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SUMMARY

The advent of many core architectures has coincided with the energy and power

limited design of modern processors. Projections for main memory clearly show

widening of the processor-memory gap. Cache capacity increased to help reduce

this gap will lead to increased energy and area usage and due to small growth in

die size, impede performance scaling that has accompanied Moore’s Law to date.

Among the dominant sources of energy consumption is the on-chip memory hierar-

chy, specifically the L2 cache and the Last Level Cache (LLC). This work explores

the use of a novel non-volatile memory technology - “Spin Torque Transfer RAM

(STT RAM)” for the design of the L2/LLC caches. While STTRAM is a promising

memory technology, it has some limitations, particularly in terms of write energy and

write latencies. The main objectives of this thesis is to use a novel cell design for a

non-volatile 1T1MTJ cell and demonstrate its use at the L2 and LLC cache levels

with architectural optimizations to maximize energy reduction. The proposed cache

hierarchy dissipates significantly lesser energy (both leakage and dynamic) and uses

less area in comparison to a conventional SRAM based cache designs.

ix



CHAPTER I

INTRODUCTION

1.1 Introduction

The projected energy growth of multicore processors if left unimpeded will stall the

performance scaling that has accompanied Moores Law to date. Among the dom-

inant sources of energy consumption is the on-chip memory hierarchy, specifically

the L2 cache and the Last Level Cache (LLC). This work explores the use of a new

emerging non-volatile memory technology as a replacement for SRAM based L2 and

LLC caches - Spin Torque Transfer(STT) RAM. Several recent publications [13], [12]

have explored the use of STTRAM as a technology replacement for SRAM. This

work illustrates the limitations of using STTRAM as a simple drop-in replacement

for SRAM caches and develops and demonstates a circuit and microarchitecture co-

design approach for an effective STTRAM cache hierarchy. Consequently and unlike
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Figure 1: Impact of STTRAM caches on dynamic energy and execution time.

1



previous efforts, for a nonvolatile 1T1MTJ cell the latency and energy of a read op-

eration is comparable to its SRAM equivalent while cell write energies and latencies

remain only 2x higher - significantly better than previous approaches. The increase

in dynamic energy and program execution times due to store operations is further

mitigated by novel microarchitecture optimizations. The results can be summarized

in Figure 1 which shows the average latency and dynamic energy consumed by appli-

cations when run on different system configurations. We see that drop-in replacement

of an STTRAM of equivalent size produces increases in dynamic energy and latency

due to the store operations while our microarchitecture optimizations tailored to

STTRAM recovers most of the increase over SRAM maximizing the leakage energy

gains. Constant area replacement produces significant gains due to lower miss rates

but retains some increases in energy due to the increased energy of store operations

although mitigated by the proposed optimizations. The remainder of this chapter

discusses the motivation for STTRAM based caches.

1.2 The Memory Wall: Need for non-volatile memory

The memory hierarchy, an important component of computing platforms, has in the

past been composed of SRAM based caches and DRAM for main memory. The hier-

archy has proved a reliable cost effective solution for bridging the processor memory

gap. With the onset of many-core architectures, the memory hierarchy has a re-

newed focus on pushing back the effects of the “the memory wall” a real barrier to

the continued performance gains of computing platforms. This focus is driving new

cache architectures that are both performance and energy effective. In the recent past

DRAM scaling is becoming a serious bottleneck and various novel NVM technologies

are being evaluated as suitable candidates for various levels of the memory hierarchy.

The processor-memory gap is primarily a result of the continued improvement in

processor cycle speeds occurring at a much faster rate than DRAM access latency.
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In [12] Wulf et.al. show how further increases in processor speeds will have little to

no performance gains as memory access time becomes the primary bottleneck. The

multilevel memory hierarchy is a direct outcome of minimizing the need to access main

memory along the common execution path. While large caches with high hit ratios

certainly minimizes the need to access memory, they are both power and area hungry.

In modern many-core architectures the increased memory bandwidth demand forces

much larger caches to be realized and this can lead to reduced performance under

fixed area constraints.Performance scaling is now achieved via core scaling rather

than frequency scaling. For a fixed die area, the goal is to maximize the number of

cores which competes for die area with the cache hierarchy. Increasing the number

of cores and reducing the aggregate cache size increases main memory demand and

reduces performance. Further, larger caches are power inefficient primarily to the

lower utilizations and growth in leakage power. The use of more efficient( in terms of

area/bit) memory technologies and non-volatile properties promises to alleviate some

of these issues and thereby improve core scaling.

