of 100 µL 

were taken out after 2 hrs, 5 hrs, 7 hrs and 7 days and analyzed by ICP-MS after dilution 

to 5 mL with 2% HNO3. The final pH values after each time period of the extractions 

were also measured. 
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Appendix 2.8: Column experiment run with an empty column 

Additionally, an empty column (XK 26, GE Healthcare, Sweden) was used to check 

potential dissolution of silica from the inner surface of the borosilicate glass columns. 

A solution of 1 mmol L-1 NaCl was passed through the column from bottom to top with 

the same flowrate of 0.05 mL min-1 and 5 mL fractions were collected in the fraction 

collector. All the samples were acidified with 50 µL of 69% HNO3 and analyzed in 

ICP-MS and ICP-OES. 

 

Appendix 2.9: Tube injection of silica suspension and use of NaCl as infiltration 

leachant 

The same L-04 soil column, which had been previously used with the SRW A1, was 

utilized for this experiment as well to gain some experience with this kind of 

experiments before carrying out the experiments with L-05 soil. About 20 mL of silica 

suspension of 0.1 g L-1 AEROSIL 200 silica in 0.1 mmol L-1 NaCl at pH 5 and 2 L of 

1 mmol L-1 NaCl solution at pH 5 were prepared as the infiltration leachants. A separate 

rubber tube with a volume of ~20 mL was fixed to the ÄKTA pure system. Initially, 75 

mL of 1 mmol L-1 NaCl solution was passed through the column at a flowrate of 0.05 

mL min-1. A volume of about 20 mL of the silica suspension in a separate syringe fixed 

to the instrument was injected into the rubber tube. A volume of 15 mL was then 

automatically passed into the system. After this injection, 1 mmol L-1 NaCl solution 

was continuously passed through the column for a few days at the same flowrate. Each 

15th tube in the fraction collector was kept without adding acid to allow for separate pH 

measurements. The rest of the collected 5 mL samples that already contained 50 µL of 

69% HNO3 in the fraction collector were analyzed in both ICP-MS and ICP-OES.  

 

Appendix 2.10: Tube injection of HA with NaCl solution 

The L-04 soil column, which had already been leached out with SRW A1 and 

subsequently with silica suspension and 1 mmol L-1 NaCl solution, was used for this 

preliminary experiment. About 20 mL of 100 mg L-1 HA solution in 0.1 mmol L-1 NaCl 

at pH 5 and 2 L of 0.5 mmol L-1 NaCl solution at pH 5 were prepared as leachant 

solutions. A separate rubber tube, similar to the tube used with silica suspension, with 

a volume of ~20 mL was fixed to the system. Initially, a volume 15 mL of 0.5 mmol L-

1 NaCl solution was passed through the column at a flowrate of 0.05 mL min-1. In the 

meantime, a volume of 15 mL of the prepared HA solution in a separate syringe was 
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fixed to the instrument and injected into the rubber tube. The loading solution was then 

automatically passed into the system. After that 15 mL injection, 0.5 mmol L-1 NaCl 

solution was continuously passed through the column for a few days at the same 

flowrate. The fraction volume per each tube was fixed to 15 mL and no HNO3 was 

added to avoid precipitation of HA. The 15 mL samples were split into 5 mL fractions 

and then analyzed by ICP-MS after digestion with HF and ICP-OES and into 7 mL for 

NPOC. 

Two different salt concentrations were used in Appendices 4 and 5 to check if 

differences in the conductivity could be used to identify any breakthrough points along 

with the change of conductivity. After this experiment, the whole set up was washed 

by flushing the system with Milli-Q, HCl, and NaOH before running the next column 

experiments. 
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Appendix 3.1: Activity concentration of Th-232 from Gamma spectrometry in 

Germany 

Table A3.1: Activity concentration of Th-232 from gamma spectrometry carried out for the soil 

samples in Germany 

Sample Th-232 

DE - Gamma (Bq kg-1) 

L-03 3207.2 ± 28.1 

L-04 6091.4 ± 75.9 

L-05 7278.4 ± 94.5 

L-06 5899.8 ± 176.7 

 

 

 

Appendix 3.2: Elemental concentrations of major and trace elements in soil samples 

by ICP-OES 

Table A3.2: Amounts of main components and trace elements present in the samples measured by ICP-

OES 

 Si 

g kg-1 

Al 

g kg-1 

Fe 

g kg-1 

Ce 

g kg-1 

La 

g kg-1 

Nd 

g kg-1 

Th 

g kg-1 

Ti 

g kg-1 

L-

03 

191.0 ± 2.5 122.0 ± 

0.6 

94.5 ± 1.4 0.92 ± 

0.01 

0.93 ± 

0.00 

0.55±0.00 0.59±0.01 3.0 ± 

0.0 

L-

04 

179.1 ± 3.0 150.5 ± 

1.1 

113.6 ± 

3.3 

1.30 ± 

0.10 

0.91 ± 

0.09 

0.53±0.05 1.03±0.02 4.3 ± 

0.0 

L-

05 

210.1 ± 7.7 127.2 ± 

3.0 

63.6 ± 0.6 1.51 ± 

0.13 

0.93 ± 

0.02 

0.50±0.01 1.99±0.03 4.1 ± 

0.1 

L-

06 

182.8 ± 

18.2 

125.1 ± 

7.3 

51.9 ± 4.7 1.34 ± 

0.09 

0.88 ± 

0.04 

0.49±0.02 2.41±0.21 3.7 ± 

0.2 

 

 

 

Appendix 3.3: Specific Surface Area (SSA)  

Table A3.3: Specific surface area of the soil samples 

Sample BET Surface area (m2 g-1) 

L-03 28.1 ± 1.3 

L-04 30.5 ± 1.5 

L-05 22.7 ± 0.3 

L-06 21.6 ± 0.3 
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Appendix 3.4: Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) 

spectroscopy 

 

Appendix 3.5: X-ray Photoelectron Spectroscopy (XPS) 

 

Table A3.4: Element content as atomic weight (wt%) as determined by XPS, relative error ± (10-20) % 

Sample C O Al Si Fe 

L-03 7.2 67.0 10.0 13.1 2.7 

L-04 6.4 67.5 10.7 13.4 2.0 

L-05 6.4 67.6 10.4 14.1 1.5 

L-06 7.1 67.2 10.3 14.0 1.4 

Figure A3.1: ATR-FTIR spectra of the four soil samples studied, major components kaolinite (K) and 

quartz (Q) are indicated by arrows 

Figure A3.2: XPS spectrum of the soil samples. The positions of the Th 4f main lines are also 

indicated 
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Appendix 3.6: Elemental distribution in size fractions 

 

 

 

 

 

 

 

Figure A3.4: Elemental distribution of (a) Ce and (b) Nd in each size fraction of L-04 by XRF 

Figure A3.3: Concentration of (a) Ce and (b) Nd in each size fraction of L-04 and L-05 soil samples 

measured by XRF 
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Figure A3.5: Concentration of (a) Th, (b) U, (c) La, (d) Ce, (e) Nd and (f) Fe in each size fraction of L-04 

and L-05 soil samples measured by ICP-OES 
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Appendix 3.7: Correlation diagrams for µ-XRF maps 

 

Figure A3.6: X-ray fluorescence scatter plots, histograms and Spearman correlation coefficients between fluorescence counts of Ce, Fe, Pb, Th, and Ti for the Th-oxide particle  
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Figure A3.7: X-ray fluorescence scatter plots, histograms and Spearman correlation coefficients between fluorescence counts of Ca, Fe, La, Nd, Pb, Th, U, and Y for the Th-

phosphate particle  
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Appendix 3.8: Groundwater data for some selected major elements and trace elements 
 

