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« Quel prix, dit encore Pierre Termier, peut se comparer à la joie de la découverte, et 

quelle récompense ne paraît misérable à coté de celle que la vérité elle-même décerne au 

chercheur qui l’a dévoilée ». Lorsqu’une parcelle de cette vérité est cachée dans le calice fermé 

d’une gentiane ou d’un céraiste des glaciers, n’est-elle pas plus attirante encore ? Et ainsi les 

plantes de Alpes remplissent doublement leur mission, qui est de nous élever au-dessus de 

nous-mêmes, vers les sommets : ceux que foulent nos pieds et ceux de la réflexion et de la 

recherche. 

 
Favarger CL et Robert PA, Paris 1956 : Flore et végétation des alpes (Tome I) 

  Page 12 de l’édition 1995 « Delachaux et Niestlé » 
 
 
 

 

 

 

 

 

 

 

 

 

 

 



 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5

Avant-propos 
 

 

 

 

 Ce manuscrit déposé à l’école doctorale Chimie et Science du vivant de l’Université 
de Grenoble (Université Joseph Fourier) a été rédigé sous la forme d’une thèse sur articles. Il 
contient une introduction en français suivi de six articles répartis dans deux chapitres. Une 
synthèse de l’ensemble des travaux réalisés est proposée dans la dernière partie du manuscrit. 
Les différentes techniques appliquées au cours de ces trois années de travail ne sont décrites 
que dans les articles par souci de clarté et de concision. Deux des articles ont été acceptés et 
publiés dans des revues internationales, un est en cours de révision et trois autres sont encore 
en préparation.  
  
 Mon allocation de recherche a été financée par le ministère de la recherche et de 
l’éducation pour une période de trois ans. L’encadrement scientifique et le support logistique 
ont été assurés par le Laboratoire d’Ecologie Alpine (UMR CNRS-UJF 5553), la Station 
Alpine Joseph Fourier (UMS 2925 CNRS-UJF), l’Université de Barcelone (S. Noguès), le 
Laboratoire Ecologie, Systématique et évolution de l’Université Paris XI (UMR 8079) et le 
projet MICROALP (ANR 2006-2009) porté par R. Geremia. Ce travail a été réalisé en grande 
partie au Laboratoire d’Ecologie Alpine de l’Université de Grenoble et à la Station Alpine 
Joseph Fourier, station d’altitude située au col du Lautaret dans les Hautes-Alpes (05). 
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Liste des abréviations 
 

Abbreviation Description Unité 

Anet Net photosynthetic fixation rate Various unit 

AG Alopecurus gerardi  
ANPP Aboveground Net Primary Production g m-2 d-1 
BNPP Belowground Net Primary Production g m-2 d-1 

C Carbon - 
CF Carex foetida - 

CFP Community Functional Parameter - 
CWM Community Weigthed Mean - 

δ Isotopic signature  - 
DO Dryas octopetala  

ENSO El Niño Southern Oscillation - 

γ13C / γ15Ν  Labelling-derived 13C or 15N content µg13C/15N g-1 DW 
γ13CR Labelling-derived 13C or 15N content in CO2 respired µg13C g-1 h-1 

γ13CM / γ15ΝM Labelling-derived 13C or 15N mass  µg or mg13C/15N 
GPP Gross Primary Production g m-2 d-1 

k Decay constant yr-1 
KM Kobresia myosuroides - 
LAI Leaf Area Index m2 m-2 

LDMC Lead Dry Matter Content % 
LNC Leaf Nitrogen Content % 

N Nitrogen - 
NAO North Atlantic Oscillation - 
NBP Net Biome Production g m-2 d-1 
NEP Net Ecosystem Production g m-2 d-1 
NPP Net Primary Production g m-2 d-1 
OM Organic Matter - 

p Proportion of new carbon inherited from 13C labelling in 
CO2 respired 

% 

PA Poa alpina  
Q10 Factor by which respiration rate increases in response to 

a 10°C increase   
- 

R ou ER Darkness respiration Various unit 
R:S  Root :Shoot ratio - 

RNC Root Nitrogen Content % 
RTD Root Tissue Density g cm-3 
SH Salix herbacea  
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sANPP Specific Aboveground Net Primary Production g g-1 d-1 
SLA Specific Leaf Area cm2 g-1 
SOM Soil Organic Matter % 
SRL Specific Root Length m g-1 

Nota : Les abréviations utilisées dans l’article 1A ne sont pas intégrées dans ce tableau.  
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Introduction 
A. Contexte et problématique de l’étude   

Au sein des écosystèmes froids, la sévérité du climat limite la dégradation de la matière 

organique entraînant l’accumulation dans le compartiment souterrain de quantités 

considérables de carbone (Post et al. 1982, Boskheim et al. 1999, Körner 1999). En dépit 

d’une faible densité de population dans ces régions froides (montagnes, régions arctiques), la 

menace d’un réchauffement climatique a récemment suscité un regain d’intérêt pour ces 

systèmes. En effet, l’augmentation de la température, en activant les processus de dégradation 

de la matière organique, conduit actuellement à la libération de ce carbone dans l’atmosphère 

sous forme de dioxyde de carbone et ce gaz à effet de serre pourrait fortement accentuer le 

réchauffement climatique (Oechel et al. 1993). Face à ce constat, les scientifiques tentent 

depuis une dizaine d’année de préciser les conséquences de cette boucle de rétroaction 

positive sur la dynamique globale du climat. Différents types de modèle, tels que les modèles 

de circulation générale ou les modèles atmosphériques inverses ont été appliqués dans ce but, 

mais les prédictions demeurent largement incertaines (IPCC 2007). En effet, l’enneigement, la 

présence du permafrost dans les systèmes arctiques (sol gelé en permanence) et la 

méconnaissance des processus microbiens compliquent fortement l’analyse des flux entre la 

biosphère des milieux froids et l’atmosphère. De fait, le comportement puits vs. sources de ces 

écosystèmes1  est difficile à évaluer (McGuire et al. 2006).  

 

 Chaque année la neige recouvre plus de la moitié de l’hémisphère nord. Dans les 

systèmes alpins (voir définition plus loin) ou arctiques où la durée de la saison hivernale 

atteint 200 à 300 jours par an, cette saisonnalité régule les flux de carbone. Par exemple, la 

présence de la neige affecte la fixation du carbone en modulant la longueur de la saison de 

végétation ou la respiration hétérotrophique (respiration des microorganismes du sol) via son 

action sur les conditions édapho-climatiques (climat du sol). Ainsi, au même titre que la 

température, l’enneigement conditionne les échanges du carbone entre le sol et 

l’atmosphère dans les écosystèmes froids. En particulier, un changement du régime des 

précipitations neigeuses pourrait modifier l’équilibre source-puits de ces systèmes. 

  

 C’est dans ce contexte que les scientifiques se sont récemment intéressés à l’impact de 

                                                           
1 Bilan annuel positif - accumulation de carbone - vs. négatif - libération de carbone 
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l’enneigement sur les flux biogéochimiques (i.e. flux de matière au sein d’un écosystème, 

d’un biome ou à l’échelle du globe). Les écosystèmes arctiques ont notamment fait l’objet de 

nombreuses expérimentations, à des échelles diverses, mettant en évidence le rôle 

fondamental de la neige ainsi que les forçages exercés par celle-ci sur certains processus, tel 

que la minéralisation du carbone ou de l’azote (Walker et al. 1999, Welker et al. 2000, 

Schimel et al. 2004). Etonnamment, très peu d’études ont été menées au sein des systèmes 

alpins. Or en dépit d’une forte convergence floristique et écologique, les conditions hydriques 

ainsi que le bilan radiatif diffèrent fortement et limitent l’extrapolation des résultats obtenus 

en arctique (Körner 1999, Walker et al. 1999). Par ailleurs, les scénarios climatiques prévoient 

une diminution de l’enneigement hivernal aux latitudes moyennes contrairement aux systèmes 

arctiques où un renforcement des précipitations est attendu (Serreze et al. 2000, Dye and 

Tucker 2003, Beniston 2005). Ainsi, au regard des modifications des régimes d’enneigement 

prédits par les différents modèles climatiques, une étude visant à expliciter les interactions 

entre neige et processus dans les systèmes alpins s’avère nécessaire afin d’évaluer le devenir 

des flux et des stocks de carbone contenus dans ces sols.  
 

1) Flux et stocks de carbone  

 Au sein des systèmes continentaux, les stocks de carbone organique sont 

principalement localisés dans les sols (1500 Pg2), la végétation ne séquestrant que 500 Pg de 

carbone. Cette accumulation de carbone est régie par les flux entrants via la photosynthèse et 

les flux sortants via la respiration autotrophique et hétérotrophique (Fig. 1). Les 

microorganismes du sol, en dégradant la litière, libèrent rapidement une partie du carbone 

dans l’atmosphère sous forme de CO2, mais, selon les écosystèmes, une proportion plus ou 

moins importante de ce carbone demeure sous forme de matière organique récalcitrante. 

D’autres flux de carbone liés à l’herbivorie ou au lessivage contribuent à modifier l’équilibre 

source-puits des écosystèmes, mais leur importance est moindre (Fig. 1). Dans cette étude 

nous nous sommes donc principalement focalisé sur la production primaire nette et brute du 

compartiment aérien (GPP et ANPP, respectivement Gross Primary Production et 

Aboveground Net Primary Productivity) et la minéralisation du carbone par les 

microorganismes (Fig. 1, R). 

 Ces flux sont régulés par des facteurs abiotiques et biotiques. La fixation du carbone 

                                                           
2 1500Pg  = 1500×1015gC 
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est dépendante des conditions climatiques, telles que la température de l’air, la lumière, l’eau 

ou encore la durée de la saison de végétation. Elle dépend également des propriétés des 

canopées (Leaf Area Index ou LAI, distribution des angles des feuilles dans la canopée), 

puisque celles-ci déterminent l’efficacité d’interception de la lumière (Anten 2005). De façon 

similaire, la décomposition des litières et la respiration des sols sont régulées par la 

température et l’humidité mais aussi par la quantité et la qualité des litières (Joffre and Agren 

2001). 

Ainsi, les forçages climatiques agissent à court terme en modifiant la réponse physiologique 

des organismes vivants via la modification des conditions édaphoclimatiques (i.e. action sur la 

cinétique enzymatique, effets directs) et à long terme à travers un changement de composition 

et de structure des communautés végétales (effets indirects). 
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Fig. 1  Schéma conceptuel du cycle 
du carbone dans les systèmes 
continentaux. NEP : Net ecosystem 
production, NBP : Net Biome 
Production, NPP : Net primary 
Production, GPP : Gross primary 
Production, R : Respiration, SOM : 
Soil Organic Matter. Les chiffres 
donnés correspondent aux flux 
estimés moyens pour l’ensemble 
des biomes continentaux. 
 

 Avant de préciser le cadre conceptuel dans lequel s’est inscrite cette étude ainsi que 

ses objectifs, il est nécessaire de revenir rapidement sur les propriétés physico-chimiques de la 

neige ainsi que sur les outils permettant d’établir des prédictions quant à l’évolution des 

précipitations neigeuses dans les décennies à venir. 

 

2) Enneigement et changement climatique  

 La neige, caractérisée par un albédo élevé (0.85) et une faible conductivité thermique 

(0.02 – 1 W m-1 K-1) modifie fortement le bilan radiatif des systèmes en limitant l’absorption 
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du rayonnement solaire et donc le réchauffement du sol (Groisman and Davies 2000). Ce 

pouvoir isolant est à l’origine d’un gradient thermique entre le sol relativement chaud et la 

surface réfléchissante froide, et permet de maintenir la température des sols aux alentours de 

0°C quel que soit le régime thermique atmosphérique (Fig. 2). Il semblerait qu’une épaisseur 

de 15 à 30 cm suffise à l’établissement de ce gradient et, de ce fait, de nombreux organismes 

sont protégés des températures extrêmes durant l’hiver. De même, une activité respiratoire 

peut se maintenir sous le couvert neigeux, sous réserve de l’effet d’autres facteurs limitants 

(substrat par exemple) (Groisman and Davies 2000).  

 D’autre part, la productivité des écosystèmes montagnards est fortement reliée à 

l’enneigement via la longueur de la saison de végétation, mais également via l’apport en 

minéraux (azote en particulier) et en eau (Tranter and Jones 2000). Walker et al. (1995) 

suggèrent que cet apport nutritionnel est critique pour la croissance de la végétation, 

notamment lorsque la saison de végétation est fortement réduite. D’un point de vue physique, 

l’eau de fonte permet pour un niveau de nutriments similaire, d’augmenter la diffusion des 

minéraux dans le sol et de stimuler l’absorption racinaire (Chapin et al. 1988). En modifiant la 

fertilité et la longueur de la saison de végétation, les durées d’enneigement affectent 

profondément la distribution des communautés végétales et sélectionnent des espèces à 

croissance lente dans les zones déneigées et infertiles et des espèces à croissance rapide dans 

les zones plus enneigées et plus fertiles (Choler 2005).  

 Ainsi, en modifiant le régime thermique et hydrique des sols, ainsi que la durée de la 

saison de végétation et la fertilité des sols, la neige affecte les flux biogéochimiques au sein 

des écosystèmes montagnards (Tranter and Jones 2000).  
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Fig. 2 Schéma conceptuel des flux de masse et 
d’énergie contrôlant le budget énergétique, la 
structure et les propriétés de la couverture 
neigeuse. I.R. : Infra-Rouge. Source : Pomeroy & 
Brun (2000). 
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 A une échelle globale, d’autres études ont montré que la cryosphère, la biosphère et 

l’atmosphère sont intimement reliées et qu’une modification des précipitations neigeuses peut 

affecter l’ensemble des écosystèmes terrestres. Par exemple, des précipitations neigeuses 

accrues sur le plateau Tibétain ont pour effet de retarder et de limiter l’impact de la mousson 

indienne (Barnett et al. 1989). De même, une réduction des surfaces enneigées au niveau du 

pôle nord limiterait l’émission des rayonnements infrarouges vers l’atmosphère, entraînant 

une hausse des températures à la surface du globe terrestre (Chapin et al. 2005). 

L’enneigement joue donc un rôle crucial tant à l’échelle locale ou régionale qu’à l’échelle 

globale. 

 Actuellement, de nombreuses études tentent d’évaluer quelle sera l’évolution des 

régimes de précipitations en lien avec le réchauffement climatique. Les scénarios avancés sont 

beaucoup moins clairs que ceux qui concernent la température et un rapide retour sur les 

outils permettant d’élaborer ces prédictions s’avère utile. Les indices d’anomalie de pression 

atmosphérique, tel que le NAO (North Atlantic Oscillation) dans l’hémisphère nord ou le SO 

(Southern Oscillation) dans l’hémisphère sud, sont de bons indicateurs des régimes de 

précipitations. Le NAO est une différence de pression normalisée entre les Açores et 

l’Islande, deux centres d’action primaire de la circulation atmosphérique de l’hémisphère 

nord. Le SO représente la composante atmosphérique de l’ « El Niño Southern Oscillation »  

(ENSO), c'est-à-dire la différence de pression normalisée entre Tahiti et Darwin (en 

Australie). Une valeur positive du NAO signifie que les vents de surface tendent à être 

orientés Nord-Est en direction du Groenland et du Canada et elle est  associée à des anomalies 

de température négatives. Les vents orientés Sud-Ouest apportent, quant à eux, douceur et 

humidité dans le nord de l’Europe et en Scandinavie. Ces vents sont généralement associés à 

des faibles précipitations et des températures relativement douces, notamment de la fin de 

l’automne jusqu’au début du printemps (Serreze et al. 2000). En dépit d’une très forte 

variabilité interannuelle, le NAO est dans une phase positive depuis les années 1970, et de 

façon plus marquée depuis les années 80 (Hurrell 1995). A l’échelle régionale, Beniston 

(2005 pour une revue) détecte les mêmes tendances depuis les années 80, et relie de façon très 

satisfaisante cet indice à une diminution du régime des précipitations neigeuses dans les Alpes 

Suisses (Fig. 3-4). 
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Fig. 3 Série temporelle sur 50 ans de la 
pression atmosphérique hivernale 
moyenne et de la durée de la saison 
hivernale dans deux sites alpins (dans 
les Alpes suisses à Davos et dans les 
montagnes du Montana aux USA), pour 
une profondeur moyenne de neige de 
1m. Source : Beniston (2005). 

 
 
 
 
 

 

 
 
Fig. 4 Série temporelle centennale de 
l’évolution de l’index NAO et des 
températures minimales (décembre, 
janvier, et février) à Säntis (2500m au 
dessus du niveau de la mer, Suisse). 
Source : Beniston (2005) 

 
  

 Par ailleurs, les images satellites disponibles depuis 1972 permettent de suivre assez 

précisément l’évolution des surfaces enneigées à l’échelle continentale. Depuis le début des 

années 80, le NOAA (National Oceanic and Atmospheric Administration) a observé une 

diminution de l’enneigement d’environ 10% que ce soit sur le continent Nord-Américain, ou 

en Eurasie : ceci étant en relation étroite avec une fonte plus précoce au printemps et une 

modification du ratio pluie : neige. De même, la hausse de température, particulièrement 

marquée dans les hautes et moyennes latitudes, a déjà été reliée à une modification de la 

quantité et de la saisonnalité des précipitations neigeuses (Fig. 5, Noguès-Bravo et al. 2007). 

 Ainsi les systèmes montagnards situés à des latitudes moyennes subissent d’ores et 

déjà une diminution des précipitations neigeuses qui se caractérise par un retard de 

l’enneigement en automne et une fonte des neiges de plus en plus précoce (Messerli and Ives 

1999). Dans les Alpes, ces effets sont largement visibles à moyenne altitude (1300m) et des 

tendances sont déjà observables à plus haute altitude (Laternser and Schneebeli 2003). Dans 

le futur, l’augmentation de la température devrait accélérer ce phénomène. 
  



Introduction  Contexte et problématique de l’étude 

 23

 
Fig. 5 Réchauffement prédit pour 2055 selon le scénario économique B1 (IPCC 2007). Un gradient 
latitudinal du réchauffement climatique est observable des systèmes arctiques et boréaux vers les 
systèmes tropicaux. Source : Noguès-Bravo et al. (2007). 
 
 

3) Enneigement et cycle du carbone dans les systèmes alpins 

 

Spécificité des systèmes de haute montagne 

 L’étymologie du mot alpin est « alp », terme Kimri (dialecte Gaulois) qui signifie 

roches escarpées. Dès l’an -100 av. JC, ce terme était utilisé couramment pour définir la 

chaîne montagneuse au nord de l’Italie. Par la suite, l’utilisation de ce mot s’est généralisée à 

l’ensemble des chaînes de montagne du monde initiant de nombreux débats sur la définition 

même « d’alpin » ou « chaîne alpine ». En effet, les termes tels que "Pyrénéisme", 

"Andinisme" ou "Himalayisme" voire, en Pologne, "Tatrisme" sont couramment utilisés dans 

le monde des sports de montagne. Dans le domaine des sciences, les géologues définissent le 

système alpin « comme toutes les chaînes de montagne formées durant le cycle orogénique 

alpin et s’étendant sur l’ensemble des ères secondaires et tertiaires, pendant les 225 derniers 

millions d’années » (Favarger and Robert 1995). En biogéographie, l’adjectif alpin s’applique 

couramment à l’étage asylvatique (zone située au delà de la limite potentielle des forêts, fig. 

6a) de toutes les hautes montagnes du globe. Le déterminisme principal de l’étagement 

altitudinal de la végétation est la température (Körner 1999). C'est à Alexander Von 

Humboldt (1769-1859) que l'on attribue la compréhension des mécanismes à l’origine de la 

répartition des végétaux le long de ce gradient. En observant les flancs du mont Chimborazo 

en Equateur, il avait remarqué l'étagement de la végétation et s'était le premier interrogé sur la 

cause de cette répartition (Fig 6b). 
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Fig. 6 (a) Étagement de la végétation dans les Alpes du Dauphine. Source : Station 
Alpine Joseph Fourier. (b) Etagement de la végétation sur les flancs du Chimborazo 
(Humbold). 

 

À cette époque, l'explication la plus évidente reposait sur les variations climatiques en 

fonction de l'altitude. Humboldt avait également étudié la question des zones circumterrestres 

de végétation en fonction des latitudes (toundra, taïga, forêt, etc.), et abouti à la même 

conclusion : « l'ensemble des facteurs physiques propres aux différents climats semblait être 

la cause essentielle de la répartition des végétaux à la surface de la Terre » (Humboldt 

Bonpland 18073). Une forte convergence évolutive des communautés végétales se succédant 

le long du gradient altitudinal (on parlera d’étagement) et latitudinal (zonalité) est aujourd’hui 

largement admise. L’étage alpin n’est donc pas uniquement représenté dans les systèmes de 

haute altitude mais aussi de hautes latitudes (Ozenda 2002). De façon générale on parlera 

donc de toundras alpines et arctiques.  

 

 Les montagnes sont réparties dans le monde entier et représentent plus de 20% de la 

surface du globe (Beniston and Fox 1996). D’après Körner (1999), les toundras alpines et 

arctiques couvriraient une surface de 4.5 millions de km2 entre les parallèles 70°N et 60°S, 

soit 3% des terres émergées. La durée de la saison hivernale est de façon générale assez 

                                                           
3 Voyage aux régions équinoxiales du Nouveau Continent, fait en 1799, 1800, 1801, 1803 et 1804 par Alexandre de Humboldt et Aimé 
Bonpland (30 volumes), rédigé par A. de H., Paris, 1807 et années suivantes.  
Les 14 premiers volumes sont consacrés à la botanique, le XV et XVI forment: Vues de cordillères et monuments des peuples anciens de 
l'Amérique (réédité dans la Collection "Memoria Americana", dirigée par Charles Minguet et Jean-Paul Duviols), le XVIIe, l'Atlas 
géographique et physique, le XVIIIe, L'Examen critique de l'histoire et de la géographie du Nouveau Monde, le XIXe, L'Atlas géographique 
et Physique, le XXe Géographie des plantes équinoxiales, le XXI et XXIIeme, Recueil d'observations astronomiques, le XXIII et XXIV, 
Recueil d'observations de zoologie et d'anatomie comparée, les XXV et XXVI, L'essai politique sur le royaume de la Nouvelle Espagne, le 
XXVII, Essai sur la géographie des plantes ( réédité dans "Memoria Americana"), les volumes XXVIII à XXX, La relation historique du 
voyage aux régions équinoxiales du Nouveau Continent, dont la dernière partie a été édité à part sous le titre de Essai politique sur l'île de 
Cuba. 
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longue (>200 jours) mais varie fortement le long du gradient latitudinal et altitudinal 

(Beniston and Fox 1996). Malgré leur superficie relativement faible, les montagnes affectent 

le système climatique dans sa globalité. En tant qu’obstacle physique à la circulation 

atmosphérique, elles perturbent l’écoulement de l’air et sont considérée comme l’un des 

facteurs de la cyclogénèse dans les latitudes moyennes (Beniston and Fox 1996). Les 

montagnes, sources d’un grand nombre de réseaux hydrographiques de la planète et berceaux 

de nombreux glaciers, constituent également un élément essentiel du cycle de l’eau. Par 

ailleurs, la sévérité du climat a fortement contraint la productivité de ces systèmes ainsi que la 

décomposition de la matière organique et le déséquilibre entre ces flux a conduit à 

l’accumulation de carbone dans les sols. Les quelques études tentant d’évaluer les stocks de 

carbone séquestrés dans les sols de montagne rapportent des valeurs aussi élevées que dans 

les systèmes arctiques (Tableau 1) (Becker and Bugmann 2001). 

 

 

Formation végétale Localisation Stock de carbone 
(kg C m-2) Références 

Pelouse alpine 
Prairie de fauche  
Prairie pâturée 
Forêt résineuse 
Landes 
 
Prairies de montagne 
 
Toundra alpine 
 
Toundra mésophile 
Toundra hygrophile 
 
Sols de montagne 

 
 
Plan de Tueda (Alpes, 
France) 
 
 
Chine centrale 
 
Plateau Haibei (Chine) 
 
Moyenne dans le monde 
 
 
France 

9.3 
12.3 
13.6 
18.2 
18.2 

 
32.4 

 
18.2 

 
10.9 
20.7 

 
>10.0 

 
(Dobremez and Eynard-
Machet 1997) 
 
 
 
(Zhou et al. 2003) 
 
(Kato et al. 2006) 
 
(Zinke et al. 1998) 
 
 
(Arrouays et al. 2002) 

Tableau 1 Stocks de carbone dans les sols arctiques et de montagne 

 

 Au-delà du bilan radiatif, les toundras alpines se distinguent des toundras arctiques par 

leur orographie. En effet le relief accidenté en montagne est à l’origine d’une forte 

hétérogénéité spatiale qui gouverne à la fois le bilan radiatif et la distribution de la neige tant à 

l’échelle régionale que locale (Billings 1973, Körner 1999, Walker et al. 2000). La 

macrotopographie, c'est-à-dire la variation du relief sur une échelle d’ordre kilométrique, est à 

l’origine de fortes variations en termes de rayonnement solaire. L’opposition typique entre les 

faces sud (adret) et les faces nord (ubac) illustre très bien ce phénomène (Fig. 7).  
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Hiver Printemps Été - AutomneHiver Printemps Été - Automne
Fig. 7 Opposition entre l’adret et l’ubac. Montagne de Chaillol, Région du Lautaret (2058 m). (Photo : S ; 
Aubert). 
 

 La mésotopographie (variation de la topographie sur des distances inférieures à 100m, 

Billings 1973) est à l’origine de différences importantes d’enneigement entre des zones 

convexes et des zones concaves (Fig. 8 et 12). Il s’agit là de l’opposition ancienne entre un 

alpin dit « thermique » et un alpin dit « nival » (Aubert et al. 1965)4. 

 

La distribution des communautés végétales est fortement liée à la longueur de la saison 

de végétation (Walker et al. 1993) et de fait, « gradient de mésotopographie » et « gradient 

d’enneigement » sont en général utilisés en synonymie. De nombreuses études ont analysé la 

distribution de la diversité végétale le long de ce gradient (Billings and Bliss 1959, Friedel 

1961, Billings 1973, Flock 1978, Bell and Bliss 1979, Walker et al. 1993, Choler 2005). Tous 

ces auteurs soulignent un important « turn-over » des espèces sur des distances très faibles 

formant une mosaïque complexe le long du gradient d’enneigement (Fig. 9). Les limites de 

ces communautés végétales et les dates moyennes de fonte des neiges sont fortement corrélées 

(Fig. 9). 

 

 

Fig. 8 Les contrastes thermiques liés à la méso- et 
microtopographie sont aussi marqués que ceux qui 
sont observés le long du gradient altitudinal. Source : 
Körner (1999). 

                                                           
4 Les expressions « Early snowmelt locations » et « late snowmelt locations » sont les appellations 
correspondantes dans les articles de cette thèse.  
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Fig. 9 Cartographie des dates de déneigement (jour julien) à Aravo prés du col du Galibier dans les Alpes 
Françaises (panel gauche) et description des espèces dominantes des groupements végétaux associés à ces 
dates de déneigement (panel droit). Source : Choler (2005). 

 

Cette forte hétérogénéité spatiale a limité la mise en œuvre de certaines techniques 

d’étude et ce n’est que dernièrement que des travaux, menés dans des systèmes moins 

accidentés comme le plateau Tibétain, ont tenté d’évaluer l’état source-puits des systèmes 

alpins (Gu et al. 2005, Kato et al. 2005, Kato et al. 2006, Zhao et al. 2006). En effet, la plupart 

des modèles de circulation générale possèdent à l’échelle du globe une résolution spatiale 

limitée et ne peuvent prendre en compte les variations topographiques de l’ordre d’une 

centaine de mètres ou même du km. De même, jusqu’à récemment, les techniques d’Eddy 

covariance5 n’étaient pas adaptées pour mesurer les échanges de carbone dans ces systèmes 

car une partie trop importante des flux de CO2 s’écoule le long des pentes et n’était donc pas 

détectée par les tours à flux (mais voir Hammerle et al. 2007).  

 Par ailleurs, les études réalisées dans l’arctique visant à évaluer l’impact de la neige 

sur la minéralisation du carbone et de l’azote se sont basées sur des expérimentations 

relativement courtes (Brooks and Williams 1999, Groffman et al. 2001a, 2001b, Monson et al. 

2006). Dans ce contexte, seuls les effets directs étaient examinés i.e. modification des 

conditions édaphoclimatiques. Or, même si une modification des conditions 

                                                           
5 Eddy covariance : méthode statistique permettant d’évaluer les flux de carbone sur de larges surfaces. Le 
système d’Eddy Covariance comprend un anémomètre ultrasonique et un IRGA (Infra Red Gaz Analyzer) fixé 
en haut d’une tour à flux. 
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édaphoclimatiques agit de façon transitoire sur le fonctionnement des écosystèmes, les 

processus biogéochimiques sont largement régulés par les rétrocontrôles et les interactions 

indirectes exercées par la végétation et les populations microbiennes (Norby and Luo 2004, 

Rustad 2006). En effet, l’enneigement en contrôlant la longueur de la saison de végétation et 

la fertilité influence indirectement la composition spécifique des communautés végétales. Un 

changement de diversité pourrait ainsi affecter le recyclage du carbone indépendamment des 

conséquences liées aux variations des conditions édaphoclimatiques.  

 

Ainsi dans les systèmes enneigés, les modes de régulation des flux de carbone n’ont pas 

été identifiés et, de façon générale, la hiérarchisation des effets directs et indirects exercés par 

la neige et leur contrôle de la productivité des communautés végétales et de la décomposition 

des litières dans les systèmes froids est encore largement débattue (Hobbie et al. 2000, 

Grogan and Jonasson 2006). Quelques travaux ont abordé cette problématique dans les 

systèmes arctiques (i.e. travaux sur la respiration hétérotrophique, Elberling et al. 2004, 

Grogan and Jonasson 2006, Elberling 2007) mais, à notre connaissance, aucune étude 

n’a tenté d’évaluer les contrôles directs et indirects exercés par la neige sur le recyclage 

du carbone dans les systèmes de montagne et notamment les systèmes alpins (Edwards 

et al. 2007).  

Récemment, des études ont mis en évidence l’intérêt d’utiliser les caractéristiques 

fonctionnelles de la végétation afin de prédire le fonctionnement d’un écosystème (Lavorel & 

Garnier, 2002). La description du cadre dans lequel s’est inscrite cette étude fait l’objet de la 

partie suivante.  
 

4) Les traits fonctionnels comme outils de changement d’échelle 

Des études récentes en écologie des communautés ont mis en évidence la pertinence 

d’agréger les espèces végétales selon des critères fonctionnels plutôt que selon des critères 

phytosocioécologiques (Chapin et al. 1996, Woodward and Cramer 1996, Lavorel et al. 

1997). Ces groupes fonctionnels se définissent comme des ensembles d’espèces ayant une 

réponse similaire aux pressions environnementales et/ou ayant un effet similaire sur le 

fonctionnement des écosystèmes, tel que la productivité primaire ou la décomposition 

(Lavorel and Garnier 2002). Ils se définissent sur la base de traits d’histoire de vie partagés 

(i.e. traits fonctionnels). Ces derniers correspondent aux caractéristiques morphologiques, 

éco-physiologiques, biochimiques ou reproductives d’un organe ou de la plante entière 

(Chapin et al. 1996, Hodgson et al. 1999, Weiher et al. 1999). Les traits dits « hard » sont des 
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traits dont la mesure requiert une haute technicité (Tableau 2). Ce sont par exemple des traits 

en relation directe avec le métabolisme des plantes, comme la conductance stomatique ou le 

taux d’assimilation d’azote mais leur mesure à grande échelle est difficilement envisageable. 

Les traits « soft » sont plus faciles à acquérir et sont corrélés avec les traits « hard » (Reich et 

al. 1999). On définit par ailleurs les traits de réponse comme des adaptations morphologiques 

ou écophysiologiques des plantes en réponses aux contraintes environnementales (Fig. 10). 

 

La composition fonctionnelle (ou diversité fonctionnelle), c'est-à-dire  l’identité, 

l’abondance et la variation des traits fonctionnels au sein d’une communauté végétale, permet 

de s’affranchir des distinctions taxonomiques et facilite les études comparatives entre 

systèmes. Récemment des études de grande ampleur ont mis en évidence un schéma universel 

de gestion des ressources (Wright et al. 2004). Il est ainsi possible de situer les espèces 

végétales le long d’un gradient d’exploitation vs. conservation des nutriments : les espèces 

végétales situées dans les systèmes fertiles sont caractérisées par un taux de croissance élevé 

et un renouvellement rapide des tissus (Specific Leaf Area ou SLA élévé, Leaf Nitrogen 

Content ou LNC élevé), à la différences de celles situées dans des habitats infertiles.  

 

La théorie proposée par Grime ("the biomass ratio hypothesis", 1998) stipule que le 

fonctionnement de l’écosystème peut être prédit à partir des valeurs de traits des espèces 

dominantes pondérées par leur abondance relative dans la communauté végétale. Selon la 

nouvelle terminologie proposée par Violle et al. (2007), cet index se traduit formellement par 

la relation suivante :  

∑
=

⋅=
n

1k
kk TACFP  

La valeur du trait T dans la communauté (CFP, Community Functional 
Parameter) est égale à la somme de la valeur du trait pondérée par l’abondance 
des k espèces de la communauté. Terminologie française : trait agrégé.  

 

Garnier et al. (2004), Garnier et al.(2007) et Quétier et al. (2007) ont montré que les 

traits foliaires agrégés (SLA, LDMC et LNC) permettaient de prédire de façon satisfaisante 

l’ANPP (et/ou ANPP spécifique), la production de litière ou encore les taux de décomposition 

mesurés in situ. De façon similaire, la décomposabilité des litières semble être fortement 

corrélée au taux de matière sèche des feuilles (LDMC agrégé), ainsi qu’au ratio N/[lignine] 

(Kazakou 2006). Enfin, cette méthodologie a également pu être appliquée dans l’objectif de 

prédire l’impact d’un changement d’utilisation des terres sur certains services rendus par les 

écosystèmes tels que la production de biomasse ou encore le maintien de la fertilité des sols 



Introduction  Contexte et problématique de l’étude 

 30

(Diaz et al. 2007). 
 

Fonction « Hard traits »  « Soft Traits » 
Interception de la 

lumière Modélisation Hauteur végétative 
LAI (Leaf Area Index) 

Efficience de la 
photosynthèse Mesure de l’assimilation (IRGA)6 

SLA (Specific Leaf Area) 
LDMC (Leaf Dry Matter Content) 

LNC (Leaf Nitrogen Content) 

Efficacité d’utilisation 
de l’eau Conductance stomatique (IRGA) Durée de vie des feuilles 

Taux de croissance RGR (Relative growth rate) 

Traits foliaires (SLA, LDMC, LNC) 
Traits racinaires :  

SRL : Specific Root Length 
RNC : Root Nitrogen Content 

Allocation entre 
compartiment aérien et 

souterrain 

Marquage 13/14C pour suivre le devenir 
du carbone dans la plante et estimer les 

flux entre compartiments 

Masse racinaire/masse aérienne 
(Root:Shoot ratio) 

Absorption des 
nutriments Marquage court 15N Diamètre des racines, proportion de 

racine fines, SRL  
Résorption des 

nutriments Marquage long 15N Traits foliaires (SLA, LNC de la litière) 

Exudation Marquage 13/14C SRL 

Respiration foliaire et 
racinaire Mesure de la respiration (IRGA) LNC et RNC  

Décomposabilité  Mesure de perte de masse  
Respiration (IRGA) 

LDMC, C/N, N/lignine 
N/Polyphénol 

RNC  
RDT (Root Tissue Density) 

Tableau 2 Exemples de traits « softs » et « hards » en lien avec les processus écosystémiques (C,N). Sources : 
Reich et al. (1999), Weiher et al.(1999), Quested et al (2007). et Kazakou (2006). Voir Roumet et al. (2006) pour 
une revue sur les traits racinaires.  

 

 Ainsi, à la fois révélateurs des pressions environnementales et acteurs potentiels au 

sein de l’écosystème, les traits fonctionnels sont actuellement considérés comme des outils 

pertinents pour prédire la performance des espèces dans leur environnement et leur impact sur 

le fonctionnement des écosystèmes (Fig. 10).  

 C’est dans ce cadre méthodologique que nous nous proposons d’appréhender les 

contrôles indirects exercés par l’enneigement (i.e. impact liés à la diversité fonctionnelle 

végétale) sur le cycle du carbone des écosystèmes alpins. 

                                                           
6 IRGA : Infra Red Gaz Analyser. Appareil permettant la mesure des flux d’eau et de CO2  
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Fig. 10 Diagramme conceptuel permettant l’articulation des effets des conditions 
environnementales sur les processus écosystémiques via l’impact sur les communautés végétales. 
Source : Lavorel and Garnier (2002). 
 
 

5) Interaction entre les cycles de l’azote et du carbone : Influence sur les 
processus écosystémiques ? 

Le recyclage du carbone dans un système ne peut être découplé des processus de 

minéralisation de l’azote. Les corrélations mises en évidence entre traits fonctionnels et 

vitesse de recyclage du carbone sont généralement sous-tendues par la disponibilité des 

ressources (Chapin et al. 1993a). Le compromis fonctionnel associé à la gestion des 

nutriments et du carbone est en effet directement associé au taux de minéralisation azotée. 

Une faible disponibilité en azote limite la production de biomasse et contribue à la création de 

tissus récalcitrants (C/N élevé, [lignine] élevée) affectant en retour le taux de minéralisation 

de la matière organique (C, N). Cette boucle de rétroaction positive demeure tant que les 

plantes dépendent des organismes saprophytes dans l’acquisition de l’azote minéral. Elle 

illustre dans quelle mesure les processus écosystémiques, modulés par la diversité 

fonctionnelle des communautés végétales, agissent en retour sur la structuration de ces mêmes 

communautés. Cependant de nombreuses études ont montré que la plupart des plantes alpines 

sont capables d’assimiler, avec ou sans l’aide des mycorhizes, de l’azote sous forme 

organique, court-circuitant ainsi la boucle microbienne (Chapin et al. 1993b, Raab et al. 1999, 

Chapman et al. 2006). Dans ce cas, la production végétale serait en partie découplée de la 

minéralisation de l’azote par les microorganismes. La mise en évidence de ce nouveau 
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paradigme a conduit à différentes théories illustrées sur la fig. 11 (Schimel and Bennett 2004, 

Chapman et al. 2006) : dans les systèmes fertiles, les plantes assimilent majoritairement 

l’azote sous forme minérale et de fait dépendent des organismes saprophytes pour leur 

croissance; dans les systèmes infertiles, les espèces végétales assimilent l’azote organique soit 

par prélèvement direct soit par le biais des mycorhizes et ne dépendent donc plus de l’activité 

minéralisatrice des microorganismes. Ces hypothèses remettent ainsi en question l’existence, 

dans certains systèmes, d’un goulot d’étranglement associé à l’activité des microorganismes, 

pour prédire les processus écosystémiques. 

 

 

Fig. 11 Deux 
représentations du cycle de 
l’azote. Dans chaque cas, la 
flèche représente l’intensité 
du flux. (a) Théorie 
classique selon Knops et al. 
(2002), (b) Dans le cas 
d’une l’assimilation directe 
d’azote organique. Myc, 
mycorhize. Source : 
Chapman et al. (2006)  

 

 

 

Les contrôles exercés par les plantes et les microorganismes sur la minéralisation de 

l’azote et de façon générale sur les cycles biogéochimiques sont encore mal connus. Ces 

résultats montrent la nécessité d’examiner l’intrication des cycles de l’azote et du carbone afin 

de prédire la réponse des écosystèmes aux changements globaux.  
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Fig. 12 Illustration de l’impact de la topographie sur les patrons d’enneigement. Le 18/05/07 à Combe 
Roche Noire près de col du Galibier dans les Alpes Françaises (2550 m). En premier plan, Kobresia 
myosuroides, plante dominante des sites thermiques. Source: F. Baptist. 
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B. Objectifs et hypothèses de travail 

 L’objectif de ce travail est d’évaluer les contrôles directs et indirects exercés par 

la neige sur la fixation et la minéralisation du carbone dans les systèmes alpins.  

  

 Dans les systèmes alpins, la longueur de la saison de végétation et l’épaisseur de 

la couche de neige varient principalement en fonction de la topographie. La succession 

des communautés végétales et les variations de la diversité fonctionnelle le long du 

gradient de mésotopographie sont intimement liées aux patrons d’enneigement et 

résultent d’un long processus de sélection (Choler, 2005). De fait, nous avons considéré 

ce gradient7  comme un système modèle pour examiner l’influence respective des effets 

directs et indirects de la neige. Nous nous sommes principalement focalisé sur les 

communautés situées aux deux pôles de ce gradient : les communautés nivales ou de 

combe à neige et les communautés thermiques ou de crête (Tableau 3). Les sites 

d’étude font l’objet d’une présentation détaillée dans la dernière partie de cette 

introduction.  

 

Les deux principales étapes du cycle du carbone ont été étudiées, c'est-à-dire :  

- La fixation du carbone (via la mesure du GPP et de l’ANPP) et allocation du 

carbone,  

- La minéralisation du carbone (décomposition des litières et respiration 

hétérotrophique). 

 

 Afin de dissocier la contribution relative des facteurs directs et indirects, 

différentes approches et outils ont été privilégiés et appliqués à des échelles variées 

(Tableau 3). Ces différentes approches nous ont ensuite permis d’évaluer, selon les 

différents scénarios climatiques envisagés, les conséquences d’une réduction de 

l’enneigement sur les processus biogéochimiques. Ceci sera développé dans la dernière 

partie de ce manuscrit (synthèse). 

La figure 13 présente de façon schématique les objectifs et les hypothèses de ce travail. 

De façon générale nous faisons l’hypothèse que les effets indirects de l’enneigement 

supplantent les effets directs et à court terme sur le cycle du carbone dans les systèmes 

                                                           
7 Dans la suite du manuscrit, nous utiliserons uniquement le terme « gradient d’enneigement » ou snowmelt 
gradient. 
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alpins. Plus précisément, nos hypothèses sont les suivantes :  

- Les conditions stationelles dans les systèmes longuement enneigés favorisent les 

espèces à croissance rapide - réponse adaptive à la limitation de la durée de la 

saison favorable à la croissance. La productivité instantanée sera donc plus élevée 

dans ces milieux comparativement aux systèmes thermiques. 

- Dans les systèmes nivaux la présence d’espèces dont les tissus sont riches en azote 

devrait activer la vitesse de décomposition des litières. L’hypothèse inverse est 

testée au sein des systèmes thermiques. 

- Le régime thermique hivernal plus favorable dans les systèmes nivaux devrait 

cependant contribuer à activer la vitesse de décomposition.   

 
Ces hypothèses, à première vue qualitatives, ont été abordées dans le but de donner des 

réponses quantitatives soit par le biais de mesures empiriques soit grâce à la modélisation.  
 

Objet d’étude / Echelle 
géographique 

Outils Type 
d’expérimentation 

Articles 

Communautés végétales le long du 
gradient d’enneigement. Espèces 

dominantes des communautés nivales 
et thermiques : Carex foetida et 

Kobresia myosuroides 

Outils d’écophysiologie 
Modélisation 

In situ 
Conditions semi-

controlées 

Production 
primaire 

Article 1A 

Communautés nivales. 
Espèces dominantes : Carex foetida, 

Poa alpina, Alopecurus gerardi 

Outils d’écophysiologie 
Analyse chimique 

 

Conditions semi-
contrôlées 

Production 
primaire 

Article 1B 

Espèces dominantes des communautés 
nivales et thermiques : Carex foetida 

et Kobresia myosuroides 

Outils d’écophysiologie 
Modélisation 

Conditions 
contrôlées 

Allocation 
Article 1C 

Espèces dominantes des communautés 
nivales (Carex foetida, Salix herbacea, 

Alopecurus gerardi) et 
thermiques (Kobresia myosuroides et 

Dryas octopetala) 

Taux de décomposition 
Analyse chimique 

 

In situ Décomposition 
Article 2A 

Sols des systèmes nivaux et 
thermiques 

Mesures de flux (C) 
Respiration potentielle 

In situ 
Conditions 
contrôlées 

Respiration 
Article 2B 

Sols des systèmes thermiques 
Mesure de flux (C, N) 
Diversité microbienne 
Activité enzymatique 

Conditions 
contrôlées 

Respiration 
Article 2C 

Tableau 3 Description des expérimentations réalisées dans ce travail : objet et niveaux d’étude, outils et types 
d’expérimentation.  
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Fig. 13 Hypothèse de travail visant à explorer dans quelles mesures la diversité fonctionnelle végétale 
(effet indirect) et les conditions édapho-climatiques (effet direct) affectent la productivité, l’allocation 
du carbone,  la décomposition des litières et la respiration hétérotrophique des sols dans les systèmes 
alpins nivaux et thermiques. 
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C. Organisation du document 

 Le premier chapitre de ce manuscrit traite de l’impact de l’enneigement sur les traits 

fonctionnels foliaires, la production primaire brute et l’allocation du carbone au sein des 

systèmes nivaux et thermiques.  
 

 Notre démarche a tout d’abord consisté à développer un modèle de photosynthèse a 

l’échelle de la canopée (« bulk canopy photosynthesis model »), à paramétrer ce modèle avec 

les mesures de traits agrégés puis à examiner l’importance relative des propriétés 

fonctionnelles des couverts végétaux vs. durée de la saison de végétation sur le gain carboné 

brut des pelouses alpines. Nous avons fait l’hypothèse que les propriétés  fonctionnelles des 

canopées via la maximisation de l’interception de la lumière et de la fixation du carbone des 

systèmes nivaux permettent de compenser la courte durée de la saison de végétation. Une 

analyse de sensibilité a par ailleurs permis de déterminer l’effet relatif d’un allongement de la 

durée de la saison de végétation vs. modification des traits fonctionnels sur la production 

primaire de ces communautés végétales (Article 1A).  

 D’autre part, afin de vérifier d’un point de vue expérimental l’impact de l’allongement 

de la saison de végétation dans les systèmes nivaux, nous avons mis en place à la Station 

Alpine Joseph Fourier une expérimentation visant à étudier l’effet d’une réduction de 

l’enneigement sur la productivité des systèmes de combe à neige. Nous avons fait  

l’hypothèse qu’une saison de végétation allongée entraînerait une augmentation de la 

biomasse aérienne produite (Article 1B).  

 Enfin, la dernière partie de ce chapitre vise à préciser les patrons d’allocation du 

carbone en relation avec les stratégies d’acquisition de l’azote des deux graminoïdes Carex 

foetida et Kobresia myosuroides qui dominent dans les systèmes nivaux et thermiques 

respectivement. Nous avons fait l’hypothèse que l’espèce caractérisée par une croissance lente 

(K. myosuroides) allouait une quantité importante du carbone nouvellement fixé vers le 

compartiment souterrain (Article 1C). 
 

Ces trois études font l’objet des articles suivants :  

- Article 1A : Baptist, F., and Ph. Choler. 2008. A simulation on the importance of 
growing season length and canopy functional properties on the seasonal Gross 
Primary Production of temperate alpine meadows. Annals of Botany 101:549-559.  

- Article 1B : Baptist, F., Flahaut C., Streb P., and Ph. Choler. Decreased aboveground 
primary productivity of alpine tundra in response to earlier snowmelt. En prep. pour 
Oecologia. 
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- Article 1C : Baptist, F., Tcherkez, G., Aubert, S., Pontailler, J.Y., Choler, Ph. and S. 
Noguès. 13C and 15N allocations of two alpine species from contrasting habitats reflect 
their different growth strategies. En prep. pour New Phytologist. 

  

 Dans le deuxième chapitre, nous nous sommes appliqués à préciser l’impact de 

l’enneigement sur la décomposition des litières (phase initiale de la dégradation de la SOM) et 

la respiration hétérotrophique des sols (phase finale de la dégradation de la SOM).  
 

Dans le premier cas, nous avons mis en place un dispositif croisé visant à préciser 

l’impact respectif des facteurs stationnels et de la qualité des litières sur la décomposition 

(Article 2A). Cinq espèces dont trois dominantes dans les systèmes nivaux et deux dans les 

systèmes thermiques ont été choisies afin de mesurer leur taux de décomposition aux deux 

pôles du gradient d’enneigement sur un pas de temps annuel. Nous faisons l’hypothèse que 

les processus de minéralisation (décomposition, respiration) sont en premier lieu déterminés 

par la qualité des litières. Les contrôles indirects exercés par l’enneigement seraient donc plus 

marqués que les contrôles directs via la modification des conditions édapho-climatiques.  

Nous avons par ailleurs mesuré la respiration hétérotrophique in situ et en conditions 

contrôlées sur des carottes de sol prélevées en été lors du pic de biomasse et en automne juste 

avant les premières chutes de neige. Les sols ont été prélevés aux deux pôles du gradient 

d’enneigement. Nous avons fait l’hypothèse que la qualité de la matière organique, évaluée à 

partir des valeurs de respiration basale, influence fortement la variabilité spatiale de la 

respiration hétérotrophique. Par ailleurs, la présence de neige en hiver dans les systèmes 

nivaux contribuerait à modifier de façon significative le bilan annuel des flux de CO2 en 

comparaison avec les systèmes thermiques (Article 2B). 