In this thesis STTRAM, a new emerging NVM - Spin Torque Transfer(STT) RAM,

is evaluated as a replacement for SRAM based L2 and LLC caches. In particular, the

focus is on the interelationships and co-design of the circuit and microarchitecture to

reap significant gains in energy efficiency.

1.3 Spin Torque Transfer(STT) RAM

This section provides a brief overview of STT RAM technology and the design of a

STT RAM cell targeted for L2 caches and the LLC.

The structure of a STTRAM cell consists of a magnetic tunnelling junction (MTJ)

connected in series with a transistor as shown in Figure 2 [9]. This cell is connected

between the bit lines and the source lines whereas the word line is responsible for

switching of the transistor. The MTJ consists of two ferromagnetic layers separated
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Figure 2: a) A Single STTRAM Cell b) STTRAM Cell Read Operation c) STTRAM
Cell Write Operation

by a dielectric layer referred to as the spacer (usually MgO) The magnetization of one

ferromagnetic layer is fixed. The magnetization of the other layer can be controlled

by the injection of spin polarized electrons. Switching occurs if current greater than

the critical value flows through the structure in the proper direction. The MTJ offers

different resistances in the two modes of magnetization (parallel and antiparallel).

For storage options parallel is taken to correspond to ’0’ and antiparallel corresponds

to ’1’. The resistance of the MTJ in the antiparallel state is higher than that in the

parallel state. The difference between the resistances in parallel and antiparallel states

with respect to resistance of the antiparallel state is called the Tunneling Magneto-

Resistance (TMR). During read operations the bitline is pre-charged with a small

voltage (Vread) and current flows in the direction of bitline (BL) to source line (SL).

If the cell stores logic ’1’ (i.e. antiparallel state), the MTJ resistance is higher and

hence, the read current is lower. On the other hand, if the cell stores ’0’ (i.e. parallel

state) MTJ resistance is lower and hence the read current is higher. A high TMR

indicates a larger difference between resistances in the parallel and antiparallel modes.

The switching current required to change state is higher than the read current. In

fact, it has been shown in [1], that the required MTJ switching current is a strong

function of the write time; a smaller write time requires a higher MTJ switching
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current (and therefore higher write energy). Hence, given a write time target, based

on [1], one can decide the required MTJ switching current.

This operation of non-volatile STTRAM shows a critical difference between de-

sign targets for SRAM and STTRAM. The cell access timing in SRAM is primarily

determined by the read delay (the time required to discharge the bitlines must be

performed within a given clock cycle). This makes a write operation a non timing-

critical cell access operation. However, for STTRAM the write operation takes much

longer. Therefore, the STTRAM cells need to be designed to ensure a target write

time and read time become non timing-critical cell access operations. The critical

consideration for reading in STTRAM is the read margin. If the cell read current

increases beyond the MTJ switching current, read disturb (flipping of the cell content

while reading) failures can occur [5]. Hence, to reduce read disturb failures, the cell

read current needs to be sufficiently smaller than the switching current, which in turn

must be selected to provide sufficiently fast write times but with increased energy.

1.3.1 Technology Issues

The preceding is a conservative design in the following sense. First, the STTRAM

can actually perform the read much faster than the SRAM because the lower cell area

for STTRAM implies a much lower(than we have used) bitline/wordline capacitance

for same sub-array size. Second, the switching current scaling method overestimates

the switching current for an MTJ at 45nm node. This will directly reduce the write

energy dissipation in the cell. Moreover, it will also reduce the required transistor

size to support the switching current which will further lead to lower bitline/wordline

parasitics and hence faster read operation, lower switching energy, and lower leakage

energy for unselected cells in a selected column. Consequently, the results should be

viewed as a conservative estimate as to the energy gains.

STTRAM is a back-end memory techology where the memory device is fabricated
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in the Back-End-Of-Line and within the Inter-Layer-Dielectrics (i.e. in between metal

layers). Hence, it does not require any change in the silicon bulk process. The memory

is compatible with regular bulk silicon or SOI process and can use the existing silicon

wafer. Further, MTJ can be fabricated in between low metal layers and hence, does

not necessarily increase the requirement of metal resources in the memory. This also

makes STTRAM compatible with the SRAM process. Consequently hybrid designs

are possible. For example, fabrication of SRAM based tag is highly possible for an

STTRAM array as all transistors can be fabricated on the same bulk silicon and

the number of metal layers used in the entire array (STTRAM + SRAM Tag) is

comparable to fully SRAM based array.