Table A3.5: Concentrations of major elements and trace elements, Ce and Nd, in groundwater samples with the drinking water limit standards of WHO (W), EPA (E) and SLS 

(S) 

Sampling campaign – S1  W E S 

 WL-01 WL-02 WL-03 WL-04 WL-05 WL-06    

Fe (µg L-1)       -- 300 

0.45 µm 4.4±2.0 9.5±0.3 7.6±0.1 2.4±0.2 4.0±0.0 7.5±0.0    

0.20 µm 4.1±0.4 10.4±2.2 6.9±0.2 2.1±0.1 3.9±0.5 2.9±0.3    

Na (mg L-1)       -- -- 200 

0.45 µm 8.5±0.3 6.8±0.1 7.3±0.0 9.2±0.0 10.6±0.1 8.4±0.0    

0.20 µm 8.1±0.0 7.1±0.0 7.3±0.1 9.2±0.0 10.6±0.1 8.5±0.1    

Mg (mg L-1)       -- -- 30 

0.45 µm 8.6±0.3 27.0±0.4 25.7±0.0 8.4±0.0 20.3±0.1 3.9±0.1    

0.20 µm 8.2±0.0 28.1±0.4 25.6±0.1 8.4±0.0 20.4±0.2 3.9±0.0    

Al (µg L-1)       -- 200 

0.45 µm 0.9±0.5 0.4±0.2 0.1±0.0 0.7±0.4 1.4±0.2 2.2±0.5    

0.20 µm 0.8±0.1 0.7±0.2 0.2±0.0 0.6±0.3 1.6±0.1 1.3±0.2    

K (mg L-1)       -- -- -- 

0.45 µm 2.1±0.1 2.5±0.0 2.3±0.0 2.2±0.0 3.4±0.0 1.4±0.0    

0.20 µm 2.0±0.0 2.6±0.0 2.3±0.0 2.2±0.0 3.5±0.0 1.4±0.0    

Ca (mg L-1)       -- -- 100 

0.45 µm 22.4±0.6 66.6±2.0 61.0±0.3 21.1±0.1 52.4±0.3 9.3±0.3    

0.20 µm 21.6±0.3 68.9±0.8 60.7±0.1 21.1±0.1 52.0±0.4 9.4±0.1    



178 

 

Mn (µg L-1)       400 50 100 

0.45 µm 12.9±0.5 0.1±0.0 6.6±0.2 3.8±0.1 0.3±0.0 3.8±0.1    

0.20 µm 12.4±0.0 0.2±0.0 7.0±0.0 3.8±0.0 0.2±0.0 3.9±0.0    

Ce (µg L-1)       -- - -- 

0.45 µm 0.2±0.0 -- -- 0.3±0.0 -- 0.2±0.0    

0.20 µm 0.2±0.0 -- -- 0.2±0.0 -- --    

Nd (µg L-1)       -- - -- 

0.45 µm 1.2±0.2 0.4±0.0 0.5±0.0 1.1±0.2 2.1±0.0 1.9±0.1    

0.20 µm 1.2±0.1 0.5±0.0 0.5±0.0 0.9±0.1 2.1±0.0 0.4±0.0    

 

Sampling campaign – S2  

 WL-01 WL-02 WL-03 WL-04 WL-05 WL-06   

Targeted elements 

Fe (µg L-1)       -- -- -- 

0.45 µm 14.3±0.3 15.1±0.2 5.1±0.2 18.6±0.1 16.1±0.6 21.7±0.3    

0.20 µm 19.6±0.5 24.2±0.7 21.7±0.6 16.3±0.4 17.9±0.1 20.7±0.1    

Na (mg L-1)       -- -- -- 

0.45 µm 11.4±0.2 9.1±0.1 8.1±0.1 11.7±0.2 14.1±0.2 11.6±0.2    

0.20 µm 12.4±0.8 10.1±0.6 8.6±0.2 12.3±0.4 14.3±0.4 12.1±0.4    

Mg (mg L-1)       -- -- -- 

0.45 µm 10.7±0.2 34.5±0.4 25.1±0.2 10.2±0.2 24.2±0.3 6.0±0.1    

0.20 µm 11.5±0.7 35.8±0.4 26.7±0.8 10.6±0.3 25.0±0.6 6.3±0.2    

Al (µg L-1)       -- -- -- 
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0.45 µm 10.5±0.2 7.5±0.2 6.0±0.2 12.6±0.1 11.9±0.6 11.0±0.1   

0.20 µm 14.8±0.9 24.9±0.2 17.8±0.5 13.3±0.6 12.6±0.4 9.9±0.3   

K (mg L-1)       -- -- -- 

0.45 µm 3.0±0.0 3.5±0.0 0.9±0.0 2.9±0.0 4.4±0.0 2.2±0.0   

0.20 µm 3.1±0.1 3.9±0.1 1.2±0.0 3.0±0.0 4.3±0.0 2.2±0.0   

Ca (mg L-1)       -- -- -- 

0.45 µm 23.4±0.2 73.9±0.2 47.9±0.1 21.5±0.7 53.4±0.3 10.8±0.1   

0.20 µm 24.3±0.5 76.6±2.1 50.2±0.4 22.2±0.4 54.2±0.5 11.0±0.2   

Mn (µg L-1)       -- -- -- 

0.45 µm 24.7±0.1 1.0±0.0 9.0±0.0 7.2±0.1 1.5±0.0 3.7±0.0   

0.20 µm 25.5±0.4 10.9±0.1 8.6±0.2 7.0±0.1 1.5±0.0 3.4±0.0   

Ce (µg L-1)       -- -- -- 

0.45 µm 0.15±0.00 0.05±0.00 0.07±0.00 0.12±0.00 0.08±0.00 0.07±0.00   

0.20 µm 0.26±0.00 0.17±0.00 0.16±0.00 0.12±0.00 0.09±0.00 0.06±0.00   

Nd (µg L-1)       -- -- -- 

0.45 µm 0.20±±0.00 0.02±0.00 0.30±0.00 0.10±0.00 0.12±0.00 0.13±0.00   

0.20 µm 0.27±0.01 0.08±0.00 0.34±0.00 0.11±0.00 0.12±0.00 0.14±0.01   
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Appendix 4.1: Chemical batch extractions 

 

Figure A4.1: Percentage distribution of (a) Ce and (b) Nd in each chemically extracted fractions of soil 

sample L-05 in sequential (Seq) and single (Sin) extractions 

Figure A4.2: Relative percentage values of Ce (a,b) and Nd (c,d) extracted sequentially from each size 

fraction of sieved L-04, showing both overall F1-F6 (a,c) and expanded F1-F4 (b,d). A comparison with 

unsieved L-04 soil sample is included 
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Table A4.1: Extracted percentages of Th, U and La in both sequential (Seq) and single (Sin) approaches 

for all the soil sample  

 

 

 

 

 

 

 

 

 

 

 

 

% Th U La Ce Nd 

 Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin 

Overall 

recovery 

82-114 65-146 82-105 72-98 81-100 

Easily 

mobile  

(F1+F2) 

0.5-

1.2 

0.6-

2.2 

6-15 7-18 8-

20 

24-40 0.3-1.3 0.6-2.6 10-24 27-48 

Maximum 

chemically 

mobilized 

(F1+F2+F3

+F4) 