La dernière étude est une ouverture vers l’écologie microbienne. En conditions 

contrôlées (mésocosmes), nous avons examiné conjointement la dynamique de la diversité 

microbienne et la minéralisation du carbone et de l’azote suite à un amendement d’extrait 

tannique (à partir de litière de Dryas octopetala). Par ailleurs les sols ont été soumis à 

différentes contraintes thermiques mimant les conditions hivernales des systèmes nivaux et 

thermiques. Nous faisons l’hypothèse que les champignons, principaux acteurs de la 

dégradation l’hiver, sont spécifiquement sélectionnés par les faibles températures hivernales 

afin de dégrader les composés récalcitrants présents dans les systèmes thermiques (Article 

2C). 
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Ces trois études font l’objet des articles suivants :  

- Article 2A : Baptist, F., Yoccoz, G., and Ph. Choler. Snow cover exerts control over 
decomposition in alpine tundra along a snowmelt gradient. En prep. pour Plant and 
soil.. 

- Article 2B : Baptist, F., Flahaut, C., and Ph. Choler. Soil respiration in alpine tundra: 
impacts of seasonal snow cover and soil carbon content. Soumis à Global Change 
Biology.  

- Article 2C : Baptist, F., Zinger, L., Clement, J.C., Gallet, C., Guillemin, R., Martins, 
J.M.F., Sage L., Shahnavaz, B. and Ph. Choler. Tannins impacts on microbial diversity 
and functioning of alpine soils: a multidisciplinary approach. Environmental 
microbiology 10:799-809 

 

 La dernière partie propose une synthèse de l’ensemble des résultats présentés dans les 

chapitres I et II. Des résultats non publiés à ce jour ont également été intégrés dans cette 

section.  
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D. Présentation du site d’étude 

 Le col du Lautaret (2058 m, 45°20’N, 6°24’E) marque la limite entre la vallée de la 
Romanche et la vallée de la Guisane. Plus qu’une limite géographique c’est également une 
limite climatique puisque au-delà de ce col (vers l’Est) les précipitations s’amoindrissent et la 
région devient beaucoup plus sèche (Fig. 14).  
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Fig 14 Localisation du 

site d’étude dans les 

Alpes Françaises 

occidentales. 
 

  
 Les sites d’étude se situent au nord du col du Lautaret en direction du col du Galibier 
(2646 m) (Tableau 4). La limite inférieure de l’alpin se situe aux alentours de 2200-2300 m, et 
probablement 2400 m sur les adrets francs. Tous les sites d’études sont situés au-delà de 2500 
m. L’étage nival lui se situe aux alentours de 2800-3000 m (tableau 4).  
 
 

Tableau 4 Localisation des sites d’étude ou de prélèvement dans les différents articles présentés dans ce 
manuscrit de thèse.  

Article 
correspondant 

Localisation des 
sites Altitude Cordonnées géographiques Mesures / 

prélèvements 
Article 1A Aravo ~ 2750 m 45°04’N, 6°23’E Mesures 
Article 1B Col Agnel 2744 m 44°41’N, 6°58’E Prélèvements 
Article 1C Site B, et Col Agnel 2520 m 

2744 m 
Site B : 45.05’N, 6.37’E  

Col Agnel : 44°41’N, 6°58’E 
Prélèvements 

Article 2A Sites A, B et C ~2550 m 
2520 m 

~2550 m 

Site A : 45°04N, 6°24E 
Site B : 45.05’N, 6.37’E 
Site C : 45.05’N, 6.38’E 

Mesures 

Article 2B Sites B, C et D 2520 m 
~2550 m 
~2556 m 

Site B : 45.05’N, 6.37’E 
Site C :45.05’N, 6.38’E 
Site D : 45.05’N, 6.37’E 

Mesures  
Prélèvements dans 

le site B 
Article 2C Site B 2520 m Site B : 45.05’N, 6.37’E Prélèvements 
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 L’étude développée dans l’article 1A porte sur l’ensemble du gradient d’enneigement 

et a été réalisé à Aravo (cf carte topographique, Fig. 15, « Aravo »). L’étude 2B a été 

effectuée à partir de monolithes prélevés dans des systèmes nivaux au col Agnel à la frontière 

avec l’Italie (2744 m, 44°41’N, 6°58’E). L’étude de décomposition des litières a été menée 

dans les sites A, B et D (dalle calcaire et vallon de combe roche noire, Article 2A) alors que 

les mesures de respiration hétérotrophique in situ ont été réalisées dans les sites B, C et D. Les 

carottes de sol ont été prélevées dans le site B, de même en ce qui concerne l’étude 

développée dans l’article 2C. Au sein de chaque site (A-D) sont représentées les 

communautés nivales et thermiques (combe à neige / crête). 
 

« Dalle calcaire » 
Orientation : Est

« Combe Roche Noire »
Orientation : Est

« Aravo »
Orientation : Sud-Est

B
CD

A

« Dalle calcaire » 
Orientation : Est

« Combe Roche Noire »
Orientation : Est

« Aravo »
Orientation : Sud-Est

B
CD

A

Fig. 15 Localisation des zones et sites d’étude dans la région du col du Galibier (2646m). En blanc, les sites 
nivaux, en noir, les sites thermiques. Carte IGN Top 25 3435 ET au 25/1000. Photo : F. Baptist.  

 

1) Les conditions climatiques 

 Une partie de ces sites d’étude a été équipée, dès 1999, de capteurs thermiques 
enterrés dans le sol (enregistrement horaire en continu). A partir de l’année 2004, des capteurs 
d’humidité du sol, de température et d’humidité de l’air ont également été ajoutés 
(enregistrement horaire). Les différentes données climatiques obtenues nous permettent ainsi 
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d’obtenir une image assez précise des conditions édaphoclimatiques régnant aux deux pôles 
du gradient d’enneigement. 

 

1.2  La durée de la saison de végétation  

 La neige, par son pouvoir isolant, limite fortement l’amplitude thermique journalière 
du sol. L’analyse des données thermiques du sol nous permet de préciser la durée de 
l’enneigement et donc la durée de la saison de végétation. En général, les systèmes nivaux se 
déneigent courant juin. La longueur de saison de végétation dure en moyenne 132 ± 4 jours. 
On observe un différentiel d’environs 40 jours entre les systèmes nivaux et thermiques, ces 
derniers se déneigeant plutôt fin mai (169 ± 6 jours). Cependant, il n’est pas rare que la neige 
soit absente une partie de l’hiver. Les températures, dans ce cas largement négatives, 
empêchent la reprise de la croissance.  

 Comme le souligne Körner (1999), certaines plantes alpines conservent des tissus 
chlorophylliens durant toute la saison hivernale. C’est notamment le cas des genres Geum et 
Potentilla. Cependant, au-delà de 30 cm de neige, l’activité photosynthétique ne peut se 
maintenir car la transmittance est quasiment nulle. Cette propriété permet aux plantes d’initier 
leur croissance très tôt en début de saison de végétation lorsque la couche de neige n’a pas 
encore totalement disparu optimisant ainsi les chances de compléter leur cycle de vie dans le 
temps imparti. Néanmoins, dans le cadre de cette étude, nous avons considéré que la date de 
déneigement marque le début de la croissance végétale dans les systèmes nivaux. Dans le cas 
des systèmes thermiques, nous avons pris en compte la date à laquelle la température 
moyenne journalière du sol était supérieure à 0°C. 

 

1.3  Le régime thermique et hydrique 
  

 En montagne, la température diminue d’environs 0.6°C lorsque l’on s’élève de 100 m. 

Il est ainsi possible de prédire la température de l’air moyenne à partir de stations 

météorologiques située plus bas dans la vallée (Fig. 16). On observe respectivement un 

maxima d’environs 20°C l’été et un minima proche de -8/-10°C durant l’hiver au col du 

Lautaret (2058 m). Chaque année, environ 1000 mm d’eau tombent dont la majeure partie 

sous forme de neige. 
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Fig. 16 Diagramme ombro-thermique estimé
pour Villar d’Arène (1670 m – courbe du haut)
et le col du Lautaret (2058 m courbe du bas).
Précipitations moyennes mensuelles (± se) des
stations météo France de Besse en Oisans
(1525 m), St Christophe en Oisans (1570 m),
Valloire (1460 m) et Monêtier les Bains (1490
m). Estimation des températures moyennes
mensuelles à partir des enregistrements de la
station Météo France de Besse en Oisans.
Source : Météo France. 

 

  

 Cependant, en fonction de l’orientation, du vent, des effets de masque, le microclimat 
diffère grandement des températures moyennées à l’échelle d’un massif. A partir des données 
climatiques enregistrées depuis 1999 au sein de chaque site, nous avons estimé les 
températures moyennes des sols dans les systèmes nivaux et thermiques (Fig. 17). Durant 
l’hiver, le déficit en neige dans les systèmes thermiques est à l’origine d’une forte amplitude 
des températures, ainsi que d’une fréquence importance de températures extrêmes inférieures. 
à -10°. Au contraire, le régime thermique de systèmes nivaux est stable et avoisine la valeur 
moyenne de 0°C. 
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Fig. 17 Température et humidité du sol (encart) dans les systèmes nivaux (gris) et thermiques (noir) au cours de 
l’année. A droite : somme des degrés jours dans les systèmes nivaux (gris) et thermiques (noir) depuis le 
déneigement.  

 

 Durant l’été, les différences de température du sol entre les systèmes nivaux et 

thermiques sont très faibles et dépendent du vent et de l’exposition. Cependant, la 

quantification des degré-jours montre un décalage important d’environs 280 °Cj lié à la fonte 

précoce de la neige dans les systèmes thermiques (Fig. 17).   
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 En dépit d’une couverture neigeuse très variable le long du gradient, les variations en 

termes de disponibilité en eau (unité massique) sont peu marquées contrairement aux études 

de Walker et al.(1993) et de Fisk et al. (1998) (Tableau 4, appendice article 2B). De façon 

générale, les systèmes thermiques sont légèrement plus secs que les systèmes nivaux, cette 

différence s’accentuant à la fonte des neiges due à l’engorgement dans les systèmes nivaux.  

 

 Systèmes thermiques Systèmes nivaux 
Humidité du sol (% massique)  42.0 (3.0) 37.0 (2.0) 
Capacité au champ (%) 57.8 (0.2) 59.6 (3.7) 
Tableau 4 Régime hydrique des sols des systèmes thermiques et nivaux moyenné sur les sites A, B et D et sur 
deux ans. Moyenne ± se.  

 

2) La nature du substrat 

La nature du substrat varie entre la zone située près du col Galibier (Dalle calcaire) et 

les zones correspondantes de Combe Roche Noire (sites B, C et D) et Aravo.  

 

 Le panorama du col du Lautaret (2058 m) et du col du Galibier (2646 m) se distingue 

par la présence de différentes couches sédimentaires autochtones ainsi que de deux nappes de 

charriages, les nappes Briançonnaise et Sub-briançonnaise. Sur la photo (Fig. 18), on 

distingue en premier lieu des calcaires marneux jurassiques (Trias inférieur = lias) sur 

lesquelles reposent directement le tertiaire avec tout d’abord des calcaires nummulitiques puis 

des grès stratifiés (ou flysh). La Station Alpine Joseph Fourier, que l’on peut apercevoir sur la 

photo repose sur ce substrat. Par ailleurs, les zones d’étude «  Combe Roche Noire » et 

« Aravo » sont situées sur la nappe sub-briançonnaise formée au crétacé supérieur (calcaire 

schisteux et grès nummulitiques). Enfin, la nappe Briançonnaise d’age triasique qui se 

superpose à cette couche tertiaire est constituée notamment de quartzites triasiques et de 

calcaires dolomitiques qui font les reliefs du massif des Cerces (Grand Galibier). Les sols des 

sites situés à la « Dalle calcaire » reposent sur ce substrat. 
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Fig. 18 Panorama des crêtes au nord du col du Lautaret vu du sud, depuis le lac de Laurichard (extrémité nord du 
massif du Combeynot). SAJF : Station Alpine Joseph Fourier. Source : J. Debelmas. 
 
 

3) Les conditions édaphiques 

 Dans la région du Galibier, les sols des systèmes nivaux sont classés comme des 

stagnogley enrichi en argile (Tableau 5). Les sols des systèmes thermiques correspondent à 

des ranker alpins (Lamber 1996, Bounemoura et al. 1998). Le pH est faiblement acide et se 

situe aux alentours de 5. Les sols des systèmes thermiques sont caractérisés par la présence de 

carbonates à la différence des sols des systèmes nivaux  
 

 

Caractéristiques des sites d’étude Systèmes thermiques Systèmes nivaux 

Classification des sols Ranker alpin Stagnogley  
Densité du sol (g.cm-3) 0.31 (0.04) 0.69 (0.02) 
Profondeur du sol (cm)  60-80 >120 
pH dans l’eau 5.11 (0.0 4.96 (0.06) 
Matière organique (%) 14.8 (0.84) 8.70 (0.80) 
Carbonates (%) 3.7 (1.1) <1 

Granulometrie (%)a 
Argile (<2µm) 
Limon (2-50µm) 
Sable (50-2000µm) 

 
9.7 (0.5) 

41.4 (1.0) 
48.6 (1.2) 

 
26.4 (2.6) 
61.7 (2.0) 
11.9 (4.5) 

Tableau 5. Variables édaphiques mesurées sur les sols des systèmes thermiques et nivaux. Moyenne réalisée à 
partir d’échantillonage dans les sites d’études A-D. 
a sur la couche 0-10cm (fraction <2mm)  
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D’autre part, la nature des sols prélevés au col Agnel est décrite dans le tableau ci-dessous :  
Tableau 6 Variables 
édaphiques mesurées sur les 
sols des systèmes nivaux au 
col Agnel. 
 
 
 
 
 

 

 On notera peu de différence entre les systèmes nivaux situés dans la région du col du 

Galibier, et ceux localisés dans la région du Col Agnel.  

L’analyse des concentrations en azote minéral fixé par des résines indique un pic de 

nitrate dans les combes à neige situées près du col du Galibier en début de saison de 

végétation (Fig. 19). La présence importance d’eau de fonte s’accumulant dans les zones 

concaves est en partie responsable de ce phénomène. Durant le reste de la saison de 

végétation, aucune différence significative n’a pu être observée le long du gradient. Enfin 

nous ne détenons aucune information sur les concentrations en phosphate de ces sols.  

 

 
Fig. 19 Fixation journalière des ions nitrate (A) et 
d’ammonium (B) par des sacs de résines enterrés 
à 5cm dans les sols situés en combe, mi-gradient 
et en crête, du déneigement au 21/07 (Période 1) 
et du 21/07 au 05/10 (période 2). Les différentes 
lettres indiquent des différences significatives au 
sein de chaque période (P<0.05). Voir annexe 1 
de l’article 1A pour un descriptif détaillé du 
mode opératoire. 

 

 

Caractéristiques du site d’étude Systèmes nivaux 
Classification des sols Stagnogley 
Matière organique (%) 8.10 (0.34) 
Carbonates (%) 1.2 (0.1) 

Granulometrie (%)a 
Argile (<2µm) 
Limon (2-50µm) 
Sable (50-2000µm) 

 
27.1 (3.1) 
47.5 (3.8) 
25.4  (4.4) 
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4) Les groupements végétaux du site d’étude  

 Les systèmes thermiques sont caractérisés par des groupements à Elyne queue de 

souris (Kobresia myosuroides = Elyna myosuroides) et Dryade à huit pétales (Dryas 

octopetala). On distingue plusieurs faciès en fonction du relief et de l’exposition. Le faciès 

typique, plutôt d’ubac se développe sur un sol superficiel caillouteux, très humifère mais peu 

fertile. En adret, les sols sont plus profonds, les couverts sont plus denses et on note 

l’intrusion d’espèces plus xérophiles comme la Seslérie bleue  (Sesleria caerulea) et l’Avoine 

des montagnes (Helictotrichon sedenense) aux dépens de la Dryade. Les pelouses de milieu 

de gradient sont des groupements acidicline à sol profond, et caractérisés par une forte 

richesse spécifique comparativement aux communautés situées aux deux pôles du gradient 

d’enneigement. Les plantes caractéristiques sont Festuca violacea, Geum montanum, 

Trifolium sp., Alchemilla glaucescens, Arnica montana, Cirsium acaule. Les combes à neige 

se caractérisent par un nombre restreint d’espèces : Salix herbacea, Alchemilla pentaphyllea, 

Sibaldia procumbens, Alopecurus alpinus. On note l’apparition d’un autre groupement, la 

pelouse à vulpin des Alpes et Renoncule de Küpfer. Les espèces caractéristiques sont 

Plantago alpina, Ranunculus kupferi, Trifolium alpinum, Geum montanum, Potentilla aurea, 

etc. (voir annexe 1 pour la liste des espèces dans les sites B,C et D et la richesse spécifique).  

Comme résumé dans le tableau 3, les espèces qui ont fait l’objet d’une étude 

approfondie dans les différents articles de cette thèse sont : Carex foetida, Alopecurus 

gerardi, Salix herbacea, Poa alpina (communautés nivales) et Kobresia myosuroides, Dryas 

octopetala (communautés thermiques) (Fig. 20). 
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Alopecurus gerardi (gr)Carex foetida (gr) Salix herbaceae (ar)

Kobresia myosuroides (gr) Dryas octopetala (ar)

(gr) : graminoïdes
(ar) : arbustes

Crêtes 

Combes à neige

Alopecurus gerardi (gr)Carex foetida (gr) Salix herbaceae (ar)

Kobresia myosuroides (gr) Dryas octopetala (ar)

(gr) : graminoïdes
(ar) : arbustes

Crêtes 

Combes à neige

Fig. 20 Illustration des cinq espèces modèles sélectionnées dans cette étude.  
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Effet de l’enneigement sur les traits fonctionnels, la fixation et 
l’allocation du carbone dans les écosystèmes alpins 
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Article 1A 
 

 

A simulation on the importance of growing season length and 
canopy functional properties on the seasonal Gross Primary 

Production of temperate alpine meadows. 

 

Baptist, F., and Ph. Choler. 2008 
Annals of Botany 101:549-559 

 
 
 
 
 
 
 

 
Mesures des échanges gazeux dans différentes conditions environnementales afin 
de valider le modèle visant à estimer le gain carboné brut des communautés 
situées le long du gradient d’enneigement. Espèce présente : Kobresia 
myosuroides dominante dans les communautés thermiques (C140). Photo : Ph. 
Choler. 
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† Background and Aims Along snowmelt gradients, the canopies of temperate alpine meadows differ strongly in
their structural and biochemical properties. Here, a study is made of the effects of these canopy dissimilarities com-
bined with the snow-induced changes in length of growing season on seasonal gross primary production (GPP).
† Methods Leaf area index (LAI) and community-aggregated values of leaf angle and leaf nitrogen content were
estimated for seven alpine plant canopies distributed along a marked snowmelt gradient, and these were used as
input variables in a sun–shade canopy bulk-photosynthesis model. The model was validated for plant communities
of early and late snowmelt sites by measuring the instantaneous CO2 fluxes with a canopy closed-chamber tech-
nique. A sensitivity analysis was conducted to estimate the relative impact of canopy properties and environmental
factors on the daily and seasonal GPP.
† Key Results Carbon uptake was primarily related to the LAI and total canopy nitrogen content, but not to the leaf
angle. For a given level of photosynthetically active radiation, CO2 assimilation was higher under overcast con-
ditions. Sensitivity analysis revealed that increase of the length of the growing season had a higher effect on the
seasonal GPP than a similar increase of any other factor. It was also found that the observed greater nitrogen
content and larger LAI of canopies in late-snowmelt sites largely compensated for the negative impact of the
reduced growing season.
† Conclusions The results emphasize the primary importance of snow-induced changes in length of growing season
on carbon uptake in alpine temperate meadows. It was also demonstrated how using leaf-trait values of the domi-
nants is a useful approach for modelling ecosystem carbon-cycle-related processes, particularly when continuous
measurements of CO2 fluxes are technically difficult. The study thus represents an important step in addressing
the challenge of using a plant functional-trait approach for biogeochemical modelling.

Key words: Alpine meadows, gross primary production, plant functional traits, snowmelt gradient, sun–shade model.

INTRODUCTION

The carbon budget of cold, snow-covered ecosystems is of
particular interest because they are known to sequester a
large amount of organic carbon in their soils and to be par-
ticularly sensitive to global warming (Hobbie et al., 2000).
Much attention has been drawn to the carbon balance of
arctic tundra (Vourlitis et al., 2000; Grant et al., 2003;
Campbell et al., 2005; Euskirchen et al., 2006), but
carbon balance estimations for temperate alpine tundra
and meadows are relatively uncommon (Cernusca, 1989;
Diemer, 1994). In cold ecosystems, snow determines the
length of the season, which is a main driver of carbon
exchange between land and atmosphere (Arora and Boer,
2005; Churkina et al., 2005). Recent climatic studies have
highlighted the impact of rising temperatures on snow-
cover depth and duration at high elevations (Keller et al.,
2005), but their consequences for the carbon budget
remain poorly understood (Brooks et al., 1997; Monson
et al., 2006).

In situ continuous recording of CO2 fluxes remains diffi-
cult in high-elevation terrains (but see Cernusca et al.,
1998; Li et al., 2005; Hammerle et al., 2007). The alpine

landscape generally exhibits very fine-scale changes in veg-
etation cover, a feature that would preclude the designation
of turbulent fluxes to a particular ecosystem. For the same
reason, remote-sensing-based estimates of gross primary
production (GPP) in alpine landscapes also suffer from
insufficient spatial resolution (Turner et al., 2004). This
makes spatial and temporal scaling-up a major challenge.
A growing body of literature suggests using plant functional
traits in ecosystem modelling in order to scale-up ecosystem
processes on a mechanistic basis (Diaz and Cabido, 2001;
Lavorel and Garnier, 2002). Although this approach has
recently been used in modelling primary productivity and
litter decomposition (Quetier et al., 2007), to our knowl-
edge, this promising avenue has seldom been explored to
model seasonal variations in GPP of herbaceous
ecosystems.

According to the ‘biomass ratio hypothesis’ (Grime,
1998), ecosystem properties and function (i.e. carbon and
nitrogen cycles) should be related to the trait values of
the dominant contributors to the plant biomass. Several
key ecosystem processes, such as decomposition rate or pro-
ductivity, may be predicted from the traits of the dominant
species (Chapin et al., 1996; Cornelissen et al., 1999;
Epstein et al., 2001). A main challenge is to mechanisti-
cally link ecosystem processes to a set of key plant* For correspondence. E-mail philippe.choler@ujf-grenoble.fr
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functional traits that could easily be measured in the field
(Diaz and Cabido, 2001). In this respect, it has been pro-
posed that the use of quantitative traits would be more
powerful than a broad categorization into discrete plant
functional groups (Garnier et al., 2004). The mean of trait
values weighted by the relative abundance of each
species – i.e. a community-aggregated value (Violle
et al., 2007) – provides a route to scale-up from organ to
community level and offers a linkage between comparative
plant ecology and ecosystem modelling. The goal of this
paper is to develop such a modelling approach to estimate
the seasonal GPP of temperate alpine meadows. Gross
primary production is a key variable of the carbon
balance as it quantifies the amount of autotrophic carbon
available for growth, reserve and respiratory demands at
the ecosystem level.

In alpine ecosystems, the landscape-scale distribution of
snow (which is tightly related to the mesotopography) is a
main driver of ecosystem structure and functioning.
Through its effect on the length of the growing season,
snow provides a complex ecological gradient affecting the
seasonal course of temperature, light, wind exposure, soil
water content and nitrogen availability (Jones et al.,
2000). It has long been known that arctic and temperate
alpine plant communities exhibit high species turnover
along snowmelt gradients (e.g. Komarkova and Webber,
1978; Kudo and Ito, 1992; Onipchenko and Blinnikov,
1994; Theurillat et al., 1994). More recent studies have
indicated that consistent shifts in plant functional diversity
occur from early to late-snowmelt sites (Kudo et al., 1999;
Choler, 2005). A greater leaf nitrogen concentration
(Nmass), a higher specific leaf area (SLA) and a predomi-
nance of horizontal leaves (i.e. trait values generally associ-
ated with a high capacity for resource acquisition) are
common features of species from snowy sites (Choler,
2005). Conversely, species from early melting sites are
characterized by upright and thick leaves and low SLA,
i.e. trait values generally associated with nutrient-
conservation strategies (Wright et al., 2004).

Many studies have investigated the relationships among
several canopy properties – leaf area index (LAI), nitrogen
content, canopy architecture – and their effect on carbon
uptake in different light conditions (Anten et al., 1995;
Hikosaka and Hirose, 1997; Anten, 2005). But, to our
knowledge, there has been no attempt to examine these
relationships for multispecies assemblages distributed
along gradients of length of growing season. In this study,
we addressed the following questions. (1) What are the
differences in the community-aggregated values of leaf
functional traits along the snow-cover gradient? (2) What
is the relative effect of these canopy functional properties
and environmental factors (light and temperature regime,
length of growing season) on the seasonal GPP? (3) To
what extent do plant communities from late-snowmelt
sites overcome the negative impact of a reduced growing
season on GPP?

This study was based on previous work investigating
changes in plant functional traits at the species level
along snowmelt gradients in the alpine zone of the south-
western Alps (Choler, 2005). For this work, a sun–shade

canopy bulk-photosynthesis model was implemented to
simulate the light interception and the GPP at the ecosystem
level. The model was validated with instantaneous measure-
ments of CO2 fluxes using a closed-chamber technique.
Finally, a sensitivity analysis was conducted in order to
determine the relative effects of climatic factors and
canopy functional properties on the seasonal GPP.

MATERIALS AND METHODS

Study site and plant trait measurements

The research site was located in the south-western Alps
(France) between the Lautaret and Galibier Pass (45870N,
6850E). The 2-ha site is a slightly inclined depression
located between 2700 and 2780 m a.s.l. It exhibits a
typical mosaic of alpine meadow species, ranging from
Kobresia myosuroides-dominated plant communities in
the early snowmelt sites to Carex foetida- and Alchemilla
pentaphyllea-dominated plant communities in the
late-snowmelt sites. For this work, the seven plant commu-
nities that are the most abundant in the studied area were
selected. The communities are designated here according
to the mean date of snowmelt in Julian days (e.g. C130,
C140, C150, etc). Leaf angle, specific leaf area and leaf
nitrogen concentration [expressed on a mass (Nmass) or
area (Narea) basis] were used in this study because of their
known effect on carbon-cycle-related processes. Further
details of the site and trait measurements are given in
Choler (2005).

For each trait, a community-aggregated value (Ti) was
calculated as follows:

Ti ¼
Xn

i¼1

pi ti ð1Þ

where pi is the relative cover of species i in the sampling
unit (SU), n is the number of species accounting for 80 %
of the cover in the SU, and ti is the trait value of species
i. Although the total coverage of the n species could slightly
exceed 80 %, we did not correct the community-aggregated
value. In practical terms, the change in Ti value because of
this discrepancy is of very limited magnitude (Cornelissen
et al., 2003).

For each plant community, the peak standing biomass
was harvested at the end of July in square plots of 50 �
50 cm. To calculate the leaf area index (LAI), the whole
projected surface of green biomass for three harvests per
community was measured using a leaf area meter
(WinDIAS, Delta-T Devices Ltd). Separation between
green and dead phytoelements was hard to achieve in
early snowmelt sites, and hence LAI might have been
slightly over-estimated for these communities. Material
was then dried at 85 8C for 48 h and weighed.

Climate

Hourly soil temperatures were recorded using Hobo
probes (Onset Computer Corporation, Bourne, MA)
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buried at 5-cm depth over the period 1999–2005. During
snow-covered periods, soil temperatures were close to
0 8C (usually between –1 and 1 8C) throughout the day
and did not exhibit circadian variations, a recording con-
sistent with a continuous snow cover of at least 1 m
depth. The length of the growing season was calculated
as the number of snow-free days with a mean soil tempera-
ture above 0 8C.

During the summer season, air temperature, relative
humidity and photosynthetically active radiation (PAR)
were recorded hourly by an automatic weather station
[Campbell Scientific (Canada) Corp.] located in the Jardin
Alpin du Lautaret (2100 m a.s.l.), 5 km from the study
site. The diffuse and direct components of PAR were calcu-
lated according to Spitters (1986). Daily integrated values
of incoming solar radiation were obtained from a longer
time series (1999–2004) at Briançon climatic station
(1300 m a.s.l.), located at 30 km from the site and main-
tained by Météo France.

The Clear Sky Model (CSM) developed in the frame-
work of the European Solar Radiation Atlas (Rigollier
et al., 1999) was used to model the incoming global irradi-
ance on a horizontal plane under a cloudless sky. In the
CSM, the direct (or beam) radiation (I0b) and the diffuse
radiation (I0d) are simulated separately. Details of the
CSM can be found in Rigollier et al. (1999). Solar geome-
try was implemented using equations written by L. Wald
and O. Bauer (École des mines de Paris, Centre
d’Energétique, Groupe de Télédétection, February, 1997).
The model was implemented with no mask effect due to
the relief. The long-term recordings of daily irradiance in
Briançon were used to parameterize the monthly mean
atmospheric turbidity in the area.

Canopy bulk-photosynthesis model and simulation
of seasonal GPP

We developed a modified version of the sun–shade
model of De Pury and Farquhar (1997) to estimate the
canopy-intercepted radiation and CO2 fixation. For light
interception, the model splits the canopy into a sunlit and
a shaded fraction, which experience distinct light regimes.
Shaded leaves receive scattered light and diffuse sky irradi-
ance while sunlit leaves receive direct-beam irradiance in
addition to this. CO2 fixation is based on the von
Caemmerer and Farquhar biochemical model of C3 leaf
CO2 assimilation (Farquhar et al., 1980; von Caemmerer
and Farquhar, 1981). Below, we only detail the main
changes made to the original sun–shade model. The main
constants, parameters and equations of the model are
given in the Supplementary Information, available online.

(1) We used the ellipsoidal distribution model (Campbell,
1990) to describe the leaf-inclination distribution (or
leaf eccentricity) in the canopy. For simplicity, the
canopy is considered as spatially homogeneous, i.e.
with no clumped leaves in either the vertical or hori-
zontal dimensions. The model assumes that the
leaf-angle distribution is similar to the distribution of
area on the surface of an ellipsoid. The model requires

only one parameter (1), which is the ratio of the axes of
the ellipsoid. The leaf-azimuth-angle distribution is
assumed to be uniform; as such, the leaf-inclination
probability density function g will solely depend on
zl, the zenith angle of the leaf normal (see
Supplementary Information, Table S2, eqn 1, available
online). We estimated the parameter 1 from
community-aggregated values of leaf angle (Table S2,
eqn 2). The use of the ellipsoidal distribution model
modifies the calculations of the canopy extinction coef-
ficient for direct radiation (kb) as well as the canopy
reflection coefficient (Table S2, eqns 4–6).

(2) The Rubisco capacity is linearly related to the leaf
nitrogen content. The mean slope of the Narea–Vc,max

relationship (the parameter sN) was derived from ACi

response curves of six alpine species (see
Supplementary Information online) and from published
data for 13 other species (Wohlfahrt et al., 1998). The
minimum leaf nitrogen content, Nmin, corresponds to
the x-intercept of the Narea–Vc,max linear relationship.
Much attention has been devoted to the vertical distri-
bution of nitrogen in models of canopy photosynthesis
(Friend, 2001). Under non-uniform distribution of
nitrogen within the canopy, Vc,max is also a function
of canopy depth (Table S2, eqn 12). Following
Schieving et al. (1992), we used generalized circle
equations to model, with a single parameter pN, differ-
ent curvatures in the profile of the nitrogen distribution
within the canopy while keeping the total amount of
nitrogen, Ntot, constant (Table S2, eqn 13). If pN ¼ 1,
Narea decreases linearly with canopy depth, while a
uniform distribution is achieved when pN tends
towards infinity. Our preliminary measurements did
not support non-uniform nitrogen distribution in early
and late-snowmelt alpine meadows. Nevertheless, we
maintained this model parameterization in order to
compare the potential impact of nitrogen distribution
with other factors.

(3) The photosynthesis model was combined with a model
of stomatal conductance using the empirical approach
developed by Ball et al. (1987; Table S2, eqns
24–28, online). Lack of data for accurate parameteriza-
tion required that several simplifications had to be
made. First, we used the relative humidity of ambient
air as a surrogate for the leaf surface water vapour
pressure. Secondly, boundary layer conductance to
H2O was set constant. Due to the interdependence of
leaf net photosynthesis and stomatal conductance, we
used an iteration method to calculate Ci (Harley and
Tenhunen, 1991). Parameters for the stomatal conduc-
tance sub-model were taken from the work of
Wohlfahrt et al. (1998).

(4) Seasonal GPP was estimated by running the canopy
bulk-photosynthesis model from 10 May to 20
August. This 100-d period was divided into ten sub-
periods of 10 d. For each sub-period, we calculated
on an hourly basis the daily time course of air tempera-
ture, light and relative humidity for sunny, cloudy and
intermediate days. Each sub-period comprised six
sunny days, two cloudy days and two intermediate
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days. These relative contributions were derived from an
analysis of the long-term recordings of daily irradiance
in Briançon (see ‘Climate’, above). The seasonal evol-
ution of LAI was described as a linear function of
cumulative degree days (DD) after snowmelt, as
follows:

LAIðtÞ ¼ LAImax � DDðtÞ=DDðtoptÞ

where LAImax is the measured LAI at the time of peak
standing biomass (topt). This parameterization allows
the capture of the faster initial development of canopies
from late-snowmelt sites.

To assess the relative importance of canopy functional
properties and climatic factors on carbon uptake, we con-
ducted sensitivity analyses by systematically varying one
factor, i.e. a model parameter or a variable, while keeping
the other factors constant and calculating the relative
effect on the seasonal GPP.

Model validation by canopy gas-exchange measurements

A closed system was used to measure the CO2 exchange
of alpine meadow monoliths taken from an early and a
late-snowmelt site (communities C140 and C180, respect-
ively). Early snowmelt monoliths were sampled in the
vicinity of the site of where plant trait measurements
were taken. But for practical reasons, late-snowmelt mono-
liths were sampled near the Agnel Pass at 2760 m a.s.l.,
located in the Queyras mountain range. For each commu-
nity, five monoliths of 20-cm depth and 50 � 25 cm area
were excavated during autumn 2005, and brought to the
Lautaret Alpine field station (2100 m a.s.l.) where they
remained until the following summer for measurements.
Species’ identity and relative cover in the monoliths were
assessed before the measurements and no changes were
found in the floristic composition compared with the
field. This indicated that the monoliths recovered well
from excavation.

For CO2 flux measurements, a 48-L Perspex chamber
was placed over each monolith and sealed around the
base by seating it in a trough of water. Within the
chamber, a fan (Radio Spare) provided air mixing above
the canopy. The chamber was connected to a portable
IRGA (EGM-4, PPSystems, Hitchin, UK) measuring the
CO2 concentration every minute. The rate of change of
CO2 in the chamber was determined by averaging the
measurements under steady-state conditions, which typi-
cally began after 1 min. The measurement periods were
generally brief, not exceeding 3 min in order to minimize
chamber effects. We simultaneously recorded photosynthe-
tically active radiation (PAR), air and soil temperature, and
relative humidity (RH) within the chamber. The rate of
change in chamber CO2 concentration was converted into
a CO2 exchange rate per ground area. Net CO2 fluxes
under light conditions (Fn) were collected on both cloudy
and sunny days in mid-July, 2006. Dark respiration rates
(Rd) were measured before and after the light treatment
by placing a dark cover over the chamber. There was no

indication that respiration increased after the light treat-
ment. Instantaneous rates of gross CO2 uptake (GPP) were
calculated as GPP ¼ Fn þ Rd. LAI and Ntot were measured
on three 5 � 5 cm square plots per monolith. The mean LAI
of early snowmelt monoliths was 1.3, and the mean Ntot was
208 mmol N m22. The mean LAI of late-snowmelt mono-
liths was 2.2, and the mean Ntot was 280 mmol N m22.

Model performance was evaluated quantitatively by cal-
culating the square of Pearson’s correlation coefficient (r2),
and qualitatively by the root-mean-square error (RMSE)
and the mean absolute error (MAE), summarizing the
mean differences between observed and predicted values
(Willmott and Matsuura, 2005).

Numerical simulations, statistical analyses and graphics
were performed with the R software environment
(R Development Core Team, 2006). The source code is
available upon request.

RESULTS

Climatic conditions along the snowmelt gradient

The yearly course of soil temperature for the early (C140) and
the late (C180) snowmelt sites is depicted on Fig. 1. The
delayed onset of growing season, by nearly 40 d, is constant
throughout the 7 years of recordings (Fig. 1A). This differ-
ence accounts for a loss of around 280 8Cd at the snowy
site at the time of peak standing biomass, which is 30 %
fewer degree-days than at the early snowmelt site (Fig. 1B).
By comparison, inter-annual variability in cumulative
degree-days in the snowy sites is about an order of magnitude
below that of the early snowmelt sites (Fig. 1B).

The annual cycle of incident solar radiation measured
during cloudless days is fitted well by the clear sky
model (Fig. 2A). Around 60 % of days during the
growing season received more than 70 % clear-sky radi-
ation, hereafter referred to as ‘sunny days’. Thus, cloudless
weather conditions predominate in this area of the south-
western Alps. The effect of cloudiness accounts for a
10 % reduction in total radiation received by the early
snowmelt sites compared to the clear sky model
(Fig. 2B). Later snowmelt in C180 is responsible for a
40 % reduction in the cumulative incoming solar radiation
over the growing season when compared with early snow-
melt sites, i.e. from 0.22 MJ cm22 to 0.13 MJ cm22

(Fig. 2B). Inter-annual variations are small compared with
those attributable to the timing of snowmelt (Fig. 2B).
The daily time course of climatic data for the three types
of day is given in the Supplementary Information
(Fig. S1, available online).

Plant functional traits along the snowmelt gradient

Graminoids, erect forbs and large leafy rosettes are the
main plant life forms accounting for up to 80 % of the veg-
etation cover in the study area (Table 1). Early snowmelt
sites exhibit a discontinuous vegetation cover and a high
proportion of bunch graminoids (e.g. Kobresia myosur-
oides), whereas tiny erect forbs and stoloniferous grami-
noids are predominant at the snowy sites. The snowmelt
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gradient was also characterized by a marked shift in
community-aggregated values of leaf traits, with planophi-
lous canopies with a high Nmass and high SLA at the snowy
sites, and erectophilous canopies with low SLA and high
Narea at the early snowmelt sites (Fig. 3).

Canopies of late-snowmelt sites exhibited larger LAI and
greater Ntot (Table 1). It should be stressed that the range of
variation for LAI (from less than 1.0 at the early snowmelt
sites to around 2.5 at the mid-part of the gradient) largely
exceeded that of Narea. Therefore, the total nitrogen pool
in the canopy, Ntot ¼ LAI � Narea is primarily determined
by LAI, and to a lesser extent by Narea.

Daily and seasonal gross primary production

Modelled values of instantaneous gross CO2 uptake cor-
responded well with measurements under cloudless and
overcast conditions, although there was a slight over-
estimation for early snowmelt canopies (Fig. 4). Increased
carbon fixation under conditions of high diffuse radiation
was particularly noteworthy for canopies with high LAI
(Fig. 4A). At a PAR of 1000 mmol m22 s21, the CO2

gross uptake of late snowmelt monoliths was 1.5 times

FI G. 2. (A) Time course of daily integrated incoming radiation in 2002
and comparison with a clear sky model (solid line). Broken lines indicate
reductions of 20 % and 50 % of the clear sky amount of radiation, i.e. the
threshold values chosen for intermediate and cloudy days. The horizontal
segment indicates the growing season period. (B) Cumulative radiation
during the growing season in the C140 and C180 communities. The
clear sky model is shown for comparison. Means (+ s.e.) were
calculated over the period 1999–2004. Data were recorded at Briançon

(1300 m a.s.l.), 30 km from the study site.

FI G. 1. (A) Time course of daily mean (+ s.e.) soil temperature at 5 cm
below ground and (B) cumulative degree-days in early and late-snowmelt
sites in the C140 and C180 communities (see Table 1). Data are averaged
over the period 1999–2005 and were recorded at two or three different

sites depending on the year.
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higher under overcast conditions compared to sunny con-
ditions (Fig. 4A), even though ambient air temperature was
around 5 8C lower (Supplementary Information, Fig. S1).

For sunny and overcast conditions, the daily GPP values
for the seven canopies were linearly related to the LAI
(Fig. 5). This may be explained by the strong relationship
between LAI and Ntot (see above and Table 1). For a
given amount of Ntot, we simulated the daily carbon
uptake for a range of LAI (Fig. 5). For low LAI values,
the daily GPP strongly increases with LAI, indicating that
light capture is the main limiting factor of carbon uptake.
Then, the slight decrease of GPP with LAI may be
explained by a decrease in Nmass due to a ‘dilution’
effect. The modelled GPP under cloudy skies was
lowered by around 10 % compared with cloudless skies,
for example 6.5 against 7.3 g C m22 d21 for C180 canopies
(Fig. 4). We found a negligible effect of leaf eccentricity
(see Table 1) on this trade-off between light capture –
driven by LAI – and CO2 fixation – driven by Nmass

(data not shown). Finally, it should be noted that for a
given Ntot, alpine canopies operate at a higher LAI than
the optimal LAI (Fig. 4).

A sensitivity analysis of the seasonal GPP model was
conducted by estimating the effect of a 10 % increase in a
factor while keeping all other characteristics constant
(Fig. 6A). The simulations were run for a 100-d period
(see Material and Methods). A 10 % increase in the
length of growing season (corresponding to a shift of 10
d for the snowmelt) had the greatest impact on the seasonal
GPP (Fig. 6A). By comparison, a shift to clear sky con-
ditions throughout the season had a weaker effect.
Similarly, increased temperature during the whole season
did not compensate for 10 d lost in the growing season.
LAI and two nitrogen-related factors, Nmass and sN, had a
noticeable impact on GPP, but still lower than that of the
length of growing season (Fig. 6A). The shift from a
uniform to a linearly decreasing nitrogen distribution
( pN ¼ 1) also had a weaker effect on GPP, roughly
similar to the effect of a temperature or an atmospheric
CO2 increase. Finally, a 10 % change in relative humidity,

leaf angle, or physiological parameters related to stomatal
conductance changed the GPP by less than 1 %.

The integrated values of GPP over the growing season
were around 200 g C m22, except for the plant communities
C140 and C150 (Fig. 6B). GPP simulations were also per-
formed without the snow-induced shortening of the
growing season. For the late-snowmelt sites, the model pre-
dicted a severe reduction in the carbon uptake because of
the delayed snowmelt. However, the results indicated that
the functional properties of these canopies (greater Ntot

and LAI) largely compensated for this negative impact of
a reduced growing season.

DISCUSSION

Our study emphasizes the interplay between short-term and
long-term effects of snow-cover duration on the seasonal
carbon uptake of alpine canopies. Short-term effects are
driven by the direct influence of snow cover on the seasonal
light and temperature regimes, whereas long-term effects
correspond to the ecological sorting of species and plant
traits along snow-cover gradients. A main result is that
the snow-induced reduction in the carbon uptake period is
counterbalanced by increased efficiency of carbon gain,
which is made possible by the particular leaf trait combi-
nation of exploitative strategists that occur at the
late-snowmelt sites. To our knowledge, this is the first
attempt to determine the complex impact of snow on the
seasonal GPP of temperate alpine canopies.

Instantaneous CO2 flux measurements under different
light conditions are predicted well by our canopy photosyn-
thesis model. We are thus confident that the use of
community-aggregated values of the chosen leaf traits is
relevant to simulate the carbon uptake at the community
level, as hypothesized in previous conceptual work (Diaz
and Cabido, 2001). We found that the assimilation rate of
the whole canopy (expressed per unit ground area) was of
the same magnitude as the leaf assimilation rate (expressed
per unit leaf area), which is consistent with other studies
(Grabherr and Cernusca, 1977; Diemer, 1994; Tappeiner

TABLE 1. Features of the seven alpine meadows distributed along the snowmelt gradient. The measurements were made at the
time of peak standing biomass at the end of July 2004. The leaf eccentricity was calculated with an ellipsoidal

leaf-distribution model (see Material and Methods)

Mean snowmelt (Julian day)

130 140 150 160 170 180 190

n 7 9 6 4 9 4 8
Percentage cover of plant life form

Bunch graminoids 59+1.6 33 +1.7 18+0.9 ,1 ,1 ,1 ,1
Other graminoids 15+1.4 12+0.8 13+0.5 28+2.5 20+1.1 39+4.3 48+4.8
Erect forbs 14+0.6 30+1.3 33+1.0 36+1.6 43+2.1 52+3.6 52+4.8
Large leafy rosette 3+0.3 17+1.1 17+0.9 22+3.3 17+2.3 4+0.5 ,1

Leaf eccentricity 0.5 1.5 1.6 2.7 2.3 2.5 3.1
Leaf area index* 0.8+0.09 1.5+0.06 2.5+0.35 1.2+0.10 1.12+0.01 2.0+0.09 2.4+0.18
Ntot (mmol m22) 133+4.0 218+10.3 356+10.2 148+6.1 159+5.9 257+7.4 275+16.7
Above-ground phytomass (g m22) 435+154 486+65 443+89 352+77 402+45 398+67 370+36

Means+ s.e. are shown.
*n ¼ 3 for LAI.
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and Cernusca, 1998). Compared with the most widely
investigated temperate alpine community, i.e. Carex
curvula-dominated alpine meadow (Diemer and Körner,
1998), the measured and modelled carbon uptake are
higher for canopies of late-snowmelt sites and lower for
early snowmelt sites.

Scaling-up from detailed plant physiological studies to
ecosystem or regional scales requires taking into account
variations in vegetation composition and community
structure. Approaches based on a priori classification of
plants into functional types have shown some limitations

(Naeem and Wright, 2003; Reich et al., 2004). Our study
shows how integrating the trait-based approaches of com-
parative plant ecology with canopy-functioning models
addresses this difficulty. However, recent findings suggest
that functional diversity, i.e. the distribution and range of
trait values in a given plant community, might be another
key driver of ecosystem functioning (Naeem and Wright,
2003; Reich et al., 2004). Clearly, a further challenge in
ecosystem modeling would be to explicitly incorporate
functional diversity effects into biogeochemical models.

FI G. 3. Relationships between community-aggregated values of (A) leaf
nitrogen concentration on a mass basis (Nmass) and mean leaf angle, and
(B) leaf nitrogen content on an area basis (Narea) and specific leaf area
(SLA). Means (+ s.e.) were calculated from 4–9 different plots (see
Table 1). The numbers above the squares indicate the mean snowmelt

date for each community in Julian days.

FI G. 4. Canopy gross CO2 uptake for sunny and overcast conditions in
mid-July 2006. Closed chamber measurements were performed (A) on
monoliths dominated by Carex foetida sampled at a late-snowmelt site
(C180), and (B) on monoliths dominated by Kobresia myosuroides
sampled at an early snowmelt site (C140). The relationships between
measured and predicted values are shown in the two insets. Evaluation
of the model performance is as follows: (A) n ¼ 50, r2 ¼ 0.89,
RMSE ¼ 0.033, MAE ¼ 0.026; (B) n ¼ 46, r2 ¼ 0.95, RMSE ¼ 0.025,

MAE ¼ 0.021.
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There are several possible shortcomings when simulating
the GPP over the growing season. For example, we con-
sidered seasonal variations in incoming radiation and
degree-days, excluding the potential impact of changes in
soil water content on canopy assimilation. Our continuous
measurements of gravimetric soil water content, at 5 cm
below ground, did not show significant differences
between early and late-snowmelt sites, and only a slight
decrease through the growing season (F. Baptist, unpubl.
res.). The soils of the study site are deep and the average
rainfall between mid-May and mid-August for the three
years, 2004–2006, was around 300 mm. These features
should ensure enough water is available to plants in the

conditions of low evaporative demand normal for high-
elevation meadows (Körner, 1999). Moreover, we did not
consider all the potential changes in plant functioning
over the growing season. For example, the nitrogen
content of late-snowmelt canopies is particularly high
immediately after their release from snow cover, but then
decreases slightly (F. Baptist, unpubl. res.). This may
cause an over-estimation of the seasonal GPP at

FI G. 5. Daily estimates of GPP (in g C m22 ground d21) for (A) sunny
and (B) overcast conditions in mid-July as a function of LAI.
Simulations were run for a range of canopy nitrogen contents, Ntot (in
mmol N m22 ground), represented by the lines. The black squares corre-
spond to the GPP estimates obtained with the LAI–Ntot combinations of
the seven alpine plant communities studied. Numbers above the squares

as in Fig. 3.