This thesis makes the following contributions

• Advocacy and creation of a microarchitecture-circuit co-design approach for a

STTRAM based cache.

• Energy and performance models for STTRAM based caches on an optimized

1T1MTJ cell

• Microarchitecture optiizations are proposed for addressing the energy and la-

tency properties of store operations of STTRAM caches — i) write biasing and

ii) write cache.

• An exploration of the latency and energy behavior of STTRAM caches for

various benchmarks using optimizaed cache cell designs. The optimizations

reduce dynamic energy consumption in the STTRAM by an average of 8%

ranging from 2% to 33%.
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CHAPTER II

STTRAM BASED CACHE DESIGN

There has been several recent publications [13], [12] that explore the use of STTRAM

as a technology replacement for SRAM. While this work also proposes an STTRAM

cache, the specific array design is based on a circuit and architecture co-design ap-

proach that utilizes an optimized cell design that has improved access latencies and

energy properties [8]. This chapter describes the circuit and micro-architecture co-

design approach for the proposed STTRAM cache array design.

Figure 3: Methodology Flow-graph

Figure 3 describes the co-design approach adopted for the proposed optimizations.

For a set of benchmarks, the performance at different cell access latencies was evalu-

ated and compared to that of SRAM. For an STTRAM cell, write access speeds close

to SRAM can be achieved, however this would require very high write currents. For a

set of benchmarks the STTRAM cell access time was varied and the performance and

energy per access tuned to match an equivalent SRAM cache. One of the important
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Table 1: Summary of Energy Values for SRAM and STTRAM Cells
Cache Memory Wordline Read Write Leakage

Technology Energy (pJ) Energy/Cell (pJ) Energy/Cell (pJ) Energy/Cell (pJ)
L2 (64x128) SRAM 69.68 6.032 16.955 6.635 x 10−3
L2 (64x128) STTRAM 20 1.25 26.88 0

LLC (128x128) SRAM 69.68 6.225 44.225 6.635 x 10−3
LLC (128x128) STTRAM 20 2.45 26.88 0

factors for cell design is the ratio of read-write energy and the percentage of reads

and writes in the application memory stream. This makes the optimal cell design

dependent on application specific parameters such as the number of store operations.

2.1 STTRAM Cache Cell Design

The STTRAM cell design from [8] is discussed in this section. An SRAM cell at 45nm

is first designed to achieve a read access time (considering wordline driver delay and

bitline discharge delay) to be less than 250ps for a 64× 128 or 128× 128 sub-array to

be used for the L2 and LLC respectively (described in Section 3.1. A target system

frequency of 2Ghz is used and hence a single clock of 500ps is used. The total cell

access time is divided between row-decoder delay and the sense-amplifier delay. We

have ensured the cell timing is met even under worst-case 3σVt variations. The SRAM

cell is designed first to meet the target delay for the 64 × 128 sub-array. The bitline

and wordline capacitances are estimated based on the cell area of 80F 2 (where F is

the feature size) and the wide cell layout (the cell width along the wordline direction

is two times the cell height along the bitline direction) with 2 : 1 aspect ratio and

0.2fF/mm metal capacitance. The designed cell is used in the sub-array to estimate

the read, write, and leakage energy as shown in Table 1.

The STTRAM cell is designed to ensure a target write time of 5ns based on

acceptable current capacity and to stay within 10X of the SRAM read time. At

the 180nm node this required 450µA or a current density of 2.6 × 106A/cm2. We

considered the 2X area scaling model per generation for MTJ device and assumed

constant current density. Our results were a close match with properties of fabricated
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Table 2: Read/Write Energies for Single Line to SRAM and STTRAM caches
Cache SRAM(pJ) STTRAM(pJ)

Read Write Read Write
DL2 12.38 128.17 124.06 261.78
LLC 283.7 284.76 282.26 549.06

Table 3: Access Latency in Clock Cycles for the SRAM and STTRAM caches
Cache SRAM cycles STTRAM cycles

Read Write Read Write
DL2 4 4 4 13
LLC 7 7 7 26

MTJ devices at 65nm [4]. Based on this assumption, we predict 75µA of required

switching current for 45nm MTJ device at 5ns switching time. Considering a 7%

write margin (from switching current), we have selected a write current of 80µA.