4-6 3-8 12-29 12-

33 

9-

21 

0.7-

1.0 

0.6-1.7 0.1-0.3 11-25 0.5-0.7 

Figure A4.3: Mass balance for (a) Ce and (b) Nd obtained in extractions per sieved soil fraction to the 

total of unsieved L-04 considering F1-F6 
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Table A4.2: Amount of Th extracted in sequential (Seq) and single (Sin) extractions (concentration in elutes) 

 F1 (µg L-1) F2 (µg L-1) F3 (µg L-1) F4 (mg L-1) F5 (mg L-1) 

 Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin 

L-03 4.45±1.91 4.46±0.33 330±5 433±6 402±12 438±1 2.58±0.03 3.88±0.07 9.63±0.23 7.13±0.45 

L-04 6.11±1.40 5.80±1.25 445±8 542±29 372±20 350±6 4.28±0.07 5.67±0.02 19.8±0.4 19.4±0.0 

L-05 3.51±0.59 3.93±0 977±21 2236±17 960±31 1160±33 6.38±0.01 11.5±0.1 17.1±0.5 25.8±0.1 

L-06 4.40±1.36 4.65±1.65 988±1 1115±9 897±4 1060±8 5.78±0.01 8.54±0.08 18.6±0.3 24.7±0.1 

 

 

Table A4.3: Amount of Th extracted in sequential (Seq) and single (Sin) extractions; mass of Th released from the soil (mass eluted per mass of soil) 

 F1 (ng g-1) F2 (µg g-1) F3 (µg g-1) F4 (µg g-1) F5 (µg g-1) F6 (mg kg-1) Total  

(mg kg-1)  Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin Seq  

L-03 44.6±19.1 44.6±3.3 4.94±0.08 6.49±0.09 4.02±0.12 4.38±0.01 25.8±0.3 38.8±0.7 47.1±0.3 71.3±4.5 656±5 794±162 

L-04 61.1±14.0 58.0±12.5 6.68±0.11 8.13±0.44 3.72±0.20 3.50±0.06 42.8±0.7 56.7±0.2 145±0 193±1 1020±149 1480±5 

L-05 35.1±5.9 39.3±0.0 14.7±0.3 33.5±0.26 9.60±0.31 11.6±0.3 63.8±0.1 115±1 176±1 258±1 1150±99 1560±98 

L-06 44.0±13.6 46.5±16.5 14.8±0.0 16.7±0.1 8.97±0.04 10.6±0.1 57.8±0.1 85.4±0.8 177±1 247±1 1200±132 1280±76 
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Table A4.4: Amount of U extracted in sequential (Seq) and single (Sin) extractions (concentration in elutes) 

 F1 (µg L-1) F2 (µg L-1) F3 (µg L-1) F4 (µg L-1) F5 (µg L-1) 

 Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin 

L-03 4.36±0.00 4.36±0.00 133±1 154±2 47.7±2.2 169±0 132±2 425±9 270±13 625±12 

L-04 2.22±0.76 3.10±0.49 136±2 154±2 49.1±2.3 140±2 156±2 457±6 349±10 676±11 

L-05 2.56±1.18 2.71±1.22 91.2±2.4 208±2 39.8±1.2 136±5 108±0 310±8 325±8 541±23 

L-06 3.57±1.24 3.66±1.19 92.7±0.2 112±1 39.1±0.4 124±0 114±1 314±3 346±3 539±32 

 

 

Table A4.5: Amount of U extracted in sequential (Seq) and single (Sin) extractions; mass of U released from the soil (mass eluted per mass of soil) 

 F1 (ng g-1) F2 (µg g-1) F3 (µg g-1) F4 (µg g-1) F5 (µg g-1) F6 (mg kg-1) Total  

(mg kg-1)  Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin Seq  

L-03 43.6±0.0 43.6±0.0 2.00±0.02 2.30±0.03 0.48±0.02 1.69±0.00 4.25±0.09 38.8±0.7 2.70±0.13 6.25±0.12 13±1 13±0 

L-04 22.2±7.6 31.0±4.9 2.05±0.03 2.31±0.02 0.49±0.02 1.40±0.02 4.57±0.06 56.7±0.2 3.49±0.10 6.76±0.11 17±1 36±1 

L-05 25.6±11.8 27.1±12.2 1.37±0.04 3.13±0.03 0.40±0.01 1.36±0.05 3.10±0.08 115±1 3.25±0.08 5.41±0.23 15±1 20±0 

L-06 35.7±12.4 36.6±11.9 1.39±0.00 1.67±0.02 0.39±0.00 1.24±0.00 3.14±0.03 85.4±0.8 3.46±0.03 5.39±0.32 8±0 22±1 
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Table A4.6: Amount of La extracted in sequential (Seq) and single (Sin) extractions (concentration in elutes) 

 F1 (mg L-1) F2 (µg L-1) F3 (µg L-1) F4 (µg L-1) F5 (µg L-1) 

 Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin 

L-03 15.5±0.8 15.6±0.3 1.88±0.02 12.1±0.2 0.28±0.00 13.8±0.2 0.60±0.01 1.02±0.02 0.28±0.02 7.64±0.02 

L-04 18.4±0.5 18.6±0.4 0.66±0.00 13.2±0.0 0.06±0.00 13.7±0.3 0.22±0.00 0.89±0.02 0.31±0.01 9.67±0.09 

L-05 8.9±0.1 9.2±0.3 0.66±0.01 12.9±0.1 0.14±0.00 6.9±0.1 0.67±0.00 0.87±0.01 0.49±0.01 6.57±0.01 

L-06 10.1±0.0 10.5±0.1 0.55±0.00 7.6±0.0 0.10±0.00 8.3±0.1 0.69±0.00 0.91±0.03 0.71±0.01 7.89±0.34 

 

 

Table A4.7: Amount of La extracted in sequential (Seq) and single (Sin) extractions; mass of La released from the soil (mass eluted per mass of soil) 

 F1 (µg g-1) F2 (µg g-1) F3 (µg g-1) F4 (µg g-1) F5 (µg g-1) F6 (mg kg-1) Total  

(mg kg-1)  Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin Seq  

L-03 155±8 156±3 28.2±0.4 182±3 2.79±0.05 138±2 6.00±0.05 10.2±0.2 2.85±0.16 76.4±0.2 882±166 1312±304 

L-04 184±5 186±4 9.8±0.1 198±0 0.57±0.02 137±3 2.24±0.03 8.9±0.2 3.09±0.05 96.7±0.9 621±90 948±231 

L-05 89±1 92±3 9.9±0.1 193±2 1.39±0.03 69±1 6.69±0.01 8.7±0.1 4.94±0.08 65.7±0.1 934±110 1201±189 

L-06 101±0 105±1 8.3±0.1 115±1 0.97±0.01 83±1 6.91±0.00 9.1±0.3 7.05±0.14 78.9±3.4 813±29 896±59 
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Table A4.8: Amount of Ce extracted in sequential (Seq) and single (Sin) extractions (concentration in elutes) 

 F1 (µg L-1) F2 (µg L-1) F3 (µg L-1) F4 (µg L-1) F5 (µg L-1) 

 Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin 

L-03 0.38±0.00 0.38±0.00 0.04±0.00 0.38±0.01 0.03±0.00 0.28±0.00 0.53±0.01 0.21±0.01 1.83±0.03 1.55±0.02 

L-04 2.85±0.05 2.97±0.04 0.11±0.01 2.14±0.09 0.02±0.00 1.67±0.03 0.37±0.00 0.42±0.01 2.57±0.06 3.55±0.04 

L-05 2.28±0.07 2.37±0.07 0.23±0.01 3.38±0.01 0.08±0.00 1.75±0.04 0.92±0.00 0.84±0.02 3.95±0.03 5.16±0.05 

L-06 2.69±0.06 2.88±0.00 0.18±0.01 2.08±0.01 0.06±0.00 2.18±0.01 0.82±0.00 0.73±0.03 4.47±0.05 5.49±0.19 

 