FI G. 6. (A) Sensitivity analysis of the seasonal GPP model. The relative
change in GPP following a 10 % increase in a given factor was calculated
as (GPPnew – GPP)/GPP where GPPnew is the GPP obtained after changing
the factor. Factors for which the relative effect on GPP did not exceed 1 %
are not shown. Climatic variables and canopy features are distinguished.
LGS is for a 10-day increase of the length of growing season. Ca,
ambient CO2 partial pressure; pN, parameter for nitrogen distribution
(see Material and Methods); sN, slope of the linear relation between
Narea and Vc,max; Nmin, minimum leaf nitrogen content; ul, curvature of
the leaf response of electron transport rate to irradiance. (B) Seasonal esti-
mates of GPP (in g C m22) for the seven alpine communities studied. For
each bar, the grey part accounts for the carbon uptake during the observed
length of the growing season, and the white part accounts for the missing
carbon uptake due to the delayed snowmelt. Numbers indicate the mean

snowmelt date of each community in Julian days.
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late-snowmelt sites. These limitations call for further refine-
ments of the model and, as such, absolute values of the sea-
sonal GPP estimates should be considered with caution.
However, these limitations should not distort the con-
clusions about the relative impact of growing season
length vs. canopy functional properties on carbon uptake
along the snowmelt gradient.

In our simulations, leaf geometrical properties did not
exert a strong influence on GPP. Canopy photosynthesis
models, based on the Monsi–Saeki theory, also show that
the assimilation rate of canopies with a LAI under 2.5 is
largely independent of the extinction coefficient, K
(Hirose, 2005). However, our model neglects other poten-
tial effects of leaf inclination, for example the effect on
night-time frost and possible low-temperature photo-
inhibition (Germino and Smith, 2001). Presently, we do
not have enough empirical data to assess the relative
importance of such mechanisms at the canopy level and
over the growing season.

The results suggest that the alpine canopies do not
operate at their optimal LAI (Fig. 5). It is clear that
stand-level properties are not exclusively dependent upon
maximizing carbon uptake and that individuals are the
units under selection, not canopies (Hirose, 2005). Some
theoretical approaches have also highlighted that the
optimal LAI is not evolutionary stable if one takes into
account competition among individuals (Anten and
Hirose, 2001). Perhaps more interestingly, the comparison
of canopy functioning along the snowmelt gradient might
call for a more detailed investigation of the optimal LAI–
N relationships for different lengths of growing season.

As reported in other studies (De Pury and Farquhar,
1997; Gu et al., 2002), the sun–shade model allows a
more realistic treatment of the difference in the canopy
photosynthetic response to direct and diffuse radiation.
Increased carbon uptake under diffuse radiation
has already been reported (Roderick et al., 2001). The
deep-shaded leaf fraction within vegetation canopies is
strongly reduced on cloudy days compared to cloudless
days as a result of the increased diffuse fraction of incoming
radiation. Furthermore, at noon there is a lower probability
that canopy photosynthetic saturation will occur under over-
cast conditions compared to sunny conditions (Gu et al.,
2002).

The results support the view that the traits of exploitative
strategists (especially the high leaf Nmass, the rapid growth
of photosynthetic organs) should permit the constraint of
a shortened carbon-uptake period to be overcome.
However, both conservative and exploitative strategies are
known to be adaptive under severe limitation of the
carbon uptake period (Kikuzawa and Kudo, 1995).
Obviously, the exploitative strategy is strongly dependent
upon sufficient soil nutrient availability. The late-snowmelt
sites that were investigated benefit from a pulse of inorganic
nitrogen at the time of snowmelt, as compared to
early snowmelt sites (F. Baptist, unpubl. res.; see
Supplementary Information online). These results are also
consistent with other comparisons along snowmelt gradi-
ents (Bowman et al., 1993; Fisk et al., 1998; Jaeger
et al., 1999). It is therefore likely that in the late-snowmelt

sites that were studied, this nutrient pulse at the onset of
growing season allowed a rapid expansion of photosynthetic
tissues, which ensured efficient light capture and carbon
fixation.

Conclusions

For cold ecosystems, the carbon-uptake period is primar-
ily determined by the snow-cover duration. Here, we have
demonstrated that the snow-induced changes in the length
of growing season had the highest impact on the seasonal
GPP. Our study is among the first ones to integrate the func-
tional trait approach with instantaneous measurements and
integrated estimates of ecosystem functioning. This
approach is particularly promising because continuous
recordings of CO2 fluxes have been shown to be technically
difficult in alpine environments with strong bioclimatic
gradients.

Climatic change in will affect snow regimes in temperate
mountains (Keller et al., 2005; Euskirchen et al., 2006).
Increased temperature and reduced snow precipitation
may be responsible for earlier snowmelt. But the phenolo-
gical responses of alpine species to a lengthening growing
season are still hard to predict (Starr et al., 2000; Wipf
et al., 2006; Bjork and Molau, 2007). One might predict
a small impact on carbon uptake if plant communities are
dominated by periodic species, i.e. species with a fixed,
genetically controlled growing period (Sorenson, 1941).
Conversely, the short-term consequences for ecosystem pro-
ductivity would be stronger if aperiodic species, i.e. species
able to extend their vegetative growth, are dominatant.
Future studies should address these issues for a better esti-
mate of seasonal GPP in alpine meadows in response to
global climate change.

SUPPLEMENTARY INFORMATION

Supplementary material is available online at http://aob.
oxfordjournals.org/ and consists of the following figures
and tables. Figure S1: the daily course of temperature, rela-
tive humidity and photosynthetically active radiation for
sunny, intermediate and cloudy days in May–August.
Figure S2: Relationship between the maximum rate of car-
boxylation (Vc,max) and the leaf nitrogen content per unit
area (Narea). Figure S3: daily uptake of nitrate and
ammonium by a resin bag inserted at 5 cm below ground
in the C140, C160 and C180 communities. Table S1: list
of constants, parameters and lumped variables used in the
model. Table S2: list of the main equations of the model.
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Supplementary material 1. 
 

 
 
Relationship between the maximum rate of carboxylation (Vcmax ) and the leaf nitrogen 
content per unit area. Black : data from our study. Grey :  data from Wohlfahrt et al. (1999). 

amax N42.050.5Vc ⋅+−= . R2=0.57, P<0.0001.  
 
Experimental procedure :  
The experimental procedure was similar to the one followed by Wohlfahrt et al. (1999). We 
used an Infra Red Gaz Analyser (CIRAS-3, PP-System, Hitchin, UK). CO2 response curve 
were conducted at saturating light intensity (1500 µmol m-2 sec-1). Leaf temperature was 
equalled to 22°C. Approximately three to four leaves were investigated to estimate the 
physiological parameters of the alpine species at peak standing biomass (Carex foetida, 
Kobresia myosuroides, Salix reticulata, Dryas octopetala, Alchemilla pentaphillea, et 
Alopecurus gerardi).  
 
Références :  
Wohlfahrt, G., M. Bahn, E. Haubner, I. Horak, W. Michaeler, et al. 1999. Inter-specific 

variation of the biochemical limitation to photosynthesis and related leaf traits of 30 
species from mountain grassland ecosystems under different land use. Plant, Cell & 
Environment 22:1281-1296. 

 
 



Supplementary material 2. 
 

 
Daily uptake of nitrate (A) and ammonium (B) by resin bag inserted iat 5 cm depth in soil in 
C180, C160 and C140 communities from snowmelt until July 2005 (period 1) and from July 
to September (period 2). Different letters indicate significant differences within each period 
(p<0.05). Values are the mean (se). See below for experimental procedure. 
Stastical results :  
NO3

- :  
Period 1:  
Community effect (F2,27 = 15.3, P<0.0001) 
site effect (F2,27 = 1.21, P=0.31) 
Community effect × site effect (F4,27=1.12, P=0.36) 
Period 2 :  
Community effect (F2,13 = 1.02, P=0.38) 
site effect (F2,13 = 1.62, P=0.23) 
Community effect × site effect (F4,13=1.08, P=0.40) 
 
NH4

+ :  
Period 1:  
Community effect (F2,27 = 1.77, P=0.19) 



site effect (F2,27 = 2.67, P=0.08) 
Community effect × site effect (F4,27=1.21, P=0.33) 
Period 2 :  
Community effect (F2,13 = 0.26, P=0.76) 
site effect (F2,13 = 1.35, P=0.29) 
Community effect × site effect (F4,13=0.18, P=0.94) 
 
Experimental procedure :  
Nylon bags (10 × 5 cm) containing 5 g of mixed anion–cation exchange resin (Amberlite 
IRN150, VWR InternationalS.A.S., Fontenay-sous-Bois, France) were inserted into the soil at 
5cm depth in field site. Bags were installed at four locations in each of the three replicates of 
the C140 , C160 and C180 communities. Half were incubated (1) from snowmelt until July 
2005 (period 1) and the other half (2) for three months from July to September (period 2). 
Captured nitrate and ammonium were released from the resins by extraction in 100 ml of 2M 
KCl. The resulting concentrations of nitrate (A) and ammonium (B) were detected using a 
colorimetric chain (Fiastar 5012 Flow Injection Analyser, Foss Tecator AB, Sweden). Rates 
of nitrate and ammonium uptake were estimated as µg N uptake day-1 g resin-1. 
A two-way ANOVA was used to test site and community effects on nitrate and ammonium 
uptake within each period. Statistical analyses were performed with the R software 
environment (R Development Core Team, 2006). 
 
 



Supplementary Fig. S1 
 
The daily course of temperature, relative humidity (RH), and photosynthetically 
active radiation (PAR) for sunny, intermediate and cloudy days. Means and standard 
errors are given for May, June, July and August. The values are averaged over a 6-
year-long period and were collected at the alpine field station at Lautaret (2100 m 
a.s.l.) located 5 km from the study site. 
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Supplementary Information: Tables 

TABLE S1. Constants, parameters and lumped variables used in the model 

Symbol    Value Units Description Reference 

A. Solar geometry and irradiance models 

aS    rad Solar azimuthal angle  

I0  µmol m–2 s–1 Incident PAR above the canopy  

I0b  µmol m–2 s–1 Beam incident PAR above the canopy  

I0d  µmol m–2 s–1 Diffuse incident PAR above the canopy  

ISc    1367 W m–2 Solar constant  

zs  rad Solar zenithal elevation  

λ 0.1129 rad Longitude of the site  

ϕ 0.7866 rad Geographic latitude of the site  

B. Canopy architecture and light interception models 

al  rad Leaf azimuthal angle of a normal to the leaf surface  

f 0.15  Spectral Correction Factor (2) 

Fh  m2 m–2 Cumulated leaf area from the top of the canopy to a given height per unit ground area  

kd  0.78  Diffuse and scattered PAR extinction coefficients (2) 

LAI  m2 m–2 Leaf Area Index  

zl  rad Zenithal angle of the normal to the leaf surface  

ε   Ratio of the axes of the ellipsoid in the leaf distribution model  

σ 0.15  Leaf scattering coefficient of PAR (sum of leaf reflectance and leaf transmittivity to PAR) (2) 

θ  rad Incidence angle of the beam light on the leaf foliage element  
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C. Photosynthesis and stomatal conductance models 

EaΓ*  37830 kJ mol–1 Activation energy of Γ* (4) 

EaKc  65000 kJ mol–1 Activation energy of Kc 
(4) 

EaKo  36000 kJ mol–1 Activation energy of Ko 
(4) 

gb,H2O  3.4 mol m–2 s–1 Boundary layer conductance to water vapour  

gmin,H2O  80 mmol m–2 s–1 Minimum stomatal conductance to water vapour at the light compensation point (4) 

HaVc,max 87624 J mol–1 Activation energy of Jmax 
(5) 

HaJmax  75926 J mol–1 Activation energy of Jmax 
(5) 

HdJmax  194482 J mol–1 De-activation energy of Jmax 
(5) 

HdVc,max  201550 J mol–1 De-activation energy of Vc,max 
(5) 

ref
cKT

 404 µbar Michaelis–Menten constant for Rubisco carboxylation at T = Tref 
(2) 

refT
oK  248 mbar Michaelis–Menten constant for Rubisco oxygenation at T = Tref 

(2) 

m 14.6  Empirical coefficient for the sensitivity of gs,H2O to A, Cs and RH (4) 

nCO2 0.000335  Molar fraction of carbon dioxide in the atmosphere  

nO2 0.21  Molar fraction of oxygen in the atmosphere  

Narea  mmol m–2 Leaf nitrogen content per unit leaf area  

Nmass  g g–1 Leaf nitrogen concentration, per unit of dry weighted leaf mass  
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Nmin 13.1 mmol m–2 x-intercept of the linear relationship between Narea and Vc,max 
 

Ntot  mmol m–2  Total canopy leaf nitrogen per unit ground area  

O  mbar Atmospheric oxygen partial pressure  

Patm  Pa Mean atmospheric pressure (as a function of the elevation of the site)  

pN   Curvature coefficient for nitrogen distribution within the canopy  

R 8.31 J mol–1 K–1 Universal gas constant  

RH  % Relative Humidity of the ambient air  

SJmax  643 J K–1 mol–1 Entropy term of the Jmax response parameter (3) 

SVc,max  656 J K–1 mol–1 Entropy term of the Vc,max temperature response  (3) 

sN 0.42 mmol µmol–1 s Slope of the linear relation between Narea and Vc,max at T = Tref 
 

T  K Air (ambiant) temperature  

Tref 293 K Reference temperature  

refΓ T*
 44 µbar CO2 compensation point of photosynthesis in the absence of mitochondrial respiration at T = Tref 

(1) 

θl 0.7  Curvature of the leaf response of electron transport (J) to irradiance  (2) 

θc 0.9  Curvature factor of response of canopy photosynthesis to irradiance  (2) 
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TABLE S2. Main equations of the model 

Note: The equations of the Clear Sky Model giving I0b and I0d under cloudless conditions are not described. 

 

Equations Description No. 

Canopy light interception  

1if,1Xwith,X2)]X1(/)X1[ln  

and1if,1Xwith,X)Xsin  

wherezsinzcoszsin2  )zg(

2

21

llll

<εε−=ε− +(+ ε=Λ

<εε−=/ (+ ε=Λ

]))( ε + )((Λ[ / )( ε=

−

−

22223

 

Probability density function describing the 

fraction of leaf area with an inclination 

between zl and zl +dzl in the ellipsoidal leaf 

distribution model 

(1) 

∫
π

απ=

2/

0

lll dz)zg(2  z
 

Average leaf inclination angle (2) 

lll

2

0

2/

0

S,S dadz)z(gcos
2
1)az(G θ
π

= ∫ ∫
ππ

 

Projection of the foliage area on a plane 

perpendicular to the incident beam 

direction  averaged over leaf elements of all 

orientations 

(3) 

SS,Sb acos/)az(Gk =  Beam radiation extinction coefficient (4) 

[ ] [ ]5.05.0
hcb

)k  (1 / k ρ 2
cb )s1(1/)s1(1ρ  with    exp  -1 bbhcb −+−−==ρ +

 Canopy reflection coefficient for beam 

PAR 

(5) 

∫
π

ρ=ρ

2/

0

ScbScd dzzcos 
 

Canopy reflection coefficient for diffuse 

PAR 

(6) 
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sun sha
Fk -

 hsun f1 f;exp)(F f hb −==  Sunlit and shaded fraction at a given height 

Fh 

(7) 

 I k )-(1  )-(1  )(F I 0bb
0.5

cbhbl σρ=  Incident beam light at a given height Fh per 

unit leaf area 

(8) 

)F k )-(-(1
0dd

0.5
cdhdl

hd
0.5

 exp I k )-(1 )-(1   )(F I σσρ=  Diffuse light at a given height Fh per unit 

leaf area 

(9) 





 σσρ= σ )k (-F

b
0.5)k )-(1(-F

 b
0.5

cb0bhsl
bhb

0.5
h expk )-(1-expk )-(1 )-(1I  )(F I  Scattered light at a given height Fh per unit 

leaf area 

(10) 

[ ] [ ]∫∫ +=++=

LAI

0

hhshahslhdlcsha

LAI

0

hhsunhslhdlhbluncs  F)dF(f )F(I)F(I  I; F)dF(f )F(I)F(I)F(I  I  
Incident radiation on the sunlit and shaded 

fraction 

(11) 

Nitrogen distribution within the canopy 

mintotred N LAIN  N −=  Nitrogen pool which can be distributed per 

unit ground area 

(12) 

∫=ΩΩ−+= −
1

0

p/1p1p/1p
hredminharea dx)x-(1  with)LAI())LAI/F(1(NN  )F(N NNNN

 

Nitrogen leaf concentration at a given 

height Fh per unit leaf area 

(13) 
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Photosynthesis and stomatal conductance models 

[ ]T  N- )(FNs)(FV minhareaNh maxc ref =  (in µmol CO2 m–2 leaf s–1) Photosynthetic RUBISCO capacity at 

T=Tref  

(14) 

)(FV1.2)(FJ h
T
maxch

T
max

refref =  (in µmol electron m–2 leaf s–1) Potential rate of electron transport rate at 

T=Tref 

(15) 

[ ] [ ]R) (T / )H - S  (TR) (T / )H-S (TR)) T(T /)T-(T (H
h

T
maxh

T
max

drefdrefrefrefaref exp1 / exp1exp)(FX)(FX ++= Temperature dependence of Vcmax and Jmax 

(generic form) 

(16) 

∫=

LAI

0

hh(sun/sha)hmaxc)sha/unc(s  Fd )F(f)F(V  V  (in µmol CO2 m–2 ground s–1) 
Photosynthetic capacity of the sunlit / 

shaded fractions 

(17) 

R)) T)/(TT-(T (ETT refrefaref exp  XX =  Temperature dependence of Kc, Ko and Γ* 

(generic form) 

(18) 

))K/O1(KC()- (C V  A oci
*

i (sun/sha)c(sun/sha)c ++Γ=  RUBISCO-limited rate of photosynthesis of 

the sunlit / shaded fractions 

(19) 

2/)f1(IIwith0 JIJ)J(I- J )sha/sun(clemaxlemaxle
2

l −==++θ  Irradiance dependence of electron transport 

rate of the sunlit / shaded fractions 

(20) 

)2C(4)- (CJ  A *
i

*
i(sun/sha)j Γ+Γ=  Electron-transport limited rate of 

photosynthesis of the sunlit / shaded 

fractions 

(21) 

0 AAA)A(A- A

of roots smallest  theA and Awith ;AAA

)sha/sun(cj(sun/sha))sha/sun(gc)sha/sun(cj(sun/sha)
2

)sha/sun(gcc

gcshagcsungcshagcsungc

=++θ

+=

 
Gross canopy photosynthesis rate (22) 
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)V(V .00890  R cshacsund +=  Dark respiration rate (23) 
6

atmCOa 10/Pn C
2

=  Ambient CO2 partial pressure (24) 

0sHatmdgcas 2
g/P37.1)RA(C C +−=  Leaf surface CO2 partial pressure (25) 

s
6

dgcOHminOsH C/)100/RH(10)RA(mg g
22

−++=  Stomatal conductance to water vapour (26) 

1
OHbOHstotCO )g/37.1(1.6/g g

222
−+=  Total conductance to CO2  (27)

2totCOatmdgcai g/P)RA(C C +−=  Intercellular CO2 partial pressure obtained 

by coupling net assimilation rate 

conductance using Fick’s law 

(28) 
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Decreased aboveground primary productivity of alpine tundra in 
response to earlier snowmelt.  

 
 

Baptist, F., Flahaut, C., Streb, P. and Ph. Choler 
In prep. for Oecologia 

 
 
 
 
 
 

 
Monolithes (traitement E) enterrés au sommet d’une butte afin de limiter 
l’enneigement durant l’hiver. Lieu : Parcelle expérimentale de la Station Alpine 
Joseph Fourier avant les premières neiges de l’hiver (2005). Photo : F. Baptist. 
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Abstract 

Snow deposition and thermic regime are rapidly changing in alpine tundra and may lead to 

longer growing season but also higher risks of frost events in early spring. Alpine tundra from 

late snowmelt sites may be particularly vulnerable to these climatic changes. Large samples of 

alpine grassland were grown in monoliths for two consecutive years. Snow cover was 

manipulated to test for the effects of an early snowmelt (E treatment), an inconsistent winter 

snow cover (I treatment) and a late snowmelt (L treatment) on plant functional traits, Leaf 

Area Index (LAI) and Aboveground Net Primary Productivity (ANPP). Besides, we examined 

the seasonal growth of the locally dominant sedge, Carex foetida. To address the potential 

effect of frost events, we measured freezing temperatures of the dominant graminoid species. 

Despite an extended growing season, aboveground biomass, productivity and LAI in the E 

and I treatments were either reduced or equalled to the values measured in L treatment 

However, we found no changes in water availability, soil nitrogen content and leaf nitrogen 

content that could explain these effects. The seasonal growth of Carex foetida clearly 

indicated that this species does not benefit from a prolonged snowfree period. Recorded 

temperature at the beginning of plant growth in I and E treatments were frequently close to 

the freezing temperature of the dominant species (≈ -10°C), suggesting that frost events may 

impair plant productivity. We concluded that (1) the weak plasticity in the phenological 

response of alpine plants and (2) the detrimental effect of frost events explain why alpine 

tundras from late snowmelt sites may not benefit from an increased growing season length. 

 

Keywords : ANPP (Aboveground Net Primary Productivity), snowbed species, freezing 

point, growing season length, Carex foetida, Poa alpina, Alopecurus gerardi, plant functional 

traits, frost 
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Introduction 1 

 Recent advances in climatic research predict that the increase in greenhouse gaz 2 

concentration will lead to an average temperature increase of between 1 and 6°C and a 3 

modification of snow precipitation patterns, soil moisture and snow cover (IPCC, 2007). 4 

These climatic changes may have a particularly large impact in alpine and arctic tundra 5 

ecosystems. In addition to higher temperatures (Noguès-Bravo et al. 2007; Serreze et al. 6 

2000), temperate mountain ranges from the Northern hemisphere may experience decreased 7 

snow deposition (Beniston 2005; Dye and Tucker 2003; Serreze et al. 2000). This will have 8 

important consequences through changes in the timing of snowmelt and in soil temperature 9 

and moisture regime. Indeed, reduced snow cover during winter associated with earlier 10 

snowmelt would result in longer growing seasons and higher cumulated Growing Degree 11 

Days (GDD) which could benefit vegetation growth (Theurillat and Guisan 2001). In contrast, 12 

under these conditions plants may be exposed to higher risks of frost damage, and earlier 13 

dehardening or late-summer water stress (Edwards et al. 2007; Inouye 2000; Wipf et al. 14 

2006). Alpine species tightly associated with late snowmelt sites might be particularly 15 

vulnerable to such changes. 16 

 17 

 In snow-covered ecosystems, the growing season is compressed and curtailed at both 18 

ends by subzero temperatures. Time available for growth largely determines aboveground 19 

biomass and productivity which feedbacks nutrient availability. It also affects community 20 

composition by altering the performance of species with different strategies of growth and 21 

reproduction (Galen and Stanton 1993). Establishing causal links between growing season 22 

length and plant performance is crucial to predict consequences of global climate change on 23 

species distribution and carbon balance of snow-covered ecosystems.  24 

In alpine tundra, Choler (2005), Kudo et al. (1992; 1999) and Walker et al. (1993) reported a 25 

tight linkage between snowmelt dates and instantaneous productivity along snow cover 26 

gradients in alpine habitats. They showed a higher productivity and aboveground biomass in 27 

late snowmelt communities dominated by deciduous species. However, these results may 28 

reflect not only the effect of growing season length but also others factors such as soil depth, 29 

soil fertility or historical contingencies (Thorhallsdottir 1998). The impact of variable 30 

snowmelt dates have also been assessed experimentally. A large number of studies adressed 31 

the effects of warming (de Valpine and Harte 2001; Dunne et al. 2003; Jones et al. 1997; 32 

Molau 1997; Price and Waser 2000; Saavedra et al. 2003; Starr et al. 2000; Stenstrom and 33 
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Jonsdottir 1997; Stenstrom et al. 1997; Welker et al. 1997) and earlier or delayed snowmelt 34 

(Dorrepaal et al. 2003; Dunne et al. 2003; Saavedra et al. 2003; Scott and Rouse 1995; 35 

Wahren et al. 2005) on plant growth, flowering or phenology of particular arctic and alpine 36 

species. In general, plants flowered earlier in response to longer growing season and higher 37 

cumulated GDD. However, they only considered snowmelt gradients in natura or performed 38 

experiments with artificial warming leading to an increase in air temperature at snowmelt. (de 39 

Valpine and Harte 2001; Starr et al. 2000; Wipf et al. 2006). Besides, only a few studies 40 

addressed the effects of decreasing snow deposition on the aboveground biomass or 41 

productivity. 42 

 43 

 Early snowmelt may have different effects on plant growth. Soil nitrogen availability 44 

could be modified since snowmelt is associated with an increase in nitrogen availability due 45 

to both the penetration of melted water into the soil (Bowman 1992) and to the death of 46 

microbial populations (Brooks et al. 1998; Jaeger et al. 1999). Early snowmelt may also lead 47 

to a decrease in soil moisture during the growing season. Finally, individual frost events may 48 

damage plants and reduce growth (Inouye 2000). It remains unclear to what extent all these 49 

parallel and opposite effects will affect plant growth of the dominant species and the 50 

aboveground net primary productivity of late snowmelt ecosystems.  51 

 52 

 The aims of this study were to examine the effects of (a) a late snowmelt (b) an early 53 

snowmelt and (c) an inconsistent winter snow, considered as extrems conditions for these 54 

communities, on aboveground biomass, productivity, Leaf Area Index (LAI) of late snowmelt 55 

communities as well as plant functional trait values and vegetative growth of dominant alpine 56 

plant species. The plant functional traits measured were Specific Leaf Area (SLA), Leaf Dry 57 

Matter Content (LDMC) and Leaf Nitrogen Content (LNC) as these are related to carbon 58 

fixation and productivity (Garnier et al. 2004; Quétier et al. 2007). We also measured soil 59 

moisture and air temperature as well as the freezing temperatures of the three dominant 60 

species presents in this community. 61 

 62 
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Materials and methods 63 

Study site and species 64 

On September 27th 2005, 15 monoliths (25 cm deep and 45×35 cm surface) were randomly 65 

selected and then excavated from a large late snowmelt site located near the Agnel pass in the 66 

South-Western French Alps (2744 m above sea level, abbreviated as m.a.s.l. henceforth). The 67 

mean snowmelt time of this site was early june (Choler, personal observations). Monoliths 68 

were transferred into plastic pots with drains and transported to the Station Alpine J. Fourier, 69 

an alpine field research station located at the Lautaret pass at 2100 m.a.s.l. (45°7’N, 6°5’E). 70 

Soils were stagnogley enriched in clay. Organic matter of the soil was 8 ± 0.3 %. Carex 71 

foetida (Cyperaceae) was the dominant species followed by Alopecurus gerardi (Poaceae) 72 

and Poa alpina (Poaceae). C. foetida and A. gerardi can be considered as specialists from late 73 

snowmelt sites whereas P. alpina is a generalist species in these temperate alpine tundras. The 74 

relative abundance of these species at harvest time was similar to relative abundance 75 

measured in L treatment in 2006. Relative abundance of C. foetida accounted for more than 76 

50%, A. gerardi, 31%, other graminoïds 3% and forbs 14% (see Table 2).  77 

 78 

Experimental design and treatments 79 

At the end of September 2005, in the alpine field station, the 15 monoliths were randomly 80 

allocated to the following three treatments: (1) a limited winter snowpack whereby 5 81 

monoliths were disposed on the summit of a hillock (Inconsistent treatment, I), (2) a winter 82 

snow-covered but early snowmelting treatment (Early treatment, E) and (3) a delayed 83 

snowmelt treatment whereby 1-2 m of snow were added on another 5 monoliths and these 84 

were placed in the shade to delay snowmelt (Late treatment, L). This latter treatment resulted 85 

in a snowmelt time as close as possible to that of the native site. All sets of monoliths were 86 

placed 5 to 10 m away from each others and were buried in the soil. First snow falls occured 87 

on the 1st of december 2005. In order to avoid microsite effects during the growing season, all 88 

the monoliths were transfered, from snowmelt to the end of October, to a common location in 89 

the common garden of the alpine research station and again buried in the soil. The same snow 90 

treatments were repeated during the winter 2006-2007. 91 

 92 

Edapho-climatic recordings 93 

Hourly soil temperature was recorded during the 2005-2006 and 2006-2007 winters in each 94 

treatment using Hobo probes (Onset computer corporation, Bourne, MA, USA) buried at 5 cm 95 
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belowground. Persistent day temperatures close to 0°C (usually between -1 and 1°C) were 96 

considered indicative of a persistent snow cover. Cumulated GDD were calculated as the sum 97 

of daily mean temperature above 0°C. Gravimetric soil water content (m3 m-3) was measured 98 

in each monolith at peak standing biomass in July 2006 and 2007. Simultaneously, we 99 

measured volumetric soil moisture using Time Domain Reflectometry (TDR) every 3 weeks 100 

in each monolith during the 2007 growing season. Finally, we used PAR light sensors located 101 

in the common garden to estimate cumulated mean global radiation. To compare climatic 102 

conditions in the field and in the garden, we recorded soil temperature at three late snowmelt 103 

sites during five years (2000-2005) near the Galibier pass (2650 m.a.s.l.). 104 

At peak standing biomass during the 2006 and 2007 growing seasons, 3 soil cores (1 cm 105 

diameter) were extracted from each monolith and pooled for analysis of total inorganic 106 

nitrogen content. Nitrogen was extracted from fresh soil sample (~ 10 g) with 2M KCl after 107 

sieving at 2 mm. Soil extracts were analyzed for ammonia (NH4
+) and nitrate/nitrite (NO3

-108 

/NO2
-) contents using an FS-IV auto-analyzer (OI-Analytical, College Station, TX, USA).  109 

 110 

Plant responses 111 

Species abundance, biomass measurements and plant functional traits were realized at 112 

peak standing biomass on the 15th of July 2006 and on the 3rd of July 2007. Protocol are given 113 

below.  114 

The mean cover of plants within each monolith was estimated using line transect 115 

method. Linear measurements of plant intercepts were performed along the course of two 116 

lines (record each 2 cm along the line, total of 50 points per monolith,). The mean cover of a 117 

species corresponded to the area of ground covered by the vertical projection of its green 118 

aerial parts. In each monolith, total standing biomass was collected in a randomly located 119 

square plot of 5 by 5 cm. Instantaneous productivity was determined by dividing standing 120 

biomass by the time between snowmelt and peak biomass. Under these conditions, variations 121 

in productivity result both from variations in growing season length and in biomass produced. 122 

LAI was determined by measuring total projected area of green leaves with a leaf area meter 123 

(WinDIAS, Delta-T Device Ltd, Cambridge, UK).  124 

Species selected for trait measurement were C. foetida, A. gerardi and P. alpina 125 

(measurements in 2007 only for the latter species). They accounted for more than 70% of the 126 

maximum standing live biomass of the community. SLA, LDMC and LNC were measured 127 

following standard protocols (Cornelissen et al. 2003) on the cohort 2 in the case of C. foetida 128 
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(see below) and on the younger leaf in the case of A. gerardi and P. alpina. Briefly, 3 sets of 129 

leaves were collected in each monolith and maintained in moist paper. After rehydratation for 130 

6 hours, they were weighed and total surface was measured using a leaf area meter 131 

(Gatehouse scientific instruments LTD, Norfolk, UK) before being dried for 48h at 60°C and 132 

weighed for dry mass. Leaves were further grinded and analyzed for carbon and nitrogen 133 

using a CHN analyzer (Thermo Electron Corporation, Madison, USA). 134 

 135 

Diachronic study of C. foetida growth 136 

We monitored leaf elongation of the dominant sedge C. foetida, during the 2006 and 2007 137 

growing seasons, from snowmelt until senescence, on 3 randomly marked tillers per monolith. 138 

We considered this measurement as an adequate surrogate of leaf growth as leaf width was 139 

strongly correlated to leaf length (F. Baptist, personal observation). Tillers are monocarpic 140 

and leaves senesce rapidly if an inflorescence is produced. However, it was impossible to 141 

separate vegetative and flowering tillers at snowmelt and reproducing tillers were excluded a 142 

posteriori. We measured green and total leaf length from the oldest to the youngest leaf every 143 

2 to 4 weeks. The difference due to senescing tips increased over the growing season. 144 

Percentage of senescence was estimated from the following formula:  145 

100
length

lengthlength
(%)fractionSenescent

leavestotal

leavesgreenleavestotal ⋅
−

=  146 

The species produced in average 9 to 11 leaves per year, from their basal meristems. We 147 

pooled them into three cohorts (three leaves per cohort). Cohort 1 corresponded to leaves 148 

which were initiated the previous summer and which displayed weak growth at the beginning 149 

of the growing season (senescent fraction > 50%). Cohorts 2 were leaves initiated at 150 

snowmelt. Cohorts 3 were initiated later in the growing season. To adequately compare 151 

treatments, we expressed growth as a function of cumulated GDD in addition to Julian day 152 

following snowmelt.  153 

 154 

Freezing point and frost tolerance 155 

In June 2007 just after snowmelt, 3 vegetation cores were collected in late snowmelt sites near 156 

the Galibier pass (2650 m.a.s.l.). During the following 2 days, freezing temperatures of C. 157 

foetida, A. gerardi and P. alpina leaves were measured (n=3 for A. gerardi and 4 for C. 158 

foetida and P. alpina) . We used a metal chamber cooled by an antifreeze liquid. Two 159 

thermocouples (0.5mm and 1mm diameter for leaf and air temperature respectively) were 160 

connected to a CR800X Campbell data logger (Campbell Scientific Inc. Logan, UT, USA) 161 
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and measured every 5 sec. Maximum, minimum and mean temperatures were recorded every 162 

2 min. Freshly cut leaves were placed in contact to the leaf thermocouple and the chamber 163 

was closed. The temperature inside the chamber was decreased progressively by a 164 

programmed water bath at a rate of 1°C every 5 min to a final leaf temperature of -15°C and 165 

then increased up to 25°C. Late treatments were carried out with temperatures declining at 166 

2°C per hour. At their freezing temperature, leaf temperature increased due to heat emission 167 

which was detected by the first thermocouple (Ball et al. 2002). Parallel measurements of 168 

fluorescence also indicated freezing temperatures through a strong increase in minimal 169 

fluorescence F0 (Neuner and Pramsohler 2006). To confirm freezing-induced damage, 170 

intactness of leaf cells was assayed directly before and after determining the freezing 171 

temperature as the percentage change in conductivity following incubation of leaves in de-172 

ionized water at room temperature for 24 h, before and after breakage of cells by boiling (10 173 

min) (Webb et al. 1996). 174 

 175 

Statistical analysis  176 

Repeated-measures analysis of variance (RMANOVA) was carried out to compare overall 177 

differences caused by snow treatment effects (between subject effects) and the interaction 178 

between treatments and time (within-subject effects) on aboveground biomass, productivity, 179 

LAI and leaf traits. A one-way ANOVA was used to test for the effects of snow treatments on 180 

Poa alpina leaf functional traits (measured only in 2007). In all cases, individual monoliths 181 

were treated as replicates and tiller based-variables were analyzed after averaging per 182 

monolith. Similarly, differences in seasonal growth of C. foetida leaves between snow 183 

treatments were compared only at maximal growth using a RMANOVA. The variable 184 

analyzed was the mean green length of each cohort averaged on the 3 tillers selected in each 185 

monolith. Freezing temperatures and intactness of cells were analyzed using the non-186 

parametric Kruskall-Wallis test. All analyses were performed with the Jump software (SAS 187 

Institute Inc., Cary, North Carolina, USA). 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 
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(a) Time  Year Late Early Inconsistent 

Snowmelt (date)                                    2006 
2007 

08.06.06 
15.05.07 

15.05.06 
24.04.07 

14.04.06 
03.04.07 

(b) Thermic regime     
Cumulated GDD at : 
Biomass peak / End of season               
 
Mean wintertime soil temp. (°C)        
 
Number of frost events  
(<0°C) / Min. air temperature (°C) 

2006 
2007 

 
2006 
2007 
2006 
2007 

552/1685 
597/1806 

 
-0.8 (1) 
0.3 (1.5) 

0/ -- 
6/-4.4 

760/1890 
746/1955 

 
-0.9 (1.0) 
0.3 (1.6) 

6/-5.7 
9/-4.4 

974/2067 
893/2102 

 
-3.3 (3.4) 
-0.4 (2.3) 
28/-8.1 
21/-13.1 

(c) Solar radiation    
Cumulated daily mean solar radiation from 
snowmelt to peak standing biomass  
(mol photons m-2) 

2006 
2007 

1431 
1908 

2433 
2598 

3641 
3385 

(d) Water status      
 

Soil moisture measured at mid-season  
(mass %)  

 

2006 
2007 

22.0 (1.5)  
26.1 (3.5)  

25.0 (2.4)  
27.6 (3.8)  

29.0 (1.7)  
29.4 (2.3)  

(e) Soil fertility (mid-season)     

NO3 (mg/g soil DW) 2006 
2007 

0.32 (0.25) 
3.1 (0.4) 

0.63 (0.31) 
0.92 (0.11) 

0.45 (0.12) 
1.7 (0.4) 

NH4 (mg/g soil DW) 2006 
2007 

10.2 (1.1) 
8.7 (0.8) 

9.5 (2.1) 
5.3 (0.4) 

11.2 (2.3) 
5.1 (0.9) 

Table 1 Edapho-climatic conditions experienced by monoliths in response to snow treatments in 2006 and 2007. 196 
(a) Time, (b) Thermic regimes, (c) Solar radiation, (d) Water status measured at mid-season (15th and 3rd of 197 
July), (e) Soil fertility. Mean ± standard deviation (SD) in the case of mean winter soil temperature, mean ± 198 
standard error (SE) for water status and soil fertility. See text for statistical details. 199 
 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 
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Results 215 

 216 

Effects of snow treatment on edapho-climatic conditions  217 

In the common garden, L monoliths experienced a sligthy shorter winter than in the field. In 218 

late snowmelt sites (at 2650 m.a.s.l.), snowmelt occurred in early June compare to 08/06/06 219 

and 15/05/07 in the common garden (Table 1). Cumulated GDD reached on average 1200 in 220 

the field (average for 5 years) compared to more than 2000 in the common garden. However, 221 

at peak standing biomass, cumulated GDD between the L treatment and field did not differ 222 

and equalled approximately 600 cumulated GDD (see Baptist and Choler 2008). 223 

Snow treatments were effective in decreasing snow deposition in the I treatment and in 224 

delaying snowmelt in L treatment. Cumulated GDD (2006/2007) was offset by 214/147 and 225 

by 422/286 in E and L treatments respectively. Winter soil temperature differed strongly 226 

between treatments. I monoliths experienced inconsistent snow cover during winter, and 227 

minimal air temperatures of -13.1°C in 2006 and -8.1°C in 2007, despite relatively higher 228 

mean winter soil temperature (Table 1, Fig. 1 and APPENDIX 1). In the E treatment, winter 229 

soil temperatures were not as harsh as in the I treatement. Finally, no frost events occurred in 230 

2006 in the L treatment, whereas, in 2007, six frost events were observed (Table 1, Fig. 1 and 231 

APPENDIX 1). In the E and L treatments, mean winter temperature was close to 0°C. During 232 

the growing season, all treatments experienced similar temperature and water regimes 233 

(F2,12=1.0, P=0.39) (Table 1, Fig. 1 and APPENDIX 1). Seasonal records of soil moisture 234 

during 2007 did not reveal any differences between snow treatments (data not shown). No 235 

effect of snow treatment on [NH4
+] at peak standing biomass was observed (F2,10=1.2, 236 

P=0.34) but we did detect a significant year effect (F1,22=13.2, P=0.001), indicating higher 237 

concentration in 2007 compared to 2006. In contrast, [NO3
-] was significantly affected by 238 

snow treatments (F2,10=6.3, P=0.02). A significant year effect was detected with higher 239 

concentrations in 2007 than in 2006 (F1,10=21.6, P<0.001). The interaction was significant 240 

(F2,10=6.0, P=0.02) indicating inconsistent patterns in response to snow treatments over the 241 

two years : [NO3
-] was highest in the L treatment in 2007 and lowest in 2006. 242 

 243 
 244 
 245 
 246 
 247 
 248 
 249 
 250 
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Species / Groups Late Early Inconsistent 

C. foetida 2006 
2007 

53 (5) 
39 (7) 

57 (4) 
50 (4) 

55 (3) 
46 (5) 

A. gerardi 2006 
2007 

31 (7) 
33 (7) 

29 (4) 
28 (2) 

27 (4) 
19 (5) 

Others graminoids  2006 
2007 

3 (1) 
14 (1) 

7 (2) 
20 (5) 

4 (3) 
24 (5) 

Forbs 2006 
2007 

14 (5) 
14 (4) 

6 (5) 
3 (2) 

11 (4) 
10 (5) 

Table 2 Relative abundance (%) of Carex foetida, Alopecurus gerardi and two functional 251 
groups reported as “Others graminoids” and “Forbs” in 2006 and 2007 in each snow treatments. 252 
In 2007, the group “Others graminoids” was mainly represented by P. alpina. Values are the 253 
mean ± standard error (SE) See text for statistical details. 254 

 255 

Community composition 256 

Relative abundance of C. foetida and A. gerardi did not respond to snow treatments 257 

(respectively F2,12=0.6, P=0.54; F2,12=0.6, P=0.55) (Table 2) and was similar to that in the 258 

native site (personal observation). Similarly, relative abundance of others graminoïds (mainly 259 

Poa alpina) and forbs did not respond to snow treatments (F2,12=0.98, P=0.40; F2,12=1.6, 260 

P=0.24). Poa alpina showed year effect with a marked increased in 2007 (F1,12=23.9, 261 

P<0.001) irrespective of treatments. The snow treatment × year interaction was never 262 

significant. 263 

 264 

Fig. 1 Daily mean soil temperature (5cm deep) in the Late (a), Early (b) and Inconsistent (c) treatments 
(black) and air temperature (grey) in 2005-2006 (see APPENDIX 1 for 2006-2007 data).  
 

 265 
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Plant responses to snow treatments 266 

Aboveground biomass and productivity were significantly affected in the I treatment 267 

(respectively F2,12=4.2, P=0.04 and F2,12=23.9, P<0.0001) and displayed a marked decrease in 268 

comparison to the L treatment (Fig. 2A and 2B). Aboveground biomass between the E and I 269 

treatments and between the E and L treatments were only marginally different. A year effect 270 

was detected (F1,12=8.0, P=0.01; F1, 12=11.5, P=0.005) indicating higher biomass and 271 

productivity in 2007 compared to 2006. Interactions were not significant (F2,12=0.16, P=0.84; 272 

F2,12=0.12, P=0.88). LAI was negatively affected in the I treatment (F2,12=7.83, P=0.006) over 273 

the two seasons (Fig. 2C). Similarly to aboveground biomass and productivity, LAI was lower 274 

in the E compared to the L treatments but not significantly. Overall, it was significantly 275 

higher in 2007 (F1,12=7.4, P=0.02) compared to 2006 as for the previous variables. The 276 

treatment × year interaction was not significant (F2,12=0.82, P=0.46).  277 

The accumulated leaf length of cohort 2 accounted for more than 46% ± 1 of total 278 

accumulated leaf length of the tillers, whereas cohort 1 and 3 accounted for 22% ± 1 and 32% 279 

± 1 respectively. Maximal green leaf length for cohort 1 did not differ between treatments 280 

(F2,9=0.99, P=0.41) indicating that growth was not enhanced by a longer growing season (Fig. 281 

3). Leaves required similar cumulated GDD to reach their maximal biomass and hence date of 282 

peak standing biomass was slightly delayed in L treatment. Leaves from cohorts 2 and 3 283 

displayed lower growth rate (per cumulated GDD) in the E and I treatments. They reached 284 

peak standing biomass for a higher cumulated GDD than in the L treatment (Fig. 3). Snow 285 

treatments resulted in significant differences in maximal green leaf length of cohort 2 286 

(F2,12=4.58, P=0.03). C. foetida leaves in the I and E treatments experienced lower maximal 287 

green leaf length than in the L treatment. At peak biomass, leaves from cohort 3, initiated 288 

later in season, did not show significant patterns in response to snow treatments (F2,12=2.4, 289 

P=0.13).  290 

SLA, LDMC and LNC of C. Foetida, A. gerardi and P. alpina were not consistently affected 291 

by treatments (Fig. 4). We detected a significant year effect in the case of C. foetida and A 292 

gerardi SLA which was nevertheless not consistent : SLA of C. foetida was higher in 2007 293 

compared to 2006 (F1,12=13.4, P=0.003) whereas the opposite was observed for A. gerardi 294 

(F1,12 = 7.8, P=0.02).  295 

 296 

Freezing temperature 297 

Leaf freezing temperature of C. foetida, A. gerardi and P. alpina were -10.0°C, -12.0°C and -298 
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9.3°C respectively and did not differ significantly (Kruskal-Wallis χ2(2) = 5.59, P = 0.06) 299 

(Fig. 5). Intactness of cells as indicated by electrolyte leakage varied greatly between the three 300 

species with less that 40% of cells destroyed in P. alpina tissue compared to more than 70% 301 

in C. foetida and A. gerardi (Kruskal-Wallis χ2 (2) = 7.84, P = 0.02).302 
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Fig. 2 Aboveground biomass (A), 
aboveground productivity 
expressed per cumulated GDD (B) 
and LAI (D) in response to snow 
treatments. Mean ± SE for each 
treatment for both year (n=15). 
Different letters indicate significant 
differences between treatments 
(P<0.05). See main text for more 
details on statistical analysis. 
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Fig. 3 Seasonal leaf growth for 3 cohorts of C. foetida leaves (cohorts 1/2/3, see text for further details) related 
to Julian days (upper) and to cumulated GDD (lower) in 2006 (A/B/C) and 2007 (D/E/F). Arrows indicate the 
day when aboveground biomass, LAI and leaf functional trait values were measured. See main text for more 
details on statistical analysis. 
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Fig. 4 Specific Leaf Area (A), Leaf Dry Matter 
Content (B) and Leaf Nitrogen Content (C) of the 
leaves of the three dominant species of late snowmelt 
sites (C. foetida, A. gerardi and P. alpina) in response 
to snow treatments. Leaf functional trait values were 
measured only in 2007 for P. alpina. See main text for 
more details on statistical analysis. 
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Discussion 

 Our result indicate that changes in growing season length and especially snowmelt 

timing can affect, in the short term, the aboveground biomass of dominant plant species from 

alpine late snowmelt sites. Indeed, despite an extended growing season, aboveground biomass 

and LAI in the E and I treatments were either reduced or equalled to the values measured in L 

treatment. As a result, instantaneous productivity (calculated from snowmelt date until peak 

standing biomass) was much lower in the I and E treatments compared to the L one. 

Similarly, the synchronic records of C. foetida growth demonstrated clearly that the length of 

the cohorts were not enhanced by the extending growing season.  

 

 

 
Fig. 5 Freezing temperature of new leaves (A) and 
electrolyte leakage in % (B) for C. foetida, A. gerardi and 
P. alpina. Higher and lower values correspond to samples 
measured after and before freezing treatment. Different 
letters indicate significant differences between species 
(P<0.05). See main text for more details on statistical 
analysis. 

 

 

 Galen & Stanton (1993, 1995) postulated that because of lower temperature, earlier 

snowmelt may limit respiratory costs and so further enhance growth. This is therefore in clear 

contrast to the results obtained in this study. Neutral and negative effects of early snowmelt 

on aboveground biomass have already been reported by Starr et al. (2000) and Wipf et al. 

(2006). Others studies yet suggested a positive effect on plant cover (Galen and Stanton 1993, 

1995, de Valpine and Harte 2001) but only considered snowmelt gradients in natura or 
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performed experiments with artificial warming leading to an increase in air temperature at 

snowmelt.  

 Various explanations can be proposed to explain the similar aboveground productivity 

in E treatment compare to L one and can be related to direct environmental constraints or 

indirect ones through effect on plant functional traits. E Monoliths could be limited by water 

availability leading to a reduced plant growth. However, the soil moisture measured at peak 

standing biomass did not differ between treatments. Similarly, measurements through the 

season did not indicate differences between treatments in 2007 (data not shown). Finally, 

SLA and LDMC, which are good indicators of water stress (Cunningham et al. 1999, Wright 

et al. 2001, Gianoli 2004), did not differ between treatments suggesting that the soil moisture 

did not affect biomass production in this study.  

Soil fertility could also lead to lower aboveground productivity. Indeed, during winter, deeper 

and longer-lasting insulating snowpack lead to higher microbial biomass and litter 

decomposition (Hobbie and Chapin 1996, Lipson et al. 1999). Furthermore growth is often 

thought to start at snowmelt as the penetration of melting water into the soil (Bowman 1992) 

and the death of microbial populations lead to an increase of nitrogen availability (Brooks et 

al. 1998). We thus expected that a shorter growing season would lead to higher aboveground 

productivity in the L treatment through increased soil fertility. However, despite a noticeable 

year effect, soil nitrogen concentrations measured at peak standing biomass could not 

consistently explain variations in aboveground biomass. Similar results were obtained at 

snowmelt in 2006 (data not shown). Total soil mineral N content were only instantaneous 

measurements and might not be representaive of N available to plants during the growing 

season. However, the values of LNC tend to support these conclusions, as they were not 

affected by the snow treatments. This corroborates the findings of Jaeger & Monson (1992) 

and Starr et al. (2000) who showed no variation of LNC in responses to warming or 

lengthened growing season. Spring growth of alpine plants is mainly sustained by the 

remobilization of N out of storage structures (Lipson et al. 1996, Monson et al. 2006). These 

internal constraints buffer the interanual variability of nitrogen availability in the soil and may 

enable plants to sustain higher tissue production with similar N concentration. Thus, neither 

fertility and water availability, nor intraspecific changes in leaf trait values explained the 

observed changes in aboveground biomass in response to earlier snowmelt. 