Unlike previously published work for STTRAM caches, our design produces much

lower energy for STTRAM read operations and a read latency that is equivalent to

SRAM sub-array designs. Further, the proposed design balances the write energy

and latency at approximately the knee of the energy-latency curve for STTRAM as

reported in [1]. Given the cell design the per access energy/latency for a SRAM and

STTRAM cache-line of varying sizes can be calculated.

2.2 L2 and LLC Caches

Figure 4: Cache Array structure
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For the L2/LLC our design uses a 64/128×128 cell array building block intercon-

nected to form a 1MB/4MB cache. The access energy includes the wiring to/from

the banks and the energy of the peripheral components ( pre-decoder, H-tree intercon-

necting the banks etc. as shown in figure 4). Cacti [5] was used to compute the energy

of the peripheral components and the corresponding SRAM cache. The latency for

a cache access is also computed similarly. The L2 and LLC cache design assumes

the tags are realized using SRAM and the data array realized using STTRAM cell

design.
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CHAPTER III

ARCHITECTURAL OPTIMIZATIONS FOR IMPROVED

CACHE ENERGY CONSUMPTION

This chapter presents an evaluation of the total cache energy consumption from a

direct replacement of the SRAM caches and proposes a set of architectural optimiza-

tions that further improve the effective cache energy performance. The following is

a description of the system evaluated and the effective improvement from a direct

replacement of STTRAM based caches.

3.1 System Model

Figure 5: Baseline Cache Hierarchy

The system model comprises a processor configuration which represents a out-of-

order (OOO) core. The cache configuration is described in Table 4, with the simplified

model shown in figure 5. The OOO processor model has four cores each with separate

data and instruction DL1 caches and a private L2. The cores share a last level cache
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Table 4: Cache Configuration
Data DL1 Cache(256Kb) 64/32 sets, 4/8 way
L2 Cache (1MB) 512 sets, 8 way
Last Level Cache (LLC) (4MB) 4096 sets, 16 way
64 byte cache lines for all the caches

(LLC). Store requests to the cache follow a write allocate with write-back cache policy.

Due to limitations in the simulation environment no multi-threaded benchmarks were

evaluated.

Figure 6: Comparison of Leakage Energy Profiles for SRAM and STTRAM Designs

By simply replacing the SRAM L2 and LLC with STTRAM designs based on the

cell design from Chapter 2 the savings in leakage energy are, as expected substantial

and shown in Figure 6. On average, there is a savings of 90% in leakage energy across

the applications evaluated. A very different picture emerges for dynamic energy

behavior as illustrated in figure 7. Dynamic energies increase on an average by 60%

for memory intensive benchmarks and 30% for compute intensive benchmarks.

3.2 Architectural Optimizations

As a result of the preceding analysis the architectural run-time optimization goal is

focused on reducing the total dynamic energy spent in the cache due to the increase

in energy consumption of write operations (stores in the memory reference stream).
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Figure 7: Comparison of Dynamic Energy Profiles for SRAM and STTRAM Designs

Among the various type of cache accesses only certain types of accesses contribute to

the increase in dynamic energy. For example, a L1 cache access may be a load/store

hit to the L1, a load/store miss for which there was a lookup in the L1, or a L1

eviction of a dirty line (L1 write back). Only the last one is a write to the L2. The

other source of writes to the L2 is the load/store miss allocation for a line, which

is critical both from an energy and latency viewpoint. Run-time microarchitecture

optimizations to address these issues are described next.

3.2.1 Analysis of store behavior

The architectural optimizations are focused on reductions of the store operations to

the STTRAM caches. We first analyze the behavior of store operations to the L2 and

develop a characterization to drive subsequent optimizations.