 

Table A4.9: Amount of Ce extracted in sequential (Seq) and single (Sin) extractions; mass of Ce released from the soil (mass eluted per mass of soil) 

 F1 (µg g-1) F2 (µg g-1) F3 (µg g-1) F4 (µg g-1) F5 (µg g-1) F6 (mg kg-1) Total  

(mg kg-1)  Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin Seq  

L-03 3.8±0.0 3.8±0.0 0.62±0.05 5.7±0.2 0.30±0.02 2.8±0.0 5.33±0.14 2.14±0.07 18.3±0.3 15.5±0.2 1474±78 1612±98 

L-04 28.5±0.5 29.7±0.4 1.62±0.10 32.2±1.3 0.19±0.01 16.7±0.3 3.75±0.01 4.23±0.08 25.7±0.6 35.5±0.4 3454±950 4857±992 

L-05 22.8±0.7 23.7±0.7 3.51±0.02 50.7±0.2 0.84±0.01 17.5±0.4 9.25±0.00 8.42±0.21 39.5±0.3 51.6±0.5 2836±138 3107±191 

L-06 26.9±0.6 28.8±0.0 2.63±0.12 31.1±0.2 0.60±0.01 21.8±0.1 8.25±0.05 7.28±0.28 44.7±0.5 54.9±1.9 2141±33 2270±92 
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Table A4.10: Amount of Nd extracted in sequential (Seq) and single (Sin) extractions (concentration in elutes) 

 F1 (µg L-1) F2 (µg L-1) F3 (µg L-1) F4 (µg L-1) F5 (µg L-1) 

 Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin 

L-03 6.32±0.05 6.38±0.10 2.33±0.04 6.77±0.19 0.35±0.01 7.72±0.01 0.64±0.02 0.35±0.01 0.41±0.01 5.50±0.03 

L-04 10.2±0.01 10.4±0.03 0.67±0.01 7.90±0.19 0.07±0.00 8.58±0.14 0.21±0.00 0.29±0.01 0.31±0.01 6.81±0.06 

L-05 4.79±0.06 4.92±0.09 0.77±0.03 7.77±0.04 0.15±0.00 4.22±0.11 0.51±0.00 0.32±0.01 0.41±0.01 4.40±0.05 

L-06 5.37±0.11 5.71±0.10 0.56±0.01 4.44±0.02 0.10±0.00 4.83±0.01 0.47±0.00 0.32±0.02 0.56±0.01 4.94±0.16 

 

 

Table A4.11: Amount of Nd extracted in sequential (Seq) and single (Sin) extractions; mass of Nd released from the soil (mass eluted per mass of soil) 

 F1 (µg g-1) F2 (µg g-1) F3 (µg g-1) F4 (µg g-1) F5 (µg g-1) F6 (mg kg-1) Total  

(mg kg-1)  Seq Sin Seq Sin Seq Sin Seq Sin Seq Sin Seq  

L-03 63.2±0.5 63.8±1.0 35.0±0.6 102±3 3.49±0.13 77.2±0.1 6.39±0.16 3.45±0.10 4.12±0.09 55.0±0.3 377±83 607±63 

L-04 102±1 104±0 10.0±0.2 118±3 0.69±0.04 85.8±1.4 2.13±0.01 2.86±0.07 3.08±0.08 68.1±0.6 270±51 461±35 

L-05 47.9±0.6 49.2±0.9 11.5±0.5 117±1 1.49±0.05 42.2±1.1 5.06±0.02 3.23±0.07 4.10±0.11 44.0±0.5 441±60 596±10 

L-06 53.7±1.1 57.1±1.0 8.3±0.1 67±0 1.00±0.03 48.3±0.1 4.66±0.02 3.25±0.18 5.61±0.09 49.4±1.6 372±1 446±53 
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Table A4.12: Released amounts of Th, U, La, Ce, and Nd per gram of soil in the washing steps between each sequential extraction 

 F1 (µg g-1) F2 (µg g-1) F3 (µg g-1) F4 (µg g-1) F5 (µg g-1) 

Th      

L-05 < 0.1±0.0 11.8±0.0 1.8±0.0 0.1±0.0 

L-04 < 0.1±0.0 11.1±0.0 2.3±0.0 20.7±0.0 

U      

L-05 < < 0.1±0.0 0.1±0.0 0.1±0.0 

L-04 < 0.1±0.0 0.2±0.0 0.1±0.0 0.5±0.0 

La      

L-05 54±0.8 0.1±0.0 2.7±0.0 0.1±0.0 10.0±0.9 

L-04 11.5±1.6 0.3±0.0 4.2±0.1 0.1±0.0 0.4±0.0 

Ce      

L-05 2.0±0.2 0.1±0.0 14.4±0.1 0.3±0.0 1.8±0.2 

L-04 2.5±0.2 0.1±0.0 17.0±0.1 0.2±0.0 2.9±0.0 

Nd      

L-05 3.1±0.5 0.1±0.0 1.8±0.0 0.1±0.0 6.2±0.6 

L-04 8.4±1.0 0.3±0.0 2.6±0.0 0.1±0.0 0.4±0.0 

* “<” - below the detection limit 

 

Table A4.13: Amount of Th extracted in the elute of each size fraction in sequential extractions (µg L-1) and mass of Th released per gram of soil (µg g-1)  

Th F1 F2 F3 F4 F5 

 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 

40-75 0.03±0.00 0.28±0.00 0.46±0.01 6.87±0.10 0.38±0.01 3.78±0.05 6.35±0.06 63.5±0.6 29.0±0.3 290±3 

75-125 0.05±0.01 0.54±0.05 0.46±0.02 6.89±0.27 0.42±0.00 4.16±0.02 5.47±0.07 54.7±0.7 27.9±0.1 279±1 

125-180 0.01±0.00 0.13±0.01 0.48±0.00 7.21±0.04 0.42±0.00 4.22±0.01 5.45±0.09 54.5±0.9 23.4±0.2 234±2 

180-250 0.02±0.00 0.17±0.01 0.45±0.00 6.73±0.04 0.40±0.01 3.96±0.08 5.09±0.02 50.9±0.2 22.9±0.1 229±1 

250-425 0.02±0.00 0.23±0.03 0.44±0.01 6.65±0.12 0.39±0.01 3.93±0.13 4.40±0.05 44.0±0.5 25.4±0.7 254±7 

425-850 0.02±0.00 0.18±0.03 0.44±0.02 6.65±0.25 0.42±0.01 4.18±0.10 4.12±0.02 41.2±0.2 25.8±0.2 258±2 

>850 0.00±0.00 0.00±0.00 0.39±0.01 5.86±0.21 0.43±0.00 4.25±0.01 3.75±0.07 37.5±0.7 27.5±0.1 275±1 
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Table A4.14: Amount of U extracted in the elute of each size fraction in sequential extractions (µg L-1) and mass of U released per gram of soil (µg g-1) 

U F1 F2 F3 F4 F5 

 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 

40-75 < < 0.14±0.00 2.07±0.06 0.04±0.01 0.44±0.03 0.17±0.00 1.71±0.02 0.55±0.01 5.49±0.10 

75-125 < < 0.14±0.01 2.13±0.10 0.05±0.00 0.48±0.02 0.16±0.00 1.64±0.02 0.55±0.00 5.51±0.02 