 Hence, it appears that only regenerative constraints can explain the lack of response of 

snowbed community to extend growing season. Sørenson (1941) distinguished two 

phenological patterns in tundra plants : periodic species, characterized by a fixed growing 
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period, controlled by genetic constraints and aperiodic species, for which growth and the 

production of new leaves are prolonged until conditions became unfavorable. Accordingly, 

the snowbed species studied here and in particularly C. foetida are periodic species and do not 

benefit form lengthened growing season. Hence, these results indicate that the capacity of the 

plants to increase their productivity will strongly depend on the intrinsic regenerative 

capacities  

  

 The reduced biomass observed in the I treatment compare to L was not expected and 

the underlying mechanisms are not clear. As stated above, direct environmental constraints, 

such as water availability or soil fertility and indirect ones through effect on plant functional 

traits can not explain these patterns. Regenerative constraints may limit enhanced growth in 

response to extended growing season but can not be responsible for a lower aboveground 

biomass. An alternative explanation lies in the impact of frost events on early season growth. 

Indeed, potentially damaging frosts to alpine plants during the growing season were 

repeatedly described (Körner 1999, Taschler and Neuner 2004). In early spring 2006 and 

2007, the higher occurrence of severe frosts (≈ air temperature < -5°C) in the I treatment 

(Table 1) associated to radiative cooling (exposure to the cold nigth sky, leaf temperature < 

air temperature) may expose plants to temperature close to their freezing points (about -10°C, 

Fig. 5, Körner 1999). This hypothesis is comforted by the results of Wipf et al. (2006) who 

found a strong correlation between the number of frost events (temperature < 0°C) and the 

aboveground biomass of Empetrum nigrum and Vaccinium vitis-idae, two subalpine species. 

During winter, leaf primordial tissues are buried several centimeters belowground and thus 

are not exposed to damaging frost events (Körner 1999). However, during spring, relatively 

high diurnal temperatures have the potential to activate growth despite very cold nights (see 

Fig. 1). The rise of primordia at the soil surface exposes them to overnight freezing 

temperature and may lead to cell-death, particularly since plants deharden rapidly when 

temperature and photoperiod increase (Bannister et al. 2005). Despite a capacity to recover 

very fast, costs for the repair process might be too high. These conclusions are supported by 

the weak growth of leaves from cohort 2 of C. foetida in the I treatments which are initiated at 

the beginning of the growing season in contrast to cohort 3. Differences between these late 

and early emerging cohorts may reflect the immediate impact of freezing temperature on 

growth. However, why leaves from cohort 1 did not show lower growth in the I treatments 

compared to the E and L treatment remain unclear. Bannister et al. (2005) measured no 

differences in freezing temperatures between young and old leaves. Leaves from cohort 1 
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were overwintering leaves and they may display a higher degree of hardening than younger 

ones, recently grown from primordia. Frost resistance (i.e. the dead cell fraction after a frost 

event) at the beginning of the season could differ because of higher concentration of 

carbohydrates in cells (Bell and Bliss 1979). 

 

Conclusion 

 Our results tend to point out the importance of (1) the alpine plant’ capacity to 

lengthen their growth cycle in response to longer growing season and (2) to support frost 

events in order to predict the effects of global change on the diversity and the productivity of 

alpine meadows. During the next decades, the frequency of frosts events may increase in 

alpine environments due to a reduction of snow cover and earlier snowmelt (Inouye 2000, 

Inouye 2008). The strong variability in frost resistance observed between the three main 

species studied here, in addition to the results reported by Bannister et al. (2005) and Taschler 

& Neuner (2004), suggest that responses to frost events will be species-specific. Aperiodic 

species might be favored compared to periodic species as the production of new leaves later 

in season may compensate for losses due to frost events in spring. Larger comparative 

analysis of frost resistance and leaf phenology along snowmelt gradient in alpine tundras is 

necessary to assess in greater details how these ecosystems will respond to climatic changes.  
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Appendix 1 
 
 
 

 
Appendix 1. Daily mean soil temperature (5cm deep) in the Late (a), Early (b) and Inconsistent (c) 
treatments (black) and air temperature (grey) in 2006-2007. 
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Système de marquage (13C) mis en place à la Station Alpine Joseph Fourier 
durant l’été 2005 et 2006. Photo : S. Aubert. 
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Abstract 

• Intense efforts are currently devoted to disentangling the relationships between plant 

carbon allocation patterns and nitrogen availability. 

• Here, we applied 12C/13C and 14N/15N isotope techniques to elucidate C and N 

partitioning in two alpine species characterized by constrasting nutrient economies : a 

slow-growing species, Kobresia myosuroides (KM) and a fast-growing species, Carex 

foetida (CF) located at the ends of a snowmelt gradient in the alpine tundra (French 

Alps). 

• CF allocated higher labelling-related 13C content belowground, produced more root 

biomass. Accordingly, assimilates transfered to roots were preferentially used for 

growth than respiration and tend to favor N reduction in this compartment. In addition, 

this species had a higher 15N uptake efficiency than KM and a higher N translocation 

aboveground. 

• The results obtained with this couple of species thus suggest that at the whole-plant 

level, there is a compromise between N acquisition and C allocation for an optimized 

growth. 

 

Keywords : carbon and nitrogen isotope labelling, alpine plant, respiration, photosynthesis, 

root:shoot ratio, Kobresia myosuroides, Carex foetida, snowmelt gradient. 
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Introduction  

 Distribution, productivity and carbon assimilation of plants are strongly affected by 

variations in soil fertility. Intense efforts are currently devoted to elucidating the relationships 

between plant carbon allocation patterns and nitrogen availability in order to improve our 

understanding of carbon cycles and sequestration pathways in terrestrial ecosystems 

(Trumbore 2006). This is particularly important in the context of global change, in which 

growth and carbon fixation tend to be promoted by atmospheric CO2 increase but depend on 

N (or other nutrients) availability (e.g. Long et al. 2006). In addition, vegetation shifts to plant 

species characterized by different nutrient economies may occur in response to natural, 

climate or human-induced ecosystem perturbations.  

 

 Alpine ecosystems are particularly sensitive to such ecological effects because (i) 

alpine habitats are strongly N-limited in many instances (Bowman et al. 1993), (ii) snowcover 

gradients influence the nature of plant communities (Körner 1999, Choler 2005) and (iii) the 

composition of alpine vegetation varies in response to deposition of anthropogenic nitrogen 

(Bowman et al. 2006). 

 

 However, the physiology of carbon allocation patterns of alpine plants in relation to N 

uptake is poorly understood. It is well known that increased N assimilation promotes carbon 

fixation and growth at the leaf or biomass level (Wright et al. 2004) and is accompanied by 

higher leaf and root respiration rates (Reich et al. 1997, Craine et al. 2002, Tjoelker et al. 

2005). However, the extent to which carbon allocation patterns are related to N uptake 

efficiency and allocation remains uncertain (Garnier 1991, Osone et al. 2008). For example, 

fast-growing species (e.g. Carex foetida) have higher leaf N contents and maximum 

carboxylation rates Vcmax than slow-growing species (e.g. Kobresia myosuroïdes) found at 

similar altitude (Baptist and Choler 2008). Therefore, it is currently assumed that fast-growing 

species allocate less carbon belowground, as suggested by biomass ratio measurements (i.e. 

the root:shoot ratio, Chapin 1980). Nevertheless, there is no direct evidence of such a 

relationship (Craine et al. 2002).  

 

 As an aid to clarifying these points, we used 12C/13C and 14N/15N isotope techniques to 

investigate C and N fixation and allocation patterns of two alpine species along the snowmelt 

gradient: Carex foetida and Kobresia myosuroides. C. foetida is a fast-growing species found 
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in late snowmelt habitats, that are characterised by high N availability and a very short 

growing season (Choler 2005). K. myosuroides is a slow-growing species of early snowmelt 

habitats, that have opposite conditions, that is, low N availability and a longer growing 

season.  

 While the respiratory properties are similar in both species, the present labelling 

experiments show that, in contrast to K. myosuroides, C. foetida has clear opposite leaf-to-

root allocation ratios for C and N. In other words, C. foetida allocate more C to roots while N 

allocation favours the aboveground compartment. We therefore conclude that, in the present 

couple of species, the adaptation of fast-growing species for an optimal growth involves an 

increased C and N assimilation efficiencies to feed the belowground biomass production. 
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Material and methods 

Plant material 

We collected 37 monoliths of Kobresia myosuroides (Cyperaceae, KM) and Carex foetida 

(Cyperaceae, CF) respectively in the region of the Galibier pass (2646 meters above sea level) 

and the Agnel pass (2744 m a.s.l.) in the French Alps in October 2005. They were transferred 

into plastic pots (20×20×30 cm) in a common garden located in the Grand Galibier mountain 

range in the South-Western Alps (45°7’N, 6°5’E, 2100 m a.s.l.). Snowmelt occurred on the 15 

May 2006. The pulse-chase labelling experiments (13C and 15N labelling were independent) 

started on the 5 July 2006 and finished on the 26 July 2006. All the experiments were 

conducted in the Station Alpine Joseph Fourier, except the isotope measurements which 

where carried out at the University of Barcelona. The δ13C of CO2 of the air at the Galibier 

Pass was ca. -11.5 ± 0.1 ‰ (Noguès et al. 2006). 

 
13C labelling procedure 

In July 2006, at the peak of standing biomass, 12 out of 15 monoliths (here after refered as 

replicates) were labelled in 13CO2 enriched atmosphere. The other three were used as control 

(for the initial carbon isotope composition before labelling, the corresponding sampling time 

is denoted as Tinit). After labelling, a first set of three was immediately harvested (T0). For the 

others, the chase time lasted 24 h (1 day, T1), 82 h (3.5 days, T3) and 274 h (11.5 days, T11) 

respectively. The day before the pulse-labelling, the plants were arranged in controlled 

conditions: 12 h photoperiod, mean air temperature of 18°C and 500 µmol m-2 sec-1 of light. 

Labelling was applied following a dark period of 12 h for all plants. After labelling and until 

the end of the chase period, plants were kept in the same controlled conditions. Every two 

days, the monoliths were watered with 500 ml of distilled water. 

 

The isotope label was applied during 5 h by enclosing the monoliths, two by two, in a 36 l-

Perspex® labelling chamber. Atmospheric air was first CO2-depleted (decarboxylated) by 

passing through a soda-lime column and then mixed to 13CO2 fluxes from a gas cylinder 

(enriched at 5 %, Euriso-top, Saint-Aubin, France) in a mixing chamber. The mixing chamber 

was then connected to the sample air hose of the HCM 1000 Infra Red Gaz Analyser (Heinz 

Walz GmbH, Effeltrich, Germany) and the CO2 concentration was estimated. The CO2 

concentration within the chamber was kept between 380 and 420 ppm during all the labelling 

procedure thanks to mass flow controllers located before the mixing chamber (ROD-4, Aera, 
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Fort Collins, USA). The air flux passing through the labelling chamber was controlled by the 

HCM 1000 at a rate of 1.0 l min-1
. A second pump was added after the labelling chamber to 

avoid overpressure. One fan (Radio Spare, Beauvais, France) was fixed into the chamber to 

ensure air mixing. Aluminium tubes, arranged at the bottom of the chamber and connected to 

a water bath, maintained the chamber temperature at 22.5 ± 0.4°C during the pulses. Light 

intensity above the vegetation was kept at 550 µmol m-2 s-1.  

 

At the end of each chase time (T0, T1, T3, T11) and also for Tinit, the three replicates were 

destructively harvested. We harvested the living aboveground vegetation first (by clipping the 

leaves at the soil surface). Half of the biomass was immediately lyophilised, while the rest 

was enclosed in the 1l-Perspex® chamber to measure respiration (5 min) (see below for 

procedure) and the isotopic signature of dark-respired 13CO2. To measure the latter, the 1l-

chamber connected to the LICOR 6200 was flushed with CO2-free air to ensure that only the 

CO2 respired in the chamber was measured. We let CO2 accumulate until it reached 

approximatively 1000 ppm and air samples were then collected using a special 50 ml syringe 

(SGE, Ringwood, Australia) and a needle (model microlance 3, BD, Plymouth, UK). The gas 

samples were passed through a magnesium perchlorate column (water-vapor trap) then 

immediately injected into a 10 ml vacutainer (BD vacutainer, Plymouth, UK). To avoid 

contaminations with the air present in the syringe and needle, both were purged with N2, 

before taking each sample. The vacutainers were also over-pressurized with N2 so the 

pressure inside the vacutainer was above the ambient pressure. 

Non woody (new) and woody (old) roots were subjected to a similar procedure after being 

harvested and washed. Accumulation time was a bit longer for old roots as respiration was 

much lower than for new roots and leaves. Leaves and roots were subsequently lyophilised for 

isotopic analysis of Organic Matter (OM). OM analyses were done using an elemental 

analyzer with a zero-blank autosampler (EA1108, Series 1, Carbo Erba Strumentazione, 

Milan, Italy) coupled to an isotope ratio mass spectrometer (Delta C, Finnigan Mat, Bremen, 

Germany) operating in continuous flow.  

The δ13C of respired CO2 was measured using a Gas Chromatography-Combustion-Isotope 

Ratio Mass Spectrometry (GC-C-IRMS). Water vapour and oxygen were removed from the 

gas samples and carbon dioxide, argon and nitrogen separated by gas chromatography 

(6890N, Agilent Technologies, Palo Alto, CA, USA) coupled to an isotope ratio mass 

spectrometer Deltaplus through a GC-C Combustion III interphase (ThermoFinnigan, Bremen, 

Germany). The column used was a 30 m x 0.32 mm i.d. GS-GASPRO (J&W Scientific Inc., 
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Folsom, CA, USA). The carrier gas was Helium at a flow rate of 1.2 ml min-1. Injection port 

temperature was 220oC. The oven temperature was kept at 60oC during the whole run. The 

injection was done in split mode (injected volume 0.3 ml, split flow 20 ml min-1). 

 

CO2 gas exchange measurements 

In order to evaluate 13C fixation during the pulse-labelling, CO2 fluxes were measured on 

each replicate with a LICOR 6200 (LI-COR, Lincoln, Nebraska USA) before and just after 

labelling. Light intensity, air temperature and relative air humidity were recorded for all the 

duration of the measurements. The net photosynthetic fixation rate (Anet) was calculated as the 

sum of net CO2 fluxes in light (NEP) and in darkness (ER, which takes into account the CO2 

evolution rate by both the belowground and aboveground compartments) as follows :  

ERNEPAnet +=                                                                                                                Eq. 1 

In darkness, respiration by the aboveground compartment was small compared to that of the 

belowground compartment. In other words, the contribution of photosynthetic organs to ER 

was small (typically less than 8 %), so the overestimation of the net photosynthetic rate Anet 

was negligible. At the end of the chase period (see section below), leaf, new and old root 

respiration was estimated every minute during 5 to 10 min by enclosing them in a dark 1l-

Perspex® chamber connected to the LICOR 6200. 

 
15N labelling procedure 

The 15NO3, 15NH4 and 15N-glycine uptake by KM and CF was assessed independently from 

the 13C-labelling, that is to say, on others 18 monoliths (n=3 replicates for each compound and 

each species). Glycine was chosen among others amino acids, as Lipson et al. (1999) 

indicated that it was the soil amino acid most available to plants. One hundred ml of a 1mM 

solution of 15NO3, 15NH4 or 15N-glycine were added with a 5 ml syringe. The syringe was 

inserted at 5 cm depth in the soil following a 2x2 cm grid layout. We then watered plants with 

500 ml of demineralized water to ensure homogeneous labelling in the soil. 

 
15N isotope sampling and processing  

After a 24 h chase, leaves, new and old roots were harvested, sorted, washed with 

demineralized water and lyophilised for isotopic analysis. The same procedure was applied to 

three others unlabeled monoliths of each species, as a control. 
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Isotope labelling calculations 

To estimate 13C and 15N enrichment in each organ of the plants, %Atom (13C or 15N 

proportion) for 13C and 15N were calculated using the following the equation: 

dardtansR
10001000

1000Atom%
++δ

+δ
=                                                                                             Eq. 2 

where δ is the isotopic signature of CO2 respired or of OM. Rstandard is the international 

standard references (i.e. 13C/12C, PeeDee Belemnite, and 15N/14N, atmospheric air). 

%Atom excess was then calculated as the %Atom 15N or 13C differences between labelled and 

unlabelled organs (control, at Tinit) : 

unlabelledlabelled %Atom%AtomexcessAtom% −=  

The labelling-derived 13C content per DW (γ13C, in µg 13C g-1 DW) in each organ of the plant 

was calculated as follows:  

C%excessAtom%C13 ⋅=γ  

where %C is the percentage of carbon in the organ. The labelling-derived 13C flux associated 

with root and leaf respiration (γ13CR, in µg 13C g-1 h-1) was calculated as follows :  

organ

organ
R

13

mass
RexcessAtom%

C
⋅

=γ                                                                                              Eq. 3 

where massorgan is the mass of the organ (g) considered, Rorgan is the respiration rate (µg C h-1) 

and %Atom excess is here the 13C atom excess in CO2.  

As the plants experienced similar conditions during the chase period and the respiration 

measurements, the cumulated labelling-derived 13C content over time (in mg 13C g-1) was 

estimated by (1) fitting an exponential decay constant to the labelling derived 13C flux over 

chase time (γ13CR):  
)tb(

R
13 expaC ⋅−⋅=γ  where t is the time in hours, a and b are constants                          Eq. 4 

and (2) integrating this exponential over time. For CO2 respired by new and old roots, the 

maximum concentration sampling point was used as the “time zero” for the exponential curve 

fit. 

Total labelling-derived 13C mass (γ13CM, µg or mg 13C) at chase time T was calculated by 

averaging the organ mass over the fifteen replicates (see table 1). For this purpose, we added 

the labelling-derived 13C mass for each organ and the loss through leaf and new/old root 

respiration from T0 to T as follows :  
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( )

13 13 13 13
leaf new old

13 13 13
Rleaf Rnew Rold

T0

C ( )  C ( )  C ( )  C ( )

C ( ) C ( ) C ( )

M leaf new old

T

leaf new old

T T m T m T m

t m t m t m dt

γ γ γ γ

γ γ γ

= ⋅ + ⋅ + ⋅ +

⋅ + ⋅ + ⋅∫
            Eq. 5 

By doing so, we could see whether the labelling-derived 13C mass was balanced over time for 

each species, that is, whether the total 13C-amount (remaining + respiratory losses) remained 

constant (Appendix 2). We also compared γ13CM to the amount of 13C fixed by each replicate 

during the 5h-labelling based on Anet values integrated on the labelling period. 

The labelling-derived 15N content per whole plant dry matter (γ15N, µg 15N g-1) was calculated 

as following:  

plant

organ15

mass
massN%excessAtom%

N
⋅⋅

=γ                                                                                   Eq. 7 

Where %N is the percentage of nitrogen in the organ, massorgan, the mass of the organ (g) and 

massplant, the mass of whole plant (g). 

Similarly to 13C data analysis, the labelling-derived 15N mass (µg15N) was calculated for each 

organ based on the average mass over the nine replicates of each species (see table 1).  

 

Belowground productivity 

Below ground productivity was estimated using a root ingrowth core method. The ingrowth 

cores (5 × 15 cm) were established on the 30/05/06 by removing one soil core in another set 

of four replicate monoliths for each species and by filling the holes with the same but 2 mm-

sieved soil. Roots present within the cores were sampled on the 15/07/06, washed free of soil, 

dried at 60°C during 48h and weighed. Root production was then calculated as the root 

biomass divided by time between the 30/05/06 and the 15/07/06 and expressed per unit core 

surface for each replicate. 

 

Statistical procedure 

The statistical analyses referring to isotopic data were performed using the non-parametric 

Kruskall-Wallis test except for 15N natural abundance which was performed using a one-way 

ANOVA. The same procedure was used to compare belowground productivity (n=4). The 

species-induced differences in flux measurements and R:S ratios were analysed using a one-

way ANOVA. Finally, an ANCOVA was applied to test the regression between (1) the 

labelling derived 13C amount (γ13C) of new roots OM against that of leaf OM and (2) the γ13C 

of root-respired CO2 against that of leaf-respired CO2. Species were considered as the 
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qualitative factor. All analyses were performed with the Jump software (SAS Institute Inc., 

Cary, North Carolina, USA). 
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Results 

Biomass production 

Mean biomass and belowground productivity data are indicated in Table 1 (upper part). Under 

our experimental conditions, KM has a larger aboveground biomass than CF, that is, has a 

higher shoot-to-root ratio. In addition, the belowground productivity is larger in CF: the root 

productivity per unit ground area was higher in CF (χ2=5.01, P=0.02) compare to KM (Table 

1). 
 

Morphological Characteristics K. myosuroides C. foetida 
Mean biomass (g) 
- Aboveground 
- New roots 
- Old roots 

 
2.6 (0.1) 

0.51 (0.07) 
21.6 (1.8) 

 
1.9 (0.1) 

0.80 (0.09) 
28.00 (2.0) 

 
Belowground productivity (g m-2 d-1) 
 

6.9 (1.8)a 
 

12.5 (0.6)b 
 

Physiological characteristics   
Assimilation rate during labelling 
(ngC g-1 leaf DW sec-1) 
 

791.5 (20.3) a 622.4 (13.3)b 

Leaf respiration in darkness 
(ngC g-1 leaf DW sec-1) 
 

63.5 (6.7)a 100.3 (7.4)b 

New root respiration 
(ngC g-1 new root DW sec-1) 
 

233.6 (21.0)a 

 
 

206.3 (15.0)a 

 
 

Old root respiration 
(ng C g-1 old root DW sec-1) 

56.4 (4.3)a 68.6 (13.0)a 

Table 1 Morphological and physiological characteristics of C. foetida and K. 
Myosuroides. See text for further statistical details. Different letters indicate 
significant differences between the two species (P<0.05). 

 

Photosynthetic rates and total 13C-assimilation  

Photosynthesis and respiration were measured during the labelling experiment for the above-

ground compartment as well as 'old' and 'new' roots (see Material and Methods). During 13C-

pulse time, the net assimilation rate of the above compartment (Anet) was significantly larger 

in KM than in CF (F1,21=5.1, P=0.03). This does not reflect the general trend: in homogeneous 

light conditions as CF has higher photosynthetic rates (see APPENDIX 1 and Baptist and 

Choler 2008). The lower value in CF is here caused by the non-homogeneous light conditions 

(unidirectional light system, see Material and Methods) and contrast to values of maximal 

CO2 assimilation (at saturated light) measured at leaf level (APPENDIX 1). The assimilation 

values were summed over the pulse time to calculate the total labelling-derived 13C mass 

(γ13CM) fixed by photosynthesis, giving 1.33 ± 0.2 mg for KM and 0.93 ± 0.1 mg for CF 

(APPENDIX 2).  
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Fig. 1 δ13C (‰) of leaf, new and old roots of K. Myosuroides (a) and C. Foetida (b). δ13C 
(‰) of CO2 respired by the leaves, new and old root of K. Myosuroides (c) and C. foetida 
(d) following the pulse-labelling. On the left of the dashed vertical line are shown 13C 
natural abundance of leaves, new and old roots OM and of CO2 respired by the leaves, the 
new and the old roots. Leaves: white circle, new roots: white square, old roots: black 
square. All X –axes are time elapsed since the pulse-labelling (in days). Values are the 
mean ± se (n=3).  

 

Respiratory properties 

Leaf respiration in darkness was largely and significantly higher in CF (F1,28=13.2, P=0.001) 

(Table 1, bottom part). Thus, in our experimental conditions, the leaf respiration-to-net 

assimilation ratio was 8.0% in KM and 16.1% in CF. New and old root respiration did not 

differ significantly between both species. 
 

 K. myosuroides C. foetida 
Leaf 
New roots 
Old roots 
Soil 

-3.40 (0.37)a 
0.61 (0.62)b 
-0.76 (0.14)b 
3.78 (0.12)c 

0.19 (0.23)a 
-0.02 (0.37)a 
2.73 (1.12)ab 
4.49 (0.95)b 

Table 2 15N natural abundance (δ15N, ‰) of unlabelled leaf, 
new roots, old roots, and soil in K. Myosuroides and C. 
Foetida monoliths. Values are the mean ± se. Different letters 
indicate significant differences between the organs and the soil 
(P<0.05). 
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13C fixation and partitioning  

The 12C/13C isotope composition (δ13C) of organic matter (OM) and of respired CO2 after 

labelling is shown in Fig. 1. Clearly, at T0, leaves were the most labelled organs, followed by 

new roots (Fig. 1). Old roots were hardly labelled and always remained nearly not labelled 

throughout the experiment (corresponding to total chase time). The kinetics were very 

different for leaves and roots: the δ13C value of leaves continuously declined during chase 

time while that of roots increased within 1.5 days and reached a plateau.  

 

The decline of the 13C-amount in leaves may be caused by: (i) isotopic dilution (natural 12CO2 

fixed during day-time of the chase period), (ii) respiration (dark-respired CO2 was strongly 
13C-enriched, Fig. 1c and d) and (iii) export (13C-increase in roots within a couple of days). 

Noteworthy, CF showed a more rapid decline of the 13C-abundance in leaf organic matter (the 

calculated half-time of the exponential decay (t1/2) is near 21 h for KM and 13 h only for CF). 

The isotopic dilution is probably not responsible for such a pattern: plants of both species 

experienced similar conditions and KM had a slightly higher photosynthetic rate than CF 

under the conditions of the experiment (see paragraph above, Table 1). By contrast, 

respiration contributed to such leaf 13C-kinetics, simply because respiration was much larger 

in the case of CF (Table 1) while having a similar 13C-enrichment (Fig. 1c and d).  

 

The faster decline of leaf 13C in CF also came from the larger export of assimilates to roots: 

the δ13C value of new roots organic matter was higher in CF than in KM: in the steady-state, 

the δ13C value of new root organic matter is 0 and 40‰ for KM and CF respectively (Fig. 1a 

and b). That is, the labelling-derived carbon in new roots account for ~0.6 and 1.8% of the 

total C in KM and CF, respectively. 
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The labelling derived 13C amount (γ13C) of new roots is plotted against that of leaves in Fig. 2. 

There was a significant correlation between the γ13C value of new roots and that of leaves 

when species were considered together (F1,22=46.1, R2=0.71, P<0.0001, Fig. 2a). The slope of 

the regression was slightly (but not significantly) steeper in CF, showing again the more rapid 
13C-kinetics in leaves. In addition, the fastest transfer of carbon from leaves to roots was 

reflected by the shift of data points from the right hand side (T0) to the left hand side (the 

chase-measurements, at T1 to T3, clustered) in CF while there were intermediate data points 

in KM. γ13CR of leaf-respired CO2 and root-respired CO2 were correlated (F1,23=22.2, 

R2=0.56, P=0.0001, Fig. 2b) when species were considered together. However, neither the 

slope of the regression (F1,23=0.44, P=0.51) nor the mean value (F1,23=2.57, P=0.12) differed 

between the two species. 

 

Whole-plant carbon partitioning 

Eleven days after the pulse-labelling, carbon allocation patterns were calculated, taking into 

account integrated respiratory losses. The results are shown in Fig. 3 (raw data in APPENDIX 

 
 

Fig. 2 (a) Labelling-derived 13C content of new roots in 
relation to labelling-derived 13C content of leaves and (b) 
labelling-derived 13C content of CO2 respired by the new 
roots in relation to the labelling-derived 13C content of CO2 
respired by the leaves for K. myosuroides (grey symbol) 
and C. foetida (white symbol) at each chase time. Values 
are the mean ± se (n=3). See text for further statistical 
details. 
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3). In KM, 45% of the labelling-derived 13C remained in leaves, and nearly 5% of the 

labelling-derived 13C was allocated to new roots. By contrast, 29% of the labelling-derived 
13C remained in leaves while new roots accounted for ~20%. Respiratory losses associated 

with leaves were more pronounced in KM than in CF while that associated with new roots 

respiration were larger in CF. However, we note that, in the case of new roots CF, the 

respiration-to-organic matter ratio of 13C allocation was much smaller (Fig. 3, light grey), 

clearly suggesting that 13C was directed to new root growth to a larger extent than to 

respiration. 
 

 
Fig. 3 Percentage allocation of the total labelling-derived 13C mass (γ13CM) 
recovered in the leaves, the new and old roots and lost through leaf, new 
and old root respiration 11d after the pulse-labelling. Leaves : white, new 
roots: grey, old roots: dark grey. Hatching patterns correspond to C lost 
through respiration. 

 

Nitrogen allocation and partitioning  

The natural 14N/15N isotope composition (δ15N) of organs and soil is indicated in Table 2. Soil 

N was always 15N-enriched (P<0.05) by 1.7 to 7.1‰, so that a 14N/15N isotope fractionation 

during N reduction/assimilation is apparent. KM leaves were clearly and significantly 15N-

depleted compared to new and old roots whereas CF leaves nearly had the same δ15N value as 

new and old roots and were slighty enriched compared to KM leaves. This indicates that N 

reduction/assimilation in CF, which discriminates against 15N, occured mainly in the roots, 

thereby enriching in 15N the remaining N-containing molecules (such as nitrates) transfered to 

leaves. Inversely, the depleted N compounds in the KM leaves indicate higher proportion of N 

reduction/assimilation in the aboveground compare to the belowground compartments. 
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The nitrogen allocation after 24 h 15N-labelling with either 15N-nitrate, 15N-ammonium or 15N-

glycine is indicated in Fig. 4. Very clearly, CF was more 15N-labelled than KM at the whole-

plant level, whatever the labelling molecule was. In other words, CF had a higher N uptake 

efficiency (NupE) than KM: the recovery of 15N from the labelling solution was 13.7 ± 2.5% 

Gly, 19.8 ± 3.1% NO3
-, 2.9 ± 1.2% NH4

+ and 4.6 ± 0.5% Gly, 10.4 ± 3.8% NO3
-, 1.8 ± 0.4% 

NH4
+ in CF and KM, respectively. For nitrate, the CF-to-KM ratio of NupE was then as high 

as 1.9.  

 

In addition, a larger proportion of N (nearly the double) was allocated to leaves in CF than in 

KM (circle graphs, Fig. 4a) when 15N was supplied as nitrate; such a difference was less 

pronounced with 15N-ammonium (Fig. 4b) and also less visible with 15N-Gly (Fig. 4c). 

However, old roots represented a large 15N-sink in Fig. 4, simply because of their high 

biomass. In other words, the specific 15N-abundance (µg 15N/g DW) was always low in old 

roots (data not shown). In the case of nitrate, the specific 15N-abundance of leaves is 72.6 ± 

26.8 and 20.3 ± 9.7 µg 15N/g DW in CF and KM, respectively, so that the CF-to-KM ratio 

was 3.5. Such a ratio is larger than the NupE ratio (1.9, see above), clearly demonstrating that 

preferential N allocation to leaves, rather than whole-plant uptake efficiency, was responsible 

for the larger 15N mass in CF leaves (Fig. 4a). 
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Fig. 4 Labelling-derived 15N content in whole 
plant dry matter (µg 15N g-1 DW) after 15NO3

- 
(a), 15NH4

+ (b), 15N-glycine (c) amendment in K. 
myosuroides (grey bar) and C. foetida (white 
bar). Circle graphs: Percentage allocation of the 
total labelling-derived 15N mass recovered in the 
leaves (white), the new (grey) and old roots 
(black). Values are the mean ± se (n=3). ns : no 
significant, * P<0.05. See text for further 
statistical details.  
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Discussion 

 Alpine plants are frequently exposed to contrasted micro-environmental conditions 

(nutrients and water availability, light, etc). Within alpine meadows, a well-documented 

environmental gradient lies between early and late snowmelt locations. In the latter, the 

growing season is shorter and accompanied by relatively good nutrient availability 

(particularly at the beginning of the growing season) (Bowman 1992, Baptist and Choler 

2008). Plant growing under such conditions are thus energy-limited rather than nutrient-

limited. By contrast, plants growing in early snowmelt habitats are much less energy-limited 

and soil nutrient is less abundant. Although the adaptation of these plants has been shown to 

involve growth rapidity (fast and slow-growing species are observed in late and early 

snowmelt conditions, respectively) and photosynthetic capacity (which is higher in fast-

growing species, Wright et al. 2004), the primary carbon metabolism and allocation patterns 

are poorly known. The aim of this study was thus to clarify C and N partitioning patterns in 

Carex foetida (CF) and Kobresia myosuroides (KM), two species found in opposite habitats, 

that is, growing under late and early snowmelt conditions. 

 

Carbon fixation and partitioning  

 Adaptation of CF to short growing-season duration involves high relative growth rates 

(e.g. belowground productivity, Table 1) and photosynthetic capacity (see APPENDIX 1). 

This agrees with the larger maximal carboxylation rate Vcmax and higher leaf N elemental 

content in CF (Choler 2005, Baptist and Choler 2008), which is an indicator of the specific 

Rubisco content. Whole-plant carbon allocation favored the root compartment in CF as 

indicated by the larger 13C-transfer to new roots (Fig. 1, 2 and 3) as compared to KM. Such a 

transfer to roots plausibly involved a larger flux of assimilates rather than a limited flux of 

assimilates with high 13C-specific abundance, because the kinetics of the 13C-decline in leaf 

organic matter are quicker in CF (Fig. 1; t1/2 values of 13 h versus 21 h in KM; Fig. 2a) while 

the initial leaf 13C-abundance is very similar in both species.  

The mass-balance after a 11 d chase period indicate that the larger carbon flow from 

leaves to roots is directed to feeding new root growth rather than respiration in CF plants (Fig. 

3). Indeed, the dissimilar 13C-abundance in root-respired CO2: while the 13C allocation 

(labelling-derived 13C content) to new root total organic matter is nearly 3 times higher in CF 

(Fig. 1 and ANNEXE 3), the maximum 13C content in root-respired CO2 was the double only. 

In other words, the turn-over (consumption) of the root respiratory pool was lower in CF.  

We nevertheless recognize that there were large discrepancies between the two types 
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of roots, that is, woody (old) and non-woody (new) roots. Old roots were weak 13C-sinks 

(very low 13C-abundance after labelling, Fig. 1) with small respiratory activity as compared to 

new roots (nearly 70% less, Table 1). This reflects differences in metabolic activities: new 

roots are responsible for root growth and nutrients absorption while old roots have a 

conduction and storage role (Comas et al. 2000, Lipp and Andersen 2003, Volder et al. 2005). 

However, at the whole plant level, old roots accounted for a substantial 13C content because of 

their very large biomass (Table 1), while the C allocation pattern to old roots was somewhat 

similar in both species (Fig.s 1 and 3). 

 In the present case, carbon allocation closely correlated to belowground productivity 

rather than to belowground biomass. It should be emphasised that the root-to-shoot biomass 

ratio is the result of two opposing forces: root turnover (degradation/production balance) and 

carbon translocation from leaves. That is, as already proposed by Carbone & Trumbore 

(2007) and Craine et al. (2002), the root-to-shoot ratio may be an unreliable trait to predict 

instantaneous carbon partitioning, so that physiological 13C- or 14C - studies using tracing are 

necessary to unravel carbon allocation patterns. 

 

Nitrogen uptake and assimilation 

 Variations in 15N uptake between both species are consistent with previous studies 

which suggest that fast-growing species display higher specific nitrogen absorption rate than 

slow-growing species (Garnier 1991, Poorter et al. 1991). Besides, CF and KM exhibited 

different N allocation patterns : CF experiences higher N allocation to leaves after a 24 h 

chase compared to KM (Fig. 3). Consequently, one may assume that N translocation toward 

aboveground compartment was more efficient in CF than in KM plants. 

KM exhibited a prevalence of leaf N reduction/assimilation over root reduction in contrast to 

CF (Table 2). In ordinary conditions where nitrate is reduced by both leaves and roots, the 

natural 14N/15N isotope composition (δ15N) of leaves is higher (15N-enriched) because nitrate 

reduction fractionates against 15N thereby enriching the remaining nitrate molecules exported 

to leaves (for a recent review, see Tcherkez and Hodges 2007). This was typically the case in 

CF (Table 2). By contrast, KM leaves were not 15N-enriched as compared to new roots, 

demonstrating that N reduction occured mainly in leaves (Table 2). Under non-limiting 

nutrients availability, shoots generally appear to be the predominant site of NO3
- reduction 

because of the higher content of excess reductants produced by photosynthesis (Scheurwater 

et al. 2002). As a result, it has been logically stated that fast-growing species may experience 

higher NO3
- reduction in the leaves compare to the roots because of larger photosynthetic rate 
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- which produce important amount of reductants (Gojon et al. 1994). However, the site of 

NO3
- reduction is dependant over others factors such as the specific rate of nitrate reductase 

activity, the biomass allocation (Gojon et al. 1994, Scheurwater et al. 2002) or environmental 

conditions (Radin 1978, Andrews 1986, Miller and Cramer 2004). In the case of CF, the high 

C flux allocated to the belowground compartment may furnish enough reductants, through 

glycolysis and oxidative pentose phosphate pathway, to maintain a significant level of NO3
- 

reduction into the roots (Pate 1980). Besides, the ability to reduce efficiently NO3
- in roots 

may limit N efflux and contribute to the N uptake efficiency (Mata et al. 2000, Miller and 

Cramer 2004). In contrast, arctic and alpine slow-growing species, such as KM, exhibit 

generally lower nitrate reductase activity (Atkin 1996) and as a consequence the important 

presence of reductants and C skeleton provided by photosynthesis may favor the 

assimilation/reduction of NO3
- in the aboveground compartment. Finally, it is also a way for 

slow-growing species to limit specific respiratory cost associated to N uptake by reducing N 

losses through efflux (Scheurwater et al. 1999, Mata et al. 2000).  

 

Biomass and energetic root/shoot balance 

 A larger rate of root respiration was expected in CF compare to KM plants as more 

respiratory energy was necessary to support higher root productivity and nitrogen uptake 

(almost two-fold larger). Nevertheless, root respiration did not differ between the two species 

suggesting that the fast-growing species respired at lower rate than expected from its C and N 

metabolism. Previous studies already reported similar results and noticed the absence of clear 

relationships between RGR and root respiration rate (e.g. van der Werf et al. 1988, e.g. 

Poorter et al. 1991). 

Root respiration can be separated into three components, i.e. respiration for root growth, for 

maintenance and for ion uptake. We thus assume a classical relationship between total root 

respiration (denoted as R) and these components as follows (modified version from Van der 

Werf et al. 1994) :  

rgum PCupENCRR ⋅+⋅+=  

where R is root respiration, Rm is maintenance respiration, NupE is the nitrogen uptake 

efficiency, Pr is the root productivity and Cu and Cg, the specific respiratory growth for ion 

uptake and growth respectively.  

Based on this equation, the reduced respiratory requirements of CF could be explained by a 

lower energy requirements for nutrients uptake (Cu), a much lower maintenance respiration 
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(RR) and/or a reduced growth cost could explained (Cg). 

Scheurwater et al. (1998) and van der Werf et al. (1988) demonstrate that, within a functional 

group (e.g. Gramineae), maintenance respiration differ only slightly between fast- and slow-

growing species. Similarly, numerous studies have proved that construction cost of roots and 

leaves did not differ between fast and slow-growing species (van der Werf et al. 1988, Navas 

et al. 2003, Roumet et al. 2006) and it was the case for CF and KM (data not shown). Thus, 

lower specific respiratory cost associated to growth or maintenance respiration are unlikely. 

As a result, this suggests that CF has lower costs associated to ion uptake as this has already 

been demonstrated for various fast-growing graminoids (Scheurwater et al. 1998, Scheurwater 

et al. 1999). Thus, the low respiratory requirements for N reduction and assimilation in CF 

might be responsible for the reduced root respiration rate. 

 

Conclusion 

 Taken as a whole, it is apparent that CF and KM nearly represent two extreme cases of 

the compromise between shoot and roots involvement in C and N assimilations. In contrast to 

KM, CF exhibits (1) an improved photosynthetic capacity and N uptake efficiciency (2) a 

preferential carbon allocation to roots favoring root growth and NO3
- reduction in this 

compartment and (3) a higher N aboveground translocation. CF root respiration was much 

lower than expected, and this was likely caused by a lower cost for ion uptake (lower N 

efflux, Scheurwater et al. 1999). The results obtained with this couple of species therefore 

suggest that at the whole-plant level, there is a compromise between N acquisition and C 

allocation for an optimized growth : the fast growing species, which is energy-limited, 

exhibits a tighter coupling between C and N metabolisms than the slow-growing’s one more 

nutrient-limited. 
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Appendix 1 

 

 
 

Appendix 1. Net leaf CO2 assimilation 
per g DW of Kobresia myosuroides 
(black circle) and Carex foetida (white 
circle) in relation to PAR 
(Photosynthetic Active Radiation). Net 
leaf CO2 assimilation at saturating light 
reached 1755.5±1097.7 ng C g-1 leaf DW 
s-1 and 2660.2±93.3 ngC g-1 leaf DW s-

1for Kobresia myosuroides and Carex 
foetida respectively. Values are the mean 
± se (n = 3). 
 

Material and methods :  

An open-flow photosynthesis system (model 6400, LiCOR, NE, USA) equipped with a CO2 

controller (CO2 concentration equalled 400 pap) was used to measure light–response curves 

of Carex foetida and Kobresia myosuroides under constant temperature and humidity in July 

2004. The system was maintained in a closed thermostated chamber and leaf temperature 

averaged ± 20°C.  

 

 

Appendix 2  

 

Chase time  K. myosuroides C. foetida 

T0 

T1 

T3 

T11 

1.28 (0.12)a 

0.95 (0.02)b 

0.80 (0.09)b 

0.63 (0.05)b 

1.36 (0.22)a 

0.97 (0.09)a 

1.13 (0.14)a 

0.94 (0.13)a 

Appendix 2. Labelling-derived 13C mass (γ13CM) at each chase time 
(mg 13C) for K. Myosuroides and C. Foetida. See equation 5 for 
calculations and text for statistical details. Values are the mean ± se. 
Different letters indicate significant differences between different 
chase times (P<0.05). 
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Appendix 3  

 
Appendix 3. Labelling-derived 13C content (γ13C, µg 13C g-1 DW) (a-b), labelling-derived 13C flux (γ13CR, µg 
13C g-1 DW h-1) (c-d) and labelling-derived 13C mass (γ13CM, µg 13C) (e-f) in leaves, new and old roots of K. 
Myosuroides and C. foetida following the pulse-labelling. Inlet graphs : cumulated labelling-derived 13C mass 
(µg 13C) respired by the leaves, new and old root of K. Myosuroides (e) and C. foetida (f) following the pulse-
labelling. Leaves: white circle, new roots: white square, old roots: black square. All X –axes are time elapsed 
since the pulse-labelling (in days). Values are the mean ± se (n=3). 
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                          Snow cover exerts control over decomposition in 
alpine tundra along a snowmelt gradient. 

 
 
Baptist, F., G. Yoccoz, and Ph. Choler 

In prep. for Plant and soil 
 
 

 

 

 

 

 

 

 
Combe Roche Noire, le 17/10/2006 (~ 2700m). Période durant laquelle une partie des sacs 
de litière a été prélevée (expérimentation II). En arrière plan, la Meije (massif des Ecrins, 
Fr). Photo : Ph. Choler. 
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Abstract  

We assessed the interplay between short-term and long-term effects of snowpack on litter 

decomposition in alpine tundra at early and late snowmelt locations. Short-term effects are 

driven by the direct influence of snow cover on edaphoclimatic conditions (topographical 

effect), whereas long-term effects derive from the ecological sorting of species and plant traits 

(species effect). We examined the relationship of snow cover dynamics to seasonal and 

annual patterns of litter mass loss and litter nitrogen release. For these purposes, we compared 

the in situ decomposition of four native plant litters (two graminoids and two shrubs) using a 

two-year reciprocal-transplant litter-bag experiment. Additionally, a seasonal experiment was 

performed to estimate the relative importance of winter and summer periods for litter 

decomposition. Our results suggest that decomposition was enhanced in late snowmelt  

compared to early snowmelt locations irrespective of species identity. Winter decomposition 

rate was significantly correlated to mean winter soil temperature. Frozen soils at early 

snowmelt locations reduced winter decomposition. However, species and growth form 

appeared to determine primarily decomposition rate, with topography exerting only a 

secondary influence. Mass loss was slower from shrub litter than from graminoid litter 

regardless of topographical location. No significant effect of topography on N immobilization 

was detected. The inconsistent snowpack in early snowmelt locations delayed the final stage 

of N mineralization and may contribute to reduce N availability in the ecosystem. We 

concluded that reduced snow cover would slow litter decomposition at late snowmelt 

locations in alpine tundra and hence may favour greater carbon sequestration in these 

ecosystems. However, changes in litter quality as a result of shifts in growth form would 

probably be more important in determining litter decomposition rates than the short-term 

effect of variations in snow cover.  

 

Keywords : snowmelt gradient, alpine tundra, growth form, litter decomposition, litter 

quality, Kobresia myosuroides, Dryas octopetala, Salix herbacea, Carex foetida, Alopecurus 

gerardi.  
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Introduction 

  Seasonally snow-covered ecosystems sequester a large pool of organic carbon in the 

soil, which appears particularly vulnerable in the context of global warming (Hobbie et al. 

2000, Monson et al. 2006). Recent climate analyses postulate that, associated with higher 

temperature, snowfall may decline during the upcoming decades, in the northern hemisphere, 

especially in American, European and Russian mountain ecosystems (Serreze et al. 2000, 

Beniston 2005). In these systems, the landscape scale distribution of snow is one of the most 

important variables controlling mountain ecosystem properties. Variation in the depth and 

duration of snowpack result in large differences in edaphoclimatic conditions, and plant 

community composition (Walker et al. 1993). Consequently, changes in snow regime may be 

of dramatic consequence for nutrient cycling processes and soil carbon sequestration 

(Robinson 2002). As such, assessing the affect of snow distribution on the rate of 

decomposition and associated nitrogen release is a crucial element in predicting the impact of 

global change on carbon stocks in these regions. 

 

 Snow can affect decomposition on various levels. It can influence decomposition, in 

the short term, affecting wintertime soil temperature by insulating soil and/or summertime soil 

moisture. In the longer term, snow induces consistent and repeated changes in growing-season 

length, soil fertility, and water availability, thereby driving the ecological sorting of species 

and plant functional traits (Kudo 1996, Choler 2005). Thus, snow directly and indirectly 

controls litter decomposition and nitrogen release (Walker et al. 1999, Groffman et al. 2001).  

 

 Several recent studies have addressed the impact of variation in snow depth on carbon 

(C) and nitrogen (N) mineralization (Campbell et al. 2005). They have done this by 

manipulating snow cover (Walker et al. 1999, Chimner and Welker 2005), or by correlating 

Net Ecosystem CO2 Exchange (NEE) to inter-annual variations in snow depth (Monson et al. 

2006). These studies focussed on the short-term effect of snow-depth variations on C 

mineralization, but did not address the effect of long-term snow-induced changes in litter 

quality or in plant community structure on this process. The latter two factors are 

interdependent and strongly driven by environmental conditions (Hobbie 1996, Robinson 

2002). In order to determine the main controls over litter decomposition and associated N 

released in snow-covered ecosystems, we need to examine the interplay between (1) snow-

induced changes in edaphoclimatic conditions and (2) snow-induced changes in litter quality.  
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 Several approaches have been proposed to undertake the difficult challenge of 

studying the long-term effects of climate change (Rustad 2006): (1) long-term monitoring (2) 

modelling or (3) observations of existing environmental gradients treated as space-for-time 

proxies. In alpine ecosystems, the distribution of snow (and therefore the snowmelt 

behaviour) is closely related to mesotopographical gradients (i.e. an ecocline along a small to 

medium-sized hill slope). Vascular plants in early snowmelt locations exhibit a combination 

of leaf trait attributes, including low LDMC and SLA (Leaf Dry Matter Content, Specific 

Leaf Area) and high C/N ratio (Kudo 1996, Choler 2005, Baptist and Choler 2008) which are 

generally associated to low decomposability (e.g. Cornelissen et al. 1999, e.g. Kazakou et al. 

2006). Conversely, the leaf traits of species from late snowmelt locations, exhibit high SLA or 

Nmax, which give rise to better quality litter.  