Consider the memory access stream for store operations to the L2 cache. Fig-

ure 8(a) illustrates a 3-D histogram of the inter-reference time (IRT) of the store

operations to the L2, for a compute intensive benchmark - SPEC06.h264 with the

standard least recently used replacement policy applied to the L1 cache. The two

major sources of stores to the L2 are write-backs from the DL1 and L2 misses which

13



Figure 8: Cache access pattern for store operations (a)LRU (b)Write Biasing

fetch a line from the lower level. The key idea is to increase the residency of lines that

are dirty in the cache, so that successive store operations can be coalesced - they hit

in the cache and avoid a cycle of eviction and read back on a future miss to the same

line. The benchmark programs were analyzed to understand the store-to-store inter-

reference time to the same address and the number of intervening store operations to

unique addresses. These two measures were then used to drive the development of the

tunable cache replacement algorithms to retain dirty lines just long enough to maxi-

mize coalescing thereby minimizing STTRAM store energy. Importantly, to facilitate

formulation of the optimizations of store behavior, we introduce a finer classification

of store operations.

• Stores to dirty lines referred to as store-to-store or s2s.

• Stores to clean lines referred to as store-to-load or s2l.

• Load from a dirty line referred to as load-to-store or l2s.

The importance of the classification stems from their use in exploiting the preceding

behaviors in reducing store operations to the L2 and LLC. Finally, if a store is the

14



last reference before a line becomes dead (never referenced again before eviction), we

will refer to that store as a dead store. Otherwise the store is live. We now propose

two optimizations for minimizing store operations to the L2 and LLC.

3.2.2 Write Biasing
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Figure 9: Write Biasing Cache Line Replacement Algorithm

We propose a novel line replacement algorithm for L1/L2 sets that biases replace-

ment in favor of dirty lines to increase the residency of dirty lines even at the expense

of increasing read misses to the next level (since store operations are 2X more energy

expensive than read operations). In conventional Least Recently Used(LRU) replace-

ment policy, the most recently referenced line on a hit or a miss is placed at the top

of the reference stack (TOS). We proposed new differential promotion and insertion

policies that operate differently for loads and stores. The combination of these new

insertion/promotion policies is referred to as write biasing. We define a parameter

K which is the distance from the top of the LRU stack at which a line is inserted

or promoted to. The following implementation is referred to as Write biasing-base

(WB-base).

• Insertion policy: Target lines of all load misses are inserted at distance K from
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the TOS. Target lines of all store misses are inserted at TOS.

• Promotion policy: On a hit, target lines of stores are promoted to the TOS.

Target lines of loads are promoted to a distance K from TOS.

• Eviction policy: The line at the bottom of the stack is evicted.

WB-base has two major drawbacks. First, the combination of insertion and promotion

policies leads to increased miss rates for loads. If there is no dirty line in a set, all

entries from TOS to position K will be vacant because clean lines cannot be promoted

past the position K. Thus we suggest a modification to the insertion and promotion

policies for loads.

• Insertion policy for Loads: Target lines of loads are inserted at position K if all

stack positions higher than K are dirty. Otherwise it is inserted at TOS similar

to LRU.

• Promotion policy for Loads: Target lines of loads are promoted to position K

if all stack positions higher than K are dirty. Otherwise it is promoted to TOS

similar to LRU.

Second, one-time store operations (dead stores) can cause dirty lines to occupy

stack positions higher than K for very long periods unless replaced by another store

operation. This artificially inflates the load miss rate, which increases energy due

to higher load miss allocation. Thus we suggest a modification to the insertion and

promotion policy of stores that helps act as a dead store filter.

• Insertion policy for Stores: Target lines of stores are always inserted at position

K similar to loads.

• Promotion policy for Stores: Target lines of store hits to dirty lines are promoted

to TOS. Store hits to clean lines are promoted to position K.

16



Figure 9 shows an example of the steps in write biasing with all the policy mod-

ifications suggested. We utilize write biasing in the L1 and L2. The use in L1 is

particularly effective as avoiding a single store due to eviction from L1 to the L2

saves 261pJ (write energy per access to L2). We should point out that write biasing

itself is not well suited for SRAM caches where there is no disparity in the read and

write energies and therefore nothing to be gained by simply inflating the read miss

rate. It can be seen from figure 8(b) how the peaks in the memory access stream is

reduced due to write-biasing.