125-180 < < 0.15±0.00 2.18±0.05 0.05±0.00 0.55±0.03 0.17±0.00 1.67±0.01 0.52±0.00 5.24±0.01 

180-250 < < 0.15±0.00 2.26±0.04 0.05±0.00 0.49±0.01 0.16±0.01 1.63±0.06 0.51±0.00 5.05±0.03 

250-425 < < 0.14±0.00 2.17±0.03 0.05±0.00 0.50±0.01 0.14±0.00 1.41±0.01 0.54±0.00 5.44±0.01 

425-850 < < 0.13±0.00 2.01±0.02 0.06±0.00 0.55±0.02 0.14±0.00 1.35±0.04 0.55±0.00 5.54±0.04 

>850 < < 0.14±0.00 2.03±0.05 0.06±0.00 0.56±0.04 0.12±0.00 1.23±0.01 0.67±0.04 6.70±0.43 

* “<” - below the detection limit 

 
Table A4.15: Amount of La extracted in the elute of each size fraction in sequential extractions (µg L-1) and mass of La released per gram of soil (µg g-1) 

La F1 F2 F3 F4 F5 

 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 

40-75 19.2±1.9 192±19 0.61±0.03 9.16±0.41 0.05±0.00 0.47±0.03 0.32±0.00 3.16±0.04 0.38±0.01 3.86±0.02 

75-125 15.1±0.0 151±0 0.55±0.02 8.24±0.31 0.04±0.00 0.44±0.01 0.29±0.00 2.90±0.00 0.37±0.01 3.78±0.03 

125-180 17.1±0.3 171±3 0.67±0.00 10.0±0.01 0.05±0.00 0.47±0.02 0.31±0.01 3.06±0.07 0.36±0.03 3.57±0.32 

180-250 19.7±1.0 197±10 0.65±0.02 9.98±0.28 0.05±0.00 0.49±0.02 0.27±0.00 2.67±0.00 0.32±0.00 3.21±0.03 

250-425 19.9±0.3 199±3 0.58±0.00 8.75±0.07 0.05±0.00 0.46±0.01 0.25±0.00 2.54±0.02 0.37±0.00 3.71±0.00 

425-850 21.4±0.5 214±5 0.66±0.03 9.91±0.44 0.06±0.00 0.59±0.04 0.22±0.00 2.17±0.05 0.37±0.00 3.69±0.00 

>850 17.9±0.6 179±6 0.71±0.03 10.7±0.49 0.07±0.00 0.69±0.01 0.26±0.00 2.56±0.02 0.56±0.04 5.61±0.38 
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Table A4.16: Amount of Ce extracted in the elute of each size fraction in sequential extractions (µg L-1) and mass of Ce released per gram of soil (µg g-1) 

Ce F1 F2 F3 F4 F5 

 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 

40-75 2.99±0.33 29.9±3.3 0.23±0.01 3.42±0.18 0.01±0.00 0.14±0.01 0.65±0.00 6.48±0.01 3.17±0.02 31.7±0.2 

75-125 2.48±0.19 24.8±1.9 0.17±0.01 2.57±0.09 0.01±0.00 0.14±0.00 0.53±0.01 5.35±0.06 3.13±0.02 31.3±0.2 

125-180 2.72±0.25 27.2±2.5 0.18±0.00 2.71±0.04 0.02±0.00 0.19±0.03 0.55±0.00 5.53±0.04 3.52±0.23 35.2±2.3 

180-250 3.18±0.32 31.8±3.2 0.21±0.01 3.11±0.11 0.02±0.00 0.17±0.01 0.49±0.02 4.91±0.16 2.84±0.01 28.4±0.1 

250-425 3.46±0.49 34.6±4.9 0.16±0.00 2.33±0.07 0.01±0.00 0.13±0.02 0.38±0.00 3.83±0.04 3.06±0.13 30.6±1.3 

425-850 3.37±0.21 33.7±2.1 0.16±0.01 2.46±0.20 0.01±0.00 0.14±0.02 0.38±0.01 3.77±0.06 3.16±0.01 31.6±0.1 

>850 2.70±0.04 27.0±0.4 0.15±0.00 2.27±0.07 0.02±0.00 0.17±0.03 0.33±0.01 3.33±0.07 3.94±0.20 39.4±2.0 

 

 
Table A4.17: Amount of Nd extracted in the elute of each size fraction in sequential extractions (µg L-1) and mass of Nd released per gram of soil (µg g-1) 

Nd F1 F2 F3 F4 F5 

 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 µg L-1 µg g-1 

40-75 11.4±0.1 114±10 0.84±0.01 12.6±0.2 0.08±0.01 0.77±0.04 0.36±0.01 3.63±0.08 0.39±0.00 3.85±0.02 

75-125 9.0±0.2 90±2 0.73±0.02 11.0±0.2 0.06±0.00 0.65±0.03 0.30±0.01 3.00±0.08 0.37±0.00 3.74±0.01 

125-180 10.1±0.2 101±2 0.86±0.01 12.9±0.1 0.07±0.00 0.73±0.03 0.30±0.01 3.01±0.08 0.37±0.01 3.71±0.15 

180-250 12.1±0.6 121±6 0.79±0.03 11.4±0.4 0.07±0.00 0.75±0.02 0.30±0.01 3.03±0.06 0.35±0.00 3.49±0.00 

250-425 12.4±0.0 124±0 0.70±0.01 10.6±0.2 0.05±0.01 0.54±0.05 0.25±0.01 2.51±0.12 0.38±0.01 3.77±0.08 

425-850 14.2±0.3 142±3 0.75±0.02 11.2±0.3 0.07±0.00 0.67±0.03 0.23±0.00 2.29±0.04 0.37±0.00 3.74±0.01 

>850 10.9±0.5 109±5 0.76±0.01 11.4±0.1 0.08±0.01 0.76±0.09 0.26±0.01 2.59±0.06 0.55±0.03 5.53±0.29 
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Appendix 4.2: Batch extractions with simulated rainwaters 

 

 

 

 

 

Figure A4.4: Concentrations of Ce and Nd in the supernatant after rotating with different SRW 

compositions (a) SRW-A1, (b) SRW-A2, (c) SRW-B1, and (d) SRW-B2 from samples for several time 

periods (7, 14, 21, 50, and 118 days) for L-05 

Figure A4.5: Concentrations of (a) Ce and (b) Nd in the supernatant with different SRW compositions 

SRW-A1, A2, B1, andB2 from samples standing still (not rotated) for several time periods (7, 14, 21, 50, 

and 118 days) for L-05. 
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Table A4.18: Released amounts of Th, U, La, Ce and Nd with SRW-A1 in rotated and stand-still samples 

of L-03 

SRW-A1 

L-03 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.04±0.01 0.11±0.01 0.03±0.00 0.04±0.00 0.05±0.00 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.26±0.09 0.38±0.01 0.17±0.00 0.14±0.00 0.21±0.02 

Ce 0.07±0.00 0.23±0.02 0.08±0.00 0.10±0.00 0.11±0.00 

Nd 0.17±0.03 0.24±0.00 0.11±0.00 0.09±0.01 0.14±0.01 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.09±0.00 0.05±0.00 0.05±0.00 0.05±0.00 0.04±0.00 

Ce < 0.02±0.00 0.004±0.000 < 0.04±0.00 

Nd 0.04±0.01 0.03±0.00 0.03±0.00 0.02±0.00 0.02±0.00 

* “<” - below the detection limit 

 

 