 

 In this study, we compared litter decomposition in early snowmelt and late snowmelt 

locations. We addressed the following questions: (1) how important is the influence of species 

identity compared to that of edaphoclimatic conditions on decomposition in alpine tundra, (2) 

how do seasonal patterns of decomposition relate to snow cover dynamics in early and late 

snowmelt locations, and (3) what is the impact of seasonal and annual litter decomposition on 

N release. To address these questions, we established two litter decomposition experiments: 

(1) a two-year reciprocal transplant litter experiment to disentangle species effect from 

topographical effect on decomposition (experiment I), and (2) a seasonal experiment to 

identify relative influence of summer and winter periods on litter decomposition (experiment 

II). 
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Material and methods 

Study site 

Our research area was located in the mountain ranges of Grand Galibier and Grandes Rousses, 

South-Western French Alps (45°7’N, 6°5’E) above the potential tree line (2300-2400 m 

a.s.l.). This study was conducted in three sites. Each site was characterized by both the late 

and early snowmelt conditions (hereafter resumed as the topographical location) located at a 

distance of about 30 to 50 m apart (in total three replicates of each topographical location). 

Sites A and B were orientated East and were situated respectively at 2520m and 2550m (slope 

: 0° and ∼ 30° respectively). The distance between two any sites always exceeded 500m. Site 

C was orientated North-East at an altitude of 2550m (slope : 0° and 20° in late and early 

snowmelt locations). In early snowmelt locations, communities were dominated by Kobresia 

myosuroides (Cyperaceae, KM) and Dryas octopetala (Rosaceae, DO). In late snowmelt 

locations, Carex foetida (Cyperaceae, CF), Salix herbacea (Salicaceae, SH), Alopecurus 

gerardi (Poaceae, AG) and Alchemilla pentaphyllea (Rosaceae) were the most abundant 

species. To estimate standing biomass and aboveground net primary productivity, we 

randomly harvested aboveground biomass in a 40 × 40 cm quadrat (n=3) on 23/07/03 at peak 

standing biomass in both topograpical locations of the A, B and C sites (Table 1). In the case 

of shrubs, only leaves were harvested (see below). Aboveground net primary productivity was 

determined by dividing standing biomass by the time between the date of snowmelt and peak 

biomass (Table 1). 

The soils are classified as a stagnogley, enriched in clay, in late snowmelt locations, and as an 

alpine ranker in early snowmelt locations. The bedrock is basic flysh in sites A and B and 

calcareous in site C. 

 

Climatic recordings 

Hourly soil temperature was recorded in each topographical location from 2003 to 2006 with 

Hobo probes (Onset computer corporation, Bourne, MA, USA) buried at 5 cm belowground 

(one per topographical location, in total 6 hobo probes). Soil temperatures that remain close to 

0 °C (usually between –1 and 1°C) throughout the day indicate a persistent snow cover. The 

wintertime period was calculated as the number of days exhibiting a mean soil temperature 

equal or below 0°C (Table 1). Five weeks separated snowmelt in early snowmelt compared to 

late snowmelt locations (Table 1). Mean wintertime soil temperature was also determined in 

each topographical location. Finally, volumetric soil water content in each topographical 
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location at a depth of 5 cm was measured continuously during growing seasons 2005 and 

2006 with an Echo Probe (Decagon Devices, Pullman, WA). 

 

Litter decomposition experiments 

Experiment I 

We chose litter from two dominant species in late snowmelt locations (here after “substrate”) 

which represented more than 70% of aboveground biomass: one graminoid (Carex foetida) 

and one shrub (Salix herbacea). In early snowmelt locations, we selected one graminoid 

(Kobresia myosuroides) and one shrub (Dryas octopetala) which corresponded to more than 

90% of total community biomass. We constructed 10×10-cm polyethylene litter-bags. They 

were separately filled with 1g of the litter of each species which was removed from the field 

at the end of the growing season and previously oven dried at 60°C for 48H.  

The reciprocal-transplant litter experiment followed a split-plot-design. In total 384 litter-bags 

were deployed giving 8 replicates for 2 harvests of all substrates (CF, SH, KM and DO) in the 

three sites A, B and C in both topographical locations. This experiment was conducted in two 

stages, first with the two graminoid species (2003-2005), and second with the two shrub 

species (2004-2006). To allow for comparison between the two stages, a “standard” litter 

(SL), removed from a sweden grassland and used for a similar purpose in a global European 

survey (Quétier et al. 2007) was monitored in parallel (192 additional litter-bags). The first 

stage, concerning graminoid decomposition, was set up on 10/10/03 (KM/CF + SLI) and the 

second stage concerning shrub decomposition on 24/09/04 (DO/SH + SLII). The first harvest 

took place on 24/09/04 for KM, CF and SLI, the second on 10/10/05 for KM, CF, DO, SH 

and SLI/II, and the third on 02/10/06 for DO, SH and SLII. Litter remaining was carefully 

sorted then weighed after drying at 60°C during 48H. 

Experiment II 

Similarly to experiment I, we harvested at the end of september 2005 the litter from CF, SH, 

KM, and DO. We added a fifth species, Alopecurus gerardi (gramineae, AG) present in late 

snowmelt locations. This subtrate was harvested still green, because it senesced later under 

the snow. The same procedure in experiment I was conducted for the litter bag construction 

and filling. The seasonal litter experiment was set up on 10/10/05. Litterbags filled with 

substrates from the late snowmelt (CF, SH, AG) and from the early snowmelt locations (KM 

and DO) were respectively deployed in each topographical location for a total of 225 litter-

bags. The design was therefore not orthogonal with respect to topographical effect. Three 

harvests were performed, at the end of the first winter just after snowmelt, at the end of the 
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growing season, and after the second winter. In early snowmelt locations, the first harvest 

(here after reported as “Winter I”) took place on the 03/05/06 in all sites. In the late snowmelt 

locations, harvests were carried out on the 20/06/06 in site A, on the 14/06/06 in site B, and 

on the 19/06/06 in site C. The second harvest (“summer”) took place on the 02/10/06 and the 

final harvest (“Winter II”) was performed after a second wintertime period on the 18/05/07 in 

early snowmelt locations, and on 14/06/07 and 25/06/07 respectively in sites C, A and B. 

Treatment of litter-bags followed the same protocol as in Experiment I. 

 For each experiment I and II, we analysed three sub-samples of each substrate for 

initial C and N litter content using an elemental analyser (CHS NA1500, Carbo Erba 

Instrument, Milan, Italy) and for lignin content using the H2SO4 digestion method. .  

To estimate litter decomposition, we calculate mass loss (%) over the different periods as 

follows:  

100*)( )1( −∆ −= ttt massmasslossMass  

 

Statistical procedures 

 For experiment I, we used Linear Mixed Models (Pinheiro and Bates 2000) to assess 

effects of topography and species on mass loss. In a split-plot design, sites were considered as 

random factors, whereas harvest times, topographical location, species and their interactions 

were fixed factors. We also applied similar models within each harvest, to facilitate the 

interpretation of results. In the latter case, to estimate the variance explained by each effect 

compared to the total variance of the response variable, we followed Xu (2003). Partial 

coefficients of determination R2 are given by:  

0

2 1
RSS
RSSR −= , 

where RSS and RSS0 are respectively the residual sums of squares for the model testing the 

specific effect and the global model. They therefore give an indication on the importance of 

the effect in addition to its significance. Goodness-of-fit of mixed models was assessed using 

residuals plotted at the different levels (sites/topographical location). Constant variance of 

residuals was assessed using Bartlett’s test. 

In addition, we determined the exponential decay constant, k, assuming a single exponential 

decay model following Hobbie (2000) and Hobbie and Gough (2004):  
kt

0tt eMassMass −⋅=  

where Masst is the remaining mass at time t, Masst0; the initial mass (1 g), and k; the constant 
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decay (yr-1). Decay constants were determined for each species in each topographical location 

by fitting a linear-regression of the (LN-transformed) litter remaining against time. An 

ANCOVA was applied within topographical location to test the significance of the Mass 

remaining × Species interaction. 

Finally, an ANCOVA was applied to test the regression between (1) yearly mass loss of each 

substrate against mean wintertime soil temperature and (2) litter N content (proportion of 

initial N content) of each species against mass loss. Analysed data were the mean of each 

harvest, in each topographical location. Species were considered as the qualitative factor 

whereas mean wintertime soil temperature (1) or mass loss (2) were the continuous factors. 

In Experiment II, we estimated decomposition rate for each period, each species and for each 

topographical situation by applying the following formula :  

[ ]1tt massremainingmassremaining
T
1)d/mg(rateionDecomposit −−⋅=  

where T is the period between t-1 and t (in days). We did not estimate the exponential decay 

constant (as done in experiment I) as the aims of this experiment were to precise for each 

period the decomposition rate of each substrate rather than the mean decomposition rate over 

all the period of the experiment. We used a two-way analysis of variance (ANOVA) to 

compare period and site effects for each species separately and to test differences in litter N 

content for each species (proportion of initial N content) after the first winter, summer and 

second winter. Finally, a Student’s t-test was used to assess the initial value (=1) litter N 

content (in proportion to initial) and that after winter I, summer and winter II. Statistical 

analyses were performed using R software (R Development Core Team 2006).  
 

 

Characteristics Late snowmelt 
location 

Early snowmelt 
location 

Winter duration (d) 
Mean winter soil temperature (°C)  
Mean summer soil temperature (°C) 
Gravimetric summer soil moisture (gH2O g-1 soil) 
Productivity (g m-2 d-1) 
Total biomass (g m-2) 

240 (12) 
-0.15 (0.01) 
7.7 (1.55) 
0.35 (0.03) 
7.23 (0.45) 

325.67 (22.04) 

206 (15) 
-3.05 (0.45) 
7.6 (1.62) 
0.42 (0.03) 
2.18 (0.14) 

185.90 (11.72) 

Table 1 Winter duration, soil temperature records and soil moisture are an average of three years records from 
the three sites A, B and C within each topographical location (from the end of 2003 to the end of 2006). Values 
are the estimated parameter ± standard error except for winter duration where it is standard deviation. 
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 1 

 2 

Species Location Growth 
form SLA (cm2/gr) LDMC  

(%) C/N Lignin 
content (%) Experiment I Experiment II 

       C/N litter % N % C C/N litter % N % C 

CF Late snowmelt Graminoid 194.5 (7.2) 26.1 (0.6) 11.2 (0.5) 6.1 (0.3) 20.6 (0.3) 2.32 (0.04) 47.1 (0.1) 37.7 (2.1) 1.22 (0.07) 45.1 (0.5) 

KM Early snowmelt Graminoid 123.7 (2.27) 32.2 (0.5) 19.2 (0.7) 7.4 (0.5) 85.6 (5.2) 0.57 (0.03) 48.0 (0.1) 82.5 (5.5) 0.58 (0.05) 47.2 (0.5) 

AG Late snowmelt Graminoid 191.1 (3.7) 24.5 (0.4) 13.1 (0.6) 3.8 (0.3) - - - 25.6 (0.9) 1.76 (0.09) 44.6 (1.0) 

SH Late snowmelt Shrub 198.4 (6.1) 31.8 (2.8) 14.7 (0.7) 33.5 (0.8) 23.0 (0.7) 2.20 (0.07) 50.6 (0.3) 21.7 (0.6) 2.27 (0.06) 48.9 (0.8) 

DO Early snowmelt Shrub 115.9 (4.9) 38.7 (1.7) 20.3 (0.7) 36.1 (0.2) 50.2 (0.7) 1.02 (0.01) 51.0 (1.0) 35.6 (2.4) 1.43 (0.08) 50.4 (0.3) 

Standard  - Graminoid - - -  37.3 (1.9) 1.26 (0.06) 46.2 (0.3) - - - 

Table 2 Habitat, growth form, and functional traits of green leaves (SLA, LDMC and C/N) and litter (C/N, lignin content) of C. foetida, K. myosuroides, A. gerardi, S. 3 
herbacea, D. octopetala and standard litter. In case of C/N litter characteristics, n=3, in the case of green leaf traits, n=10. Values are the estimated parameter (standard error). 4 
 5 

 6 
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Results 

Standing biomass in late snowmelt communities was twice as large as in early snowmelt 

communities (Table 1). Late snowmelt communities produced more aboveground biomass in 

a shorter period, which explains the four-fold difference in productivity between early and 

late snowmelt locationss when expressed on a daily basis (Table 1). Species had contrasting 

leaf traits as well as litter chemistry (Table 2). Green tissue from late snowmelt locations 

species (CF, AG and SH) characteristically had high Specific Leaf Area (SLA), low Leaf Dry 

Matter Content (LDMC), low green leaf C/N, and litter C/N because of higher %N. Species 

from early snowmelt locations (KM and DO) had the inverse suite of leaf traits attributes. In 

contrast, lignin content correlate with growth form : shrubs exhibit logically higher lignin 

content than graminoids. 
 

Annual litter mass loss: Experiment I 

The slope of the relationship between the remaining biomass of SLII and SLI was not 

significantly different from one (slope = 0.85±0.09, confidence intervals =[0.65,1.04]), 

whereas the intercept was different from zero (intercept = 10.98±4.75, t1,11 = 2.31, P=0.04) 

(Fig. 1). This indicates that decomposition was higher during the 2004-2006 than during 

2003-2005. However, after constraining the slope to a value of 1, the intercept was greatly 

reduced (intercept: 2.65±0.92, t1,11=2.87 P=0.01) and ranged from 0.62 to 4.67 % of mass 

loss. Compared to the magnitude of the differences observed between graminoids and shrubs 

(Fig. 2), this effect was negligible and hence was ignored in later analysis. Mass loss from 

graminoids and shrubs was therefore analysed within the same model. 
 



Chapitre II                                                                                          Article 2A 

 144

  

There were large species specific differences in total litter mass loss, whereas  the effect of 

topography was only marginally significant (Table 3, Fig. 2A and APPENDIX 1 for raw data 

within each site and each topographical location). The species × year interaction was highly 

significant, showing that patterns of mass loss over time depend on species composition. 

When analysed within the year, the species effect remained highly significant and explained 

82 % of the model variability (Table 3). Graminoids exhibited the greatest mass loss (Fig. 2B, 

Table 4). SH and DO experienced almost two-fold-less mass loss than the graminoids (Fig. 

2B). Consistent with the whole-model statistical analysis, the decay constant indicated more 

rapid decomposition of graminoids compared to shrubs at both early- and late snowmelt 

locations (Table 4). 

 

Source F, df P Partial R2 
Whole model  
Years 
Species 
Topography 
Years × Species 
Years × Topography 
Species × Topography 
 
Whole model – year I 
Species 
Topography 
Species × Topography 
 
Whole model – year II 
Species 
Topography 
Species × Topography 

 
767.98(1,358) 
615.63(3,358) 

8.80(1,2) 
7.16(3,358) 
0.00(1,358) 
2.15(3,358) 

 
 

290.99(3,175) 
17.71(1,2) 
2.58(3,175) 

 
 

432.1(3,176) 
5.02(1,2) 

2.00(3,176) 

 
<0.0001 
<0.0001 

0.10 
<0.0001 

0.95 
0.09 

 
 

<0.0001 
0.05 
0.05 

 
 

<0.0001 
0.15 
0.11 

 
- 
- 
- 
- 
- 
- 
 
 

0.82 
0.00 
0.02 

 
 

0.82 
0.00 
0.01 

Table 3 Split plot mixed Linear Model results for mass loss, comparing 
species and topographical effects for the whole data set and for each 
year (Experiment I). 

Fig. 1 Mass loss of standard litter set up in 
2003 against mass loss of standard litter 
set up in 2004 (Experiment I). Each point 
corresponds to the mean of 8 replicates ± 
se from one site and one year. Short dash 
line: linear regression to data, dotted line: 
linear regression when slope is forced to 
one, solid line 1:1 slope.  
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The estimated uncertainty of the overall effect of topography was large (Table 3). However, 

the effect size (as measured by the differences between mass loss in the late snowmelt 

locations and mass loss in early snowmelt locations for each site and each year) always 

produced the same trend, as illustrated on Fig. 2C (see also Appendix 1). The probability that 

no negative value is obtained with 12 replicates, as shown on Fig. 3, is equal to 0.0002 

(binomial test), providing strong evidence for an effect of topography. Thus, we can conclude 

that litter degradation was significantly higher in late snowmelt compared to early snowmelt 

locations.  

As no summertime soil temperature and soil moisture differences could be detected between 

the late snowmelt and the early snowmelt locations (Table 1), we focused on wintertime 

conditions to explain topographical effect. The inconsistent snow cover in early snowmelt 

locations lead to low soil temperatures associated with large temperature fluctuations (Table 

1). Regression of mass loss of each species after one year in each topographical situation 

against the respective mean wintertime soil temperatures (Fig. 4), showed a clear effect of 

both wintertime soil temperature (F1,16=76.86, P<0.0001) and species (F1,3=38.9, P<0.0001) 

on mass loss, but the variance explained by soil temperature remained low compared to the 

importance of the species effect (with temperature effect r2= 0.90, F7,16=31.8, P<0.0001, 

without temperature effect, r2 = 0.77, F3,20=27.53, P<0.001). The temperature × species 

interaction was marginally non-significant (F3,16=2.60, P=0.08). However, when species were 

grouped into growth form (shrub vs. graminoid), the interaction became significant 

(F1,20=5.48, P=0.03).  
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Fig. 2 Mean and 95% confidence intervals of litter mass loss after the first and second year of 
decomposition (a) in late snowmelt and early snowmelt locations (all species), (b) for each 
species (both topographical locations) and (c) for each species in each topographical location 
(Experiment I).  

 

Seasonal litter mass loss: Experiment II 

Similarly to Experiment I, there was large and significant effects of species on seasonal mass 

loss and decomposition rate (Fig. 5). After 1.5 year, the three graminoid species (CF, AG, 

KM) lost respectively 45.8%, 72.5%, and 49.3%, whereas DO lost 20.60% and SH 23.4% of 

their initial litter mass. Proportion of mass loss in winter I in comparison to total litter mass 

loss was high, ranging from 46.2% for SH to 80.7% for AG. In contrast, it ranged from 10 to 

40%  during summer and 7 to 27 % during Winter II. Only the decomposition of SH followed 

a different pattern, with similar mass loss observed during Winter I and the summer. 

The estimates of decomposition rate were higher during the first winter for most species, 

except SH (Fig. 5, Table 5). During Winter II, decomposition rates were in general lower than 

summer and Winter I rates. The periods × sites interaction was significant for all species. This 

was related to variable patterns of decomposition among sites between summer and winter II. 

However, the higher decomposition rates recorded during winter I compared to others seasons 

was consistent throughout the sites. 

Finally, the large variation in wintertime decomposition rate between species highlighted the 

importance of species and litter quality on decomposition, toward lower decomposition rate in 

the case of shrubs compared to graminoids, as in Experiment I. 
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Fig. 3 Mass loss difference (%): late snowmelt 
locations minus early snowmelt locations mass loss 
for each species, each site (A, B and C) for (a) year I 
and (b) year II (experiment I). See text for statistical 
analysis. 
 

 

Litter nitrogen dynamics 

Litter exhibited very little net N release after two years of decomposition (Fig. 6). Within each 

species, there were no consistent differences in the patterns of N immobilization between both 

topographic locations. Significant regression between N immobilization and mass loss 

suggests that topography controls the timing rather than the pattern of N release (mass loss 

effect: F1,40=294.50, P<0.0001). In other words, at a given percent mass loss, each species 

retained a similar N concentration (relative to initial) in both topographical conditions. 

Species differed significantly in net litter N immobilization (F3,40=531.3, P<0.0001) but no 

species-induced changes of N immobilization pattern were detected (Mass loss × Species 

effect : F3,40=1.70, P=0.18). KM, which is characterized by the highest C/N (Table 2), 

exhibited very strong N immobilization compared to the other species (a more than three-fold 

increased on the initial N concentration).  

 

On a seasonal basis, all substrates, but DO, exhibited similar patterns of immobilization from 

the first harvest until the last, similarly to Experiment I (Fig. 7, Table 6). The overall analysis 

of N immobilization on a yearly (Experiment I) and seasonal basis (Experiment II) was not 

sufficiently consistent to allow generalisations about the relationship between magnitude of N 

immobilization and specific species.  
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 Late snowmelt location Early snowmelt location 

Species 
Decay 
constant  
(k, yr-1) F,df r2 P 

Decay  
constant  
(k, yr-1) F,df r2 P 

C. foetida 0.56 (0.01) 14621,47 0.97 <0.0001 0.47 (0.02) 5381,47 0.92 <0.0001 
K. myosuroides 0.56 (0.01) 16721,47 0.97 <0.0001 0.45 (0.05) 8051,47 0.94 <0.0001 
S. herbacea 0.27 (0.01) 9051,45 0.95 <0.0001 0.19 (0.01) 3351,43 0.88 <0.0001 
D. octopetala 0.24 (0.01) 10861,47 0.96 <0.0001 0.15 (0.01) 3401,44 0.88 <0.0001 
Table 4 Statistics and decay constants (k) from regression of litter mass remaining against time in days. 
Regressions were done for each species and topographical location separately (Experiment I). Values are the 
estimated parameter (standard error). 
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Discussion  

 In this study, we showed that wintertime soil temperature and litter quality are the two 

key drivers of dominant-species litter decomposition in early and late snowmelt locations of 

alpine tundra. Only a few studies have addressed the relative importance of species vs. 

climatic effects on decomposition in alpine or arctic tundra. Hobbie (1996) compared the 

effects of increased temperature and litter from different Alaskan tundra on carbon and 

nitrogen mineralization in microcosms. They also tried to disentangle the influence of plant 

community composition from that of the soil environment at a moist acidic and a moist non-

acidic site (Hobbie and Gough 2004). In alpine environments, Bryant et al. (1998) considered 

that the variation in decomposition rates along a snowmelt gradient was a function of 

temperature and moisture, however snow was not assessed as a potential determinant of litter 

decomposition. O’Lear and Seastedt (1994) reported higher decomposition of Acomastylis 

rossi in a late snowmelt compared to an early snowmelt locations, but this study addressed 

only decomposition of one species. Thus, despite numerous studies in snow-covered 

ecosystem highlighting the major role played by snow in nutrient cycling (Campbell et al. 

2005), ours is to our knowledge the first study which hierarchies the snow-induced change 

effects on litter decomposition. 
 

 

 

Fig. 4 Regression of mass loss against 
corresponding wintertime soil 
temperature for each species 
(experiment I). Each point corresponds 
to first year mass loss in each 
topographical location. White : late 
snomelt locations and black : early 
snowmelt locations. See text for 
statistical analysis. 
 

 

 

Seasonal controls on litter decomposition 

 Our experiment indicated that, on average, 50 to 80% of the two-year mass losses 

occurred during the winter subsequent to the litter fall. Similarly, previous studies have 

reported that significant litter mass loss occurred during winter (Bleak 1970, O'Lear and 
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Seastedt 1994, Hobbie and Chapin 1996, Uchida et al. 2005). Moreover, recent studies have 

demonstrated that soil respiration persists under the snowpack (Brooks et al. 1997, Oechel et 

al. 1997, Fahnestock et al. 1999, Zimov et al. 1999, Welker et al. 2000), suggesting that cold-

adapted microorganisms may be able to survive even at sub-zero soil temperature (Brooks et 

al. 2004). Nevertheless, we can not exclude the possibility that physical processes, such as 

fragmentation, may affect mass loss (Hobbie and Chapin 1996). However, the freeze thaw 

cycles which can contribute to litter fragmentation are less frequent in late snowmelt 

locations, so one should reasonably expect a lower litter mass loss in these areas, which is in 

contradiction to what is observed. Thus, we conclude that biological origin largely 

predominates over physical fragmentation to explain higher mass loss during winter. 

 

 High wintertime decomposition rates compared to summertime rates suggest that 

specific microbial activity in the surface organic horizon may be at least as important in 

winter as in summer. This suggestion is supported by evidence that a high level of microbial 

biomass was also detected during winter in the top soil layer (Baptist, unpublished results), as 

reported elsewhere by others (Lipson et al. 1999, Schadt et al. 2003, Lipson and Schmidt 

2004). Total CO2 efflux, which is lower during winter, would mainly be the result of fresh 

litter decomposition, instead of total soil organic matter mineralization. This assumption 

differs from studies (Clein and Schimel 1995, Hobbie et al. 2000), proposing that much of the 

wintertime decomposition activity may occur deeper in the soil profile in warmer horizons. 

But it is supported by Loya et al. (2004), who indicate that C compounds from fresh litter 

inputs can contribute strongly to winter C respiration in soil, and by Uchida et al. (2005), who 

show that microorganisms in the litter layer can play an important role in the carbon cycle 

during the winter. These results illustrate that the growth of wintertime microbial populations 

may be supported by the large input of litter at the end of the growing season. Thus, seasonal 

variations in decomposition rate would seem to be closely related to C compound availability 

during the first stage of decomposition. Brooks et al. (2004) drew similar conclusions as they 

showed that CO2 fluxes from snow-covered soil at soil temperatures between 0 and -3°C were 

carbon-limited. 

 

 Seasonal decomposition of SH exhibited very different patterns from the other species. 

These results may be explained by the high concentration of polyphenols observed generally 

in Salix sp. leaves (Nyman and Julkunen Tiitto 2005). Indeed, the enzymatic degradation of 

these recalcitrant compounds is hindered by very high activation energy and low temperatures 



Chapitre II                                                                                          Article 2A 

 151

may restrict their catabolisation (Bosatta and Agren 1999). Warmer conditions during summer 

would favour their degradation. 

 

Topographical controls on decomposition 

 All the species studied here experienced lower decomposition in early snowmelt 

compared to late snowmelt locations. During summer, soil temperature and soil moisture were 

similar in late snowmelt and early snowmelt locations, which is contrary to previous studies 

considering topographical gradients (O'Lear and Seastedt 1994, Bryant et al. 1998, Fisk et al. 

 
Fig. 5 Decomposition rates by species for each period (mg/d) (experiment II). Circle graphs depict 
mass loss (in % of total mass loss from fall 2005 to spring 2007) and correspond to each period within 
species. See Table 5 and text for statistical analysis. Values are the mean ± se. 
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1998). Thus, summertime conditions can not explain the effect of topography on yearly mass 

loss. In contrast, the positive relationship between mass loss and mean wintertime soil 

temperature shows clearly that the topographical effect is related to soil temperature and 

therefore to snow depth during winter. In late snowmelt locations, deep snow cover, which 

acts as an insulating layer, maintains soil temperature at 0° C, whereas the shallow and 

variable snow cover on early snowmelt locations leads to very low soil temperatures during 

winter and tends to limit microbial activity. Snow cover, through soil temperature, may 

therefore impact decomposition in a significant way. Results from Experiment II support this 

assumption as they showed that decomposition mainly occurs during winter. Thus, our 

experiment suggests that deeper snow is creating an abiotic environment which is more 

favourable for litter decomposition in late snowmelt compared to early snowmelt locations. 

Nevertheless, besides a significant effect of topography, the main determinant of litter 

decomposition remained species composition (Experiment I). Strong interspecific variability 

in wintertime decomposition rate suggests that the nature of available substrates exerts an 

important control over microbial activity (Experiment II). Nadelhoffer et al. (1991) reported 

similar results in arctic ecosystems, as they showed that C mineralization was more strongly 

related to organic matter quality than to temperature.  
 

Source F, df P 
C. foetida 
Periods 
Sites 
Periods × Sites 
 

 
39.63 (2, 36) 
0.95 (2, 36) 
10.92 (4, 36) 

 
<0.001   
0.40     
<0.001   

K. myosuroides  
Periods 
Sites 
Periods × Sites 
 

 
11.18 (2, 36) 
0.59 (2, 36) 
3.55 (4, 36) 

 
<0.001   
 0.56 
  0.01 

A. gerardi 
Periods 
Sites 
Periods × Sites 
 

 
154.38 (2, 36) 
1.42 (2, 36) 
6.18 (4, 36) 

 
<0.001 
0.25 
<0.001  

S. herbacea  
Periods 
Sites 
Periods × Sites 
 

 
13.71 (2, 36) 
5.33 (2, 36) 
4.83 (4, 36) 

 
<0.001  
0.01   
0.003   

D. octopetala  
Periods 
Sites 
Periods × Sites 

 
18.27 (2, 36) 
0.42 (2, 36) 
4.92 (4, 36) 

 
<0.001  
0.66   
0.003  

Table 5 Two-Way ANOVA results for 
decomposition rates comparing period (seasonal) 
and site effects (Experiment II). 

Source F, df P 
C. foetida 
Periods 
Sites 
Periods × Sites 
 

 
27.74 (2,18) 
1.90 (2,18) 
2.06 (4, 18) 

 
<0.001    
0.18   
0.12    

K. myosuroides 
Periods 
Sites 
Periods × Sites 
 

 
26.93 (2, 18) 
9.80 (2, 18) 
0.86 (4, 18) 

 
<0.0001   
0.001   
0.50    

A. gerardi 
Periods 
Sites 
Periods × Sites 
 

 
2.49 (2, 18) 
0.75 (2, 18) 
0.62 (4, 18) 

 
0.11    
0.48    
0.65    

S. herbacea  
Periods 
Sites 
Periods × Sites 
 

 
14.57 (2, 18) 
0.84 (2, 18) 
0.29 (4, 18) 

 
<0.001    
0.45    
0.87   

D. octopetala  
Periods 
Sites 
Periods × Sites 

 
8.36 (2, 17) 
1.39 (2, 17) 
0.59 (4, 17) 

 
0.003       
0.27    
0.67  

Table 6 Two-Way ANOVA results for litter N 
(proportion of initial N) comparing period and 
site effects (Experiment II). 



Chapitre II                                                                                          Article 2A 

 153

 However, the reciprocal transplant litter experiment underlined that, despite distinct 

functional trait syndromes along the snowmelt gradient (Choler 2005, Baptist and Choler 

2008), species effect was firstly structured by lignin content –growth form - rather than leaf 

nitrogen content associated to nutrient acquisition strategy (see Table 1). Interspecific 

variations in litter decomposition largely mirrored growth form diversity in alpine tundra, 

underlying the importance of lignin in decomposition process. These results are in agreement 

with previous studies, which showed that shrubs were characterized by a lower decomposition 

rate compared to sedge species in arctic and sub-arctic systems (e.g. Hobbie 1996, 

Cornelissen et al. 2007). 
 

 

Implications for N cycling 

 After two years of decomposition, litter still exhibited N immobilization. We would 

expect a subsequent period of net N release (mainly N mineralization) (Melillo et al. 1989), 

however the two-year duration of this experiment was insufficient time to reach this stage. No 

significant effect of topography on N immobilization was detected. Patterns of N 

immobilization was primarily the result of faster decomposition. The inconsistent snowpack 

in early snowmelt locations may delay the final stage of N mineralization, limiting N 

availability in the ecosystem. However, this phenomenon may also contribute to limit N loss 

during snowmelt as a result of steep slopes between early and late snowmelt locations and 

thus promote N retention in the ecosystem, even in an organic form (Steltzer and Bowman 

2005). Litter quality affects N immobilization by delaying mass loss and so final N 

mineralization stage, but also by controlling the magnitude of N immobilization. KM 

 

Fig. 6 Litter N content (proportion of 
initial N) by species in relation to mass 
loss (Experiment I). Symbols are the 
mean ± se at each period and each site. 
See text for statistical analysis. 
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exhibited the highest immobilization in both experiments, which could be related to high 

initial C/N whereas CF weakly immobilized nitrogen. However, no significant relationship 

could be drawn between initial litter C/N and N immobilization after one year of 

decomposition. The different patterns of N immobilization depend on interspecific differences 

in nutrient concentration but also resorption and leaching from dead leaves. As a result, they 

are more likely to be idiosyncratic effects and, as such, difficult to predict.  
 

 

 

 
Fig. 7 Litter N content (proportion ofinitial N) by species for each period (Experiment II). Values 
are the mean ± se of each period for all sites. See Table 6 and text for statistical analysis. 
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Conclusion 

 In a context of global change, our results suggest that a decreasing winter snowpack 

would reduce mass loss during winter and would enhance the potential for C sequestration 

(Monson et al. 2006). However, the results highlighted growth forms as the primary drivers of 

decomposition compared to topography. Thus, it is suggested that changes in litter quality, as 

a result of community-level shifts in growth form will have a stronger impact on litter 

decomposition in alpine tundra than the direct effect of insulating snowpack. 
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Appendix 1 

 

Appendix 1 Mass loss of each substrate, in each site for early (black) and late (white) snowmelt 
locations after one (left) and two (right) years of decomposition (Experiment I). 
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Abstract  

Topographical variations and its associated changes in snow cover duration have long 

been recognized as the primary source of ecosystem structure and functioning in alpine 

landscapes. Yet, our understanding of the factors controlling soil heterotrophic respiration 

along snow cover gradients remains incomplete. Here, we examined the temperature 

sensitivity of alpine soils from early and late snowmelt locations. We conducted laboratory 

experiments on soil cores to disentangle the relative effect of temperature, soil water content 

and soil carbon content on heterotrophic respiration. Two set of soil cores, collected in 

summer and just before snowfall, were submitted to a high (2 - 30 °C) and a low (-8 - 0 °C) 

temperature range, respectively. A four parameter model explained 90 %, and 80 %, of the 

variance for the high and the low temperature range, respectively. A noticeable finding was a 

significant inverse relationship between soil carbon content and basal respiration. The model 

was adequate in predicting field effluxes measured on a weekly basis during the summer 

season. We built on these results to simulate summertime and wintertime CO2 production 

rates using a 6-years long soil temperature time-series. Despite a much shortened growing 

season length, summer respiration of late snowmelt locations was 50% above that of soils 

from early snowmelt locations. This was due to a higher basal respiration rate which over 

compensated the negative impact of delayed snowmelt. During wintertime, the insulated 

effect of snowpack along with higher basal respiration explained increased soil CO2 

production rate in late snowmelt locations. The linkage between soil carbon content and 

substrate quality, and the interplay between carbon quality and soil climate on heterotrophic 

respiration in alpine tundra are discussed. We emphasized the need to care for topographical 

variations in any attempt to model soil CO2 fluxes in cold, snow-covered ecosystems. 

 

Keywords : alpine ecosystems, heterotrophic respiration, snowmelt gradient, soil organic 

matter, soil climatology 
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Introduction 

In the next decades, snow-covered ecosystems may experience severe and rapid 

changes in response to global warming and variations in snowfalls (IPCC 2001). For example, 

high-elevation ecosystems from temperate European Mountains may be specifically exposed 

to lower snow deposition because of increasing temperature (Diaz and Bradley 1997, 

Beniston 2005, Noguès-Bravo et al. 2007). Soils of arctic and alpine ecosystem sequester 

large amount of organic carbon, and the impact of climate forcing on these carbon stocks is a 

main issue in global carbon cycle studies (Hobbie et al. 2000). However, there are still large 

uncertainties in predicting the impact of global change on the dynamics of this carbon stock 

(Grogan and Jonasson 2005, Knorr et al. 2005). A main reason is that our knowledge of the 

relative importance of different drivers controlling soil heterotrophic respiration remains 

incomplete for seasonally snow-covered ecosystems.  

 In arctic and alpine landscapes, changes in topography over short distances (i.e. < 100 

m), also known as mesotopographical gradients (Billings 1973), are associated with dramatic 

changes in plant species composition (Chapin et al. 1995) and plant functional diversity 

(Kudo 1996, Choler 2005). Winter snow cover depth and snow cover duration are widely 

regarded as the main determinants of these mesoscale patterns (Isard 1986, Walker et al. 

1999). The length of the favourable period for plant growth, the number of days when soil 

temperature drops below 0 °C are among the direct consequences of the seasonal dynamics of 

snow cover. There have been a number of studies comparing ecosystem functioning in early 

and late snowmelt alpine tundra (e.g. Bowman et al. 1993, Fisk et al. 1998, Soudzilovskaia et 

al. 2005, Baptist and Choler 2008). But so far, the interplay between soil properties - among 

which soil carbon content - and soil climate on instantaneous CO2 effluxes and seasonal 

production of CO2 has never been investigated along a snow cover gradient in temperate 

alpine tundra. 

 Heterotrophic respiration is the main component of ecosystem respiration in snow-

covered ecosystem especially because the favourable period for plant root growth and activity 

is reduced (Elberling 2007). Temperature and soil moisture are the main soil climatic 

variables controlling CO2 effluxes (Reichstein et al. 2003). Several authors reported that 

instantaneous, seasonal and annual CO2 fluxes in arctic and alpine ecosystems were mainly 

controlled by temperature while soil moisture conditions had little impact (Kato et al. 2005, 

Kato et al. 2006, Elberling 2007), though opposite views exist (Illeris et al. 2004). The yearly 

time course of soil temperature is strongly determined by snow cover dynamics, and one may 
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expect an increased summer CO2 production rate in early snowmelt locations compared to 

late snowmelt locations. 

Other studies have put the emphasis on substrate quality (Grogan and Jonasson 2005, 

2006, Elberling 2007) and substrate availability (Brooks et al. 2004) in determining CO2 

effluxes. Basal respiration measured on the upper soil layer is used as a surrogate of either 

carbon availability when expressed per gram of soil (Fierer et al. 2007) or either carbon 

quality when expressed per gram of carbon (Mikan et al. 2002). A much higher soil carbon 

content in the upper soil layer of early snowmelt locations is a common feature in alpine 

tundra (Gensac 1990). However, the impact of these contrasting carbon stocks along the snow 

cover gradient on basal respiration rate remains unknown. It is assumed that slow-growing, 

stress-tolerant species from early snowmelt locations produce more recalcitrant litter (Choler 

2005, Baptist, unpublished results). A working hypothesis is that the negative impact of a 

lower organic matter quality in early snowmelt locations could counterbalance the positive 

effect of an extended growing season. 

 In this study, we combined laboratory and field measurements to examine the 

sensitivity of heterotrophic respiration of alpine tundra soil to temperature, water and soil 

carbon content. In a first approach, we favoured laboratory measurements in order (1) to 

model the relative effect of the main factors controlling soil respiration (Davidson et al. 1998, 

Reichstein et al. 2005) and (2) to allow a more straightforward measurement of soil 

respiration per gram of soil or per gram of carbon.  

Because laboratory measurements of CO2 effluxes have sometimes been considered as poorly 

indicators of field processes (Schimel et al. 2006), we also performed field measurements to 

assess the adequacy of the respiration model derived form laboratory experiments. We 

focused on a comparison between soils from early and late snowmelt locations, i.e. 

corresponding to the two extremes of the mesotopographical gradient. The investigated 

ecosystems corresponded to the dominant temperate alpine tundra in the Alps. We addressed 

the following questions: (1) are there any difference in the temperature sensitivity of CO2 

effluxes between soil cores from early and late snowmelt locations ?; (2) what is the impact of 

soil carbon content and soil water content on the basal respiration ?; (3) Is a model based on 

laboratory experiments adequate to predict summertime field CO2 efflux measured in early 

and late snowmelt locations ?; and finally (4) how can we build on this knowledge to assess 

the relative impact of seasonal snow cover and soil carbon content on the summertime and 

wintertime CO2 production in early and late snowmelt locations ? 
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Materials and methods 

Study sites 

Our three research sites were located in the mountain ranges of Grand Galibier in 

South-Western Alps, France (45°7’N, 6°5’E). The bedrock was predominantly made of 

calcareous shales. The elevation of the three investigated sites were 2520 m (site A), 2550 m 

(site B), and 2550 m (site C). The lower elevation limit of  alpine tundra is thought to occur 

around 2300 - 2400 m in the area (Ozenda 1985). The distance between two any sites 

exceeded 500 m. Each site corresponded to a mesotopographical gradient (sensu Billings 

1973), with alpine tundra from early and late snowmelt locations at a distance of about 30 to 

50 m apart. In early snowmelt locations, the vegetation cover was discontinuous and the two 

dominant species are a turf graminoid, Kobresia myosuroides (Cyperaceae) and a dwarf 

shrub, Dryas octopetala (Rosaceae). In late snowmelt locations, the vegetation cover was 

higher and the plant community was dominated by tiny species with a marked ability for 

clonal lateral spread. Carex foetida (Cyperaceae), Salix herbaceae (Salicaceae), Alopecurus 

gerardi (Poaceae) and Poa alpina (Poaceae) were the most common species of late snowmelt 

locations. Further details on the taxonomy and plant functional diversity along the 

investigated mesotopographical gradient are given in Choler (2005).  

 

Biogeochemical characterization of the soils 

Soils of early snowmelt locations were alpine rankers, those of the late snowmelt 

locations are stagnogley (Bounemoura et al. 1998). At the end of summer 2006, the upper 10 

cm of the soils were randomly sampled in early and late snowmelt locations with a coring 

tube (10 cm diameter) after litter removal. In early snowmelt locations, soil cores were 

collected between K. myosuroides tussocks. Soils were sieved at 2 mm for further 

biogeochemical analyses. Soil Organic Matter content (SOM) was determined by loss-on-

ignition and the C mass was calculated by dividing SOM fraction by 1.72 (Schulte and 

Hopkins 1996). In order to determine bulk soil density, stone mass was determined and 

converted to stone volume using an average stone density of 2650 kg.m-3 (Hillel 1971). The 

distribution of grain size (granulometry) was obtained by sieving.  

Another set of sampling was designed to quantify the soil carbon stock in early and 

late snowmelt locations. We excavated a soil cylinder of approximately 5 cm of diameter with 

a hand auger. Soils of late snowmelt locations are unusually deep for a high-elevation 

ecosystem and we did not reach the bedrock with a 1 m depth soil column. On the contrary, 

soils of early snowmelt locations are shallower and the bedrock was located at around 50 to 
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70 cm depth. Soil carbon content was determined for each 20 cm layers. The total soil carbon 

on an area basis layer was estimated as in Rodeghiero & Cescatti (2005) on the entire profile.  

 

Soil climatology 

Continuous soil temperature recordings were performed at 5 cm belowground using 

Hobo probes (Onset computer corporation, Bourne, MA, USA). Hourly data were averaged to 

provide the daily means used in the seasonal simulations of CO2 effluxes. Soil temperature 

time series for three to five early and three to five late snowmelt locations (including sites A, 

B and C) were available from 2000 to 2005. Depending on the site, 10 to 15 % of the 

presented temperature data are gap filled data. Temperatures closed to 0°C (usually between – 

0.5 and 0.5°C) all the day long were indicative of a persistent snow cover. Based on soil 

temperature data, the year was divided in two periods. The summertime period was defined as 

from the day the mean soil temperature rose above 0°C to the day it kept around 0°C (snow-

covered soil) or to the day it dropped below 0°C (frozen soils). The wintertime period 

corresponded to the snow-covered period for late snowmelt locations, but this did not hold for 

early snowmelt locations because these locations exhibited inconsistent snow cover during 

winter (see Fig. 1). 

Volumetric soil water content (m3 m-3) at a depth of 10 cm was measured with the soil 

dielectric sensor ECH2O (Decagon Device, Inc. Pullman WA, USA). Data from four different 

probes per location were recorded at 20 min intervals during part of the summer seasons 2005 

and 2006, for a total of around 100 days per location and per year. Data were pooled to have a 

representative sample of soil moisture at each location. 

 

Laboratory measurements of soil respiration 

Our aim was to compare the temperature response of early and late snowmelt soil 

respiration to summertime and wintertime range of temperature. In the case of summertime 

soil cores, we measured temperature response of early and late snowmelt soil cores at three 

levels of soil water content. Water content was not manipulated in the case of wintertime soil 

cores. The summertime range of temperature was set between 2 °C and 30 °C and the 

wintertime range between -8 °C and 0 °C. To match field situation as close as possible, we 

did not apply these two differing temperature treatments to the same soil samples: the 

summertime temperature range was applied to soils sampled in July 2006 (hereafter referred 

as unfrozen soil cores), whereas the wintertime temperature range was applied to soils 

sampled just before the first snowfalls in October 2006 (hereafter referred as frozen soil 
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cores). Intact soil cores were excavated carefully from in PVC pipes (15 cm depth and 10 cm 

diameter) in the late and early snowmelt locations of site A. Seven soil cores were randomly 

sampled in each topographical location. The base of the cores was covered by perforated 

plastic to contain soil. To limit efflux disturbance due to excavation, the cores were 

maintained during two weeks in the nearby common garden of Station Alpine Joseph Fourier 

at an altitude of 2100 m. Mean air temperature was locally 13.3 °C ± 3.4 in July 2006 and 5.7 

± 3.5 in October 2006. We assumed that this period was long enough for the roots to die, and 

that the measured respiration after two weeks was mainly due to heterotrophic respiration. We 

determined field capacity for soil cores as follows: an aliquote of soil in three out of seven soil 

cores was oversaturated with water, the excess water was allowed to drain for 2h and then 

weighed. Soil water content was assumed to be at field capacity and was determined after 

sieving at 2mm and oven drying at 105°C during 48h. Field capacity of soil cores 

corresponded to 59.6 g H2O / g soil and 57.8 g H2O / g soil in late and early snowmelt 

locations respectively (Table 1). During the experiment, soil water content was estimated 

gravimetrically by sampling small amount of soil in three out of seven soil cores in each 

snowmelt location. Wet treatment corresponded to 95.8 % (± 2.4) and 95.1 % (± 0.8) of field 

capacity respectively for late and early snowmelt soil cores. Similarly, moist treatment 

corresponded to 64.6 % (± 3.9) and 68.3 % (± 3.5) and dry one, 49.0 % (± 2.0) and 55.1 % (± 

1.9). We used bulk soil density of each core to convert gravimetric soil water content into 

volumetric soil water content. Wet treatment corresponded to 29.0 % (± 1.0) and 28.0 % (± 

1.0) for late and early snowmelt soil cores respectively. In moist treatment, it equalled 19.0 % 

(± 1.0) and 20.0 % (± 1.0), and in dry treatment 14.0 % (± 0.1) and 16.0 % (± 0.1). Finally, 

volumetric soil water content equalled 19.6 % (± 1.6) and 22.6 (± 0.7) for late and early 

snowmelt wintertime soil cores respectively.  

Before starting measurements, the cores were let at least 24 h in a cooled incubator 

(Fisher Bioblock Scientific, Illkirch, Fr) to let soil CO2 effluxes stabilize at a given 

temperature. Soil temperature was measured before each respiration record with 

thermocouples of 1mm diameter (Thermocoax SAS, Suresnes, Fr) inserted into soil at a depth 

of 5 cm. In the case of summertime soil cores, we started by measuring CO2 effluxes for the 

wet treatment and then let the soil cores dry until adequate soil water content level was 

reached. To measure CO2 effluxes, soil cores were enclosed in a respiration chamber 

connected to a closed system (EGM 4, PP Systems International Ltd., Hertfordshire, UK) 

staid outside the incubator. Data records lasted 4 to 6 min. Beyond this point, the respiration 

was decreasing because of an inversion of CO2 gradient between soil and atmosphere 
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chamber. Soil respiration was calculated on the basis of a linear increase of CO2 chamber 

concentration. At the end of the experiments soil were sieved at 2 mm and SOM fraction was 

estimated as described above. 

 

Field measurements of soil respiration 

In October 2005, we inserted at random three PVC pipes (10×12 cm) (hereafter 

collars) at about 10 cm in each topographical location (sites A, B and C). We made the 

assumption that CO2 efflux measured the following summer was only due to heterotrophic 

respiration. During summer 2006, we measured soil CO2 effluxes in each topographical 

location each week from snowmelt until the end of august with a closed system (EGM 4, PP 

Systems International Ltd., Hertfordshire, UK). The CO2 analyser was attached to a dark and 

closed respiration chamber which was placed on top of the pre-installed collars. Recording 

lasted from 4 to 6 min depending on signal fluctuation. Soil temperature was simultaneously 

measured next to each core with thermocouples inserted in the soil (Thermocoax SAS, 

Suresnes, Fr).  

We did not measured soil respiration immediately after rainfall events to avoid CO2 

effluxes due to CO2 displacement from soil pores (Rodeghiero and Cescatti 2005). Data from 

the beginning of the vegetation season have been omitted as soil anoxia impacted strongly 

CO2 signal and measurements. 

 

Soil respiration modelling 

We used non-linear regression models to describe the response of soil respiration (R) 

to temperature (T) in °C, volumetric soil water content (W) in m3 m-3 and soil carbon content 

(C) in percentage of soil mass. Unless otherwise stated, respiration rate in this study are 

expressed in mg C g C-1 d-1. The models were fitted separately to the respiration data from 

frozen and unfrozen soil cores obtained during laboratory temperature experiments. Model 

coefficients were determined for each soil core at a given soil water content level. The first 

model we used to fit the experimental data was the widely used Arrhenius-type first-order 

exponential equation: 

(model 1)  R = α1 e(β1 T) , 

where α1 is the exponential coefficient of basal respiration, i.e. the respiration rate at a 

temperature of 0 °C, and β1 is a temperature scalar.  

Empirical log-log linear relationships were found between α1 and the explanatory 
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variables W and C. Therefore, we modified structure of model 1 to account for the impacts of 

C and / or W on soil respiration:  

(model 2)  R = α 2 W υ2 e (β 2 T) 

(model 3)  R = α 3 C γ3 e (β 3 T) 

(model 4)  R = α 4 W υ4   C γ4  e (β 4 T) 

where υi
  and γi are empirical coefficients determining the sensitivity of the basal respiration 

rate to W and C, respectively. 