3.2.3 Write Cache

LIVE STORE POTENTIALLY DEAD STORE

HIGHEST 
PRIORITY

EVICT FROM 
LOWEST 
PRIORITY 

INSERT POSITION 'K'

LIVE STORES

TIME TO BECOME 
   A LIVE STORE

PROMOTION

Figure 10: Write Cache Replacement Policy

Several benchmarks exhibited higher store inter-reference times. To further extend

the ability to coalesce stores across these situations we propose a second optimization

- the addition of a small write cache between the L1 and L2. The write cache (WC)

is a fully associative 32/64 way cache that contains only dirty lines evicted from the

L1; whose contents are mutually exclusive with the L2; and is accessed in parallel

with the L2 with a hit in one inhibiting access from the other (we do account for the

energy of parallel look-ups). On a store, if a line is present in L2 it is transferred to

the WC. Lines evicted from the WC are sent to the L2 and inserted as dirty lines.

The WC and the L2 share the MSHR and thus it allows us to allocate store misses

exclusively in the WC whereas load misses are allocated in the L2. The insertion and

eviction policy for the WC is as described in Figure 10. We insert at a fixed position
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K from TOS in the replacement stack of the 32-way cache. On a conflict we evict the

line lowest in the stack. When a store hits in the WC (live store), it is promoted to

the top of the replacement stack. Load hits do not change priority order. The value

of K is a tradeoff between the number of live stores we want to place in the WC, to

the amount of time we want to give to a dirty line to get a store hit(recognize it as a

live store) before it is eventually evicted from the bottom of the stack assuming its a

dead store.
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CHAPTER IV

PERFORMANCE EVALUATION

All experiments report the energy spent in the L2 and the LLC to execute 250 million

instructions. The following evaluation and analysis is structured around understand-

ing two phenomena - write biasing policies in the L1 and L2 data cache, and the

behavior of the WC. In particular the interactions between these two optimizations

produces subtle migration patterns of lines in response to which we further refine our

optimizations as described. Whenever a store from the L1 hits in the L2, the line

is migrated to the WC causing high traffic in the WC. Thus we need to refine the

migration pattern. Write biasing in the L2 promotes live stores higher in the stack,

thus filtering out dead stores. Thus we modify the policy to migrate a line to the WC

(from the L2) only if it is in the Most Recently Used (MRU) position in the L2. We

call this Selective Write Cache Migration (SWCM). We assume SWCM in all results

presented. Write biasing in the L1 determines the number of stores placed in the

L1 and the duration. This in turn determines the traffic going into the WC. High

store miss rate in L2 leads to very high traffic in the WC because all store misses are

allocated in the WC.

Figure 11: Impact of Write Biasing on Read/ Write Energy of DL2

Figure 11 shows the results of write biasing in L1 with K=1 (without the WC
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optimization). As can be seen, write biasing tends to increase L1 miss rate and

hence increases the read energy of the L2. However the 2X factor of write energy and

reduction in store operations helps offset most of this energy increase. This behaviour

can be seen in benchmarks such as sjeng and gcc. Benchmarks like h264 have a high

store miss rate. Thus keeping stores in L1 helps the overall miss rate, consequently

decreasing both the L2 read and write energies.

Figure 12 shows the simulation results for the best performing configurations

of write biasing in L1 and L2 with the WC. The results assume the given policy

nomenclature - K value in L1 : K value in L2 : K value in WC. eg. k1 k2 k16

implies K=1 in L1, K=2 in L2 and K=16 in WC. The results reflect the exploration

of the degree of biasing represented by the selection of the value of K at each level.

The WC employs an insertion policy parameterized by K - the insertion point in the

LRU stack. Considering a 32-way WC, we analyzed values of K from 12 to 24 and

determined that the value of K = 16 was the most effective. Increasing the size of

the WC beyond 32 entries provided little additional benefit. Figure 12 also shows

how each of the optimizations compare to a base configuration of SRAM caches.

All the policies described are simple local decisions that have minimal hardware

overhead. We use write biasing in upto 16 way caches. In general a K value of 2

performs well. Thus additional hardware cost involves a K-input AND operation per

set for performing the logical AND of the dirty bits of the K ways in the set (512

2-input AND gates in our example). We now try to present some insights into these

policies.

4.0.4 Benchmark Analysis

The most effective configuration for a majority of the benchmarks is k1 k2 k16. Some

benchmarks do well under k2 k4 k16 because these exhibit high store miss rates.

Thus higher value of K increases residency of dirty lines, thus improving the store
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Figure 12: Energy reduction with Write cache and Write biasing.

miss rate and reducing traffic to the WC. Memory intensive benchmarks like omnetpp

and mcf do not have high store miss rates, but still have very high traffic to the WC.