Table A4.19: Released amounts of Th, U, La, Ce and Nd with SRW-A2 in rotated and stand-still samples 

of L-03 

SRW-A2 

L-03 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.02±0.01 0.07±0.00 0.04±0.01 0.04±0.00 0.03±0.00 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.33±0.02 0.32±0.03 0.30±0.01 0.21±0.00 0.22±0.02 

Ce 0.09±0.01 0.16±0.02 0.07±0.00 0.11±0.00 0.07±0.00 

Nd 0.21±0.02 0.19±0.01 0.18±0.01 0.14±0.01 0.14±0.00 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.12±0.02 0.10±0.00 0.08±0.00 0.08±0.00 0.08±0.01 

Ce < 0.02±0.00 0.004±0.000 < < 

Nd 0.06±0.00 0.06±0.00 0.05±0.00 0.04±0.00 0.04±0.01 

* “<” - below the detection limit 

 

 

Table A4.20: Released amounts of Th, U, La, Ce and Nd with SRW-B1 in rotated and stand-still samples 

of L-03 

SRW-B1 

L-03 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.01±0.00 0.05±0.00 0.04±0.00 0.03±0.00 0.05±0.01 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.14±0.02 0.22±0.01 0.20±0.02 0.18±0.02 0.22±0.01 

Ce 0.04±0.01 0.11±0.01 0.08±0.02 0.08±0.01 0.08±0.01 

Nd 0.09±0.00 0.13±0.01 0.13±0.01 0.10±0.00 0.13±0.01 

Stand-still ± ± ± ± ± 

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.12±0.03 0.07±0.00 0.06±0.00 0.06±0.00 0.05±0.00 

Ce < 0.02±0.00 0.004±0.000 < < 

Nd 0.08±0.01 0.04±0.00 0.03±0.00 0.03±0.00 0.03±0.00 

* “<” - below the detection limit 
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Table A4.21: Released amounts of Th, U, La, Ce and Nd with SRW-B2 in rotated and stand-still samples 

of L-03 

SRW-B2 

L-03 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.01±0.00 0.05±0.00 0.04±0.00 0.04±0.00 0.07±0.00 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.08±0.00 0.19±0.01 0.17±0.03 0.14±0.00 0.19±0.01 

Ce < 0.11±0.02 0.08±0.00 0.13±0.02 0.14±0.01 

Nd 0.04±0.00 0.12±0.01 0.11±0.02 0.09±0.00 0.12±0.00 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.04±0.00 0.03±0.00 0.02±0.00 0.02±0.00 0.02±0.00 

Ce < 0.02±0.00 < < < 

Nd < 0.02±0.00 0.01±0.00 < 0.02±0.00 

* “<” - below the detection limit 

 

 
Table A4.22: Released amounts of Th, U, La, Ce and Nd with SRW-A1 in rotated and stand-still samples 

of L-04 

SRW-A1 

L-04 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.05±0.03 0.10±0.00 0.18±0.01 0.06±0.00 0.06±0.00 

U 0.02±0.00 0.02±0.00 0.04±0.00 0.02±0.00 0.02±0.00 

La 0.25±0.01 0.46±0.03 0.95±0.03 0.33±0.00 0.39±0.00 

Ce 0.06±0.01 0.26±0.00 0.47±0.04 0.28±0.01 0.19±0.01 

Nd 0.13±0.01 0.27±0.00 0.58±0.03 0.21±0.01 0.26±0.00 

Stand-still      

Th < < < < < 

U < 0.02±0.00 0.02±0.00 0.01±0.00 0.01±0.00 

La 0.14±0.00 0.15±0.00 0.14±0.00 0.15±0.00 0.15±0.00 

Ce < 0.05±0.00 0.03±0.00 0.03±0.00 0.04±0.00 

Nd 0.08±0.01 0.09±0.00 0.09±0.00 0.09±0.00 0.09±0.00 

* “<” - below the detection limit 

 

 
Table A4.23: Released amounts of Th, U, La, Ce and Nd with SRW-A2 in rotated and stand-still samples 

of L-04 

SRW-A2 

L-04 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.04±0.01 0.13±0.03 0.09±0.01 0.09±0.02 0.01±0.01 

U 0.02±0.00 0.03±0.00 0.02±0.00 0.02±0.00 0.02±0.00 

La 0.48±0.04 0.65±0.03 0.57±0.01 0.44±0.02 0.52±0.02 

Ce 0.11±0.01 0.29±0.08 0.21±0.02 0.26±0.02 0.18±0.02 

Nd 0.30±0.00 0.39±0.01 0.39±0.03 0.27±0.01 0.33±0.00 

Stand-still      

Th < < < < < 

U < 0.02±0.00 0.01±0.00 0.01±0.00 0.02±0.00 

La 0.35±0.00 0.37±0.01 0.30±0.00 0.30±0.00 0.29±0.01 

Ce 0.06±0.01 0.08±0.00 0.05±0.00 0.07±0.01 0.06±0.01 

Nd 0.15±0.01 0.23±0.01 0.19±0.01 0.19±0.00 0.19±0.00 

* “<” - below the detection limit 

 

 



193 

 

Table A4.24: Released amounts of Th, U, La, Ce and Nd with SRW-B1 in rotated and stand-still samples 

of L-04 

SRW-B1 

L-04 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.02±0.00 0.07±0.01 0.07±0.01 0.04±0.00 0.05±0.01 

U 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 

La 0.41±0.03 0.46±0.00 0.44±0.02 0.33±0.04 0.43±0.01 

Ce 0.11±0.02 0.25±0.01 0.19±0.01 0.17±0.02 0.17±0.00 

Nd 0.21±0.03 0.28±0.00 0.27±0.01 0.21±0.02 0.27±0.00 

Stand-still ± ± ± ± ± 

Th < < < < < 

U < 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 

La 0.24±0.00 0.29±0.01 0.24±0.00 0.24±0.01 0.23±0.00 

Ce 0.05±0.00 0.06±0.00 0.04±0.00 0.05±0.00 0.05±0.00 

Nd 0.17±0.00 0.19±0.01 0.15±0.00 0.14±0.00 0.15±0.01 

* “<” - below the detection limit 

 

 
Table A4.25: Released amounts of Th, U, La, Ce and Nd with SRW-B2 in rotated and stand-still samples 

of L-04 

SRW-B2 

L-04 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.03±0.01 0.06±0.01 0.05±0.00 0.04±0.00 0.08±0.01 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.15±0.01 0.23±0.01 0.15±0.03 0.13±0.01 0.23±0.01 

Ce 0.07±0.02 0.17±0.00 0.12±0.00 0.11±0.02 0.17±0.00 

Nd 0.08±0.00 0.13±0.01 0.09±0.01 0.08±0.00 0.14±0.00 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.07±0.00 0.07±0.00 0.05±0.00 0.04±0.00 0.04±0.00 

Ce < 0.03±0.00 0.01±0.00 < < 

Nd < 0.04±0.00 0.03±0.00 0.03±0.00 < 

* “<” - below the detection limit 

 

 
Table A4.26: Released amounts of Th, U, La, Ce and Nd with SRW-A1 in rotated and stand-still samples 

of L-05 

SRW-A1 

L-05 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.09±0.03 0.11±0.00 0.12±0.00 0.12±0.00 0.13±0.02 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.14±0.00 0.19±0.01 0.28±0.04 0.17±0.01 0.19±0.01 

Ce 0.11±0.02 0.22±0.00 0.25±0.02 0.24±0.00 0.19±0.01 

Nd 0.06±0.01 0.10±0.01 0.15±0.01 0.10±0.00 0.10±0.01 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.05±0.01 0.05±0.00 0.04±0.00 0.04±0.00 0.04±0.00 