We calculated the respiration coefficient Q10 which describes the sensitivity of 

respiration to a 10 °C change in temperature following the formula Q10 = e(10 βi). For each 

model, we estimated the line that best describes the bivariate scatter between measured and 

predicted values using a model II regression. This line of best fit corresponds to the 

standardized major axis (SMA) (Warton et al. 2006). Model performance was estimated 

quantitatively by calculating the square of Pearson’s correlation coefficient (r2), and 

qualitatively by calculating the root mean square error (RMSE) and the mean absolute error 

(MAE) (Willmott and Matsuura 2005). Tests of the difference between estimated and 

hypothesised elevation (or slope) were based on t-statistic. The null hypotheses were slope ≠ 1 

and intercept ≠ 0. These analyses were performed using the ‘smatr’ R package (Warton and 

Ormerod 2007). 

We estimated the sensitivity of summertime CO2 effluxes to C and T by varying C in a 

range from 5 to 15 % and by varying the summertime period length in a range from 120 to 

180 days. The chosen ranges encompassed the observed variations between early and late 

snowmelt locations. A daily mean temperature of 9 °C was chosen for these simulations 

because this temperature corresponded to the summertime mean temperature for both early 

and late snowmelt locations. Therefore, sensitivity to T should be understood as sensitivity to 

summertime cumulated degree days. These simulations were performed with model 4 using 

two constant levels of soil water content throughout the simulation period, i.e. 20% and 30%. 

A different approach was used for estimating the sensitivity of wintertime CO2 

effluxes to C and T. The main reason was that the daily mean temperature between early and 

late snowmelt locations strongly differed during winter (see fig. 1). Here we assumed that the 

key driver was the number of snow-covered days (i.e. days for which the mean soil 

temperature was around 0 °C). We simulated changes in wintertime respiration by varying the 

number of snow-covered days during winter. More than 160 days under a deep snowpack as 

observed in late snowmelt locations corresponded to a full wintertime period under the snow. 
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In this case, soil temperature of snow-covered days was set to 0 °C. By contrast, a full 

wintertime period without snow or under a shallow snow pack was typical of early snowmelt 

locations. In this case, soil temperature was randomly chosen from the distribution of 

wintertime daily mean soil temperature recorded in snow-free early snowmelt locations. For 

these simulations, we used model 3, i.e. assuming that the impact of soil water content was 

negligible during winter. We performed the simulations with the Q10 values of frozen and 

unfrozen soils. All computations and graphs were performed using R software (R 

Development Core Team 2006). 

 
Table 1. Climatic and geochemical 
characteristics of the soils from early and 
late snowmelt locations. For temperature-
related values, data are averaged over the 
period 2000-2005 and over the three 
investigated sites (see also Fig. 1). For 
volumetric soil water content, the mean 
values of discontinuous measurements 
performed in the three sites during the 
growing seasons 2005 and 2006 are given 
(see Supplementary Material for further 
details). Geochemical characteristics, 
including soil pH, bulk density, soil 
carbon content and granulometry were 
measured on the soil samples used for 
respiration (n=5). Soil depth and total soil 
carbon on an area basis were estimated 
from 2 soil profiles in each sites.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 Early snowmelt 
location 

Late snowmelt 
location 

 
Summer length (d) 

 
170 ± 3 125 ± 3 

Cumulated GDD (°C) 
 1428 ± 258 1174 ± 198 

Summer mean temp. (°C) 
 8.3 ± 1.4 9.4 ± 1.4 

Winter mean temp. (°C) 
 -1.8 ± 0.6 -0.1 ± 0.2 

Bulk soil density (g.cm-3) 
 0.45 (0.03) 0.69 (0.02) 

Depth (cm) 
 60-80 >120 

 
pH in water 

 
5.11 (0.0 4.96 (0.06) 

SOC in 
upper layer (%) 

 
10.6 ± 2.3 6.1 ± 1.0 

Soil Carbon stock 
(kgC m-2) 26.2 37.8 

Granulometry (%) 
Clay (<2µm) 
Silt (2-50µm) 

Sand (50-2000µm) 

 
9.7 (0.5) 

41.4 (1.0) 
48.6 (1.2) 

 
26.4 (2.6) 
61.7 (2.0) 
11.9 (4.5) 
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Results 

Soil characteristics and soil climatology 

Soils from late snowmelt locations were deeper, slightly more acidic, and strongly 

enriched in fine particles compared to soils from early snowmelt locations (Table 1). Soil 

development in early snowmelt locations was weak, and the upper 30 cm layer of the soil 

profile was characterized by a high content of soil organic carbon (Table 1 and Fig. 1 in 

Supplementary Material). By contrast, soil profile in late snowmelt locations are more 

differentiated with a distinguishable anoxic B-horizon and evidence of duplicated soils along 

the profile. Soil organic matter was more evenly distributed along the profile (Table 1 and 

Fig.1 in Supplementary Material). Compared to lowland soils, both soil types are sequestering 

a large amount of organic carbon: from 26 kg C m-2 in the early snowmelt locations to 38 kg 

C m-2 in late snowmelt locations. 
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Fig. 1 Annual variations of 
daily mean soil temperature 
(± s.e.) observed for early 
(black) and late (gray) 
snowmelt locations. Data are 
averaged over the period 
2000-2005 and were 
recorded in two or three of 
the investigated sites 
depending on the year. 
 

  

 The seasonal snow cover was the primary determinant of the yearly course of soil 

temperature (Fig. 1). In early snowmelt locations, the inconsistent snow cover during winter 

lead to an extended soil freezing period with a mean wintertime temperature of -2 °C (Table 

1). In the late snowmelt locations, a deep and persistent snow pack throughout wintertime 

maintained daily mean soil temperature around 0 °C (Table 1 and Fig. 1). Soil warming in 

early snowmelt locations occurred nearly 40 days before what was observed in snowy 

locations (Fig. 1). This time shift was remarkably constant throughout the 6 years of 

recordings and across the three sites (Table 1). During the summertime snow free period, both 

topographical locations exhibited very similar daily mean soil temperatures (Table 1 and Fig. 

1). Therefore, the observed difference in summertime cumulated degree days between the 
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locations was almost entirely due to the delayed onset of the growing period (Table 1).  

 Volumetric soil water content measured during the growing season showed that, on 

average, soils of early snowmelt locations were weakly drier that soils from late snowmelt 

locations (Table 1). This was especially noticeable in site C (Fig. 2 in Supplementary 

Material). 
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Fig. 2 Laboratory data on CO2 efflux from -10 to 0 °C (frozen, open symbols) and from 0 to 30 °C 
(unfrozen, closed symbols). Soils samples represented upper layer of early (a) and late (b) 
snowmelt locations. The lines of best fit, using a simple first-order exponential model (Respiration 
= α e (β T) ), are shown separately for the two temperature ranges. The relationships between the 
exponential constant α and soil carbon content (c), and between α and volumetric relative water 
content (d). The lines of best fit, using a log-log linear model, were adjusted for a single dataset 
including unfrozen and frozen samples from early (black) and late (gray) snowmelt locations. 

 

Observed and simulated CO2 efflux 

To investigate the relative effect of temperature, water and carbon content on soil CO2 

effluxes, we conducted laboratory experiments on soil cores collected in early and late 

snowmelt locations. A simple first-order exponential model (model 1) explained 59 %, and 75 

%, of the observed variance with unfrozen soils from early and late snowmelt locations, 
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respectively (Fig. 2a, b and Table 2). The corresponding values for frozen soils were 86 % 

and 73 % (Table 2). For each soil type, the results showed an abrupt change of the 

temperature sensitivity of CO2 release when comparing frozen and unfrozen soils (Fig. 2). 

Though the Q10 values were very comparable for both soil types incubated at temperatures 

above 0°C (F1,34 = 0.82, P=0.37), there was a difference for frozen soils (F1,7 = 6.12, P = 

0.04). Soils from early snowmelt locations displayed a higher sensitivity to temperature (Q10 

around 12) compared to soils from late snowmelt locations (Q10 around 7) (Table 2). Finally, 

we found that the basal respiration, i.e. coefficient α1, of unfrozen soils was much higher in 

late snowmelt soils compared to early snowmelt soils (F1,34 = 16.54, P < 10-3) (Table 2). There 

were significant log-log linear relationships between α1 and soil carbon content (r2 = 0.40, P < 

10-3), and between α1 and soil water content (r2 = 0.61, P < 10-3) (Fig. 2c, d). Because part of 

the observed variance in α1 was explainable by these two additional variables, models 2, 3 

and 4 largely improved on model 1 (Table 2). For example, RMSE and MAE were reduced by 

nearly a factor two when comparing the model 1 and 4 adjusted for all unfrozen soil cores 

(Table 2), resulting in a good adequacy between measured and predicted values (Fig. 3a). For 

all the models, the slope between measured and predicted values was significantly below one 

(Table 2). By comparison, we did not find significant bias in the elevation coefficient in most 

of the models except model 1 (Table 2). This led to slight overestimation of CO2 release in the 

low range of temperature and to an underestimation at the highest temperature (Fig. 3).  
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Fig. 3 The relationships between measured (laboratory data) and predicted values of CO2 
efflux for unfrozen (a) and frozen soil samples. Model 4 was used for unfrozen soils and 
Model 3 for frozen soils (see Material and Methods). Evaluation of the model performances 
are given in Table 2. Colours and symbols are as shown in Fig. 3. 
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α β γ υ Q10 r2 Elev.
Elev.   
= 0 Slope

Slope   
= 1 RMSE MAE

1 128 -1.98 0.07 - - 2.03 0.59 -0.22 < 10-3 0.77 < 10-3 0.44 0.37
2 128 -8.07 0.07 - 1.62 2.11 0.8 -0.1 0.018 0.89 0.006 0.31 0.25
3 128 -0.27 0.07 -0.74 - 2.04 0.63 -0.2 < 10-3 0.79 < 10-3 0.42 0.36
4 128 -6.25 0.08 -0.88 1.67 2.12 0.85 -0.08 0.047 0.92 0.018 0.27 0.21
1 40 -2.11 0.25 - - 12.2 0.81 -0.21 0.167 0.9 0.148 0.43 0.33
3 40 -2.18 0.25 0.03 - 12.2 0.81 -0.21 0.167 0.9 0.148 0.43 0.33
1 177 -1.57 0.08 - - 2.13 0.75 -0.06 0.03 0.87 < 10-3 0.34 0.29
2 177 -5.38 0.07 - 1.04 2.05 0.9 -0.02 0.216 0.95 0.029 0.22 0.18
3 177 1.58 0.07 -1.79 - 2.1 0.79 -0.05 0.05 0.89 0.001 0.32 0.25
4 177 -2.7 0.07 -1.45 1 2.03 0.92 -0.02 0.284 0.96 0.057 0.19 0.15

1 48 -1.57 0.18 - - 6.26 0.86 -0.14 0.201 0.93 0.172 0.33 0.27
3 48 -0.98 0.18 -0.3 - 6.11 0.86 -0.13 0.208 0.93 0.178 0.33 0.28
1 305 -1.75 0.07 - - 2.1 0.62 -0.14 < 10-3 0.78 < 10-3 0.45 0.36
2 305 -6.07 0.07 - 1.17 2.07 0.75 -0.09 < 10-3 0.87 < 10-3 0.37 0.29
3 305 0 0.07 -0.9 - 2.09 0.75 -0.09 < 10-3 0.86 < 10-3 0.37 0.3
4 305 -4.4 0.07 -0.9 1.21 2.05 0.89 -0.04 0.038 0.94 0.003 0.24 0.19

1 88 -1.81 0.2 - - 7.16 0.73 -0.29 0.008 0.85 0.006 0.49 0.39
3 88 -0.1 0.2 -0.8 - 7.29 0.79 -0.22 0.028 0.89 0.021 0.43 0.34

 Model coefficients  Model evaluation
Plot Temperature 

range Model n

Early 
snowmelt  

Late 
snowmelt  

Unfrozen soils

Frozen soils

Unfrozen soils

Frozen soils

Unfrozen soils

Frozen soils

Late and 
early 

snowmelt

 
Table 2 Coefficients and evaluation of the performance of the different soil respiration models (see Material and 
Methods). Results are shown for early and late snowmelt locations as well as for the global data set. Data for 
frozen and unfrozen soils are presented separately. The fit between measured and predicted values was evaluated 
quantitatively by the square of Pearson’s correlation coefficient (r2), and qualitatively by the root mean square 
error (RMSE) and the mean absolute error (MAE). Tests of the difference between estimated and hypothesised 
elevation (or slope) were based on t-statistic. Bold values indicate when one can not reject the null hypotheses 
(i.e. slope = 1, elevation = 0) given the data. Rows in italic points to the model used for seasonal estimates (see 
Fig. 4 and 5). 
 

 We examined whether model 4 was adequate in predicting field CO2 effluxes. Our 

field measurements were performed in three different sites during the summer 2006, and 

repeated on a weekly basis. In situ heterotrophic respiration rates expressed per surface unit 

were transformed in mg C g C-1 d-1. For this estimate, we made the assumption that only the 

first 30 cm of the soil profile were really contributing to soil respiration and we used the total 

amount of carbon in this layer to transform the data. Overall, the model captured most of the 

variance of the empirical data but had a tendency to underestimate CO2 fluxes (Fig. 4). It was 

fairly adequate in predicting actual soil CO2 effluxes from late snowmelt locations. By 

contrast, we found much more scattered values when examining data from early snowmelt 

locations (Fig. 5 and Table 3). We did not find any evidence of a significant effect of the date 

of soil respiration measurement on this pattern (data not shown).  
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Simulation of seasonal CO2 production rates 

 We questioned the relative importance of snow cover dynamics and soil carbon 

content on total CO2 production during summer and winter periods. At a given temperature, 

CO2 release from early snowmelt unfrozen soils was depressed because of a lower basal 

respiration rate compared to late snowmelt locations. Simulations revealed that the total CO2 

production during summer is higher in late snowmelt locations than in early snowmelt 

locations, despite a shortened favourable period (Fig. 5a, b). The same results were found at 

two levels of soil water content (Fig. 5a, b). The difference between the topographical 

locations would be even larger if contrasting values of soil water content – i.e. slightly higher 

in late snowmelt locations - had been considered (data not shown). 

 

 Qualitatively similar results were obtained for simulations of wintertime CO2 

production (Fig. 5c, d). For a given soil carbon content, the wintertime CO2 production rate 

slightly increased with increasing fraction of snow-covered days (Fig. 5c), and the trend was 

more pronounced with high Q10 values (Fig. 5d). Noticeably, the effect of varying number of 

snow-covered days on soil respiration remained weak because respiration rates are estimated 

in a low temperature range (typically from -8 °C to 0 °C). In both simulations, the CO2 

production in late snowmelt locations was approximately twice as much as in early snowmelt 

locations (around 40 g C g-1 against 20 g C g-1 C). Clearly, this difference was mainly due to 

the effect of soil carbon content on basal respiration and to a lesser extent to the difference in 

the number of snow-covered days (Fig. 5c, d). 
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Fig. 4 The relationships between measured (field 
data) and predicted values of CO2 efflux. Field 
measurements were conducted during summer 
2006. Measured respiration rates per soil area were 
transformed to respiration rates per g of soil carbon 
and were fitted against model 4 (see Material and 
Methods). Evaluation of the model performance is 
given in Table 2. Colours are as shown in Fig. 2. 
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Table 3 Performance of the soil 
respiration models based on 
laboratory experiments in 
predicting field CO2 efflux 
measurements. See Table 2 and 
Material and Methods for details 
on statistical analysis. 
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Fig. 5 (a, b) The relative impact of growing season length and soil carbon content on the 
total summertime CO2 efflux. Simulations were done with model 4 using two levels of soil 
water content: 20% (a) and 30% (b). We used a constant daily mean temperature of 9 °C, 
corresponding to the mean temperature of the growing season period (see Table 1). (c, d) 
The relative impact of the snow-covered period and soil carbon content on the total 
wintertime soil respiration. Simulations were done with model 3 using Q10 values of 
unfrozen (c) and frozen (d) soils. For all panels, seasonal CO2 productions (in g CO2 g-1 C) 
are represented by the contour gray lines. 

 

 

 

 

 

 

r2 Elev.
Elev.   
= 0 Slope

Slope   
= 1 RMSE MAE

Late and early 
snowmelt  241 0.44 0.09 0.342 0.99 0.818 0.39 0.30

Early snowmelt  157 0.15 -0.23 0.099 0.88 0.077 0.36 0.29

Late snowmelt 84 0.47 -0.39 < 10-3 0.59 < 10-3 0.45 0.34

 Model evaluation
Plot n
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Discussion 

 The goal of the study was to assess the relative effects of temperature, soil water 

content and soil carbon content on CO2 effluxes in late and early snowmelt locations in alpine 

tundra. Combining modelling and empirical approaches, we showed that differences among 

basal respiration rates accounted for much of the differences on CO2 effluxes between the two 

contrasting topographical situations. A higher basal respiration rate in late snowmelt locations 

explained a higher summertime CO2 production despite a shortened growing season. This 

impact of basal respiration rate also overrode temperature effect when simulating CO2 

production during wintertime.  
   

Impact of soil water content and soil carbon content on basal respiration rate 

 Soil water content and soil carbon content accounted for most of the variation 

observed in the basal respiration rate of a first-order exponential model of soil respiration 

temperature dependence. For water, average values of summertime basal respiration were 

reduced by 34% and 30% from wet to moist conditions in early and late snowmelt cores 

respectively. This confirmed previous studies (Sjögersten and Wookey 2002, Illeris et al. 

2004, Sjogersten et al. 2006) which provided evidence for a significant effect of water on CO2 

effluxes in cold ecosystems. However, the differences of soil water content between early and 

late snowmelt locations measured in the field were relatively weak. Therefore, it is unlikely 

that soil water content would represent a key driver of CO2 effluxes variations along the 

investigated topographical gradients. These results contrast with those obtained in arctic 

tundra where soil water table was shown determinant in regulating local and regional and CO2 

effluxes (Ostendorf 1996, Sjogersten et al. 2006). Also they are not in line with other studies 

performed in temperate alpine tundra suggesting higher hydric limitation in early compare to 

late snowmelt locations (O'Lear and Seastedt 1994, Bryant et al. 1998, Fisk et al. 1998). In the 

investigated area, late snowmelt locations are sufficiently well-drained so that the flooding 

period at the time of snowmelt does not generally exceed one week (Ph. Choler, pers. obs.). 

Later on, low summer rainfall and prolonged clear sky periods rapidly attenuate the initial 

differences in soil water content along the topographical gradient. 

 The comparison of early and late snowmelt locations indicated an inverse relationship 

between soil carbon content and basal respiration (Fig. 2). There are only few examples of 

such relationships in the literature and they generally report the opposite pattern. Gough & 

Seiler (2004) reported a weak but significant positive relationship between total soil carbon 

and soil respiration in a loblolly pine stand (per unit area), while Rodeghiero & Cescatti 



Chapitre II                                                                                          Article 2B 

 179

(2005) indicated a highly significant relationship between soil respiration at the reference 

temperature of 10°C and soil carbon content (per unit area). Conversely, no clear trend 

emerged between soil carbon stock and soil respiration (per unit area) in the study of 

Reichstein et al. (2003). These contrasting reports are firstly explained by the absence of 

standardized protocols for soil respiration and soil carbon stocks (Rodeghiero and Cescatti 

2005). They also result from confounding effect of C quantity and quality as soil respiration is 

generally expressed per unit area. In this experiment, we expressed CO2 effluxes per gram of 

carbon so as to gain insights on the specific activity of microorganisms. Our results showed 

that this specific activity was strongly reduced in early snowmelt compared to late snowmelt 

locations, providing evidence for a higher C recalcitrance in early snowmelt locations. This is 

in agreement with the observation that litter from the dominant Dryas octopetela in early 

snowmelt locations contains high amount of tannin and lignin (Baptist et al. 2008, Baptist, 

unpublished results). By contrast, it has been shown that the presence of a deep snow pack 

during winter enhanced microbial decomposition, and thus limited the accumulation of 

recalcitrant compounds in the soil (Hobbie and Chapin 1996).  
 

Seasonal and spatial variations of temperature sensitivity  

 The range of Q10 values observed in this study was in accordance with the values 

generally reported in arctic and alpine ecosystems. Various studies measured Q10 between 2 

and 9 above 0°C, and from 8 to 240 below freezing point (Mikan et al. 2002, Elberling and 

Brandt 2003, Kato et al. 2005, Panikov et al. 2006). The underlying mechanisms responsible 

for the abrupt change in temperature dependency at freezing point have been widely debated. 

Mikan et al. (2002) proposed that physical processes such as extracellular substrate diffusion 

or intracellular dehydratation may affect biological activity under freezing point leading to 

various temperature sensitivity of saprophytic microorganisms. The occurrence of 

psychrophylic microbial community exhibiting exponential growth rate and high rates of 

substrate utilization at below zero temperature tend to support this hypothesis (Monson et al. 

2006). However, soil water content affects gas diffusion under freezing point and thus 

modulates CO2 release around 0°C (Elberling and Brandt 2003, Panikov et al. 2006). These 

physical processes may also explain the abrupt changes of Q10 values around 0°C. 

While summertime soil cores from both locations exhibited equivalent temperature 

sensitivity, soil cores from early snowmelt locations exhibited higher temperature sensitivity 

below 0°C. Different soil textural properties between the two soil types might impact the 

dynamics of unfrozen water, microbial access to substrate and therefore modulate CO2 
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trapping and release. Another explanation might lay in the contrasting functional properties of 

microbial communities along the topographical gradient. Molecular studies provided evidence 

for large shifts in fungal and bacterial communities between early and late snowmelt sites 

(Zinger, unpublished results). Furthermore, we showed that specific substrate and frozen 

temperature lead to the development of a psychrophylic fungal community in early snowmelt 

locations (Baptist et al. 2008). Further studies are now required to test whether these 

wintertime microbial communities from early snowmelt locations are more sensitive to 

temperature changes. 
 

The interplay of soil carbon content and soil climate on seasonal CO2 effluxes 

 We are aware of only a few number of studies that investigated the impact of carbon 

quality on CO2 efflux spatial variation in cold ecosystems (Vance and Chapin III 2001, Smith 

2005, Elberling 2007). All of these studies highlighted an important effect of carbon quality 

on spatial variations of CO2 effluxes and suggested that, in snow-covered ecosystems, this 

parameter may exert primary control on heterotrophic soil respiration at least during growing 

season. Here, we developed a 4-parameter model which predicted reasonably well the field-

measured soil CO2 effluxes during the growing season. We are therefore confident that the 

relative importance of soil carbon content and soil climate on summertime CO2 production 

were well captured by our model.  

By contrast, large uncertainties remain for the wintertime estimates of CO2 production. 

For example, our simulations showed that in late snowmelt locations, the wintertime estimates 

of CO2 production were roughly identical to summertime estimates with low Q10 values, but 

nearly two times higher if Q10 values from frozen soils were used. A more accurate estimate 

of wintertime soil respiration in snow-covered ecosystems remains a challenge because (1) 

the temperature sensitivity of soil micro-organisms in frozen soils has proven quite difficult to 

estimate (see above) and (2) there are still considerable technical difficulties in measuring soil 

CO2 effluxes under the snowpack (Hubbard et al. 2005). Clearly, a better understanding of 

wintertime soil respiration is required in order to predict impact of climate change on annual 

net carbon balance in snow-covered ecosystems (Elberling and Brandt 2003).  
 

Conclusion 

Our results established that regional models of soil CO2 fluxes in alpine tundra should 

properly take into account the interplay of snow-cover dynamics and soil carbon content at 

the mesotopographical scale. This up-scaling would require further comparative studies of 

basal respiration rate and temperature sensitivity of soil respiration conducted over a larger set 
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of dominant subalpine/alpine vegetation types. At a larger scale, it would be worth to examine 

to what extent soil carbon content could be used as a surrogate for basal respiration.  

The effects of that land-use and climate change on species distribution in temperate 

mountains have received considerable attention over the last decade (Keller et al. 2000, 

Cannone et al. 2007, Lenoir et al. 2008). Shifts in plant community composition as a result of 

these changes in elevational ranges could rapidly modify the quantity and quality of soil 

organic matter, at least in the upper layer. Our results also call for a better understanding of 

these associated changes in soil organic matter quality to predict CO2 effluxes from the large 

carbon stock sequestered in the soils of these ecosystems.  
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Fig. S1 Soil carbon content along the soil profile for early (black) and late (gray) snowmelt 
locations. 
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Fig. S2 Volumetric soil water content observed for early (black) and late (gray) snowmelt
locations. Measurements were made discontinuously during the growing seasons 2005 and 2006.
N is the total number of days for which time-series are available. Histograms show the frequency 
distribution of values recorded every 20 min. 
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Summary

In alpine ecosystems, tannin-rich-litter decomposi-
tion occurs mainly under snow. With global change,
variations in snowfall might affect soil temperature
and microbial diversity with biogeochemical con-
sequences on ecosystem processes. However, the
relationships linking soil temperature and tannin
degradation with soil microorganisms and nutrients
fluxes remain poorly understood. Here, we combined
biogeochemical and molecular profiling approaches
to monitor tannin degradation, nutrient cycling and
microbial communities (Bacteria, Crenarcheotes,
Fungi) in undisturbed wintertime soil cores exposed
to low temperature (0°C/-6°C), amended or not with
tannins, extracted from Dryas octopetala. No toxic
effect of tannins on microbial populations was found,
indicating that they withstand phenolics from alpine
vegetation litter. Additionally at -6°C, higher carbon
mineralization, higher protocatechuic acid concentra-
tion (intermediary metabolite of tannin catabolism),
and changes in fungal phylogenetic composition
showed that freezing temperatures may select fungi
able to degrade D. octopetala’s tannins. In contrast,
negative net nitrogen mineralization rates were
observed at -6°C possibly due to a more efficient N

immobilization by tannins than N production by
microbial activities, and suggesting a decoupling
between C and N mineralization. Our results con-
firmed tannins and soil temperatures as relevant con-
trols of microbial catabolism which are crucial for
alpine ecosystems functioning and carbon storage.

Introduction

In arctic and alpine ecosystems, seasonally snow-
covered soils sequester a very large pool of organic
carbon, which appears particularly vulnerable in the
context of global warming (Hobbie et al., 2000). A positive
feed-back between increased soil respiration and rising
atmospheric CO2 has been put forward several times in
global carbon balance models (Knorr et al., 2005).
However, whether snow-covered ecosystems are carbon
sources or sinks is still highly debated (Mack et al., 2004;
Knorr et al., 2005). This is partly explained by the incom-
plete understanding we have of the processes involved in
the wintertime heterotrophic respiration in relation to snow
cover duration in cold ecosystems (McGuire et al., 2000;
Monson et al., 2006). The variations of soil microbial activ-
ity in relation with the dynamic of the snow cover and litter
inputs are poorly documented, though some seasonal
changes in the structure and function of microbial com-
munities in alpine soils have been described (Lipson
et al., 2002; Schadt et al., 2003; Lipson and Schmidt,
2004). It has been shown that the cooler temperature at
the end of the growing season triggers a marked shift to a
psychrophilic microflora dominated by fungi (Lipson et al.,
2002). Additionally, the microbial biomass increased
sharply during wintertime. These microbial communities
are able to decompose efficiently recalcitrant carbon
sources, such as polyphenols, which are likely to be abun-
dant in alpine plants tissues (Steltzer and Bowman,
2005). It is widely recognized that phenolics play a major
role in nutrient cycling and litter decomposition through
their multilevel interactions with mineralization processes
(Cornelissen et al., 1999; Hattenschwiler and Vitousek,
2000). Aside from their toxicity towards some microorgan-
isms, polyphenols, especially the tannin fraction, are
expected to affect the availability of nitrogen to plants
during their growing season, mainly through complexation
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of the organic nitrogen in soils (Kraus et al., 2003; Kaal
et al., 2005; Nierop and Verstraten, 2006).

Fungus-dominated microbial communities are particu-
larly abundant in the most constraining habitats of the
alpine landscape such as exposed dry meadows (Nem-
ergut et al., 2005). These ecosystems are dominated by
slow-growing plant species – mainly Kobresia myosuroi-
des, Dryas octopetala – and are characterized by a low
net primary productivity, a high soil organic matter (SOM)
content, and a limited supply of soil nutrients (Choler,
2005). Furthermore, D. octopetala produces high
amounts of polyphenols, with proanthocyans as the major
tannin compounds. In dry meadows, the low and irregular
snow pack leads to frequent periods where soils are
frozen (< -5°C) between plant senescence and renewal.
However, the impact of repeated low temperature events
on both recalcitrant litter decomposition and soil function-
ing remains unknown. Additionally, these abiotic con-
straints are likely to be modified by climatic change.
Recent climate scenarios for the Alps show changes in
the seasonality and quantity of snow at high altitude, i.e.
above 2000 m (Beniston, 2003; Keller et al., 2005). The
predicted decrease in precipitation between autumn and
early spring will most likely reduce the winter snow-
covered period of alpine dry meadows, consequently,
increasing the length of the soil freezing period. It is not
known to what extent these changes will affect the win-
tertime decomposition of organic matter, recalcitrant com-
pounds in particular.

In this study, we focused on the combined effect of low
temperature (< 0°C) and the input of recalcitrant com-
pounds on alpine soil functioning. We expected a shift in
microbial communities as a consequence of changes in
these two ecological factors during the late-fall critical
period. We set up an incubation experiment with soil cores
under laboratory conditions to disentangle the effects of
temperature and tannin addition on the diversity of micro-
bial communities and the carbon and nitrogen cycles.
More specifically, we addressed the following questions:
how does tannin input affect (i) carbon and nitrogen min-
eralization and (ii) overall soil bacterial and fungal phylo-
genetic structures? (iii) how are these functional and
phylogenetic responses are modulated by a prior treat-
ment at freezing temperature (-6°C)?

We simulated a late-fall litter flux by adding tannins
extracted from D. octopetala leaves to soil cores collected
in dry meadows during the fall, and we mimicked the
snow-pack reduction by a freezing treatment. We moni-
tored the C and N soil dynamics (including tannin evolu-
tion) and assessed the microbial soil diversity through
rRNA genes (16S rRNA gene for prokaryotes, ITS for
fungi) using molecular profiling [single-strand conforma-
tion polymorphism (SSCP)] in addition to classical micro-
bial techniques.

Results

Impact of tannin on structure and metabolism of microbial
populations were addressed in an incubation experiment
with soil cores under laboratory conditions. Four treat-
ments were applied (n = 3). In W/S and T/S treatments,
soil cores were amended, respectively, with water and
tannins extracted from D. octopetala leaves, and they
were all maintained at 0°C during 45 days. In W/F and T/F,
soil cores were also amended with water and tannin solu-
tion respectively, but then were stored at -6°C during
15 days (day 15) and kept at 0°C for four more weeks.

Phenolic metabolization

At day 15, more than 10% of the added tannins were
recovered from the soil samples, 12% for S/T (Stable/
Tannin treatment) and 17% for F/T (Freezing/Tannin treat-
ment) (non-significant difference, U = 2.5, P = 0.376).
After 45 days, both temperature treatments had a recov-
ery fraction of around 5%. In treatment W, no tannins were
detected in the soils at days 15 and 45, while they were
present in low but detectable amounts at day 0. When
comparing the phenolic acids, significantly higher levels of
protocatechuic acid (last aromatic degradation metabolite
before ring fission) were observed in the treatment T, than
in the treatment W, irrespective of temperature and sam-
pling times (Fig. 1). The accumulation of this degradation
product was higher in the F/T treatment than in the S/T
treatment for both dates, indicating a better metabolizing
of the tannins in soils submitted to the freezing treatment.
Similar patterns were observed for other phenolic acids:
vanillic and p-hydroxybenzoic acids (data not shown).

Changes in microbial biomass and diversity

Microbial and fungal biomasses and bacterial counts were
not significantly affected by temperature or tannin amend-
ment (Table 1). However, these treatments affected
microbial diversity differently. The F/T and S/W treatments
had the strongest impact on the bacterial communities
(Fig. 2A). Moreover marked differences between day 15
and day 45 are supported for all the treatments except for
F/W.

For crenarcheotes, we observed the formation of new
SSCP peaks for all the treatments (data not shown). The
F/T treatment had a contrasted effect on the structure
(peak distribution) of the crenarcheote communities com-
pared with other conditions (data not shown) as there
were less peaks, which suggests the dominance of few
phylotypes.

Diversity of fungal communities was significantly
affected for all conditions and especially for S/T and F/W.
The SSCP profile of day 45 (F/T) was an outlier because
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the data file containing the migration value for statistical
analysis was corrupted. The longest distance corre-
sponded to the F/W cores, which showed fewer peaks
than the other treatments (Fig. 3D). The day 0 and S/W
profiles (Fig. 3A and B) had more than 10 peaks. The S/T
profiles (Fig. 3C) presented a low signal, but as many
peaks as S/W and day 0. A broad analysis of the raw data
for S/T revealed that the baseline increased, which may
indicate the co-migration of numerous fungal phylotypes
(Loisel et al., 2006). For all profiles, the predominant phy-
lotypes became relatively more abundant between days
15 and 45. Moreover, the F/T profiles presented more
peaks than the S/T ones (Fig. 3E). These results suggest
that tannins prevented the loss of fungal phylotypes due
to freezing.

Impact on carbon mineralization

Between days 0 and 15, the total CO2 efflux measured
with the F treatment was significantly lower (approxi-
mately two- to fourfold) than with the S treatment

(Table 2). Although marginally significant, the tannin treat-
ment (F/T) led to an increase (approximately twofold) in
CO2 efflux between days 0 and 15 compared with the F/W
treatment. However, the total CO2 efflux at 0°C was not
affected by the presence of tannins.

On day 15, when the temperature shifted from -6°C to
0°C, the CO2 efflux doubled from soils of F/T treatment
and increased fourfold in the F/W treatment. Between
days 15 and 45, no additional differences were detected
between the treatments with and without tannins
(Table 2). These results indicated that tannins enhanced
the CO2 efflux only with the freezing treatment between
days 0 and 15.

Impact on nitrogen cycling

The nitrogen dissolved in the soil extracts was mainly in
organic forms [~529.6–1416.7 mg N g-1 dry weight (dw),
90.4–99.6% of total dissolved nitrogen (TDN)], while
ammonia (~3.2–67.1 mg N g-1 dw, 0.3–8.7% of TDN) and
nitrate/nitrite (0.1–10.2 mg N g-1 dw, 0.0–1.3% of TDN)
made up smaller proportions of the TDN. Total dissolved
nitrogen and dissolved organic nitrogen (DON) soil con-
tents were changed neither by the temperature (F versus
S treatments, data not shown) nor by the addition of
tannins (T versus W treatments). Within S treatment, net
N mineralization rates between days 15 and 45 were not
influenced by the presence of tannins, whereas they were
significantly reduced in soils previously stored at -6°C (F
treatment, Fig. 4A). This effect was even stronger in soils
in the F/T treatment, for which we measured net N
immobilization values suggesting that the production of
inorganic N was not sufficient to compensate for its
disappearance.

Net mineralization potentials (NMP) measured on soil
subsamples at days 0, 15 and 45 were 10–400 times

Fig. 1. A. Average tannins concentrations in soil amended with
sterilized water (white bars) or a tannin solution (black bars). The
concentration of tannins is negligible in the case of sterilized water
amendment.
B. Protocatechuic acid concentration in soils amended with
sterilized water (white bars) or a tannin solution (black bars).
Differences between water and tannin treatments (*P < 0.05) and
between temperature treatments (a, b; P < 0.05) were tested with
Mann–Whitney tests. n = 3 � standard error of the mean.

Table 1. Microbial and fungal biomasses and bacterial count esti-
mated from soil cores on days 15 and 45 (n = 3).

Treatments

Microbial
biomass
(mg C g-1 C)

Fungal biomass
(mg ergosterol g-1 C)

Bacterial count
(109 cells g-1 C)

T15
S/W 44.9 (11.9)aA 60.9 (12.6)aA 1.13 (0.13)aA

F/W 45.8 (15.5)aA 182.1 (38.1)aA 1.46 (0.28)aA

S/T 35.3 (8.6)aA 53.8 (5.2)aA 1.01 (0.06)aA

F/T 38.0 (17.0)aA 94.1 (37.3)aA 1.12 (0.20)aA

T45
S/W 16.6 (2.2)aA 114.3 (18.1)aA 1.40 (0.34)aA

F/W 48.1 (5.3)aA 232.0 (42.7)aA 1.59 (0.45)aA

S/T 18.7 (6.3)aA 103.8 (20.3)aA 1.19 (0.50)aA

F/T 19.3 (7.1)aA 117.2 (35.5)aA 0.89 (0.06)aA

Differences between day 15 and day 45 were tested by Wilcoxon
signed rank test (upper case, P < 0.05) and differences between
treatment (temperature or tannin amendment) by Mann–Whitney rank
sum test (lower case, P < 0.05). n = 3 � standard error of the mean.
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higher than the net N mineralization measured between
days 15 and 45 (Fig. 4B and C). Yet, NMP increased
during the incubation in the case of the F/W treatment but
not in the F/T treatment. On days 15 and 45, NMP from
soils amended with tannins were significantly lower than
for the unamended ones (Fig. 4B). In treatment S, soils
incubated with tannins (S/T) had also lower NMP than on
soils amended with water (S/W) but only on day 15
(Fig. 4C). Net mineralization potentials were therefore
strongly reduced in F/T treatment compared with the
others.

Discussion

In our study, the role of tannins was evaluated through the
combination of biogeochemical analyses with molecular
profiling approach. The few other studies which examined
the impact of polyphenols through purified tannin addition
focused on forested ecosystems, characterized by faster
nutrient cycling and higher productivity (Bradley et al.,
2000; Fierer et al., 2001). Furthermore, unlike those
studies, we used undisturbed soil cores instead of com-
posite and homogenized samples to maintain the vertical
stratification and its associated physical and microbiologi-
cal properties.

Impact on carbon and nitrogen cycles

The organic and inorganic nitrogen soil concentrations
measured in the alpine soils, as well as the dominance of
organic N forms, were in accordance with the literature
(Tosca and Labroue, 1986; Lipson et al., 1999; Zeller

et al., 2000). Similarly, CO2 efflux measurements were
within the range of previous observations (Leifeld and
Fuhrer, 2005; Schimel and Mikan, 2005). After 1 month,
only a minor fraction of the added tannins was recovered
from the amended soils. The disappearance of tannins
could be explained either by degradation or by insolubili-
zation, due to complexation with proteins or adsorption on
organo-mineral soil fractions (Kaal et al., 2005; Nierop
and Verstraten, 2006).

In stable treatment, tannin addition had limited effects
on C and N mineralization as well as on microbial biomass
indicating (i) that tannins were not used as a significant
extra C source and (ii) that they did not inhibit microbial
communities. The slight increase in protocatechuic acid

Fig. 2. Neighbour-Joining trees of microbial communities under different treatments: �= day 0; �= S/W; �= S/T, �= F/W; �= F/T. Lower
cases indicate the day of treatments. Supported branches (bootstrap value >50%) are in bold. Grey corresponds to the SSCP replicates after
pooling the three soil cores from the same treatment. Black corresponds to supported clustering of treatments. Edwards’s distances are shown
by a scale bar.

Table 2. Soil water content, daily mean CO2 efflux over the days
0–15 and days 15–45.

Treatments
Soil water
content (%)

CO2 efflux
(mg C g-1 C day-1)

T0-T15
S/W 33.4 (1.0)aA 318.8 (70.4)aA

F/W 34.8 (3.8)aA 76.7 (7.8)bA

S/T 37.6 (4.1)aA 267.9 (71.9)abA

F/T 30.9 (4.5)aA 128.6 (19.2)abA

T15-T45
S/W 33.2 (1.2)aA 281.3 (131.0)aA

F/W 34.9 (3.1)aA 269.4 (51.5)aB

S/T 39.1 (4.2)aA 210.7 (23.7)aA

F/T 34.0 (4.7)aA 273.8 (94.5)aB

The differences between days 15 and 45 within each treatment
(upper case, P < 0.05) were tested by Wilcoxon signed rank test and
the differences between treatment (temperature or tannin addition)
within each period (lower case, P < 0.05) were tested by Mann–
Whitney rank sum test. n = 3 � standard error of the mean.
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Fig. 3. Capillary electrophoresis-SSCP profiles of fungal
communities for each treatment. A = day 0; B = S/W; C = S/T; D
= F/W; E = F/T. Black lines: day 15; grey lines: day 45. All profiles
are displayed for an arbitrary fluorescence intensity interval of
4000.

Fig. 4. A. Net N mineralization rates between days 15 and 45 in
soils for F and S treatments amended with sterilized water (white
bars) or a tannin solution (black bars).
B and C. Net N mineralization potentials in soils after 0, 15 and
45 days of incubation in the F treatment (B) and the S treatment
(C), amended with sterilized water (white bars) or a tannin solution
(black bars). Mann–Whitney rank sum tests were performed to test
for differences between treatment (temperature or tannin addition)
within each period (lower case, P < 0.05). n = 3 � standard error of
the mean.
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indicated only weak tannin degradation. This suggests
that tannins were preferentially adsorbed on organo-
mineral soils or complexed with decomposing organic
compounds (Fierer et al., 2001). But this hypothesis,
largely mentioned in the literature, is hypothetical as effi-
cient methods to quantify such insoluble compounds are
missing (Lorenz et al., 2000; Kanerva et al., 2006). Also,
we did not assess the impact of a prolonged exposure to
tannins as it occurs in natural habitats, but rather try to
mimic a pulse of tannins corresponding to the litter fall
period. Thus, it should not be considered as a long-term
effect.

The incubation of alpine soils at -6°C led to a decrease
in C mineralization between day 0 and day 15. Lower
temperatures strongly affect soil processes by lowering
microbial enzymatic activities (Schimel et al., 2004) but do
not affect microbial biomass as already shown by others
authors (Lipson et al., 2000; Groffman et al., 2001;
Grogan et al., 2004). Surprisingly, higher CO2 effluxes
were detected in F/T than in F/W treatments and higher
concentrations of protocatechuic acid in F/T than in S/T
treatments in the first step of the experiment. These
results indicate a higher tannin degradation at -6°C.
Added to limited microbial growth, this suggests that
some microorganisms may be able to use this C source,
unlike the populations present at 0°C (S/T). However, the
lack of data on N mineralization between day 0 and day
15 prevents us from drawing further conclusions.

From day 15 to day 45, the only significantly affected
process was net N mineralization, which decreased in
F/W-treated alpine soils. This confirms that a prolonged
pre-period of frost slowed down N cycling in alpine soils
(Schimel et al., 2004). The reduction of metabolic activi-
ties in the soil microbial community may be responsible for
this effect. The addition of tannins in our alpine soils
amplified the freezing effect on net N mineralization
described previously and even led to apparent N immo-
bilization (F/T, Fig. 4A). Possibly, the complexing capacity
of tannins may have been detected only when microor-
ganisms were less active due to freezing, suggesting that
the kinetics of N mineralization by living microorganisms
was faster than that of abiotic N immobilization by tannins.
Both processes occurred in the stable treatment, but N
microbial mineralization was dominant and microorgan-
isms transformed Norg into NH4

+ and NO3
– in much larger

quantities than could be complexed by tannins. As a
result, we measured no tannin effect on net N mineraliza-
tion in soils for the S treatment (measured as the amount
of NH4

+ and NO3
– produced).

In F treatment, the reduction of microbial activities
reduced the production of NH4

+ and NO3
–, which did not

compensate for the complexation by tannins (Fierer et al.,
2001; Castells et al., 2003). In our experiment, this was
perceived as a negative net N mineralization or an appar-

ent NH4
+ and NO3

– immobilization. This hypothesis is
further supported by NMP results (at 30°C) which were
significantly lower in soils amended with tannins, most
probably due to complexation of organic compounds
(Fierer et al., 2001).

The high concentration of protocatechuic acid and C
mineralization during the first step of freezing treatment
suggests that the added tannins were metabolized despite
very low temperatures. C mineralization was strongly
affected by the temperature shift and no long-term effect of
tannin addition was detected, possibly due to the shortage
of easily decomposable tannin (Kraus et al., 2004). The
absence of relationship between N immobilization and C
mineralization between days 15 and 45 suggests a decou-
pling between both processes, as reported by Mutabaruka
and colleagues (2007). This is probably because N immo-
bilization is driven by both abiotic and biotic factors,
whereas C mineralization depends on biotic controls.

Impact on microbial diversity

There have been several studies of microbial diversity
fingerprints for bacterial communities in mesocosm
experiments (Hewson et al., 2003; Hendrickx et al., 2005;
Lejon et al., 2007), but none, in alpine soils, were carried
out on the three main groups of microorganisms as we did
here. We determined three distinct patterns, one for each
microbial community. Previous studies showed that the
bacterial SSCP patterns are specific for a given bacterial
community (Godon et al., 1997; Mohr and Tebbe, 2006;
Zinger et al., 2007a). Here, the bacteria profiles showed a
high baseline suggesting a large number of rare phylo-
types (Loisel et al., 2006), preventing the detection of
minor changes. We found effects supported by bootstrap-
ping for most treatments. However, because of the high
baseline masking the community shifts (Fig. 3), the
branch length remained very short between treatments
(Fig. 2). Therefore, minor relevant changes in bacterial
diversity cannot be detected and a more detailed study
is needed to assess the tannin impact on bacterial
communities.

For the crenarcheotes, freezing and tannin amendment
resulted in a reduction in the number of peaks. Possibly,
the convergence of both factors led to the disappearance
of some crenarcheote phylotypes. However, the effects
on nutrient cycling were likely to be negligible, as no
decrease in population biomass or in C mineralization
was detected.

Fungal communities, whose biomasses were found to
increase during winter (Schadt et al., 2003), showed
strong responses to all treatments. Tannin amendment
associated with low temperature maintained a relatively
high diversity whereas freezing temperatures alone led to
a decrease in fungal richness. This result suggests that
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some wintertime fungal strains may be able to benefit
from the addition of tannins, as it has been already shown
for bacterial communities (Chowdhury et al., 2004) or
fungal populations (Mutabaruka et al., 2007). Previous
studies on alpine meadows also suggested that a strong
supply of allelochemical-rich litter in the fall may select
wintertime populations able to grow on phenolic com-
pounds (Lipson et al., 2002; Schmidt and Lipson, 2004).
Unexpectedly, the phylotypes reacted differently in
response to the addition of these compounds, depending
on the thermic regime. This interaction may be related to
the presence of psychrophilic fungi which were excluded
at relatively high temperature. Another explanation is that
the available labile C, which decreased at lower tempera-
tures, created a selective pressure in favour of fungal
strains which metabolize more resistant C substrates
(Bradley et al., 2000).

Ecological implications

CO2 efflux measurements showed that there were signifi-
cant levels of microbial activities even well below 0°C
(Brooks et al., 1998). In snow-covered ecosystems, litter
decomposition occurs principally during the winter
(Hobbie and Chapin, 1996) and recent studies indicate
that winter microbial communities degrade phenolic com-
pounds (vanillic and salicylic acids) better than summer
microbial communities (Schmidt et al., 2000; Lipson et al.,
2002). However, because of inconsistent snow cover
during winter, dry meadows frequently experience very
low temperatures (< -5°C) reducing soil microbial activity
and litter decomposition rates (F. Baptist, unpubl. results,
O’Lear and Seastedt, 1994). Furthermore, high concen-
trations of tannins in the fresh litter of D. octopetala, which
is a dominant species in this ecosystem, potentially con-
tribute to a decrease in N mineralization by complexing
soil organic compounds (Northup et al., 1995; Hatten-
schwiler and Vitousek, 2000). Severe soil edapho-climatic
conditions probably act by inhibiting microbial activity.
However, we detected no toxic effects of compounds
extracted from D. octopetala on microbial activity which
indicates that plants producing phenolic compounds may
select microbial populations able to use these com-
pounds, or at least able to withstand them (Schmidt et al.,
2000). Changes in phylogenetic composition coupled with
higher C mineralization and protocatechuic acid contents
showed that freezing temperatures selected psychrophilic
fungi. These may be able to degrade D. octopetala’s
tannins, and their activities are potentially initiated by a
decrease in temperature. However, this particular effect of
temperature remains unclear and could also be related to
a decrease in labile C availability.

This study illustrates how soil and climatic conditions
interact with soil microorganisms to enhance the metabo-

lization of the tannins released by the plants which domi-
nate alpine ecosystems. The degradation of recalcitrant
compounds, during winter, produces a less recalcitrant
litter which becomes available by the time plant growth
starts. This limits nutrient immobilization thanks to a
reduced litter C/N ratio (Schmidt and Lipson, 2004). Con-
sequently, the microbial catabolism of these compounds
during winter is of functional importance. A variation in
snowfall might affect microbial functional diversity with
cascading biogeochemical consequences on ecosystem
processes and carbon sequestration. Nevertheless,
further investigations remain necessary to identify the
exact role of microorganisms in tannin catabolism and
their vulnerability to climate change.

Experimental procedures

Field site

The study site was located in the Grand Galibier massif
(French south-western Alps, 45°0.05′N, 06°0.38′E) on an
east facing slope at 2520 m. The growing season lasts
around 169 � 6 days and the mean soil temperature is
7.7 � 1.5°C in summer and -2.2 � 1.7°C in winter. The
mean soil temperature reaches very low values (< -5°C)
during relatively long periods because of inconsistent
snow cover. Dry meadow soils are classified as typical
alpine rankers. The bedrock is calcareous shales. The
dominant plant community in the field site consist mainly
of K. myosuroides (Cyperaceae) and D. octopetala
(Rosaceae). Fifteen soil cores were sampled in October 2005
using sterilized (ethyl alcohol 90°) PVC pipes (h = 10 cm,
Ø = 10 cm) and tools, to avoid contamination. In the labora-
tory, the plants were separated from the soil cores which were
covered with perforated plastic bags and stored at 0°C until
the beginning of the experiment.