Thus lru lru lru does not do well in such applications. This is where Selective Write

Cache Migration is effective in filtering dead stores. Benchmarks with good temporal

locality of stores such as h264 show dynamic energy reduction as much as 60% due

to high store coalescing. The same phenomenon is graphically visible in Figure 8.

At one extreme libquantum recorded only 12 store hits in the write cache indi-

cating large store inter-reference time. Due to the selective write cache migration

in the L2 line migration to the write cache is avoided. It should be noted though

that we still record energy savings of under 2% in libquantum due to the fact that

many stores that would have ordinarily been evicted from the L2 into the LLC(due

to the large working set size of benchmark [2]), are now kept in the L2 due to write

biasing. Saving a write into the LLC STTRAM which is very expensive in energy

and latency.The other end of the spectrum we have applications like spec00.art which

are memory intensive but have small inter-reference times between stores.

4.0.5 Interaction of Write biasing and Write cache

All the policies described are simple local decisions that have minimal hardware over-

head. We use write biasing in upto 16 way caches. In general a K value of 2 performs

well. Thus additional hardware cost involves a K-input AND operation per set for

performing the logical AND of the dirty bits of the K ways in the set (512 2-input
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AND gates in our example). We now try to present some insights into these policies.

The replacement policies for the three caches - L1,L2 and WC interact with each

other in the following way.

• Write biasing in L1: Moderate intensity of write biasing in the L1 cache is

effective in decreasing WC traffic. It potentially increases the store residency in

the WC, thus increasing chances of coalescing stores that have relatively larger

inter-reference times.

• Write biasing in L2: Helps as a dead store filter. By migrating live stores

to higher positions in the replacement stack, it allows the implementation of

SWCM. Thus one time stores get filtered, giving opportunity for live stores to

occupy the WC for a longer time.

• Latency impact of Write biasing: Our optimizations have negligible impact on

performance as demonstrated in Figure 1. Even though we increase the misses,

we recover some of the performance loss because we reduce high latency stores.
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CHAPTER V

RELATED WORK

The most relevant work is a sequence of papers by Wu et.al. [11, 10] that explores a

philosophy of partitioned caches - fast SRAM partitions coupled with slow STTRAM

partitions. While we do not address the packaging impact as they do, in that our

approach is fundamentally different in its design approach in that we start with the

circuit design of STTRAM cells guided by cache access requirements to push cell de-

sign towards a specific target. Consequently, the physical properties of our STTRAM

design is very different from that assumed in those studies. Notably our designs have

read latency and read energy in comparison to SRAM. Moreover, our write latency

and write energies are also significantly better than the values assumed in those stud-

ies. This substantive narrowing of disparity between SRAM and STTRAM properties

by our work is a major contribution and leads to changes in the tradeoffs that will

admit different architectural solutions. More recently Zhou et.al [6] proposed a novel

circuit optimization that terminated write operations to an STTRAM array if the

contents matched the write value thereby saving the substantive write energy. This

technique complements our proposal by relying on value locality. Finally, there has

been a burgeoning of efforts in the study of phase change memory (PCRAM) [7, 3].

These studies have largely focused in the use of PCRAM as a potential DRAM re-

placement in main memory systems rather than caches.
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CHAPTER VI

CONCLUDING REMARKS

This work explores optimizations for energy efficient STTRAM L2 and LLC caches

beginning with a clock-rate driven cell design and supported by two microarchitectural

optimizations to recover most of the dynamic energy increase due STTRAM write

operations thereby maximizing leakage enery gains of the technology. The design

approach can be used to to tailor cache designs for specific datapath environments

and their workload characteristics. Furture work will focus on furthering the energy

gains via adaptive write biasing schemes to match workload variations.

Some key insights from this work are as follows:

• Relationship of L1, L2, and Write cache management policies pivotal for energy

reduction.

• Proper tuning of replacement policies to reduce high energy high latency stores

• Policy decisions made to reduce system energy of large structures. Example:

DL2 Write biasing for LLC energy reduction, Write cache and DL1 biasing for

DL2 Energy Reduction

• Latency reduction equally important

• All management policies are local decisions and hence do not access any pre-

dictors or state information like counters that may be energy inefficient
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