Ce < 0.03±0.00 0.01±0.00 < 0.02±0.00 

Nd 0.04±0.00 0.02±0.00 0.02±0.00 0.02±0.00 0.02±0.00 

* “<” - below the detection limit 
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Table A4.27: Released amounts of Th, U, La, Ce and Nd with SRW-A2 in rotated and stand-still samples 

of L-05 

SRW-A2 

L-05 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.04±0.00 0.14±0.02 0.07±0.00 0.12±0.04 0.08±0.01 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.18±0.00 0.25±0.01 0.16±0.00 0.16±0.00 0.20±0.01 

Ce 0.08±0.00 0.24±0.03 0.12±0.01 0.18±0.03 0.16±0.01 

Nd 0.08±0.01 0.14±0.00 0.09±0.00 0.10±0.01 0.12±0.01 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.07±0.00 0.11±0.01 0.08±0.00 0.08±0.00 0.07±0.00 

Ce < 0.04±0.00 0.02±0.00 0.03±0.00 0.03±0.00 

Nd 0.04±0.00 0.06±0.00 0.04±0.00 0.05±0.00 0.04±0.00 

* “<” - below the detection limit 

 

 
Table A4.28: Released amounts of Th, U, La, Ce and Nd with SRW-B1 in rotated and stand-still samples 

of L-05 

SRW-B1 

L-05 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.01±0.00 0.11±0.01 0.09±0.01 0.08±0.01 0.10±0.01 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.09±0.02 0.23±0.02 0.23±0.03 0.22±0.03 0.27±0.02 

Ce 0.05±0.01 0.26±0.01 0.21±0.00 0.26±0.04 0.29±0.02 

Nd 0.05±0.00 0.14±0.01 0.11±0.00 0.12±0.00 0.19±0.01 

Stand-still ± ± ± ± ± 

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.09±0.00 0.08±0.00 0.18±0.01 0.07±0.00 0.05±0.00 

Ce < 0.04±0.00 0.05±0.00 0.02±0.00 0.03±0.00 

Nd 0.04±0.01 0.05±0.00 0.04±0.01 0.04±0.00 0.03±0.00 

* “<” - below the detection limit 

 

 
Table A4.29: Released amounts of Th, U, La, Ce and Nd with SRW-B2 in rotated and stand-still samples 

of L-05 

SRW-B2 

L-05 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.01±0.00 0.12±0.00 0.09±0.00 0.07±0.00 0.08±0.01 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.06±0.01 0.26±0.02 0.20±0.00 0.15±0.01 0.16±0.00 

Ce 0.03±0.00 0.24±0.03 0.16±0.01 0.14±0.01 0.21±0.01 

Nd 0.03±0.00 0.14±0.01 0.12±0.00 0.08±0.01 0.09±0.00 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.04±0.01 0.04±0.00 0.03±0.00 0.03±0.00 0.02±0.00 

Ce < 0.02±0.00 0.01±0.00 < < 

Nd < 0.02±0.00 0.02±0.00 < < 

* “<” - below the detection limit 
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Table A4.30: Released amounts of Th, U, La, Ce and Nd with SRW-A1 in rotated and stand-still samples 

of L-06 

SRW-A1 

L-06 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.03±0.01 0.09±0.00 0.08±0.01 0.06±0.00 0.08±0.00 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.12±0.01 0.16±0.00 0.17±0.02 0.11±0.02 0.16±0.01 

Ce 0.08±0.01 0.17±0.01 0.14±0.02 0.15±0.03 0.18±0.01 

Nd 0.05±0.01 0.10±0.00 0.10±0.02 0.06±0.01 0.10±0.00 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.05±0.00 0.05±0.00 0.07±0.01 0.05±0.00 0.05±0.00 

Ce < 0.03±0.00 0.02±0.00 < 0.02±0.00 

Nd < 0.03±0.00 0.04±0.00 0.03±0.00 0.03±0.00 

* “<” - below the detection limit 

 

 
Table A4.31: Released amounts of Th, U, La, Ce and Nd with SRW-A2 in rotated and stand-still samples 

of L-06 

SRW-A2 

L-06 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.02±0.00 0.07±0.01 0.20±0.01 0.04±0.00 0.08±0.01 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.12±0.00 0.21±0.00 0.21±0.02 0.17±0.01 0.22±0.01 

Ce 0.08±0.00 0.16±0.01 0.17±0.02 0.12±0.00 0.19±0.02 

Nd 0.07±0.00 0.12±0.00 0.12±0.00 0.10±0.00 0.13±0.00 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.09±0.00 0.11±0.00 0.09±0.00 0.09±0.00 0.08±0.00 

Ce < 0.04±0.00 0.02±0.00 0.03±0.00 0.03±0.00 

Nd 0.05±0.02 0.06±0.00 0.05±0.00 0.05±0.00 0.05±0.00 

* “<” - below the detection limit 

 

 
Table A4.32: Released amounts of Th, U, La, Ce and Nd with SRW-B1 in rotated and stand-still samples 

of L-06 

SRW-B1 

L-06 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.02±0.00 0.08±0.02 0.09±0.00 0.10±0.03 0.09±0.00 

U 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.13±0.01 0.19±0.04 0.18±0.00 0.26±0.05 0.18±0.02 

Ce 0.07±0.01 0.17±0.00 0.17±0.00 0.38±0.03 0.18±0.01 

Nd 0.06±0.01 0.11±0.03 0.11±0.00 0.12±0.02 0.11±0.00 

Stand-still ± ± ± ± ± 

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.07±0.00 0.08±0.00 0.07±0.00 0.06±0.00 0.06±0.00 

Ce < 0.04±0.00 0.02±0.00 0.03±0.00 0.03±0.00 

Nd 0.03±0.00 0.05±0.00 0.04±0.00 0.03±0.00 0.04±0.00 

* “<” - below the detection limit 
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Table A4.33: Released amounts of Th, U, La, Ce and Nd with SRW-B2 in rotated and stand-still samples 

of L-06 

SRW-B2 

L-06 

7 days 14 days 21 days 50 days 118 days 

Rotated µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 

Th 0.02±0.00 0.18±0.02 0.05±0.00 0.03±0.00 0.06±0.00 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.09±0.00 0.32±0.08 0.11±0.01 0.08±0.02 0.11±0.00 

Ce 0.07±0.01 0.33±0.05 0.10±0.00 0.06±0.01 0.11±0.01 

Nd 0.05±0.00 0.22±0.02 0.07±0.01 0.04±0.01 0.06±0.00 

Stand-still      

Th < < < < < 

U < 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 

La 0.03±0.00 0.03±0.00 0.02±0.00 0.02±0.00 0.02±0.01 

Ce < 0.02±0.00 0.01±0.00 < < 

Nd < 0.02±0.00 0.01±0.00 < < 

* “<” - below the detection limit 

 