Experimental design

On day 0, three soil cores were destructively harvested and
used as controls (Table 3), six soil cores were amended with
19 ml of a tannin solution (with a mean of 749 mg of C/core or
32.4 mg C g-1 soil C, tannin treatment, T) and six cores with
sterilized water (water treatment, W) to reach similar gravi-
metric soil moisture contents (34.2 � 1.7% and 34.1 � 1.6%
for cores amended with tannins and water respectively).
Three W cores and three T cores were incubated at -6°C for
2 weeks (freeze treatment, F) and then at 0°C for four more
weeks. The six remaining cores were kept at 0°C (stable
temperature treatment, S) during the whole period. To limit
temperature gradients inside the incubators, the soil cores
were regularly rotated. At the end of the first period (day 15),
half of each soil core (3 S/T, 3 S/W, 3 F/T, 3 F/W) was
harvested for a first analysis (longitudinal section). To limit
disturbance, the harvested soil was replaced by a sterile and
closed bag full of sand. The remaining soil cores were placed
back in the incubator for four more weeks at 0°C and then
were harvested for final analysis.
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At each sampling time (day 0, day 15 and day 45), the soils
were sieved (2 mm) and further analysed to determine the
tannins and phenolic acid contents, microbial and fungal bio-
masses, bacterial counts, microbial diversity and nitrogen
mineralization rates. The CO2 efflux was measured between
each harvest.

Soil characterization

Soil water content, pHH2O, pHKCl, bulk soil density and texture
were determined following standard methods (Robertson
et al., 1999). The SOM content was determined by loss-on-
ignition and the C mass was calculated by dividing SOM
fraction by 1.72. In order to determine bulk soil density, the
stones mass was determined and converted to stone volume
using mean stone density of 2650 kg m-3 (Hillel, 1971).

Tannin extraction and phenolic analysis

Dryas octopetala leaves were collected at the end of July, and
air-dried. Tannins were extracted from about 300 g of ground
leaves, using liquid sequential extractions and a final purifi-
cation on Sephadex LH-20 (Preston, 1999). The elemental
composition of the dried final fraction was obtained by CHN
analysis (C %: 62.4; N %: 0). The addition of tannins was
performed with a solution of 15.85 g of purified tannins dis-
solved in 250 ml of distilled water. Proanthocyans (here after
referred to tannins) were quantified in the soil extracts by
spectrophotometry, after hydrolysis with butanol/HCl using
the proanthocyanidin assay (Preston, 1999). The calibration
curves were prepared with a previously purified proantho-
cyan fraction from D. octopetala. Phenolic acids were
obtained (5 g FW) by a double ethanolic extraction (ethanol

70%) under reflux. Aliquots (20 ml) of the ethanolic solution
filtered at 0.5 mm, were used for high-performance liquid
chromatography (HPLC) analysis on a RP C18 mBondapak
column (4.6 mm ¥ 250 mm) monitored by a Waters 600 Con-
troller with a UV detection at 260 nm (Waters 996 PDA).
Phenolic acids were separated using a linear gradient from 0
to 20% of solvent B (acetonitrile) in solvent A (acetic acid
0.5% in distilled water) in 45 min, at 1.5 ml min-1. Standards
of common phenolic acids (including protocatechuic) were
obtained from Sigma-Aldrich (L’Isle d’Abeau, France).

Nitrogen mineralization

Nitrogen was extracted from fresh soil samples with 2 M KCl.
The soil extracts were analysed for ammonia (NH4

+) and
nitrate/nitrite (NO3

–/NO2
–) contents using an FS-IV autoanaly-

ser (OI-Analytical, College Station, TX). The TDN content in
the soil extracts was measured after oxidation with K2S2O8 at
120°C. The DON contents in the soil extracts (mg N g-1 dw)
were calculated as: [DON = TDN - (N-NH4

+) + (N-NO3
–/

NO2
–)]. The net nitrogen mineralization (MINnet, mg N g-1 dw

day-1) between day 15 and day 45 was calculated as:
MINnet = [[(-NH4

+) + (N-NO3
–/NO2

–)]day45 - [(N-NH4
+) + (N-NO3

–/
NO2

–)]day15]/dw/30. MINnet was not calculated between day 0
and day 15, because the day 15 did not originate from the
same soil cores as those for day 0. The NMP was determined
from subsamples, using anaerobic incubations (Waring and
Bremner, 1964). This protocol allows comparisons of relative
organic matter degradability in different soils. Under opti-
mized conditions (dark, 7 day, 30°C, anaerobic) organic N in
fresh soils was mineralized and accumulated as NH4

+. The
difference between the NH4

+ in the fresh soil (t1) and after
the anaerobic incubation (t2) gave the N mineralization poten-
tial: NMP (mg N-NH4 g-1 dw day-1) = [[(N-NH4) t2 - (N-NH4)
t1]/dw/7].

Soil CO2 efflux

Throughout the experiment, CO2 efflux measurements were
conducted just after tannin amendment (day 0), one before
temperature shift (day 15) and three times between days 15
and 45 on all soil cores. The cores were enclosed in a
hermetic Plexiglas™ chamber equilibrated to 400 p.p.m. prior
to measurements. The chamber was connected to a LiCor
6200 gas exchange systems (LiCor, Lincoln, NE, USA). Data
recording lasted 3–5 min, depending on the signal fluctua-
tions, and the soil temperature was monitored.

Microbial community analyses

Microbial biomass and ergosterol determination. Microbial
carbon biomass was determined by the fumigation-extraction
method (Jocteur Monrozier et al., 1993; Martins et al., 1997)
adapted from Amato and Ladd (1988). Duplicated soil
samples (10 g) were fumigated for 10 days with chloroform.
Total organic nitrogen was extracted with 20 ml of 2 m KCl
from both the non-fumigated and fumigated soil samples (T0,
T10), microbial nitrogen biomass being determined from the
difference between the two treatments. After reaction with
ninhydrin, the absorbance (570 nm) of all samples was deter-

Table 3. A. Soil characteristics of the cores. B. Initial parameters
estimated on the three control soil cores.

(A) Soil characteristics

Soil water content (%) 32.9 (3.7)
Bulk soil density on < 2 mm fraction (g cm-3) 0.24 (0.04)
Organic matter (%) 16.9 (4.3)
pH (H2O) 5.1 (0.1)
pH (KCl) 4.1 (0.1)
Grain size analysis

Clay (< 2 mm) 9.7 (0.5)
Silt (2–50 mm) 41.4 (1.0)
Sand (50–2000 mm) 48.6 (1.2)

(B) Initial parameters (T0)

Microbial biomass (mg C g-1 C) 170.6 (37.3)
Bacterial count (109 cells g-1 C) 1.45 (0.21)
Fungal biomass (mg ergosterol g-1 C) 130.2 (14.0)
Tannin (mg g-1 C) 0.30 (0.10)
NO3

–(mg N g-1 soil) 0.10 (0.02)
NH4

+ (mg N g-1 soil) 3.25 (0.10)
Norg (mg N g-1 soil) 914.2 (65.7)
Potential mineralization

NH4 production (mg N g-1 soil day-1) 12.1 (2.9)
Norg production (mg N g-1 soil day-1) 145.9 (40.9)

n = 3 � standard error of the mean.
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mined by spectrophotometry using leucin as standard. The
microbial carbon biomass calculated using a conversion
factor of 21 (Amato and Ladd, 1988; Martins et al., 1997). The
soil ergosterol content was evaluated as an indirect estimate
of the soil fungal biomass (Nylund and Wallander, 1992; Gors
et al., 2007). Ergosterol was extracted from 5 g of soil (FW)
with 30 ml of 99.6% ethanol by shaking for 30 min at 250 r.
p.m. The soil solution was filtered and immediately submitted
to HPLC under isocratic flow of 1.5 ml min-1 of MeOH, on a
Lichrosorb RP18 column (250 ¥ 4.6 mm, 5 mm). Calibration
curves at 282 nm were recorded with standard ergosterol
solution from Sigma-Aldrich (L’Isle d’Abeau, France).

Bacterial counts. The soil bacterial counting was conducted
using the method described by Martins and colleagues
(1997). Briefly, 10 g of soil (duplicated) was blended in 50 ml
of sterile NaCl 0.9%. After flocculation of the soil particles, an
aliquot of the soil suspension (1 ml) was collected and used
to enumerate the bacteria after successive dilutions. One
millilitre of the diluted suspension was filtered on 0.2 mm
polycarbonate membrane filters (Millipore). Bacteria were
then stained using a sterile solution (filtered at 0.2 mm) of
4′,6-diamidino-2-phenylindole (DAPI) and enumerated by
direct counting with a motorized epifluorescent microscope
(Axioscope, Zeiss) under UV excitation (Hg lamp) with a filter
set for DAPI (365 nm) at 1000-fold magnification.

SSCP analysis of microbial diversity. DNA extraction and
PCR: the protocols for fungal and prokaryotic signatures
have already been described in Zinger and colleagues
(2007a,b). Briefly, the soil DNA was amplified using microbial
community-specific primers and submitted to capillary
electrophoresis-SSCP (CE-SSCP). The 16S rRNA gene was
used as the prokaryotic specific marker. The bacterial primers
were W49 and W104-FAM (Zumstein et al., 2000; Duthoit
et al., 2003) and the crenarcheaotal primers were 133FN6F-
NED and 248R5P (Sliwinski and Goodman, 2004). Fungal
ITS1 was amplified with the primers ITS5 and ITS2-HEX
(White et al., 1990). The soil DNA extraction was performed
with the Power SoilTM Extraction Kit (MO BIO Laboratories,
Ozyme, St Quentin en Yvelines, France) using 250 mg (fresh
weight) of soil per core sample, according to manufacturer’s
instructions. The DNA extracts from the same-condition cores
were then pooled to limit the effects of soil spatial
heterogeneity. The PCR reactions (25 ml) were set up as
follows: 2.5 mM of MgCl2, 1¥ of AmpliTaq GoldTM buffer,
20 g l-1 of bovine serum albumin, 0.1 mM of each dNTP,
0.26 mM of each primer, 2 U of DNA polymerase (Applied
Biosystems, Courtaboeuf, France) and 1 ml of DNA (1–10 ng
DNA). The PCR reaction was performed as follows: an initial
step at 95°C (10 min), followed by 30 cycles at 95°C (30 s),
56°C (15 s) and 72°C (15 s), and final step at 72°C (7 min).
The PCR products were visualized on a 1.5% agarose gel.
Then, amplicons of each microbial community were then
pooled for each sample to perform multiplex CE-SSCP. Cap-
illary electrophoresis-SSCP: 1 ml of the PCR product was
mixed with 10 ml formamide Hi-Di (Applied Biosystems, Cour-
taboeuf, France), 0.2 ml standard internal DNA molecular
weight marker Genescan-400 HD ROX (Applied Biosystems,
Courtaboeuf, France), and 0.5 ml NaOH (0.3 M). The sample
mixtures were denatured at 95°C for 5 min and immediately
cooled on ice before loading on the instrument. The non-

denaturing polymer consisted of 5% CAP polymer, 10% glyc-
erol and 3100 buffer. Capillary electrophoresis-SSCP was
performed on an ABI PRISM 3130 XL Genetic Analyzer
(Applied Biosystems, Courtaboeuf, France) using a 36-cm-
long capillary. The injection time and voltage were set to 22 s
and 6 kV. Electrophoresis was performed for 35 min. The
CE-SSCP profiles were normalized in order to control for
differences in the total fluorescence intensity between
profiles.

Statistical analysis. We tested for differences between the
temperature and tannin amendment treatments using Mann–
Whitney rank sum test (P < 0.05) (Statistica 5.0, Statsoft.
(1995) Statistica 5.0 Software. Statsoft, Tulsa, USA). Paired
differences between days 15 and 45 sampling were tested
using the Wilcoxon signed rank test (P < 0.05). The normal-
ized profiles of SSCP were analysed by Neighbour-Joining
analysis based on a matrix of Edwards distances (Edwards,
1971). The robustness of the resulting tree was assessed
using 1000 bootstraps. The data analysis was performed
using the Ape package of the R software (RDevelopment-
CoreTeam, 2006).
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A. Introduction 

 Mountains cover more than 20% of the global land surface (Beniston and Fox 1996), 

and provide goods and services for more than half of humanity. Mountains have a major 

influence on regional climates and substantially contribute to carbon sequestration (Becker 

and Bugmann 2001). Because of steep environmental gradients and complex topography, 

mountains exhibit a greater ecological heterogeneity and are widely viewed as hotspots of 

biodiversity.  

 The combination of strong gradients and presence of organisms close to their 

physiological tolerance explains why alpine ecosystems are particularly vulnerable to global 

change (Theurillat and Guisan 2001). Remotely-sensed data and climatic recordings indicate 

that in addition to increasing temperature (Diaz and Bradley 1997, Noguès-Bravo et al. 2007), 

mountain ecosystems may experience decreased snow precipitation as a result of a higher 

rain/snow ratio (Serreze et al. 2000, Dye and Tucker 2003, Beniston 2005). In this context, 

seasonal snow cover has declined by around 10% (surface area) since 1972 (Serreze et al. 

2000) and between 1972 and 2000, the duration of the snow-free period in the Northern 

Hemisphere has increased by five to six days per decade (Dye, 2002).  

 Predicting the response of alpine ecosystems to global change requires understanding 

their functioning and sensitivity to key environmental drivers. As formulated by Walker et al. 

(1999) “The landscape-scale distribution of snow is perhaps the single most important 

mesoscale variable controlling biological systems in […] alpine ecosystems”., In alpine 

landscapes, snow distribution is mainly controlled by mesotopography (Billings, 1973) which 

determines growing season length, soil temperature and water availability. Therefore, all 

temperature-dependent processes in alpine ecosystem are under the ultimate control of the 

snow cover. These effects of snow, mediated by its impact on the physical environment, are 

hereafter referred to as direct effects. Contrasting seasonal snow cover along the 

mesotopographical gradient has long been associated with strong turn-over in plant species 

composition, and more recently with important changes in plant functional diversity (Kudo 

1996, Kudo et al. 1999, Choler 2005, Baptist and Choler 2008) and soil microbial 

communities (Schmidt et al. 2007). These changes of plant and microbe patterns along the 

gradient have important consequences for ecosystem processes. These effects of snow, 

mediated by plant and microbial functional properties, are hereafter referred as indirect 

effects. Few studies have attempted to disentangle direct and indirect effects of snow cover on 

ecosystem functioning, and most of them have been conducted in the arctic (e.g. Grogan and 
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Jonasson 2006, Elberling 2007). Hence, our understanding of the multiple controls exerted by 

snow cover on biogeochemical cycles, especially C and N cycles (and their coupling) remains 

largely incomplete in temperate alpine tundra. 

 Plant functional traits (PFTr) currently form the focus for a broad spectrum of 

ecological research attempting to quantify the relationship between ecosystem structure and 

function (Lavorel and Garnier 2002). Response traits are defined as markers selected by 

environmental conditions whereas effect traits are the traits for which an impact on ecosystem 

functioning is proven. According to the ‘biomass ratio hypothesis’ (Grime, 1998), ecosystem 

properties and functioning are more likely to be related to the trait values of the dominant 

contributors to the plant biomass. This hypothesis has been successfuly tested in several 

recent studies (Garnier et al., Garnier et al. 2004, Diaz et al. 2007, Garnier et al. 2007, Quétier 

et al. 2007) and tends to indicate that focusing on leaf and plant functional properties might be 

an efficient way to assess the effects of biotic components on ecosystems functioning. 

 Similarly,  this study aimed to dissociate the direct (i.e. climatic variables) and indirect 

controls (i.e. variations in PFTr) exerted by snow cover along a mesotopographical gradient 

(hereafter “snowmelt gradient”). It focused on two main steps of the carbon cycle,  Primary 

Production (Gross Primary Production, Aboveground Net Primary Production) and Carbon 

mineralization (heterotrophic respiration and litter decomposition). Alpine plant communities 

in the region of Lautaret (French Alps, 2058 m, 45°20’N, 6°24’E were studied along a 

snowmelt gradient with a particular focus (1) on communities dominated by Carex foetida 

(graminoid, Cyperaceae), Salix herbacea (shrub, Salicaceae), Alopecurus gerardi and Poa 

alpina (graminoids, Poaceae) corresponding to “late snowmelt location” and (2) on 

communities dominated by Kobresia myosuroides (graminoid, Cyperaceae) and Dryas 

octopetata (shrub, Rosaceae) corresponding to “early snowmelt locations”. 

 The first part of this synthesis emphasizes how climatic drivers and plant functional 

properties determine carbon cycling in alpine tundra (section A). The second part addresses 

the linkages between carbon and nitrogen cycling within plants and at the plant-soil interface 

(section B). This part includes unpublished results on microbial diversity of alpine soils. In 

the third part (section Conclusion), we will examine the possible effects of climate change in 

alpine tundra based on our results and the litterature. To conclude, we will suggest new 

research directions to contribute to a better prediction of the outcomes of climatic change on 

carbon cycling in alpine tundra (section Perspectives). 
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B. The interplay of direct and indirect effects on ecosystem 
processes 

1) Features of ecosystem models and methodological considerations 

 All models in ecosystem physiology make use of variables from the physical 

environment (climatic forcing) and parameters related to the biological properties of the 

ecosystem. Examples are the widely-used mechanistic ecophysiological model of leaf carbon 

gain developped by Farquhar and co-workers (Farquhar et al. 1980, Von Caemmerer and 

Farquhar 1981) and the stomatal conductance model proposed by Ball et al. (1987). The VC-F 

model is based on the enzymatic kinetic of RUBISCO, the enzyme which reduces CO2 (and 

O2) in the Calvin cycle. Two key parameters are Vcmax, the maximal carboxylation efficiency 

of RUBISCO and Jmax the maximal electron flux into the transport chain. These two 

parameters describe the co-limitation of C fixation by internal CO2 concentration at the 

carboxylation sites and by intercepted light. Wohlfahrt et al. (1999) and others demonstrated 

that these parameters are strongly correlated to leaf N concentration (LNC), and it is therefore 

possible to infer Vcmax and Jmax from a simple measure of LNC. Leaf geometry within the 

canopy modulates light interception and leaf temperature and therefore affects the estimated 

CO2 fixation. It is therefore necessary to take into account canopy structural properties- the 

distribution angle of leaves - and the total leaf area per ground area (Leaf Area Index, LAI) to 

estimate whole-plant C gain. 

 These models provide opportunities to test for the effects of both physical variables 

and leaf/canopy features on carbon gain. Along this line, many studies have investigated the 

relationships among several canopy properties – Leaf Area Index (LAI), nitrogen content, 

canopy architecture - and their effect on carbon uptake in different light conditions (Anten et 

al. 1995, Hikosaka and Hirose 1997, Anten 2005). However, these studies mostly focused on 

single species canopies grown in controlled conditions. Addressing the same questions for 

multi-specific canopies has rarely been done (see Wohlfahrt et al. 2000).  

 Recently, Lavorel and Garnier (2002) proposed the use of community-aggregated 

traits (CFP) to scale up processes from leaf to community level. CFP is defined as follows :  
 

∑
=

⋅=
n

1k
kk TACFP  

 
Where Ak is the abundance of the k species characterized by the value of trait 
Tk 

  

 A simple idea would be to use these CFP estimates in the framework of ecosystem 

modeling. Baptist and Choler (2008) provided evidence that this approach was successful for 



Synthèse et perspectives 

 208

estimating instantaneous gross carbon gain of alpine plant canopies. Simulations were thus 

performed to clarify the interplay of growing season length and leaf/canopy properties on the 

seasonal gross carbon gain of plant communities along the snowmelt gradient.  

 We tried to develop a similar approach to assess effects of the snow cover on carbon 

mineralization. This latter process has three steps. Leaching dominates during the first phase 

of degradation and is associated with litter fragmentation by detritivores. During the second 

step, the labile compounds are rapidly consumed by microorganisms. A classical litter 

decomposition experiment which would last from one to two years would only give 

information about these first two steps in cold ecosystems. The third step is much slower and 

mainly involves degradation of recalcitrant compounds (phenol-rich compounds). 

Measurement of heterotrophic respiration essentially provides data on the last two steps. 

Accordingly, to get a global picture of C mineralization in alpine tundra, we measured (1) an 

in situ litter bag experiment following a reciprocal transplantation design (Article 2A) and (2) 

heterotrophic respiration in controlled conditions and in situ (Article 2C).  

 Each step of C mineralization is controlled by abiotic and biotic factors. Temperature 

and soil moisture are the main abiotic drivers. Biochemical compounds such as lignin, 

polyphenols and nitrogen are major determinants of litter decomposability and the following 

indexes C:N, N:lignin, N:polyphenols have been widely used in numerous studies (e.g. 

Hobbie 1996, Perez Harguindeguy et al. 2000, Dorrepaal et al. 2005).  

 In this study, both statistical models applied to litter bag experiments or semi-

empirical models applied to heterotrophic respiration allowed testing of the relative 

contribution of the climatic variables and biotic factors. However, in contrast to C fixation, we 

did not use community-aggregated traits to predict litter decomposition (Article 2A, see 

perspectives). Moreover, because of the low number of species, we did not integrate the index 

of litter quality (PFTr) within the statistical model. We rather studied the species effect as 

compared to topographic effect. Relations to litter quality have been assessed a posteriori. 

 

 Concerning heterotrophic respiration, the simplest predicting model is a first order 

exponential model (Fang and Moncrieff 2001) :  
 

)( TeR ⋅⋅= βα  
Where α is the exponential coefficient of basal respiration (at a temperature of 0°C) and 
β a temperature scaler. R : respiration. 
 

  

If respiration is expressed per gram of soil or C, the parameter A is considered as a surrogate 

of SOM quantity or quality (e.g. Mikan et al. 2002, Grogan and Jonasson 2005, Fierer et al. 
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2007). This parameter is therefore related to the quality of organic matter and indirectly to 

leaf and root-aggregated community traits. As soil moisture is another important factor, model 

performance is generally enhanced when it is incorporate in the model. Thus, in this study, we 

applied a more complete model in order to determine the relative importance of the direct and 

indirect controls exerted by snowcover on heterotrophic respiration (see Article 2B):  

 
 

TeCWR ⋅βγν ⋅⋅⋅α=  
where υ and γ are empirical coefficients determining the sensitivity of the basal 
respiration rate to volumetric soil water content (W) and soil carbon content (C, 
i.e. surrogate of carbon quality, see Paper 2B) in percentage of soil mass, 
respectively. 
 
 

2) Plant functional diversity and ecosystem processes 

 

2.1  Control of carbon fixation along the snowmelt gradient 
 

2.1.1 From plant leaf traits to functional properties of canopies  

 
 It is generally accepted that cold, snow-covered ecosystems are strongly limited by N 

availability (Bowman et al. 1993). In alpine ecosystems, late snowmelt sites exhibit higher 

soil fertility (soil content in available nitrogen for plants) than early snowmelt sites. This 

difference is particularly strong shortly after snowmelt (Fig. 19, Bowman 1992). Consistent 

with these results, strong shifts in plant nutrient economy along this gradient have been 

identified. A greater LNC, a higher specific leaf area (SLA),- i.e. trait values associated with 

nutrient acquisition strategies -, are common features of species from late snowmelt locations, 

(Kudo 1992, Choler 2005, Baptist and Choler 2008). These traits ensure efficient carbon 

fixation. Conversely, species from early snowmelt locations are characterized by low SLA 

and high C/N, i.e. trait values generally associated with nutrient conservation strategies 

(Wright et al., 2004). At the canopy scale, the gradient is characterized by a marked shift from 

high LAI and planophilous canopies in late snowmelt locations, to low LAI and erectophilous 

canopies in the early snowmelt locations (Baptist and Choler 2008).  

 Sensitivity analysis revealed that the most relevant traits in predicting gross carbon 

uptake were LAI and community-aggregated LNC. In contrast, canopy geometrical properties 

(parameterized with k, the extinction coefficient of an ellipsoidal leaf distribution model) did 

not exert a strong influence on the Gross Primary Productivity (GPP), a result which has 

already been reported for low LAI canopies (Hirose 2005).  
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 Interestingly, empirical models of NPP/GPP resulted in very similar conclusions 

(Green et al. 2003). Building on remotely-sensed data, these authors developped the following 

approach:  

iPARNPP ⋅ε=                                 
                                                                               

PAR

ag

PAR

agcanopy

f
LNCLAI

f
SLAN ⋅

=
⋅

=ε             
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PAR e1f ⋅−−=          
                                                                                                  

iLAIk
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i
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ag PAR
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−
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⋅
= ⋅−  

NPP : Net Primary Productivity 
ε: Index of Light Use Efficiency (LUE) 
PARi : Photosynthetic Active Radiation 
intercepted 
Ncanopy : canopy N content expressed per unit of 
ground area 
LNC ag / SLA ag : community-aggregated LNC 
or SLA 
fPar : Photosynthetic Active Radiation absorbed 
par the canopy.  
k : extinction coefficient which derived from the 
Monsi-Saeki model (Monsi and Saeki 1953). 
 

This model highlighted that NPP could be reasonably estimated by using very low-

dimensional models with LAI, community-aggregated LNC and light interception/absorption 

as the main parameters. The empirical model implemented by Green et al. (2003) and the 

mechanistic one implemented by Baptist and Choler (Article 1A, 2008) confirm that these 

traits might provide “the best overall integration of the numerous biophysical and biochemical 

factors” (Green et al. 2003). Their integration in modeling terrestrial NPP may enhance our 

ability to predict vegetation response in response to global change.  

 Another interesting result we obtained in this study is that the assimilation rate of the 

whole canopy (expressed per unit ground area) was of the same magnitude as the leaf 

assimilation rate (expressed per unit leaf area). This is consistent with previous studies 

(Grabherr and Cernusca 1977, Diemer 1994, Tappeiner and Cernusca 1998) and tends to 

show that at the community level the relationship between LNC and photosynthetic capacity 

is maintained.  

 
2.1.2 Growing season length and plant functional properties as controls of C 

fixation 
 
 In accordance with CFP trends, instantaneous ANPP8 varies along the snowmelt 

gradient from high values in late snow melt locations to low values in the early snowmelt 

locations (Fig. 26, Fisk et al. 1998, Baptist and Choler 2008). We do not have estimates of 

instantaneous BNPP at the community level but we did measure a higher root production for 

C. foetida (late snowmelt) as compared to K. myosuroides (early snowmelt) (Fig. 21). These 

                                                           
8 Instantaneous ANPP is the biomass produced divided by the number of day elapsed from snowmelt to peak 
standing biomass. Yearly ANPP is the total biomass produced in a year. 
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results are in agreement with those obtained by Fisk et al. (1998) at the community level.  

 The estimation of instantaneous GPP also indicated a marked trend along the 

snowmelt gradient (Baptist and Choler 2008). But when expressed over season, simulations 

revealed that growing season length was counterbalanced by the particular CFP combination 

within each community along the snowmelt gradient (Baptist and Choler 2008). Early 

snowmelt species benefit from a longer growing season but exhibit lower photosynthetic 

efficiency. In late snowmelt locations, a set of CFP are associated with a high photosynthetic 

efficiency compensating for a shorter vegetation season. Hence, along snowmelt gradient, 

snow affects C fixation through both its influence on the growing season length (direct effect) 

and the ecological sorting of CFP (indirect effect).  

 
Fig. 21 Instantaneous Aboveground Net Primary Productivity (ANPP expressed on a daily basis) (A) and 
yearly ANPP (B) for various plant communities located along the snowmelt gradient from the most 
exposed (120) to the most snowy locations (200) (Aravo, 2750 m). Instantaneous Belowground Net 
Primary (BNPP) is calculated only for communities dominated by C. foetida (180) or K. myosuroides 
(140) (C). BNPP measurements are based on in-growth core methods as defined in the paper 1C. 
Summer corresponds to the period from the 06/06/2006 to the 16/08/2006 and fall from the 16/08/2006 
to the 04/10/2006. 

 
  

 In order to assess the interplay between direct and indirect effects of snow-cover 
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duration on the seasonal carbon uptake of alpine canopies, a sensitivity analysis was carried 

out. The results indicated that the GPP was predominantly sensitive to a change in snow-cover 

duration rather than changes in CFP along the snowmelt gradient (Fig. 6A in the article 1A, 

Baptist and Choler 2008). This confirms previous studies which proposed that annual carbon 

gains in arctic ecosystems were limited primarily by the length of the growing season and 

secondarily by light, temperature and nitrogen (Chapin 1983). Similarly, process-oriented 

ecosystem models indicate that longer growing seasons may enhance vegetation growth at 

high latitudes in the Northern Hemisphere (Piao et al. 2007). However, predicting the 

response of plants to longer growing periods is not easy and it will also depend on the 

phenological traits of species (Starr et al., 2000; Wipf et al., 2006; Bjork and Molau, 2007). 

The ability to benefit from a higher number of growing degree days may strongly vary from 

one species to another. Furthermore, earlier snowmelt  may lead to higher frequency of frost 

events especially at high elevation (Inouye 2000). Short and extreme freezing events have the 

potential to greatly affect growth of alpine plants especially those located in late snowmelt 

locations. A semi-controlled experiment carried out at the Joseph Fourier Alpine Station 

revealed that early frosts significantly affected aboveground biomass, productivity and LAI of 

late snowmelt communities (Article 1B). Despite a capacity to recover very quickly, frost 

damage could severely impair leaf growth, even if meristematic tissues are located 

belowground. Carex foetida was the most sensitive species, whereas Alopecurus gerardi and 

Poa alpina, two others graminoids were less impacted by these frosts. Hence, it is likely that 

the detrimental effect of frost might outweigh the benefits of a slight increase in cumulated 

growing degree day when snowmelt occurs earlier in the year (Wipf et al. 2006, Article 2B). 
 

2.2 Control of decomposition and heterotrophic respiration along the snowmelt 
gradient 

 

 Litter bag experiments indicated that the same substrate decomposes better in late vs. 

early snowmelt locations (Reciprocal transplant experiment, Article 2A, Bryant et al. 1998). 

As decomposition occurs mainly in winter (Article 1A), it likely that deep snow pack, which 

acts as an insulating layer, provides a micro environment that is favourable for litter 

decomposition. Soil temperature variations associated with changes in snow cover duration 

affect enzymatic activity and reduce C and N mineralization in early snowmelt locations. 

Similarly, soil respiration was strongly dependent on soil temperature and moisture during 

summer and wintertime thus emphasizing the importance of direct effects (Article 2B). 

However, in late snowmelt location, total summer respiration was 50% above that of soils 
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from early snowmelt locations and this difference was mainly explainable by the 

overwhelming impact of higher substrate quality (i.e. high carbon content). During winter, 

this effect was less marked because of the higher temperature sensitivity of microorganisms 

(high Q10 , Article 2B). The insulating effect of snowpack and the low recalcitrance acted 

simultaneously to increase soil respiration in late snowmelt locations. Nevertheless, 

uncertainities remain about the very high Q10 values measured on freezing soils. Indeed, 

Schimel et al. (2006) was not able to predict realistic in situ CO2 efflux based on the high Q10 

values proposed by Mikan et al. (2002). Similarly, Elberling and Brandt (2003) questionned 

the impact of physical trapping on CO2 efflux : it is likely that the important CO2 efflux 

observed in response to temperature increment (around 0°C) is primarily related to gas release 

initially trapped in freezing soil than biological production (Elberling 2007). Consequently, 

variations in wintertime soil temperatures along the snowmelt gradient may not impact CO2 

efflux to such an extent (i.e. biological activity) as compared to soil organic matter quality 

(Paper 2B). Hence, these results suggest that within alpine ecosystems, spatial variations in 

soil respiration is mainly related to SOM quality rather than changes in soil climate, at least 

during summer. Nadelhoffer et al. (1991) reported similar results in arctic ecosystems in a 

controlled-condition experiment. Grogan and Jonasson (2005) and Elberling (2007) also 

indicate that SOM quality was almost as important as soil temperature differences in 

determining spatial variations in CO2 efflux in arctic tundra. Their studies principally focused 

on the winter period.  

 In addition, we observed that the proportion of shrubs vs. graminoids might strongly 

affect litter decomposition rate (Table 7, Article 2A). Differences in litter mass loss 

differences between shrubs and graminoids within early and late snowmelt sites largely 

exceeded the differences observed for one species between these two situations. Similarly, 

several authors (Hobbie 1996, Dorrepaal et al. 2005, Wahren et al. 2005, Dorrepaal 2007) 

showed that leaf decomposition rate differed consistently among growth form with low 

decomposability litters being produced by mosses, followed by evergreen shrubs, deciduous 

shrubs, graminoids and forbs. These observations emphasized the important role of phenolic 

compounds (e.g. lignin or tannin) which are a major determinant of litter decomposition, 

because of their structural stability and biochemical recalcitrance.  

 

 

 

 



Synthèse et perspectives 

 214

Late snowmelt locations Early snowmelt locations 
Species k (yr-1) r2 P k (yr-1) r2 P 

 Leaf litter 
C. foetida 0.56 (0.01) 0.97 <0.0001 0.47 (0.02) 0.92 <0.0001 
K. myosuroides 0.56 (0.01) 0.97 <0.0001 0.45 (0.05) 0.94 <0.0001 
S. herbacea 0.27 (0.01) 0.95 <0.0001 0.19 (0.01) 0.88 <0.0001 
D. octopetala 0.24 (0.01) 0.96 <0.0001 0.15 (0.01) 0.88 <0.0001 
Table 7 Statistics and decay constants (k) from regression of litter mass remaining against time in years. Species 
underlines are shrubs, the others are graminoids. Data from Baptist et al. (Article 2A). 

 
 In summary, the combination of litter bag experiments and CO2 efflux measurements 

revealed that C mineralization rate was higher in late compared to early snowmelt locations in 

both winter and summer. Soil temperature is an important driver of spatial CO2 efflux 

variations, especially during winter. However results indicate that the first and the last stages 

of decomposition are both very vulnerable to changes in SOM quality (a priori lignin 

compounds). Any shift in plant community composition leading to the dominance of one 

particular growth form may have cascading biogeochemical consequences on ecosystem 

processes and carbon sequestration (Chapin et al. 2000). A typical example of such possible 

shifts is the encroachment of deciduous shrubs in arctic tundra (e.g. Betula nana). This shift 

from graminoids to woody shrubs is predicted to significantly impact ecosystem processes 

(Walker et al. 2006). Indeed, increased shrub height and cover may also impact albedo and 

thus the surface energy budget (Sturm et al. 2001). Also, higher shrub abundance will alter 

biogeochemical processes through changes in litter composition and quantity (Jackson et al. 

2002) and thermal insulation (Grogan and Jonasson 2006). Many other examples can be 

found in the literature (Dorrepaal et al. 2003, Quétier et al. 2007, Wookey et al., accepted 

manuscript) and emphasize the consequences of such vegetation shifts for ecosystem 

functioning.  

 

3) The need to integrate a new set of plant traits to predict ecosystem 
functioning? 

  

 Our results indicate that C mineralization will be particularly sensitive to changes in 

litter quality (i.e. lignin content) which may occur because of snow cover induced shifts in 

plant communities. They point out the need to assess what are the climatic drivers of the shrub 

vs. graminoid ratio in alpine ecosystems  

We identified three sets of response PFTr which may affect community composition in this 

way. They are briefly described below. 
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3.1 Regenerative traits and morphological constraints 

  

 The preformation of flowers, inflorescences or aerial parts (leaves, branches) is one of 

the important adaptive features of alpine plants (Körner 1999). As time for growth is limited, 

this mechanism facilitates the rapid emergence of tissues at the onset of growing season. 

Conversely, this phenomenon may limit very short-term response to changing environment. 

Indeed, alpine plant growth is hindered by the number of preformed buds and the number and 

potential area of associated leaves to be produced by a single meristem (Grelet et al. 2003).  

 These morphological constraints differ between species (Körner 1999) and also 

between growth forms. Graminoids are assumed to be generally responsive to perturbation or 

changes in resource availability because their leaves grow from intercalary meristems (only 

grasses) and are less limited in the size of the leaves that can be produced. By contrast, most 

species of deciduous, evergreen shrubs (and many forbs) are limited in their ability to increase 

their growth in the short term because (1) they must first form new buds, containing new 

leaves and stems (Shaver et al. 1986; Bowman & Conant 1994; Diggle 1997) and (2) they can 

not increase leaf size as graminoids do because of morphological constraints.  
 

 3.2 Phenological traits 
 

 Sørenson (1941) distinguished two phenological patterns in tundra plants : periodic 

species, characterized by a fixed growing period, and aperiodic species, for which both 

growth and the production of new leaves are maintained as long as conditions are favourable. 

Periodic species, such as Polygonum bistorta in the arctic (Starr, 2000), Polygonum viviparum 

or C. foetida in alpine tundra (Article 1B, Diggle 1997) may be disadvantaged compared to 

aperiodic species such as the shrubs D. octopetala (Welker et al. 1997), S. herbacea (personal 

observation) or the forb Ranunculus adoneus (Galen & Stanton, 1993) in a context of  a 

lengthened growing season.  
 

 3.3 Resistance to frost events 
 

 During winter, plants are usually protected from low temperature by snow cover, or by 

specific features (e.g. higher concentration in sugars or supercooling, Bell and Bliss 1979). 

The situation is different during growing season as plants generally display a rapid 

dehardenning once snow disapears (Körner 1999). In a context of global change, frost events 
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are predicted to increase because of reduced snow cover (Inouye 2000), it is therefore relevant 

to compare the ability of alpine species to support and to recover from freezing events. 

According to Taschler & Neuner (2004) and Baptist & Streb (unpublished results), 

graminoids show on average lower freezing points than shrubs, suggesting than they may be 

favored if the frequency of frosts increases in the future (Table 8). In addition, species from 

early snowmelt locations displayed similar freezing points to species from late snowmelt 

locations (Baptist & Streb, unpublished results). However, the fraction of dead cells following 

the frost was much lower from early snowmelt species (data not shown), suggesting a higher 

capability to recover.  

Table 8 Freezing points of alpine species of 
different growth forms. Data are from Taschler 
& Neuner  (2004) and Baptist et al. (Article 1B 
and unpublished data, marked with *). Different 
upperscript letters mean significant differences 
(p<0.05, One-way-ANOVA). See references for 
further details on methods. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Species Freezing points (°C) 

Dwarf shrubs 
Calluna vulgaris 
Juniperus communis sps. nana 
Loiseleuria procumbens 
Rhododendron ferrugineum 
Vaccinium gaultherioides 
Vaccinium myrtillus 
Vaccinium vitis-idaea 
Dryas octopetala* 
Salix herbacea* 
Salix reticulata* 
Salix retusa* 
Mean 
Graminoids 
Juncus trifidus 
Nardus stricta 
Phleum alpinum 
Poa alpina 
Poa alpina (2)* 
Kobresia myosuroides* 
Carex foetida* 
Alopecurus gerardi* 
Mean 

 
-8.3 ± 0.1 
-9.0 ± 0.6 
-6.6 ± 0.6 
-4.7 ± 0.5 
-5.6 ± 0.5 
-4.1 ± 0.4 
-5.5 ± 0.3 
-7.6 ± 0.3 
-8.1 ± 0.4 
-7.2 ± 0.6 
-8.7 ± 0.4 
-6.8 ± 0.5a 

 
-7.7 ± 0.3 

-10.3 ± 0.6 
-10.8 ± 1.5 
-9.9 ± 1.4 
-9.3 ± 0.4 

-10.1 ± 0.5 
-10.0 ± 0.5 
-12.0 ± 0.8 
-10.0 ± 0.4b 
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C. Linkages between carbon and nutrient cycling. The role of soil 
microbial communities 

 
  

 A large body of literature emphasizes the close linkage between the carbon and 

nitrogen biogeochemical cycles in terrestrial ecosystems (e.g. Hobbie et al. 2000, Long et al. 

2006). In plant functional ecology, the continuum between exploitative and conservative 

strategists is generally related to nutrient availability, especially nitrogen (Chapin et al. 

1993a)9. Low N availability limits ANPP, leading to recalcitrant tissue construction and by 

retroaction affecting N mineralization rates. This positive feedback remains as long as plants 

rely on saprophytic microorganisms to satisfy their N requirements. However, it has been 

recently discovered that plants can acquire organic N forms with or without mycorrhiza and 

therefore subvert the microbial loop (Chapin et al. 1993b, Raab et al. 1999, Chapman et al. 

2006). Also, some species can fix atmospheric N limiting their dependance on saprophytic 

microbes (rhizobial or actinorhizal species). Finally, plants develop special adaptations to 

reduce dependance on nutrients, such as N storage.  

 The emergence of this new paradigm questions the existence of a bottleneck associate 

to SOM mineralization (Schimel and Bennett 2004, Chapman et al. 2006) and calls for further 

studies to explore the linkage between plant, microbial and biogeochemical cycles in alpine 

tundras. 
 

1) Links between plants, microbial populations and N availability in alpine 
tundra 

 

 The main constraint in snow-covered ecosystems is the soil temperature which is 

principally controlled by snow cover throughout the year. Microbial populations experience a 

marked dynamic throughout the year which impacts on plant production and C and N 

mineralization.  

During summer, bacteria dominate over fungi and feed on both labile carbon exuded by the 

plants and soil organic matter. During the transition to winter, microbial communities shift to 

psychrophilous fungal-dominated communities (Schadt et al. 2003, Uchida et al. 2005, Bjork 

et al. 2008). Wintertime populations display high ability in degrading recalcitrant compounds 

such as salycilic acid or lignin-rich compounds present in SOM especially in early snowmelt 

locations (Lipson et al. 2002, Loya et al. 2004, Schmidt and Lipson 2004, Baptist et al. 2008). 

Additionally, some bacterial populations feed on easy labile substrates which are leached 

                                                           
9 Water availability can independently initiate the same nutrient acquisition trade-off (Chapin et al. 1993a) 
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from fresh litter and then contribute to its degradation. These results support our observations 

concerning high wintertime compared to summertime decomposition rates (Article 2A, 

Hobbie and Chapin 1996). At snowmelt, microbial populations collapse releasing important 

quantities of nutrients, especially at snowy sites (Fig. 19, Brooks et al. 1998). The peak of 

nutrients, coupled to the mineral release from water snowmelt, is crucial as it may support 

seasonal plant growth. Bilbrough et al. (2000) indicated for example that N uptake during 

snowmelt averaged 7 to 12% of total uptake during the growing season.  

 In late snowmelt locations, species probably rely on this flush of mineral nitrogen 

which allows a rapid expansion of photosynthetic tissues and ensures efficient light capture 

and carbon fixation. Indeed, we demonstrate that a fast growing species from late snowmelt 

location (C. Foetida) displayed higher mineral N uptake compare to a slow growing species 

present in early snowmelt locations (K. Myosuroides) (Article 1C). The fast N incorporation 

and translocation into the leaves was related to an important belowground C allocation, 

indicating a tight temporal and spatial C – N coupling in the plant. These features may 

contribute to optimize mineral N acquisition at snowmelt and plant growth in locations where 

growing season length is limiting.  

 By contrast, in early snowmelt locations, Baptist et al. (Article 2A) showed that 

because of lower soil temperature during winter, litter decomposition and thus N 

mineralization was slowed down, limiting N availability during the growing season. The 

presence of species rich in tannin may also contribute to reduce N availability through 

chemical complexation (Baptist et al. 2008). Finally, as snow cover is limited in early 

snowmelt locations, species do not benefit from resources contained in melt water at the onset 

of the vegetation season. Brooks et al. (1998) demonstrate that nitrate exported during 

snowmelt from the inconsistent snow cover sites was significantly greater than the quantity 

exported in late snowmelt locations. Thus, it is likely that plant growth in early snowmelt sites 

does not primarily rely on this pulse of mineral nitrogen at the onset of the growing season. 

 Analysis of root tissues revealed a strong decrease in nitrogen content in roots of K. 

myosuroides at the beginning of the growing season. This was not observed for C. foetida 

(Fig. 22). These results suggest that, at least for K. myosuroides, nitrogen storage from 

previous years may support growth though allocation into aboveground compartments during 

the first weeks of the growing season. Regardless of soil N availability, these plants may 

preserve relatively more N within their biomass than plants from late snowmelt locations. 

These features are frequent in alpine ecosystems (e.g. Lipson et al. 1996) and confirm that 

reliance on storage are correlated with the amount of asynchrony between resource supply and 
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demand (Chapin et al. 1990).  

 

Fig. 22 Root nitrogen content (g.g-1) in 
relation to degrees day since snowmelt 
(or when sum of degrees days > 0) for K. 
myosuroides (early snowmelt locations, 
black symbol) and C. foetida (late 
snowmelt locations, white symbol) 
 
 
 
 
 
 
 
 

 

 Moreover, microbial diversity studies indicated the presence of Frankia bacteria in 

soils from early snowmelt locations (Zinger et al. unpublished results). These bacteria are 

responsible for biological N2 fixation and are associated with D. octopetala roots (Table 9, 

Kohls et al. 1994). Thus, an important fraction of N assimilated by this species may result 

from biological fixation although nitrogenase activity should be investigated to confirm this 

hypothesis.  
 

Table 9 Proportion of Frankia sequences within 
Actinobacteria phylum in late and early snowmelt 
locations (class: Actinobacteridae, order: 
Actinomycetales).  
  

 
 

 In addition, we detected a higher abundance of the genera Inocyte and Russula and of 

the species Cenococcum geophilum in early compared to late snowmelt locations (Zinger et 

al., in prep.). These phyla have been previously reported as ectomycorrhiza of D. octopetala 

and K. myosuroides respectively (Ascomycota, Gardes and Dahlberg 1996) suggesting these 

species may display higher efficiency of N incorporation thanks to these symbionts (Lipson et 

al. 1999). Finally, Chapin et al. (1993b) and Kielland (1994) have recently shown that some 

plants can assimilate amino acids more rapidly than mineral nitrogen from hydroponic 

cultures in the absence of mycorrhizae. This phenomenon appears widely developed in alpine 

and arctic ecosystems as a result of low inorganic N availability (Raab et al. 1999, Jonasson et 

al. 2001). It is particularly the case for Kobresia myosuroides (Raab et al. 1999). Hence, the 

vegetation has the potential capability to access organic N directly without being dependant 

on N mineralization. It is however still important to precise that if plants avoid N 

mineralization, they still depend on soil microbes for soil protease activity (i.e. 

depolymerization, Schimel and Bennett 2004).  

 Late snowmelt 
locations 

Early snowmelt 
locations 

May 0 0 
June 0 4.7 % 
August 0 7.1 % 
October 0 20 % 
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 Thus, species from early snowmelt locations appear to subvert the microbial loop of 

SOM mineralization through different strategies such as the: remobilization of N storage, 

biological N fixation and organic nitrogen assimilation (Fig. 23). In contrast, species from late 

snowmelt locations may rely mostly on mineral N at the onset of growing season and 

developed specific features in order to maximise N assimilation and plant growth. Although 

these conclusions are mainly indirect and require further experiments, they illustrate how 

environmental conditions have selected plants with diverse mechanims of obtaining N. They 

also outline the importance of considering plant and soil communities together over seasonal 

timescales to identify (1) the controls and bottlenecks and (2) the degree of temporal and 

spatial coupling between C and nutrient cycles. The incorporation of microbial communities 

into current conceptual models of  biogeochemical dynamics may be a valuable tool in the 

assessment of plant and microbial mediated controls on carbon and nutrient cycling (Zak et al. 

2006). 
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Fig. 23 Hypothesis regarding Carbon and Nutrient interaction in early and late snowmelt 
locations. Data from Zinger et al. (unpublished results) and Baptist et al. (unpublished 
results). Modified from Chapman et al. (2006). 
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2) The need for the integration of microbial community dynamics in 
biogeochemical models 

  

 Microbial populations are absent from biogeochemical models (Zak et al. 2006). 

Beyond technical difficulties, research is currently limited by (1) the capability to aggregate 

microbial populations within a functional classification and (2) the absence of a clear 

conceptual framework which articulates plant and microbial effect traits to predict ecosystem 

functioning. Accordingly, we propose to modify the conceptual framework proposed by 

Lavorel & Garnier (2002) (Fig. 24).  

 In this figure, microbial and plant functional traits interact to determine a potential 

enzymatic activity which is ultimately regulated by environmental variables. This potential 

activity refers to RUBISCO and other enzymes involved in plant metabolism when C fixation 

is analysed and to enzymes associated with SOM degradation when C mineralization is 

addressed. It it important to note that microbial catalysis depend firstly on (1) the nature of the 

enzyme selected by climate and substrate and then ultimately on (2) the quality of the 

substrate and (3) temperature. This situation is different in plants as the enzyme of 

carboxylation (i.e. RUBISCO) and its substrate (i.e. CO2 or O2) are common to all plant 

species. As a result, the enzymatic efficiency will only depend on the quantity of enzyme 

present in plants whereas it will depend on both quantity and nature of the enzymes in 

microbes.  

 Interdependence of plant and soil microbial communities in alpine tundra can be 

illustrated by various mechanisms (Fig. 24). Plants impact microbial populations directly 

through rhyzodeposition, exudation rate, litter quality and through ecosystem processes filters 

(e.g. litter quantity) (Fig. 24, arrows 4a and 6). Conversely, specific microbial populations 

enable plants to acquire nutrients in organic or mineral forms (mycorrhizal symbiosis, 

nitrogen fixing bacteria) (Fig. 24, arrow 4b). They can act as carbon sinks and modulate plant 

growth and response to disturbances (Grimoldi et al. 2006, Walling and Zabinski 2006). 

Finally, microorganisms indirectly affect plant growth by controlling mineral N availability 

within the ecosystem (Fig. 24, arrow 7).  

 Soil microbes play a key role in ecosystems (e.g. Schmidt et al. 2007). A future 

challenge will be to determine to which extent changes in microbial diversity may influence 

plant community dynamics and ecosystem functionning (van der heijden et al. 2008).  
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Fig. 24 Conceptual diagram showing the direct and indirect effects of environmental 
constraints on plant and microbial communities and their impact on biogeochemical 
processes. These processes are determined by both the potential activity of plants and 
microbes and by environmental conditions. Modified from Lavorel and Garnier (2002). 
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D. Conclusions  

1) Control of carbon cycling in alpine tundra 

 Along the snowmelt gradient, variations in plant production are 

determined by both CFP and growing season length. Nevertheless, in a context of 

reduced snow cover, direct effects of snow through variations in vegetation growth 

period length should affect primary production to a greater extent than changes in CFP. 

As vegetation season length is an important limiting factor in alpine ecosystems, the 

capacity to respond rapidly to longer seasons will be determinant. Freezing events might 

also affect plant production and their consequences will depend on the ability of species 

to support these frosts (Fig. 25).  

In order to assess to which extent plant communities will respond to increasing growing 

degree days, we identified three sets of response trait (set A) :  

- Regenerative traits  

- Phenological traits  

- Freezing points and recovery  

Biotic interactions should also be crucial in predicting the evolution of community 

composition as one of the first effects of lengthened growing season will be to modify 

competitive relationships between species (Theurillat and Guisan 2001). 
 

 

 In early snowmelt locations, carbon mineralization is mainly determined 

by litter quality. Any changes in litter quality will significantly affect CO2 efflux. 

However, variations of wintertime soil temperature (through variations in snow cover) 

should also slightly alter the turnover of SOM (Fig. 26).  

Three traits are therefore considered crucial (set B):  

- N:Lignin  

- Tannin content  which may contribute to complex proteins in the soil and then 

decrease N availability 

- Allocation coefficients such as the woody:non woody ratio and the root:shoot ratio. 
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Fig. 25 Conceptual diagram for direct and indirects effects of snow cover on C fixation. In early snowmelt 
locations, CFP are outweighed by a longer growing season. In late snowmelt locations, we observed the 
opposite. The presence of mycorrhiza and biological N fixing bacteria may increase the efficiency of N 
acquisition in early snowmelt locations; however no data is available to confirm this hypothesis. Similarly, 
uncertainty remains about the impact of mycorrhizal colonization on C fixation. The sensitivity analysis 
revealed that a longer growing season may affect C fixation more strongly than compared to a change in 
CFP (represented by the larger regulation button), but this will ultimately depend on extreme events such 
as the occurence of frosts at snowmelt. 
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Fig. 26 Conceptual diagram for direct and indirect effects of snow cover on C mineralization. In early 
snowmelt locations, more efficient microbial populations are selected by both recalcitrant SOM and 
abiotic conditions (Baptist et al. 2008). However, despite higher efficiency, potential C mineralization 
remains lower than in late snowmelt locations because of lower C quality. This effect is reinforced by 
lower soil temperature during winter, but only marginally. Carbon quality is then the main factor 
determining C mineralization along the snowmelt gradient (represented by larger regulation buttons). 
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 Plant species from late snowmelt locations are dependent upon microbial 

N mineralization whereas species from early snowmelt locations appear to subvert the 

microbial bottleneck by assimilating organic N and fixing atmospheric N. It is possible 

to hypothesize contrasting impacts of climate change on these two types of ecosystem 

functioning. Ecosystems exhibiting faster cycling of C and nutrients and tighter linkages 

between biogeochemical cycles would probably respond more rapidly and more strongly 

to climatic forcing. Conversely, a delayed response is likely in early snowmelt locations. 

This would be reinforced by stressful conditions during wintertime which would be only 

marginally affected by global warming. (i.e. wintertime (soil) temperatures will remain 

very low for plant and microbial life in early snowmelt locations). 

 

 Accumulation of SOM, and thus C sequestration, is related to an imbalance between 

plant production and the decomposition rate. In cold ecosystems, SOM accumulates to high 

concentrations in relatively narrow horizons, despite low annual productivity (Körner 1999).  

Carbon mineralization therefore appears to be the limiting step (Körner 1999, De Deyn et al. 

in press). Thus, we can hypothesize that C mineralization will be the most sensitive step and 

will eventually determine C cycling and the evolution of C stocks in cold ecosystems. As this 

process mainly depends on C quality, any shift in plant composition (response traits, set A) 

either favoring, or not, one of the three traits listed above (effect traits, set B) may impact C 

mineralization.  

 The methodological approach based on quantitative CFP was successful in 

determining the hierarchy of direct and indirect controls exerted by snow cover on C fixation 

and mineralization. We showed that it is possible to integrate CFP into biogeochemical 

models, allow the prediction of consequences of changes in biotic and abiotic variables on C 

processes. This study also indicates that the use of growth-form based groups is not 

informative when assessing both production and decomposition in an ecosystem (Green et al. 

2003, Dorrepaal 2007, Baptist and Choler 2008). This classification has been widely used in 

arctic ecosystems to predict the indirect impact of global change on ecosystem processes (e.g. 

Walker et al. 2006). This approach was partly successful because the distinction between 

growth forms matched differences in lignin and other polyphenol compounds which are 

determinant traits in decomposition process. However, CFP related to C fixation vary widely 

within each growth form and thus reduce the pertinence of such classifications to predict 

production (Dorrepaal 2007). Hence the selective use of a few set of traits at the leaf and plant 

level seems to be more promising in order to analyze both plant response to environmental 
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factors and effect on C and nutrient cycles (Dorrepaal 2007). 
 

2) Impact of global changes in alpine ecosystems : a case study of the 
Lautaret region 

 
 Given the lack of any clear consensus concerning possible climate change scenarios, a 

range of possible changes in attributes of snowpack development are considered. These 

include potential increases in temperature and decreases in snow precipitation. Decreasing 

snow precipitation during winter will likely result in: 

(1) Longer growing season  

(2) Increased frost frequency   

(3) Lower N input into the system 

(4) Reduced soil moisture during growing season 

(5) Lower soil temperature during winter because of higher coupling between air and soil 

temperature 

 In addition, IPCC (2007) predict a parallel increase of 1 to 3 °C in mid-latitude, which 

may reinforce most of these effects, except for freezing events whose frequency might be 

reduced. Longer growing seasons and a higher frequency of frost events will directly 

stimulate productivity through community and species specific filters based on the set of 

response traits defined above (Set A). Shifts in community composition will thus impact C 

mineralization through variations in effect traits, defined as the set B.  

  

 Schöb et al. (in revision) showed that the abundance of the alpine shrub S. herbacea 

decreased with longer growing season, in contrast to graminoids. In parallel, Beerling (1998) 

indicated that this species was intolerant to dryness and to shade. Its low prostate habit makes 

it susceptible to competition for light with taller vascular plants. Thus, S. herbacea may be 

rapidly out competed by graminoids because of a slow response time, higher freezing point, 

and a weak capacity to tolerate shade and competition. In parallel, warming may lead to the 

rapid expansion of Poa alpina, a generalist species (Article 1B, see also Sandvik et al. 2004). 

This species is relatively tolerant to freezing and is able to maintain photosynthetic tissue 

during almost of the growing season. Similarly, Körner (1999) indicate that Poa alpina may 

respond rapidly to environmental changes. Hence, late snowmelt locations might evolve 

toward graminoid-dominated communities. These conclusions are contradictory to the review 
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of Bjork and Molau (2007) who proposed that more vigorous shrubs from surrounding areas10 

may rapidly invade these communities and out compete graminoids. In the region of Lautaret, 

the only shrubs which could potentially invade snowbed communities are located at lower 

altitudes (i.e. subalpine shrubs such as Vaccinium sp.). In the very-long term and in a context 

of a marked temperature increase, this hypothesis cannot be neglected. However, alpine 

ecosystems are globally dominated by slow-growing species, and the time lag between the 

initiation of treatment and ecosystem responses may be very long (Chapin et al. 1995, Körner 

1999). Thus, it appears essential to predict the evolution of species dominance in nearby 

communities before predicting the outcomes of invasion by subalpine species. In early 

snowmelt locations, D. octopetala is able to lengthen it life cycle because of its wintergreen 

habits and therefore its increased seasonal carbon gain (Welker et al. 1997). However, 

Klanderud and Totland (2005) observed a decreased cover of D. octopetala in response to 

warming and/or nutrient addition. These authors suggested that despite an increase of biomass 

in the short-term, this species might be outcompeted by graminoids over the longer-term. 

Similar changes in competition hierarchies may occur in response to a lengthened growing 

season. Indeed, graminoids are expected to respond faster to longer growing seasons and D. 

octopetala may therefore be excluded by K. myosuroides and others sedges such as Carex 

rupestris. 

 To conclude, we predict that dwarf shrubs may be outcompeted by graminoids along 

the snowmelt gradient because of lower competitive ability, lower resistance to frost events 

(case of S. herbacea) and slow response times to environmental changes. C fixation will be 

stimulated by higher growing degree-days, especially in late snowmelt situations where 

growing season length is the most limiting factor. Additionally, C mineralization may 

increase because of better C quality in both late and early snowmelt locations. Positive 

feedbacks between the production of good quality tissue and N availability to plants may take 

longer in early snowmelt locations because of decoupling between C and N cycles.  

 Other climatic or anthropogenic drivers may affect ecosystem processes through 

impacts on plant community composition, and may strengthen these predictions. Numerous 

studies have showed that graminoids may benefit more from N deposition than forbs or other 

growth forms. In moist alpine meadows, Bowman et al. (1995) reported an increase in the 

biomass of the graminoid Deschampsia caespitosa as compared to the forb Acomastylis rossii. 

In a recent survey, Korb & Ranker (2001) reported an increase of nitrophilous species 

                                                           
10 The identity of these shrubs is not given in the paper of Bjork and Molau (2007). We made the hypothesis that 
these authors refer to lower altitude shrubs compared to dwarf shrubs present in late snowmelt locations.  
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associated with an increase of a few dominant graminoids, especially Carex rupestris 

(Bowman et al. 2006). Similarly, N deposition in the central Alps and Northern Caucasus 

resulted in strong changes in dry matter production and community change towards a higher 

abundance of sedges (especially Carex sempervirens) (Soudzilovskaia and Onipchenko 2005, 

Bassin et al. 2007). Hence, the replacement of forbs and shrubs by graminoids in alpine 

ecosystems associated with higher production could even accelerate the impact of reduced 

snow cover on C cycling. Nevertheless, such prediction will have to be made by 

quantitatively linking these feedbacks to others simultaneously operating identified feedbacks 

(warming, snow cover). 
 

E. Perspectives 

 The need to up-scale from leaf traits to CFP for predicting C mineralization  

Up-scaling from leaf decomposition to whole-plant decomposition is not 

straightforward. While leaf litter decomposition has been studied in various ecosystems and 

for a high number of species, functional groups, etc.., measurements of root and branch 

decomposition rates are under-investigated because of technical difficulties.  

Additionally, predicting community decomposition rate in an ecosystem is hindered by the 

need to quantify litter fluxes from aboveground vs. belowground and from woody vs. non 

woody plants/parts. Differences in C allocation at the whole-plant level affect ecosystem 

processes through the quality and quantity of litter inputs into the ecosystem 

(roots/stems/leaves). For example, C allocation to woody or non woody plants/parts affect 

decomposition rate as woody parts are characterized by higher lignin contents and lower 

decomposition rates. Similarly, species characterized by higher root/shoot ratios (R:S ratio) 

may lead to higher mean residence times of C in the ecosystem as root decomposition rates 

are generally lower than leaf decomposition rates because of higher lignin contents (e.g. 

Bryant et al. 1998).  

 In order to predict decomposition rate at the community level, we therefore suggest 

four relevant steps:  

1. Evaluating whole-plant litter flux based on (1) the mean residence time of C within 

each plant compartment and (2) plant C allocations. Assessing the decay rate of the 

different compartments of the dominant plants by litter bag experiments. 

2. Predicting whole-plant decomposition rate based on the decomposition rate of each 

organ weighted by its biomass (i.e. additive or not?).  
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3. Evaluating to which extent whole-plant aggregated Lignin:N ratio can be an accurate 

indicator of whole-plant decomposition rate. 

4. Scaling up to the community level following the same methodology as proposed in 

section A. 

 

 Species-specific effects? The case study of tannins  

 Tannins are well-known for their capabilities to complex nitrogen in vitro or in situ 

and thus reducing its bioavailability (see Kraus et al. 2003 for a review). They therefore 

contribute to increase SOM recalcitrance within the ecosystem. In cold and snow-covered 

ecosystems, tannin-rich shrubs are abundant (e.g. D. octopetala, Vaccinium sp., Empetrum 

sp.) and synthesis of these compounds is enhanced by environmental factors (UV, low 

fertility). However, to what extent tannins affect C mineralization remains poorly understood. 

Baptist et al. (2008) showed that freezing temperatures may stimulate the degradation of 

tannins extracted from D. octopetala. Several hypotheses have been proposed to explain the 

underlying processes and need to be addressed. In particular, two main questions raised by 

this study are:  

- Is there a relationship between the quantity of litter-rich tannin and SOM 

recalcitrance? These results suggest the possibility of using tannin quantity as a 

predictor of C mineralization in snow-covered ecosystems (when weighted by species 

abundance). 

- Do freezing temperatures (<0°C) reduce the strength of the bound of tannins to 

proteins ? if so, how can these chemical processes shed new light on decomposition 

rates observed in the field ? 

 

 The need for a better description of SOM recalcitrance 

 Measurement of basal respiration revealed higher SOM recalcitrance in early 

snowmelt locations (Article 2B). We hypothesized that this recalcitrance was related to lignin 

and others polyphenols present in the litter of D. octopetala and other dominant species from 

early snowmelt locations. However, this point remains to be confirmed. We are currently 

assessing the NIRS spectra (Near Infrared Spectroscopy) to obtain a better picture of Soil 

Organic Matter characteristics along the snowmelt gradient. 
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 The need for a better understanding of the interdependence between plants and 

microbes  

 Microbial populations play a crucial role in providing nutrients to vegetation, 

illustrating the new paradigm proposed by Schimel & Bennett (2004) and further developed 

by Chapman et al. (2006). However, these results need to be confirmed and many points 

remain unexplored. The following question should be addressed in future studies:  

 How important are mycorrhizae in uncorking the microbial bottleneck?  

 Can alpine plants efficiently assimilate organic nitrogen without the presence of these 

symbionts? 

 To what extent are late snowmelt communities dependant on the peak of nutrients at 

snowmelt? 

 Is the uptake of organic nitrogen still efficient in the presence of higher mineral N 

concentrations? Inversely, are late snowmelt species able to assimilate organic N?, is 

this property rapidly developed if fertility decreases ? 

 To what extent do variations in the temporal dynamics of mineral and organic nitrogen 

affect plant growth in early and late snowmelt locations respectively? 

 

 The need for continous measurements of CO2 fluxes in alpine tundra  

 This study remains limited in its capacity to predict carbon balance in alpine tundra. 

The evaluation of the source-sink dynamic is hindered by the absence of continuous CO2 

measurements. Over the last decade, there has been a burst of new sites where continuous 

measurements of land-atmosphere exchanges of water and CO2 were achieved using eddy 

covariance techniques (Canadell et al. 2000). It remains difficult to interpret eddies sampled 

over complex terrain, but some mountain ecosystems are now equipped (see Hammerle et al. 

2007), and attempts to correct fluxes are under progress (Rana et al. 2007). Hence, this 

technique appears quite promising for assessing carbon balances in alpine tundra.  

 Beyond CO2 efflux measurements, another challenge will be to disentangle the 

controls over CO2 efflux during winter in order to quantify adequately yearly CO2 efflux in 

snow-covered ecosystems (Elberling and Brandt 2003, Schimel et al. 2006). Finally, 

experimental manipulations of the environment should be coupled with ecosystem process 

measurements in order to (1) validate model predictions in regards to the direct effect of snow 

cover on CO2 efflux and to (2) evaluate long-term vegetation shifts in response to global 

change. 
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Annexe 1 
Liste et présence des espèces dans les sites B, C et D en situation thermiques et nivales. Relevé réalisé durant 
le mois de juillet 2007. 

 Situation nivale Situation thermique 

Sites B C D B C D 

Alchemilla pentaphyllea L. 
Carex foetida All. 
Alopecurus alpinus Vill. 
Salix herbacea L. 
Plantago alpina L. 
Sibbaldia procumbens L. 
Nardus stricta L. 
Omalotheca supina (L.) DC. 
Potentilla aurea L. 
Geum montanum L. 
Ranunculus kuepferi Greuter & Burdet 
Ranunculus montanus Willd. 
Taraxacum alpinum Weber 
Cardamine bellidifolia L.  subsp. alpina (Willd.) B.M.G. Jones 
Cirsium acaule Scop. 
Cirsium spinosissimum (L.) Scop. 
Festuca violacea Gaudin 
Pedicularis rostratospicata Crantz 
Veronica alpina L. 
Dryas octopetala L. 
Kobresia myosuroides (Vill.) Fiori 
Carex curvula All.  subsp. rosae Gilomen 
Festuca halleri All. 
Minuartia verna (L.) Hiern 
Androsace vitaliana (L.) Lapeyr. 
Avenula versicolor (Vill.) Laínz 
Myosotis alpestris F.W. Schmidt 
Pachypleurum mutellinoides (Crantz) Vill. 
Polygonum viviparum L. 
Pulsatilla vernalis (L.) Miller 
Sempervivum montanum L. 
Alchemilla flabellata Buser 
Antennaria carpatica (Wahlenb.) Bluff & Fingerh. 
Bartsia alpina L. 
Campanula scheuchzeri Vill. 
Carex rupestris All. 
Draba aizoides L. 
Festuca rubra L. 
Hieracium glaciale Reyn. 
Hieracium piliferum Hoppe gr. 
Leucanthemopsis alpina (L.) Heywood 
Lotus alpinus (DC.) Schleicher ex Ramond 
Minuartia sedoides (L.) Hiern 
Oxytropis campestris (L.) DC. 
Saxifraga exarata Vill.             
Sempervivum arachnoideum L. 
Veronica bellidioides L. 
Achillea nana L. 
Agrostis alpina Scop. 
Antennaria dioica (L.) Gaertner 
Anthyllis vulneraria L.  subsp. alpestris (Kit.) Ascherson & Graebner 
Aster alpinus L. 
Cerastium arvense L.  subsp. strictum (Koch) Gremli 
Homogyne alpina (L.) Cass. 
Lloydia serotina (L.) Reichenb. 
Luzula lutea (All.) DC. 
Oxytropis helvetica Scheele 
Salix reticulata L. 
Saxifraga bryoides L.             
Saxifraga paniculata Miller 
Trifolium pratense L. subsp. nivale (Koch) Cesati [1844] 
Leontodon pyrenaicus Gouan  subsp. helveticus (Mérat) Finch & P.D. Sell 
Gentiana verna L. 
Poa alpina L. 

Species richness 
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differ in their responses to environmental constraints 

 
 

Quiroz, C., P. Choler, F. Baptist, M. Gonzalez-Teuber, M. A.  
Molina-Montenegro, et al. 

(2008) Ecological Research DOI 10.1007/s11284-008-0498-9. 
 
 
 
 
 
 
 

 
 

Projet ECOS-Sud avec le Chili ‘Facilitation 
et invasion biologique en zone alpine’. 
Photo prise au col Agnel (2644 m) le 
16/07/05. Au premier plan, coussin de Silene 
acaulis.  

 
 
 
 
 
 
 
 
 



Annexes   

 252

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



ORIGINAL ARTICLE

Constanza L. Quiroz Æ Philippe Choler

Florence Baptist Æ Marcia González-Teuber
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Abstract Few studies have compared the response of
native and invasive populations under stressful condi-
tions. Furthermore, there is little consensus as to whe-
ther a plastic response is related to invasiveness in
stressful environments. Exotic species have recently been
reported in the high Andes of central Chile, where
individuals have to cope with drought and poor soils, in
addition to extreme temperatures. We explored if the
exotic species Taraxacum officinale (dandelion) has
plastic responses to soil moisture and nutrient avail-
ability, and whether two sets of alpine populations de-
rived from native and introduced populations can
converge to similar plastic responses to environmental
constraints. Using a common garden approach, we
compared plants grown from seeds collected in alpine
populations of its native range (Alps, France) and in
alpine populations of its introduced range (Andes,
Chile) under a drought experiment, a potassium gradi-
ent, and a nitrogen gradient. Plasticity was only found as
a response to drought. Moreover, different responses
were found between both origins. Andean individuals
are drought-resistant, while individuals from the Alps
were drought-sensitive. According to the nutrient
experiments, Andean dandelions behave as a nitrogen
demanding-potassium avoiding species, whereas indi-

viduals from the Alps did not show any particular
dependency or repulsion tendency to either of these two
nutrients. Results suggest that differences in life history
traits of both derived sets of populations may have an
important role in determining the response of dandeli-
ons under the evaluated conditions. However, the rela-
tive importance of genetic adaptation in these responses
is still unclear. Although T. officinale is a cosmopolite
weed, this is the first study that compares individuals
coming from its native and invaded range under stressful
conditions.

Keywords Biological invasions Æ Common garden Æ
Exotic species Æ Asteraceae Æ Environmental stress

Introduction

The physical environment plays a pivotal role as a filter
for successful plant invasions (Chaneton et al. 2002;
Dybdahl and Kane 2005; Lake and Leishman 2004;
Suding et al. 2004). It has been suggested that stressful
abiotic conditions constrain plant invasions (e.g., Rich-
ardson et al. 2000; Williamson and Fitter 1996). Hence,
the overcome of the barrier imposed by the physical
environment is a key step for the invasion success in an
extreme environment. Although scarce, there are exam-
ples of successful invasions in stressful habitats (e.g.,
alpine habitats: Dullinger et al. 2003; semiarid habitats:
Eggemeyer et al. 2006; salt-marshes: Dethier and Hacker
2005). In these cases, the possession of attributes that
enable exotic species to overcome the stressful abiotic
conditions of the invaded habitat should be important
for explaining the invasion success.

Plasticity has been defined as the ability of an
organism to adjust its performance by altering its mor-
phology and/or physiology in response to varying envi-
ronmental conditions (Sultan 1995). It has been
suggested that plasticity could play an important role in
explaining successful biological invasions (Sexton et al.
2002; Richards et al. 2006). According to Richards et al.
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(2006), pre-existing plasticity in ecologically important
traits would promote invasiveness after arrival to a new
habitat because it allows the exotic species to cope with
the environmental heterogeneity of the invaded habitat.
Alternatively, plasticity of these ecologically important
traits may evolve rapidly in introduced habitats and
thereby contribute to invasion success after a lag time
(e.g., Williams et al. 1995; Sakai et al. 2001; Lee 2002).
Once naturalized, introduced populations will experi-
ence new local selection pressures. Then, recombination
of genetic variation among introduced individuals can
provide a range of heritable phenotypes to respond to
local selection pressures and produce offspring with
higher fitness (Ellstrand and Schierenbeck 2000). How-
ever, few studies have compared the behavior of exotic
and native populations of invasive species under stress-
ful conditions, and whether differences in plasticity
could be responsible for the success of the species in the
invaded range (Kaufman and Smouse 2001; DeWalt
et al. 2004; see review of Bossdorf et al. 2005). The scarce
available evidence for differences in plasticity between
native and introduced individuals under stressful con-
ditions is still contradictory.

Alpine habitats are well known for their severe
environmental conditions (Chambers 1995; Nilsson
et al. 2002; Körner 2003). In temperate zones, alpine
habitats have strong winds, short growing seasons, high
solar radiation, low temperatures and low nutrient
availability, especially nitrogen (Billings 1974; Körner
2003). In addition, alpine species could undergo drought
stress, which is an important mortality factor for seed-
lings (Ehleringer and Miller 1975; Bliss 1985). Despite
these extreme conditions, some studies have begun to
report exotic species establishing in alpine environments
(Arévalo et al. 2005; Becker et al. 2005; Cavieres et al.
2005; Daehler 2005; Mc Dougall et al. 2005; Parks et al.
2005; Andersen and Baker 2006). Invasive species of
alpine habitats are expected to have high germination
and high growth rates to cope with the short growing
season, as well as the ability to tolerate drought and very
low soil nutrient levels.

Alpine populations are derived from larger source
populations occurring at lower altitudes. Therefore,
attributes of alpine individuals (such as plasticity) de-
pend on the attributes that are already present in indi-
viduals from lower altitudes. Considering that
introduced species usually undergo major genetic bot-
tlenecks following their introduction (Sakai et al. 2001),
it is expected that such genetic changes will be reflected
in derived alpine individuals. Hence, it is expected that

alpine individuals from the introduced range show dif-
ferent responses in front of diverse abiotic conditions
than alpine individuals from the native range.

Taraxacum officinale Weber (dandelion) is an inva-
sive weed that was introduced to Chile from Europe ca.
150 years ago (Matthei 1995). In its native range, T.
officinale is present in alpine environments, although it is
mostly restricted to disturbed sites (data not shown) that
are expected to be more fertile than adjacent undis-
turbed alpine soils (Vitousek et al. 1979; Chambers et al.
1990). However, in central Chile, this exotic species has
been found growing abundantly in alpine zones, either in
disturbed sites or in undisturbed natural communities
(Cavieres et al. 2005).

Due to the influence of the Mediterranean-type
climate, drought conditions in the Andes of central
Chile are more accentuated than in the majority of the
mountains in the Alps (Cavieres et al. 2006). In
addition, due to its intrusive volcanic origin, soils in
the high-alpine zone of central Chile have very high
amounts of phosphorous and potassium (Table 1).
Therefore, it can be expected that Taraxacum officinale
individuals invading the Andes should be able to cope
with low amounts of nitrogen (as occur in most of the
alpine environments), and high amounts of potassium
and phosphorous, as well as drought.

The aim of this study was to explore if Taraxacum
officinale has plastic responses to soil moisture and soil
nutrient availability (Nitrogen and Potassium), and
whether two sets of derived alpine populations from na-
tive and introduced populations show similar responses to
environmental constraints. Using a common garden ap-
proach, we compared the performance of plants grown
from seeds collected in an alpine environment from its
native range, the Alps (France), and an alpine environ-
ment from its introduced range, the Andes (Chile).

Methods

Target species

Taraxacum officinale (Asteraceae) (dandelion) is native
to Europe, but is now found in most countries of the
world (Holm et al. 1997), where it is considered as a
noxious weed in several countries (Holm et al. 1997). It
is a stemless, deeply rooted perennial herb having a thick
taproot and leaves in rosettes at the soil level. Each plant
has one or more 2–5 cm diameter capitula or flower
heads terminally positioned on 5–45 cm long, hollow,

Table 1 Matric potential (Wm),
nitrogen (N), phosphorous (P)
and potassium (K) found in
Andean soils, matric potential
obtained in the drought
treatment and nutrient amounts
used in gradients of N and K
used in greenhouse experiments

Andean
soils

Drought
treatment

Nitrogen
gradient

Potassium
gradient

Wm (KPa) �31 + 1.98 �30 + 1.01
N-NO3 (mg/kg) 12.90 ± 1.63 4 – 17– 30 13
P (mg/kg) 13.63 ± 1.29 14 14
K (mg/kg) 321.37 ± 32.59 320 130 – 415 – 700



cylindrical peduncles. Each capitulum has a composite
of 50–250 small bright yellow ligulate or ray florets
(Holm et al. 1997). Propagules are mainly dispersed by
wind. T. officinale is generally apomictic, although sex-
ually reproducing biotypes have been described. Asexual
T. officinale plants are mostly triploids (Richards 1973).
Genetic variation existing among asexually reproducing
dandelions is likely to have come exclusively from either
mutations or multiple origins of the clones detected
(Ellstrand and Roose 1987). However, some traces of
sexual recombination have been found in some triploid
asexual populations, contributing to the genetic varia-
tion of those populations (Van der Hulst et al. 2000).

Although this species is widespread in Europe, the
first collection of this species in Chile corresponds to
1870, in the city of Santiago. From that date, multiple
introductions have probably toke place (Matthei 1995).
Since our study area is about 50 km away from this city,
it seems unlikely that this species has been present for
more than 100 years in our sampling area or the Andes.

Seed collection

Bulk seed collections of >50 Taraxacum officinale
individuals were made in the Queyras Mountains at
>2,000 m elevation, in the South Western French Alps
(native range), and in the Molina River valley at
>2,500 m elevation in the central Chilean Andes
(introduced range). We sampled more than two high-
altitude populations in both localities. Seeds from the
Alps were collected from individuals found in anthrop-
ically disturbed areas (Alps), whereas seeds from the
Andes corresponded to individuals located in undis-
turbed habitats or anthropically disturbed areas.

Although we cannot demonstrate that individuals
generated in disturbed and undisturbed sites are similar,
Rogstad et al. (2001) showed in clonal populations of T.
officinale present in North America that seed dispersal is
able to maintain the same ‘‘clonal families’’ at short dis-
tances and at distances as high as hundreds of km. Based
on this evidence,we assume that similar clonal lineages are
present in disturbed and undisturbed sites in the sampling
area located in the Andes. Since Rogstad et al. (2001) also
showed that genetic diversity is similar both at small scales
(few meters) and at large scales (hundreds of km), we are
confident that possible differences in the area from which
seeds were collected will not influence the genetic diversity
that was included in all treatments.

Taraxacumofficinale individuals found in the study area
of theAndes have been found tobe triploid (L. SanMartin,
unpublished data). Hence, we can expect that they repro-
duce asexually. On the other hand, it has been described
that T. officinale individuals occurring in the study area of
the Alps can be sexual or asexual (Verduijn et al. 2004).
Unfortunately, there is no information about the ploidy
levels of the high-altitude populations sampled for this
study. Nevertheless, in areas where the ranges of sexual
and asexual individuals overlap, the range of asexually

reproducing individuals usually extends to higher altitudes
where abiotic conditions are more severe (Bierzychudek
1985). Thus, it seems likely that for both origins we are in
presence of asexually originated individuals.

Seedling preparation

Seeds were carried to the laboratory in Chile where
random samples of seeds were germinated in Petri dishes
at 20�C and a photoperiod of 12 h light. Emerged
seedlings from the two origins of T. officinale were
planted into one-liter plastic pots and randomly assigned
to the different experiments explained below. These
experiments were carried out in the greenhouse located
in Universidad de Concepción, Concepción, Chile (36�S,
73�W), where the mean maximum and minimum tem-
peratures during the experiments were 24 and 12�C,
respectively.

Drought tolerance

To compare the response of Taraxacum officinale from
both origins to drought, individuals from both origins
were exposed to two soil moisture levels, drought and
control. The drought treatment mimicked the soil matric
potential that is found in the Andes of central Chile
during the driest period of the growing season (Table 1).
Forty-one-month-old seedlings of each origin were
planted in one-liter pots filled with a mixture of com-
mercial soil and sand (50:50). Twenty seedlings were
assigned to one of the two following irrigation treat-
ments: (a) addition of 100 ml of water every 2 days
(hereafter control) and (b) addition of 100 ml of water
every 5 days (hereafter drought). This design resulted in
20 replicates · 2 moisture levels · 2 origins = 80 pots
in total. Pots were placed in the greenhouse, where their
final position was randomly assigned. The experiment
was maintained during 2 months, and at the end of this
period we recorded survival and flower production.
After 2 months, surviving individuals were collected and
their final biomass was measured. The root:shoot ratio
of surviving plants was also calculated.

Nutrient gradient

To compare the response of Taraxacum officinale from
both origins to varying levels of soil nutrients, we used
levels of N, P and K that are commonly found in alpine
soils of the Andes of central Chile (Table 1). Individuals
from both origins were grown at three levels of potas-
sium and three levels of nitrogen, whereas P level was
maintained constant in both gradients. Ninety-six
1-month-old seedlings of each origin were planted in
one-liter pots filled with commercial vermiculite. We
randomly selected groups of 16 seedlings that were
assigned to each of the following treatments. The three



levels of potassium treatment consisted of a weekly
addition of (a) 170 ml of a mineral solution with a low
level of potassium (0.004602 mol K2SO4/l, hereafter K1,
dissolved in 0.00095 mol Ca(NO3)2/l, 0.002 mol MgSO4/
l, 0.0006 mol NaNO3/l, 0.00128 mol NaH2PO4/l and Fe-
EDTA chelated trace metals), (b) 170 ml of a mineral
solution with an intermediate level of potassium
(0.01472 mol K2SO4/l, hereafter K2, dissolved in the
same solution mentioned above), or (c) 170 ml of a
mineral solution with a high level of potassium
(0.02502 mol K2SO4/l, hereafter K3, dissolved in the
same solution mentioned above). The three levels of
nitrogen treatment consisted of a weekly addition of (a)
170 ml of a mineral solution with a low level of nitrogen
(0.0004 mol urea, hereafter N1, dissolved in 0.002 mol
MgSO4/l, 0.00128 mol NaH2PO4/l, 0.005 mol CaCl2/l,
0.023 mol KCl/l, Fe-EDTA chelated trace metals, and),
(b) 170 ml of a mineral solution with an intermediate
level of nitrogen (0.0017 mol urea, hereafter N2, dis-
solved in the same solution mentioned above), or (c)
170 ml of a mineral solution with a high level of nitrogen
(0.003 mol urea, hereafter N3, dissolved in the same
solution mentioned above). Pots were watered two times
per week with 170 ml of distilled water, and once a week
with the nutrient solutions.

This design resulted in 16 replicates · 3 nutrient lev-
els · 2 nutrient gradient · 2 origins = 192 pots in total.
Pots were placed in the greenhouse, where their positions
were randomized. Treatments were applied during 2
months, andat the endof this periodwe recorded survival,
final biomass and root:shoot ratio of surviving plants.

Statistical analyses

In both experiments, survival was analyzed with a two-
tailed proportions test. In the drought experiment, mor-
phological and reproduction data did not fit the
assumptions for parametric statistics. Thus, final
biomass, root:shoot ratio and the number of capitula
produced per plant were analyzed with Mann-Whitney
non-parametric paired tests. Comparisons were made
among every origin and treatment. Since non-parametric
tests do not allow to explore interactions between two
predictor variables, we used the following procedure for
comparing the change in some attributes (final biomass,
root:shoot ratio, number of capitula) between the two
origins along each gradient. First, for each attribute we
calculated for each individual the quotient between the
value obtained in the drought treatment and the mean
value obtained in the control. After that, individuals of
different origin (Andes vs. Alps) were comparedwith one-
way ANOVAs (final biomass and root:shoot ratio), or a
Mann-Whitney U test (number of capitula) when
assumptions of normality were not met. Root:shoot val-
ues were log transformed to fit assumption of homoge-
neity of variance. In the nutrient gradient experiments,
final biomass and root:shoot ratio were analyzed with
two-way ANOVAs. Post-hoc comparisons were made by

Tukey HSD for unequal sampling sizes, including both
origins and the three levels of the gradient. All statistical
analyses were performed with Statistica 6.0.

Results

Drought tolerance

Individuals from the two origins differed in their re-
sponses to drought. Survival of individuals from the
Andes was similar in both irrigation treatments (Fig. 1a,
Table 2). In contrast, individuals from the Alps showed
lower survival under drought compared to the control
individuals (Fig. 1a, Table 2). Individuals from the Alps
showed lower final biomass with drought (U = 9.5;
P < 0.01), whereas Andean individuals did not differ in
final biomass between the two irrigation treatments
(U = 33.5; P = 0.21) (Fig. 1b, Table 3). Although
individuals from both origins increased their root:shoot
ratio in drought (U = 16; P < 0.05 and U = 4;
P < 0.001 for the Andes and the Alps, respectively),
this increment was higher in individuals from the Alps
(F1,18 = 19.40; P < 0.01) (Fig. 1c, Table 3). With
drought, both origins produced lower number of capit-
ula compared to control (Fig. 1d), and the decrease in
the number of capitula produced per plant did not differ
between origins (U = 40.0; P = 0.450). Notice that
plants from the Alps produced no capitula in the hars-
hest conditions.

Nutrient gradient

Potassium gradient

Alpine individuals showed higher survival along the two
higher gradient potassium levels, compared to Andean
individuals (Fig. 2a, Table 2). Individuals from the Alps
showed the same survival along the three potassium
levels, whereas individuals from the Andes decreased
survival at the highest level of potassium (Fig. 2a,
Table 2). Individuals from the Andes reached lower
biomass than individuals from the Alps across the
potassium gradient (F1,64 = 5.70; P < 0.05) (Table 4),
with no changes among the different potassium levels
(F2,64 = 0.71; P = 0.49) (Fig. 2b, Table 4). The root:-
shoot ratio of both genotypes did not change along this
gradient (Fig. 2c, Table 4).

Nitrogen gradient

Although total survival was higher in Alpine individuals
along the entire gradient compared to Andean individu-
als, this difference was only significant at the intermediate
level (Fig. 3a, Table 2). The highest survival was found in
the intermediate level of nitrogen for individuals from the
Alps, while for individuals from the Andes it was found at



the two higher levels (Fig. 3a, Table 2). Individuals from
the Andes reached lower biomass than individuals from
the Alps (F1,40 = 9.88; P < 0.01) across the entire
nitrogen gradient (F2,40 = 0.56; P = 0.58) (Fig. 3b,
Table 5). Regarding the root:shoot ratio, Andean indi-
viduals allocated more resources to the roots than Alpine
individuals (F1,40 = 11.69; P < 0.01) across the entire
gradient (F2,40 = 0.31; P = 0.73) (Fig. 3b, Table 5).

Discussion

The individuals of T. officinale used in this study come
from two high-altitude origins, the Andes and the Alps.
Although the Alpine dandelions belong to the native
range and the Andean dandelions, to the introduced
range, both can be considered as derived populations of
lower-altitude populations, that had acted as a source of
propagules dispersed by wind, cattle, and humans to
higher elevations. Therefore, individuals originating in
these habitats will not only reflect the genetic pool of the
lower-altitude populations of origin, but also the results
of new selective pressures that are present in high-alti-
tude environments.

Although there was no indication of plasticity in the
two gradients of soil nutrients examined, individuals
from both origins differed in their plasticity under
drought. With drought, individuals from both origins
showed plasticity in the root:shoot ratio, increasing
allocation to below ground biomass. However, this
change in biomass allocation was bigger in individuals
coming from the Alps. This change in biomass alloca-
tion is a common strategy to drought that allows plants
to increase their water absorption surface (Larcher
2003). Nevertheless, despite the higher allocation to
belowground biomass in individuals from the Alps, this
was not translated into a higher fitness compared to
individuals from the Andes. While individuals from the
Alps showed lower survival and reached lower biomass
with drought, individuals from the Andes maintained
the same survival compared to the control. Indeed, they
produced flowers under drought. Therefore, Andean
individuals can be considered as drought-resistant, while
Alpine individuals were drought-sensitive.

In the context of an exotic species growing in a
stressful environment, plasticity in a certain trait is un-
likely to have any effect on invasiveness unless that
plasticity contributes to fitness in that particular habitat
(Richards et al. 2006). Our results suggest that the An-
dean population (introduced origin) does not show great
plasticity under drought. Nevertheless, this lack of
plasticity is not related to negative consequences in
individual fitness, in terms of survival and reproduction.
In the dry growing season occurring in central Chile, the
ability to tolerate drought can make the difference
between a successful establishment or not (Cavieres et al.
2006). Therefore, differences observed in drought resis-
tance between the two origins of T. officinale might be
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influenced by differences in specific abiotic conditions
between both environments. The ability to cope with
drought found in the Andean dandelions may be part of
the reason for their success in this part of the Andes.
Nevertheless, this ability was accompanied by a high
nutrient sensitivity in terms of survival. Survival of the
Andes individuals was negatively affected towards
increasing levels of potassium and lower levels of
nitrogen, whereas survival in dandelions originated in
the Alps was not negatively affected by the nutrients
availability. Hence, Andean individuals behave as a
nitrogen demanding-potassium avoiding species,
whereas Alpine individuals did not show any particular
dependency or repulsion tendency to either of these two
nutrients. In the central Chilean Andes, T. officinale is
very abundant in anthropically-disturbed sites (Cavieres
et al. 2005), which are characterized by higher levels of
nitrogen but lower levels of potassium compared to
undisturbed soils (Quiroz CL, unpublished data). This
last might explain the responses observed for the Andes
origin under nutrient availability. Despite the fact that
potassium is an essential nutrient for plant growth (Taiz
and Zeiger 1998), high concentrations of this cation in
the soil have been reported to have negative effects in
plants (Russel and Russel 1959). According to this, we
presume that T. officinale from the Andes is more
damaged by higher levels of potassium than their
counterparts from the Alps.

Although T. officinale is distributed worldwide
among a great diversity of environments, this is the first
study that compares plastic responses of individuals
occurring in the native and invaded ranges under
stressful conditions. Actually, the ability of this species
to tolerate stressful conditions has only been examined
in presence of native co-occurring species in the intro-
duced range and in the native range separately (Brock

et al. 2005; Tsialtas et al. 2004). Despite the general
assumption that T. officinale presents a plastic strategy,
the few studies that have actually evaluated phenotypic
plasticity for this species (Tsialtas et al. 2004; Brock
et al. 2005, this study) have not found evidence to sup-
port this common assumption.

The scarce available evidence for differences in plas-
ticity between native and introduced individuals of other
invasive species occurring under stressful conditions is
still contradictory. For instance, Kaufman and Smouse
(2001) compared plasticity of Melaleuca quinquenervia
using two soil moisture levels (moist unsaturated soil and
flooded soil) and found more phenotypic plasticity in
individuals from the introduced range than from the
native range. In contrast, DeWalt et al. (2004) found
little evidence of differences in plasticity between intro-
duced and native genotypes of the tropical shrubClidemia
hirta.

If constant fitness is the key to success, thenwe expect a
Jack-of-all trades situation, where plasticity allows the
fitness of the invader to remain relatively constant across
environments (Richards et al. 2006). If the success of an
invader is due to its ability to rapidly take advantage of
available resources, we expect a Master-of-some situa-
tion, where the invader shows a greater fitness response to

Table 2 P-values of the
comparison of the final survival
of Taraxacum officinale
individuals grown in a drought
experiment, in a gradient of
nitrogen (N), and in a gradient
of potassium (K)

Survival was compared among
groups with a two-tailed pro-
portion test
And = Andean individuals;
Alp = Alpine individuals

And-Control And-Drought Alp-Control Alp-Drought

And-Control – 0.155 0.155 <0.001
And-Drought – 1 <0.01
Alp-Control – <0.01
Alp-Drought

And-N1 And-N2 And-N3 Alp-N1 Alp-N2 Alp-N3

And-N1 – 0.273 <0.05 0.054 <0.001 <0.05
And-N2 – 0.164 0.344 <0.01 0.106
And-N3 – 0.599 0.094 0.805
Alp-N1 – <0.05 0.43
Alp-N2 – 0.143
Alp-N3 –

And-K1 And-K2 And-K3 Alp-K1 Alp-K2 Alp-K3

And-K1 – 0.394 <0.05 1 0.146 1
And-K2 – 0.155 0.394 <0.05 0.394
And-K3 – <0.05 <0.01 <0.05
Alp-K1 – 0.131 1
Alp-K2 – 0.131
Alp-K3 –

Table 3 One-way analysis of variance of the change in the attri-
butes measured for Taraxacum officinale individuals grown in the
drought experiment

Final biomass (gr) Root:Shoot

Origin (O) 19.25*** 19.40***

F-values are shown (df = 1.18)
***P < 0.001



favorable conditions (Richards et al. 2006).Morrison and
Molofsky (1998, 1999), and Lavergne et al. (2007) studied
the performance of invasive Phalaris arundinacea geno-
types under different biotic and abiotic conditions. They
have found consistent evidence of low phenotypic plas-
ticity among introduced genotypes, and dependence on
multiple introductions to increase its geographical spread
in the introduced region (Morrison and Molofsky 1998,
1999; Lavergne et al. 2007). According to our results,
native individuals of T. officinale originated in the Alps
behaves like a ‘‘Jack-of-all-trades’’ under stressful con-
ditions, whereas introduced T. officinale originated in the
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Table 4 Two-way analysis of variance of final biomass and root-
shoot ratio for Taraxacum officinale individuals grown in the
potassium gradient experiment

Final
biomass (gr)

Root:
Shoot

Origin (O) F 2.64 5.70* 2.56 ns
Treatment (T) F 1.64 0.73 ns 0.39 ns
O · T F 2.64 0.71 ns 0.43 ns

F-values are shown
ns P > 0.05, *P < 0.05
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Andes resembles a ‘‘Master-of-some conditions’’ under
the same environmental constraints. These conclusions
open a window of opportunities for the control of the
spread of T. officinale in these habitats, by creating the
conditions that these individuals are not able to manage.
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Résumé 
 
 Les écosystèmes alpins, au même titre que les écosystèmes arctiques, séquestrent des 
quantités importantes de carbone dans leurs sols. Dans ces écosystèmes, la topographie locale 
détermine la répartition de la neige; un facteur qui, sur le court terme, affecte les paramètres 
physiques de l’environnement (effets directs) et qui, sur le long terme, a sélectionné des 
communautés végétales et microbiennes très différentes aux deux extrêmes du gradient de 
mésotopographie (effets indirects). Au regard des modifications futures des régimes d’enneigement 
prédits par les différents modèles climatiques, cette étude vise à explorer les contrôles directs et 
indirects exercés par l’enneigement sur la fixation du CO2 et la minéralisation du carbone organique 
dans les écosystèmes alpins.  
 Les paramètres physiques des sols (eau et température) ont été mesurés pendant plusieurs 
années révélant les effets directs. Afin de quantifier les effets indirects de l’enneigement sur les flux 
biogéochimiques, nous avons utilisé les caractéristiques fonctionnelles des végétaux (leurs traits). 
Différentes approches (mesures in situ, manipulations expérimentales et modélisation) ont été 
employées. 
 Cette étude démontre que la fixation du carbone le long des gradients de mésotopographie 
est à la fois déterminée par les traits fonctionnels végétaux, les propriétés des canopées et la 
longueur de la saison de végétation. Un allongement de la saison de végétation devrait entraîner une 
augmentation marquée de la production primaire si les événements de gel en début de saison de 
végétation demeurent limités. La minéralisation du carbone est au contraire largement dépendante de 
la qualité de la matière organique contenue dans les sols. Des changements de composition en traits 
fonctionnels de la végétation, notamment ceux affectant les concentrations en lignine des litières, 
devraient avoir un impact déterminant sur les vitesses de minéralisation de la matière organique. 
Enfin, l’étude des flux de carbone et d’azote dans les plantes dominantes et à l’interface plante – sol 
révèle un couplage temporel et spatial essentiel chez les espèces dont la croissance est limitée par la 
longueur de la saison de végétation. Ce couplage apparaît plus limité dans les communautés 
végétales bénéficiant d’une plus longue saison de végétation. L’évolution des flux et stocks de 
carbone au sein des écosystèmes alpins dans un contexte de changement climatique est discutée. 
 
 
Abstract 
 
 Alpine tundra store large carbon stocks in their soils. In these ecosystems, the local 
mesotopography determines snow cover distribution, a key variable, which affect the edapho-climatic 
conditions on the short term (direct effects) and, in the longer-term, select for contrasting plant and 
microbial communities at both ends of the topographical gradient (indirect effects). In the context of 
global change, where large changes in snow precipitations are projected, this study explores the 
controls exerted by snow cover on carbon fixation and carbon mineralization in alpine tundra.  
 Edapho-climatic variables (water and temperature) were measured during several years and 
we used vegetation functional characteristics (using plant functional traits) to quantify the indirect 
effects of snow cover on biogeochemical cycles. Various approaches (in situ measurements, 
experimental manipulations and modeling) were used.  
 This study demonstrates that carbon fixation along mesotopographical gradients is determined 
by plant functional traits, canopy properties and growing season length. A longer growing season may 
lead to a marked increase in primary production, if freezing events at snowmelt remain infrequent. In 
contrast, carbon mineralization is mainly dependant over soil organic matter quality. Shifts in plant 
functional traits, in particular those related to litter lignin content, will strongly impact the degradation 
process. Finally, the quantification of carbon and nitrogen fluxes in plants and at the plant-soil 
interface reveals a tight spatial and temporal coupling which is essential for species whose growth is 
limited by growing vegetation length. This coupling is reduced in plant communities which benefit from 
a longer growing season. The evolution of carbon fluxes and stocks in alpine ecosystems is discussed 
in the context of climatic changes. 

 
 
 
 

 