Appendix 4.3: Batch extractions with silica nanoparticles 
Table A4.34: Released amounts of Th, U, La, Ce and Nd per gram of soil and concentration of Si in the 

supernatant in L-05 for Si NPs batch extractions 

Si NP 

L-05 

Th U La Ce Nd Si 

µg g-1 ng g-1 µg g-1 µg g-1 µg g-1 mg L-1 

0.5 1.19±0.40 29.3±1.8 0.47±0.06 1.05±0.06 0.31±0.00 13.3±0.1 

1 2.62±0.70 66.0±2.1 1.09±0.19 2.89±1.24 0.62±0.09 82.3±0.1 

2 3.95±1.50 109±2 1.25±0.03 3.25±0.46 0.77±0.03 203±1 

4 7.50±1.02 186±3 2.35±0.12 7.29±0.53 1.41±0.21 553±1 

8 14.05±5.57 688±32 5.00±3.29 14.8±6.19 2.84±1.82 748±3 
 

Table A4.35: Released amounts of Th, U, La, Ce and Nd per gram of soil and concentration of Si in the 

supernatant in L-04 for Si NPs batch extractions 

Si NP 

L-04 

Th U La Ce Nd Si 

µg g-1 µg g-1 µg g-1 µg g-1 µg g-1 mg L-1 

0.5 0.59±0.18 0.07±0.00 0.48±0.03 1.02±0.50 0.21±0.00 39.8±0.1 

1 1.24±0.03 0.11±0.01 1.19±0.47 2.24±0.11 0.63±0.32 92.7±4.7 

2 1.20±0.43 0.15±0.01 0.91±0.62 1.70±0.63 0.48±0.40 198±4 

4 0.81±0.31 0.21±0.01 0.53±0.35 1.33±0.56 0.30±0.23 466±59 

8 2.47±2.19 0.34±0.02 0.70±0.33 4.31±4.18 0.38±0.24 1733±38 

 

Appendix 4.4: Batch extractions with humic acid 
Table 36: Released amounts of Th, U, La, Ce and Nd per gram of soil in all soil samples for humic acid 

batch extractions 

 Th U La Ce Nd 

HA1 µg g-1 ng g-1 µg g-1 µg g-1 µg g-1 

L-03 0.16±0.01 6.91±0.45 0.42±0.02 0.30±0.03 0.35±0.04 

L-04 0.18±0.02 5.16±0.13 0.29±0.02 0.26±0.03 0.29±0.03 

L-05 0.41±0.04 7.51±0.38 0.47±0.02 0.70±0.05 0.43±0.02 

L-06 0.35±0.05 6.17±0.82 0.38±0.01 0.64±0.10 0.35±0.03 

HA2      

L-03 0.12±0.00 6.02±0.45 0.41±0.04 0.23±0.02 0.34±0.02 

L-04 0.10±0.01 6.38±0.43 0.30±0.01 0.24±0.03 0.31±0.02 

L-05 0.47±0.04 7.90±0.45 0.43±0.02 0.66±0.05 0.38±0.01 

L-06 0.33±0.03 6.67±0.65 0.35±0.02 0.58±0.03 0.33±0.02 
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Appendix 4.5: Column experiments with simulated rainwater for L-05 

 

Figure A4.6: Comparison of the leached amounts of (a) Ce and (b) Nd with simulated rainwater (SRW-

A1). Corresponding pH of the elutes and respective elemental concentration ranges (highlighted in grey 

color) including averaged pH of the groundwater are also presented. CE – column elute and GW – 

Groundwater 

Figure A4.7: Comparison of the leached amounts of 

(a) Cl-, (b) NO3
-, (c) SO4

2-, (d) Br-, and (e) F- with 

simulated rain water(SRW-A1), corresponding pH 

of the elutes and respective anion concentration 

ranges and averaged pH of groundwater. CE – 

column elute and GW – Groundwater 
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Appendix 4.6: Column experiments with silica nanoparticles for L-05 

 

 

 

Appendix 4.7: Column experiments with humic acid for L-05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.9: Comparison of the leached amounts of 

La, Ce and Nd in the column injected with 100 mg 

L-1 Humic acid (HA1) 

Figure A4.8: Comparison of the leached amounts of (a) Fe and Ce and (b) Fe and Nd with simulated 

rainwater (SRW-A1) for the soil sample mixed with silica AEROSIL 200 
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Appendix 4.8: Column experiments with simulated rainwater for L-04 

 

Figure A4.11: Comparison of the leached amounts of 

(a) Cl-, (b) NO3
-, and (c) SO4

2- with simulated 

rainwater (SRW-A1), corresponding pH of the elutes 

and respective anion concentration ranges and 

averaged pH of groundwater. CE – column elute and 

GW – Groundwater 

Figure A4.10: The leached amounts of (a) U, (b) La, (c) Ce, and (d) Nd with simulated rainwater using 

two different flowrates (violet dots always represent the 0.5 mL min-1 and the rest represent the 0.05 mL 

min-1 flowrate. R-Repeated column using fresh sample, in comparison to GW-groundwater level of each 

element 
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Figure A4.12: Comparison of the released amounts of U (a,b), La (c,d), Ce (e,f) and Nd (g,h) in filtered 

(0.2 µm pore size) and unfiltered samples with an expanded scales for the filtered samples (b,d,f,h) from 

the column L-04 infiltrated with SRW-A1 
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Appendix 4.9: Tube injection of silica suspension and use of NaCl as infiltration 

leachant for L-04 

Figure A4.13: Comparison of the released amounts of (a) Fe (b) Al, (c) Si, and (d) Na in filtered (0.2 µm 

pore size) and unfiltered samples of the leachate from the column L-04 infiltrated with SRW-A1 (black 

dots represent unfiltered and red dots represent filtered values)  

Figure A4.14: Comparison of the leached amounts 

of Si with the simulated rain water(SRW-A1) only 

with the soil sample (light blue points) and with the 

soil sample injected with Si NP suspension and 

infiltrated with 1 mM NaCl (blue points) 
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Figure A4.15: Comparison of the leached amounts of (a) Si and Fe while arrows showing the places 

where the column stops and the period while the red circles represent the points where injected Si 

suspension should come out, (b) Si and Th, (c) Si and U, (d) Fe and La (e) Fe and Ce, (f) Fe and Nd with 

injected with silica AEROSIL 200 and infiltrated with 1 mM NaCl for the soil sample L-04 
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Appendix 4.10: Tube injection of HA with NaCl solution for L-04 

 

 

 

 

 

 

 

 

Figure A4.16: Comparison of the leached amounts of NPOC with (a) Th, (b) U, (c) La, (d) Ce, (e) Nd 

and (f) only leached with simulated rainwater (SRW-A1) and injected with 100 mg L-1 Humic acid 

(HA1). The red circle in (c) is the point where the injected humics should come out. TQ-analyzed only 

Th, U and La and SQ-analyzed all elements including major elements 
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Appendix 4.11: NPOC and anions measurements in batch experiment with SRW-A1 

Table A4.37: Released amounts of Th, U, La, NPOC and anions with SRW batch experiment (Solid-to 

liquid ratio is 0.05 g mL-1) after rotation for 7 days 

Sample Elemental concentration (ng g-1) NPOC 

(mg L-1) 

Anion concentrations (mg L-1) 

 Th U La  Cl- NO3
- SO4

2- 

L-05  15.6±0.5 1.6±0.1 45.3±0.4 2.69±0.05 4.5±0.4 2.0±0.0 1.3±0.0 

L-04  6.4±0.9 4.6±0.1 79.3±0.4 2.66±0.02 3.8±0.3 0.6±0.0 0.2±0.0 

 

Appendix 4.12: pH dependent extractions 

 

 

Appendix 4.14: Column experiment run with an empty column 

The ICP-OES data of Si from the empty column gave an average value of 0.033 ± 0.006 

mg L-1 and ICP-MS data were below the detection limit of Si. 

 

Figure A4.17: Comparison of the released amounts of (a) Th, (b) U, (c) La, (d) Ce, (e) Nd, (f) Fe, and 

(g) Al with the final pH after rotating at different time periods 
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